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1.0 INTRODUCTION

In the design of a nuclear reactor the critical size of the reactor is a

very important quantity. A convenient method of analytically solving the

monoonergetic lioltzmann neutron transport equation for the critical size is

the spherical harmonics method. Because the even order approximations are

difficult to formulate, most of the usage of the spherical harmonics method

has been restricted to the odd order approximations.

Rumyantsev (18) was one of the first to suggest that the use of the even

order approximations could result in improvements in accuracy over the odd

order approximations. Mingle (13,14) has found that for the disadvantage fac-

tor problem the even and odd order approximations counterconverge to the

correct result, i.e., both the even and odd order approximations converge to

the exact answer with one set of approximations yielding an upper bound while

the other set provides a lower bound. Dawson (4) has modified the P- solu-

tions to the Boltzmann neutron transport equation to obtain solutions which

lie somewhere between the P. and P solutions. Using this procedure it is

found that the resulting total neutron flux as a function of the spatial vari-

able was a better approximation to the exact distribution than either the P,

or P- approximation yielded. In addition Marchuk et, al. (9) have used a P-

approximation to work out a series of simple problems. In most of these pro-

tho first order error in the critical size in an L order approximation for

a series of homogeneous slabs, which mathematically predicts that the critical

thickness determined from the even and odd order approximations will counter-

converge to the exact result. There is thus considerable evidence that the



even order approximations will be of value in predicting the critical size of

a reactor.

In order to solve tlie lioltzmann neutron transport equation for a critical

size, boundary conditions must be applied at the outer boundary of the core

region. When a reactor is assumed to be surrounded by a vacuum which is infi-

nite in extent, tliese conditions are termed the vacuum-interface boundary

conditions. The usual vacuum-interface boundary conlitions which are applied

are Mark's, Marshak's, and replacement of the vacuum with a black medium

which is infinite in extent. Pomraninc (15,17) has suRRested a new set of

boundary conditions developed from a variational approach to the Boltzmann

neutron transport equation. These now boundary conditions have been found to

predict the extrapolation distance in tiie standard Milne problem more accu-

rately than any of the boundary conditions currently used (15). There

appears to be considerable promise in the use of tliese boundary conditions to

find the critical size of a reactor.

The theory, includinR all four sots of vacuum- interface boundary condi-

tions and computer programs, and the nature of the convergence of the even

and odd order spherical harmonics approximations to the exact critical size

for various boundary conditions applied to a spheric.'l reactor is the subject

matter of this presentation. In particular consider.able care is taken in

developing a consistent formulation for the theory of the even order

approximations.



2.0 THEORY OF NEUTRON TRANSPORT

2.1 The Spherical Harmonics Approximations

An extensive development of the Boltzmann neutron transport equation

can be found in many references (3,12,21). In this work it will be suffi-

cient to state that the general Boltzmann integro-differential equation for

neutron transport can be written as

J
3/(r,E,n,t)

-£'W(£.E,n,t) - {Z^(r,E,£) + Z^ Cr.E,£) )^(r,E,£,t)

S(r,E,£,t) + juE'jd£'^(r,E',£',t)i:^(r,E'-vE,£'-»-£) (1)

where: ^(r,E,£,t)drdEd£ is the number of neutrons in the differential

volume element d£ about r having energies between E and E + dE

whose directions lie in the solid angle of phase space dn about

£, multiplied by the neutron speed v ( v = /2E/m );

!^_ (r, £'»£,£'•£) dEd£ is the macroscopic cross section for changing

the neutron energy from E' to dE about E and the direction of

motion from £' to d£ about n, duo to neutron scattering inter-

actions with stationary nuclei;

!:j(r,E,£) = dE'd£'i;^(r,E+E', £»•£') is the macroscopic scattering

cross section for any type of scattering interaction which causes

a neutron to be displaced from its energy, E, and direction U at

r; and

E f_r,E,£) is the macroscopic absorption cross section for all typos

of neutron interactions with stationary nuclei which do not result

in a scattered neutron.

1 The coordinate system, spherical harmonics and much of the nomenclature
used in tliis work are the same as those of IVeinberg and Wigner (21).



The terra on the left side of Eq. (1) is the time rate of change of the

neutron density. The loss of neutrons from the system is represented by the

first and second terms on the right side of Hq. (1). The first term repre-

sents tile leakaj;e from tlie incremental volume element dr due to uniform

straightforward motion of the neutrons whereas the second term accounts for

losses of neutrons from dE about E and dQ about n in energy and phase space

due to all types of neutron-nuclei interactions within the incremental volume

element dr. The i^ain of neutrons !in the system is renresonted by the third

and fourth terms on the ripjit side of Eq. (1). The third term accounts for

all internal and external neutron sources and the fourth term accounts for

the gain of neutroas resultint; from the scattering of neutrons into dE about

E and d£ about Si from any other point in energy and phase space, within the

incremental volume; element dr.

At this point the assumption of tlie existence of only one monoenergetic

thermal neutron grouo is considered. Davison (3) and otliers (5,12,21) have

shown that this assumption is valid only for slightly al)Sorbing media in

regions far removed from sources and boundaries. However, even when these

restrictions do not apply this assumption has yielded results which agree

remarkably well with experimental results (21). Thus for simplicity and

without a great sacrifice in accuracy the energy-independent single thermal

neutron group is used throughout the remainder of this work.

Using the restrictions that the individual media under consideration are

homogeneous and isotropic and that the system is monoenergetic and independent

of time, the Boltzmann equation reduces to

-^•V^(r,£) - i^^*'-^)fi.r_,2) * S(r,£) + I d£'^(r,n")i;5 (£'-£) = . (2)

Next, defining Z) = E, I , assuming isotropic scattering so that

2j.(£'-*£J =
^s^'*^'

'*"'' ^" isotropic source which implies tliat .S(r,fi} = ,S(r)/4ii,



E<\, (2) becomes

-n>7/(£,£) - r^Cr.n) + ^llL * — |d£'^(r,£') = .

In this treatment only spherical geometry is considered and the

coordinate system used is the same as that of Weinberg and Wigner (21). In

a system of spherical symmetry the angular flux distribution depends only

on two variables: r, the distance from the origin, and u the cosine of the

angle 6 between the direction of motion il and the extension of the radius r.

Defining a new variable s which is a distance laid off along a, the

directional derivative in Eq. (3) becomes

(3)

n'V/(r,n)
^^^I'ii^ . 3£ dr ^ a£ dp

3s 3r 3s' ay 3s W

Figure 1. Geometrical interpretation of the variable s.

Then, as can be seen from Fig, 1,

ds _ 1_ ^ 1_

3r " cose u
'

ds ^ r ^ r
38" sine

°

/TV



With u = cos8,

du = -sinedO = -/l-y-dB

so that

ds _ ds do
dp "Js du

1-W

and the directional derivative in Cq. (4) becomes

^Hr_,a) ^j_^2j D/(r,£)
«.V/(r,£) = p-^_-. --h- ___

. (S)

is also isotropic so that

S(r) vE *(r) vE |dii'/(r,S1')

where *(£) = d£'^(r,£') is the total neutron flux at £. Usini; tlie relation-

ships given in Eqs. (5) and (6), Hq. (3) becoir.es

3^(r,£) ^j_^2^ 3^(r,£) ^E^+i:

Now, d£ is actually d(cosO)d4i = dud* so that by integrating Eq. (7) over ((.

in the interval < $ < 27i and defining

2n
y:(r,u) =

I

dct./(r,£) . (8)

and tlie mean number of secondaries per interaction, c, as

2 In this development tiie fission neutrons are assumed to be born at

thermal energies. In order to obtain better results witli the monoenort;otic
assumption the vZ, term sliould be replaced throughout the devclonment by a

corresponding terfi representing the number of neutrons bom in a single
fission which eventually reach tliermal energies. This term should take into
account resonance capture, additional fast fissions and fast leakage. This
change will alter the value of c but will not change any other quantities.



Eq. (7) becomes

In order to solve this integro-dift'erontial equation the angular flux

is expanded into an infinite series of Legendre polynomials, i.e.

^(r.g) = l^^MPf^M . (10)

t.

Substituting this expansion into Eq. (9), multiplying the resulting equation

l^y ''m(u)< integrating over the interval of ortliogonality -1 <_ u ^'1. using

the orthogonality relationship

J_^d,|.^(u)P„ (,) = nW ^m '

and the recursion relationshijjs

l-l" J
—

TT. TTTV *'HTT

UPJU) =
5^;;^

the spherical harmonics component form of the lioltzmann transport equation

in spherical geometry becomes

1*1 ,1*2 d 1 , , . I ( l-l d > . , ,

* (l.-c6^^)WJr) = . (11)

Equation (11) is an infinite system of differential equations in an

infinite number of unknowns. Altliough the exact solution of this system is

impossible, an approximate solution can be found by assuning that

(
-1—) f. . (r) is negligibly small and ignoring all higher order terms.

The resulting approximation will be called the P. approximation and will be

termed an even or odd order approximation according to the parity of 1.,



Increasingly higher orders of approximations should give nore accurate

descriptions of the angular and total neutron fluxes.



2.2 The Splierical Geometry Solution

In order to solve Uq. (11) Weinberg and Wignor (21) propose a solution

of the form

^^(r) = (2il+l)
I Vj(Xk)Qj(i;r/A^) . (12)

Tlie Q (Zr/A.)'s in llq. (12) are 2/it times the modified spherical Bessel func-

tions of the third kind and are considered in detail in Appendix A. Tlie

Q (x)'s will be termed geometricaj functions. Now, substituting the proposed

solution, Eq. (12), into Eq. (11) and using tlie recursion relationships

,j^(x) =<l^.^(x) -^Q,.i{x) ,

(^.ili)Qjx) =Q^.^(X)

for tlie Q (x) functions, the followiiii; set of coupled equations is obtained:

The recursion relationship of licj. (13) is similar to those for the Legendre

polynomials and the nonsingular part of the Lui.endre polynomials of the second

Davison (3) shows tliat tlic (i (X, )'s defined by the recursion relationship of

Eq. (13) can be written as a certain linear combination of the Legendre poly-

nomials and the non-singulir part of the Legendre polynomials of the second

kind, namely:

8,

"J,^"k^ (14)



properly witli ^^i.^) = 1. Equation [14) defines a polynomial in A|^ of dogr.-c

4 in which only alternate powers of X. appear.

For a F approximation it was previously stated that tlie teria

(-jr- + ^) fy^^xM should be made negligibly small. Referring to l:q. (12) it

is easily seen that the condition

\,ii\) - CIS)

will satisfy this requirement. Equation (15) defines the roots A. .

Davison (3) considers the roots of Eq. (15) in detail. For odd order

approximations it is shown that the roots always occur in pairs such that one

of the pair is the negative of the other. For c < 1 all of the roots are real

whereas for c > 1 two of the roots are imaginary and the remaining roots are

real. In either case there are L+1 different roots or (L+l)/2 pairs of dif-

fejent roots in an odd order approximation. For even order approximations

Davison (3) shows that there is always a zero root. In addition if

2
c < {(L+1)P^(0)) (which is true for most nuclear reactors) for a given even

order approximation, the remaining L roots of l;q. (IS) are real or imaginary

in pairs just as for the preceding odd order approximation roots. There is thu

a correspondence between an odd order approximation and the succeeJin.'. even

order approximation.

The zero root (X ) in the even order approximations muit be considoroti

separately. Following Davison (3) X^ is assumed to be small iid tend toward

zero. Then assuming R is the interface between two media the toiistHiii A is
o

assumed to be of the form

^ = A>Q,(IR/A^) .

Using this exjiression and taking the limit as A approaches zero of the tuim

in Eq. (12) corresponding to the zero root



Um A^(2U1)GJA^)Q|^(J:R/A^) = A^(2Ul)Um GJA^)qj^(!:r/X^)/QJER/X^)

o o

. ,A*(2)ltl)(-l)*'P (0) , r = R
" 'o, r < R

which follows since with X = in Eq. (14), G (0) = (-Ij^T-CO). It is clear

that this limitinR procedure can be carried out only once witliin a particular

region and hence the zero root term for even order approximations is non-zero

at only one interface of a particular region. In this work the zero root term

will be chosen so tliat it is nonzero at tlie right hand interface of a region

since it is more common in spherical geometry to think in terms of concentric

regions expanding outward from the origin rather than of outer regions con-

tracting inward, llius in the even order approximations the terra due to the

zero root is finite at a right hand interface and identically zero elsewhere

in the medium. This term introduces a discontinuity in the even order moments

at the interface between two media.

Finally the solution of l:q. (II) is, for odd order approximations

Ltl

^^(r) = (2U1) I \^\(\)'-li(^r/X^^) , (16)

k=l

and for even order approximations

f^M = (2U1)A^(-J) P^(0)A(r-R) * (2)l*l) I A|,Gj(X^)Q|,(i:r/X|^) (17)
k~l

where a(r-R) is a unit pulse function defined by

'^(^-'^ = iJ; r J R .

(181

These even order approximation solutions will be valid at radii up to and

Including the right hand interfacial boundary since the discontinuity constant,

A , which arises at the interface is contained in these solutions. The
o

solutions in the next region will be valid at this interface and at radii up
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to and including the next right hand interfacial boundary where another

discontinuity will occur, llius although the solution of Eq. (11) for even

order approximations may be discontinuous it will be continuously defined

and finite for all values of r.



l:s

2.3 The General Theory of Boundary Conditions

In terms of the Legendre polynomial expansion of f(.T,\i) the total

neutron flux is given as

*(r) =. Jdn;(r,M) =
I d*J dijI^n(r)P^(M) = 4ii^g(r) . (19)

From physical considerations it is known that $(0) must be finite. In order

to achieve this condition f (0) must be finite. Considering Eqs. (16) and

(17) it is readily seen that this can be accomplished by equating the Aj^'s

corresponding to pairs of roots of equal magnitude. From the recursion

relationships for the G (A.)'s, Eq. (13), it is easily verified that

G^(-V - (-1)\(A^) . (20)

In order to take advantage of these conditions in a medium which is

spherically symmetric about the origin a new set of functions, C (x), which

are the modified spherical Bessel functions of the first kind, are defined as

C^(x) = j{<is^M * (-l)*'Q^(-x)} . (21)

These new functions are considered in detail in Appendix A. Using these

new functions the solution to Eq. (11) in a region which is sphericaily

symmetric about the origin is, for odd order approximations

(L+l)/2
^^^(r) = (2U1) I A^Gj^(X^)Cj(Zr/X^)

, (22)

k=l

and for even order approximations

* >. H^
fAr) = (2«tl)A (-1) Pj(0)A(r-R) (2U1) I A|^G^(A^)C^(!;r/A|^) . (23)

k=l

Tlie zero root term in even order approximations does not Introduce any

difficulties since it is zero at r r 0, From this finiteness of the
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total neutron flux at r " boundary condition, [(L'»l)/2] constants have

been eliminated.

Next the boundary conditions which are to be applied at an interface

between two media will be considered. Due to the discontinuity of the even

order igoments at an interfacial boundary in an even order approximation it

will be necessary to consider the even and odd order boundary conditions

separately. In both even and odd order approximations the general boundary

condition which would seem to be the most desirable is to demand continuity

of ^(r,|i) at a boundary located at r • R. Denoting a second region with a bar

this condition mathematically is

^(R.u) = T(R,Vi) .

or

L I

I f.mPAv) ' I 7(R)P,(n) . (24)
i-0 * «• 4-0 *

Multiplying Hq. (24) by P (v) and integrating over the period of orthogonality,

-1 ^ w ^ *1» this condition reduces to

^j(R) =7t(R) t ' 0.1. •••.1- . (25)

Equation (25) is the boundary condition to be applied at an interfacial

boundary in odd order approximations.

Davison (3) points out that in an even order approximation only L condi-

*
tions can be satisfied. This is because the constant A corresponding to the

zero root cannot be determined directly since it exists only at an interfacial

boundary between two media which is a point of discontinuity. If the first

equation of Eq, (25) is multiplied by (2l+l)(-l) P (0) and subtracted from the

other L equations the zero root tern is eliminated and the equations

3 Square brackets will be used in this work to denote the bracket operator,
i.e. [x] - the largest integer less than x.
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^j(R) - (24+l)(-l)\(0)/^(R) = 7^(R) - (2Ul)(-l)''Pj^(0)7^{R)

I - 1,2,-..,L C20)

constitute the I, conditions needed to determine the remaining L constants.

When i is odd, P (0) is zero so Eq. (26) can be reduced to

^^(R) - (2i*l)P^(0);^CR) = 7(R) - C2I1.+ 1)P^(0)7^(R)

t - 1,2,">.L . (27)

Equation (27) is the boundary condition to be applied at an interfacial bound-

ary between two media in even order approximations. Pomraning (16) has rigor-

ously verified the validity of the use of Eq. (27) for even order approxima-

tions using a variational method of solution of the Boltzraann neutron transport

equation with the Legendre polynomial expansion of the angular flux as a trial

function. The use of either Eq. (25) for odd order approximations or Eq. (27)

for even order approximations results in 2[(L+l)/2] conditions at an inter-

. facial boundary between two media which can be used to determine as many

constants.

Since Eq. (27) does not prescribe continuity of ^ (r) it will be expected

that in even order approximations the zeroth order moment will be discontinuous

at an interface between two media. This discontinuity is due to the zero root

which is characteristic of even order approximations. On the other hand, in

odd order approximations continuity of f (r) at an interfacial boundary is

assured by Eq. (25). By Eq. (19) *(r) is proportional to f ij) so continuity

of (r) is dependent upon continuity of ^ (r) . With i = 1 it is apparent from

Eqs. (25) and (27) that ^,(r) must be continuous at the interface between two

media in both even and odd order approximations. Letting i = in Hq. (11)

it is seen that ^,(r) is proportional to the derivative of f (r), und tlierefore
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boundary requires that the neutron current which is proportional to the

derivative of the total neutron flux bo continuous across the boundary.

Suniarizing the conditions listed above, t(r) is continuous across an inter-

facial boundary between two media for odd order approxiaations but discontin-

uous across the boundary tor even order approximations whereas the neutron

current is continuous across a boundary in both even and odd order approxiaa-

tions. Tlieso conditions can be seen graphically for the P. and I' approxima-

tions in Fig. 2. I

Total

flux,

{r)

radius, 1'

Figure 2. The spatial dependence of the total neutron flux for a
two region problea with the interfacial boundary at R.

Fron Fig. 2 it is readily apparent that the even and odd order approxiin

tions tend to approach the exact solution for the total neutron flux in a
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counterconvergent manner i.e. the odd order approximations approach the exact

solution fron below in the central region while the even order anproximations

approach the exact solution from above. Thus it is expected that if the

central region was that of a reactor core and the peripheral region an infi-

nite reflector the computed critical radii from the even and odd order approx-

imations will be counterconvergent. Davison (2) has derived a formula which

predicts this type of counterconvergence in slab geometry for a series of

slabs. For values of c close to unity his formula is

R - R . i^i-^)''*l)f |i , 0{inl2Li31)} (28)
'' 96(L+3/2)'^

''

where K is the exact critical radius and R. is the critical radius found using

the L order approximation. Although this equation was originally derived

for slab geometry cases the same counterconvergent trend should appear in

spherical geometry for interfaces at which the curvature of the interface is

small with respect to the critical radius of the central region. A counter-

convergence of the even and odd order approximations will be expected whenever

an interface between two media is the dominant boundary, Davison (3) has

shown that, at least for slab geometry, the vacuum- interface boundary condi-

tions attributed to Mark are equivalent to replacing the vacuum with an infi-

nite black medium. Since the replacement of the vacuum by an infinite black

medium introduces an interfacial boundary between two media, counterconvergence

of the even and odd order approximations will also be expected for Mark's

vacuum-interface boundary conditions.

Next, the boundary conditions at a right hand vacuum interface will be

considered. At a vacuum interface at r » R the exact boundary condition is

/(R,m) =0 for M < . (29)

This, however, constitutes an infinite number of conditions which cannot



all be exactly satisfied in an approximation of finite order. In an L order

approximation in a central renion only [(L+l)/2] conditions can be satisfied

condition, Eq. (29), is commonly reduced to [(L+l)/2] conditions in four ways.

First, it is physically plausible tliat tlie total number of neutrons

entering from tlie vacuum stiould be zero, 'i'his condition can be written mathe-

matically as

^(H,M)udu = . (30)
'-1

Since u is just f'.(ii), for an L order approximation a set of boundary condi-

tions which includes V.q. (30) is

or, what is equivalent

i:

These vacuum-interface boundary conditions are l^nown as the Marshal; boundary

conditions. Choosing the form in Uq. (32), ex|ianding ^(R,u) by Eq. (10), and

interchanging the order of integration and summ.ition Hq. (32) becomes

j:(R,u)P,^_^(u)di, = j = 1,2,---,[(L>-1)/2| (31)

^(K,M)M'J"'dM =
) =. l,2,---,[iL*l)/;:] . (32)

I .0 ,

I faW] P,(m)m'^ dM = j = l,2,-.-,|(Ltl)/2) . (33)
1=0 ^ J-1 *

Second, Mark (11) hai [iroposed tliat liq. (21)) be satisfied exactly for

[(L+l)/2] values of p. Ii particular he chose to use the condition that

^(K,Mj) =0 j = l,2,-..,|(Ul)/2] (34)

where the m's are defined by

Vl^l^j^ =0 , p. < . (35)
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From the Legendre polynomial expansion, Hq. (10), it is readily apparent that

Mark's boundary conditions impose the condition that the term Pi ^i (i')^l*i('*)

be zero and thus that the L*l order term and assumably all higher order

terms in the Legendre polynomial expansion make no significant contribution

to the angular flux at the vacuum interface. Expanding ^(R.iJi) by Eq. (10),

Eq. (34) becomes

L

I f AR)P Au.) =0 j = 1,2....,[(U1)/21 . (36)

J.=.0
i.^"'- l^-j

Third, the vacuum can be replaced by a fictitious infinite black medium.

For slab geometry Mark (11) has shown that this condition is equivalent to

Eq. (36). However, it is impossible to prove equivalence of those two sets

of boundary conditions for spherical geometry due to the curvature of bound-

aries and inherent boundedness in one-dimensional spherical geometry. Physi-

cally this difference occurs in spherical geometry because the infinite black

medium reflector boundary condition takes the curvature at the boundary into

account in a much different manner than do Mark's vacuum-interface boundary

conditions. In general the infinite black nedium surrounding a center region

constitutes a two region problem in which c = in the infinite outer or

surrounding medium. As before it is to be noted that, although the problem

here considers only spherical geometry and Davison's proof of counterconvergence

is for slab geometry, the same counterconvergence trend should be found. This

should be true for Mark's boundary conditions as well as for the fictitious

infinite black reflector boundary conditions.

Fourth, Pomraning (15) has used a variational formulation of tlie Boltzmann

equation and a Legendre polynomial expansion of the angular flux as a trial

function to determine a set of mathematically consistent boundary conditions.

By setting the first variation of the boundary terms to zero I'omraning found



20

the boundary conditions which result from the variational calculus to be:

^(R,U)«^(R.-U)pd(i = , (37)
''-1

These boundary conditions, called variational boundary conditions, are

considered in detail in Appendix B. In general they can be put into the form

L

I /JR)b,. =0 j = 1.2,---,[(Ltl)/2) . (38)
i=0

r^l-^^^j

Considering Eqs. (33), (35) and (38) it is readily seen that each of the

equations can be forced into the form of Eq. (38). For Marshak's vacuum- inter-

face boundary conditions tliis is accomplished by setting

b^j =
I

P^(u)M^''^dii (39)

while for Mark's vacuum-interface boundary conditions

\i
- P,(Uj) . (40)

Since the variational boundary conditions are developed directly from

the mathematics instead of from adaptations of physical considerations to the

mathematics as Marshak's and Mark's boundary conditions are, the variational

boundary conditions should give the best results for a given order of approxi-

mation. For low orders of approximations the Marshak boundary conditions

should give better results than Mark's or the infinite black reflector bound-

ary conditions for the same order of approximation jince the physically

plausible condition of no return current of neutrons from the vacuum is auto-

matically included in Marshak's boundary conditions whereas it is not included

in the other boundary conditions.
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2,4 Formulation of Boundary Conditions

In this section three liypothetical reactor systems will be considered.

For each reactor system the appropriate boundary conditions will be imposed.

Then the equations representing the appropriate boundary conditions will be

forced into a common matrix equation form. Finally the solution of the common

matrix equation form will be examined.

A hypothetical reactor consisting of a spherical central core region with

c > 1 surrounded by a vacuum infinite in extent will be referred to in this

work as a bare spherical reactor. Choosing the coordinate system so that the

center of the bare spherical reactor is at the origin, liqs. (22) and (23) are

the appropriate solutions of Kq. (11) for r < R. The vacuum is not capable of

supporting a neutron flux and therefore cannot be considered a medium. Since

an interfacial boundary between two media does not exist in the system consid-

ered here the constant A will be assumed to be zero. The consequences of

this assumption will be examined later from tin; results of numerical computa-

tions bused on this assumption. This assumption allows iiqs. (22) and (23) to

be simplified to

[(Ul)/2]
^^(r) = (2..1)

J^
\^,(\i\i^^/\)

Ajjplying the general vacuim-interface boundary condition, Eq. (38), the set

of t(L+l)/2] linear e

spherical reactor is

l(Ul)/2] L

I
A I (2lt*l)G (X )C (r.R/A )b =

k=l "i^O
IKK. K nj

k=l "i=

3 = l,2,...,[(Ul)/2] . (41)

Or, defining the [(L+l)/2] by one column matrix X with elements
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and the [(L+l)/2] by l(L+l)/2] square matrix T with elements t.. such that

Eq. (41) can be rewritten in matrix form as

TX = . (44)

Equation (44) is the general matrix form in which all of the cases to be con-

sidered in this work will be written. For a bare spherical reactor Eqs, (42)

and (43) define the elements of the X and T matrices involved in Eq. (44).

A hypothetical reactor consisting of a spherical central core region with

c > 1 surrounded by a black medium (c = o) infinite in extent will be referred

to in this work as a bare spherical reactor with an Infinite black reflector.

Choosing the coordinate system so that the center of the reactor is at the

origin, Eqs. (22) and (23) are the solutions of Eq. (11) for r <^ R. For r >^ K

it is known from physical considerations that as r approaches infinity the

total neutron flux approaches zero i.e.

4im (r) = Him 4ii/ (r) = . (45)
r-*«> r-K*

Thus all of the A. 's corresponding to positive roots must be identically zero.

Since for the infinite black medium region no right hand boundary exists the

T constant will be zero, i.e. it will never arise at least not for finite r.
o '

Thus for r >^ K eqs. (16) and (17) reduce to

[(L+l)/2] _ _
T^M = (2U1)(-1)'' I \^^iX^)q^l-TT/X^) (46)

where X. is assumed to be positive, for both even and odd order approximations.

In order to solve for the constants (A. 's and A, 's) in odd order approximations

Eq. (25) is applied at the interface at r = R between the reactor and the black

medium so that for a bare spherical reactor with an infinite black reflector.



[(L*l)/21
(2i+i) I

A^r,^(\|^)c^(i;R/x^)

.[CL+l)/2]
- (24+l)C-l) I \'^4(\)QtC-^'*/*k^ ° " £ = 0.1,-.-,L . (47)

k=l

For even order approximations the corresponding condition, Bq. (27), is

applied at the interface so that

((L+l)/2]
(2i+l) I {GJXj^)C^(ER/A^) - Pj(0)C^(ER/X^))A^

k«l

[(Ul)/21 _ ^ _
- (2i+l) I {(-1)\(X^)Q^(-WX^) - PJO)Q^(-IR/T^)}A^ -

I - 1,2,.--,L . (48)

Or, defining the 2[(L+l)/2] by one column matrix X with elements

x^ = A^ for k < [(Ul)/2] ,

Xy. = I. for [(L*l)/2] < k < 2[(L+l)/2] (49)

where

j = k - [(Ul)/2]

and the 2[(L+l)/2] by 2[(L+l)/2] square matrix T with elements t^^ such that,

for odd order approximations

t^^. = (2il*l)Gj^(X^)C|^(ER/\) for k <_ [(Ul)/2]

I = 0,l.v,L

t^^ = (2Ul)(-l)'^j(T.)Q^(-Ik/T.) for [(L*l)/2] < k < 2[(Ul)/2]

i. = 0,1, .••,L (SO)

Where

j = k - [(Ltl)/2]

and for even order approximations
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for k _< [(L*l)/2]

4 = 1,2,"-,L

t^i^ = (2oi)(-i)'^jT.)Q^c-rR/r.) - (2i*i)p^(o)Q^(-rR/x.)

for [(Ul)/2] < k _< 2[(L*l)/2)

i = 1,2,---,L (SI)

where

j = k - [(Ul)/2]

Eqs. (47) and (48) can be written in the same matrix form as Bq. (44). For a

bare spherical reactor with an infinite black reflector Eqs. (49) and (50) or

(51) define the elements of the X and T matrices for Eq. (44).

A hypothetical reactor consisting of a spherical central core region witli

c > 1 surrounded by a concentric spherical shell of thickness R in which c < I

and immersed in a vacuum infinite in extent will be referred to as a reflected

reactor. Choosing the coordinate system so that the center of the reflected

reactor coincides with the origin, liqs. (22) and (23) are the solutions of

Eq. (11) for r < R. As in the case of the bare spherical reactor the zero

root constant in even order approximations associated with the vacuum boundary

will bo assumed to vanish. Since the zero root terms in even order approxima-

tions are taken to be nonzero only at right hand boundaries, the zero root terra

will vanish entirely from the reflector region solutions. Applying the inter-

facial boundary condition, for odd order approximations, Eq. (25), and Eq. (27)

for even order approximations, at r = R and the general vacuum- interface bound-

ary condition, Eq. (38), at r = R + R the equations determining the A, 's and

X 's for a reflected reactor are, for odd order approximations



[(Ul)/2]

2[(L*1)/21_
- (21+1) I \i^i(\)'J;t(!:i«/\) =

k=l

I = 0,1,...,L (52)

and for even order approximntioas

[(Ul)/2)
(2U1) I {i^^(,\^iL^l,lH/X^) - 1>J0)(:^(X1</X|^))A^

[U.*l)/2|
- (2)tti)

I
c,^(A|.)q^(!:r/X^.) - i';t(i')Qo(!:R/X|^)}I^ = o

k=l

I = 1,2,---,L (53)

together witli

2[(U1)/21_ I,

I A I
(2t*i)(T (X )() (!;(ici( )/T )F =

k=l '^«.=
()

t k
«

OKI.,

j = l,2,..-,[(Ul)/2] . (54)

Now define the 3[(1.*1)/2| by omj colomii matrix X witii elements

X|. = Aj^ for k <_ l(Ltl)/2|,

x. = J. for [(Ul)/21 < k < 3|(Ulj/.;| (55)
^ }

~

whore

j = k - [(Ul)/2)

and tlie 3[(L*l)/2] square matrix T 'Aith elements 1 1^, such that, for odd order

approximations

l*l)G^(X^)L^iUi/>.^) for

Jl = , 1 , • . , L

t^^ = (2;ttl)TTj^(T jQj^(rR/I.) for [(l.*l)/2| < k < 3((Ltl)/21

I = 0,1, •••,L (56)
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wliere

j = k - [(Ul)/2]

and for even order approximations

for k jc [(L+l)/2]

t » 1,2,...,L

t^^ = (2i+l)(Ij^{Tj)q^(a/X.) - (2ul)P^(0)Q^(in</X.)

for [(Ul)/2] < k <^3[(L*l)/2]

I = 1,2,...,L

where

j = k - [(Ltl)/2] .

Then using Eqs. (56) and (57) together with

t^^ =0 for k < I(L+l)/2]

2[(L+l)/2] < t <^ 3[(Ul)/2]

(57)

(58)

where

t,, - I (2™.l)?jX.)(^(r(R.R^)/X.)F^

for [Cl.+ l)/2) < k < 3[(Ul)/2]

2l(Ltl)/2] < I < 3[(Ul)/2] (59)

j = k - [(Ul)/2]
,

n = t - 2[(L+l)/2]

Eqs, (52), (53) and (54) can be written in the same matrix form as Eq. (44).

For a reflected reactor Eqs. (55), (55) or (57), (58) and (59) define the

elements of the X and T matrices in Eq. (44).
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Since all three of the reactor systems considered have been put into tlie

form of Eq. (44), solution of this type of equation will be considered in

detail. I'rom the theory of linear alRebra (22) the column matrix X can liave

a non-trivial solution only if the determinant of T vanishes. Hxamining the

various terms wliich make up T it is readily apparent that It is the undeter-

mined free quantity which must be varied until

|T| = . (00)

Since the t^,(x) functions can be ijeriodic an infinite number of values of R

will satisfy liq. (60). In order for tlie total neutron flux to be non-negative

(a physical necessity) the first or smallest positive value of R which satis-

fies liq. (60) is tne required value and is commonly known as the "critical"

r£idius of the spherical reactor in question, liquation (60) is known as tlio

criticality equation.

After a "critical" radius lias been found the constants composing the

column matrix can be determined to within a normalization factor. If the first

column is transferred to the other side of the equality and any one of the

rows deleted, the resulting matrix equation (one less in rank) may be solved

for the remaining A^ ' s and ^u'^ in terras of A . Using this procedure A. is

defined to be equal to one.
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3.0 UISCUSSION AMD WHSULTS

3.1 General Discussion

Tlie basic purpose of this study is to examine the rate of convergence of

the splierical harmonics method for botli bare and reflected spheres usinj;

various vacuum-interface boundary conditions. Since an adequate treatment of

the problem requires a great number of numerical computations, a computer pro-

gram is used to carry out the numerical work. The program is written in a

general manner so that only one program is required for all of the cases to be

considered. The program is written for the IBM 1410 in the FORTRAN language

and is compiled in a fourteen digit floating point mantissa length. In the

sections of the program which require iteration a relative accuracy of lO" ^

is employed. Since only six digits are retained in the final results, this

accuracy is deemed satisfactory for the size of matrices encountered in the

program. A complete description of tlie computer program is given in Appendix C.

Before considering some practical cases the equations will be analyzed for

the important unspecified constants. It is readily apparent from the tlieory

for a bare sphere tliat c and £ are the only unspecified constants. The con-

stant i; always occurs in a product with the radial variable r so if radii are

measured and reported iji mean free paths, only the mean number of secondaries

per collision c needs to be specified for a bare spherical reactor. I'or

reflected spheres c, E, c", f, and R^ are the unspecified constants. Tim con-

stants t and E always occur in products with r so if radii are measured in

mean free paths, only Z/J, c, c" and R are the unspecified constants for a

reflected reactor.

In order to fully appreciate the magnitude of certain transport tlieory

constants they will be compared witli the more familiar diffusion theory
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constants. In particular tlie thickness of a reflector in diffusion lengths is

a very important property in diffusion theory. Glasstone (6) shows that if a

reflector is 1.5 to 2.0 diffusion lengths in tliickness it may be considered

essentially infinite. From diffusion theory the diffusion length, <'
, is

<'^ = /uTT = i/ZxTT (61)

sion tlieory the root of
I

-2

1/ /^)-c)

or, since for a non-multiplyini; mediura c = Ijll,

(62)

With U being tlie thickness ot the reflector in mean free paths

ZV. /J, = 1! Ay I = 7k (63)
1 a o ' '

is the thickness of tlie reflector Iei diffusion lengths. As tlie order of

approximation increases the jirincipal or largest root of bq. (15) clianges

slightly but the quantity Tu /Y st

the reflector in diffusion lengths.

At this point furthei- consideration will be given to Hq. (28) which pre-

dicts counterconvergence of the oven and odd order ap|)ro>.imations for inter-

facial boundaries, infinite black media reflectors and Mark's vacuum-interface

boundary conditions. If the 0(— j } terms in liq. (28) arc ignored it is



30

possible to find a pair of weighting factors which would determine a weighted

average critical radius that will approxiraate the exact critical radius. With

L odd this combination of corresponding even and odd order results can be

written mathematically as

where

R-K,
,

w = h*'-

L+1 "
It, -R, ,

•

L Ltl

The values of the weighting factors w. and w . are worked out readily by

using Eq. (28). Ignoring the higher order terms these factors are found to be

,2

and

2(2L*3)

'' 2(2L*3)^ (2L+5)'

(2L+5)'
""75

^*^ 2(2L+3)^ (2L+5)^
(65)

A list of the values of these weighting factors for approximations up to order

nine may be found in Table I.

Table I

Weighting Factors for Eq. (64)

L w, w, ,L Ltl

1 .505051 .494949

3 .572438 .427562

5 .600355 . 399645

7 .615548 .384452

9 .62508y .374911
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For very large orders of approximations

Him w = 2/3 ,

Him w = 1/3 .

Thus for very large orders of approximations it will be expected that the odd

order approximations will be about twice as close to the exact answer as their

corresponding even order approximations. Although this criterion was origi-

nally developed for slab geometry it should apply to the spherical geometry

cases considered in tliis work when the critical radius is large enough so that

the curvature of the boundary contributes a small effect.
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3.2 Results of Numerical Calculations
for Uare Spherical Keactors

In order to examine the rate of convergence of the spherical harmonics

approximations for various boundary conditions imposed at the surface of a

bare sphere three cases will be considered. First a bare spherical reactor

with c = 1.05 in the core region is utilized. In this case the value of c is

probably too large for diffusion theory to be exact but not so large that the

assumption of the existence of a single thermal neutron group will no longer

be valid. This basic intermediate case will be considered in detail and the

results from other cases will be compared to the results of this basic case.

'Die second case to be considered will be that of a bare spherical reactor in

which c = 1.02. For this case the value of c is probably close enough to

unity so that diffusion theory should give very good accuracy. As a third

case, the extreme of a large value of c, nainely 1.40, will be considered. In

order to adequately describe this bare spherical reactor case a multigroup

transport theory would bo needed since the fast leakage would be so great that

the single thermal energy neutron group assumption would not be valid. How-

ever for a limiting st^dpoint, the results i:or this large value of c are

needed in this work.

Table II is a compilation of the computed results for a bare spherical

reactor with c = 1.05. The exact critical radii given in this table and other

tables are taken from results computed by Carlson and Bell (1) using the

extrapolated end point method. The per cent error column is the percentage

error in an L order approximation which is computed as

R-R
per cent error = —

j,
— x lOU .

The column labeled "inward flux" represents the integral of the computed angular
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Table II. Calculated results for a bare spherical reactor in whicli c

is 1.05. The exact critical radius is 7.2772 mean free paths.

Marshak vacuum-interface

Approximation Critical radius

boundary conditions

Per cent error Inward flux

10

7.3976

7.3201

7.2805

7.2826

7.2784

7.2793

7.2778

7.2783

7.2775

7.2778

Mark's vacuum-interface boundary conditions

1.654 1.895 X 10

.590 1.251 X 10

.045 5.433 X 10

.074 6.973 X 10

.016 3.221 X 10

.029 4.370 X 10

.008 2.216 X 10

.015 3.056 X 10

.004 1.S45 X 10

.008 2.019 X 10

-3

Critical Per cent Weighted Per cent Inward
Approximation radius error average error f) ux

•"l
7.4979 3.033 8.644 xlO-"

7.3682 1.250
xlO-^"2 7.2359 -.568 2.140

h 7.2875 .142 3.076 xlO-"
7.2784 .016

xlO-^•4 7.2663 -.150 1.204

"•s
7.2808 .050 1.791 xlO-^

7.2776 .005

xlO-"^6 7.2727 -.062 7.870

'7 7.2789 .023 1.241 xlO-"
7.2774 .003

xlO-""8 7.2749 -.032 5.650

•"s
7.2781 .012 8.147 xlO-^

7.2773 .001

xlO-"P,« 7.2759 -.018 4.167
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Infinite black reflector boundary conditions

Critical Per cent Weighted Per cent
Approximation radius error average error

10

7.5436 3.661

7.1960 -1.116

7.2962 .261

7.2562 -.289

7.2843 .098

7.2672 -.137

7.2810 .052

7.2714 -.080

7.2795 .032

7.2734 -.052

7.3716

7.2791

7.2773

7.2772

1.297

.026

.004

.001

Inward
flux

4 .023 X 10

2 569 X 10

1 655 X 10

1 445 X 10

6 513 X 10'

9 950 X lO'

2 949 X 10"

7 567 X 10"

1 760 X 10"

6 033 X 10"

-3

Approximation

Variational vacuum-interface boundary conditions

Critical radius Per cent error

7.3519

7.2003

7.2764

7.2887

1.026

-1.057

-.011

.158

Inward flux

2.374 X 10

2.522 X 10

7.010 X 10'

1.643 X 10"
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flux at tlie vacuum interface over all angles representing neutrons returning

from the vacuum, i.e. f(.V-,u)'iu, with the normalization such tiiat tlie total

flux at tlie center, 't'(O), is one neutron per square centimeter per second.

Since for an exact solution this quantity would be zero, it would seem that

this column should contain numbers which would be indicative of the accuracy

of the critical radius computed in tliis approximation. However, upon close

examination it is readily apparent that these numbers are not indicative of

the accuracy of their corresponding critical radii. Even for a particular

boundary condition the inward flux column is not a good indication of the accu-

racy of the computed critical radii. However, for a particular boundary condi-

tion the nuraber in this column corresponding to odd order approximations

decreases for increasing orders of approximations. Similarly the even order

numbers decrease with increasing orders of approximations but no indication of

the relative accuracy of a particular computed critical radius can be found by

comparing these numbers for the even and odd order approximations. The basic

problem here is that since the critical radii and roots for each of the approx-

imations are different so are the values of the arguments of the geometrical

functions and hence the values of tlie geometrical functions tliemselves. Since

this column has little indicative ability, it will be omitted from the remain-

ing tables of results.

Tlie computed results with Marshak boundary conditions used at the vacuum

interface of a bare sphere with c = 1.05 are graphed in I'ig. 3. This type of

graph where the computed critical radius is plotted against the reciprocal of

the order of approxiination will be referred to as a convergence graph.

Although the graph is composed of discrete points, it is convenient to draw in

curves connecting the points representing the even and odd order approximations

since this facilitates visualization of the rate of convergence. It is readily
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EVEN ORDER APPROXIMATIONS
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0.0 0.2 0.4 0.6 0.8

RECIPROCAL ORDER OF APPROXIMATION, l/L

1.0

Figure 3. CONVERGENCE GRAPH FOR A BARE SPHERICAL
REACTOR IN WHICH C IS 1.05 USING MARSHAK'S
BOUNDARY CONDITIONS,
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apparent from Fig. 3 that although the P, result is more accurate than the Pj

result, the odd order approximations converge to the exact critical radius

more rapidly than their corresponding even order approximations. Both the even

and odd order approximations tend to asymptotically approach the exact critical

radius from above along separate paths, i.e., the even and odd order approxi-

mations are not counterconvergont. Examining tlie Marshak results in Table II

it is readily apparent that as the order of approximation increases the odd

order approximations become about twice as accurate as their successive even

order approximations. This is the same ratio of accuracy of odd and successive

even order approximations as Davison's formula predicts for large orders of

approximations, in spite of the fact that when using Marshak's vacuum-

interface boundary conditions the even and odd order approximations are not

counterconvergont to tlie exact critical radius.

Figure 4 is a convergence graph for a bare spherical reactor in which

c = 1.05 and Mark's boundary conditions are used at the vacuum interface. The

weighted average points in Fig. 4 and the weighted average column in the

appropriate section of Table 11 are found by applying Eq. (64) with the

weighting factors given in Table I. The expression l''i •'Y+i Lw> i" which L

is assumed to be odd, will be used to indicate a weighted average of the

critical radii from the P. and P.^, approximations. It is readily apparent

that the weighted average values converge to the exact critical radius much

more rapidly than do either the even or odd order approximations. The counter-

convergence trend which Eq. (28) predicts for Mark's boundary conditions is

also shown in Fig. 4. As with the Marshak boundary conditions, the P. result

is more accurate than the P result, but for higher orders of approximations

the odd order results are better than tlie corresponding even order results.

The fact that the weighted average critical radii converge so rapidly to the
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exact result indicates that Davison's formula predicts tlie correct trend for

this case. Since tlie |P.,P
|

is not as accurate as might be expected, the

0(
"^ 1*

} t"^™ i" ^'i- (28) is not negligible for tliese low orders of

approximation.

Figure 5 is the convergence graph for a bare spherical reactor with

c = 1.05 which is infinitely reflected with a black medium. As with Mark's

vacuum-interface boundary conditions, the weighted average critical radii

converge to the exact critical radius much more rapidly than do eitlier the

even or odd order approximations. For this two region problem the counter-

convergence of the even and odd order approximations is again readily appar-

ent. The P. result is once again more accurate than the P. result although

for higher orders of approximations the odd order approximations are more

accurate than the corresponding even order approximations. The iPiifilav

for tliis case is not as accurate as would be expected so that again it is

apparent that the higher order terms in Eq. (28J are not negligible.

The computed results for a bare spherical reactor with c = l.OS using

variational boundary conditions at the vacuum interface are shown in Fig. 6.

From the limited results shown it is not possible to deduce the type of con-

vergence which the variational boundary conditions yield. It is readily

apparent that the convergence is neither counterconvergent nor asymptotic as

is tlie case for Mark's and Marsliak's boundary conditions respectively. In

contrast to previous cases the P. and V approximations with variational

boundary conditions yield critical radii which have about the same magnitude

of error but opposite signs. For the variational boundary conditions the P

result very closely approximates the exact critical radius and is definitely
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Figure 7 plots tlie angular flux at the vacuum interface as a function of

cose for a bare spherical reactor in wliicli c = 1.05 resulting from a F

approximation for each of the four vacuum- interface boundary coniJitions con-

sidered. The angular fluxes are normalized such that the total neutron flux

at the center, ^CO), is one neutron per square centimeter per second, for an

exact solution Eq. (29) shows tliat in the range -1 <^ u f_
the angular flux

would be zero. I'igure 7 shows that tlie variational boundary conditions best

approximate this condition. It is also apparent from Fig. 7 and Table I that

the closeness with which the various boundary conditions approximate the

exact condition the closer the critical radius is to the exact critical radius.

However, the relative accuracy with which a particular boundary condition

approximates the exact condition is not directly proportional to the relative

accuracy of the computed critical radius. The type of graph shown in Fig. 7

could be employed as a rough guide to find out which critical radius deter-

mined from a set of boundary conditions is the most accurate for a particular

problem.

Tables III and IV list the computed results for a bare spherical reactor

in whicli the values of c are 1.02 and 1.4U respectively. As the value of c

deviates from unity by increasing amounts, it seems natural tliat more and more

terms in tlie Legendre polynomial expansion of tlie angular flux will be needed

to satisfy the exact boundary condition to a preset degree of accuracy. Thus

it will be expected that the rate of convergence of the spherical liarmonics

approximations will be proportional to the relative departure of the value of

c from unity. This trend is readily apparent in the per cent error columns of

Tables II, III, and IV.

Some generalizations can be made as to the relative accuracy obtained

with various boundary conditions by examining Tables II, III and IV. The
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Table III. Calculated results for a bare spherical reactor in which c
is 1.02. The exact critical radius is 12.0270 mean free paths.

Marshak vacuum-interface boundary conditions

Approximation Critical radius Per cent error

12.1269

12.0729

12.0312

12.0338

12.0289

12.0301

12.0282

12.0288

12.0279

12.0283

0.831

.382

.035

.057

.016

.026

.010

.015

.007

.011

Mark's vacuum-interface boundary conditions

Approximation
Critical
radius

Per cent

error
Weighted
averaqe

Per cent
error

12.2239

11.9787

1.637

-.402
12.1025 0.628

"3

•4

12.0395

12.0138

.104

-.110
12.0285 .012

12.0319

12.0214

.041

-.047
12.0277 .006

12.0297

12.0242

.022

-.023
12.0276 .005
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Table III (continued)

Infinite black reflector boundary conditions

Critical Per cent Weighted Per cent
Approximation radius error average error

12.2520 1.871
12.1060

11.9571 -.581

12.0448 .148

12.0289
12.0076 -.161

12.0343 .061

12.0278
12.0180 -.075

12.0312 .035

12.0276
12.0219 -.042

12.0298 .023

12.0276
12.0238 -.027

0.657

.016

.007

.005

.005

Variational vacuum-interface boundary conditions

Approximation Critical radius Per cent error

12.0827

11.9843

12.0262

12.0336

0.463

-.355

-.007

.055



Table IV. Calculated results for a bare spherical reactor in which c
is 1.40. The exact critical radius is 1.9854 mean free paths.

Marshak vacuum-interface boundary conditions

Approximation Critical radius Per cent error

2.1225

1.9760

1.9869

1.9873

1.9860

1.9861

1.9856

1.9856

1.9855

1.985S

6.895

-.473

.076

.096

.030

.035

.010

.010

.005

.005

Mark's vacuum-interface boundary conditions

Critical Per cent Weighted Per cent
Approximation radius error average error

h 2.2224 11.937
2.0920 5 .369

h 1.9590 -1.330

h 1.9898 .222

1.9865 .055

'"4 1.9821 -.166

"5 1.9867 .065

1.9857 .015

"6 1.9843 -.055

''7 1.9859 .025

1.9855 .005

'8 1.9849 -.025

"9 1.9856 .010

1.9854

P,n 1.9851 -.015



Table IV (continued)

Infinite black reflector boundary conditions

Critical Per cent Weighted Per cent

Approximation radius error average error

10

2.3531 18.520

1.7629 -11.207

2.0394 2.720

1.9430 -2.136

1.9994 .705

1.9692 -.816

1.9914 .302

1.9766 -.443

1.9889 .176

1.9798 -.282

2.0610

1.9982

1.9855

3.808

.645

.096

.005

Variational vacuum-interface boundary conditions

Approximation Critical radius Per cent error

1
2.0779

1.7481

1.9858

2.0605

4.659

-11.952

.020

3.783



48

spherical liarmonics approximations are seen to converge iiiucli more rapidly

for Mark's boundary conditions than for the infinite black reflector boundary

conditions. I'or slab geometry tliese two sets of boundary conditions are

equivalent, but in spherical geometry they are seen to be different although

tliey botli counterconverge to the exact critical radius as expected. The

difference in spherical geometry is undoubtedly due to the fact that the infi-

nite black reflector boundary conditions take the curvature of the outer edge

of the spherical reactor into account in a much different manner than do

Mark's boundary conditions. Lixcept for the infinite black reflector boundary

conditions, the boundary conditions used in this work are actually derived for

slab geometry cases. The fact tiiat these slab geometry boundary conditiojis

yeild such good results indicates that tliese boundary conditions are also

applicable in spherical geometry where the curvature of the vacuum interface

is not too great.

It was previously stated that the variational boundary conditions would

be expected to give tlie most accurate results since they are developed directly

from the matliematics. It is readily apparent in iables 11, III and IV tliat,

at least for the 1' and P approximations, tiu- variational boundary conditions

give the most accurate critical radii for those orders of approximations. No

particular set of boundary conditions yields a best critical radius for tlie I'

approximation. As expected, Marshak's boundary conditions are seen to be loss

accurate tlian the variational boundary conditions. In addition, for a given

order of approximation, Mark's or the infinite black reflector boundary condi-

tions are always poorer tiian Marshak's boundary conditions. However, the

weighted average critical radii from Mark's boundary conditions arc seen to

converge more rapidly to tlio exact critical radius tlian tlie odd order approxi-

mations using Marsliak's boundary conditions, hxcept for tlie 1
1' 1'

I the
I 1' 2'av'
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tions are about as accurate as the P Marshak boundary condition results,

e.g., the |P,,P,| using Mark's boundary conditions is about as accurate as
" ' ' 3 4

' av " '

the Pg Marshak boundary condition result. The critical radii resulting from

about as accurate as the iPr,'',
I

from Mark's or the infinite black reflector
' 5

' ' av

conditions applied at the vacuum interface yields the most accurate estimate

of the critical radius.
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3.3 kesults of Numerical Calculations
for Ueflectui) Splierical Koactors

In order to examine tlie rate of convergence of the spherical liarmonics

approximations for a reflected spherical reactor the cases shown in Table V

will be considered.

Table V

Reflected Ueactor Cases to be Considered

Case c 1/1 RgCmfp)

1 O.yj 1.0 1.0

2 .99 l.U 10.0

3 .50 1.0 2.0

4 .99 2.5 1.0

5 .99 2.5 10.0

6 .50 2.5 2.0

The combinations of Tr and c^ for the six cases are such that for cases 1 and
o

4 the reflector is about 0.2 diffusion lengths in tliickness whereas for cases

2, 3, 5, and b tlie reflector is about 2.0 diffusion lencths in thickness. As

previously noted, a reflector wliicli is 1.5 to 2.0 diffusion lengths in thick-

ness is essentially infinite. iVhen a reflector is of sucli a thickness, it will

be referred to in this work as a "thick" reflector. . In contrast when tlie

thickness of the reflector is much less than 2.0 diffusion lengtlis, it will be

termed a "thin" reflector. Thus cases 1 and 4 represent "tliin" reflectors

whereas cases 2, 3, 5, and (j represent "tliick" reflectors. Tlie value of

c = .99 represents a reflector which is a good moderator whereas tlie value of

c = .50 represents a reflector wliich is a breeder blanket or other poor



moderator. The case of a small value of c for a thiri reflector is not con-

sidered since for sucli a case tlie tliickness of the reflector would 1)0 about

0.2 mean free paths or less and hence would be extremely thin physically. In

cases 1, 2, and 3 the total macroscopic cross section, Z, is continuous across

tlie core-reflector interface whereas in cases 4, 5, and 6 the total macro-

scopic cross section is discontinuous across the boundary.

As in the bare spherical reactor cases, l.OS will be used as the value of

c, the mean number of secondaries, in a basic reflected reactor core to which

the results for tlie values of c = 1.02 and 1.40 will be compared. Whenever a

counterconvergent trend is found in the computed results, Uq. (64) will be used

to find weighted average critical radii and they will be listed in a weiglited

average column. Table VI lists the computed results for case 1 with c = 1.05

in the core region. It is readily apparent from the data that the nature of

tlie convergence for each of the vacuum-interface boundary conditions is the

same as the convergence with the boundary condition applied to a bare spherical

reactor. Thus for a thin reflector and continuity or near continuity of the

total macroscopic cross section, and the mean number of secondaries across

tl»e coro-ref lector boundary, the vacuum-interface boundary conditions dominate

the convergence pattern. Tables VI 1 and VIll list the computed results for

cases 2 and 3 respectively with c = 1.05 in the core region. The convergence

pattern in these two cases is seen to reflect the counterconvergent trend

expected of an interfacial boundary or Mark's vacuum- interface boundary condi-

tions. Thus for a thick reflector and continuity of the total macroscopic

cross section across the core-reflector interface the interfacial boundary

dominates the convergence jiattern. The computed results for a reflected

reactor whose constants are tliose of case 4 and whose core has a value of c

equal to 1.05 are listed in Table IX. li is readily apparent from the results
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Table VI. Calculated results I'or case 1 (reflected reactor)
in wliicli c is 1.05.

Approximation

Marsliak's B.C.

Critical radius

Mark's B.C. Variational B.C.

Critical Weighted
radius average Critical radius

6.6192 6.6901

6.S114 6.4600

6.4873 6.4910

6.4880 6.4788

6.4862 6.4876

6.4863 6.4824

6.5762

6.4858

6.5875

6.4274

6.4852

5.4943

Table VII. Calculated results lor case 2 (reflected reactor)
in wliicli c is 1.05

Marsliak's B.C. Mark's B.C. Variational B.C.

Critical Weiglited Critical Weiglited Critical Weighted
Approximation radius average radius average average average

5.1896

5.0625

5.0779

5.0739

5.0762

5.0749

5.1913

5.0609

5.0780

5 . 0736

5.0763

5.0748

5.1268

5.0761

5.0757

5.1889

5.0611

5.0778

5.0740

5.1256

5.0762
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Table VIII. Calculated results for case 3 (reflected reactor)
in which c is l.OS.

Marsliak's B.C. Mark's B.C. Variational ii.C.

Critical Weighted Critical Weighted Critical Weighted
Approximation radius average radius average radius average

7.3215

7.0284

7.0981

7.0731

7.0903

7.0803

7.1764

7.0874

7.0863

7.3223

7.0283

7.0983

7.0733

7.0903

7.0803

7.1768

7.0876

7.0863

7.3211

7.0271

7.0981

7.0734

7. 1756

7.0875

Table IX. Calculated results for case 4 (reflected reactor)
in which c is 1.05,

Marsliak's B.C. Mark's B.C. Variational B.C.

Critical Weighted Critical Weighted Critical Weighted

Approximation radius average radiu s average radius average

6.9287

6.6506

6.6967

6.6829

6.6942

6.6877

6.7911

6.6908

6.9788

6.6370

6.6981

6.6813

6 . 6946

6.6864

6.6909

6.9062

6.5510

6.6965

6.7025

6.7304

6.6991
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for tliis tliin reflector case that the couiiterconvergunt trend imposed by tlie

core-rof lector interface is tlie predominant factor in the convergence pattern

although the vacuum-interface boundary conditions liave considerably more

effect on the convergence pattern than was observed in tlie two previous thick

reflector cases, llms, for a thin reflector and discontinuity of the total

macroscopic cross section at the coro-reflector interface the intorfacial

boundary conditions dominate the convergence pattern although the vacuum-

interface boundary conditions may play a significant role in the relative

speed of convergence. Tables X and XI list the computed results for cases 5

and 6 for a reflected reactor wliich lias c = l.OS in the core region. Here as

with the other thick reflector cases the core-reflector interface dominates

the convergence picture. For thick reflectors the interfacial boundary domi-

nates the convergence pattern so strongly tliat the vacuum-interface boundary

conditions have little or jio effect on the convergence. Thus, as would be

expected, the convergence trend for a reactor reflected with a thick reflector

is always that of counterconvergence. Tables XII and XIII list the computed

results for case 5 with the values of c in the core equal to 1.02 and 1.40

respectively. As with the previous thick reflector cases, the interfacial

boundary dominates the convergence pattern. It is readily apparent that when

the core region has c = 1.40 the vacuum-interface boundary conditions have

little or no effect on tlie convergence. In general the greater the disconti-

nuity in the value of c at the core-reflector interface the greater the

dominance of the interfacial boundary in the convergence pattern.

In all of the computed results for the reflected reactor cases tiie

weighted average critical radii, whenever noted in the tables, converge more

rapidly than the critical radii computed directly from the spherical harmonics



Table X. Calculated results for case 5 (reflected reactor)

ill which c is 1.05.

Marshak's B.C. Mark's B.C. Variational B.C.

Critical Weiglited Critical Weighted Critical Weighted

Approximation radius average radius average radius average

P 6.1999 6.2008 6.1995
'

0.0398 6.0399 6.0392

P 5.8765 5.8757 5.8757

P 5.9697 5.9698 5.9697
^

5.9577 5.9577 5.9577

P, 5.9416 5.9414 5.9416
4

P 5.9580 5.9581
5.9544 5.9544

P^ 5.9489 5.9488

Table XI. Calculated results for case 6 (reflected reactor)

ill which c is 1.05.

Marshak's B.C. Mark's B.C. Variational B.C.

Critical Weiglited Critical Weighted Critical Weighted

A|)proxiiiiation radius average radii iii average radius average

''l
7.4274

'2 6.9812

''3 7.1508

''4 7.0900

''5 7.1306

''6 7.1069

7.1248

7.4281 7.4271
7.2071

6.9816 6.9792

7.1511 7.1507

7.1252
7.0905 7.0900

7.2054

7.1307
7.1211 7.1212

7.1069

*
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Table XII. CalculateJ results for case 5 (reflected reactor)

in wliich c is 1.02.

Marsliak's b.C. Mark's B.C. Variational li.C.

Critical Wciglited Critical Weighted Critical WeiRhted
Approximation radius ave ra .i;o radius averaj^e radius average

10.2109
10.1068 10.1057

9.9984

"l
10.2116 10.2133

10 1068

h 9.9998 9.9982

"3 10.UJS9 10.0360
10 0314

"4 10.0254 10.0251

''5 10.UU8 10.0319
10 U303

1' 10.0281 10.0279

10.0313

10.0303

10.0358

10.0254

Table Xlll. Calculateil results for case 5 (reflected reactor)
in wliich c is 1.40.

'larshak's B.C. Mark's U.C. Variatiojial B.C.

Critical Weialited Critical Weiglited Critical Weighted
Approximation radius average radius average radius average

2.0659 2.0657
1.5012 1.5013 1.5012

.9252 .9252

''l
2.0657

''2 .9252

"3 1.8000

% 1.5200

h 1.7265

't
1.6187

1.6803
1.8000 1.8000

1.6803
1.5200 1.5200

1.7265

1.6187
1.6834
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approximations except that the jP-.F, |, is usually not any better than the

Pj result. These observations are in agreement with tlie bare splierical

reactor cases for Mark's boundary conditions or the infinite black reflector

boundary conditions.

Ill the cases considered here it is found tliat the spatial dependence of

tlie total neutron flux is similar to that of Fig. 2. Figure 8 is a plot of

tlie angular flux at the core-reflector interface as a function of cos9 as

viewed from both sides of the boundary for a V approximation. It is apparent

that there is a discontinuity in the angular flux across the boundary near

cose = but that tlie dependence of the angular flux on the radial variable

is more nearly continuous as cose approaches the value of '1. Tliis means that

the normal component of tlie angular flux is nearly continuous at the inter-

facial boundary but that the tangential component is discontinuous. This

condition arises from the fact that in an even order approximation the expres-

sion f.W - P,(0)(2)t+l):f.,(K) is matched at the interfacial boundary. This

expression can be shown (3) to be equivalent to removing the dependence of

/(r,w) O" r for small values of p(cose); thus allowing a discontinuity in

/(K.m) for small values of u. The reason wh/ fiT,\i) is not continuous across

the interface for values of jj approaching unity is that a finite instead of

infinite order of approximation is being utilized. A similar plot for an odd

order approximation has the two curves in Fig. 8 coinciding since continuity

of the angular flux at the interfacial boundary in an odd order approximation

is required by Eq. (25).

From the preceding discussion of the computed results for reflected

reactors three factors appear to be important in the convergence pattern.

First, the relative thickness of the reflector in diffusion lengths is impor-

tant. For thick reflectors the core-reflector interface dominates the
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FROM CORE SIDE

FROM REFLECTOR SIDE

-1.0 -0,5 0.0

COS e

0.5 1.0

Figure 8. ANGULAR FLUX AS A FUNCTION OF COS 6
AT THE CORE - REFLECTOR INTERFACE FOR
A P^ APPROXIMATION.
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convergence pattern and produces a counterconvergent trend. The second and

third important factors in the convergence pattern are the relative size of

the discontinuities in the values of the mean number of secondaries, and the

total macroscopic cross section at the core-reflector interface. When a sig-

nificant discontinuity in either c or Z exists at the core-reflector interface

the convergence pattern is one of counterconvergence, thus demonstrating that

the interfacial boundary is the dominant factor in tlie convergence pattern

for such cases even for a relatively thin reflector.
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3.4 Conclusions

The A constant was assumed to be zero in computing the critical radius

of a bare splierical reactor when all of the vacuum-interface boundary condi-

tions except the infinite black reflector boundary conditions were used. The

consequences of this assumption will now be considered. Both Mark's vacuum-

interface boundary conditions and the infinite black reflector boundary condi-

tions brought about convergence trends which counterconverged in a like

manner. Since the infinite black reflector boundary conditions take A into

account whereas Mark's boundary conditions do not, the assumption that A was

zero at a vacuum interface seems entirely justified.

of the exact critical radius. For higher orders of approximations the odd

order approximations were invariably found to be superior to their correspond-

ing even order approximations. Thus the popular belief that the even order

approximations are inferior to the odd order approximations is not entirely

justified.

When Davison's formula, which predicts the accuracy of the L order

approximation, was rearranged to yield weighting factors, it was seen to

predict very accurate weighted average critical radii for the P, and higher

order approximations. Althougli Davison's formula was developed for slab

geometry it was seen to be quite valid in spherical geometry as well. For the

P. and P approximations Davison's formula, as used here, was definitely

incorrect indicating that for these low order approximations the higher order

terras in Eq. (28) cannot be ignored.
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tional boundary conditions yielded a critical radius which was about as accu-

rate as a IP^.P. I usinc Mark's or the infinite black reflector boundary
' 5* 6'av

conditions, or the V result with Marshak's boundary conditions. The

|P,,P,^j| for Mark's or the infinite black reflector boundary conditions

yielded critical radii which were of the same order of accuracy as a more

involved P approximation using Marshak's boundary conditions. This last

observation was found to be invalid for the P and P. approximations. For the

boundary condition consistently yielded the best estimate of the exact critical

radius.

For reflected reactor cases a counterconvergent pattern in the conver-

gence, due to the core-reflector interface, was predominant whenever; a.) the

reflector was "thick"; b.) there was a large discontinuity in the value of the

total macroscopic cross section, £, across the core-reflector interface; and/or

c.) there was a large discontinuity in the mean number of secondaries per

interaction, c, across the core-reflector interface. For all but the P and

P approximations the weighted average critical radii for reflected reactors,

in which the core-reflector interface dominated the convergence pattern,

appeared to be closer to the exact critical radius than the results from either

the even or odd order approximations.
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4.0 SUGGESTIONS FOR FURTIini! STUDY

In this study only a few representative values of c are chosen for

investigation of the nature of the convergence of the spherical harmonics

approximations. For large order of approximations (three or greater) when

Davison's formula is used to find the weighting factors in Fq. (65) the

weighted average critical radii appear to be very accurate. Unfortunately,

the saine cannot be said for tlie IF, ,1' I . A study should be made of the
' 1 2 ' av '

higher order terras in Davison's formula so that it could be improved for low

order approximations. Alternatively a study could be made to determine an

empirical formula which would predict the values of the weighting factors

over a wide range of values of c. If either of these studies were successful

to any substantial degree, only tlie relatively simple P. and P approximations

would be needed to obtain a trustworthy critical radius.

The work done here can be extended to the simpler case of slab geometry

by noting that the only difference between the slab and spherical geometries

is the difference between the Q.(x) and e" geometrical functions. This exten-

sion would only involve some small changes in the computer program described

in Appendix C, Also this work should be extended to multigroup approxima-

tions. It is possible that many parts of the program described in Appendix C

could be used in such a study.

Since the variational boundary conditions were' found to be the most accu-

rate of all the boundary conditions considered, it is logical to suggest that

they be extended to approximations higher than the P and P approximations

used here if accuracies greater than those resulting from the P, approximation

are required. The odd order variational boundary conditions have been found

to be more accurate tlian the corresponding even ordor variational boundary
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conditions. Therefore the most fruitful results will probably be obtained by

using the odd order variational boundary conditions.
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APPENDIX A

Tlie Q,(x) function is defined by Weinberg and Wigner (21) as

where ''.^.i/Tt*^ i^ * modified Bessel function of the second kind. The Q,(x)

functions are 2/ii times the modified spherical Bessel functions of the third

kind. Watson (19) defines tlie K ,/,(x) functions as

"4+1/2 '"'
° "27® ^ r- f*"^^''*^'^ ^^

j=0 j!(«-j)!(2x)5

explicitly as

X £
(t*3)l

Q,(x) - I I
'-" ''''>•

, Q,(-x) --'-I ''-'"
. . (A-3)

* j=0 j!(£-j)l(2x)^
" " j=0 jl(4-j)!(2x)J

Q„(X) = 2. ; Q (X) = 2. (1 - i)
; Q (x) = £ (1 - 1 i^)

'^tt") = V2(''i -^VlW •
fA-")

and

(a7^^)*^(='^ = ViW (A-5)

follow immediately from the properties of Bessel functions.

In this work a new function, C (x) was defined as

(A-6)

The C (x) functions arc tlie modified spherical Bessel functions of the first
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kind. Mark (10,11) considers these functions and shows that for small x.

{1 + 0(x^)) .
(A-7)

'^i^"' ' l-3-5---(2U'IT

At this point it is necessary to investigate the finiteness of these

functions at x = 0. Since

Um C (x) = am YTY.s^.. (ii.i) ^ * Of''^)
'

' '^iC'' =
(J'. I > 0.

'^'^^

x-K) x->0

the C (x) functions are thus bounded for a zero argument and so the total neu-

tron flux is bounded at r = as is required in section 2.3.

The C (x) functions may be written as a combination of sinh(x) and

coshCx) terms. In this form the C (x) functions are, for I even

C (X) = ""''t'^)
I

(J^*^)' .
g°s''(x)

^
(3*^'

, (A-9)
"^ * j=0 jl(i-j)l(2x)^ " j=l j!(i-j)l(2x)^

j even j odd

and for ii. odd

C (x) = ''°^^'M
I

(J*M' .
sinh(x)

^
(J^lt)'

. (A-10)
" " j=0 j!(£-j)!(2x)' * j = l jl(ll-j)!(2x)'

j even j odd

The arguments of the C (x) functions which are encountered in this work are

either entirely real or entirely imaginary. Equations (A-3) , (A-9), and

(A-10) are appropriate for real arguments. The imaginary arguments arise only

in the central core region in which tlie C (x) functions are used. In this

region one of the roots X, is imaginary. The argument for the C (x) functions

is tr/X., so the form of the imaginary argument is x/i or -ix. For this type

of imaginary argument the C (x) functions become, for It even

^ 1 Mark actually defines a function H. (x) wliich is the same as Q|^(x) in this

development and considers the combination H. (x) * (-1) "|j(-x) which differs

from the C. (x) used here only by a factor ot two.

I



i.^ ' If t, 1

and for £ odd

3=1 j!(£-j)!(2x)J

j odd

70

cos(x)
^

(i)C3-l)/2(^^j),
^ ^^^^^^

" j=l j!()l-j)!(2x)'

j odd

cos(x)
^

(-t)J^^(Uj)!
|

(A- 12)

" J=U j!(t...i)!(2x)^

] even

2
and an imaginary root. Since -i = +1, the product of ti (iX.) and C (Sr/iX, )

for odd 1 will be positive and real.
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APPENDIX B

Variational Boundary Conditions

Pomraning and Clark (17) have used the variational calculus to develop a

set of consistent vacuum-interface boundary conditions. The fundamental equa-

tion of the variational boundary conditions at a right hand vacuum-interface

boundary is

r.
/(R.M)6/(«,-M)pdM - .

•

(B-1)

In order to arrive at a set of coefficients b . which can be put into the form
''J

L

I fAm,, =0 J
= l,2....,[(Ln)/2] ,

(B-2)

the angular flux will be expanded with the same Legendre polynomial expansion

that Pomraning and Clark used, namely:

/(R.m) =
I (^)»,(«)P,(M) .

' (B-3)

1=0

instead of the expansion

L

fvi.v) = I f,mi',M (B-4)

i'O " "

which is used throughout most of this work. From Eqs. (B-3) and (B-4) it is

recognized that

h^''^ - rrn: ^^^^ ^^-'^

Pomraiiing (16) has noted that in order to solve Eq. (B-1) there must be

combinations can bo put into the general form

*2l(UlJ/2)-,n('*^
*

J„ \Jl^''^ - " f°^ 1 im^ [(Ul)/2]
.

(B-6)
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For a F' approximation this relationship reduces to

Substituting Eq. (B-3) into Eq. (B-I) and using Eq. (B-7) in the result, Eq.

i^-B-^oi 1 *of''^**oW = ° • ^'-«^

Eq. (B-8) can be an equality if and only if the coefficient of yCRjS'tigCR) is

set to zero, in which case

'^01 = 2/a ,

Uyj - * /2/1 . (B-9)

Physical considerations demand that the negative sign of Eq. (B-9) be used.

Considering Eqs. (B-5), (B-7), and (B-9) it is readily apparent that the

coefficients b . in Eq. (U-2), for a P approximation, are given by
X.J 1

^01 = 1 . "11 = - •^-

tional equation comes directly from the spherical harmonics form of the Boltz-

inann transport equation. Using Eq. (B-3) ifi:itead of Eq. (B-4) to expand the

angular flux, tlie spherical harmonics form of the Boltzmann neutron transport

equation in slab geometry, subjected to tlie restrictions used throughout this

work, becomes

2OT 37 n*l^^^ * 2OT 4 .-l^''^
* I(l-C6^^)*^(x) = . (B-10)

For a Pj approximation these equations become

jjL4,j(x) * I(l-c)*y(x) = , (B-11)
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l^'fiCx) * i:*2(x) = . (B-13)

From Eqs. (B-1) and (li-13) the elimination of the ((),(x) dependence shows that

*2M = ^ (1-c)*q(x) . (B-14)

Tliis is the required extra relationship. Now, substitutinR Eq. (B-3) into

liq. (U-1) and using Eqs. (B-7) and (B-14) in the result it is readily verified

that the coefficients b . for a P, approximation are

2 1^2

bgi = 1, bj^ ' - mi * (1-c) * (1-c)^} . b^j = .

(IS). Using 1-qs. (B-6) and (lJ-3) in tq. (B-1), defining R^j = A, U^^ = B,

D for simplicity and setting to zero the coefficients of

and i(>,i5iti, (where the arguments have been omitted to shorten

the expressions) yields four nonlinear equations for the four unknomis, A

through L):

1 5 ,. 25 2 147 2 _ ,„ ,.,

T - 31 " - 7 '^ * i ^^ 4 "'^ ^ 3i '^ - T '^^ - m ^« = ° •
e^-i"^

- J - ^^ * 7 '
'
^'^^ - h^^ * ^ '' * 7 ^^ - m ^"^ -

" • ^'-''^

By appropriately manipulating Eqs. (B-15) tlirough (B-18) it can be shown that

they are equivalent to

16 - 40C * lOOC" - 147A^ = , (B-l'J)

20CU - 70AC + 4aA - 16D = , (B-20)

1 - 2C + 3BC - 3AU = , (B-21)

2 2
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At this point the P. variational boundary conditions will be considered.

As with tlie P^ case one extra equation will be required. This extra equation

again comes directly from the spherical harmonics equations. It is found to

be

4(x) + §y4'2^x) * ^ (l-c)4,g(x) = . {B-23)

Using Eqs. {B-6), (U-3) and (B-23) in liq. (B-1), again defining Rgj = A,

R.j = B, U., = C, and R., = U for simplicity and setting to zero the coeffi-

cients of 't',,S'(i,,, 't'n**]' *i'^*ii»
""'' 'l'i'5*i» yields, after considerable algebraic

manipulation, four nonlinear equations for the four unknowns, A through D:

1 I ,, . 1 ,, ,2 r 35 245 ,, , 1 „ ^ 1225 ^.2

1 r 35 245 ,, , 1 ,, 1 „ 1225 ._ ^ 161 „. ^ 7 ,

- -^ AD - jil AU * ^ (1-c) B = , {B-25)

1
I

35 245 ,, , 1 „ 1 „ 1225 „,, 161 _„ ^ 7 ,

* j^ AD - ^ AB - j^. (1-c) B = , (B-26)

9 7 „ 1225 ,/Z 147 ,,2 „ ,„ ,_,
- B- * T^ " * TtT " - 128 '^ - ° (''-"^

By appropriately manipulating Eqs. (B-24) through (B-27) they can be shown to

be equivalent to

144 + 32(l-c) + 144(l-c)^ (-280 980(l-c) )C

* 2450C^ - 1323A" = , (B-28}

{22540 - 490(1-c)}c:D - 3O870AC + {35721 8064(l-c)}A

- (23184 + i)632(l-c) + 75509(l-c)^)D = . (B-29)
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27 - 54C * 161BC - 161AL) + 32Cl-c)B = , (B-30)

- 648 + 504li + 2450U" - 1323B^ = .
(B-31)

Equations (B-28) tlirougli (B-31) are in a convenient form for numerical

solution. Given a particular value of c, if a value is assumed for C, Eq.

(B-28) can be solved for A, then Eq. (B-29) can be solved for U, and finally

Eq. (B-30) can be solved for B. Equation (B-31) is then used as a consistency

check. Equations (B-19) through (B-23) can be solved in exactly the same man-

ner. A computer program is used to compute the values of A, B, C, and D. In

iterating to the value of C which best satisfies the consistency check equa-

tion a relative accuracy of lO" is employed. Since only eight or nine digits

are retained in the final results, this accuracy is deemed satisfactory. A

list of the calculated values of the constants A, B, C, and D appear in Table

B-I. The CMEAM column indicates the value of c used to find the corresponding

constants A, B, C, and D.

The P. Marshak boundary conditions when put into the format of Eq. (B-6)

yield the following values for A, B, C, and D:

9
A T

a = - J (1 + J (!-<=)> .

C = .j^ (36 + 4(l-c)) ,

Tlie variational boundary condition constants for the P. approximation are

seen to bo sliglitly larger in absolute value than the comparable Marshak bound-

ary conditions when c = 1.0. Using the P variational boundary condition

coefficients A, B, C, and 1) corresponding to c = 1.0, the Milne problem extrap-

olation distance is found to be .708554 mean free patlis.
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CUNSTANTS FOR V/VIATIONAL BQUNDAKY CONOITICNS
(l<IG>JT HAND ROUNOARY)
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P 1 APPROXIMATIONABC
.53259050 -.R6892612 .7A494897 -1.52200413

P A APPROXIMATION

CMEAN

.00 2 41228043 -3. 34191842 59843785 -2.64252082

.05 2 35642719 -3. 31748672 56770363 -2.62488705

.10 2 30118333 -3. 29258481 53741249 -2.60691839

.15 2 24657098 -3. 26720520 50758036 -2.58860980

.20 2 19261313 -3 24134083 47822382 -2.56995656

.25 2 13933361 -3. 21498508 44936005 -2.55095430

.30 2 .08675713 -3, 18813189 42100682 -2.53159909

.35 2 .03490930 -3 16077590 39318254 -2.51188751

.40 .98381658 -3 13291247 36590625 -2.49181671

.45 .93350634 -3 10453787 33919758 -2.47138453

.50 .88400678 -3. 07564938 31307676 -2.45058955

.55 .83534696 -3 04624546 28756463 -2.42943124

.60 .78755677 -3 01632585 .26268256 -2.40791005

.65 .74066682 -2. 98589179 23845245 -2.38602751

.70 .69470847 -2 95494615 .21489668 -2.36378638

.75 .64971370 -2 92349363 .19203804 -2.34119078

.80 .60571501 -2 H9154096 .16989967 -2.31824632

.81 ,59703770 -2 88509116 .16556049 -2.31361617

.82 .58840181 -2 87862178 .16125124 -2.30897242

.83 .57980762 -2 87213292 .15697212 -2.30431513

.84 .57125538 -2 86562467 .15272331 -2.29964438

.85 .56274537 -2 85909711 .14850500 -2.29496024

.86 .55427785 -2 85255035 .14431738 -2.29026279

.87 .54585309 -2 84598450 .14016064 -2.28555211

.88 .53747135 -2 .83939965 .13603497 -2.28082828

.89 .52913290 -2 .83279592 .13194056 -2.27609140

.90 .52083802 -2 82617344 .12787759 -2.27134155

.91 .51258696 -2 .81953231 .12384627 -2.26657883

.92 .50437999 -2 81287266 .11984676 -2.26180333

.93 .49621739 -2 80619463 .1158792 7 -2.25701515

.94 .48809942 -2 .79949834 .11194398 -2.25221440

.95 .48002634 -2 .79278394 .10804108 -2.24740119



CMEAN
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.96 ,47199843 -2,,78605158 .10417076 -2.,24257562

.97 ,46401594 -2,.77930139 .10033320 -2.,23773782

.98 ,45607914 -2..77253353 .09652860 -2.,23288789

.99 ,44818831 -2..76574817 .09275714 -2.,22802596

.00 ,44034369 -2.75894546 .08901900 -2.,22315215

.01 ,43254557 -2,.75212557 .08531437 -2,,21826660

.02 ,42479419 -2..74528868 .08164344 -2.,21336943

.03 ,41708983 -2..73843496 .07800638 -2.,20846079

.O'l ,40943274 -2..73156461 .07440339 -2.,20354080

.05 ,40182318 -2..72467780 .07083465 -2.,19860962

.06 ,39426141 -2..71777474 .06730033 -2.,19366739

.07 ,38674770 -2..71085562 .06380062 -2.,18871427

.08 ,37928229 -2,.70392065 .06033570 -2.,18375040

.09 ,37186545 -2..69697005 .05690574 -2.
, 17877596

.10 ,36449742 -2..69000401 .05351093 -2.
, 17379109

.11 ,35717846 -2..60302278 .05015143 -2.,16879597

.12 ,34990882 -2,.67602657 ,0468274 3 -2.,16379077

.13 ,342688 75 -2.,66901562 .04353910 -2.,15877567

.14 ,33551849 -2.,66199016 .04028660 -2.,15375084

.15 ,32839830 -2..65495045 .03 707012 -2.,14871647

.16 ,32132841 -2..64789673 .03388981 -2.,14367274

.17 ,31430906 -2..64082925 .03074585 -2.,13861984

.18 ,30734050 -2..63374829 .02763840 -2., 13355798

.19 ,30042296 -2.,62665410 .02456763 -2,.12848735

.20 ,29355667 -2.,61954695 .02153370 -2..12340815

.25 ,26000204 -2.,58382691 .00692210 -2,.09789111

.30 ,22776225 -2.,54782731 .99325449 -2..07219285

.35 ,19686312 -2.,51158873 .98054847 -2..04634346

.'.O ,16732806 -2.,47515527 .96881987 -2,.02037550

.45 ,13917774 -2.,43857439 .95808245 -1

,

.99432388
.50 ,11242969 -2.,40189670 .94834763 -1

.

.96822571
.55 ,08709796 -2.,36517566 .93962430 -1

,

.94212008
.60 ,06319282 -2.,32846719 .93191850 -1,.91604772
.65 ,04072041 -2,,29182922 .92523332 -1,,89005070
.70 ,01968254 -2,.25532115 .91956862 -I,,86417200
.75 ,00007647 -2..21900323 .91492102 -1

,

,83845509
.80 .98189480 -2,, 18293593 .91128374 -I..81294343
.85 .96512544 -2.. 14717924 .90864659 -I

,

.78767998
.90 ,94975159 -2..11179197 .90699607 -1.,76270668
.95 .93575191 -2..07683103 .90631539 -I

.

,73806394
2..00 .92310068 -2..04235081 .90658468 -I.,71379019
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limployini; '-I- C-S) in Kq. (B-O) it can be shown that for the P and P.

approximations tlie coefficients b . for tlie variational boundary conditions

b^,^ = A. bj, = m. b^j = 0. b3j = 1/7, b^j =

%2 = '^^ "12
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APPENDIX C

CO Description and Explanation of Computer Programs

The group of programs discussed here calculate the critical radius and

subsidiary quantities using a P. approximation with any one of the appropriate

boundary conditions applied at the vacuum interface. The programs are written

for the IBM 1410 computer in the FORTRAN II language. Tlie program is set up

to handle P, through P.„ approximations for a bare spherical reactor and P^

through P approximations for a reflected spherical reactor. Since the size

of the core storage of the available computer is only 40,000 characters it is

necessary to divide the complex program into six phases. In addition each

phase is subdivided into a number of subprograms. The following list indi-

cates the order in whicli the subprograms are arranged within the particular

phases

:

BOLTZMANNl 110LTZMANN2 B0LTZMANN3

INPUT MARSMK CRITEQ

POLYCO BCMAI« SETUPA

POLYNO MARKBC CRAM

EIGEN PNPl DET

SETUPG VARIBC C

ROOT FOURUQ CSER

P (short) NONLIN Q
FACT P (long) ROOT

FACT P (short)

FACT

B0LTZMANN4 • B0LTZMANN5 U0LTZMANN6

CRAM INTOUT OUTPUT

SOLVE PHIL PLOT

RESIDU C

CSER

Q
P (long)

FACT

Each of the programs in this list will be considered later in this appendix.
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The input data is divided into two parts. The proper sequence for load-

ing the first part of the input data is shown in the BOLTZMANNl program and

the INPUT subproqram. The meaning of the symbols used in these programs is

given in Table C-I. The second part of the necessary input data is discussed

under tlie PLOT subprogram.

Table C-I

Symbol

Input Data

l3xplanation

NCASES
NOIIUUK

NRBG

NBC

ACCU
IllOLI)

C(l)
SIGMA(l)

C(2)

SIGMA(2)

KEFLTU

Number of cases to be considered in this computer run

Order of approximation, L

Number of regions to be considered
= 1 for bare reactors
= 2 for reflected reactors including the infinite black

reflector case

Code number for vacuum-interface boundary condition

to be applied
= 1 for Marsiiak's boundary conditions
= 2 for Mark's boundary conditions
= 3 for variational boundary conditions
= 4 for infinite black reflector boundary conditions
Relative accuracy to be employed in iterations
= skip extra results and graohs used in program testing
= 1 print extra results used in program testing
= skip graphs used in program testing
= 1 print graphs used in program testing
Mean number of secondaries, c, in tlie core region
Total macroscopic cross section, I, in the core region

in cm _
Mean number of secondaries, c, in the reflector region
Total macroscopic cross section, T, in the reflector
region in cm
Reflector thickness, R (cm)

A sample page of output is shown in Table C-II. Most of the output is

self explanatory. The output shown in Table C-II is punclied on cards as well

as being printed. Since output occurs in the first and last phases a special

card consisting of tiie number of the case in columns 1-5 and periods in the

remaining 75 columns is punclied for convenient separation of tlie cards
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Table C-II. Sample page of output

P "> APPRQXlMAriON
OF THE ONE VELCICITY BOLTZMANN TRANSPOKT EQUATtON BY
THE SPHERICAL HAHMCNICS METHOD IN SPHERICAL r.EOMETRY.

BAKE CORE
VARIATIONAL V«CUUM INTERFACE BOUNDARY CCNDITIONS
IN THE CURE C = 1.0500 , SIGMA = .1000 /CM.
THE ACCURACY USED IS l.OE-07

THE COMPUTED CRITICAL RADIUS IS 72.76'.'« CM.
CR, 7.276^1 MEAN FREE PATHS.

THE INTEGRATEP INWARD ANGULAR FLUX AT THE
VACUUM INTERFACE IS 7.010E-04

IN THE CORE

EIGEN VALUES
2.53185E 00 5.171 nE-oi

GtLiK) MATRIX
l.OOOOOE 00
l.OOOCOE 00

l.265'»2E-0l -l.y22B7E-02
2.58566E-02 -5.20057E-01

-3.25'.A9E-03
A.3099'.E-01

BOUNDARY CONDITION MATRIX
5.32590E-01 -2 . 896'VOE-Ol O.OOOOOE-00 1.42857E-01
7.4'i948E-01 -5.0733JE-O1 2.00000E-01 O.OOOOOE-00

NORMALIZED CQEFFICTCNTS
7.95775E-02 -1 .gS'idyE-QS

DATA FOR ANGULAR FLU> PLOT AT THE OUTER BOUNDARY

MU PHKMU) MU PHI (MU) MU PHKMU)
1.0 2.007E-02 .3 8.797E-03 -.'t 2.544E-0'i
.9 l.85aE-02 .2 7.227E-03 -.5 -2.885E-0'i
.8 1.702E-02 .1 5.736E-03 -.6 -5.940E-04
.7 1.5'.0E-02 .0 '..347E-03 . -.7 -6.393E-04
.6 1.37'.E-02 -.1 3.081E-03 -.8 -4.016E-0't
.5 1.208E-02 -.2 1.962E-03 -.9 l.'tl7E-0'.

.4 1.0'i2C-02 -.3 1.012E-03 -1.0 1.013E-03
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belongini; to different cases. In Table C-II the [-IGEN VALUES are the roots \^

arranjjed so that readinR from riglit to left on each successive line the first

value encountered is tlio imaginary root (for a core region) and then the

remaining real roots in order of decreasing magnitude. The G(L,K),
^j,(^i,)>

and BOUiNUARY CONUITION, b ., matrices are arranged so that the second subscript

is the row number and i. is the column number. If H exceeds 4 then tlie remain-

der of a particular row appears on succeeding lines. The NORI-IALIZED COEFFI-

CIENTS are the A. 's and correspond in position to the roots X, listed under

EIGEN VALUES. The PIIICHU) column in the inward flux section is whichever of

/(K,u) or /(R+U ,u) is representative of the vacuum interface.

Approximately ten minutes is required to compute the results shown in

Table C-II if this problem is run with 5 or more cases.

The sense switches do not alter the program when they are in the off posi-

tion. The clianges which occur when they are in the on position are shown in

Table C-III.

Switch I'hase

Table C-III

Sense Switches

Ope rat ion when Switch is on

liOLTZMANNl Prints convergence in an iteration loop for

testing purposes

liOLTZMAi>tN2 I'rints convergence in an iteration loop for

testing purposes

liOLTZMANN3 Prints convergence in an iteration loop for

testing purposes

bOLTZMANNS Sets lUOLU in Table C-I to the value of I

aOLTZMA'JNb Sots III0LD2 in Table C-I to the value of 1

C.l UOLTZMANiMl Program

This program is tho control program for the first phase. In the first

phase tlie input data is read and tlie preliminary output is printed. The roots
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X. , the ti, (A.) matrix and an initial lower bound estimate of the critical

radius are computed. The lower bound estimate of the critical radius is

C.2 INl'lJT Subprogram

This subprogram reads all of the input for a particular case to be run

and prints the preliminary output data.

CT POLYCO Subprogram

Given a value of c this subprogram sots up the coefficients of the alter-

nate powers of X^ in liq. (IS). Using Eq. (14), Eq. (15) can be written as

\*i^\^ - (-'''^'ft.i'^' -<=vw> = ° ('-"

The Legondre polynomials P (x), and the non-singular part of the Legendre poly-

nomials of the second kind, W ,(x), can bo written as simple summations (20)

,. (,) = '"f ^
t-^)'t-"-^^J' x"-2^ (C-2)

"
i=0 2"i!(n-i)l(n-2i)!

'V-lf''^ = J^I^-l'^^'n-.^"' •

^'-'^

Using iiqs. (C-2) and (C-3) in liq. (C-1) it i; found that the coefficient of

x!'"^'" wliere n is L+1 and m is an index running from to [1./2] in value is

(-1)" I (-l)"'(2n-2m)l

-n 'm!(n-m)! (n-2m) I

•, ? V V
(-l)J*\2lt-23-2)l(28.-2k-2)l

,
- ^'=,i, .i„ J„it(il,-l-.i)!(l-l-2J)!klj!(n-t-k)!(n-«.-2k)T "m.j+k'

where M = the lesser of (li-l)/2 and m,

N = the lesser of (k-ll)/2 and m.

This is the expression used ui this subprogram to compute the coefficient of



\. . Tlie coefficients are arranRed for ilescendiriK alternate powers of \.

in the colunm matrix POLY.

C.4 FOLYNO Subprogram

Given a value of X. tliis subprogram computes the value of '"i + iC^i,) after

POLYCO has set up tlie coefficients of X in I'OLY. This subprogram is used as

an auxilliary subprogram by liKJliN in finding the roots of Eq, (C-1).

C.S lilCJKN Subprogram

This subprogram supervises the finding of tlie roots \, of Eq. (C-1). For

a core region the signs of alternate coefficients in POLY are changed to find

the imaginary root. After the imaginary root has been found the signs of the

coefficients in POLY are returned to their original state and the remaining

real roots are found. I'or a reflector region the subprogram finds the real

roots immediately. The real roots are stored in order of decreasing magnitude.

All roots are stored in EIC.HiNV.

C,6 SBTUPG Subprogram

This subprogram sets up the G (X ) matrix. The definition that G (A.) = 1

for all A. is used for tlie first row of the matrix. By setting t = 1 in Eq.

(14) and noting that W (A ) = 1 it is readily apparent that

Gj(A^) = (c-l)A^ .

This last equation is used to find the G (A )'s. The remaining Gj^(Aj^)'s are

found by applying the recursion relationship for these functions, Eq. (13).

C.7 KUUT Subprogram

This subprogram is used to find the zero's of a function ^(x). The

function ^(x) is specified by a subprogram whose name is given as the first
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arBument of the calling statement. Given two limits between whicli a zero of

^(x) exists, tl\is subprogram finds that zero to witliin the relative accuracy

specified in the calling statement. The method used in finding the zero's of

^(x) is to apply a first order iJewton interpolation formula (22). A complete

description of this subprogram is on file at the K.S.U. Computing Center.

C.8 1> (short) Subprogram

This subprogram computes the value of P^CO)- Setting x = in Eq. (C-2)

the equation for F (0) is found to be

, n odd

-„(") = < (-l)"/^n!
^'-'^

2"((n/2)!}- '
""'"'"

C.9 l-'ACT Subprogram

Given a positive integer argument, n, this subprogram finds the value of

"n!". A detailed description of this subprogram is on file in the K.S.U.

Computing Center.

C.IU liULTZMANiN2 Program

Tills program is the control program for the second phase. The second

phase sets up the vacuum interface boundary condition matrix whose elements

are b . in the computer variable BC.
i)

C.ll MAKSllK Subprogram

This subprogram in conjunction witli BCMARS sets up the coefficients b^^.

in liC corresponding to Marshak's vacuum-interface boundary conditions.

C.12 BCMAKS Subprogram

Tliis subprogram computes the numerical values of b^^. for Marshak's vacuum-

interface boundary conditions for wliich
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(p)U^^'^dU . (Cr5)

EraployiiiR liq. (C-2J in liq. (C-5) and doing the indicated integration analyti-

cally Eq. (C-5) becomes

b . = (-D^^l^'f
' L-iiW2iO^^

. fC-6)
"•^

k=0 2\!(i-k:i!(il-2k)!(H+2j-2k)

Equation (C-b) is used to evaluate the b .'s for Marshak's boundary conditions

except when E, = in whicii case

b . = l/2j
oj

is used.

CIS MAKKBC Subprogram

This subprogram in conjunction with I'MI'l sets up the coefficients b in

BC corresponding to Mark's vacuum-interface boundary conditions. First the

roots of

are found and then the value of b . is computed from

b,j = P,Cu.) . (C-8)

Equation (C-8) is used to evaluate the b coefficients, which are stored in
* J

BC, for Mark's boundary conditions.

CIS VMUBC Subprogram

Tliis subprogram supervises tliu assemblage of tlie b . coefficients for the

variational vacuum- interface boundary conditions. Tlie variational coefficients

b . are defined in Appendix u. I'or the P, and I', aoproximations it is neces-
l)

'

3
4"^

sary to solve a set of four nonlinear ecjuations. This subprogram sets up a

matrix, CO, of tiie coefficients in these nonlinear equations and supervises the

solving of tl\ese equations.
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C.16 FOUREQ Subprogram

This subprogram is an auxilliary subprogram used by VAIUBC in finding

the solution of the four nonlinear equations for the variational boundary

conditions.

C.17 NONLIN Subprogram

Given a guessed value of C tliis subprogram solves three of the nonlinear

equations representing the variational boundary conditions and uses the fourth

equation as a consistency check,

C.18 i' (long) Subprogram

This subprogram computes the values of the Logendre polynomial P„(x).

In order to obtain good accuracy for small values of x, Eq. (C-2) is rearranged

into the form '

, ,,n m , ,,k,.- ^ 11 ^ I
n-2m-2k

P rvi - C-i) V
(-1) (2n-2m-2k)lx .og,

'^n^''' ^r~^ijj(m-k) I (n-ii.*k) ! (n-2m*2k)

!

^'' '

where

m = [n/2] .

Equation (C-'J) is used to compute P (x) except when x = in which case Eq.

(C-4) is used. A detailed description of tliis subprogram is on file at the

K.S.U. CompuLing Center.

C.l!) I10LTZMANN3 Program
'

This program is the control program for the third phase. The third phase

sets up tlie T matrix in Eq. (44) in the computer variable A and iterates to

find a critical radius which satisfies Eq. (60).
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C.20 CRiTEQ Subprogram

This subproRram is an auxiliary subprogram used by B0LTZMANN3 in iterating

on Eq. (60) to find the critical radius.

C.21 SHTUI'A Subpro;;ram

Tins subprogram sets up the T matrix in the two-dimensional computer

variable A for the particular reactor system being considered.

C.22 CRAM Subprogram

'nils subprogram performs the first step in a Crout reduction method of

solving a matrix equation. Tlie first step in the Crout reduction is to reduce

the given Matrix to an upper right triangular matrix. The Crout reduction

formulas for this first step arc given as (7J

a! . = a. . - y al, a,' . for i > j ,

where tlie primes denote the transformed elements. This subprogram has special

provisions which allow imaginary row interchanges so as to maximize the diag-

onal in the reduction process. A detailed description of this subprogram is

on file at the K.S.U. Computing Center.

C.2.'5 UKT Subprogram

'ITiis subprogram calculates tile determinant of a given matrix after CRAM

has reduced the matrix to an upper right triangular matrix. Since the matrix

is in the upper right triangular form the determinant of a transformed n by n

matrix A' is

|A'| ^ C-D' n a!

i = l
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where H is the number of imaginary row interchanges used. A detailed descrip-

tion of this subprogram is on file in the K.S.U. Computing Center.

C.24 C Subprogram

This subprogram calculates the values of the C (x) functions. For real

arguments Hq. (A-G) is used whereas for imaginary arguments whichever of

Eqs. (A-11) or (A-12) is appropriate is used.

C.25 CSER Subprogram

This subprogram evaluates the finite sums in Eqs. (A-11] and (A-12) for

the C subprogram,

C.26 Q Subnrogram

Tliis subprogram computes the values of Qj(x) by using Eq. (A-3). A

detailed description of this subprogram is on file in the K.S.U. Computing

Center.

C.27 U0LTZMA1^IN4 Program

This program is the control program for the fourth phase. The fourth

pliase having been given the critical radius by the third pliase assumes A is

one and solves for the remaining A, and A, constants in the column matrix X.

C.28 SOLVE Subprogram

This subprogram solves a matrix equation of the form

AX = B (C-10)

for tlie column matrix X after CHAM has reduced the matrix A to an upper right

triangular matrix. The formulas used in this second step of the Crout reduc-

tion are (7)

^1 = IT- f"i - X'^WO
11 k=l
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and

X. = b! - y a!, X,
1 1 ,

'.
, ik k

where tlie primes denote transformed quantities. A detailed description of

this subproRram is on file in the K.S.U. Computing Center.

C.2y RHSIDU Subprogram

This subprogram minimizes the error incurred in using the Crout reduction

method of solving a matrix equation. After CliAM and SOLVE have been used to

find a solution X this subprogram computes the product of the matrix A and

the solution X and subtracts the result from the column matrix B in Eq. (C-IO).

Then CRAM and SOLVE are again used to solve Hq. (C-10) for a new column matrix

X. This result is used to reduce the columji matrix B in the same manner as

before and then it is added to the old column matrix X. Then a new column

matrix X is found by solving Hq. (C-10). The iteration is continued until the

column matrix X determined after the n iteration is negligible (to within

the accuracy of the computer) with respect to the sum of the results of the

first n-1 iterations. A detailed descripticin of this subprogram is on file

in the K.S.U. Computing Center.

C.30 UOLT2MANN5 Program

This program is the control program for the fifth phase. The fifth phase

computes all of tlie data which will be printed in the final output. The

amount of data which is computed is governed by the input constant lilOLD or

sense switch 1.
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C.31 IMTOUT .Subprogram

This subprogram computes all of tlie necessary data for the final output.

The amount of computation done is controlled by the input constant IHOLD or

sense switcli 1.

C.J2 I'HIL Subprogram

This subprogram computes the value of ^^(r). If r represents a point

which is in the core region,

[(Ul)/2]
^ (r) = (24*1) I

A^(;^(X^)Cj^(!:r/X|^) (C-U)
k=l

whereas if r represents a point which is in the reflector region,

2[(U1)/21_
7^(r) - (2U1) I \(^i(\)Qi(!^r/X|.) . (C-12)

k=l

The A* terms are omitted from liqs. (C-11) and (C-12) since they arise only at

an interfacial boundary between two media.

C.33 liOLTZMVJNO Program

This program is the control program for the sixth phase. The sixth

phase prints and punches the computed results. In addition graphs of parts

of the results may be printed under tlie control of the input constant IH0LD2

or sense switclt 1.

C.34 UUTi'UT Subprogram

This subprogram supervises the printing and punching of the computed

results. Wlien graphs are asked for by having IH0LI)2 set to one or sense

switch 1 on, three graphs are printed for a bare spherical reactor whereas

seven graphs are priiited for a reflected reactor. For a bare reactor plots

are made of tlie total neutron flux in tlie core as a function of tlie spatial



in the core as a fujiction of tlio spatial variable. In addition, for a

reflected reactor plots are made of tlio total neutron flux in the reflector as

a function of the spatial variable, tlio individual ^ (r)'s in the reflector as

a function of the spatial variable, and of the angular flux at the core-

reflector interface as viewed froin eacli side of the interface,

C.35 PLOT Subprogram

This subprogram plots a jiraph of some of tlic computed results in tlie

printed output. In order to print titles and axes of graphs, control cards are

read in. A list of the control cards used in tliis work are shown in Table

C-IV. A detailed description of this subprot;ram is on file in the K.S.U.

Computing Center,

C.ib Special Macliine Language Subprograms

There are tliree special machine language subprograms which are used in

this program. The machine lanjjuago subprogram CtliiCKI is a routine whicii checks

the error indicators and prints appropriate 3rror messages if necessary, liXIT

is a machine language routine wiiich terminal.cs program control and gives con-

trol to the comjiuter monitor. I'Ue machine l.'Lnguage subprogram INfJUIK checks

the inquiry reijuest key on the console of tlie computer allowing alteration of

the sense switcli settings. A detailed description of eacli of these subprograms

is on file in the K.S.U. Computing Center.
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C.37 Computer Program Logic Diagram
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CONTINUED

FROM

PREVIOUS PAGE

/read PHASE 4

\FROM TAPE 5
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C.38 Computer Program Listing

HOP BOLTZMANNl 1 <.

C THIS PRUGRAM IS THE CONTROL PROGRAM FOR PHASE 1

DIMENSION P0LY16) , E I GENV t "i ) , n ( 1 1 , 5) , GC I 1 1 , 5 ) ,C ( 2 ) , SI GMA( 2 1 ,E IGENC (

15)
DIMENSION BC( 11. 5)

COMMON POLY,N,EIGENV,G,NREG,NQC,C,SIGMA,REFLTH,EIGENC,GC,ACCUR,HOL
COMMON H0L2,0C
REW IND4
READ INPUT TAPE 5,6,NCASES

6 FORMAT! I^)
WRITE TAPE A.NCASES
DO 1001 ICASE=1.NCASES
TYPE 7,ICASE

7 FORMAT( 16X1'.HPR0DLEM NUMBER, 15)

WRITE OUTPUT TAPE ft.lUl.ICASE
nil FORMAT! 2H1$, I5,75H

1 )

C INITIALIZATION OF THE COMMON AREA
1PR0B=1
NCV2=2
NPl = 5

POLYd )=0.0
REFLTH = O.C)

DO 8 K=l,2
C(K)=0.0

8 SIGMA(K)=0.0
DO 9 K=1,N0V2
E1GENV(K)=0.0
EIGENC(K)=0.0
PQLYIKtl)=0.0
DO 9 L=l,NPl
G(L,K)=O.U
GC(L,K)=0.0
BC(L,K)=0.0
IREG=N0V2+K

9 GIL, IREG)=0.0
CALL INPUT

C THIS SECTION OF THE PROGRAM "^ETS UP G(L,K) MATRIX AND FINDS THE

C ROUTS LAMBDA-SUB K.
00 19 KKEG=l,NREG
IREG=NREG*1-KREG
IF(C( IREG)-1. ) 12, 10, 12

10 WRITE OUTPUT TAPE 6, 11

11 F0RMAT(5XJ2HC = 1, PROBLEM CANNOT BE EXECUTED)
IPRUB=2
GC TO 1000

12 IF(N-2«(N/2) )16, 13, 16

IJ 1F(C( IREG)-(FL0AT(N+1)«PIN,0.) )»«2)16, 14,14
14 WRITE OUTPUT TAPE 6 , 15 , C ( IRE*" ) , N

15 FCRMAr(5X16HrHE VALUE OF C = , IPE I 5. 7 , 3X9HIN THE P ,I3,14H APPROXIM
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lATILiN, IXAbHlS GREATER THAMQ'^ EQUAL TO ( ( Nt 1) •? ( N,0) ) »»2)

IPRGB=2
GO TO 1000

16 CALL PQLYC0(N+1,C( IREG) iPOLY)
CALLEIGEN(C( IREG) )

CALL SETUPG(C( IREG) )

IF( IREG-n 19,19, 17
17 NDV2=lNtl)/2

NP1=N+1
aO 18 K=1,N0V2
EIGENV(K)=EIGENC(K)
00 18 L=1,NP1

18 G(L,K)=GC(L,K)
19 CONTINUE

POLY( l)=HUL
P0LYI2)=H0L2

C COMPUTE AN ESTIMATE OF THE MINIMUM POSSIBLE CRITICAL RADIUS FROM
C A P-2 CALCULATION.

ALAMBD=SQRT( (9.-^.»C(l) )/(15.»(C( 1)-1.) )

)

K-1.E*05
SQRT3=SQRT(J. )

20 RLAST=R
R = ATAN( l./ll./R-l./( SQRT3«tC( 1 )- 1 . ) »ALAMBD) )

)

IF( 1030, 30,21
30 R = Rt3.1^1'3927

IFI ABSI (R-RLAST)/R)-ACCUR 121,20,20
21 GO TO (22,23),NKEG
22 R=.9«R

GO TO 2^1

23 R=.3»R
24 R=R«ALAMBO/SIGMA( I

)

1000 CALL CHECK!
1001 WRITE TAPE A , I PROB , POL Y , N .E IHENV , G,NREG, NBC , C , S IGMA

,

REFLTH.E IGENC,

1GC,ACCUR,HC,R
REWIND 4

CALL EXIT
STOP
END

BOP INPUT 14

SUBROUTINE INPUT
C THIS SUBPROGRAM READS IN THE INPUT DATA

DIMENSION POLY (6) ,E1GENV( 5 ) , G I 1 1 , 5 ) , GC t 1 1 , 5 ) ,C ( 2 ) , SI GMA( 2 ) t E IGENC

(

15)
COMMON POLY,NQROER,EIGENV,G,NKEG,NflC,C,SIGMA,KEFLTH,EIGENC,GC,ACCK
COMMON H0LD,HQLD2
READ INPUT TAPE!>,2,N0R0ER,NRFG,NBC,ACCR, IHOLD, IH0LD2

2 FCRMAT(3I5,E15. 8,215)
HOLD=IHULO
M0LD2=IHOLD2
READ INPUT TAPE 5 , 3, C ( 1 ) ,

S

IGMA I 1

)

3 FORMAT! 3E15. 8)
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CO TU (S.AI.NREG
A 1F(NRC-4)'.1,42,41

'»2 C(2)=0.0
SlGMAt2)=SIGMAI I

)

GO TO 5

C THE CONSTANTS FOR THE REFLECTOR ARE NEEDED ONLY IF THIS IS A

C REFLECTED REACTOR CASE.
41 READ INPUT TAPE 5 , 3, C ( 2 )

,

SIGWA ( 2 ) .REFLTH
C THIS SECTION PRINTS A STATEMENT OF THE CASE BEING CONSIDERED.

5 WRITE OUTPUT TAPE 6,6,NURDER
6 FORMAT! 3H-$1 , 3 IX IHP , I 2, IX 13HAPPR0XIMAT I ON)

WRITE OUTPUT TAPE 6,7
7 FORMAT! 3H $ ,15X51H0F THE ONF VELOCITY BOLTZMANN TRANSPORT EQUATIU
IN BYl
WRITE OUTPUT TAPE 6,71

71 FORMAT! 3H $ ,15X53HTHE SPHERICAL HARMONICS METHOD IN SPHERICAL GEO
IMETRY.I
IF!NBC-4)72,8,72

72 GO TO 18,10),NREG
8 WRITE OUTPUT TAPE 6,9
9 F0RMAT!3H0$0,20X9H8ARE CORE I

GO TO 12
10 WRITE OUTPUT TAPE 6,11
11 F0RMAT!3H0$0,20X14HREFLECTE0 CORE)

,

12 GO TO 113, 15, 17, 25), NBC
13 WRITE OUTPUT TAPE 6,14
14 F0RMAT!3H $ , 20X44HMARSHAK VACUUM INTERFACE BOUNDARY CCNDITIGNS)

GO TO 19

15 WRITE OUTPUT TAPE 6, 16
16.F0RMATI3H $ ,20X42HMARKS VACUUM INTERFACE BOUNDARY CONniTIONS)

GC TO 19
17 WRITE OUTPUT TAPE 6, 18
18 FURMAT!3H $ , 20X4BHVAR I AT ION«L VACUUM INTERFACE BOUNDARY CONDITION

IS)
GO TU 19

25 WRITE OUTPUT TAPE 6,26
26 F0RMATI3H $ , 20X40H1NF INI TELY REFLECTED WITH A BLACK MEDIUM)
19 WRITE OUTPUT TAPE 6, 20, C I 1 ) , S IGMA I 1

)

20 FCRMATI3ri $ ,20X15HIN THE COPE C =,F7.4,1X9H, SIGMA = ,F7.4 , 1 X4H/CM
1.)
GO TO !24,21),NREG

21 IFINBC-4)27,24,27
27 WRITE OUTPUT TAPE 6 , 22 , C ! 2) , S IGMA ! 2

)

22 FDRMATI3H $ ,20X20HIN THE REFLECTOR C =,F7.4,1X9H, SIGMA =,F7.4,1X
14H/CM.

)

WRITE OUTPUT TAPE 6,23,REFLTH
23 F0RMAT!3H $ ,20X26HTHE REFLECTOR THICKNESS 1 S , F 7. 2 , 1 X3HCM.

)

24 WRITE OUTPUT TAPE 6,31,ACCR
31 F0RKATI3H $ ,20X20HTHE ACCURACY USED IS.lPEB.l)

RETURN
END
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BOP PQLYCO I')

SURKOUTINt PQLYCO(N,C,PaLY)
C THIS PROGRAM SETS UP THE COEFFICIENTS OF THE POLYNOMIAL NECESSARY
C FUR OETFRMINING THE VALUES OF LAMBDA. THE COEFFICIENTS ARE

C STORED IN POLYI I ).

DIMENSION POLY(l)
NGV2=N/2+l
DOB NM-1,N0V2
M=NM-l
POLY(NM)=( (-1. )»*M)»FACT(2»(N-M) )/( FACT ( M) "FACT ( N-M) •F ACT ( N-2»M)

1

DO b L-1,N
LMlOV2=^lL-l)/2 + l

NML0V2=(N-L)/2tl
!FINM-LM1QV2)1,2,2

1 LH10V2=NM
2 00 6 NJ=l,LMlOV2

J=NJ-l
IF(NM-NML0V2)3,'.,'.

3 NMLQV2=NM
4 DO 6 NK=1,NMLUV2

K=NK-1
1F(M-K-JI6,5,6

5 P0LYINM) = P0LYINM)-2.»C»FACT(?»(L-l-J) ) "FACT I 2* ( N-L-K ) )»(t-l.l»»(K+
IJ) )/( FACT! J)»FACT1L-1-J ) "F AC T I L-1-2* J ) »FAC T t K ) 'FAC T ( N-L-KI 'F ACT I

2N-L-2»K)»HL0AT(L )

)

6 CONTINUE
8 P0LY(NMI=POLY(NM)«( |-.5)*«N)

RETURN
END

BOP POLYNO lA

FUNCTION POLYNQIX)
C THIS SUBPROGRAM IS USED AN AI.'XILLIARY SUBPROGRAM BY EIGEN IN

C FINDING THE ROOTS LAMBDA-SUB K.

C IT ACTUALLY COMPUTES THE VALUE OF G(L+l,X).
DIMENSION P0LY(6)
COMMON POLY.N
NCO= (N+n/2 + 1

P0LYN0=POLYlNCO)
X2=X*X
FMULT=1.
UO I 1=2, NCO
NSUB=NCO-ltl
FMULT=FMULT»X2

1 POLYNO=POLYNO+POLY(NSUBI»FMULT
RETURN
END

HOP EIGEN I'.

SUBROUTINE EIGEN(C)
C THIS SUBPROGRAM FINDS THE ROOTS LAMBDA-SUB K

DIMENSION P0LY(6),EIGENV(t)),(;( ll,'jl,GC(U,5),U(2),SIGMA(2),EIGENC(
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15)
COMMON POlY,N,EIGENC,GC,NREG,NBC,D,SIGMA,REFLTH,EIGENV,G,ACCUR
NPl=lNtl)/2tl
IF THE VALUE OF C IS GREATER THAN I , F I NO THE IMAGINARY ROOT FIRST.
IF(C-I. )1,2,2

1 KIMAG=0
CO TO 3 .,

2 KIMAG=1
00 U 1=1, NPl
IF( l-2«( 1/2) )ll, 10, II

10 PGLYl 1 )=-POLY( I)

11 CONTINUE
3 J=l
9 X=1C0.

ANS2=P0LYN0(X)
DO 5 1=1,205
ANS1=ANS2
IF( i-90)9'.,9'«,92

92 IFI 1-180)93,93,91
91 DELT=.0^

GO TO 95
9 3 DELT=.l

GO TO 95
9^, D£LT=1.
95 X=X-OELT

ANS2=P0LYN0(X)
IFISIGNl 1. ,ANS2)-SIGN( l.,ANSl ) )4,5,'i
POLYNO

'i EIGENVlJ)=ROOT( POLYNO, X + DELT,X,0.0,ACCUR)
J = Jtl
IF(KiMAG-l )5,6,6

5 CONTINUE
81 RETURN
6 KIMAG=0

00 8 1=1, NPl
IF( l-2«( 1/2) )8,7,8

7 POLYd )=-POLY( I)

8 CONTINUE
1F( J-NP1)9,81,81
END

HOP SETUPG l-i

SUBROUTINE SETUPG(C)
THIS SUBPROGRAM SETS UP THE ELEMENTS OF THE MATRIX G(L,K)
DIMENSION P0LY(6) , E I GENV I 5 ) , G ( ll,5),GCIll,5),D(2),SIGMA(2) .EIGENCI

15)
COMMON POLY,N,EIGENC,GC,NREG,NBC,0,SIGMA,REFLTH,EIGENV,G,ACCUR
N0V2=(N+l)/2
NP1=N+1
DO 2 K=1,N0V2
G(1,K)=1.
G(2,K)=(C-1. )«EIGENV(K)
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IF(N-l)2,2,l
1 DO 20 L=3,NP1
SIGNA=-1.
IF(C-1. )2U,18, 18

la IFU-1 )21, 21,20
21 IF( L-l-2«l(L-l)/2) )20, 19,20
19 SIGNA=l.
20 G1L,K) = (FL0AT(2»L-3)»EIGE1MV(K).G(L-1,K)»SIGNA-FL0AT(L-2)«G(L-2,K) )

1/FL0AT(L-1)
2 CONTINUE
i RETURN

END

BOP ROOT I'"

FUNCTION r<OOT( DUMMY, RFB , RFC , RFAE , RFRC )

C THIS SUBPROGRAM COMPUTES A ROOT OF A GIVEN FUNCTION.

C DUMMY IS THE NAME OF THE Sl'BPRUGRAM WHICH REPRESENTS THE FUNC.

C RFB IS THE LOWER LIMIT OF THE RANGE IN WHICH THE ROOT IS TO BE

C FOUND.
C RFC IS THE UPPER LIMIT OF THE SAME RANGE.

C RFAE IS THE ABSOLUTE ACCURACY TO BE ITERATED TO.

C RFRE IS THE RELATIVE ACCURACY TU BE ITERATED TO.

C WITH SENSE SWITCH 6 ON THE CONVERGENCE AT EACH TRIAL IS PRINTED.

JRFS=1
RFFB=DUMMY(RFB)
RFFC=DUMMY(RFC)
I F(RFFC«RFFB 19122, 9122, 9102

9102 WRITE OUTPUT TAPE 6 , 200 , RFB , RFC

200 FORMAT! 1X76HLIMITS GIVEN TO ROOT FUNCTION GENERATE FUNCTIONAL VALU

lES WITH THE SAME S IGNS , 1 1 H, L IM I TS ARE , IPE 18. T.'iXaHANO ,F18. 7)

RUOT=0.0
RETURN

9122 RFA=RFC
RFFA=KFFC

9123 IF(ABS(RFFB)-ABS(RFFA))913l,913l,9130
9130 RFC=RFB

RFR=RFA
RFA=RFC
RFFC=RFFB
RFFB=RFFA
KFFA=RFFC

9131 RFD=0.5»IRFB-RFAI
RFT=RFAE+KFRC«ABSIRFDI
IF(RFFB)9156, 9135, 9156

9135 R0OT=RFB
RETURN

9156 IF( IKFK)9137, 9157, 9137
9157 IRFK=3
9138 RFV-RFD

GC TO 91',0 1J

9137 IF(KFFB-RFFC19139, 9138, 9139
j

9139 RFV=(RFB-KFCI»RFFB/(RFFB-KFFC)
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9140 IF(ABSIRFC)-RFT)91'iJ,9l'.3,91'i4
9143 JRFS=2

GC TO 9147
9144 IF(ABS(HFV)-RFT)9149,9147,9147
9147 IF(

I

RFD-RFV)«RFV 19148,9152, 9152
9148 RFX=RFB-RFO

GC TU 9153
9149 IF(I<FD)9151, 9150, 9150
9150 RFV=KFT

GC ro 9152
9151 RFV=-RFT
9152 RFX=RFB-RFV
9153 GC TO (9101,9100 l.JRFS
9100 RCOI=RFX

RETURN
9101 CALL INQUIR

IF(SENSE SWITCH 6)9111,9112
9111 WRITE OUTPUT TAPE 6, 1000 , RFA ,RFB , RFX
1000 FORMAT! IX45HPRESENT LIMITS OF INTERVAL IN ROOT SUBPROGRAM, IPEIS.

7

,

14X2HTQ,E18.7,4X16HNEXT TRY WILL BE, CIS. 7)

9112 RFC=RFB
RFB=RFX
RFFC=RFFB
RFFH=DUMMY(RFX)
IF(RFFA«RFFB)9158,9131,9159

9158 IRFK=IRFK-1
GO TO 9123

9159 1RFK=2
GO TO 9122
STOP
END

BOP P 14

FUNCTION P(N,X)
C THIS SUBPROGRAM COMPUTES THE VALUE FOR AN LTH ORDER LEGENORE
C POLYNOMIAL WITH A ZERO ARGUMENT.
C LEGENORE POLYNOMIAL FUNCTION CALCULATOR, ASSUMING X=0.n .

3 M=N/2
4 IF(N-2»M)7,8,7
8 P=( (-1. )»»M)»FACT(N)/( (2.»''N)»FACT(N-H)»FACTIM1 1

RETURN
7 P=0.0

RETURN
END

BOP FACT 14

FUNCTION FACr(N)
C THIS SUBPROGRAM COMPUTES H FACTORIAL.

FACr=l.
IF(N) 1,2,4

1 FACT=.999q99999999g99999999999999999999999999999999Et99
RETURN
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lOS

<. DO 5 1 = 1,

N

FACT=FACT«FLOAT( I

)

5 CONTINUE
2 RETUKN

END

BOP BaLTZMANN2 1 't

C THIS PROGRAM IS THE CONTROL PROGRAM FOR PHASE 2.

DIMENSION P0LY(6),EIGENV( ) , H ( 1 1 , 5) , GC ( 1 1 , 5 ) ,C ( 2 ) ,SI GMA ( 2 ) ,

E

IGENC (

15),BC( Il.b)
DIMENSION B( 10), A( 10,10), IPC 10)
COMMON POLY,N,EIGENV,G,NREG,NBC,C,SlGMA,REFLTH,tlGENC,r,C,ACCUR,BC,
1R,B,A, IP

REWIND 't

REWIND 8

00 35 L=l,6
IP(L)=0
B(L)=0.0
DO J5 K=l,6

35 A(L.K)=0.0
READ TAPE ^.NCASES
DO 100 ICASE=1,NCASES
WRITE OUTPUT TAPE 6,7,ICASE
TYPE 7, ICASE

7 FORMATI 16Xl'iHPR0BLEM NUMBER, 15)

READ TAPE 'i , I PROB , POLY , N , E IGFNV , G ,NREG ,NBC ,C, S IGMA .REFLTH, E I GENC.G
IC,ACCUR,BC,R
GO TO t8,22),IPRQB

C THIS SECTION SUPERVISES SET LP OF THE PROPER BOUNDARY CONDITION

C MATRIX IN BC-
8 GO TO (20,21,2't, 22) ,NBC

20 CALL MARSHK
GO TO 22

21 CALL MARKBC
GO TU 22

2A IFIN-'t) 18, 18, 19

ly WRITE OUTPUT TAPE 6,17,N
17 FORMAT ( IXbHTHE P , I 3, 1X80HVAR I AT I ONAL BOUNDARY CONDITIONS CANNOT BE

1 USED AS THEY HAVE NOT BEEN WORKED OUT.)
IPRUB=2
GO TO 22

18 CALL VARIHC(C(NREG) )

22 CALL CHECKI
100 WRITE TAPE 8 , I PROB , POL Y , N ,E I GENV , G, NREG , NBC , C , S I GMA, REFLTH ,E IGENC,

1GC,ACCUR,HC,R
REWIND 'i

REWIND
WRITE TAPE A,NCASES
DO 101 ICAS£=1,NCASES
READ TAPE 8, I PROB , POL Y , N ,E IGENV , G.NREG , NBC , C , S I GMA, RFFLTH , E IGENC

,

ICCACCUR.BC.R
101 WRITE TAPE A , I PROB, POL Y , N , E I GENV , G, NREG , NBC , C , S I GMA, REFLTH , E I GENC

,



IGC,ACCUK,HC,K.8, A, IP

REWINO 4

CALL EXIT
srriH

END

BDP MARSHK I 'i

SUBROUTINE MARSHK
C THIS SUBPROGRAM SETS UP THE COEFFICIENT MATRIX BC WHICH REPRESENTS

C MARSHAKS OOUNOARY CONDITIONS AT A VACUUM INTERFACE.
DIMENSION P0LYI6),EIGENVl5),n( 1 1 , 5) , GC ( 1 1 , 5) ,C I 2 ) , SI GMA ( 2

)

.EIGENCI

15),8C( 11,5)
COMMON PQLY,N,EIGENV,G,NREG,NBC,C,SIGMA,kEFLTH,EIGENC,r,C,ACCUR,BC
N0V2=(Ntl)/2
NP1=N+1
DO 5 J=1,N0V2
DO b LPl=l,NPl

5 BCILPl, J) = BCMARSILP1-1, J)

RETURN
END

HOP BCMARS I't

FUNCTION BCMARSIN.J)
C THIS SUBPROGRAM COMPUTES THE VALUE OF THE ANALYTICALLY INTEGRATED
C INTEGRAL FROM -1 TO OF P(N,X) TIMES X TU THE 2J-1 POWER FOR

C THE MARSHAK BOUNDARY CONDITIONS AT A VACUUM INTERFACE.
IFINJI, 1,2

1 BCMARS=-1./FL0AT(2«J)
RETURN

2 BCMARS^O.O
MP1 = N/2H
DO b KPl=^l,MPl
K=KP1-1

5 BCMARS=BCMARSt((-l.)»»K»FACTI2«N-2«K) I / ( 2. ••N»FAC T ( K ) »FACT ( N-K ) "F

A

ICTIN-2«K1«FLQAT(N+2»J-2»K))
BCMARS=BCMARS«(-l.)»»INtl)
RETURN
END

BOP MARKBC 14

SUBROUTINE MARKBC
C THIS SUBPROGRAM SETS UP THE COEFFICIENT MATRIX BC WHICH REPRESENTS
C MARKS BOUNDARY CONDITIONS "T A VACUUM INTERFACE.

DIMENSION P0LY(6),EIGENV( !j),G(11,5),GCI11,5),C(2) ,S1GMA12) ,EIGENC(
151,HC( ll.b)
COMMON P0LY,N,EIGENV,G,NREG,N8C,C,SIGMA,REFLTH,E1GENC,GC,ACCUR,BC
N0V2=lNtl)/2
NP1=N« I

K=l
X=-1.0
ANS1=PNP1(X)
DO !) 1 = 1,39
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X=Xt0.025
ANS2=flNSl
ANSl = PiMPl(X)
IFISIGNK 1., ANSI) -SIGN I l.,ANS7) ) If 5,1

F PNPl
1 VALUE=ROOT(PNP1,X-0.02 5,X,0.,ACCUR)

DC 2 J=1,UP1
2 BC( J,K)=P(N-NPltJ,VALUE)

K = K + 1

IF(K-N0V2I5,5,3
'j CCNriNUE
3 KETURiN

END

BOP PNPl I'.

FUNCTION PNPl(X)
DIMENSION P0LY(6)
COMMON POLY.N

C THIS SUBPROGRAM IS USED BY THE MARKBC SUBPROGRAM TO FIND THE ROOTS

C OF THE EQUATION P(N+l,X)=0.
PNPl=P(Ntl,X)
RETURN
END

nop VARIBC I'l

SUBROUTINE VARIBCICP)
C THIS SUBPROGRAM SUPERVISES THE SET UP OF THE BOUNDARY CONDITION

C MATRIX 8C WHICH REPRESENTS THE VARIATIONAL BOUNDARY CONDITIONS.

DIMENSION P0LY(6),EIGENV(5),n( 1 1 , i I , GC t 1 1 , 5 ) ,C ( 2

)

,SIGMA(2) ,EIGENC(
15),BC( n.-j)
DIMENSION COC,'.)
COMMON P0LY,N,EIGENV,G,NREG,NBC,C,S1GMA,REFLTH,EIGENC,GC,ACCUR,BC,
IR.CCCPRIME
IF(N-2) 1,2,'.

I BC( l,l)=S(jRT(2.)/3.
GO TO 3

UP THE NECFSSARY COEFFICIENTS TO FIND THE

2 RC( 1,1) = SURT(2.)/
i BC(2,1)=-1. 0/3.0

RETURN
C THIS SECTION SETS
c P-3 CONSTANTS.

'i BCl^, 11=1.0/7.0
BC( 3,21 = 1.0/5.0
IFlN-3)5,5,6

5 CU( l,l) = Ui.

CQI 1,2)=-A0.
CC( 1,31 = 100.
C0( 1,'>1=-117.
CQ(2, 11=20.
C0(2,21=-70.
CC(2,3)=',9.
CC(2,^1=-16.
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CU( 3,11=1.
C0( 3,2)=-^.
C0( 3,3) = ).

CC( i,',)'-.U
CG(^,1 )=-72.
CC('.,?) = S6.
CG(',,3) = 100.
CCl'.,'i)=-l'.7.
CPfUMC = 0.0
GC TU 7

C THIS SCCriON SETS UP THE NECESSARY COEFFICIENTS TO FIND THE

C P-4 CONSTANTS.
6 CQ(l,l) = 16.«(9. + ( l.-CPl»(2.+<5.«( l.-CP) ) )

GUI l,2)=-2.«( l'.0.-4S0.»( l.-CP) )

CO ( 1,3 1 = 2'. 50.

CC( 1,^)=-1A7.»9.
CQ(2,l) = 161.«(l't0.-'t90.*(l.-CPl) + 32.*2450.»(l.-CP)
CGI 2,2)=-2.«9.#1715.
CG(2,3)=27.»147.«9.+32.*2 52.»( l.-CP)
C0(2,',)=-161.»l'.4.-301.»32.»( l.-CP)-469.»16.»( l.-CP) ••?

CGI 3, l) = 27.
CGI 3,2)=-2.«27.
CG( 3,3)=161.
C0( 3,',)=-161.
CPR1M£=32.«( l.-CP)
C0(4, l)=-6'.8.
C0(4,2)=7.»9.«8.
C0( 4,3I=2'.50.
CG(4,',) = -IA7.»9.

C THIS SECTION SUPERVISES THE FINDING OF THE CONSTANTS A, B.C. AND D

C FOR THE P-3 AND P-'t APPROXIMATIONS.
7 E = .5

DC=.l
10 ANSl=FQURfca(E)
8 ANS2=ANS1

IFIBC(2, 1) 113,14,1',
13 ITEST=1

GO TO 15
14 ITEST=0

E=E+DC
ANSl=FOURCQ(e)
IF(SIGN( l.,ANSl)-SIGNI l.,ANS2) ) 9, 11,9
IF(E-2. 0)8, 0,12

12 E=.5
DC=DC/10.
GG TO 10
FGUREG

9 IF( ITEST)H,8, 16

16 F=R0OT(FQUREQ,E-DC,E,O.0,ACCUR)
CALL NQNLINIF)
IF(liC12, 1) ) 17, 10, 18

18 CALL NQNLINI E)

15

1 I
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GO TO 8

17 BCI2,ll = BC(2,n/3.0
BC(2,2)=RC(2,2)/3.0
RETURN
END

BOP FOUREQ I'l

FUNCTION FOUREQ(E)
C THIS SUBPROGRAM IS USED AS AN AUXILLIARY PROGRAM BY VARIBC IN THE

C FINDING IF THE CONSTANTS A.B.C, AND D FOR THE P-3 ANO P-4

C APPROXIMATIONS
CALL NONLINIE)
FOUREQ=E
RETURN
END

BOP NONE IN I'l

SUBROUTINE NONLIN(E)
C THIS SUBPROGRAM SOLVES THREE OF THE FOUR NONLINEAR EQUATIONS

C AND USES THE FOURTH AS A CPNSISTENCY CHECK.
C IN THE USUAL NOTATION A = BC ( 1 , 1 I , B=BC ( 2 , 1 1 ,C = BC ( 1 , 2) , AND D=BC(2,2).

DIMENSION P0LY(6),EIGENV(5),'-( II , 5 ) , GC I 1 1 , 5 ) ,C ( 2 ) , SIGMA! 2 ) ,EIGENC(

15),BC(U,'J)
DIMENSION Ca(^,4)
COMMON P0LY,N,EIGENV,G,NRCG,N8C,C,SIGMA,REFLTH,EIGENC,GC,ACCURfBC,
IR.CO.CPRIME
BC( 1.2)=E
BC( 1,1) = S0RT( IC0(1.1) + BC1 l,2)»{COll,2)+BC(l,2)»CO(l,3)))/(-C0(l,'.)
n )

RCI2,2)=-IBC(l,n»(C0l2,3)+Br( 1,2)«C0(2,2)) )/(CQ(2,l)»nc(l,2)+C0(2
l.A) )

BC(2,l)='-(C0(3,n+BCl l.2)»C0(3,2)*CU(3,'.)«BCll,n»BC(?.2))/(BC(l.2
l)«C0(3,3)tCPRIM£)
E = C0('.,l) + BC(2,l l»(C01'i,2)+BC(2,l)»C01't,'t) )+BC(2,2)»0CI2,2)»C0l4,3

I)

RETURN
END

OOP P 1^

FUNCTION P(N,X)
C LEGENDRE POLYNOMIAL FUNCTION CALCULATOR ,

IF(N)1,2,J
100 FORMATI 1HB,22HNEGATIVE ORDER N FOR P)

1 WRITE OUTPUT TAPE6,100
2 P=l.
RETURN

3 M= N/2
IFIXj^.-itb

4 IF(N-2»M)7,8,7
a P=( (-1. )««M) 'FACTIN)/! (2.»«N)»FACT(N-M)«FACT(M) )

RETURN
7 P=0.0
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RETURN
5 IF(N-1 )2, II, 16

16 TERM=( (-1. 1»»M)»FACT(2»N-2*M)»(X'>«(N-2»M) )/( ( 2 . ""N) 'F ACT ( M) »FACT ( N
1-M) )

SUM=TERM
i;)06K=l,M

TERM=-TERM«FL0AT(M-K+l)»FLOAT(2»(N-M+K)-U»FLUAT(2»(N-M+K) )«(X»»2)
l/(FL0Ar(N-K+K)«FL0AT(N-2»IM-K)-l ) "FLOAT ( N-2» I M-K ) )

)

6 SUM^SUM+TERM
P=SUM
RETURN

11 P = X

RETURN
END

HOP BQLT2MANN3 lA
C THIS PROGRAM IS THE CONTROL "ROGRAM FOR PHASE A

DIMENSION PULY(6),EIGENV( 'i ) , C ( 1 1 , i ) , GC ( 1 1 , 5) ,C I 2 ) .SIGMA (2) .EIGENCI
15),BC(ll,b),A(10,101,IP(10),V(lO).R(10)
COMMON P0LY,N,E1GENV,G,NREG,NBC,C,SIGMA,REFLTH,CIGENC,GC,ACCUR,BC,
IR,A,IP,V,B,NSUB
REWIND 't

REWIND 8

READ TAPE A, NCASES
ITIWE=1
DO 21 KCASE=1, NCASES
WRITE OUTPUT TAPE 6,3,KCASE
TYPE 3,KCASE

3 FCRMAT( 16X14HPRQBLEM NUMBER, 15)

KrAPE=4
1 READ TAPE KT APE, I PROB , POL Y,N .

E

IGENV.G ,NREG , NBC ,C

,

SIGMA .REFLTH, E I GE
INCGC, ACCUR,BC,R,B,A, IP

GC rO (C,22)

,

ITIME
8 GO TO (55,20)

,

IPROB
2 WRITETAPE KTAPE, I PRUB, POL Y,N , E IGENV i G , NREG.NBC ,C

,

SIGMA .REFLTH, E I GE
1NC.GC,ACCUR,BC.R.B,A, IP

GC TO 121,23) .ITIME
C THIS SECTION SUPERVISES THE SETTING OF THE CRITICALITY
C DETERMINANT TO ZERO THUS FINDING A CRITICAL RADIUS.

55 0R=.2«R
ANS1=CRITEQ(R)

15 ANS2=ANS1
R=R*DR
ANS 1=CRITEQ(R)
IFI ANS1«ANS2) 16, 16, 15

F CRITEO
16 R=ROOT(CRITEO,R-DR,K,0. ,ACCUR)

CALL SETUPA(R)
20 KTAPC =a

GO TO 2

21 CONTINUE
REWIND ',



109

REWINO 8

WRITE TAPE A.NCASES
ITIME=2
DC 23 KCASE=l,NCASeS
KTAPE=8
GO \0 1

22 KTAPE='.
GO TO 2

23 CONTINUE
REWIND A

CALL EXIT
STOP
END

HOP CRITEQ I'l

FUNCTION CRITEQ( R)

C THIS SUBPROGRAM IS USED BY B0LTZMANN3 AS AN AUXILLIARY PROGRAM
C TO HELP IN FINDING THE CRITICAL RADIUS,

DIMENSION P0LY(6),EI6ENVC>),n( U , 5 ) , GC ( 1 1 , 5 ) ,C ( 2 ) , SI GMA ( 2 1 , E IGENC (

15),DC{11,^),A(10,10),IP(10),V(10),B(10)
COMMON POLY,N,EIGENV,G,NREG,NBC,C,SIGMA,REFLTH,EIGENC,GC,ACCUR,BCi
1Z,A, IP.V.B.NSUB
CALL SETUPAIR)
N0V2=(N+l)/2
IFINBC-'i) 16, 15,16

15 NSUB=2«N0V2
GO TO 17

16 NSUB=(U2»(NREG-1) l«N0V2
,

17 CALL CRAM(NSUB,1)
CRITEO=DET(NSUa)
RETURN
END

BOP SETUPA I'l

SUBROUTINE SETUPA(R)
C THIS SUBPROGRAM SETS UP THE CRITICALITY DETERMINANT IN A.

DIMENSION P0LY(6),EIGENV(5),n( ll,5),GClll,5) , D ( 2 ) , SI GMA ( 2 I ,E IGENC

(

I5I,BC( 11,5),A( 10, 10)

COMMON POLY,N,£IGENV,G,NREG,NBC,D,SIGMA,REFLTH,EIGENC,GC,ACCUR,BC,
IRA,

A

DC 24 1 = 1, 10

00 24 K==l, 10

24 A( I ,K)=0.0
NP1=N+1
N0V2=NPl/2
N0V=2»N0V2
DO 10 K=l,N0V2
ARG=SIGMA( l)»R/EIGeNC(K)
IF(K-l) I, 1.2

1 1 = 1

GO ro 3

2 1 =
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J TEMPI=C(0,ARG, I) •GC( 1,K)
DO 10 LP1=1,NP1
TEMP2 = C(LPl-l,AKG,I)»GC(LPl,K)»FLaAT(2»LPl-n
GG TO i4,6),NREG

C THIS SECTION SETS UP THE MATRIX FOR A BARE SPHERICAL REACTOR,
'i UO b NSUB=1,N0V2
b A{NSUB,K)=A(NSUB,K)+BCILPI,NSUB1»TEMP2

CC TO 10

C THIS SECTION SETS UP THE PARTS OF THE MATRIX KCPRESCNTING THE
C INTERFACIAL BOUNDARY.

6 IF(N-2»(N/2) )7,8,7
7 A(LPl,K)=rEMP2

GO TO 10
8 IF(LPl-l) 10, 10,9
y A(LP1-1,KI=TEMP2-P(LP1-1,0.0)»TEMPI»FLOAT(2»LP1-1)

10 CONTINUE
GO TO (19,11) ,NREG

11 DO 16 1=1,2
DO 16 K=1,N0V2
ARG= (-!.)••( I-1)»SIGMA(2)»R/FIGENV(K)
ir(igBC-4)22,20,22

2U IF( I-l) 16,16,21
21 NSUB=K+NQV2

GO TO 23
22 NSUH=KtN0V2»I
21 TEMP1=QI0, ARG)»G( 1,K)

DC l'> LP1=1,NP1
TCMP2=-0(LPl-l,ARG)»FLOAT(2»LPl-l )«G ( LPl , K ) • (-1. ) ••( I LPl-l ) • ( I-l )

)

IF(N-2«(N/2) ) 12, 13,12
12 AILP1,NSUB)=TEMP2

GO TO 15
13 IF(LP1-1I 15, 15,14
14 A{LPl-l,NSUB)=TEMP2+P(LPl-l,0.0)»TEMPl»FLaAT(2»LPl-l)
15 CONTINUE
16 CONTINUE

1FINUC-4)17, 19,19
C FOR A REFLECTED REACTOR THIS SECTION SETS UP THE VACUUM
C INTERFACE BOUNDARY CONDITIONS.

17 DO 18 1=1,2
DO IB K=1,N0V2
ARG=(-1. )••( I-1)«SIGMA(2)»(R+REFLTH)/EIGENV(K)
DO 18 LP1=1,NP1
TEMP2=Q(LPl-l,ARG)»FLOAT(2»LPl-l)*G(LPl,K)»l-l.)»»(ILPl-ll»(I-n)
NSUB = N0V2» It-K

DO IB L=1,N0V2
NSULU = L + NUV

18 A(NSUtU,NSUB) = A(NSUBl,NSUB)tRC(LPl,Ll»TCMP2
19 RETURN

END

BOP CRAM 14
SUBRUUTINE CRAM( N, I

)



')\r 111

C CROUT REDUCTION OF AUGMENTED MATRICES
C THIS PROGKAM PERFORMS A CROUT REDUCTION ON A MATRIX A.

C WITH 1=1, THE CROUT REDUCTION IS PERFORMED WITH ROW INTERCHANGES.

C WITH 1=2, THE CROUT REDUCTION IS PERFORMED WITHOUT ROW CHANGES.
DIMENSION P0LY(6),EIGENVI5),G( I 1 , 5) , GC ( U . 5 ) ,C ( 2 1

,

SIGMAI 2

)

.EIGENCl
15),BC(11,5),A(10,10),IP(101,VI10),BI10)
COMMON POLY,M,EIGENV,G,NREG,NBC,C,SIGMA,REFLTH,EIGENC,GCtACCUR,BC,

1R,A, IP,V,8,NSUB
GO TO (2200,2201 ) ,

I

2200 IDMV=1
G0TQ22O2

2201 IDMV=2
C REDUCTION OF MATRIX
2202 IF(N-l)2223,2223,222't
2223 IP( l)=0

RETURN
222'> DO 2204 IOK=l,N

V( IDK)=ABS(A( IDK, 1)

)

D0220'. 101=2, N

IFI VI I0K)-ABS(A( IDK, IDI ) ) ) 2203, 2 204, 2204
2203 V(IOK)=ABS(A(IDK,IDI))
2204 CONTINUE

DO 2222 IUK=1,N
DETR=-1.
I0K1=IDK-1
DU2214 IDI=IDK,N
DCTPK=0.0
IFI IDK- I) 2208, 2208, 2206

2206 DU2207 IDJ = 1, I OK 1

2207 DETPR=DETPRtA(IDI,IDJ)«A(IDJ,IOK)
2208 A{ IDI, IDK)=A( IDI , I0K)-OETPR

GQ Ta(22l2,2225) , IDMV
2212 DETS=ABS(A(IDI,IOK) )/V( IDI)

IFI DETS-DETR)2214, 2214, 2213
2213 DETR=DETS

IP( IDK) = IIJK-IOI

GO TO 2214
222i IP( IOK)=0
2214 CONTINUE

IDK2=1DK-1P( IDK)
DETR=A( IDK2, IDK)/V( IDK2)
IFI ADS (DETR)-l.E-08 12230,2230,2232

2240 FORMAT! lHB,t)HPlVQT, 13, ISHIS LESS THAN l.E-08)
2241 FOKMATI 1HB,^HP1V0T, I3,7HIS ZERO)
2238 WRITE OUTPUT TAPE 6,2240, IDK

IFI A( IDK2, IDK) ) 2232,2231,2232
2231 WRITE OUTPUT TAPE 6,2241, IDK

IF I N-NSUB 12501, 2500, 2500
2501 CALL EXIT
2232 V( I0K2)=VI IDK)

VIIOK)=DETR
DQ2222 I0J=1,N
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DETR=A( IDK, lOJ)
IF ( IDJ-I 010 2215, 2215,2216

2215 A( lOK, IDJ)=A( IDK2, lOJ)
GO ru 2220

2216 DETPR=0.0
IF( IDK-1)2219,22I'3.2217

2217 DQ2218 IDI = l, I L'K 1

2218 DETPR=OET|JRtA(IDK,IDI)«AIIOI,IDJ)
2210 AdDK, IDJ) = (A( IDK2, I DJ )-OETPR I /A ( lOK.IOKI
2220 IF( IP( lOK) )2221, 2222,2222
2221 A( I0K2, IDJ )=OETK
2222 CCNTlNUe
2500 RETURN

END

BOP DET 14
FUNCTION UET(N)

C AFTER CALLING THE CRAM SUBROl'TINC THIS FUNCTION WILL COMPUTE
C THE DETERMINANT OF THE MATRIX A.

D I MENS I UN PULY(6),ElGENV(5),C(ll,5),GC(ll,5» ,C ( 2

»

,SIGMA(2 » ,E IGENCI
L5),BC( U,5) ,A( 10, 10), 1P( 10) ,V( 10) ,H(10)
COMMON POLY,M,EIGENV,G,NREG,NBC,C,SIGMA,ftEFLTH,ElGENCtGCtACCURiBC,
1R,A, IP,V,B
0ET=1.0
DO 2229 IDK=1,N
DET=DET»A( IDK, lOK)
IF( IP( IDK) )2223, 2229,2229

2223 DET=-DET
2229 CONTINUE

RETURN
END

BOP C lA

FUNCTION C(L,X, I )

C THIS SUBPROGRAM COMPUTES THE VALUt OF THE FUNCTION CIL.X) FOR BOTH
C REAL AND NEGATIVE IMAGINARY ARGUMENTS. L I S THE ORDER OF THE
C FUNCTION AND X IS THE ARGUMENT OF THE FUNCTION. FOR REAL
C ARGUMENfS 1=0, FOR NEGATIVE IMAGINARY ARGUMENTS 1=1.

IFIX) 10,9, 10

9 IFIL) 12, 12, II

11 C=0.0
RETURN

12 C=l.
RETURN

10 IFI D't.'t, 1

4 C=.5»lQ(L,X)+(-l. )»*L»Q(L,-X))
RETURN

1 IF(L-2»(L/2) )2,3,2
2 COFUNC=-CUS(X)

FUNC=-SIN(X)
SIGNB^l.
GO 10 7
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COFUNC=SINtX)
FUNC=CQSIX)
SIGNn = -l.
C=(CUrUNC.CSER(L,X,0)-SlGNR»FUNC»CSER(L,X,l) )/X

RETURN
END

BOP CSER M
FUNCTION CSER(L,X, I )

THIS SUBPROGRAM COMPUTES THE FUNCTIONAL VALUE OF THE SERIES

NCCESSAKY FOR THE FUNCTION C(L,X). THE ARGUMENTS OF L AND X ARE

THE SAME AS IN THE FUNCTION CIL.X.l) SUBPROGRAM. 1=0 FOR A

STARTING INTEGER OF 0, AND 1=1 FOR A STARTING INTEGER OF I.

CSER=0.0
IF(L-I )3, 10, 10

10 TERM=FACT(L+I )/( FACTl Il*FACr(L-n»(2.«X)»»I)
CSCR=TERM
IP2=1+Z
IF(L-IP2) 3,1,1

1 rMULT = -.2'j/(X»Xl
DO 2 J=IP2,L,2
TERM = TERM«FL0AT(L-J<-2)«FL0AT(L-JtU»FL0AT(L + J-Ll*FL0AT(LtJl»FMULT/

I (FLOAT( J-1 ).FLOAT( Jl

)

2 CSER=CSER+TERM
3 RETURN

END

e.OP Q I'l

FUNCTION fJlL.X)

THIS SUBPROGRAM COMPUTES THE VALUE OF THE FUNCTION Q1L,X)

Q=(CXP(X1 )/X

I F ( X ) 7 , 7 , R

7 SICNA=l.
X--X
GO TO 9

8 SIGNA=-1.
9 P0LY=1.

FMULT=.5»SIGNA/X
AN=L+1
ANPLUS^L
TERM^l.
N=l

k TERM=TCRM»FMULT«ANPLUS*AN/FLaAT(N)
POLY=POLYtTtRM
IF( L-NI6,6,'i

ii ANPLUS = ANPLUS-l.
N = Ntl
AK=AN<- 1.

CG TO -i •

6 a=0»POLY
2 RETURN

END
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POP 8QLTZMANN'. 14
C THIS PRUGRflM IS THE CONTROL PROGRAM FOR PHASE A

DIMCNSION PULYIfij.CIGENVCjl.GI U,5),GCIU,5) ,C(2),SIGMA(2) ,EIGENC(

L5),HC(11,5),A(10,10),IP(10),V(10),B(10),S(10,10),T(10)
CCMMUN PULY,N,EIGCNV,G,NREG,NBC,C,SIGMA,REFLTH,EIGENCtGC,ACCUR,BC,
IRiA, IP,V,B,l\iSUB, S,T
PI=3. 14159 265 3 58979324
REWIND 4

REWIND 8

READ TAPE 4, NCASES
DO 1000 ICASC=1, NCASES
WRITE OUTPUT TAPE 6,7, ICASE
TYPE 7, ICASE

7 FORMAT! 16X14HPRUBLEM NUMBER, 15)

READ TAPE 4, I PROR , POLY, N,

E

IGFNV , G ,NREG ,NBC ,C , S IGMA .REFLTH, E I GENC ,G

IC,ACCUR,BC,R,B,A, IP

GU TO (8, 35)

,

IPRQB
C THIS SECTION ASSUMES Al IS ONE AND COMPUTES THE VALUES OF ALL

C THE OTHER CONS TANTS , A-SUB K.

B N0V2=(N*l)/2
IF(NBC-4) 10,9, 10

9 NSUB=2»N0VZ
GO TO 11

10 NSUB=( 1+2«(NREG-1 ) )»N0V2
11 iriNSUB-l) 12,32, 12

12 NSUH1=NSUB-I
NSUB2=NOV2»NREG
DO IB L=1,NSUB1
1F(L-NSUB2) 17, 15, 15

15 00 16 K=1,NSU8
16 A(L,K)=A(L+1,K)
17 B(L)=^-A1L, 1)

DO 18 K=l,NSUBl
18 A(L,K)=A(L,K+1)

DO 19 K=l,NSUBl
T(K)=B(K)
DO 19 L=1,NSUB1

19 SIL,K)=AiL,K)
CALL CRAMINSUBI, 1)

CALL SOLVE (NSUBl

)

CALL RESIDUINSUBl )

c THIS secriCN normalizes the total neutron flux so that AT R =

c IT is one neutron per souare centimeter per second.
31 DO 30 K=l, NSUBl

L=NSUBlt2-K
30 B(L)=B(L-1)
32 B(l )=1.0

SUM=0.0
DD 33 K=1,NUV2

33 SUM=^SUM + B(K)
SUM=SUM»4.«PI



lis

"^- ....

SUM=SUM-5.•ACCUK•SUM
DQ i'f K=1,NSUB

i'l B1K) = B(K)/SUM
35 CALL CHECKI cocr- r

1000 WRITETAPE 8, I PKOB , POLY , N, E IGENV, G ,NKEG ,NBC ,C , S JGMA .REFLTH, EI GENC ,

b

ICtACCUK.BCR.BICtACCUR.BCR.B
REWIND A

REWIND 8

WRITE TAPE 4, NCASES
DO 36 ICASE = 1, NCASES ^,, ^,^c.,r r
READ TAPE 8, I PROB , POLY , N, EIGENV , G ,NREG ,NBC .C , S IGMA .REFLTH,

E

IGENC ,G

1C,ACCUR,BC,R,B ^, ^ , ^.^^„^ ^
36 WRITETAPE A, I PROB , POLY, N,

E

IGFNV, G ,NREG , NBC ,C , S IGMA .KEFLTH.E IGENC ,G

lC,ACCURtBC,R,B
REWIND 't

CALL EXIT
STOP
END

BOP SOLVE lA

SUBROUTINE SOLVE (N) ^ , ^^
C AFTER CALLING CRAM THIS SUBROUTINE WILL COMPUTE THE SOLUTION

C VECTOR UF THE MATRIX EQUATION AX=B. BEFORE RETURNING TO THE

C MAIN PROGRAM THE SOLUTION VECTOR IS STORED IN B.

DIMENSION P0LY(6),ElGENV(5),n( ll.5),GCm,5) ,C 1 2 ) , SI GMA(2 I .EIGENC (

15),BC(ll,bl,A(10,10),IP(lO).V(lO),B(lOI
COMMON POLY,M,ElGENV,G,NREG,NBC,CfSIGMA,REFLTH,CIGENCtGCiACCURiBCi
IR.A, IP.V.B
DQ 2256 IDK = 1,N
IDKl = IDK - 1

IDK2 = IDK-IP( IDK)
DETR = Bl IDK)
DETPR = 0.0
IF( IDK-l) 2253, 2253, 2257

2257 DQ 2252 IDI = I, I DK

I

2252 DETPR = DtTPR+A( I DK, I D I ) • B(IOI)

2253 B(IDK) = (B(IDK2) - DETPR) / AIIOK.IDK)
IF IIP(IDK)) 2254, 2256, 2256

225'> B(IDK2) = DETR
2256 CONTINUE

DO 2263 IDI2 = l,N
lOI = N + 1 - I0I2
DETPR = 0.0
IDI 1=101 + 1

IF (N - IDI) 2263, 2263, 2261
2261 DO 2262 ICJ = IDIl,N
2262 DETPR = DETPR + A(IDI,IDJ)» BIIOJ)
2263 B( IDI ) = BdDI ) - DETPR

RETURN
END

BOP RESIDU 14



SUBKOUTING RESIDU(N)
C AFTER THE CRAM AND SOLVE SUBROUTINES HAVE BEEN CALLED THIS
C SUBROUTINE WILL COMPUTE TH»= RESIDUALS IN THE COEFFICIENT
C VECTOR T AND ITERATE ON THE ANSWER VECTOR D UNTIL THFRE IS

C NO CHANGE IN 8 FROM ONE ITFRATION TO THE NEXT. THE SUBROUTINE
C ASSUMES THAT THE ORIGINAL t'ATRIX IS IN S ANU THAT THF ORIGINAL
C COEFFICIENT VECTOR IS IN T.

DIMENSION P0LY(6),EIGENV(5),C( ll,t>),GC(ll,5),C(2) ,SIGKA(2) tEIGENCI
15).BC(U,5),A(10,lO)fIP(10),V(lO).BI10),S(10,ia),T(10)
COMMON PQLY,M,EIGENV,G,NREG,NBCiC,SIGMA,REFLTH,CIGENCtGC,ACCUR,BC,
1R,A,1P,V,B,NSUB,S,T
DO 1 1=1,

N

VII )«B( I)

DO 1 J=1,N
1 T(I ) = T( I)-S(I,J)<B(J)
2 DO 3 1=1,N
3 B( I)=T( I

)

CALL SOLVE (N)
DO 10 1=1,

N

DO 10 J=1,N
10 T(I )=TI I)-S( I,J)»B( J)

J =

DO 5 1=1,

N

B(I )=B( I )tVI I)

IFIBd )-V( I ) )6,5,6
6 J = l

5 V(I )=B( I)

IF(J) 7,7,2
7 RETURN

END

OOP B0LTZMANN5 l-i

C THIS PROGRAM ISTHE CONTROL PROGRAM FOR PHASE 5

DIMENSION POLY (6) , E I GENV ( 5 ) , n ( 1 1 , 5 ) , GC ( 1 1 , 5) ,C ( 2 1 , SI GMA (2 ) ,E IGENC

(

15),BC( ll,ti),B( 10)
DIMENSION X( 100) ,Yl 100)
COMMON POLY,N,EIGENV,G,NREG,NBC,C,SIGMA,REFLTH,EIGENC,r,CfACCUR,BC,
1R,B, IPROB
COMMON X,Y
REWIND 4

REWIND 8

READ TAPE 'i.NCASES
DO 16 ICASE=1,NCASES
WRITE OUTPUT TAPE 6,7,ICASE
TYPE 7, ICASE

7 FORMAT! 16X1'.HPR08LEM NUMBER, T5)
READ TAPE 4, I PROB, POLY ,N , E

I

HENV , G,NREG , NBC , C , S IGMA , REFLTH ,

E

IGENC ,

1GC,ACCUR,BC,R,B
14 CALL INTOUI
15 CALL CHECKI
16 CONTINUE

REWIND 4
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REWIND 8

WRITE TAPE A.NCASES
DO 17 ICASE=l,NCASES
READ TAPE 8, I PROS, POLY, N ,E I CENV

,

G.NREG , NBC , C , S 1 GMA, RCFLTH , E IGENC.

IGCACCUR.HC.R.B ,- ^^ ^
WRITE TAPE 4, I PROB, POLY ,N ,E IRENV , G.NREG , NBC , C

,

SIGMA, REFLTH, EIGENC ,

1GC,ACCUR,BC,R,B
GO TO ( 18,17)

,

IPROB
18 READ TAPE 8,X,Y

WRITE TAPE '(,X,Y

READ TAPE 8,iMSUB
WRITE TAPE A,NSOB
IF(NSUB)17,17,20

20 DO 33 K=l,NSUB
READ TAPE 8, XM IN , XMAX, YMIN, Y^AX , I SCALE , JSCALE , NPTS.NPLOTS , NCOPY, NC

WRITE TAPS',, XMIM,XMAX,YMIN,Y^'AX, I SCALE, JSCALE,NPrS,NPLOTS,NCOPY,NC

lARDS
READ TAPE 8,X,Y

33 WRITE TAPE 'i,X,Y

17 CONTINUE
REMIND 4

CALL EXIT
STOP
END

BOP INTUUT I'l

SUBROUTINE INTOUT
C THIS SUBROUTINE COMPUTES ALL OF THE NECESSARY DATA FOR THE

C PRINTOUT OF THE FINAL RESULTS. .,^^.,^,
DIMENSION P0LY(6),EIGENV('>),n( 1 1 , b ) ,GC ( 1 1 , 5 ) ,C ( 2 ) , SIGMA ( 2 ) ,EIGENC(

15),BC( ll,!il,fll 10)

DIMENSION X(100),Y1 100)

COMMON POLYiN,EIGENV,G,NREG,NBC,C,SIGMA,REFLTH,EIGENC,GC,ACCUR,BC,
1R,B, IPROH
COMMON X,Y
GO TO I I't, 13) , IPROB

C THIS SECTION COMPUTES THE DATA FOR A NORMAL PRINT-OUT

I'l NP1 = N+1
NMAX^lOO
DO 101 K=l,NMAX

101 Y(K)=0.0
PI = 3. 14159 265358 97932'!

ISCALE^O
JSCALE'O
NC0PY=1
NCARDS=3
IFfNBC-'.ISS, 54,55

54 NREG=l
55 K0UTER=R*FL0AT(NREG-1)»REFLTH

DX=-.l
X(l)=1.0
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19

56

13
1

15

DC 102 K=2,21
X(K)=X(K-1)+DX
DO 19 L=1,NP1
TEMP=PHIL(L-1,R0UTER,NREG)
DO 19 K=l,21
Y(K)=Y(K)+P(L-l,XtK))»TEMP
PCLY(3 1=Y( U1+Y(21)+A.»Y(20)
DO 56 K=12, 18,2
PCLY13) = POLY(3)+'i.»YtK)+2.»Y(K+l)
P0LY(3)=PULY(3)/30.
WKITE TAPE 8, I PROB , POLY, N, E I GENV , G.NREG, NBC, C,

S

IGMA, REPLTH, E IGENC,
GC, ACCUR,HC,R,B
GO TO ( 15,26), IPROB
WRITE TAPE 0,X,Y
CALL INQUIR
IF(SENSE SWITCH 1)50, ^,9

1F( POLYI 1) )50, 50,51
C THIS SECTION COMPUTES THE ADPITII
c PURPOSES

50 NSUB=0
GC TO 52

51 NSUB=3t(MREG-l)»A
52 WRITE TAPE 8, NSUB

IF(NSUB)26,26,53
53 00 100 NFUNC=l,7

NPERGP=26
GC TO ( 18,20,22,23,2'!, 1,2), NFUNC

18 DX=.04
X(l )=0.0
GO TO 39

20 GO TU( 100,39),NREG
22 Xll)=-l.O

DX=.08
ARG=ROUTER
IREG=NREG
GO TO 107

23 X(1)=0.0
60 NPERGP=NMAX/NP1

IF(NPtRGP-26)59,59,58
58 NPERGP=26
59 DX=1.0/FLUAT(NPERGP-1)

GC TO 39
2^ GO TO ( 100,60) ,.MREG

1 GO ru (100,3),NREG
3 1REG=1
ARG = R

X(l )=-1.0
DX=.D8
GC TO 10?

2 GO TO ( 100, 'i) ,NREG
ti IREG=2

10 7 DO 108 K=1,NMAX
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10!) Y(K)=0.0
i') 00 lOA K = 2,NPErtGP
IC X(Kl=X(K-l)+DX

ir(NFUNC-2)'.2,A2,'.l
'tl DC 18 L=1,NP1

TEMP=PHIL1L-1,A«G, IREG)
DC 3a K=1,NPERGP

109 GC TO (31,32,33,31,32,36,36) ,NFUNC
30 CONTINUE

GO TO 105
'.2 DO 106 K=1,NPERGP

GO TO 109
106 CONTINUE

GO TO 105
31 ARG=X(K)»R

IREG=l
IF(NFUNC-1)57,57,34

32 ARG=R+XIK)»REFLTH
IREG=2
lF(NFUNC-2)57,57,34

57 YIKj^'i.^PI'PHILtO.ARG, IREG)

GO TU 106
33 Y(K)=Y(K)+P(L-l,X(K) )»TEMP

GOTO 38
S'i NSUB = K<-(L-l)»NPERGP

X(NSUB)=X(K)
Y(NSUB)=PHIL(L-1 .ARG.IREG)
GO TO 38

36 Y(K)=Y(K)+P(L-li X(K) )»TEMP
GC TO 38

105 IFINFUNC-A)4't,'.3,'>3
43 IF(NFUNC-6)A7,44,44
47 NPTS=NPt»NPERGP

NPLOTS=NPl
GO TO 45

44 NPTS=NPCRGP
NPLUTS^l

45 YMIIM=0.0
YMAX=0.0
DO 46 K=1,NPTS
YMIN=M1NI(YMIN,Y(K) )

46 YMAX=MAX1(YMAX,Y(K) )

WRITE TAPE 8,X(1 ) , X ( NPERGP ) , YM IN , YMAX , I SCALE

,

JSCALE , NPTS , NPLOTS , NO

lOPY.NCARDS
WRITE TAPE 8,X,Y

100 CONTINUE
26 RETURN

ENO

BOP PHIL 14

FUNCTION PHIL(L,X, IREG)
THIS SUBPROGRAM COMPUTES THE LTH MOMENT OF THE ANGULAR FLUX AT X.



OIMCNSIGN POLY (6) , E IGEIMV ( 5 ) , G ( 1 1 , 5 ) , GC t 1 1 , 5 ) ,D ( 2 I t SIGMA ( 2 ) ,E1GENC(
15),BC( U.bl ,BI 10)
CCMCON PQLY,N,ElGENV,G,NREG.NBCiD,SIGMA,REFLTH,EIGENCfGC,ACCUR.8C,
LK,B
NCV2=(Ntl)/2
PHIL=0.0
GO TO (1,5),1REG

1 DO A K=l,NGV2
IF(K-1)2,2,3

2 1 = 1

GO TO 4

3 1 =

1^ PHIL = PHIL + B(K)«GC(L+l,K)»FLaATI2»L+l)»C(L,SIGMA(l)»X/[ IGENCIK), 1 )

RETORN
5 DO 6 1=1,2

DO 6 K=1,N0V2
NSU[S = K +N0V2*I

6 PHIL=PH1L+B(NSUH)»G(L+1,K1»FL0AT(2«L+1)»Q(L,((-1.1»«(I-1) ) 'SIGMA {2

l)«X/EIGENV(Kn«(-l. )«»(L»1 I-l ) )

R£TURl^l

END

POP RGLTZMANN6 I'l

; THIS PROGRAM IS THE CONTROL PROGRAM FOR PHASE 6

DIMENSION P0LY(6),E1GENV('>),G( 11,5),GC(11,5),C{2),SIGM«(2) .EIGENCI
l5 1,t)C( 11,5),B( 10)
COMMON POLY, N.EIGENV.G.NREG, NBC, C, SIGMA, REEL TH,e I GENC.GCACCUR.BC,
IR.R
REWIND A

READ TAPE I.NCASES
DC 104 ICASE=1,NCASES
TYPE ^.ICASE

\> FORMAT! 16X1'.HPR0BLEM NUMBER, T5)

WRITE OUTPUT TAPE 6 , 1 1 1 1 , ICA";E

IIU FORMAT (2H 11, 15, 75H
1 )

READ TAPE 't , I PRQB , POL Y , N ,E I f ENV , G.NREG ,NBC, C , SIGMA, RCFLTH.E IGENC ,

lGC,ACCUR,BC,R,a
GO TO ( lOJ.lOO), IPRQB

100 DO 101 K=l,

U

101 READ INPUT TAPE 5,6
6 F0KMAT(80X)

GO TO 104
101 CALL OUTPUT
104 CONTINUE

REWIND 4

CALL EXIT
STOP
END

HOP OUTPUT 14
SUHROUriNt UUTPUI
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C THIS SUBKQUriNE PRliJTS OUT AN'D PUNCHES CARDS FOR ALL PFRTINANT

C CALCULATED DATA
DIMENSION P0LY(6),ElGENV(5),r(U,5),GCIll,5) ,C12I , S I GMM 2 ) , E IGtNC (

ir>),BC( ii,5),n( 10)

DIMENSION X( 100) ,Y( 100)
DIMENSION YP( in , IP( U)
COMMON P0LY,N,EIGENV,G,NREG,N'BC,C,SIGMA,REFLTH,E1GENC,GC,ACCUR,BC,
IR.B
COMMON X,Y

C THIS SECTION PRINTS AND PUNC^^ES THE NORMAL DATA
NP1=N+1
NCV2=(N<-n/2
X(l)=SIGMA(l)«R
WRITE OUTPUT TAPE 6,l,R.X(l)

1 F0RMAT(3H0$0,20XilHTHE COMPU-'ED CRITICAL RADIUS I S,F9.4, 1X3HCM./ 3H

I i ,22X3II0R,F9.'., IX16HMEAN F^EE PATHS.)
WRITE OUTPUT TAPE 6,121,P0LYn)

121 FORMATOH $ ,20X41HTHE INTEGnATEO INWARD ANGULAR FLUX AT THE/3H $

1,22X19HVACUUM INTERFACE I S, 2 V IPE 10. 3

)

WRITE OUTPUT TAPE 6,2
2 F0RMAT(3H-$-, 13X11HIN THE CWE:)
WRITE OUTPUT TAPE 6,3

3 FCRMAT(3H0$0,15Xl2HEIGeN VALUES)
WRITE OUTPUT TAPE 6, A , ( C I GENf" ( K ) , K= I , NUV2 )

4 FDRMAT(3H $ , 17X IPE I 2 .5 , 2XE I > . 5 , 2XE 12 . 5 , 2XE 1 2. 5 )

WRITE OUTPUT TAPE 6,5
5 FCRMAT(3H0$0, 15Xr3HG(L,K) MATRIX)

DO 6 L=l,N0V2
6 WRITE OUTPUT TAPE 6, 'i , ( GC ( K , L ) ,K= 1 ,NP 1

)

GO TO (7, 10) ,NREG
7 IF(NBC-A) 120, 10 ,120

120 WRITE OUTPUT TAPE 6,8
8 FORMAT! 3HOJ.Q,15X2!>HBOUNDARY rONDlTION MATRIX)

DO ') L=l,N0\/2
9 WRITE OUTPUT TAPE 6, 'i , ( BC ( K , I ) , K= 1 , NPl )

10 WRI IE OUTPUT TAPE 6,11
11 FORMAT (3H0$0, 15X23HN0RMALIZEC COEFFICIENTS)

WRITE OUTPUT TAPE 6, 4 , ( D ( K ) , K= 1 , N0V2

)

GO TO ( 16, 12) ,NREG
12 WRITE OUTPUT TAPE 6, 13

13 F0RMAT(3H-$-,13X16HlN THE REFLECTOR)
WRITE OUTPUT TAPE 6,3
WRITE OUTPUT TAPE 6 , 4 , ( C I GENV ( K ) , K= 1 ,N0V2

)

WRITE OUTPUT TAPE 6,5
DO 14 L=1,NQV2

14 WRITE OUTPUT TAPE 6, 4 , ( G ( K , L ) , K= 1 ,NP 1

)

WRITE OUTPUT TAPE 6,8
DO 15 L=1,N0V2

15 WRITE OUTPUT TAPE 6 , 4 , ( BC ( K , L ) , K= 1, NP I

)

N0V = N0\/2-i-l

NSUB=3«N0V2
WRITE OUTPUT TAPE 6, 11
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WRITE OUTPUT TAPE 6, 4 , ( B ( K ) , K=NQV ,NSUB

)

16 WRITE OUTPUT TAPE 6, 17
17 FCRI'!AT(3H-$-,13X4BH0ATA FOR ANGULAR FLUX PLOT AT THE OUTER BOUNDAR

lYI
WRITE OUTPUT TAPE 6,18

18 FCRKATl 3HQ$0,17X,3(2HMU,'.X7HPHI IMU) ,6X) )

READ TAPE 'i.X.Y

DO 20 K=l,7
20 WRITE OUTPUT TAPE 6, 21 , ( X ( L) , Y ( L ) ,L=K , 21 ,7

)

21 F0RMAT(3H $ ,15X,3(0PF't.l,2X,lPEl0.3,3X) 1

READ TAPE 'i , NTIMES
IF(NTIMES) 106, 106, 105

105 CALL INQUIR
IFISENSE SWITCH 1)108,109

108 P0LY(2)=0.0
THIS SECTION PRINTS THE EXTRA OATA USED FOR TESTING PURPOSES

109 DO 50 M=l,7
IF(NTIMES-3)61,61,73

61 IF(M-2)7l,72,71
71 lF(M-5)73,72,72
72 IF(P0LY(2) )50,50, 110
110 00 63 K=l,2
63 READ INPUT TAPE 5,64
64 rORMAT(aOX)

GO TO 50
73 READ TAPE 4 , XM IN , XMAX , YM I N, YKAX , I SCALE , JSCALE , NPTS.NPLOTS, NCOPY , NC

lARDS
READ TAPE 4,X,Y
GO TO (80,24, 38, 81,40,96,99) ,M

80 WRITE OUTPUT TAPE 6,90
90 FORMAT! 1H1,30X73HTOTAL FLUX DISTRIBUTION IN THE CORE AS A FUNCTION

1 OF THE RADIAL DIMENSION///)
WRITE OUTPUT TAPE 6,22

22 FORMAT! 15X1HR,16X6HPHI(R)//)
00 23 K=1,NPTS

23 WRITE OUTPUT TAPE 6, 28 , X ! K )
, v ( K

)

GO TO 74
24 WRITE OUTPUT TAPE 6,91
91 FORMAT! 1H1,26X78HT0TAL FLUX PISTRIBUTION IN THE REFLECTOR AS A FUN

ICTION OF THE RADIAL DIMENSION///)
WRITE OUTPUT TAPE 6,22
00 36 K=1,NPTS

36 WRITE OUTPUT TAPE 6 , 28 , X ( K ) , Y ! K

)

GO TO 74
38 WRITE OUTPUT TAPE 6,92
92 FORMAT! IH1,37X56HANGULAR FLUX AT THE VACUUM INTERFACE AS A FUNCTIO

IN OF MU///)
WRITE OUTPUT TAPE 6,25

2 5 FORMAT ! 13X2HMU, I 2X14HPHI ! ROUTER , MU) //

)

DO 26 K=l,NPrS
26 WRITE OUTPUT TAPE 6 , 28 , X ! K ) , Y ( K

)

26 FORMAT! 11X0PF6.3, 12X1PEI0.3)
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GC TO T<
81 DO J-V K=1,NP1
3^1 IP(K) = K-1

WRITE OUTPUT TAPE 6,93
93 FORMAT! 1H1,30X69H1ND1VI0UAL SPATIAL MOMENT OISTKIBUTICN IN THE COR

IE AS A FUNCTION OF K///)
95 WRITE OUTPUT TAPE 6, 33 , ( I P ( K ) , K= 1 ,NP 1

)

33 FDRKAT(7X6HR ,L = , IX , 1 1 ( I 3, 8X ) //

)

NPERGP^NPTS/NPLOTS
DO 31 K=1,NPERGP
DO 30 L=1,NP1
NSU8=K+(L-11«NPERGP

30 YP( L)=YINSUB)
31 WRITE OUTPUT TAPE 6, 32 , X ( K ) , ( YP ( L I , L=l ,NP1 )

32 F0RMATt5X,F5.2,ll( IXIPEIO.3)

)

GO TO TA
^.0 WRITE OUTPUT TAPE 6,94
94 F0RMAT(1H1,29X74HIN0IV1DUAL SPATIAL MOMENT DISTRIBUTION IN THE REF

HECTOR AS A FUNCTION OF R///

1

GO TU 95
96 WRITE OUTPUT TAPE 6,97
97 FORMAT! 1H1,30X72HANGULAK FLUX DISTRIBUTION AT THE INTERFACI&L BOUN

IDARY FROM THE CORE SIDE///)
101 WRITE UUTPUT TAPE 6,41
41 FORMAT! 13X2HMU,15X9HPHIIR,MU)//)

DO 111 K=1,NPTS
111 WRITE OUTPUT TAPE 6 , 28 , X ! K ) , Y I K

I

GD TO 74
99 WRITE OUTPUT TAPE 6,100
100 FORMAT! 1H1,28X77HANGULAR FLUX DISTRIBUTION AT THE INTERFACIAL BOUN

IDARY FROM THE REFLECTOR SIDE///)
GC TU 101

74 IF1P0LY(2) )ia7,50, 107

THIS SECTION PRINTS THE GRAPHS IF THEY ARE CALLED FOR

10 7 CALL PL0T!X,Y,XMIN,XMAX,YMIN,YMAX,ISCALE,JSCALE,NPTS,NPLOTS,NCQPY,
INCAROS)

50 CONTINUE
106 RETURN

END

GOP PLOT 14

THIS SUBPROGRAM PLOTS THE GRAPHS
SURaUUTINLPLUTIX,Y,XMIN,XMAX,YMIN,YMAX,LX,LY,NPT,NPLUT,NCOPY,NCD)
D1MENSI0NX!1),Y( 1),SX( 10),TITLEI8),TABI4),LI 135) ,NCH(in),MOPI30)

NC0=NCD+1
GOTO! 1,00,82,80) ,NCD

80 READ INPUT rAPE5,81, (TI TLE ! I T ) , I T= 1 , 8

)

81 F0RMATI8A10)
IFI4-NCD)1,82,

1

8 2 READ) NPUTI APES, 83, !MOPI 1) , 1=1,30) , I NCH ( I ) , I = 1 , 10) ,

(

TAR I I ) ,1 = 1,4)

,

IND,NP,NM,NB
83 FORMAT!40A1,4A9,4A1)
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1 0= 2.3025B5
IF(NPL0T-1 )2,2,3

2 NPN=NPT
GO TO 4

i NPN=NPT/NPLOT
4 IF(LX)5,5,7
5 CX=120./(XMAX-XMIN)

SX( 1) = XMIN
SXI6)=XMAX
Z=XMIN
D06K=2,5
Z=(XMAX-XMIN)/5.+Z

6 SX(K)=Z
00 TU 11

7 CX=120/LX
NX=1L0G(XMIN) )/0
LLX =LXH
D010K=1,LLX

10 SXtK)=10.»»(NXtK-l)
11 IF(LY)12,12,13
12 CY=50./(YMAX-YMIN)

GO TO 16
13 CY=50/LY

KY=CY

1

NY=(LQG(YMIN) ) /Q
' 16 IF(LX) 17,17,21

17 00201=1, NPT
IF(XMIN) 18,19,19

18 M=CX«X( I )+.5-CX»XMIN
GCTCJ20

19 M-CX«X( I 1 + .5

20 X(I )=M
GCT023

21 00221=1, NPT
M=CX»(LOG(X( n/XMIN)/Q)+.5

22 X(I ) = M

2 1 IF(LY)2'.,2A,28
2A 00271=1, NPT

IF(YMIN)25,26,26
25 M=CV«Y( I )t.5-CY»YMIN

GO TO 27
26 M = CY»Yl I 1 + .5

27 Yd ) = M

GO ro 30
28 DO 291=1, NPT

M=CY»(LOG(Y( I)/YMIN)/0)*.5
29 Y( I )=M
30 DO 79 NN=1,NC0PY

M=l
T1=^0.
LYY=LY
TT=50.
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WKITEOUT PUTT APES, 31, (

T

ITLC ( I T ) , I T = l , 8

)

31 FCRHAT( 1H126X8A10)
0C61 KK=1,51
N=l
NNN=NPN
JED=l
T=51-KK
D032J=1, 132

32 L(J)=NB
L(132)=N0
L( 12)=N0
IF(LY)33, 33,38

33 L( 12)=NP
IF(T-TT)3't,3'i,'.0

3'. SCALE=T/CY
L(132)=NP
IF(YMIN)35,36,36

35 SCALE=T/CY+YMIN
36 N =

TT=TT-5.
IF( T)37,37,'.0

37 SCALE=YMIN
GCT040

38 SS=KY»LYY
IF(T-SS)39,39,A0

39 SCALE=10.»«(NY+LYY)
N=0
LYY=LYY-1
L{12)=NP
L(132)=NP

'tO IF(50.-T)A3,4'.,',3
ifi IF{T)50,'.A,50
',', D045J=13, 132
^5 L( J)=NM

IF(LX)46,^6,'.8
46 D047J=12, 132, 12

47 L(J )=NP
IFCiO.-TjbC'il.fiO

41 L(132)=ND
G0T05O

48 KX=120/LX
DO 49 J=12,132,KX

49 L(J)=NP
IF(50.-T)'jO,42,50

42 L(132)=NU
50 Da53LM=l,NPL0T

D(j521 = JCO,N.NN
IFlYd )-T)52,51,52

51 J = X( I 1 + 12.
1F( J-12)52,85,84

84 IF( J-132)85,85,52
85 L(J)=NCHtLMI
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52 CONTINUE
JED=NNN+1
NNN=NNMtNPN

5 3 CCNTINue
IF( 11-1)56,5^,56

54 IF( 10.-1)55,56,56
55 L(2)=M0PIK1)

Ml=M+l
Tl=Tl-l.

56 IF(N)57,57,59
5 7 WRI TE0UTPUTTAPE6, 58,L I 2), SCALE, (LlJltJ'l 1.1321
58 FORMATdH A I , E8. 2 , 122A I

)

G0TU61
54 WRITE0UTPUTTAPE6,60, (L(J),J=1,132I
60 FORMATt 132A1)
61 CCNTINUE

IF(LX)6A,62,64
62 WRITE0UTPUTTAPE6,63,(SX(K),K=1,6)
63 FCRMAT(7XE9.3,l5XE9.3,l5XCy."?,l5XE9.3,l5XE9.3,UXE9.3)

GG ru 77
64 GO TO (65, 67, 69, 71, 73, 75). LX
65 WRITE aUTPUTTAPE6,66, (SX(K),K=1,LLX)
66 F0RMAT(7XE9.3,107XE9.3)

GO TO 77
67 WRITE 0UTPUTTAPE6,68,(SX(K),K=1,LLX)
68 FGRMAT(7XE9.3,52XE9.3,'.6XE9.?)

GO TO 77
69 WRITE 0UTPUTTAPE6,70, ISXIK),K=1,LLX)
70 FQRMAT(7Xt9.3,3lXE9.3,31XE9.T,2 7X69.3)

GO TO 77
71 WRITE 0UTPUTTAPE6,72,(SX(K),K=l,LLX)
72 FORMAT! 7XE9. 3, 21 XE9. 3, 2 1XE9. 1, 2 1 XE9. 3, I 7XE9. 31

GO TO 77
73 WRITE 0UTPUTTAPE6,74,(SX(K),«=1,LLX)
74 F0RMAT(7XC9.3,15XE9.3, 15XE9.', 15XE9. 3. 15XC9. 3, 1 1 XE9. 3

)

CO TO 77
75 WRITE 0UTPUTTAPE6,76, (SX(K),''=1,LLX)
76 F0RMAT(7XE9.3,UXE9.3, 1 1XE9. ' , 1 1 XC9. 3, 1 IXE9. 3, 1 lXt9. 3 , 7XE9.3 I

7 7 WRIIEaUTPUTTAPE6,78, ( TAB ( 1 )
, '= I , 4

)

78 F0RMAT(48X4A9)
79 CONTINUE

RETURN
END
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A study was made of tho convergence of the spl\erical harmonics approxi-

mations of both even and odd orders to the monoeneruetic Boltzmann neutron

transport equation for a nuclear reactor. The theory and computer programs

required for determining the critical radii of bare and reflected spherical

reactors were developed. Considerable care was taken in the development of

the tlieory for the even order approximations in order to obtain consistent

results. Pour types of boundary conditions were employed at the vacuum inter-

face of the reactor system, namely; Marshak's, Mark's, replacement of the

vacuum with an infinite black medium, and a set of boundary conditions

derived from a variational formulation of tlie Boltzmann equation.

The nature of the convergence of the spherical iiarmonics approximations for

a bare spherical reactor was found to be dependent on the boundary conditions

applied. The critical radii wliich resulted from using Marshak's boundary con-

ditions converged asymptotically from above along separate paths for the even

and odd order approximations. For Mark's and the infinite black reflector

boundary conditions tlie even order approximations converged asymptotically from

below while the odd order approximations converged asymptotically from above,

i.e., they counterconverged to the exact result. No conclusions could be drawn

concerning the nature of tlie convergence wlien variational boundary conditions

were employed. Whenever one or more of three special conditions were satisfied

in a given reflected reactor system, the computed critical radii were found to

counterconverge to the exact result. The odd order approximations were found

to be superior to the even order approximations for all but the lowest orders

of approximations. The 1\ approximation almost always yielded results better

than tliose given by a P approximation.



When the critical radii resulting from the splierical harmonics approxima-

tions were found to counterconverge to tlie exact result a particular weighted

average of the even and odd order results was conputed. This weighted average

was found to yield a considerably more accurate estimate of the critical radius

than either of the individual results when approximations of order three or

greater wore utilized. The odd order approximations using variational bound-

ary conditions were found to yield the best results for a given order of

approximation. Althougii many more cases need to be examined, the results

obtained here strongly indicate that tlie even order approximations are of con-

siderable value.


