SLICING OF EXTENDED FINITE STATE MACHINES

by

KAUSHIK ATCHUTA

B.Tech., Jawaharlal Nehru Technological University, 2012

A REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas
2014
Approved by:

Major Professor
Dr. Torben Amtoft

Copyright

KAUSHIK ATCHUTA

2014

Abstract

An EFSM (Extended Finite State Machine) is a tuple (S, T, E, V) where S is a finite set of states,
T is a finite set of transitions, E is a finite set of events, and V is a finite set of variables.

Every transition t in T has a source state and a target state, both in S.

There is a need to develop a GUI which aids in building such machines and simulating them so
that a slicing algorithm can be implemented on such graphs. This was the main idea of Dr.
Torben Amtoft, who has actually written the slicing algorithm and wanted this to be

implemented in code.

The project aims at implementing a GUI which is effective to simulate and build the graph with
minimum user effort. Poor design often fails to attract users. So, the initial effort is to build a
simple and effective GUI which serves the purpose of taking input from the user, building graphs

and simulating it.

The scope of this project is to build and implement an interface so that the users can do the
following in an effective way:

e Input a specification of an EFSM

e Store and later retrieve EFSMs

e Displaying an EFSM in a graphical form

e Simulating the EFSM

e Modify an EFSM
e Implement the slicing algorithm

All the above mentioned features must be integrated into the GUI and it should only fail if the

input specification is wrong.

Table of Contents

S o T U= TSR Vi
ACKNOWIBAGEMENTS ...t se bbbt viii
Chapter 1 - Project DESCIIPLION.uiiiiiiiieieit ettt 1
Yoo [0 Tod o] o TSSO PP 1
TEIMS IN EFSM ...t bbbttt b bbb 1
V0] E A7 11 o] o TSR PRR 2
Chapter 2 - LITEIAtUIE SUIVEYoiuiiiiieiiieiieieie sttt sttt sttt n bbbt 3
Yoo [0 Tod 1 o] TSRS 3
USES OF @N EFSM ..ottt bttt bttt nne s 3
SHICING -t bbbt E bRttt b et 3
AMOTPROUS STICING ...ttt bbbt b e ene s 4
Chapter 3 - Description Of Approaches To Solve The Problemcccccoveviiviiiccicie e, 5
T 0 A o] 0] (0 o RS SPSS 5
SECONA APPIOACH ...t 6
Chapter 4 - Data Dependence and Slicing AlQOrithm ... 21
Data DEPENUENCEeeveeie sttt ettt et e e s ae e st e e ne e sbeenbeeneesaeesreenee e 21
SHCING AIGOTITNM Lot re et e e e 24
Chapter 5 - USEr MANUAL ..ot 26
1o OSSR 26
SYSIEM REGUITEIMENTSveitieiieeiie ettt re et e beeste s s e s aeesteessesbaesbeeneesneeeas 26
GraphViz Installation iN LINUXccovoiioieiieie ettt 26
Chapter 6 - TeStING THE SYSIEBM.......oiiiiiieieie et 27
] S I SR 27
RSTToTo Lo I =T TP UP TR RPRR 29
TRIIA TOSE. ettt b et e et e et be e nbeenb e be et e e neenneees 30
T 10T I OSSR 32
LT =T SO 33
SIXEN T ST .ttt et b et E et bttt b e e nre s 35

SV NN TSt . . ettt e e ettt ettt ettt e e et e e e e e et e e e e e e e e e et eeeeeeae e reeae e e e e e 36

AT T I OSSR 39
N T T I PRSP 39
=] 10 T IS PSP R 40
ELEVENTN TEST ... it bbbttt b e bbb b e e 42
TWEITEN TS, ittt bbbttt e bbbt beans 44
References Or BiDHOGIraphycoooiiiiiiieeee e 46

List of Figures

FIgure 3.1 INITIAl DESION ..eeiieeiecie ettt ettt esbe e eereenta et e nneenrs 5
Figure 3.2 GUI IMPIOVEMENToiiiiiiicie ettt ste e e reenreaneenneenns 6
FIQUIE 3.3 FIIE INPUL ..o bbbt 7
Figure 3.4 Input through the GUI ..o 7
Figure 3.5 SaVING the TIle......coi e 8
Figure 3.6 SaVed tEXE FIlEeiieiieiiece ettt ns 8
FIQUIE 3.7 GUI INPUL. ...ttt b e 14
Figure 3.8 Saving the file With .gV' eXIENSIONccooiiiiiiieiee e 15
Figure 3.9 An example Of gV file........ooi i 15
Figure 3.10 GraphViz COMMANG...........coiiiiiieii et e e 16
Figure 3.11 SamPIe Graphoovo oot 16
Figure 3.12 Graph built 0n the TOrMcooiii e 17
Figure 3.13 First step of SIMUIALIONccoveiiiiiic e 19
Figure 3.14 Second step of SIMUIALION.........cccociiiiiiii e 19
Figure 3.15 Third step Of SIMUIALION.coiiiiiiiiie e 20
Figure 4.1 Building Graph for Data DEPEnTeNCYccoiririeieieie et 22
Figure 4.2 Data DePENUENCY (1) ...ecveirieiieieiieeiie sttt te et e et te e sraesteenesneesaeenee s 23
Figure 4.3 Data DEPENUENCY (2) ...ecuveivieieiiesieeitecie st se e te et ste e sra e teeaesraesteenesreesaeenee s 23
Figure 6.1 Building Graph (INPUL L)ccoiiiiiieieieiesee e 27
Figure 6.2 Random Simulation Step 1 (INPUE 1)ooveiiiiiiiiiiiieeeee e 28
Figure 6.3 Random Simulation Step 2 (INPUL 1)ccvoiiiieiieiece e 28
Figure 6.4 Building Graph (INPUL 2)cveoieieciece et 29
Figure 6.5 Random Simulation Step 1 (INPUE 2)cc.ooiiiiiiiiiiee e 30
Figure 6.6 Random Simulation Step 2 (INPUE 2)ooiiiiiiiiiie e 30
Figure 6.7 Building Graph (INPUL 3)coiiiieiie e 31
Figure 6.8 Random Simulation First Step (INPUE 3)cooveiiiieiiei e 32
Figure 6.9 Building Graph (INPUL4)ooiiiiieie e 33
Figure 6.10 Random Simulation (INPUL 4)coveiiiiiiiiiiieiee e 33
Figure 6.11 Building Graph (INPUES)ccviiiie i 34

Vi

Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17
Figure 6.18
Figure 6.19
Figure 6.20
Figure 6.21
Figure 6.22
Figure 6.23
Figure 6.24
Figure 6.25
Figure 6.26
Figure 6.27
Figure 6.28
Figure 6.29

Random Simulation Step 1 (INPUES)ceeiieriiieiiee e e 34
Random Simulation Step 2 (INPUES)oiveiiiieieece e e 35
Building Graph (INPUL B)c.ooieieiiiiieeeee e 36
Building Graph (INPUL 7)eoeeeeee e 37
SIMulation SteP L (INPUL 7) weveeiveeiece et 37
SIMUulation SteP 2 (INPUL 7) weveeieeeece e 38
Simulation Step 3 (INPUL 7) ... s 38
Invalid Number of States Exception (INPUt 8)cceoveiiiiniiiiiiieeeee 39
Invalid Number of Transitions Exception (INPUt 9)cccvevveieeieiie i 40
Initial State Exception (INPUt 10)cccoveiiiiieiiee e 40
Final State EXception (INPUL 10)......c.ooiiiiiiiiiiieieiee e 41
Initial & Final State Exception (INPUE 10)cccvviiiiiiiniieineeceeee e 41
Building Graph (INPUL 11)ooviiiiiecece e 42
115 -V (] o o 5 S PRR 43
Sliced TransSitions (INPUE 11)ocveiviiiiiiiiiiieeee s 43
Data Dependent Transitions (INPUE 11)ooviiiiiiiiiieiese e 44
Table DDStar (INPUE L12)....cviiiiiecece et sre e 45
Sliced Transitions (INPUE 12)coviiiiiieiecie e 45

vii

Acknowledgements

I would like to express my sincere gratitude to my major professor Dr. Torben Amtoft for

trusting in my abilities and providing me with an opportunity to work under his guidance.

| extend my thanks to my committee members Dr. Daniel Andresen and Dr. Mitchell Neilsen for

their kind assistance and constant guidance.
| am especially grateful to my family and friends for all their love, encouragement and support.

Finally, I bow in reverence to the almighty but for whose blessings nothing can turn into reality.

viii

Chapter 1 - Project Description

Introduction

An extended finite state machine is generally associated with states, transitions and a set of
conditions. An EFSM (M) is a tuple (S, T, E, V) where S is a finite set of states, T is a finite set
of transitions, E is a finite set of events, and V is a finite set of variables. A transition can be
termed as an "if condition". The transition is fired only when the condition is satisfied. This
actually transforms the machine from current state to the next state. Thus, every transition t
which € T has both a source state and a target state. Both the source state S(t) and the target state
T(t) € S. All the trigger conditions of the corresponding transitions have boolean results. The
boolean expression of a transition is called a guard which is denoted as G(t). It's enabling events

is denoted E(t) which is either a singleton or an empty set.

Terms in EFSM

All states in the set S are atomic. A self-looping transition is defined as a transition 't' whose

source state and destination state are the same i.e. source(t) = destination(t).

An EFSM may have multiple transitions that have the same source state. All such transitions are
termed as siblings. A transition is said to be a successor of another transition if the source state of
the first transition is the target state of the second transition. This can be simply termed as

follows - a transition t' is a successor of the transition t if source(t") = target(t).

A state s is said to be an exit state if it has no further outgoing transitions. A transition t is said to
be the final transition if the target state of this transition is the exit state.

A transition t is said to be an e-transition if it doesn't have a label i.e. it should neither have a
guard nor an action. During simulation of an EFSM, we assume that the system remains

unchanged when the evaluating expression is not satisfied.

Thus, computations within an EFSM occur on transitions rather than on states.

The EFSM has a store, which maps variables to values. The domain of these values is not

specified.

Motivation

The need for implementing this project is to have a tool which generates a finite state machine in
graphical form taking the input from the user. There are tools which generate graphs based on
given input but what makes this problem more interesting is that all such tools take files as input
and generate graphs but here, the user gives the input dynamically through the GUI. The problem
occurs while building the graph. We have to check for all the triggered conditions before

simulating the machine as a graph.

The current solution to this problem is also improvised. Besides generating the graph, the tool

simulates and also implements the slicing algorithm on the finite state machine.

Chapter 2 - Literature Survey

Introduction

[1] An EFSM is a graphical representation of a system that has distinct states and a set of
transitions between those states. The system is in exactly one state at any given time. The
transition brings the system from one valid state to another i.e. the transitions are either
completely executed or nothing at all. No partial fulfillment of transitions. If a transition occurs,
then it brings the system from an existing valid state to a new valid state. If the transition fails

then the system is left unchanged.

EFSMs are generally viewed as Non-deterministic Finite Automata (NFA) or Finite State
Automaton (FSA) but EFSMs are different from FSAs. EFSMs have stores that maps variables
to values. The labels of an EFSM are way more complex than that of a FSA. The labels is an

event, condition or guard in addition to the actions.

Uses of an EFSM

[1] EFSMs are widely used to model system behavior at a higher level of abstraction. They are
used to model dynamic behavior of applications. They are extensively used to model completely
executable systems. There are many embedded systems whose behavior is fully specified using
EFSMs.

Slicing
The process of slicing out a sub-EFSM or sub-component of an EFSM to isolate that portion of
the EFSM is termed as slicing.

Slicing has been in research for more than 30 years now and is used in many software
engineering applications. Though it has been in research for a considerable time now, there has

been very little progress in the field of Slicing EFSMs.

Slicing an EFSM rewires the EFSM. Program slicing takes an EFSM and a slicing criteria as

input and generates a sliced EFSM as output.

Program slicing removes as many states or transitions as possible by respecting the specified

slicing criteria.

The effectiveness of slicing can be determined using the metric 'length of the text'. We may
count the number of states but since the computation on EFSMs takes place on transitions, me
count the number of transitions. Sometimes, the number of unique transitions may also serve as a

very good metric.

[1] Dependence may be defined using the concepts of -
e Maximal Path
e Sink-bounded Path
In the paper by Kelly Androutsopoulos et al, Maximal Path, Sink-bounded path and Control Sink
were defined as:
"A maximal path is any path that terminates in a final transition, or is infinite.
A path = is a sink-bounded path if either = contains a final transition or there exists a control
sink K such that 7= contains every transition from K infinitely often.
A Control Sink in an EFSM is a set of transitions K that forms a strongly connected component

(SCC) such that, for each transition t in K each successor of t is also in K."

But for this project Dr. Amtoft takes another approach.

Amorphous Slicing

The slices of an EFSM constructed using the amorphous slicing depends on the
Dependence analysis and the slicing criteria. Amorphous slicing is also termed as a graph-based
slicing that eliminates unnecessary transitions and nodes. This slicing generates an output slice
that is not the sub-graph of the original.
In the paper by Kelly Androutsopoulos et al, the slicing criterion is defined as follows:

"A slicing criterion for an EFSM is a pair (t, V) where transition t € T and a variable set
V which is a subset of Var. It refers to the store value immediately after the execution of the

action contained in transition t."

Chapter 3 - Description Of Approaches To Solve The Problem

To achieve the above goals, | started off by building a Form application in C#. All the code is

written in C#. | have chosen C# because it is relatively easy to build a GUI in C# using the
Visual Studio IDE.

First Approach

The initial GUI design is shown below:

EFSM = ﬂ

Figure 3.1 Initial Design
With this design, the user had to specify all the conditions in the text box including the number
of states, transitions, guards and actions. This was not friendly enough as it involves lot of
manual work from the user. The user has also been provided with another option to build the
graph. The "File" menu item has a sub-menu item called "Open". When the user clicks on
"Open", it prompts the user to select a document from the file browser. It has to be a text
document and all the text in the document must be in the format which is similar to that of text
input so that it can be read and fed as input to the machine. This was not very feasible because all

the text files had to have text in the following format.

The numbers below denote the line numbers in a text file:
1. Number of states

2. Names of all the states (comma separated fields)

5

Initial State

Number of transitions

Name of each transition (comma separated fields)
Condition

Final State

N o o &~ w

| had used the above format so that | could easily parse the input and build my adjacency list.

The adjacency list has the source state as the key and the rest as a list of strings.

Second Approach
It is not the best option to take the input as a text file. The GUI should also allow user to enter
the input. Then, | worked further on the GUI. As a result, | have made several changes to the

GUI to facilitate the user.
—————— EFSM put - D n

Figure 3.2 GUI Improvement
This GUI has two numeric up down fields, three text boxes, one menu item and a button.
The "File" menu item has two sub-menu items namely "Open" and "Save". When the "Open" file
is clicked, it prompts you to select a file from the file browser. When a text document is selected,

all the fields are auto filled with the text in the file and generating the graph is just a click away.

Costh Lintah 420440 Ai;e ® =

FAM Sireven)r - Morowatt Vieos! 't
U AT VW BUETT MRD IEEBME TEAM S P00 WWMWARE TIST AROHITEOTURE AMALYEE mdow WP
"neod Rcesers N, W . . 9 RE» 2 o,
Pranies_| g E£F5M Mput - o N
I
o Open | - |
e (‘A - . e —r -8 x
o P | N Dy - -) Dkt ’ =
s Crgemin & Flew fwiw g - ™ rs
Foccom o
B Cetep < e
B Cravhen

e
e Swsazy -
| [
] I Cuvwrenty -w
& Cowrkety
ot e P
& Boun
LR — — A arean r
Fée ners | SRS v

Figure 3.3 File Input

The other option to build a graph is to feed in input through the GUI directly. The "Save™ button
prompts the user to save all of its contents in a text file in the desired location.

8 1M (uming] - Mot Viseal Stuthe MACE Lot fCHile PRSI
FUE BT VEN PROECT BIMD OFSUG TEAM SOL TOOLS WMMARE TEST ARCMTECTURE AMMLYZE WINDOW MR
ned Ak B, = L] . &- ERe 2 sw,
Procesn |MG7] PR n et et - -2 a
s “ EPSM ot - t!-i
Cossiomma [Desy Fie o x
. M
SRl gt the numbee ot stages: ¢ % neaiSwme 5
p.
Enter the number of transisons 1 ¥ FneSae @
san l
Ertet the condion
Blisy
25
|
0% ‘ :

Auton Loeet ~ﬁ‘1.!

Figure 3.4 Input through the GUI

8@ 1M (mning) - Micromalt Yimen! Studhe Launch fohibe p - 8 x
FUE EDT VEN PEONECT BIMD Of3U0 TEAM SOL TOOLS WMWARE TEST ARCMTECTUSE AMALYZE WINDOW MELR
"ed Aok F, =H L] . e s e,
Procew [T0UE] A an e -9
L e EFSM Wnput - aj
Cossadomma [Desgel & g4 Save Ar ll- s
4 0 Unarreariace
T W Ostineg v & i h Dbty n
! P-
Orpirass » Phws Vb = e -
o Fasartey - -
o Detsop Q% g

B Dewrdany

4 Pacwr placer h Gaumd
o Hamagizep
* The 3C

W TakFC
& Desitop
£ Dacamens
& Dzwricade

& Mg h Q [T N

Fe e | | v

33
Licarms

S a0 e v

= vhan Foldeny lew Corveel

et e i B — > i 38 _*mxl

Figure 3.5 Saving the file

00 % ‘

Autos Lesett Wtk |

All the contents are saved in the text file. Below is the screen shot on how the given input is

saved as a text file.

v CALsers\Kacehid Desiaognew it - Hotegad's = -~ o IER

O L Seachy Muw - Sncoden) | Lasgioge:” Segings Shuts o' Phgyms * ffeviow £

2O HE JsHRIEINDIPCcIaN A EF =R
Bttt L Frem e O]
i Number of Inputs:S
Z Number of transitions:1
Initial State:sl
| Final State:S§
5 Adjacency List:
51,82,Tl

PR BURCE SR e

Poorrrul tet e gt 100 e Laid Col:19 Sel:010 U AP Y-8 s

Figure 3.6 Saved text file

Simultaneously | was working on generating the graph. Initial attempt was to build or draw
rectangles. | have been writing methods using the Graphics class to draw rectangles directly on

the form which represent the states of the machine.

private void Rectangle(int x, int y, int width, int height)

/lint x = 200;

Pen myPen;

myPen = new Pen(Color.Black, 2);

Graphics formGraphics = this.CreateGraphics();
formGraphics.DrawRectangle(myPen, new Rectangle(X, y, width, height));
myPen.Dispose();

formGraphics.Dispose();

This method takes four parameters. The first two parameters are of type integer which determine
the coordinates of the rectangle to be drawn. The next two parameters are the width and height of
the rectangle which remain constant throughout.

The number of times this method is called is equal to the value given as input in the "Number of
states™ text box. This generates rectangles equal to the number of the states given as input by the
user. Extra care has been taken regarding the positioning of such states or rectangles. All the
rectangles are separated by an equal space. These rectangles are placed adjacent to each other

and when it reaches the end of the form, it goes to the next line.

The next step is to represent state names within these rectangles. | have written a method to

achieve this.

private void DrawString(int i, int x, int y)

X +=4;

y+=3;

Graphics formGraphics = this.CreateGraphics();

string drawString = "S™ + i.ToString();

Font drawFont = new Font("Verdana", 12);

SolidBrush initialBrush = new SolidBrush(Color.Green);
SolidBrush drawBrush = new SolidBrush(Color.Black);
SolidBrush finalBrush = new SolidBrush(Color.Red);

if (uxInitialState. Text == drawString)

Font initialFont = new Font("Verdana", 13, FontStyle.Bold);

formGraphics.DrawsString(drawString, initialFont, initialBrush, X, y);

else if (uxFinalState. Text == drawString)

Font finalFont = new Font("Verdana", 13, FontStyle.Bold);

formGraphics.DrawString(drawString, finalFont, finalBrush, X, y);

10

else

[/[float a = 210;

formGraphics.DrawString(drawString, drawFont, drawBrush, X, y);

drawFont.Dispose();
initialBrush.Dispose();
finalBrush.Dispose();
drawBrush.Dispose();

formGraphics.Dispose();

The above code gives the desired result. The string ‘drawString' keeps track of all the names. All
the state names begin with a 'S' and an integer starting from 1 is appended to S. The initial state

name is written in Green, the final state in Red and all the other states in Black.

At this stage, we have all the states ready. The next and the most important task is to generate
lines between these states whenever the condition satisfies. The following method is written to

draw lines between the states but it has many flaws.
private void Line(int X, inty)
{r

Pen myPen = new Pen(Color.Black);

Graphics formGraphics = this.CreateGraphics();

11

formGraphics.DrawLine(myPen, 245, 210, 320, 210);
myPen.Dispose();
formGraphics.Dispose();
*/
using (var p = new Pen(Color.FromArgh(190, Color.Black)))
{
p.StartCap = LineCap.Round;
p.EndCap = LineCap.ArrowAnchor;
p.CustomEndCap = new AdjustableArrowCap(3, 3);
/Ip.DashStyle = DashStyle.Dash;
p.DashCap = DashCap.Triangle;
var graph = this.CreateGraphics();

graph.DrawLine(p, new Point(x, 210), new Point(y, 210));

by

The above code draws directed horizontal lines but it is very tough to pass the co-ordinates of
both starting and ending point for this method as | am not creating objects. The parameters X'
and 'y' are the start and end points of the line. The parameter 'x' is the sum of the value of the
starting coordinate of the rectangle and it's width. The parameter 'y' is the sum of the value of X'
and the spacing between the adjacent rectangle. This method only generates straight lines and
there will be many cases where we might need arcs. One other difficulty is that it strikes through
the states that come in the way of these lines. To avoid this behavior, some code has to be written

which takes care of this but this can be achieved only when | create objects for both drawing

12

rectangles and for writing it's name inside the rectangle. This has not been done as it takes lot of
effort for a simple task.

At this stage, the GUI works properly and when the "Build" button is hit, the graph is generated.
But as of now, the graph is generated based on the value of the number of states. | have written a
method which draws a rectangle (representing a state). | have also written a method which
actually writes or draws the name of the state within that rectangle. These methods work
perfectly fine. | have also highlighted the text of the Initial State in "Green" and that of Final
State in "Red" to distinguish from the rest of the states. Based on a few calculations, 1 am now
always able to place the states in an orderly manner. The number of states per line doesn't exceed
5. The major challenge here is to draw lines between states which represent the transitions. |
have also written a method which draws lines between states by keeping track of the coordinates
but most of the times, we may need to draw arcs between states which are not adjacent to each

other.

| had worked for more than two weeks to get this working but there were still issues that are not
totally answered. | had to make sure that there is minimal intersection between transitions. Also
that the transitions should not pass thorough the states. This was something more challenging
because | haven't created objects for each state instead | have been drawing them whenever
necessary. One solution which | figured out for this is that the transitions should automatically
deviate when they encounter a state. This was something which | attempted in JavaScript but this

was more challenging in C#.

Then | was trying to find a possible solution for this. I was looking at all the possible methods to
draw graphs. Then | have found something useful. There is a tool called GraphViz. This tool
actually takes in a file with a '.gv' extension and generates a graph. This is as simple as running

one command in the terminal.

So, | have made changes to my code accordingly. | haven't disturbed the GUI. The GUI still
remains the same but what significantly has changed is how we store the information in the text
file. Initially, I have stored all the information given to the GUI in a Dictionary of string and List.
| was storing the same in the text file. The source state being the key of the Dictionary.

13

Now, for example consider the following example where we give the following input to the GUI
to build the graph.

n.,.. nrgl - Mitos0lt Yane §t "Lt P - 85 x
() Form) ‘c-

b e,
'
Enter the number of stales 9 g bl Siate
' Entee Mo number of tarsbons 17 : Fingl Stase 400 = hmETiwe -ux
.l HE @
Enter Condtion +
B Treanag v
B Tt v irewkTrnce data, you
et boask wacutan of poar
aprerton,
18 Brent o1
M apton:
o
R R R T T A S Tl T T TR T e R T T R R R e s S eos
tent ow "L Iabei o= V"7 0 wnluec[i] Trim() o T\° yalees[3] ¢ 7
iF (L 1= (_valuesOfiey Court - 1))
~
20 - x ok Daach -y x
3t b ‘e Fragports Commest Wartsw yrrmasite Yomdew Outyed e Y Tearn £

" m. " e e, Guipn. [dhdade JubiBhe ol UANIL 5 Ml

Figure 3.7 GUI Input

Once, the input is given and the build button is clicked, it prompts you to save the file with the

given contents. Make sure that you save it with a ".gv" extension as shown below.

14

W Ferm) - =
ik = - 1
[Seve As | -} e
‘! .
. * t & ThaPC + Desbtop » - wrch Dwchtiy » i
(4 Y Cawle Ny - | < biTioce 9%
] = s X [\ ep——— Tepn o | ME 0
ey
‘ & Ths B & Oete B pp— A [t D Sreaniag Yiiee Cabec ©
| oy b Comtscts IRHM B '
1 Docmre y Qe % Tt v irtehTinge data, you
& Doweload - Coimy . . 5 et Dok wacutan of pour
" h 5w iihontddbos ' > sppirten,
set
5o b Memadaty Fatrmctaon G e g
Pt - " Tiet resh ol
oot -
’) Correes bonrvww Ouesbern | SHERIAN Maoimm (Whee !
e Lot Do (€ Mase agtiont
B Congotm ? “ e
(G 13cM Dub D4 Opan inte Teoce settirgy
L b 15 bartos A : Adetxe Acrstet
A Memaduts Butiction useg S AN Adebe TR |
W Ntaenk X \ X Lasvnmese shout btetiTrees
File poeve: | toct g) :] ..:‘.: ..’ ariiy
1 i)
e g v i .
wy | ’
1 |
SO o ada fakden | e Carnel ‘ *ex
{
Autos Losett Watxh | DY Pragports Comment Wartow Areresiste Yndew Outped rivk Sehon. Tearnk

" m. " il kg | o8 Matade Sulibhe UM 0 Mueie. o Ruled 9

Figure 3.8 Saving the file with ".gv' extension

When you save the file with a .gv extension, all the input given to the GUI is stored in the

following format.

iz : CAUsso\Kasustidd Desetophtest gy - Notepatle = - o IER
fon Lo Senn Yew Incodeg Levguege Segongs Macre fen Pages findow | X
s HE s LHRINNDIDC AN 2« SEIESR R el AR BURCE SR) e
Wi el ~epr O]
digraph finite state machine |
IanXxdir=LRy

size= %20,30%

\
node {shape = doublecircle] sl
node {shape = doublecirclelssivy
node [shape = point J: gi
node (shape = circle]
gl -> s1:

§1 -> 52 label = "T1 X>Y"):
$2 -> 531 1abel = "T2 X<¥"1}
53 -> S84 label = "T3 X=¥"]:
84 -> 55| label = “T4 X>¥"1s
54 -> 52{ label = "T12 X>Y")}
- 5% -> 5¢| labal = "T§ X>¥Y"]7
$6 -> 57] label = "Té X<¥"):
57 -> 58| label = "T7 X<¥“1y
S8 -> 59| label = "T8 X<Y"):
89 -> 5101{ label = "T% X>Y"]»
810 -> §1] label = "T1G X<Y"]:
510 -> 54| label = “T11 X<Y");

Mol tet $ha gth: £ bees: 23 La:) Col:! Sd:040 L A NS

s P L 7 Mowtodum s b By Sichy Mot o Metadeta bt | 08 Phon i - WA 39 e O

Figure 3.9 An example of *.gv’ file

15

The GraphViz tool takes only ".gv' files as input. The input for the file has to be in the above

specified format for it to generate the graph.

Now this file is given as input to the GraphViz tool (See User Manual for installation).

-
-
-
-
-
"

Figure 3.10 GraphViz command

This would generate a graph. The graph is generated & stored in ".png' format. The graph for the

above given example would be as shown below:

/\
—_— I XeY
~
n X(Y ,.\ /
\ T4 XY 7
=Y TR KoY A\ . 'g SHA B) T X<t | a | TBX<Y a | T Y /\
ERALY R'S.‘\—',S" [q | 1M o 5| < [> \
A \ "‘ \ J \ y‘ | | \ ."
A \ = w e ~ i
-—y 81 | TI0 J<Y

Figure 3.11 Sample Graph

Thus, this tool is very much useful in building graphs effectively. It has minimum intersection
between transitions. One loop hole with this tool is that it doesn't work on Windows platform and
| have been writing my code using the Microsoft Visual Studio IDE which works only on
Windows. The solution to this problem is using the GraphViz API for C#.

16

Now that the input specification, storing and modifying an EFSM are working for sample input.
The next big task is to check for the conditions given as input and then simulate the graph. In
addition to that, | have also been researching on tools and APIs that facilitate graph building in
Visual Studio.

Several major modifications:

| have tweaked the GUI a bit to facilitate graph building on the form. The GUI now has an
additional numeric up down and an additional text box. The numeric up down is used to input the
number of variables and the text box is used to input the initial values to the variables. This
would be a comma separated field. The user doesn't have to worry about the names for the

variables, they start from 'A’ by default.

Initially, the GUI is used to generate a ".gv" file which is fed as input to the GraphViz tool.
Now, the graph is shown on the GUI itself. For this, | have included a picture box in the GUI and
used the GraphViz wrapper API for C#. The GraphViz doesn't work with Windows, so | have

chosen to use the API.

. SiThce -ox
~ =W 5= o
Fe f | = B)
- = Ta v ireeh Tince data youy
Enter the number of states - : Inaal Style 5° Enter ®w sumbee of vorabins ¢ . Teirt Draak et of paar
e
ot e rurriber of Wtansdons) : Firal State 34 Erter B vidiny Of variubhesy 72 13 feeat
Ester Condon S1s2rias e
R TS
(]
7N
7 e)
(s4 lll
7 AN\
o . AN y . S
: gt J_TLAZB (. T2 Be _'/1_‘)
._-—_'f/“ \¥-/ _/

Figure 3.12 Graph built on the form

17

GraphViz API:

| used the GraphViz C# library to achieve the above. It fundamentally uses the GraphViz (dot) in
my C# project. By default, dot is basically the dynamic library gvc.dll and a bunch of plug-ins
that actually do the layout and renderings. It's basically a few lines of code that reads the graph
and calls the layout and rendering algorithms for each. This constructs a representation of a

graph in the dot language.

The program computes the position information for the graph, attaches the desired attributes and
returns the graph back to the application through a file or pipe. The application then reads the

graph and apply the geometric information as necessary.

To build the graph directly on the form, I have attached a picture box to the form. This facilitates

the API to draw the graph directly on the picture box.

Simulation of a graph now seems a possible task. Simulation shows each transition between
states sequentially. To achieve this a new button "Simulate™ has been added to the GUI. The
event handler of this button checks if there is any text in the text box. If at all there is some text,
it builds the dictionary first. It first trims the whole text and stores it in a string variable. It then
splits the string using the End Of Line character and stores the resultant strings in an array of
strings. It is further split using the character ‘comma’. We then check for all the required

conditions before we simulate the graph.

Figure 3.13, figure 3.14 and figure 3.15 describe simulation for the same input as given above.

18

8@ EhumParse (Rl - Meronst VISus Shaie Uneet Lambeb &00be 1 P = & x
NI MY YEN PRONCT SUND DISUG TEAM 3L TOOLS WAWARE TEST ATDMITECTURE AMALYZT WWNDOW MLp

" ed Doy B, W . ‘", 0- SR ~oe
Process | g M - = N
i ¥
CezltantPros: . -¥x
3 thn b) Intial State = Emer the martor of vonaties * e)
™ i Finwt Stam |5 Enier e vilues of vicabies 7248 PN
i [1 AT i e i,
L Sovee | by it

T ER &
p ==
g S Tamce sattasgs
113
13 Ock 6 continum
& et et e
14 I
1% I©
1 L u, - |
B e)
OI% - 4
At
Autas lacan Wetes 1 Cod Ttach | Dewsbpessth Carnmand Wiecoa | irmectens Wiidow Ousset T Sohutie. Teestl

Figure 3.13 First step of simulation

‘ D Sune unnng! - Metosolt Yaa Stito DA Lauih 1Uh e P - 5 x
B OEDT W BAONECT RIMD DEIUG TEAM SOL JOOLS WMWARE TEST ARCHTECTUSE AMMYIE WINDOW HELR
"ed Aicderts B, =] . 0 e e,
Gl 1 B - o IEE
Y [
e v8x
-ur-n.hn S the nuenber of stiiss 4 3 il Saale B2 Enfier the number of vanaties 4 4 ¥ 2
"“ Emar the number of yanstcns ! N Fnol Stade e Entet the valies of yorbbies. 346 g Vb Catoct =
s WTiwge data, you
(T3] waanan of paar
181
108
o | "
Tepce scttimgy

oot et Tres

Cot e Beespants Commiwed Windos vorvesiate Windiw Outpas AT Skt Tewnd

Figure 3.14 Second step of simulation

19

n " . P -« 85 x

FRE EDT W PRONECT UMD REIUG TEAM SOL JOOLS WMWARE TEST ARCHTECTURE AMMYIE WINDOW HEL
"ned Aicderty |, W= L] - e s~
Precen | ag [537 - D_
4
et SomtPyon s -0 x
“ttteviFars Ef e nuenber of sties 4 : il Siate A Enter the number of vanaties ¢ 3
Emiar the nummber of yanatcns | i Fnd Stade e Entet the valies of vwntles 1348
Eme Condton Sy ATiwge data
A) oanpae of paar
L
-____‘__ Va \
— ~ P Itﬁ el 5
(N TLaB o B ff o N "N = A
[81 f—mmp 62 | 83) -
, B2 i N/ i
e Wb + ety Coovmnimed Winde verreste Windiae Outpas " e Tepni
(PO T L S SR o! [WSS S SR 1 i USRS 4 GONSSP I S Eeamcmeedimnai |

Figure 3.15 Third step of simulation

Since all the given conditions in the above input are true, this can be considered to be the best
case. The above screen shots show a working demonstration of a simple graph simulation.

The next phase is to implement randomization. This is the most crucial part of the system. The
main task of randomization is to pick one transition and fire it based on all the conditions or

expressions that evaluate to true.

Thus, when we have multiple transitions from a single state whose expressions evaluate to true,
the tools picks one such state randomly using the random function. So the simulation varies for

same input when you try to do it multiple times.

20

Chapter 4 - Data Dependence and Slicing Algorithm

Data Dependence

Now we go to phase two where we check whether the given set of transitions are data dependent.

To calculate data dependency between the given input transitions, we store all the input
transitions. Then we check for all number possible combinations in the given. We then calculate
D(t) and U(t'). D(t) is either empty or a singleton set. D(t) contains the variables modified by the
first transition. U(t") is the union of the variables contained in both the evaluating expression (or

the condition) and in the enabling events of the second transition.
The standard definition of data dependence is as follows:

We say that transition t' is data dependent on transition t, written t —qq t', if and only if
there exists a variable v € D(t) n U(t") and a path [t;...ty] (k >=0) from T(t) to S(t") such that for
all j € 1...k, v does not belong to D(t;).

We then calculate the intersection of both of these i.e. D(t) n U(t). If at all if the intersection is
not empty then we find the paths. We start by finding the source state of t' (S(t")) and target state
of t (T(t)). Once we have them, we check for all possible paths from T(t) to S(t") using breadth
first search. From the set of possible paths we look for the path/paths with transitions that do not
have the same variable as in D(t) N U(t") in their enabling events. If at least one such path exists

then t' is data dependentonti.e. t -y t'.

The implementation code for data dependency works well. It has been checked for various
inputs. One example that vividly shows that the code for data dependency is in place is

described.
Consider the case where the GUI is fed with the following input.

$1,52,T1,A>B,B=4
$2,53,T2,B<C,D=6
S2,54,T3,A>C

21

S2,56,T4,D<E
S3,54,76,A>D
S3,56,T5,A<E,B=7
S4,S5,T7,A<E
54,56,T8,C>B
S5,56,79,D<C,B=1

Figure 4.1 shows the graph for the above input.

‘ Tl A P - 5 x
FRE EDIT VBN PEOMECT SIMD OFS00 TEAM SOL TOOLS WMWARE TEST ARCMTICTUSE AMALYZE WINDOW - MELA
"ed Aicdersty B, = H L} e - SERe - s
Precom | g M - o IEN
4 he
Gt St mtFy o 9 x
*rthecbars B P ramber of sisins 5 . i Stam T Enter e rumber of variabies *
Enter te rumber of transmons 2 v Final Siate 53 Enter Sie valoes of variables 1347312
Entme Condson B Enlér Dhe Yonston sot
T b v Ve e
= A<E B=7
e 1"/"1'(\“‘}--3"‘ A=D Ak s 19 D<C BT
— —~— b = ‘
/‘—‘\‘ N v = T3 AC ‘-::/-‘” /\:-_—-- — ‘--__-"“;—_\ !
N\ % - i ERS y .- — ss)
.(sn T AR B=d e — R — TS (OB)
| \—_—/ ‘—-‘/\\ //
—~— o~
— T4 D<E -

T |t Sk e | 3 3 OnMags AWldm | 0 Moupee. 3 tuniee | | Gl 08

Figure 4.1 Building Graph for Data Dependency

The same input is used as input to test data dependency. It checks for all possible combinations
in the given set of transitions. For each such combination, D(t) and U(t") are calculated. For
example if the pair of transitions is (T1, T9). Then D(T1) n U(T9) is calculated. We find all
possible paths from target of T1 i.e. S2 to source of T9 i.e. S5 using Breadth First Search (BFS).
Then, we add to the queue only the paths with transitions that do not have the variable v € D(T1)
N U(T9) in their enabling events. One such path exists from S2 to S5. Hence transition T9 is data
dependent on T1.

Data dependence for the given input transition set is shown in figures 4.2 and 4.3.

22

o P » & AEFSHRGample Input i - Nosepada+

S fer poch Pee Busteg fegape Sdtege Mbaou See Fuges Eedew)
OHE sHRIJBDIdcianisnimFAI=sENRAN S £ Ly

e ersM
T
68 a3,26,7%, 0
N 34,82, 77,A<% = =
T a4,86,78,08 Enter D susmber of states 3 = Wil St 21
1L @3, 86,79, 00, 5] :
” ' ' Entee B0 sumber of transtions. = b FralSate =
L)
Entee COnMBOn 5355 THAG BT !
14 16,4,7,8,12 U SETIAS 2 | Swase
- S4ZETICA -
™) SSIA MO A .

ToanLeEm
LU L 7% &)
#5 wl,24,13
P =3,81,74
=1 82,83,%5
a8 53,s6,76
ui =3q,s5,77
M 83,25,70
45 9s,26,73
55 94.8¢,700

Enier e number of varables =
Enec ho valuss of varisbles 1247212

Enter Ne Hanston set »
e]

Fie
Ermu the fumber of $taces o] = Irits Suite &1 Entor the rember of vanables *
Emar the tamber of ransitons 2 = Final Stoee 35 Entor o viues of varicbles | 1047513
et p i £ Ento the tranabon set n
— e . -
- 856 P30 B e o —m

n

T

Figure 4.3 Data Dependency (2)

Once data dependencies have been calculated, we find the transitive closure.

23

For example, if we have the following pair of transitions that are data dependent (T1, T9), (T9,
T3), (T9, T6) then the transitive closure also includes (T1, T3), (T1, T6) in addition to the above

pair of transitions.

The next goal is to build the table DDStar. This is a two dimensional table where each row and
column is represented by the transition names. This is constructed using the Data Dependencies
and the transitive closure. The table displays "True" if two transitions are data dependent. For
example, in figure 4.3, T1 and T5 are data dependent thus we display "True" in the

corresponding field in the table.

Now the last phase is to implement the slicing algorithm.

Slicing Algorithm
The algorithm found in [2] produces a set of sliced transitions. It takes a set of transitions as

input from the user. Then the following algorithm is applied:

The set of transitions given as input by the user to slice is stored in a HashSet "L".
All the transitions is stored in a structure say X.
foreachte L
for each u does not belong to L (i.e. for each u in X - L)
if DDStar(u, t)
L:=Lu{u}
repeat
Lnew := @
B:={n|3teL:n=S(H)}

foreachn e B do

obs[n] :=n

V=B

C:=B

while C # @ and Lnew = @ do
Cnew := @

foreachm e C do

24

for each transition t does not belong to L with T(t) = m do
n = S(t)
ifneVv
if obs[n] # obs[m]
Lnew := Lnew U {t}
else
V=V uU{n}
Cnew :=Cnew U {n}
obs[n] := obs[m]
C :=Cnew
L:= LU Lnew
for each t € Lnew do
for each u does not belong to L do
if DDStar(u, t)
L:=LuU{u}

until Lnew = @
This algorithm returns the new transition set Lnew.

See figures 5.25 and 5.26 for the implementation of the algorithm.

25

Chapter 5 - User Manual

Read Me
Running the tool is pretty simple. Follow the below the steps.
1. Open Visual Studio 2010 or latest
2. Click on 'File' -> 'Open Project’. Browse through the windows explorer and select the
folder 'Efsm.Parse’ and then select the Visual Studio Solution.
3. Once the project is loaded, click on 'Start'.
4. Input all the specifications based on the requirement.
5. The available options are to build, simulate and slice. You can choose any one of these
just by clicking on the corresponding button.
6. The 'Build' and 'Simulate' button generate graphs

7. The slice button gives you a set of transitions.

System Requirements

Operating System: Windows XP, Windows 7, Windows 8, Windows 8.1
RAM: 512 MB or more

IDE: Visual Studio 2010 or latest

GraphViz Installation in Linux
To install GraphViz, type in the following command.
sudo apt -get install graphviz
Open terminal and type in the following command.
dot -Tpng filename.gv -o filename.png
This command takes a ".gv' file as input and generates a ".png' file as output which has the graph

for the given input.

26

Chapter 6 - Testing The System

The system has been tested for various inputs to check if it works best for all such inputs. For all
the inputs mentioned below, the initial values of the variables are as follows:
A=7,B=2,C=4,D=6

First Test
The input given below is one of the cases where all the expressions evaluate to true. This test

case is chosen because the graph simulation takes into consideration all the transitions.

51,52, T1,A>B
§1,53,T2,B<C
S3,54,T3,C<D

The graph is built in the following way when this is given as input to the system.

3 Plm W
L e W o L JUTES (SIS Tianm L+ ocLs Wil o ANCHTICTUN & WIKRDON CY S
"ae.d Rconvy = =M L e - .o
& 1
GaSimtProx sisChumry A0 P - =i

= s Facn Famt | Foe T msa e

Extmt D tranbier Of slutex . : vt Ste 3 Enter e tambee of variables 1
Entw the number of ransaons § Final State 52 Entid T wivuss Of wawialies
Entar Condbon 0 2Tk Srdoe

Figure 6.1 Building Graph (Input 1)

The simulation for the above input has two cases. The first case is when the random function
fires transition T1 which brings the machine to S2 and the program stops there as we do not have

any path further from S2. So, the system throws an exception saying "No path ahead". The

27

second case is that the system fires transition T2 which fetches the machine to S3 and then it

fires transition T3 which brings the machine to the exit state i.e. S4 and the execution stops.

The random simulation for the above input is shown in figure 6.2 and figure 6.3 .

g we (LLetitd) - MVCIOAEN % § A0 ' 1 P = & x
ERE BT pNw PROACT BUMD QURUG TEAM MO JOOKE WWWARE TIET ARIECTURE aipluvdl aehbOw e
LI £FSm - O
Fones gy
Gettant 0081 the namber Of S3ales J ¥ sl St % Ender o numir of vanuties 4 RS .
P Erome the mamber of tamaticon. ! 3 Froat Sanne (64 Frtder e vabans O variabing 7245 >
Ermmt Condaon SLELTIAG [N—— .
\\s-r:n
T
(C) —
= (s!)) =
(S
e
1L Lagedin . Mubes, “Vir Lakil e
B e T
<) <
oy L 4 - L

dwe Lntely Webeh | et Meaabmeren Covvemmed Werdue wveadity Mosben Oumre \otatn ! abebm. Tamnt

Figure 6.2 Random Simulation Step 1 (Input 1)

As described above, the system randomly picked transition T2. This leads to the final state in the

next step.

m w (Mairetits MiTimntt Vel L PR VIS
ERE BN W PROKCT MO DERUG ToAM MOh DO VWAL TERT ARDMITECTUNE AMAYZE MNOOW M

" 0% HESM - .
Preedl e
{
Cattamy Er0at e reamber of ssies ¢ $ sl G W Lt o nurriber of vaenstden 4 2 & . NoslTives -9
T e O amiber of Wt | : Fiat Saate Erder $vw vabans of versises 7253 -
=
Ermar Condsan s AR [~ >

13120

SENCEO S

Figure 6.3 Random Simulation Step 2 (Input 1)

28

Second Test

Consider the following test input where the random simulation has a choice to make between the

transitions. This is similar to the first test case except that it has a self looping transition.

S1,51,T1,A>B
§1,53,12,B<C
S3,54,T3,C<D

The graph for the above input is generated as follows:

e o win mascy L e Tham xa oms O "y ANHTECYT I A AN T o
"o Rcoses F, =M L) [~} [0 B)
Frocess [EFSM
" Fa
atStetPoact
S5 i Fay . Entor the nambes of stines 4 % il Stake 51 Erdmt e tranbier of viewtion *
Enter 1w mamber of yansions - ! v Finol Ste 54 (irtme fo vstins of vartien 72
Enter Condson 515111 AN [
SIS TIDC
5254 TICAD
| N s o=
T AB
wl = = Vs
8 o .
a | — C,D RER _.<5 ‘> DoD .@)
al _./ — =
oo
v i x i

......

n - V&S T g Choagioer Michy e .jf--n‘«- 2 W Mirrme. M i P (P

Figure 6.4 Building Graph (Input 2)

Simulation for the above input is shown in Figure 6.5

29

P - & x

0@ Lrun Puie g - Mitsosolt Vust Stuto ok Lakanih 200 p - 8 =
FAE OMNT VW PEGSICT SIND UPSUD TRAM S TOOLS YMWARE TEST ARCHTICIUTE ANALYIE WINDOW HEw

"aed Aiorvy T, W=l L] e- ERe 2 -~ e,
Procans | L] Dhum P e nvainiit see - - .
L 2.
Oetmbrrensmn . [E350) - ol - heskiTrane . %
2 e Pena Farm? Fie CmE o
359 ’f B Urnaniay idic Cabact @
[Ertmr th TRamtiee Of wintew o] s Irvb Soate 1) Entod e sumber of varabhes 4 B
¢ T svom IvtwhTroce dota, you
tae [Ertwy the Teamber of transitons. | £ Finsl Sute W Entm tw wnlims of waiobies 7245 JIOS D T e
1 Ertmi Condann é:i;:;r-! i -
RIATICD

4 = = e

“l | | Opae iPrsA Timcn st vvgy
I e o g AT

T ox
1 !
i e
0N ' »
e e x
duton Locen et | Cathac Beaports Comenend Watoe Treremes Wndee Ditpae oot fabme. Taml.

» wswny Usigbral

Figure 6.5 Random Simulation Step 1 (Input 2)

8@ 1hm Bune Munnng! - Mkosolt Vans Stikdo NS Lamnch 1Chle Pl IR
FRE EDNT WEW PEOIECT ®IMD OfSU0 TEAM SOL TOOLS WMMARE TEST ARCMITECTUSE AMALYIE WINDOW MELR
"ed Aicderts F, = L] ot B- SR T s e,
Procem [1704] Pham Parce vidna it e - -? .
Y .
GeSumtPro ey 4 W B — N . e -ox
¢ thmFenatemt || o0 e o
Entar the ramber of states o $ Inised State 34 Enter te rumber of vansbles 4 Ch
Tt v e whTince data, you
Ertwt the nanber of iransons || 3 Fmal State 34 Exibot the valtes of wasiobles: | 7248 ::-::\nxmad,au
It
wl Ertet Condon E:gg:‘g f——] B Brent #1
1 S35 r3ced
™ " Mase aptions
i -:' Opr et Tepce scttimgy
A Luwn o sbood et Trens
=
i
21} *
0% . '1 .
befter " P x
Aor Leemn Wkt Cotuner Beespnnts Comwiwed Windos vorvesiate Wiadiw Outpas el T WA Temni

N Sty fane S s R T I TN 9 Lruo Paus o W Clrnte

Figure 6.6 Random Simulation Step 2 (Input 2)

Third Test

Consider the following input

S1,52,T1,A>B

30

S1,53,12,B<C
51,54,7T3,C<D
S2,54,T4,C<D
S2,53,T5,A>B
S3,54,76,C<D
S3,51,T7,B<C

The above input has multiple transitions from a single state. This test case has been selected to
check the random simulation. This kind of input is also essential to check for graph building
because a single source state has multiple transitions that are fired which brings the machine to
different target states i.e. a single state has multiple target states based results of the evaluated

expressions. Figure 6.7 shows the graph generated by the system for the above input.

. ' M - =N

(59

Enter the number of states » i ool Stote 51 Ender tha numer of vieiitles £
5% Entee he number of tarsbons !) Fsdl St (< Enmer the valoos of varables 7745 JeiTisce bl 2

Enter Condtion

i —— AN
A T4 C<D | g.\l
f:‘\\é vr (=) ™ I/V]
e mee o —
= ~ — S — 55
e ——— N

s BT TS,

Figure 6.7 Building Graph (Input 3)

When we try to simulate the graph, there are many different possibilities as the system chooses a

state randomly.

Simulation for the above input is shown in figure 6.8

31

£] t P - 8 x
FRE BT WEW PEOIECT SIMD Of3U0 TEAM SOL TOOLS WMMARE TEST ARCMITECTUSE AMALYZE WINDOW MELR
"ad Ao B, = n S G S B R s,
recom | %@ EFSM =) ¢
2 ™
et StmtProns « biiTiace - x
SttrecFan Efer e nuenber of steies ad : il Stae A Enter the number of vanadies 4 ¢ HE O
» -
Emar the number of sanstcos ! 3 Find Stle e Entel the valies of vornties 1248 s S freeriyV
T v ioeehTince data, you
Ermor Conieicn L e bk achan of paar
gyrenon
L "
S1)_T3 ¢D - M aptions
ek be coveram
Lur momes ocd et oo
oK
'
0%
S "R ¥ Lan v¥x
Licws Wb | I Uach Beashpants Comwimed Windos Arevesite Windiae Outgus AT, Sehile. Tewni

';ﬁbu"“ WO M. %) U baus o | I Gl - EEE : mu. -
Figure 6.8 Random Simulation First Step (Input 3)

Simulation stops here as there is no other transition to fire from the current active state S4 but if

S1 picks S2 or S3 then the simulation runs for more transitions.

Fourth Test

Consider the following input, where one of the expressions evaluate to false.

51,52, T1,A>B
S2,53,12,B>C
S3,54,T3,C<D

This is how the graph is built.

32

0@ LhimPMuine g - Micdaut Vaus Stuto “h P - # =
PR ORINT W EROECT GIMS UESUS TEAN S0 TOOLS WMWASE TEST ARCHITICIURE ANRLYIE ENDOW e
ned Dionriy %, wh UL e T @R 2
Precess [W008] Dhum Parve vohast o - ' -0 .
& |
ey Pt cu - ST v om
e e - S ki heidged yemden fomiloge o) e o &
- AP ENOVERST RSSO T
s var grifrocessicertinfuGuery = mew Getfewerssitest nbeteny (11 BB Weamrrry Wirdres (et =
~ var PEglatarLayeut? lugheCommuntt = mew So gl er epeet Lop] s (gtProcens Seart Infoduery, ERtStertrecwsvivey)
ale Ia . AMA po
- ! o wriiiE AT ==\ o
el s : poiovct yoar
s var wean| b
B Ermer the number of stmss . ¢ vt Esite 11 Erpur the rambec of variskien 4 3
1 yre{] =
ata riebet Ermar i number of transitons Ch Finid St 12 Ertar (e volses of vwobley 7246 sty
it plctvres
- Selves L Ener Condion IST 5217100
o T BaTine e Ermr e Bwrmsiom wes T
saz) phitures 2154 TISD
' Caac] R
)
Tl TL A-B T2 B-C T3 C<D
—tar
i v S e W
e it -
Madin lavas wmh Cul s < - Wb Whndos Dutgas o - L

Figure 6.9 Building Graph (Input 4)

Simulating the above input would result in the following

‘ [hm Sune Bunnng! - Mktosolt Vaae Stido
FRE EDT VBN PMROECT BIMD OfSUO TEAM SOL TOOLS WMWAAE TEST ARCMITECTURE ANMALYZE WINDOW MELR

"ag 220

et e

a
Getstwt ENME the numeet of stales - = ntsl Stse W Emef the number of vieaties *
S mer the number of vinstions. 3 + Finak Stte (54 Ener the vakses of variaties 7345

! Emer Conditon SLEZTIAG T

1 e | Swme | Emec the manason set

SHTICD

1 Veushse k-

1

]

1

(P2 1 T

(Fe y

> e Path Ahead

| B

i o

. -

. Pl IN-R

- ol

v¥x
be

y ¥t Cabc

ATiege duta, o
ssame of et

Tepce ssttingy

w0t betiTrems

Figure 6.10 Random Simulation (Input 4)

Fifth Test

Consider the below given input where there is scope for random simulation.

33

S1,52,T1,A>B
S1,53,T2,B<C
S3,54,1T3,C<D
S2,54,T4,C<D

Figure 6.11 represents how the graph is generated.

0@ e reres (Murraing) - Mmrmmst Wil S b bbb |14 A -8 X
WL IO VW ROKCT WAD DINGE TEAM X 100K WWWARE TIST ASCHRTECIVRE AMALYIE WROOW WLl

L -} Dieonris N =N . e Qe 2 - e

Prmmn |10 M Panin bt - "

o Wbkt .=
e SN u= o
. - T v braskTrace etn, g
Ervtor e sustiver 1! shoton J £ i Bihgle 71 o e marvtes of waclabies ¢ b PRk W O § Wt
——itan
Gmar ha numser of taaeone 4 ¢ el Sinte Tireme i vesuss of varusbes 240 0 et o8
Ervwme Cooakaon LN T2 8E - Idan
DT D Mo Cppome
IATACD :
e = e 400k rere by

— chad 84084 lone

n an(m) 1w

e . mons(™
WoSceo

ns

- . |
.

@ Tah BTl (reeewed Madee leemadoie Wodon Tetnd SRWEL SIE TSP Y

Figure 6.11 Building Graph (Input 5)

Figure 6.12 and Figure 6.13 represents the simulation.

P - @ R

' ® (Miosersnl] WAL 1Omo® Viraal Ninile
AL DT W EBROMCT BOMD . OO0 TrAM K TOOKL YWWARE IIST AACHYTICTUML ABLOIE WRDOW. aRLe

mr
- am = 30N
[
Svitnen L the maavrher ol wieses . s i S Evtod Tow rnpndont (F whiibldms 4 ¥ - sestivers -
TN e the muier of nmnemons | 3 o Somw s e L T + e e
v B o LEATT O - ——~ -
. §i3aTy
ilate
L -
== "
xl) X2 I —
.,J_ —f(= - —
— N -
B] [-
o
|
0%
Setea -y - o A=

Figure 6.12 Random Simulation Step 1 (Input 5)

34

Rerndhetan (Rarving! - Miktosolt Vvl $tid p - 8 x
FRE EDT pEw PRONECT MO RERUO TREAM SOL TOOLS WMWARE TEST ARCHITECTURE AMMYIE YWKNDOW HELA

Lt EFSM -2
L™
4
Gettiet ENWE the numeer of states - ¥ ntisl State Eme the number of vieaties ¢ ” SBTie <
*¢ tham F s Same [T HE o
Emier the numter of ¥anstions. | : “ Emer the vakies of varables 774 &
BB Sreanag Yaiee Cabec @
Sor | -

T v ioeehTince data, you
rrart ok wacutae of poar

spynen,
B8 Brest o1
he Ilxt
‘l Moo aptions
|
| Oy i Tee sty
ek b comtrae
Luwrn memes gocad bt |
o |
]
20 % .
P LR e R v ix
Lacs Wk ! Cotuncn Beashpants Commiwd Wintos oot Windiaw Outgus AT Whss. Temni

.
’lFLJL sptae.) DA M %9 Urnv P (R

Figure 6.13 Random Simulation Step 2 (Input 5)

Sixth Test

Consider the below given input which is an example of e-transitions.

S1,52,T1
S2,53,T2
S3,55,T6
S3,54,T3
54,5574
S5,56,T5

Figure 6.14 shows the visual graph for the given input

35

3 . P - 6 x

e M - =N
e o
|
Enter the number of =tales ‘ i ool Stote 5! Ender tha nueer of viekbles !
D% Entee e number of tarsbons ¥ : First Saate |58 Enmer the vakes of vanabkes ! s = WA b2
- HE e
Enter Condbon i:: :v - Semtore Ertier the transiton ast peitionkinal[4] rer ¥ B Srean

Ve e

ey han .
7 .\ o A T6
3 O 2 OnnO Saping> OO

t be stz of paat
b e e Tt 4
cob ol
. Text) || states
¥ =) 1] 1 Mase aptions
54
Oyanivted Tepce sstting
Luwwn memew goocd boaati |

:b:m\._ Ny Sy b b . | a8 Us Wogaen..) Wiy Ragat | 3 Lo Fans L "R Clkewla el o

Figure 6.14 Building Graph (Input 6)

Seventh Test

Consider the following input where a few transitions have actions and a few don't.
The initial values of the variablesare A=10,B=4,C=7,D=3,E=12

The graph is generated without checking for any of the evaluating expressions or the enabling

events.
Simulation checks for all the evaluating expressions and enabling events.

§$1,52,T1,A>B,B=4
S2,53,T2,B<C,D=6
S2,54,T3,A>C
S2,56,T4,D<E
S3,54,76,A>D
S3,56,T5,A<E,B=7
S4,55,T7,A<E
54,56,T8,C>B
S5,56,T9,D<C,B=1

36

Figure 6.15 shows the graph for this input.

“ P Suree ning! - MEtosolt Yaas Stk P - 5 =
FUE EDT VBN PROSECT BIMD Of3UG TEAM SOL TOOLS WMWAAE TEST ARCMTECTUSE AMALYZE WINDOW MELR
"l M - o lEN
el e
i
GetStwe ENWr the numeer of stales i ¥ ntisl State 7 Emer the number of vieaties * : -y x
o : Fock State (o Enter the vakes of varables 0473 T
P
S - Smsgr Emad the RSN sl
9 » data yous
‘ = 3 :Igné raar
I T‘t .,‘> E B"-
T2 B<C D=6
berings
@ Ti A>B B=4 _ wistilioes
N
gty) —
A4 ' P
Desowten Fee Lo Caberme Prggect
Autos Lesstt Watxh ! Lt ek Prasports Commpnt Wartew yrerasiste Vdes Outpad forer Uit teld Sebte Tearm £

7 wdam g N Sty o ¥ o Fans L

Mhenn . | g Us Wogarn.) W et |
2

Figure 6.15 Building Graph (Input 7)

n..

Surve ntng! - MKTosolt Yaas St
FLE EDT WEN PROECT BIMOD OF3UG TEAM SOL TOOLS WMWARE TEST ARCHTECTURE ANALYZE WINDOW MR
n"ad N = “- "= L ~ Mo e n - -
3
Precens [2977] B Pazensoite =5
i
3 ¥.
GetSmtProessChmy 4 = Entet S fuititber of stsins £ $ el St = Enter e sumber of varabies *
*2 theFanafoam !
x Enter 9 number o transmors. 2 ¢ Firai Siale 54 Enter he values of vanables 134731
oy
a5 e > el Enler e ransiton set
Bt - Vestire e
;. naon o
check =
)
Ot to cavtrae
" o
o -4
batas 8 X el
Y A 1 Warmege A waut
Desowgten e Lt Cebarrs Pogest,
) Tl Frerwl ey 1) n Bt Macse
Bl Puse oo | vehes
e
A1 Thatuid fermics “ 2 Eam Parw
i ParveSorm! path' n
e e

Autos Loeeh Wateh !

Sty s v AR
Ny ‘_uu.

Cllleck Prashports Commmst Wartow yrerasisty Yndew Outpd

o3 Us Pogann. 5 Wy Pt | 5 o Fans b M Cilhels :‘1’
> —

Figure 6.16 Simulation Step 1 (Input 7)

37

rivd

Toace

£E0

98X

P

o irreA T g e data pon
bouax oacn of ot

“aven,

aptions

ot Topce sty

mrme sboud baetiTrens

Sede

Teare £

n A Suree Rannng! - METosolt Vans Stk P - & x
BKE BT YEW PRONCT UMD QEIO TEAM SOL JOOLS WMWARE TEST ARCHTECTUSE AMMYIE WINDOW HELP

ned L IS TR VS N S - ~ M N " - -
EFIM - B
Precen | 29T7] Phim Pace st
% 1 e
Sasnoeoms Ertn P ruimmbeer of statns £ 2 el Ste T Ente 1o sumbar of variabies : Fine SIS
E 0
Enter 9 number of transors 2 & Final Siale 3¢ Enter the values of vanables 134730 son Vi Coloct &
et ‘ny -
oy _re Enter CondBon - S Enter hie ransiton sef o InNTinge data, o
-~ wall 545 bonak wacticn of poar
i Bl - | EX e poy
. phch ! -
B 3 . Ok 10 continen
: aptions
- check »
) e Tome sty
x o
" W I v ot ey
mN -4 »
beatas * X frolet v yx
Y A1 Warnge 4 it b t o
Desosgten 3 Lane Cihames Pogent, -
) Tefe L L) n Bt Maese
Em PuseFom! vehes
o e
A0 Thetud farmice 9 o i Parw
e Parve form) path' 0
erve wed .
w Leseth Watxh ! Clieck Praskports Commimst Wertow yreresiste Wndes Outpad forer Lent rivk Sehtn. Tesrnk

7 ttaes wae My Sk Hoase At . | pFUs Wogarn.. 5 W et | 53 UomFane . M Ullbeelds

Figure 6.17 Simulation Step 2 (Input 7)

0 Erun e @urmnng) - Misosolt Yausd Studw ack Laewch [trhe P -« B X%
ERE EDT \EW PRONECT SIMD QERUG TEAM JOOLE wMWARE TEST ARCHITECTURE AHRVIE JONDOW HED
ned . = AW . -~ M NN -~ "
4 o - o}
Frecess [2977] B Purseashost & e
2 [
& B- : :
|
et SUrtProcasOuny pe -- ’ . Tw -9 x
Sasuivomons [Erter o rumber of Fiates s : \niad St Enler e utriber of varisbies ; 2 L
“z thon Fanse Form®] z 5
: Enter P rutnber of tranesons ¥ : Fidl Sl Cockrocomme [Enler e vidues of vansbles 124721 g Videok Calldt-
Y EdterCondbon SETSAG L
s o ;4&%1’.31;“ - nler fie Yangton sat oo inteh Trmow data, your
- uali UETIOA o T brash Dacutise of your
&l Byt SESETIOL a0 e
pict Ba v | Se
plct wii ol
)
! cptemn
- check »
| o123 Tiw e sttty
» ‘ Trem daaut st T e
W% 4 »
Rtz * X Enobid 0%
) &0 £ 11 Warnge e E | P
Desowton 123 e Colame Pagect -
Al Tl Eeernl a £) n Eyte Parse
ThmParvedomn| vokes' o
wver e
A Thefeld Formles u a Bl Parse
Elom PaveFonn] path’ &
rover unwd -
Autoy Locs k! Cotvams Biespaen Corununst Widow dvovesiate Window Owtpad dvvint rirdt. Sebme. Teami.

7 W g N hp fireas o3 0 Program, T Wy Pepon t w3 o Pene (. B Collweriks,

Figure 6.18 Simulation Step 3 (Input 7)

38

Eighth Test

Consider the case where the user enters the value '2' in the number of states field and enters more
than two states in the "condition” field. The GUI throws an exception. It displays a message box

saying "Invalid States" and exits from the application.

Figure 6.19 shows the exception thrown by the GUI.

£] "o A ' ' P - 8 x
FRE BT OWEN PEOIECT BIMD OF3UG TEAM SO0 TOOLS WMWARE TEST ARCMTECTURE AMALYZE WINDOW MR
"ed Aokt B, =h 1 e- ERe Y- s
Procem 556 Dl Parse /ot ene .]
4 . EFSM - 8
GeStmtProcessCh Fia « bnbiThE -y x
*$ the Fanefor HE o
Erar the number of slides ? : It Swale 81 Ertsr the namber of vanables ¥ + B3 Treanag v
Enter the number of ranstons v Final St ©2 Entar the volues of yorobles 2 R
TRt brask wactan of yaar
Ertar Condtcn ;L'::‘:I Seine Ertef the rananon et Ky
"
[DR [,
Oyaniety -
o et
o
v yx
Y I P
Desiey Lawe b Moyt

] RO o 2 Wy Rt 1| | 50 o Fane | | B Gl (R

Figure 6.19 Invalid Number of States Exception (Input 8)

Ninth Test

Consider the case when the user enters a value in the number of transitions field and enters more
number of transitions than mentioned in the “condition” field. The GUI throws an exception.

Figure 6.20 shows the exception.

39

ey v P e B %
FRE BT WEW PROECT ®IMD OfUC TEAM SO0 TOOLS WMWARE TEST ARCMITECTURE AMALYZE WINDOW MELR
"ed Aokt B, =T 1 ot B- R 7 &,
Procesn | 0908] Ehim Parce v it eve - -*
L ¥.
et StmtPr o essOhomry 48 _r.mﬂ..ifvs-‘-l 4 « biiTioce - x
':lnf‘rm-nm' - [53en) - o HE 0
. IR ey o
; o Tt v irewTince data, you
Enter the rumber of states 3 ' o Sty 5° Enter ®w rsuumbee of vorabins = et bk oot of paar
gyTenon
Erhir e resmibee of ansdons | : Firal State 32 Erter P iy Of variubbes B et o1
Enter Condon 152t 1
S - Ertee 0 Fanstion set Mase aptions
) B . Oyar et Tepce sttivgy
Ivostet Toarvetrorn
Lawn e #oocd betd e
3 o
N 4 —

Auton Leseth Watxh | CiSecx Prasports Commmt Wertow yreresiste ndew Outpad Sorer Liet

7 wthae ane Ny Sy Hoess .}f-u-m | a¥ U Mo 5 Wy Mgt | » UomFens L. M Ullheetls =’ Wb * -

Figure 6.20 Invalid Number of Transitions Exception (Input 9)

Tenth Test

The GUI throws an exception when the initial state field is left blank.

P - 65 x
W isM -2
[~ L
|
Enter the number of stales s i o Stote Ender tha nueer of viesitles | :
5% Entee he number of tarsbons ! : Fil Saate |52 Eivier the vakoes of variabies 4 = e 9%
*: HE @
Entec Condion 32527 Smtce Eritee e ransion ant B o e Vit ot
Bt Vemy =y Ta v ireedhTinge data yon
" Trart braak wacae of paer
' gyrenon
1 Bresd o1
Beme pvisy sne cnisl rvie e
Mase aptions
punindel Texce sty
o
Luwvn s #houd breti s
ter Shewd Tiewse ovies oow firml stwta");
Exit(@), v
N - 4 ’
Restay * X frelet vyx
v [1 p
Desosgten Fie Lo Caberm Prgjyect
£on Loewtt Wt Coilece Prasports Commmnt Werdow yrerasiste fndes Oitgad forer it etk T. Sehmn. Tearnk

u il Wom 7 wttaes nge My Sy o *u'u& ! p¥Us Woga) W Regat | » o Fera L. M Cilheels

Figure 6.21 Initial State Exception (Input 10)

40

Similarly, the GUI throws an exception when the final state field is left blank.

£] . . S—g P - & x
FRE EDT WEN MROECT BIMD OF3UG TEAM SOL TOOLS WMWARE TEST ARCHTECTURE ANALYZE WINDOW MR
el Ak B, BH L] S5 SR 2 s n,
Precew | & EFSM - 0
4 e
et St Pron s « bmiiTie -9 x
*stheiFan B e nienber of stk i : il S 9 Enfer the number of vanaies ' ¢ MNE 0
> 360 10 108 . s
{ Emecthe number of yanstcos ! 3 Fnd Stae Entel the valies of vornties ¢ w 55 S Rrseviey Vihe Cob
! 5152 Ta venew ireehTinge daea pon
| Emw Condton SL5LT i Enar the lnssan set et bouk et of paat
I8 sriition ¢ sppnen,
_l B b s LIS

| B3 THOER
= | Mo aptiont

Oy et Topce ssftivngs

Flewin erter oew et ate

Law ot Pt frey
cr
W -4
btz * X frolst *9x
A4 st »
Desowten Fee Lo Caberme Prgget
Ct ek Prasports Comment Wertew yrerasiste Wdew Outped forer Lent reed Sedn Tearn £

. N Gty oo | a¥ U Pogan.) W Ragat | »§ Lo Fans L

Figure 6.22 Final State Exception (Input 10)

The GUI throws the following exception when both initial and final state fields are left empty.

£ arse Matiteng) - MIL0anf Vsl Stud * Laurnch 4 P - & x
FRE EDT W PROHCT BnD CERLG TEAN SO1 TOOLS smanAE TEST ARCHITECTURE AMALYZE WinDOw Wi
uned Riokery . M] . O- ER» - e
Prece TR0 Db Farse vidonst o . o
& 1
GetStmtPrinsnOuny « & [33SK) - n = el -3
A5 it Faese Farmt e - He @
ot t BB Weenriag Vi et w
Ertwt the mamber of states : Ity Shoate Entet the rumber of variables :
T v T oaon dat, you

rreatt ek mocugien of et

1 Edoar e anber of transisons ! : Findl State Ental P ves Of vietithes prrvaesed
Enter Condion nm=n . Entrt the Farabion et T
: ~ = W g
L
Cyw: el Tince sty

Tl orter crm vahd betal Dats & 30w vaid Fal Sats

oe
me ' »
"o s x
-
Dwmsugton T Lina Cobeme Prfect .
o) Teeledd Forwicx " » Bim Mare
Thrs Pased crml uha o
rwrer e
AL Thetwid Feovilez » 1 4w Poren
Fhes PaseFonm | path
v ed .

Caltere Pramports Comvrimed Werdwee yrorwsietz Wandew Outpad frves it

ooe Lomay Wbk |

8 e B W o WALRe e N by s .*.»m. oF U Pagan. B My R | ® Tunbare . B el [[S508

Figure 6.23 Initial & Final State Exception (Input 10)

41

Eleventh Test
Consider the following input:
S1,52,T1
S1,85,T2
S1,54,T3
S3,51,T4
$2,53,T5
S3,56,T6
S4,S3,T7
S4,S5,T8
S5,56,T9
54,56,T10
Figure 6.24 shows the graph for the input

8@ 1hm Fune Munnng! - Mktosolt Vaas Stido AR LAt fot et p - 85 x
FUE EDT OWEN PEONECT BIMD OF3UC TEAM SOL TOOLS WMWARE TEST ARCWTECTUSE AMALYZE WINDOW MELA
—— ~ —tp— B e B b - — > ————— e, ——
sl ™
Safubrolt v¥x
‘u_r-n.r-- é

P Yane Cakecr @

K]
W Trwie data, o
acutie of paar

e sty

¥oout Praetifree

T Parse Foren| G‘[m’ o
e nnd -
Aot Loy ek} ColMacn Beaspnnts Commmd Witon rrrveite Waandior Output Lons L el T Sebee. Tewnd.

Figure 6.24 Building Graph (Input 11)

See figures 6.25 and 6.26 for data dependencies between transitions, the DDStar table and the

sliced transitions.

42

v CAUsers\ Kaushie\ Deskaon\EFSHSample Input i - Nosepads + = o
. b poth Pes Dusdeg Lesguege Sebegr Moy Bae aapes Eecion i

IRE s LRIJBDIdciaN G 1 EIRA LRURCESR e

s i B 0]

&8 93,36, = &
Lol - 8
e M | » |

T a4,86, Fie
1 a3, %6,
Ertar the fumber of stides § 2 Il Swate 41 Erfst the namber of vanables ¥
3
§ 1G4, 0 Ener the number of ransitons | Y Ea Final St 5% Entar the volues of vorobles !
4 21,33, EfterCondton aan " e Estof the Uaranon set LR
y a3, 3Ty
23,84, ™ k™ . asate T
kgl n] n oA
23,56 o
24,25 n
I 84,30 n
' a%,3¢ |Ta
¥ ™ -
oe £ >
gy
A
‘4
"
ETY

Thorrmel test fie Sength) 1155 v 1 97 Ia: 8 Coli 18 Set: 9900 Do Wirdwws A m TR e
B Huby Mot 2 Mg s o

Figure 6.25 DDStar (Input 11)

The table DDStar is empty as there are no data dependencies between transitions.

8@ 1hm Bune Runnng! - Moot Vaas Stikdo MAE Launch 10t P - 8 x
B EDT WEN BOMECT QMO DEDG TEAM SOL JOOLS WMWARE TEST ARCHTECTURE ANALYIE WINDOW MR
"ed Acderts B, =7 L] ot B- SR 7 s,
Procems [T7EE] Dham Parce v it ene -M -9 ’ b
Y . EFSM - oIkl
GeSimtProcessCs Fle « bmFiTosce X
¢ then Fane Fes ‘HE e
Ermer the (umber of stines i S el Sue 9 Extmt the namber of vanabies | 2 * o Sreanag visss Catoc +
Enter the number of ransitons |9 i Final State 5% Enter the viues of vorables ! T v irnekTioge data, yous
Ros w- Tt b oactn of paar
.2 Efter Conditcn ;;1‘_; Seue Ertor the Uananon set T ppeaten,
~ =3 10 Breh o1
™ hmia ',”, | ace -
" L n T n A s fypoce
[s N _ 1 Opar otad Tepce scttingy
ot Ly ! ! !
oo 1% 7
10l n n | 1 Luwn e sbcod et Trees
108 T
1004 ™ -
e e 1l |« ~
N + 4 - ’
bt v yx
p -
Aot L Wk | ColMacn Feasmpants Commwed Windon rorvesiate Wiadiae Outpat Do i R Sk Temnd

W Suky Motw 3 htpe taat

Figure 6.26 Sliced Transitions (Input 11)
The output produced is correct because it is similar to the result mentioned in [2].

43

Twelfth Test

Consider the following input where data dependence and DDStar are computed and the slicing
algorithm is then applied.

The initial values of the variablesare A=10,B=4,C=7,D=3,E=12

S1,52,T1,A>B,B=4
$2,53,T2,B<C,D=6
S2,54,T3,A>C
S2,56,T4,D<E
S3,54,T6,A>D
S3,56,T5,A<E,B=7
54,55, T7,A<E
54,56,T8,C>B
S5,56,7T9,D<C,B=1

Figure 6.27 shows all the data dependent trasnitions.

‘ [Puree Ranting) - Mtosolt Yaas Stido A Launeh fh e P - & x
FRE EDT WEW PROIECT BIMD O0f3U0 TEAM SOL TOOLS . WMMARE TEST ARCMITECTUSE AMALYZE WINDOW MELR
"eo . EFSM - o il
Procew (Madity P
n Entee B sumber of statas ® = el St 1 Enter the oumber of varaties s
st e ' " 3 o
Stthmfanefem’ Enter s cumber of tanssors. 2 & Fial State 55 Enler the yalues of varisbies 14012
1119 Ee Conton 135813427 - S | Enlerdevmstcnset I
- MR TRCE -
12 SLEETIOCES T |
e L v Vese L e | 3¢
=
1320
(0 ‘—‘
<3 P
:v T3 Dats Deperndorss o TV
1234 T Cuta Depardern ca 13
12N 19 2 Data Depansdern o0 11 &
L T9 o Octe Deporcdert on T2
e
" o
108
0N .
tettn

Aoron | e Wweh UMM MRV LRI WA ORISR R L e M. leani

Figure 6.27 Data Dependent Transitions (Input 11)

44

‘ A Sune Rannng! - Mtosolt Yo Stido DAk LAt 1L - A

o A0 QRS TZAM. SCL TCOU. Mk -
weo . N0 - oEN
Precew [MeR| B Ml
- Entee et Of Satan £ : el Stgw 1 Enter the oumber of varaties 3 k3
SasimproesQumy ol : Y 3 b x
“tthmFanefemt | Enter s cumber of tanssors. 2 & Fial Swte 55 Enler the values of varisbkes 147012
te $356.T0AE BT - | ihd
112 e e g Sodow Enter e Tanstoa sel ™
oo L] L.,
: ™ SIETIOCE ~ A m par
e
1324
1220
i
Lhss
e =
\
1
un
2O% 4
ey ™ T G T ™ T & &) ™.
v - e S T—
n Tesw
n
At
~ -
L .
[T

n ow . | TP 98 s P (Rassax

Figure 6.28 Table DDStar (Input 12)

‘ B Sune Rannng ! - Mtosolt Vans Stxdo DAk Launch fh e P - 6 x
FRE EDT WEW PEOIECT BIMD Of3UC TEAM SOL TOOLS WMMARE TEST ARCMITECTUSE AMALYZE WINDOW MELR
"ed - EFSM - o iEN
Procew [MeR1 By M
” Entee B smbtmr of statos s : il St 51 Enter the oumber of varaties K]
GetStmtProceshmy s i — ;- » %
SttheiFanefem’ Entee the oumber of tanssons. * [Fial State 56 Enter the valuss of vansbkes M4 7012
g
- Enle Canton S35 TiA< R - S Ener e Tanston sel =
3 HETICH L -
2 — SLEETIOL R - o = at

1
\
L
ungs
1
{

=
L
an
1958
LO% « 4
befter
n n 2] T L L AL m ™ "
v Tem £ T
n | [Tese
n
T
™ -
* .
Aot L W o N RIS LIRS WD RITRRAE e R L o e e (LTS

38 Lhum Pae Fissar

Figure 6.29 Sliced Transitions (Input 12)

45

References Or Bibliography

. Kelly Androutsopoulos, David Clark, Mark Harman, Robert M. Hierons, Zheng Li,
Laurence Tratt, Amorphous Slicing of Extended Finite State Machines
. Torben Amtoft, Slicing of Extended Finite State Machines (Extract from a technical

paper)

. http://en.wikipedia.org/wiki/Extended finite-state machine : Extended Finite State

Machine (Wikipedia)

46

http://en.wikipedia.org/wiki/Extended_finite-state_machine

