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Abstract 

High-throughput metabolite analysis is an approach used by biologists seeking to identify 

the functions of genes. A mutation in a gene encoding an enzyme is expected to alter the level of 

the metabolites which serve as the enzyme’s reactant(s) (also known as substrate) and product(s). 

To find the function of a mutated gene, metabolite data from a wild-type organism and a mutant 

are compared and candidate reactants and products are identified. The screening principle is that 

the concentration of reactants will be higher and the concentration of products will be lower in 

the mutant than in wild type. This is because the mutation reduces the reaction between the 

reactant and the product in the mutant organism. 

Based upon this principle, we suggest a method to screen the possible lipid reactant and 

product pairs related to a mutation affecting an unknown reaction. Some numerical facts are 

given for the treatment means for the lipid pairs in each treatment group, and relations between 

the means are found for the paired lipids. A set of statistics from the relations between the means 

of the lipid pairs is derived. Reactant and product lipid pairs associated with specific mutations 

are used to assess the results.  

We have explored four methods using the test statistics to obtain a list of potential 

reactant-product pairs affected by the mutation. The first method uses the parametric bootstrap  

to obtain an empirical null distribution of the test statistic and a technique to identify a family of 

distributions and corresponding parameter estimates for modeling the null distribution. The 

second method uses a mixture of normal distributions to model the empirical bootstrap null. The 

third method uses a normal mixture model with multiple components to model the entire 

distribution of test statistics from all pairs of lipids. The argument is made that, for some cases, 

one of the model components is that for lipid pairs affected by the mutation while the other 

components model the null distribution. The fourth method uses a two-way ANOVA model with 

an interaction term to find the relations between the mean concentrations and the role of a lipid 

as a reactant or product in a specific lipid pair. The goal of all methods is to identify a list of 

findings by false discovery techniques. Finally a simulation technique is proposed to evaluate 

properties of statistical methods for identifying candidate reactant-product pairs.  
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second method uses a mixture of normal distributions to model the empirical bootstrap null. The 

third method uses a normal mixture model with multiple components to model the entire 

distribution of test statistics from all pairs of lipids. The argument is made that, for some cases, 

one of the model components is that for lipid pairs affected by the mutation while the other 

components model the null distribution. The fourth method uses a two-way ANOVA model with 

an interaction term to find the relations between the mean concentrations and the role of a lipid 

as a reactant or product in a specific lipid pair. The goal of all methods is to identify a list of 
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Chapter 1 - Introduction 

In the past decade, high dimensional data analysis in genes, metabolites or lipids has been 

attracting lots of interest not only from biologists but also from statisticians. The unique and high 

dimensionality characteristics of "omics" data have challenged statisticians to find more suitable 

techniques to solve biologists' problems. In this research, we will use pathway analysis to find 

reactant and product lipid pairs which are significantly affected by an unknown function of 

mutated genes. In this chapter, the relevant biological background is introduced. Then, the 

treatment conditions and data structure of the experiment are specified, and the statistical scheme 

used in data analysis is shown. Finally, the outline of this dissertation is given in section 1.4.  

 1.1. The Functional Genomics Tools 

In “omics” high-throughput data analysis, finding gene functions is important to the 

biologist. The principle that the genetic information flows in the cells of an organism from the 

gene to protein and to the metabolome has directed biological research for more than five 

decades. The following flow chart (Hollywood et al. 2006; Holtorf et al. 2002) shows the 

biological process flow in the organisms: 

 

Figure 1.1: The information flow chart in an organism (Hollywood et al. 2006) 
 

In figure 1.1, the first line of the flow chart shows the compound types. The second line 

shows the global collection of molecules corresponding to the first row. The last row is the broad 

based approaches to study of the compounds of each type. For example, DNA is the compound 

type, genome is the collection of DNA, and genomics is the study of all the DNA in an organism 

(Hollywood et al. 2006). A gene is a nucleotide sequence or sequence of DNA located in 

chromosomes. It carries genetic information inherited from the parents. In the cell, the genetic 

information flows from DNA, and passes the genetic code to RNAs. RNAs carry information 

needed to synthesize proteins. One type of protein is an enzyme which, in the next process, will 

catalyze reactions among the metabolites. All biological processes are revealed in the phenotype 



2 

 

of the organism. The phenotype reflects the physical characteristics (appearances) of the 

organisms. Lipids, as one important group of metabolites, play a critical role in the cells' 

biological processes. The primary functions of lipids include storing energy for the organism, 

making the membranes of a cell. Biologists sometimes combine all the "omics" (genomics, 

transcriptomics, proteomics, and metabolomics) to find the gene functions in the living 

organism.  

A functional genomic study as indicated in figure 1.1 can be conducted in two different 

ways. Biologists can directly study genes by using DNA sequences. There are many DNA 

sequences now in databases, such as NCBI (The National Center for Biotechnology Information, 

http://www.ncbi.nlm.nih.gov/). Scientists can compare DNA sequences with known sequences 

from the database by using bioinformatics tools. In this way, they can understand gene functions 

and/or find new genes.  

Biologists can also study genes by analyzing downstream gene products. There are three 

main strategies that biologists use to derive gene functions through downstream gene products 

(Allen et al. 2003). The first approach is to use the changes in the transcripts (RNAs) to make an 

inference about the gene. A popular platform for this approach is to use microarray techniques to 

study the changes in gene expression. CDNAs, complementary to expressed RNAs, are 

hybridized to microarray chips, and then one can use the intensities of the probes on a microarray 

chip to obtain information for genes through statistical analysis. The second approach is to study 

the expression changes in proteins through high-throughput analysis from protein mass 

spectrometry or through protein microarray techniques. The third approach is to study the 

changes in metabolites (such as lipids) using the high-throughput techniques, such as mass 

spectrometry (MS) (Brügger et al. 1997; Allen et al. 2003). Since the metabolite is the final stage 

between gene and phenotype, the study of metabolites not only can provide information on gene 

functions but also can explain the physical characteristics (phenotype) of the organisms.  

This dissertation focuses on the third approach by studying the biochemical reaction 

pathways in the metabolome (lipidome). It is possible that gene sequences can be changed. A 

change in a sequence is called a mutation (http://ghr.nlm.nih.gov/handbook/ 

mutationsanddisorders/genemutation). If the mutation affects any biological process in the cell 

related to metabolites (metabolism), the mutation effect can be revealed in the compounds of the 

metabolome. This information provides insight as to the mutated gene (Alberts et al. 2002). In 
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some plants and animals, the occurrence of a mutation can be controlled. The phenotypes of the 

mutated organism (mutant) can be compared with those of a non-mutated organism (i.e., wild 

type) to determine the possible function of the gene that was altered by the mutation. For 

example, a gene in a plant may be responsible for effectively responding to a stress condition 

such as drought. These phenotypic changes may or may not be visible.  

 1.2. What is Metabolomics? 

The metabolome is the total collection of the set of small molecule metabolites that the 

biological process leaves behind (Oliver et al. 1998; Oliver 2002; Griffin and Vidal-Puig, 2008; 

Dunn et al. 2005). The metabolome includes metabolic intermediates, hormones and some other 

end products of the metabolism. Unlike the genome and the proteome whose elements are 

composed of similar building blocks, the metabolome is a group of dynamic molecules with 

various structures and forms in the biochemical process. Biologists use metabolic profiling to get 

a “snapshot” of the composition of metabolites to understand biomolecular functions within 

organisms.  

What is lipidomics? One part of the metabolome, the lipidome, plays an important role in 

the biochemical processes in the cell. Lipids are compounds of biological origin that are poorly 

soluble in water but are soluble in nonpolar solvents (Blei and Odian 2006). Some lipids are 

structural components of the cell membranes. Others provide energy for metabolism. Still others 

serve protective functions; Some are involved in transfer of signals within or among cells and 

tissues. Lipids can be classified into neutral lipids and polar lipids, or can be classified into 

complex lipids and simple lipids (Welti and Wang 2004). They include fats, sterols, vitamins, 

fatty acids, and many others. 

 

 



4 

 

 

Figure 1.2: The structure of 18:1, oleic acid 

(a). The symbol of oleic acid compound with the carboxyl functional group COOH and a long 
carbon chain tail with a double bound in the middle. (b). Oleic acid model that chemists use to 
show the structure of a compound. The two red oxygen atoms consist of the carboxyl functional 
group. (c). Chemical formula to display the biochemical structure of oleic acid. Pictures from: 
http://www.raw-milk-facts.com/fatty_acids_T3.html and http://en.wikipedia.org/wiki/Oleic_acid. 
 
Table 1.1: Abbreviations used in this dissertation (Welti and Wang, 2004) 

DGDG Digalactosyldiacylglycerol 
MGDG Monogalactosyldiacylglycerol 
PC  Phosphatidylcholine 
LysoPC Lyso phosphatidylcholine 
PE Phosphatidylethanolamine 
PG Phosphatidylglycerol 
LysoPG Lyso phosphatidylglycerol 
PA Phosphatidic acid 
PI Phosphatidylinositol 
PS Phosphatidylglycerol 
sfd suppressor of fatty acid desaturase deficiency 
MS mass spectrometry 
ESI-MS/MS Electrospray ionization tandem mass spectrometry 
fad fatty acid desaturase6  
WT Wild type organism 
MT Mutant type organism 
PCA Principal component analysis 

 

Since lipids have various chemical structures, I will use one lipid compound oleic acid as 

an illustration. Figure 1.2 shows the structure of the oleic acid 18:1 lipid. In the lipid compound 

18:1, oleic acid, 18 carbon atoms form a long chain with 16 carbon-carbon single bonds and one 

double bond. The notation 18:1 means an 18 carbon atom chain including only one double bond 
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in the compound. The two red atoms in the oleic acid model represent oxygen atoms which form 

the head group of the lipid compound. The double bond commonly exists in the lipid 

compounds. For example, phosphatidylserine is a lipid compound from the experiment discussed 

in this dissertation, and the abbreviation is 40:3PS which stands for 40 carbon atoms with 3 

double bonds in the lipid. PS represents the head group class. Similar notations are widely used 

in this project, but with some minor modification. For example, we use the notation PS40_3 to 

replace 40:3PS. Table 1.1 lists abbreviations for lipid species and other terminology used in this 

dissertation. 

 1.3. Metabolite / lipid Data Analysis 

Genomics tools that measure genes and gene products cannot always explain the gene’s 

function clearly and precisely (Trethewey, 2001). Increases in levels of RNA and proteins do not 

necessarily imply that there is more activity in a biological process. A metabolic study is a more 

useful tool for functional genomics (Bino et al. 2004; Fiehn, 2002). Since the metabolite is the 

end product in the biochemical process, a more complete picture of the cellular biology, from the 

functional gene to metabolism of the molecule by the metabolite can be investigated (Wu et al. 

2005; Raamsdonk et al. 2001). In addition, plant metabolic studies are important in answering 

many questions, such as how a gene’s mutation affects phenotypes of the plant, and what 

mutations cause diseases in a specific plant. Many biologists advocate metabolic profiling in the 

study of gene fuction (Dixon et al. 2006). In the 1990s, metabolic analyses in plants and animals 

were developed. In this project, we will study mutation effects in the plant Arabidopsis thaliana. 

(More detailed information on the 9 lipidomics experiments is given in Appendix A: The 

Lipidomics Experiment Information). 

1.3.1. The Metabolome/Lipidome Data Analysis Work Flow 

In a lipidomics experiment, biologists use several high-throughput technologies to 

identify and quantify the composition of samples from the organisms. Table 1.2 lists some of the 

MS data analysis techniques used in lipidomics experiments. In this dissertation our focus is on 

the targeted analysis experiment with some primary interest in particular lipid compounds that 

are to be analyzed.   
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Table 1.2: Some techniques used in metabolic studies (Dunn and Ellis, 2005; Hall, 2005; 
Fiehn, 2006; Nielse et al. 2005) 

Terminology Definition 
Metabolite 
profiling 

The methodologies to identify and quantify a group of specific metabolite 
compounds, e.g. such as carbohydrates and amino acids.   

Metabolite target 
analysis 

High-throughput technology to identify and quantify metabolites that 
participate in a specific part of metabolism.  

Lipid profiling A targeted metabolomics technique to identify and quantify lipid species 
with high sensitivity mass spectrometry, e.g. ESI-MS/MS. 

 

 

 
Figure 1.3: The lipid data analysis work flow chart (Welti and Wang, 2004) 

Figure 1.3 shows the work flow of lipidomics data analysis. The electrospray ionization 

tandem mass spectrometry (ESI-MS/MS) was utilized in this experiment (see Table 1.1). The 

method used is a targeted analysis. There are several ways for researchers to find the functions of 

genes. One way is to start use a public databases (e.g., KEGG: 

http://www.genome.jp/kegg/pathway.html) to find a map the metabolic pathway. Lipid maps 

(http://www.lipidmaps.org/) provides another resource with rich information for understanding 

lipids, including techniques for exploring functions of lipids, lipid pathway mapping tools, and 

bioinformatics tools. Other methods include using statistical methods to find a list of lipid 
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combinations that are functioning together in a pathway. Among all the statistical methods, the 

most commonly used methods are PCA (Raamsdonk et al. 2001), correlation analysis 

(Fukushima et al. 2011), and functional analysis by co-responses in yeast (FANCY) (Raamsdonk 

et al. 2001). In chapter 2, the literature review, several techniques will be described for 

discovering lipids that are functioning in pathways or as reactant-product pairs. 

1.3.2. The Lipidomics Pathways  

The concentration of lipid metabolites may change due to both internal and external 

factors (Welti and Wang, 2004). While internal factors include the genetic activities, external 

factors include environmental conditions, such as freeze or drought stress. Therefore, the 

concentration level change in lipids not only can show the underlying biological reactions but 

also can reflect the enzymatic activities which can be used to make inference about the gene. The 

pathway can be described as a series of biological reactions that can form a long chain of 

reaction paths or reaction networks. Figure 1.4 is an example of the lipid pathway network. 

 
 
Figure 1.4: A schematic drawing of the lipid pathway network 
Letters A, B, C, D, E, F, G and H are used to denote lipid compounds. The arrows are drawn 
from a reactant lipid compound to a product lipid compound. 

 

In the pathway network described in Figure 1.4, the arrows indicate different reaction 

paths. For example, in the notation lipid A → lipid B, the reaction path is from lipid A to 

generate lipid B. The lipid A serves as the reactant (substrate) of the enzyme, and lipid B serves 

as the product of the enzyme. This notation, A as the reactant and B as the product, will be used 

throughout this dissertation. In Figure 1.4, the pathway consists of a series of reactions which 

include some lipids that can be both reactant in one pair and product in another pair. In this 
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dissertation we will explore any chain of reactions or reaction networks, by focusing on pairs A 

→ B within the chains. The context will be only briefly discussed in some of the results. 

1.3.3. The Fundamental Scheme Used in the Pathway Data Analysis 

As mentioned above, we use the notation A to represent the reactant and B as the product 

for an arbitrary lipid reactant-product pair. All symbolic notations used herein are listed below, 

where WT = wild type and MT = mutant: 

A Reactant in the pathway 

B Product in the pathway 

Aw  Reactant concentration level in WT  

Am  Reactant concentration level in MT  

Bw  Product concentration level in WT  

Bm  Product concentration level in MT  

wA  Reactant mean concentration level in WT 

mA  Reactant mean concentration level in MT 

wB  Product mean concentration level in WT 

mB  Product mean concentration level in MT 

 
 

Figure 1.5 illustrates the scheme used to find a reactant and product lipid pair in the 

lipidomics pathway. (a) A → B is a general notation for a reactant and product pair if A is a 

reactant and B is its product in the pathway. (b) Aw → Bw is a notation to show that Aw can 

generate Bw. Since there is no mutation effect in the wild type organism, this reaction leads to a 

decreased concentration level of Aw and increased concentration level of Bw. Still in step (b), Am 

 Bm is a notation to show that the generation of Bm from Am is blocked if there is a mutation 

effect on the mutant organism that is affecting the pathway between reactant and product. This 

blockade happens because the mutation alters the level of the enzyme that is used to catalyze the 

reaction. As a result, the concentration level of the reactant Am increases, but the level of Bm 

decreases. In general, if A is the reactant and B is the product in the pathway, both paths Aw→ 

Bw and Am Bm in Figure 1.5(b) should be valid at the same time. Therefore, the reactant A 

should have higher concentration level in the MT than that in the WT, and the product B should 
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have lower concentration level in MT group than that in the WT group,  leading to the two 

relations shown in (c), i.e., Aw < Am and Bw > Bm. A typical scatter plot of the lipid reactant and 

product pair AB is illustrated in Figure 1.6. 

 

 

Figure 1.5: The scheme used to find reactant and product AB lipid pairs 
If A is the reactant and B is the product in the pathway in (a), then the concentration level of the 
reactant A can generate B in the WT, i.e., Aw →  Bw, but A cannot generate B in the MT group, 
i.e., Am  Bm in (b). As a result, the concentrations of A and B in the WT and MT leads to Aw 
< Am and Bw > Bm in (c), (Fan 2010). 
 

 

Figure 1.6: The concentration level relationships of reactant and product AB lipid pairs 
This figure illustrates our scheme, Aw < Am and Bw > Bm. In the data from this experiment, WT 
group includes 5 data points of (Aw, Bw). The MT group includes 5 data points (Am, Bm), where 
A and B stand for the concentration levels in the reactant A lipid and product B lipid, 
respectively. 

 

Since the mean is a common summary statistic usually used in statistical analysis, we use 

sample means, i.e., mw AA   and mw BB   which are also shown in Figure 1.6 to represent the 

scheme. 
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 1.4. Dissertation Outline  

Chapter 2 reviews the literature on  metabolite pathway analysis, with several main 

methods used in recent years, namely, PCA, FANCY (Functional Analysis by Co-response in 

Yeast by Raamsdonk et al. 2001) and correlation analysis. The results from those methods are 

compared with our screening scheme. 

Chapter 3 explores characteristics of the lipid experiment targeted analysis datasets. All 

the physical characteristics from a selected set of biologically functional lipid pairs (to be 

described later) will be summarized and used to discriminate the arbitrary lipid pairs. Summary 

test statistics are derived from the lipid pairs that are of interest as a result of exploratory data 

analysis. We find that the test statistics from these lipid pairs can capture all the structure in the 

scheme shown in Figure 1.5 and Figure 1.6. 

Chapter 4 outlines a method to fit a null distribution using the bootstrap. The bootstrap 

null distributions of each statistic are derived using the Parametric Bootstrap Null (PBN) 

distribution with Kolmogorov-Smirnov (K-S) test statistic.  

Chapter 5 describes an alternative way to fit a bootstrap null distribution obtained in 

chapter 4 using a mixture of normal distributions. The bootstrap null distributions are found by 

using a two-component mixture model which can capture the shape of the empirical bootstrap 

null distribution.  

Chapter 6 investigates the performance of the two different methods, MNBN and PBN, 

under a different null hypothesis, that is, one of equal means rather than equal distribution as was 

done in chapter 4 and 5. Two datasets are used as examples to compare the results obtained  

under the null assumptions in chapter 4 and chapter 5, respectively.  

Chapter 7 explores another mixture model approach by using a normal mixture model to 

fit a statistic from chapter 3, called RT. The number of components in the mixture model is 

tested. Since larger RT values indicate significant results, the second normal component in a two-

component mixture model or the third normal component in a three-component mixture model, 

which is used to model  larger values of RT, will produce the posterior probabilities for a lipid 

pair that is affected by the mutation at a given RT value.  

Chapter 8 explores the relation between the concentration levels of A and B lipids and the 

role of a lipid being a reactant A or product B in a lipid pair by using a two-way ANOVA model 

with an interaction term. Since the interaction term in a two-way model can explain the screening 
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scheme relationships, the fixed interaction effect will be tested for each lipid pair to check  if the 

pair is significantly affected by the mutation or not.  

Chapter 9 simulates some realistic data that can be used to evaluate the performance of 

the new statistical methods in the area of lipidomics. One of the methods, Mixture Normal 

Bootstrap Null (MNBN) distribution, is used as an example and applied to a simulated dataset 

which is generated based on a real dataset. 

Finally, a summary of the dissertation and some new directions for future work will be 

illustrated in chapter 10. 
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Chapter 2 - Literature Review 

 2.1. Pathway Analysis Overview 

In the 1990s, metabolic analysis in plants and animals was developed by using 

comprehensive, sensitive high-throughput mass spectrometry (MS). Many techniques for 

analyzing high-dimensional metabolome data have been invented since then. Plant biologists 

started to use MS analysis in the area of lipidomics profiling in 2002 (Welti et al. 2007; 

http://en.wikipedia.org/wiki/Lipidomics). Research interests in lipidomics profiling focus on the 

roles of lipids in the cell, and lipid responses to stress conditions, such as temperature, salinity, 

sulfur, phosphorus, heavy metal, and oxidative conditions (Welti et al. 2007; Shulaev et al. 

2008). Among all interests, a very interesting research area is lipid pathway/network analysis 

which involves identifying the functions of a mutated gene by comparing metabolite data of 

wild-type and mutant organisms.  

Lipidomics research has advanced rapidly in the past ten years. Various tools and 

databases have been built which have become useful resources in a metabolite or lipid pathway, 

such as MetaCyc (Caspi et al. 2006), MetNetMaker (Forth et al. 2010), PathExpress (Goffard et 

al. 2009) and MedicCyc (Urbanczyk-Wochniak et al. 2007). Lipid Maps (www.lipidmaps.org) is 

a lipid data repository for investigating lipid structure and classification. Another public data 

base, KEGG (www.genome.jp/kegg/), is not only used as a repository for gene data, but also 

provides more information for analysis of metabolic pathways and of the interaction between 

genes and metabolites. Online resources, such as Cyberlipid (http://www.cyberlipid.org/) and 

Lipid Bank (http://lipidbank.jp/) provide valuable references for analyzing and interpreting lipid 

data. 

In pathway analysis, many approaches can be used to achieve the same goal in finding 

metabolite networks. The main principle used in all methods in the literature for detecting 

metabolites in the same pathway is to measure and analyze changes in concentration. The change 

in concentration of metabolites is the result of an underlying biochemical process. Different 

techniques emphasize different aspects in finding a list of significant metabolite pairs or to find a 

pathway network. As shown in Figure 1.5, our experimental scheme can be summarized into two 

expressions: Aw < Am, and Bw > Bm. This scheme not only can emphasize the lipid level change 

in the wild type and in the mutant groups, but also can characterize specifically which lipid is the 
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reactant and which lipid is the product. Determining the reaction direction from the reactant A to 

the product B, A→B, is the main point in this study. Identification of reactant-product pairs has 

not been considered in most other techniques to be discussed in this chapter. Figure 2.1 compares 

the main ideas of some primary methods used in this research area.  

 

Figure 2.1: Comparison of some main methods for detecting a metabolite pathway 
 

In Figure 2.1 Principal Component Analysis (PCA) (Raamsdonk et al. 2001; Fukushima 

et al. 2011) is an unsupervised approach that is widely used in high-dimensional biological data 

analysis, such as in microarray data, protein data and lipid data. Other unsupervised learning 

techniques, e.g, hierarchical clustering Analysis (HCA), and supervised learning techniques, e.g, 

partial least squares (PLS), are also commonly used by researchers. The PCA techniques can 

reduce the high dimensionality (e.g., variables, or lipid species). It is usually used as a pre-

analysis step for other discriminant analysis techniques.  

PCA is also a useful visualization tool (http://ordination.okstate.edu/PCA.htm) for 

multivariate analysis when the genes or lipid species are used as variables. PCA is used to 

identify underlying factors which explain the correlations among a set of variables. The orthogonal 
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principal components can be reduced to several factors (or principal components), and then the 

factors are used to explain correlations and differences in the lipid species. Since PCA is not a 

method to find the metabolite pathway directly, this will not be investigated here. 

As shown in Figure 2.1, correlation analysis (Weckwerth et al. 2004; Fukushima et al. 

2011; Görke et al. 2010; Steuer et al. 2003; Steuer 2006; Allen et al. 2010) is used in pathway 

analysis by using an assumed linear association between a metabolite X with another metabolite 

Y in WT and MT groups separately, i.e. between Xw vs Yw or Xm vs Ym. Sakurai et al. (2011) 

built a gene-to-gene and metabolite-to-metabolite pathway database, KaPPA-View4 

(http://kpv.kazusa.or.jp/kpv4/), using a correlation network. Morgenthal et al. (2006) introduced 

correlation (heat) maps to show the network structure by using pair wise correlations from 

different parts (leaf and tuber) of the plant, Arabidopsis thaliana. 

Since metabolome or lipidome pathway analysis involves many biological algorithms, 

some biologists found metabolite networks by using their expertise in biology, but with less 

application of statistical analysis. Wu et al. (2005) introduced their approach using a metabolic 

flux (e.g., the growth rate) model. The FANCY approach (Functional Analysis by Co-responses 

in Yeast) performed by Raamsdonk et al. (2001) used single-celled yeast to find co-responses of 

metabolites that were caused by mutation effects (see Figure 2.1). FANCY results are derived 

and based on a metric that is an angle and results are interpreted based on the value of this angle, 

rather than doing a statistical test to assess significance.  Since the FANCY method is one of a 

few related to the work described herein, more details of this approach will be discussed in a 

separate subsection. 

In high-dimensional data analysis, multiple testing procedures are used to control the 

Family-Wise Error Rate (FWER, the chance of making one or more Type I errors among 

multiple tests of hypotheses), such as Tukey-Kramer's HSD (Honestly significant difference) test 

for pair-wise comparisons, Dunnett's test for pair-wise comparisons between the control group 

versus all other treatment groups, and Scheffé's method for testing all possible contrasts between 

treatment means. The Bonferroni correction divides the statistical significance level by the total 

number of lipid features and this can be too stringent for controlling the type I error rate when 

there are a large number of lipid variables in a lipid dataset. False Discovery Rate (FDR) control 

is commonly used in "omics" high-dimensional data analysis with a large number of hypotheses 

tests. Some brief remarks about FDR related methods will be given in a later subsection.  
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 2.2. FANCY Approach 

Introduction to FANCY Method  

Raamsdonk et al. (2001) introduced a technique to find the function of "silent" genes 

using metabolite level changes from a single-celled organism, Saccharomyces cerevisiae, which 

is a species of yeast. The "silent" genes are those genes with functions that are not reflected in 

the visible or obvious phenotype. By deleting "silent" genes from the Saccharomyces cerevisiae, 

the researchers expect to reveal the role of unknown genes by comparing them to the genes of 

known function using a co-response coefficient in the FANCY approach (Functional Analysis by 

Co-responses in Yeast). 

The FANCY approach was developed based on changes in metabolite concentration 

levels. Raamsdonk et al. (2001) hypothesized that it is possible to identify gene sites by looking 

at the metabolite concentration level change that is caused by the mutation. The authors 

demonstrated their FANCY technique by using one WT treatment and 4 mutant treatments and 

they focused on just a total of 6 metabolites species plus one reference metabolite, G6P(i.e., 

glucose-6-phosphate). WT and mutant type are actually different genotypes of an organism. For 

convenience and to highlight that it is the effect of the mutation on the lipidome that is of 

interest, herein they are referred to as ‘treatments’ even though it is not a treatment in the sense 

that it is something that can, technically, be randomly applied to an experimental unit. The co-

response from Raamsdonk et al. is defined by : 

 
)G6Pln()G6Pln(

)Xln()Xln(6:

wm

wmpGX
mutation 


 .  (2.1) 

X refers to the mean concentration level of any of the 6 metabolites with 3 samples in the WT 

and MT groups. The subscripts m and w denote the wild type and mutant type treatments, 

respectively. For this review of literature some notational convenience will be employed that has, 

in fact, been used in publications such as the one being summarized here that presented equation 

(2.1). Variables X and Y will refer to concentration levels of two different metabolites (or lipids). 

Sometimes we will just state metabolite X and Y to refer to concentration levels of two 

metabolites or mean concentrations. Thus “X” will be used both to label a metabolite and to 

denote its concentration level. Use of a subscript, such as Xw, will denote the same but for a WT 

organism. It is hoped that the meaning of the terminology will be clear from the context in which 

it is used.  
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The numerator of the co-response coefficient shows the log mean concentration level 

change between the MT and WT for a metabolite X. The denominator shows the log mean 

concentration level change between the MT and WT groups for the reference metabolite G6P. 

Since the co-response   is a ratio statistic, it has the disadvantage of being infinity if the change 

in the denominator is very small. Raamsdonk et al. (2001) converted the co-response into an 

angle response pGX
mutation

6:  by letting 

 )arctan( 6:6: pGX
mutation

pGX
mutation    (2.2) 

 

 

 

Figure 2.2: Plot of the co-response    as a function of  . 
Image from: http://thesaurus.maths.org 
 

The co-response coefficient pGX
mutation

6:  in (2.2) is an angle measurement. The range of   is   

- 90° <   < +90°. If 45  or 45  , from (2.1) we can see the mutation effect is larger in 

the X metabolite than that in the reference metabolite G6P. On the other hand, if  4545   , 

the mutation effect is smaller in the X metabolite than the reference metabolite G6P.  

The FANCY approach can be summarized into the following steps. 

1) Pair metabolites using all possible metabolites, X, with the reference metabolite G6P to 

get 6 pairs (recall, the Raamsdonk et al. focused on only six selected metabolites). Since 

there are in total 6 metabolites and one reference metabolite G6P, 6 pairs of metabolite 

were analyzed. The 6 metabolites are denoted X1, . . ., X6 in what follows. 

2) For each metabolite pair, get the co-response coefficient   in (2.1). 

3) Convert the co-response coefficient   into its angle response   in (2.2). 

 

Table 2.1 illustrates the FANCY results. In the table, the angle responses are listed for all 

metabolite pairs under 4 different mutant treatments. For example, the angle response   with 
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mutant 1 applied on metabolite pair X1/G6P is +80°, larger than +45°, then the co-response 

1 . From equation 2.1, this means mutation 1 resulted in a larger change in the 

concentration of X1 versus the WT than it did the reference metabolite across mutant and WT. 

Therefore, mutation 1 had a larger effect on the metabolite X1 than that in the reference 

metabolite G6P. The positive signs of θ and Ω mean that the concentration levels change in the 

same directions in both the metabolite X1 and the reference metabolite. Similarly, the angle 

response   with mutant 4 applied on metabolite pair X1/G6P is  ̶ 60°, and the co-response 

1 . From equation 2.1, this means mutation 4 causes a larger change in the concentration of 

X1 than in the reference metabolite. Therefore, mutation 4 has larger effect on the metabolite X1 

than in the reference metabolite G6P. However, here the negative signs of θ and Ω mean that the 

changes in the concentration levels of the metabolite X1 and reference metabolite G6P are in 

opposite directions.  

Table 2.1: Example results of the FANCY method shown with the angle variable   
In the first row, Xi/G6P stands for the pairs formed by any one of metabolites and the reference 
metabolite, G6P, where i = 1, …, 6. The four mutant treatments are listed in the first column. The 
general notation "Mutant j" are used instead of the real mutant name to avoid complicated 
biological terms, where j = 1, 2, 3, 4. The column names and row names are not the real names 
from Raamsdonk et al. The symbols are used as displaying purpose. The angle values are from 
Raamsdonk et al. (2001) Table 3, p 49. 

MT treatments X1/G6P X2/G6P X3/G6P X4/G6P X5/G6P X6/G6P 

Mutant 1 +80° +80° ̶ 60° +80° ̶ 60° ̶ 80° 

Mutant 2 +60° +50° ̶ 30° +60° ̶ 50° ̶ 70° 

Mutant 3 ̶ 70° ̶ 80° +80° ̶ 80° ̶ 60° +80° 

Mutant 4 ̶ 60° ̶ 80° +80° ̶ 80° ̶ 70° +90° 

  

Comparison between FANCY and Our Screening Scheme 

Our screening scheme can be summarized into two relationships mw AA  and mw BB   

as described in chapter 1. We pair all arbitrary lipid pairs and discard all other lipid pairs that do 

not satisfy the screening scheme. In our analysis, we specifically identify the reactant A and 

product B in each reaction in the pathway. 

In the FANCY approach, metabolite pairs are not paired arbitrarily. All metabolite Xs are 

compared with a reference metabolite G6P. In the metabolite pair, the reaction direction is not 

clear and the roles of reactant and product are not specified. The FANCY method was applied to 
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a very small dataset with 6 metabolite species using 3 samples. The angle values are an 

indication of the mutation effects in each metabolite pair. The FANCY method ranked lipid pairs 

by the angle metric and did not offer any test of significance. 

 2.3. Correlation Analysis 

 2.3.1. Introduction to Correlation Analysis 

Weckwerth et al. (2004) identified metabolic networks by using correlation analysis. 

They assumed that the metabolic fluctuation in the WT and MT groups might have a linear 

association between metabolite concentration levels. They also emphasized that the 

concentration level changes in metabolites was evidence of an underlying pathway structure and 

built a pathway network by using the following steps.  

1. They found significant mean differences for metabolite concentrations between the wild 

type and the mutant type groups by using a t-test and adjusting the FWER by using a 

Bonferroni adjustment. 

2. Genotype discrimination was performed by PCA and DFA (Discriminant Function 

Analysis) to see what metabolites species show differences between groups. 

3. Let X and Y be an arbitrary metabolite pair without specifying the reactant and product. 

Pearson's correlation analysis was applied to each metabolite pair to see if there was a 

significant linear association between Xw and Yw (or between Xm and Ym). The threshold 

for significant correlations is 0.8. Slopes of the lines connecting Xw and Yw, or Xm and Ym  

from a regression model were also used as a statistic to identify metabolite pairs that are 

significantly affected by the mutation. 

4. Pathway networks were constructed for WT and MT groups separately based on the list 

of significant results from correlation analysis. 

Fukushima et al. (2011) used a slightly different correlation analysis approach to find 

metabolite networks by using correlations of sample data between a pair of metabolites Xw and 

Yw in the WT, 
ww yxr , and Xm and Ym in the MT group, 

mm yxr . Fukushima also analyzed the 

correlations within the same treatment from different parts of the plant, i.e., using Xw with Xw'  

or  Xm with Xm' (
'wwxxr  or

'mm xxr ) for the same metabolite species. 
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 2.3.2. Roots-aerial Datasets Correlation Analysis in Fukushima et al. (2011) 

Fukushima et al. (2011) performed the correlation-network for metabolites by using roots 

and aerial tissues of the modeling plant Arabidopsis thaliana by using high-throughput 

chromatography-time-of-flight/mass spectrometry (GC-TOF/MS). The authors applied 

correlation analysis to two datasets and used a clustering algorithm to build a metabolite 

network. One dataset was from the roots data from Fukushima et al. (2011). Another dataset was 

the aerial data from Kusano et al. (2007).  

In the two datasets, there were three treatment groups with Col-0 as the wild type (WT) 

and methionine over-accumulation 1 (mto1), and transparent testa4 (tt4) as the two mutant 

groups. 59 metabolites (variables) which commonly exist in both roots and aerial tissues were 

analyzed. The sample sizes used in those two datasets are listed in the following table. 

Table 2.2: The sample sizes in roots-aerial datasets 

 WT mtol tt4 

Roots 17 16 20 

Aerial 17 13 20 

 

Fukushima and colleagues analyzed the roots-aerial data in the following procedure. 

1) The Spearman correlation was used for the correlation analysis. Sample pair-wise 

correlations of Xw and Yw from the WT (
ww yxr ), and Xm and Ym from the MT group (

mm yxr ) 

were tested as follows: let   be the population correlation between metabolite X and Y in a 

pair. Using WT as an example, test 0:0 
ww yxH  , 0: 

ww yxaH   using   

 )2(2
 

1

2





 ndf
t

stat t
r

n
rt   (2.3) 

where r denotes the corresponding Spearman’s correlation coefficient calculated from sample 
data obtained for the two metabolites.   
2) For any two correlations in Table 2.3, the correlation difference between any two 

metabolites, denoted 21   , was tested using the corresponding sample correlation 

difference for those two metabolites, denoted 21 rr  . Fisher's Z transformation was applied 

to the correlation difference 21 rr   with the hypotheses 210 :  H  vs. 
21:  aH  based 

on the test statistic 
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where statZ  is from a Z test of two sample correlation difference in the Fisher's 

transformation. 

Table 2.3: The sample correlations in roots-aerial datasets 
Each table cell stands for a vector of correlations between a metabolite pair X and Y in the same 
treatment. Each dataset has the same number of 1711 common pairs.  

 WT mtol tt4 

Roots 
ww yxr  

mtolmtol yxr  
44 tttt yxr  

Aerial 
ww yxr  

mtolmtol yxr  
44 tttt yxr  

 

The following correlation analyses were applied to the roots-aerial datasets by using the above 

algorithms. 

1) Applied Log-transformation on all 6 datasets in Table 2.2 with 59 common metabolites in 

each dataset.  

2) Paired all the arbitrary metabolite X and Y in each dataset to make 1711
2

59









common 

pairs.  

3) Calculated the Spearman's correlations for each pair in each dataset to get 6 sets of sample 

correlations in Table 2.3. 

4) Assessed the significance of correlations for each correlation dataset using t test in equation 

(2.3). Used local fdr to adjust for multiple testing. Compared the mutation effect by using the 

number of significant correlations in each of the treatments WT, tt4 and mtol. The 

comparison plots are shown in Figure 2.3 A. 

5) All correlation differences from Table 2.3 were tested using the normal approximation test 

statistic in (2.4). They compared, in particular, the correlation differences within each 

genotype (WT, tt4 and mtol) between roots and aerial tissues, and then used the local FDR 

for multiple adjusting testing adjustment a threshold of 0.05. The differential correlation 

comparison plot is shown in Figure 2.3 B.  
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 2.3.3. Results for Roots-Aerial Datasets 

Fukushima et al. (2011) examined the number of significant correlations between tissues 

in each treatment from both roots and aerial datasets. Figure 2.3A shows a comparison of the 

significant correlations in each genotype/treatment for the roots and aerial tissues. Figure 2.3B 

shows the significant differential correlations by using 21 rr   for each genotype between roots 

and aerial tissues. From Figure 2.3A, we can see that the number of significant correlations in 

WT and mtol is bigger in root tissues than in aerial tissues. But tt4 has a bigger mutation effect in 

aerial tissue than in roots. Figure 2.3B shows that tt4 has more differential correlations than the 

other two genotypes. Table 2.4 shows the number of significant pairs in the three 

genotypes/treatments which are visualized in Figure 2.3 A. Table 2.4 lists the results for Figure 

2.3. 

Colleagues of Fukushima, Kusano et al. (2007) performed correlation analysis using the 

same aerial dataset with more metabolite species. Kusano et al. found the common metabolite 

correlations in all the three genotypes using a Venn diagram.  

Table 2.4: Number of significant correlations in each tissue and genotype/treatments 
This table is produced by following the description from Fukushima et al. (2011). For example in 
the WT group in the roots, the number of significant correlations between Xw,roots vs Yw,roots is 
250. 170 significant correlations between Xmtol,roots vs Ymtol,roots were found in the roots in mutant 
mtol. 413 significant correlations between Xtt4,roots vs Ytt4,roots were found in the roots in mutant 
tt4.  

 WT mtol tt4 Total 

Roots 250 170 413 833 

Aerial 150 104 565 819 
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Figure 2.3: Correlation analysis results for comparing the 3 genotypes in Arabidopsis 
 (A) The number of significant correlations in each of the three treatments in roots and aerial 
tissues is shown in Table 2.4. For example in the WT group, the significant correlations between 
Xw,roots vs Yw,roots and Xw,aerials vs Yw,aerial is compared. X and Y stand for one metabolite pair. (B) 
The number of significant correlations comparing the same genotype/ treatment from roots and 
aerial tissues, e.g., in the WT treatment, the number of significant correlation difference 21 rr   is 

shown, 1r  is a correlation between Xw,roots and Yw,roots and 2r  is a correlation between Xw,aerials 

and Yw,aerial. X and Y are the same pair in 1r  and 2r . (This figure is re-produced from the data 
used in Fukushima et al. (2011) and corresponds to Figure 3 in their paper.  
 

Figure 2.4 shows the numbers of common correlations from three genotypes which is re-

produced from the roots-aerial data from Fukushima et al. (2011) using the Venn diagram to 

show the relationships of the significant metabolite pairs with the three genotypes. Figure 2.4 (a) 

is a visualization of a total 833 (in the first row of Table 2.4) significant correlations in the roots 

data from three genotype: WT, mtol and tt4 of which 87 significant correlations are from the WT 

group alone, 222 correlations are from treatment tt4 alone and 36 significant correlations are 

from only treatment mtol. In addition, 62 significant correlations commonly exist in all the three 

treatments. 79, 22, and 50 correlations exist in pair wise treatment intersections. The 

intersections of the metabolite pairs appeared in more than one treatment. Also note that in the 

first row of Table 2.4 in the roots in the WT, 250 significant correlations are from the sum of 87, 

79, 62 and 22. The total 833 significant correlations include the duplicated pairs if the same pair 

appeared more than one time on the list. Figure 2.4 provided more information than Figure 2.3 
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on what metabolites species are significantly affected by more than one treatment if they are in 

the intersections of the list.  

 
Figure 2.4: The numbers of common correlations from the three genotypes 
The three diagrams are re-produced from roots-aerial datasets from Fukushima et al. (2011), and 
follow the description from Kusano et al. (2007). (a) and (b) are Venn diagrams of the three 
genotypes in the roots tissues with the significant correlations converted from Figure 2.3(A). (c) 
Venn diagram of significant correlation differences between the roots and the aerial in the same 
genotypes which are converted from figure 2.3(B). 
 

Compared with our screening scheme showed in Figure 1.5, Fukushima et al. focused on 

the linear association between a metabolite pair X and Y in WT or in MT groups separately, and 

were interested in correlation changes among metabolite pairs across roots and aerial tissues  

within the same genotype. The correlation analysis focused on the strong linear association in 

each treatment groups which did not discriminate the reactant and the product role for each 

metabolite pair like what we do in our screening scheme. 

Weckwerth et al. (2004) also focused on the correlation differences from different 

treatment groups. They demonstrated their correlation analysis using slopes in the regression 

analysis for finding the relation between the Y metabolite and the X metabolite in a metabolite 

pair. The main idea of the analysis is illustrated in Figure 2.5 by using the roots-aerial dataset 

from Fukushima et al. (2011). In a centered and scaled dataset, the slope is the same as the 

correlation in the same pair which will be discussed in chapter 3. 
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Figure 2.5: Illustration of the correlation analysis using slopes in each treatment group  
(a) Blue circles represent the WT in roots. Red triangles are the mutation tt4 in roots. The blue 
line is the regression line from Xw with Yw in WT groups. X and Y stand for a metabolite pair. 
The red line is the regression line for fitting Xm with Ym in the mutant tt4 treatment. (b) The 
same symbols with (a) are used, but the two slopes are significant slopes in both WT (blue line) 
and significant in the MT (tt4 with red line), but not significant in the correlation difference 
(between the two line). (c) The blue circles are the WT in roots data and the red triangles are the 
WT in aerial data for the pair Dehydroascorbate and. Fructose. This plot is for a significant 
correlation difference between the red line and the blue line. 
 

Figure 2.5(a) shows a typical scatter plot with the regression line in each group by using a 

metabolite pair Fructose-6-phosphate and Glycine. The red and blue regression lines are fitted by 

using concentration levels of X and Y in two treatments WT and MT, tt4, in the roots data, i.e., 

the red line is from Xtt4 with Ytt4 and the blue line is from Xwt with Ywt., where X and Y 

metabolites refer to Fructose-6-phosphate and Glycine, respectively. The two slopes are not 

significantly different from 0. 

Figure 2.5(b) displays the slopes or the correlation relations from a metabolite pair that 

shows a significant WT correlation from Fukushima's correlation analysis results. A metabolite 

pair between Aspartate and Glutamate has the most significant correlation in the WT dataset 

(with the blue regression line) with the lfdr = 61082.9  . The tt4 group correlation is also 

significant with lfdr = 0.01599 (for the red line). But the difference between the two slopes 

(correlations) are not significant with lfdr = 0.551013. 

Figure 2.5(c) shows a significant correlation difference rootwtaerialwt rr ,,   in the WT 

between aerial and roots correlations for the metabolite pair Dehydroscorbate and fructose. The 

lfdr (local fdr defined in the next section) for the correlation difference is 0.004994. The 
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correlation for the WT in the aerial data is significant with lfdr = 0.003702. But the correlation in 

the WT in roots data with lfdr = 0.23863 is not significant. 

In the pathway analysis, since a correlation difference between the WT and MT groups 

can reflect the mutation effect in each metabolite pair, the correlation difference should be a 

more important and interesting measure than if we only consider the significant correlations 

within each treatment group alone. Even though the correlation difference can show some 

interesting results, the significant linear association relationship may not include all other forms 

of relations. Non-linear relationships or other more complex relationships may need to be 

considered.   

 2.4. False Discovery Rates and Mixture Model Approaches in High-

dimensional Data Analysis  

The false discovery rate (FDR) is a commonly used method for controlling the number of 

type I errors in high-dimensional data analysis. Mixture model approaches have also been a 

useful statistical technique to find a list of significant genes that are affected by treatment 

conditions. A mixture model approach will be explored in this study to identify lipidomic 

pathways. 

One could argue that elements of FDR theory go back to Schweder and Spjøtvoll (1982). 

However, it was developed into a more rigorous theory by Benjamini and Hochberg (1995). 

Table 2.5 illustrates the terms used in the FDR setting. “A” is the number of true negatives and 

“B” is the number of false negatives, the latter being the number of type II errors. “D” is the 

number of true positives and “C” is the number of false positives, the latter being the number of 

type I errors. The false discovery rate is defined as FDR 
C

E
R

   
 

 when R > 0 and 0 if R = 0. 

FDR can be interpreted as the expected proportion of false positives among all significant 

hypotheses, and it is used to set an adjusted threshold for significance when thousands of 

hypotheses are tested simultaneously. 
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Table 2.5: Hypotheses testing terms for FDR in the high-dimensional data analysis. 
K is the total number of hypotheses tested, and K = A + B + C + D. R is the number of the 
hypotheses rejected, and R = C + D. 

 
0H is true 0H is false Total 

Declare non- significant A B K - R 
Declare significant C D R 

Total M0 M1 K 
 

The local false discovery rate was introduced by Efron et al. (2001). Efron defined the 

local FDR, lfdr, at a particular value of a test statistic such as a z score as
)(

)(
)( 00

zf

zfp
zlfdr  , 

where 

 )()()( 1100 zfpzfpzf  , (2.5) 

is the density function for the data. The data in )(zf  consist of two portions. One portion 

represents the null component distribution, )(00 zfp , and the other portion, )(11 zfp , represents a 

distribution for which the alternative hypothesis is true. The proportion 0p  represents a 

proportion of tests for which the null is true while 1p  is represents the proportion of tests for 

which the alternative is true. The local FDR, )(zlfdr , is interpreted as a posteriori probability 

that a test is a true null given that it was rejected with a test statistic equal to z. More reviews on 

FDR methodologies can be found in Gadbury et al. (2008) and Broberg (2005). 

Allison et al. (2002) used uniform null distribution for fitting a mixture model to the p 

values. Efron (2004) introduced the empirical null distribution frame work in a large-scale 

hypotheses testing. In simultaneous hypothesis testing with N null hypotheses, Efron converted 

the set of p values into their corresponding z scores by letting  

 N ..., 2, 1,  i  ),(1  
ii Pz ,                        

where iz  is the percentile for the ith p value from the ith test for that gene,   stands for the 

standard normal cumulative distribution function (cdf), 1  represents the inverse standard 

normal cumulative distribution function, and iP  is the p value from  the ith test. Since z values 

are converted from a normal distribution, Efron named the theoretical null distribution of iz  as 

1) N(0, ~ )|(0 ii Hzf . The set of iz  was plotted into a histogram and then was used to get a 

natural spline curve for )(zf  by Poisson regression. Efron estimated the center (or mean), 0 , by 



27 

 

using the relation })(max{ arg0 zf  and standard deviation 0  for the spline curve )(zf . The 

standard deviation 0  is defined as 

 
2

1

2

2

0

0

)(log














 zf
dz

d .                   (2.7) 

Efron named the null distribution ),(~)( 000 Nzf  the empirical null distribution.  

Efron compared the theoretical null distribution, 1) N(0, , with the empirical null 

distribution, ),( 00 N , in a gene expression study. It was shown that the empirical null 

distribution has some advantages over the theoretical null distribution. There may have many 

other null distribution methods in the mixture model fitting literature for gene expression studies. 

However, methods for metabolite pathway analysis using model fitting are less established. 

Nevertheless, the need for an empirical null distribution of test statistics defined in chapter 3 is 

just as relevant. We will explore approaches to find a null distribution by using the bootstrap 

procedure as described in chapter 4, and a normal mixture model approach to fit the null 

distribution in chapter 5.  
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Chapter 3 - Exploratory Data Analysis 

 3.1. Difficulties in Analyzing the Lipid Pathway Experimental Data  

A total of 19740
2

141
2 







  lipid pairs from the 141 lipids are considered in 9 different 

lipidomic experiments. Our research goal is to find the significant lipid reactant and product 

pairs that are affected by the mutation in the pathway. Methods should be applicable for 

detection of reactant product pairs in a metabolome through use of different genotypes or 

possibly different treatment conditions. Here, we need to refine the supporting evidence from the 

mutation effect on the A→B reactant-product pathway into a statistic. We must take into account 

non-normality, potential nonlinear relations, and also zero values in the datasets. A condensed 

version of the results in this chapter will appear in Zheng et. al (2013). 

Dealing with Zero Values: There are some unique characteristics in the lipid pathway 

data which make the data analysis process more complicated. The difficulties are due to some 

zero values in lipid concentrations. There are 5 samples in each WT and MT treatment group. 

Some lipids have all zero values across the two treatment groups. Some other lipids may have all 

zero values in one treatment but not in the other. There are also some lipids with near zero 

concentration levels. Those zero values do not necessarily mean that the lipid is not present in 

the sample. Instead, the concentration level may be too low to be detected by the mass 

spectrometer. In this dissertation, the lipid is deleted from the data if its concentration is zero in 

all samples across both treatment conditions (or its standard deviation across all samples in both 

treatment conditions is zero). If the lipid has all zeros in one treatment but not in the other, it is 

kept. This kind of lipid could be a good candidate for a reactant or product.  

Small Sample Size: Raamsdonk et al. (2001) analyzed their metabolomic data with 3 

samples in each treatment. In this experiment, 5 samples are taken for each treatment. Small 

sample sizes are not uncommon in metabolomics, and they present difficulties for using 

assumptions of normality or application to the central limit theorem. 

Dependent Data Structure: In metabolite data, if there is a long chain of reactant and 

product pathways, one lipid's concentration level change may be associated with all other lipids 

on the pathway. Therefore, one lipid concentration change in the network might cause a 

sequence of changes in the pathway or the pathway networks (Steuer et al. 2003). The 
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fluctuation of concentration in the lipid species can reflect the underlying biological process and 

it stops at the moment when the researcher takes the sample. The dependence of the lipid data is 

due to the nature of the underlying pathways. Each sample has 141 variables, some or all of 

which may be correlated. It is reasonable to assume that the samples themselves are independent 

of each other.  

 3.2. Data Manipulation 

 3.2.1 Centering and Scaling 

The following notations will be used for one reactant A and product B in a lipid pair. 

n: The sample size in each group.  

i :  Subscript i = 1, 2 to denote the treatment, 1 as WT and 2 as MT. 

j :  Subscript j = 1, 2, …, n be sample within treatment. 

Before scaling: 

ijx : The concentration level for the jth sample in the ith treatment for one lipid.  

ix : The group mean in the ith treatment for one lipid. 

x : The overall mean across two treatment groups for one lipid, 
 

 
2

1 12

1

i

n

j
ijx

n
x . 

s : Standard deviation for one lipid across two treatments, 
12

)(
2

1

2










n

xx

s
i

n

j
ij

. 

Aijx : The concentration of jth sample for lipid A in the ith treatment. 

Bijx : The concentration of jth sample for B in the ith treatment. 

Ax : The mean concentration of A across two treatments. 

Bx : The mean concentration of B across two treatments. 

Aix : The mean concentration of A in the ith treatment. 

After scaling: 

ijz : The concentration level for the jth sample in the ith treatment for one lipid. Let 

s

xx
z ij

ij


 . 
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iz : The mean concentration in the ith treatment for one lipid and 


 
n

j
iji z

n
z

1

1 . 

z : The overall mean across two treatment groups for one lipid (note that after 

scaling, this quantity is exactly zero). 

Aijz & Bijz : The concentration level for the jth sample in the ith treatment for reactant A 

or product B. 

Aiz : The mean concentration of A in the ith treatment (i.e., wA  or mA )  

Biz : The mean concentration of B in the ith treatment (i.e., ,wB  or mB ) 

 
In the following part of this analysis, data from the fad2 experiment is used as an 

illustration for these notations. All other 8 datasets have similar properties. Data for only 4 of 

141 lipids are shown in Table 3.1. Concentration levels are given for each lipid in each sample. 

The unit of the data is nmol per mg dry weight. The first 5 samples are from the wild type group 

(sometimes referred to herein as the ‘control group’) and the last 5 samples are from the mutant 

group (sometimes referred to as a ‘treatment group’). The same 141 lipid compounds are 

analyzed in each of the 9 datasets. 

Table 3.1: Partial data structure from fad2  

Names WT1 WT2 WT3 WT4 WT5 MT1 MT2 MT3 MT4 MT5 

DGDG34_6 2.249 2.175 2.526 1.956 2.212 3.249 2.553 4.058 2.959 2.785

DGDG34_5 0.141 0.103 0.096 0.166 0.061 0.185 0.193 0.074 0.19 0.236

DGDG34_4 0.258 0.194 0.203 0.177 0.226 0.232 0.291 0.316 0.18 0.27 

DGDG34_3 4.694 4.329 4.405 3.858 4.026 3.451 3.398 4.164 3.243 3.026

 

Each lipid concentration has a different mean and a standard deviation when measured 

across the combined treatment groups. This presents challenges to evaluate reactant-product 

pairs in a pathway because some lipids are far more abundant in some samples than in others. To 

put all lipids on the same scale of measurement, their concentrations are centered and scaled by 

using the standardization formula ijz  from the notation defined earlier. 
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 Proposition 3.1: Consider a single lipid and denote the concentration by ijx  for the jth 

sample in the ith treatment, where i = 1, 2, and j = 1, 2, …, n. Then, 
n

zi 2

1
1

 for i = 1, 2 

and 
n

zz
2

1
1221  

. 

Proof: It is clear that 0
2

1 2

1 1

 
 


i

n

j
ijz

n
z  and equal samples in each group implies   21 zz . So 

if we focus on 1z , we have  
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The numerator of (3.1) can be calculated as 
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By the definition of standard deviation, it can then be converted to  
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With (3.2) , we can convert (3.1) into squared treatment mean. Then,       
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 holds. When n 

becomes large this upper bound close to 2. ■ 

After being centered and scaled, all the datasets have mean 0 and standard deviation 1 for 

each lipid when measured across both the WT and MT groups. In this way, we can compare the 

arbitrary lipid pairs in a standard unit across all possible pairs. Some noteworthy results follow 

from the above. According to Proposition 3.1, when there are equal numbers of samples in each 

treatment group, we have the following results. 

1. For the data described here for n = 5, 949.0
10

1
1 iz . As n gets large, 

izmax  goes to 1. 
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2. For a lipid pair, A and B, with two dimensional means given by ( 1Az , 1Bz ) and 

( 2Az , 2Bz ) for the wild type and mutant, the maximum Euclidian distance 

between them is 2.684 for n = 5 and goes to 828.28   as n . 

3. Defining                         

BbetweenAbetweenBBAAbetween SSSSzzzzSSDSS ,,
2

12
2

21 )()(    and         

  BwithinAwithin
i j

BiBijAiAijwithin SSSSzzzzSS ,,

2

1

5

1

22 )()( 
 

 , 

a. 0betweenSS  implies that  the lipid means 01 z  for each lipid. 

b. If 
betweenwithin SSSS  , both group centers are close to the origin (0, 0). 

 

Another result worth noting is that Pearson’s sample correlation coefficient between a pair of 

lipids is unchanged after scaling the data as described above. This is also true of a population 

correlation between two variables after centering and scaling the variables by their population 

mean and standard deviation, respectively. This result is well known and straightforward to 

show. Table 3.2 shows the data structure after the scaling. 

 
Table 3.2: Illustration of the centered and scaled data 

The second and the third columns are the concentration levels. ijz denotes the concentration level 

with subscript i = 1, 2 to denote the treatment groups and subscript j = 1, 2 ,…, 5 to denote the 
samples in each group. The last two columns show the mean and standard deviation for each 
lipid, respectively. 

Lipid WT MT Mean SD 

1 z11, z12,  z13, z14, z15 z21, z22,  z23, z24, z25 0 1 

2 
. 

. 

. 
. 
. 

0 
. 

1 
. 

141 z11, z12,  z13, z14, z15 z21, z22,  z23, z24, z25 0 1 

 

Figure 3.1 shows the relative position in the WT and MT groups for the same lipid pair before 
and after scaling. The relative positions of the WT and MT groups remain the same in the two 
plots. 
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Figure 3.1: Example scatter plots of one lipid pair before and after scaling 
Lipid PC34_1 (A, PC34:1, putative reactant) and lipid PC34_2 (B, PC34:2, putative product), 
which form a lipid pair, are plotted before (left panel) and after scaling (right panel).  
 

After centering and scaling, lipids are paired to determine whether or not the 

concentration change in the pair follows the scheme 1Az  < 2Az  and 1Bz  > 2Bz . Before 

screening the lipid pairs according to the scheme, a total of 19740 lipid pairs are created using 

the first lipid as the reactant A and the second lipid as the product B. Note that each lipid is 

allowed to be a candidate product or reactant prior to the screening procedure as described next. 

 3.2.2 Using Variable y to Screen for the Population Lipid Pairs of Interest 

Define a variable y, where 

                                              }{}    { 2121   
BBAA zzzz IIy . 

If only 1Az  < 2Az   is satisfied, then A is a possible reactant. If only    21 BB zz  is satisfied, then 

B is a possible product. In both the above cases, y = 1. When both 1Az  < 2Az  and   21 BB zz  

hold, A and B are a possible reactant-product pair, and then y = 2. Since y = 2 gives the results 

we are looking for, all the arbitrary lipid AB pairs that satisfy the condition y = 2 will be used to 

represent a population of interest in the following sections. Note that y = 0 reflects to the same 

pair but product and reactant role is reversed, and that y = 1 implies that both lipids are either 

reactants or products but not a reactant-product pair. 
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 3.3. Illustration of Treatment Mean Relationships from Scatter Plots 

 3.3.1. Patterns in Scatter Plots When y =2 and y = 1 

In high dimensional (or any) multiple testing procedures, we usually explore the 

characteristics of the dataset to summarize some useful test statistics, and then use those statistics 

to make inferences and draw conclusions to answer the researchers' questions (Westfall 1993). 

Figure 3.2 shows some scatter plots depicting relationships between two lipids. 
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Figure 3.2: Four representative scatter plots from y = 2 and y =1 

jAz 1 , jBz 1 , jAz 2  and jBz 2  stand for the jth sample of a paired lipid in wild type or mutant 

type for a reactant A or product B. The blue filled circles represent the WT group with 

( jAz 1 , jBz 1 ), and the red filled triangles represent the MT with ( jAz 2 , jBz 2 ) from 4 different 

lipid pairs when y = 2 and y = 1. In (a), PC34_1 is the reactant and PI36_5 is the product in this 
lipid pair.  
 

We will see that Figure 3.2(a) has the ‘ideal’ pattern with y = 2 when both the screening 

scheme conditions 1Az  < 2Az  and 1Bz  > 2Bz  are satisfied. The 5 WT data points are on the 

upper left corner and the 5 MT data points are on the lower right corner. The WT group has clear 

a separation with the MT group. Figure 3.2(b) is also from y = 2 with the mean relations 1Az  < 

2Az  and 1Bz  > 2Bz , but the two groups do not have the same clear separation. The relations of 

the four means in this pair still satisfy the screening scheme, but the mean differences are not 

large enough to separate the two groups. Figures 3.2(c) and 3.2(d) are scatter plots for two 
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different lipid pairs. In both cases, only one of the two conditions, 1Az  < 2Az   and  1Bz  > 2Bz , 

holds, i.e., y = 1. But Figure 3.2(c) shows a clear separation between the two groups. Since the 

relations of the 4 means for this pair do not satisfy the screening scheme, this pair is not a 

reactant-product pair candidate. In contrast, Figure 3.2(d) does not show clear separation 

between the two groups, and this pair will be excluded from further consideration. 

 3.3.2. Using Biologically AB Pairs as a Criterion for Identifying all AB Pairs 

We have a list of reactant and product pairs that are biologically plausible in the 

biochemical reaction pathways. An important goal is how to determine the biochemical 

feasibility of a lipid pair. The following features of the biochemical molecular structure can show 

the attributes from biologically functional lipid pairs (Fan 2010). 

 Possibilities of changing the lipid class. 

For example, the class PC lipid can be catalyzed in a reaction to become a PE class lipid by 

changing the number of carbons or double bounds in the PC class. It may not be possible to 

change the MGDG class to the DGDG class, or the PC class to PA class, because the structure of 

the MGDG class  and PC class molecules can not be changed to the DGDG class and PA class 

by changing either the carbons or the double bounds. 

 Possible changes to a fatty acid tail (acyl chain). 

Within the same lipid class, one lipid can change into another lipid by changing the carbon 

numbers or by changing the number of double bonds. But in one lipid acyl (tail) chain the double 

bonds can not be added by more than 3 when the lipid tail has a fixed number of carbons. For 

example, in PC class, both PC34:1 and PC34:5 are from the PC lipid class with 34 carbons and 1 

double bond in PC34:1, and 34 carbons with 5 double bonds in PC34:5. It is not possible to 

change PC34:1 to PC34:5 because the number of double bonds that can be added to one acyl tail 

is from 0 to 3. While in the same class of lipid with multiple acyl tails, the PC34:1 can be 

changed to PC34:4 and PC34:1 to PC40:4, but the head group PC can not be changed at the same 

time. 

 Extending or shortening a fatty acid chain. 

One lipid can be converted to another by changing the double bond numbers in the acyl chain. 

For example, to change a X to lyso X, 0 to 3 of the double bonds should be removed from one 

acyl chain.   
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These biological reactant and product pairs are used as a standard to compare with all 

other arbitrary lipid pairs. Figure 3.3 shows the scatter plot characteristics of the biologically 

functional reactant-product pairs in the dataset fad2. All other 8 datasets' biologically functional 

lipid pairs have similar properties with those in fad2. There are in total 17 known biologically 

functional lipid pairs in the fad2 dataset. The rest scatter plots from the biologically functional 

ones in other datasets are all similar to those in Figure 3.3. All the biologically functional lipid 

pairs scatter plots have similar patterns: WT is at the upper left corner, MT is at the lower right 

corner. Their concentration relationships satisfy 1Az  < 2Az  and 1Bz  > 2Bz in all biologically 

functional lipid pairs with a large mean difference in each lipid. Figure 3.4, summarizes scatter 

plots in all the biologically pairs.  
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Figure 3.3: Scatter plots of some biologically functional lipid pairs in fad2 

In each panel, the 5 blue circles represent the WT group with coordinates ( jAz 1 , jBz 1 ) and the 5 

red triangles stand for the MT group with coordinates ( jAz 2 , jBz 2 ). The x-axis is the 

concentration of the reactant A and the y-axis is the concentration of the product B.  



38 

 

 

 
Figure 3.4: A typical reactant and product candidate pair after scaling.  
The two ovals represent wild type group (WT) and mutant type group (MT), respectively. While 

1Az  and 1Bz  stand for wild type reactant and product group means, 2Az  and 2Bz  stand for 

mutant type reactant and product group means, respectively. The three points, ( 2Az , 2Bz ), 

( 1Az , 1Bz ) and ( 1Az , 2Bz ), form a right triangle. 
 
The correlation analysis technique of Fukushima et al. (2011) was discussed in chapter 2. The 

next section explores the application of this method to the data used herein. 

 3.4. Can Correlation Analysis Work in our Lipid Experiments? 

We explore the 9 datasets in lipid experiments by using the correlation data analysis 

procedure by Fukushima et al. (2011). The notations from Fukushima et al. (2011) are adapted 

by using X and Y as a lipid pair without discrimination of the role of reactant A and product B.  

Define 
wwYXrr 1  as the correlation between Xw and Yw in the WT and  

mmYXrr 2
 as the correlation 

between Xm and Ym in the MT.  

Fukushima et al. were interested in the correlations differences 21 rr   in metabolite pairs 

between roots and aerial tissues. In this correlation analysis, the single correlations in each 

treatment are ignored, because our research interest is to find the significant correlation 

differences, 21 rr  , between the wild type and the mutant treatments which can reflect the 

mutation effect in lipid pairs. Therefore, the Z test from Fisher's transformation on the 

correlation difference 21 rr   is used to evaluate the significance of mutation effect for each lipid 

pair from test statistic (2.4) at lfdr level of 0.05. Tests of the single correlations are not of 

primary interest; however, we still evaluate the significance of single correlations so as to assess 
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whether the number of significant correlations is different across treatment conditions. The t-test 

in (2.2) is used to evaluate the significance of
wwYXrr 1  and  

mmYXrr 2
 at lfdr level of 0.05 in a test 

of whether there is evidence that the two lipids are associated or not (i.e., a two tailed test of a 

null hypothesis of no association). Spearman's correlation and the Pearson's correlation are 

utilized separately to get results. Since the biologically functional lipid pairs are the criterion to 

see if the analysis results are reasonable or not, using the biologically functional lipid pairs to 

judge the correlation analysis results will be the strategy.  

Table 3.3 shows the analysis results using Spearman's correlation. One can see that the 

numbers of significant correlations in WT are significantly larger than those in MT by comparing 

the first row and the second row. But in the last row, Spearman's correlation does not find any 

lipid pair that has a significant correlation difference. Since Spearman's correlation uses ranks to 

get the results, when we have only 5 samples, a small sample size and many ties among ranks 

can create too much discreteness in the randomization distribution and low power for detecting 

significant results. 

Since Spearman's correlation may not be a suitable metric for dependence as it was in 

Fukushima et al. (2011), Pearson's correlation was also used in the correlation analysis. The 

results are shown in Table 3.4. 

One can see that Pearson's correlation analysis detects more significant results than use of 

Spearman's correlation analysis. However, are those results reliable? Can the correlation analysis 

reflect the main characteristics of the lipid data via the biologically functional lipid pairs? To 

check Pearson's correlation analysis results, the lipid pairs with significant correlation 

differences are matched with the biologically functional lipid pairs in 9 lipid datasets in Table 

3.5. 

Table 3.3: Number of significant Spearman's correlations in the 9 experiments 
The first row stands for the number of significant correlations, 

wwYXrr 1 , from the WT for each 

experiment. Row 2 stands for the number of significant correlations, 
mmYXrr 2

, from the MT. 

Row 3 shows the number of significant correlation differences. 
Correlations fad2 fad3 fad4 fad5 fad6 fad7 sfd1 sfd2 sfd3 

wwYXrr 1  177 177 177 177 177 177 149 34 149 

mmYXrr 2
 63 8 2 6 5 2 6 98 2 

21 rr   0 0 0 0 0 0 0 0 0 
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Table 3.4: Number of significant Pearson's correlations in the 9 experiments 
The first row stands for the number of significant correlations, 

wwYXrr 1 , from the WT. Row 2 

stands for the number of significant correlations, 
mmYXrr 2

, from the MT. Row 3 shows the 

number of pairs with significant correlation differences. 
Correlations fad2 fad3 fad4 fad5 fad6 fad7 sfd1 sfd2 sfd3 

wwYXrr 1  3 3 0 3 3 3 13 71 13 

mmYXrr 2
 12 6 0 9 6 0 1121 28 11 

21 rr   16 12 0 0 10 15 18 0 0 

 

Table 3.5: Matching number between the biologically functional lipid pairs and the pairs 
with significant correlation differences from Pearson's correlation analysis 
The match is performed in all the 9 experiments. First row shows the number of biologically 
functional lipid pairs that are found from the significant results from the correlation differences 
in row 3 of Table 3.4. For comparison, the total number of biologically functional lipid pairs 
given by experimental biologists is shown in the second row for each experiment. The last row 
stands for the total number of arbitrary lipid pairs in each dataset. 

 fad2 fad3 fad4 fad5 fad6 fad7 sfd1 sfd2 sfd3 
Biological pair matched 0 0 0 0 0 0 0 0 0 
Total biologically lipid pairs 17 23 7 16 8 14 2 5 7 
Total number of pairs 9180 8001 8256 8385 9045 8646 8911 7381 9180

 

The first row of Table 3.5 shows that no biologically functional lipid pairs are matched 

with the results in any of the 9 datasets. For example, even though there are 9180 arbitrary lipid 

pairs in fad2 and 17 biologically functional lipid pairs, none of the biologically functional lipid 

pairs can be matched with any of the 16 lipid pairs shown in the last row of Table 3.4. Therefore, 

Pearson's correlation analysis does not seem helpful in finding the significant reactant and 

product lipid pairs that have similar characteristics with the biologically functional lipid pairs.  

Figure 3.5 shows the significant mutation effect using Pearson's correlation results from 

Table 3.4. One can see that in the first panel of WT, the tallest bar is sfd2. This means that more 

lipids in sfd2 in the WT group are correlated. In panel MT group, the tallest bar is the sfd1. It 

means that the more lipids in sfd1 in the MT group are correlated. While in the correlation 

differences in the third panel, there are not many lipid pairs that are affected significantly.  
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Figure 3.5: The number of significant correlations comparison in all 9 datasets 
This graph is produced from Table 3.4 to visualize the mutation effect by using Pearson's 
correlation. The same color stands for the same data in each of the three group comparisons. 
 

In conclusion, Pearson's correlation analysis can find some significant lipid pairs 

according to the linear association between the concentration levels in each group. But the issue 

is that the correlation within WT or MT is not a good metric to describe a biologically functional 

reactant-product pair affected by the mutation. To achieve our research goal, a novel statistical 

data analysis is needed. 

 3.5. Some Numerical Facts from the Exploratory Data Analysis 

Figure 3.6 illustrates the relations among the treatment means in a candidate A-B pair in the two 

dimensional space from Result 3. For A, 949.00 2  Az  and 0949.0 1  Az . Similarly for 

B, 949.00 1  Bz  and 0949.0 2  Bz . The positions of the WT and MT groups shown in 

this figure stand for the extreme cases when  1Az  < 2Az  and   21 BB zz  hold. Since the 

treatment groups can have many different positions than those in this plot, the group centers, 

( 1Az , 1Bz ) and ( 2Az , 2Bz ) can be in anywhere within the shaded 2 × 2 square area. The border 

of the square represents the limits of the A-B lipid pair treatment means. 
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Figure 3.6: The relations of the treatment means for an AB lipid pair  
The shaded square represents the possible positions for ( 2Az , 2Bz ) and ( 1Az , 1Bz ) which are the 
wild type and mutant type groups for all arbitrary lipid pairs after scaling, respectively.  
 

Figure 3.7(a) shows the scatter plot of WT and MT for all the 4623 lipid pairs with y = 2, 

(recall that y = 2 if the lipid pair means satisfy the conditions 1Az  < 2Az  and   21 BB zz ). The 

WT groups (gray) would appear at the top-left corner and the MT groups (light blue) would be 

located at the bottom-right corner. The blue points and the red points are the WT and MT groups 

from 17 biologically functional lipid pairs, respectively. Since the 135o reference blue line 

crosses the centers of the biologically functional pair WT and MT groups, this position is a 

chosen for a possible reactant and product in a lipid pair. This position should be 135 º angles to 

the x-axis, and the WT and MT groups should be separated with a large inter-group distance.  

Figure 3.7(b) shows that within the 4623 lipid pairs with y = 2, the WT treatment group 

centers  ( 1Az , 1Bz ) fall in the 0.949 by 0.949 black square area, and the MT treatment group 

centers ( 2Az , 2Bz ) fall in the 0.949 by 0.949 yellow square area. According to Proposition 3.1 

and its results, the treatment centers ( 1Az , 1Bz ) in the black square and ( 2Az , 2Bz ) in the yellow 

square for any lipid pair are symmetric about (0, 0). Since the biologically functional lipid pairs 

are all from these lipid pairs, they are a useful source from which the significant results are 

drawn. Several statistics can be summarized from these lipid pairs to reflect the mean 

relationships. 
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Figure 3.7: The scatter plot and the treatment mean plot when y =2 from dataset fad2 
(a) The light gray (WT) and the light blue (MT) data points are the scatter plot for all the 4623 
possible lipid pairs in fad2 which satisfy the screening scheme relations 1Az  < 2Az  and 

  21 BB zz  or equivalently y = 2. The blue (WT) and red (MT) data points are the scatter plot for 
all the 17 biologically functional lipid pairs. The diagonal blue lines are reference lines with 45º 
and 135o angles relative to the x-axis. (b) The treatment means from the lipid pairs with y = 2. 
The yellow square represents the area in which the MT group means fall and the black square is 
the area in which the WT group means fall. 

 3.6. Three Summary Statistics  

Three summary test statistics are generated according to the exploratory data analysis. They are 

tg ratio, SSD and R statistics. The distributions of the test statistics are shown in Figure 3.8. All 

statistics can be applied to each lipid reactant-product pair in the scaled data. 

 

 Statistic 1: tg ratio  

 This tg ratio is the ratio of lipid product B group mean difference to the reactant A group 

mean difference which can be defined as 

              








12

21

AA

BB

zz

zz
tg , (3.4) 

where means ijz  are defined early in this chapter. The ideal position for the two dimensional 

groups WT and MT is when they form a 135 degree angle with the x-axis, which leads to tg = 1. 

The red lines in the tg ratio distribution in Figure 3.8(a) shows the biologically functional lipid 

pairs with tg ratio values that are all close to 1. 
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Figure 3.8: The distributions of the test statistics. 
The red dashed vertical lines stand for the biological lipid pair statistics which are matched with 
the three statistics in dataset fad2 from lipid pairs with y = 2. 
 

 Statistic 2: SSD  

        SSD is a squared distance between the two group centers as defined early in the Result 2 

with the form  

              2 2
1 2 2 1( ) ( )between A A B BSSD SS z z z z         (3.5) 

Large SSD, or inter-group distance gives results shown in Figure 3.8(b). 
 

 Statistic 3: RT statistic   

The lipid pair with tg = 1 or the angle close to 135o between the line formed by the WT 

and MT type mean centers and the positive x-axis will reflect the true candidate biological pairs 

in this data analysis. Raamsdonk et al. (2001) used a similar measurement co-response 

coefficient Ω as a ratio of the log concentration level change in FANCY to illustrate the best 

position with 45º or  ̶ 45º that is analogous to tg here. Raamsdonk et al. already showed that this 

co-response may go to infinity when the reference metabolite mean concentration change is very 

small (see equation (2.1)), making the evaluation impossible. Using tg ratio has the same 

disadvantage. Since the tg ratio is also a ratio statistic, it can be very large or close to infinity (or 

can be very small and close to 0) when the angle is close to 90° (or 0º). Therefore, if used alone, 

this measurement does not capture all characteristics of potential reactant-product pair. Similarly, 

the SSD statistic also has some disadvantages. If the inter-group distance is very large, but the 
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angle between the groups is much different from 135º, then the result may not be real. This 

means that using SSD alone may also lead to false discoveries.  

Therefore, a statistic using both tg and SSD at the same time is proposed. This combined 

statistic, called R, can eliminate the respective disadvantages of tg and SSD while keeping their 

advantages. The statistic R is defined as     

              22 ))max(()1( SSDSSDtgR  , (3.6) 

 where tg is the tg ratio as defined in (3.4), and SSD is defined in (3.5). The value )max(SSD  is 

set to 2.684 from the theoretical maximum SSD from the Result 2 when sample size is 5. This 

ensures that the value of R will never be exactly zero. As we will see later, for interpretability 

purposes, the R statistics in (3.6) will be transformed by logarithm. Smallest R values are the 

lipid pairs that are significantly affected by the mutation.  

In Figure 3.9, the data points (bio.tg, bio.SSD) from the 17 different biologically 

functional lipid pairs indicate that the most interesting pairs are close to the peak (1, 2,684). For 

convenience small values of R are converted to large values of –log(R) to perform an upper tail 

test rather than a lower tail test. Figure 3.8(c) shows the distribution of the transformed R statistic 

using RT = )log(R . The biologically functional pair's RT statistics (red lines) shows that the 

larger values of RT will reflect the most interesting results. 
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Figure 3.9: Illustration of R statistic from the scatter plot using tg and SSD in dataset fad2 
The vertical red line shows tg = 1. The horizontal red line shows an arbitrary cutoff point at SSD 
= 2.3.  
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In Figure 3.9, the black points are the (tg, SSD) coordinates for each lipid pair. The red 

points at the peak are the biologically functional lipid pairs. The peak area contains the most 

interesting lipid pairs with large SSD values and tg close to 1. Note that in Figure 3.9, the scatter 

plot of tg and SSD preserves some regular patterns because tg and SSD are all functions of the 

means, Aiz  and Biz  as shown previously. 

In conclusion, the three statistics are derived from the exploration of the data according to 

the screening scheme in Figure 1.5. From the above analysis, we can see that the three statistics 

can reflect the data characteristics for lipid pairs that are biologically functional reactant-product 

pairs whose reaction is modified by the mutation in the organism. They can be employed 

separately or combined as a whole. In the next chapter, I will introduce a bootstrap technique to 

determine a null distribution of each of the three statistics. This will be one null distribution and, 

as we will see, it may not be the ideal null distribution since the null hypothesis under which it is 

derived may be too restrictive. More discussion of this interesting dilemma follows. 
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Chapter 4 - A Parametric Bootstrap Null Distribution  

 4.1. Bootstrap Algorithm 

Some literature on fitting a null distribution for the mixture model approach was 

reviewed in chapter 2. In chapter 3 three statistics tg, SSD, and RT were proposed. In this 

chapter, a bootstrap procedure is used to establish an approach for getting a null distribution for 

the three statistics separately using a well-known parametric distribution. Then the parametric 

bootstrap null (PBN) distribution will be fit to the real data to find a list of discoveries.  

Following the screening scheme in Figure 1.5, after scaling, let multivariate WT 

concentration data be ,11z ,12z …, Fz n iid
1  , and mutant data be ,21z ,22z …, Gz n iid

2  . F  

and G  denote the distributions from which the WT and MT data come. ijz  denotes the 

concentration level for the jth sample in the ith treatment groups. The index, i = 1, 2, represents 

the WT and MT treatments, and the other index, j = 1, …, n, stands for the sample in the ith 

treatment. Assuming that there is no mutation effect, the null hypothesis F  = G  should be 

satisfied for each lipid species in the 141 lipids in the dataset. This will be the assumption under 

which the bootstrap null distribution is generated in the following. Some relevant notation for 

later is the following: let Aw , Bw , Am , and Bm  be the population means for the reactant A in 

the wild type, product B in the wild type, reactant A in the mutant type, and reactant B in the 

mutant type treatments, respectively. The statement F  = G  can be expressed in the following 

null hypothesis, 

 
:0H  GF   

:AH  GF    
(4.1) 

Note that the above null hypothesis is quite restrictive in saying that the MT and WT data are 

from exactly the same high-dimensional distribution. Nevertheless, such a null is not uncommon 

and is the null hypothesis under which some randomization tests and bootstrap tests are carried 

out. The null distributions of tg*, SSD*, and *
TR  will be generated under the null hypothesis in 

(4.1) from the lipid pairs that satisfy the screening scheme *
1Az  < *

2Az  and *
2

*
1   BB zz , or y* = 2. 

In this section, all the notations used in the bootstrap will be similar with those in the real data 

except that the statistics from the bootstrap are marked with a star (*). Figure 4.1 is a schematic 

of the bootstrap procedure.  
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Figure 4.1: Schematic of the bootstrap procedure for generating the three test statistics 
from each bootstrap sample 
Dataset X is the original sample with 141 rows (lipids) and 10 columns (5 WT and 5 MT 
samples). B bootstrap samples X*1,…, X*B are generated from the original data. Center and scale 
the B bootstrap samples to get the scaled bootstrap samples z*1,…, z*B. Approximately K = 4600 
lipid pairs which satisfy the screening scheme *

1Az  < *
2Az  and *

2
*

1   BB zz  are generated from the 

scaled bootstrap samples. 4600 statistics values are computed for each tg*, SSD* and *
TR , 

respectively, from the scaled bootstrap samples. Using tg* as an example, if B = 200, a total of 
4600 × 200 tg* values are generated from the 200 bootstrap samples. 
  

Let B be the number of bootstrap samples. Figure 4.1 shows the flow from the un-scaled 

sample ),...,,,...,(X 25211511 xxxx  data to the bth bootstrap samples X*b to the scaled bth bootstrap 

samples Z*b. The screening scheme is applied to each lipid pair from the scaled bootstrap sample 

to obtain, say K, test statistics for each statistic tg*, SSD*, and *
TR  separately in the bth bootstrap 

loops. Note that the number K will vary from sample to sample in the bootstrap sampling 

procedure because of the screening for pairs for which y* = 2. Typically this number is 

approximately K = 4600 and, for convenience, we use the number 4600 in what follows as the 

technique is described.  
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Bootstrap Algorithm  

1. Let the sample be a matrix ),...,,,...( 25211511 xxxxX  with the 141 lipid species 

representing the rows and with 5 columns for WT samples and 5 columns for MT 

samples. 

2. Let B = 200, and Bb ,...,2 ,1  to denote the bth bootstrap sample.  

3. Take random sample from 1 to 10 with replacement to get a vector with 10 integer 

values. Generate the bth bootstrap sample ),...,,,...(X *
25

*
21

*
15

*
11

* xxxxb  with 141 rows and 

the 10 random numbers as the columns. The first 5 columns are used as the WT and last 

5 columns as the MT groups. 

4. In the bootstrap sample, reduce (delete) the number of lipid species in each row when 

either the concentrations are all zero values or the standard deviation is 0 across the two 

treatment groups for that lipid.  

5. Obtain centered and scaled samples ),...,,,...(Z *
25

*
21

*
15

*
11

* zzzzb   by using
*

**

*

s

xx
z

ij

ij


  to 

get the mean 0 and standard deviation 1 for each lipid species. *
ijx and *

ijz denote the 

bootstrap data before and after scaling. 

6. Pair any reactant A* with any product B* to get approximately 19740
2

141
2 







  lipid pairs 

A*→ B*.  

7. Screen the relationships of  *
1Az  < *

2Az  and *
2

*
1   BB zz  according to the value 2* y for 

any arbitrary lipid pairs. Pick out approximately K = 4600 lipid pairs with 2* y . 

8. Calculate the three statistics, tg*, SSD*, and *
TR  for each lipid pair A*B* from the scaled 

bootstrap sample bz*  in the y* = 2 subpopulation. The test statistics are vectors with 

about 4600 elements from each of the bth bootstrap samples, 

i.e., ),...,,(tg 4600*2*1** tgtgtgb  , ),...,,(SSD 4600*2*1** SSDSSDSSDb  , 

)R,...,R,R(R *4600
T

*2
T

*1
T

*b
T  .    The three statistics are defined as in equations (3.4), (3.5) 

and (3.6) with the forms  

                                                   
*

1*
*

2*

*
2*

*
1**tg









AA

BB

zz

zz
,  
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                   2*
1*

*
2*

2*
2*

*
1*

* )()(SSD   BBAA zzzz , 

           2*2** ))828.2()1(R  SSDtg  

                                                    )log(R **
T R  

9. Use the ( 4600 ) bootstrap statistics to determine the null distribution for the three 

statistics, tg*, SSD*, and *
TR , respectively. 

4600 bootstrap statistics from the bth bootstrap sample can form a null distribution in one 

bootstrap loop. B=200 null distributions are generated from 200 bootstrap samples. The 

question is how to summarize the 200 bootstrap null distributions into one null distribution 

for the three statistics tg, SSD and *
TR , respectively. 

 4.2 Bootstrap Null Distribution 

 4.2.1. Choose Distribution Class for the Null Distribution 

Once the null distribution of the statistic is determined in one bootstrap sample, the 

procedure in Figure 4.2 is adopted to obtain one null distribution for each of the statistics, tg, 

SSD and *
TR , in the bth bootstrap sample. Note that Figure 4.2 is the procedure only for one 

bootstrap loop. The vector bb sss ],...,[S 4600*2*1**   is used to denote a vector of statistics from the 

bth bootstrap sample Z*b with 4600 elements, and S*b stands for any of the three statistics: tg*, 

SSD*, and *
TR .  

As shown in Figure 4.2, Maximum Likelihood Estimation (MLE) is used to fit the bth 

bootstrap statistics bb sss ],...,[S 4600*2*1**   to each of four well-known distributions, the 

Exponential, Gamma, Log-normal and Weibull distributions. The statistical software R package 

"fitdistrplus" is utilized for the model fitting and parameter estimation procedures. In addition to 

the parameter estimates (MLEs), the Kolmogorov-Smirnov (K-S) test statistic D, AIC and BIC 

are extracted from the estimation procedure for the four models. Those estimates will be used to 

compare the four models to determine which type of model is the best candidate null distribution 

resulting from the 200 bootstrap samples. 

The K-S test statistic D is the maximum vertical distance from the empirical CDF to the 

fitted parametric distribution. AIC is defined as )ln(22 Lk  , where k is the number of the 

parameters in the model, and L is the maximized value of the likelihood function for the 
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estimated model. The preferred model has the smallest AIC, i.e. the model that has maximized 

log-likelihood value and has smallest number of parameters. BIC is closely related to AIC, but 

the penalty term (i.e. )ln(nk , where n is the sample size and k is the number of the parameters) is 

more stringent than that of AIC.  

 

 

Figure 4.2: Flow chart for generating one null distribution of the statistics using the 
maximum likelihood estimation procedure in the bth bootstrap sample. 
The above chart shows the null distribution generation for the test statistics, tg*, SSD* and *

TR , 

from one bootstrap sample ),...,,,...(Z *
25

*
21

*
15

*
11

* zzzzb  . Four well-known distributions, 

Exponential, Gamma, Lognormal and Weibull, are used to fit the bth bootstrap test statistics 
separately. For example, for tg*, ),...,,(tg 4600*2*1** tgtgtgb  . MLE, Kolmogorov-Smirnov (K-S) 
test statistic D, AIC and BIC are extracted from each model fitting. 
 

The ideas will be illustrated in the context of using the K-S test statistic D from each 

bootstrap sample to assess the goodness of fit of the bootstrap statistics (i.e., tg, SSD, and *
TR ) to 

the candidate parametric distribution. Here, the p-values from the K-S test are not used for two 

key reasons. First, the null hypothesis in a K-S test is that the candidate distribution is the correct 

one, and the K-S test statistic seeks evidence that the alternative hypothesis (the candidate 

distribution is not correct) is correct. Very large sample sizes are in play for each K-S test (a 
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sample of about 4600 observations) so every null hypothesis is likely to be rejected for even very 

minor departures from the null hypothesis. These departures may not be of any practical 

importance as long as the candidate distribution is effective in modeling the patterns that are of 

interest in the null distribution of the test statistics. Second, the 4600 or so observations used in a 

K-S test are not likely to be independent, making interpretation of p-values questionable. Thus a 

following procedure is used that utilizes the K-S D statistic as a metric but using the bootstrap to 

delineate its sampling distribution. The candidate distribution with the smallest K-S D statistic 

across bootstrap samples is interpreted to be a better candidate than the others.  

The procedure in Figure 4.2 is repeated B = 200 times to give 200 bootstrap samples. 

Suppose 200 null distributions for the statistics are generated. To summarize the 200 null 

distributions into one final null distribution, all the quantities, K-S D statistic, as well as the AIC 

and BIC from 200 bootstrap samples are used to determine the preferred candidate distribution to 

represent the null distribution of the statistics, tg, SSD, and *
TR . The following details use of the 

K-S D statistic. The use of AIC and BIC for evaluating candidate distributions is similar. 

Minimum K-S Test Statistic D Criteria: The Kolmogorov-Smirnov test (K-S test) 

determines if two datasets differ significantly. A smaller value of K-S statistic D represents a 

smaller maximum vertical distance from the empirical data distribution to the fitted parametric 

distribution. It is a measure of the goodness-of-fit for the 4 candidate distributions to the test 

statistic 
bb sss ],...,[S 4600*2*1**   in the bth bootstrap sample. Thus four K-S D statistics are 

computed, one from each of the four fitted candidate models that are fit to data from the bth 

bootstrap sample. Of the four values of D,  the minimum value, b
MinD*  is used as a measure to 

select which of the four candidate distributions represents the best fit to the statistics in that 

particular bootstrap sample. Thus the candidate distribution with the minimum b
MinD*  will be the 

candidate distribution for the bth bootstrap sample. For each of the B = 200 bootstrap samples, 

one well-known distribution will outperform the other three distributions to form a minimum D 

statistic vector, ),...,,...,,( 200**2*1**
Min

b
MinMinMinMin DDDDD  , with 200 minimum Ds as its elements. The 

final chosen null distribution class will be the well-known candidate distribution that produces 

the largest number of minimum Ds in the vector *
MinD . How this works will be seen in a later 

subjection that illustrates its use on data. 
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The minimum AIC and BIC criterion are also utilized to get the null distribution class 

which uses similar steps but changes the K-S statistics D to AIC and BIC. This criterion is used 

to obtain information in addition to the minimum D criterion for the purpose of selecting the best 

candidate models.    

 4.2.2. Determine the Final Parametric Null Distributions and Assess the Goodness-of-

fit  

In what follows, the bootstrap null distribution class is determined by the minimum K-S 

D criterion. Now the question is: How to determine the parameters for the chosen class 

distribution?  

The final null distribution model will be represented by using three different parameter 

estimates. The first set of estimates is from the 5th percentiles of the 200 MLEs (i.e. 5th percentile 

parametric distribution), the second set is from the mean of the 200 MLEs (i.e. mean parametric 

distribution), and the last set is from the 95th percentiles of the MLEs (i.e. mean parametric 

distribution).  

After the parametric null distribution is determined, its fit to the statistics, tg*, SSD*, and 

*
TR ,  is assessed using empirical distributions obtained from the 200 bootstrap samples.  

Figure 4.3 shows the work flow for determining the empirical distribution of the three test 

statistics from the bootstrap. Using the tg statistic in the bth bootstrap sample 

bb tgtgtg ],...,,[tg 4600*2*1**   as an example: 

 
1) Table (a) in Figure 4.3 shows the empirical distribution of the tg* statistic from the 200 

bootstrap samples for 100 different percentiles (i.e., the 1st to the 100th). The 100 

percentiles of the vector bb tgtgtg ],...,,[tg 4600*2*1**   are calculated from the data in each 

row. 

2) Suppose that 200 empirical cumulative density functions can be generated from each row 

in Table (a) of Figure 4.3. We need to use one empirical CDF to represent the empirical 

distribution for the statistic that is summarized from the 200 ECDFs. This final empirical 

CDF can be represented by three curves which are the 5th percentiles, median and 95th 

percentiles empirical distributions. The empirical 5th percentile empirical distribution is 

generated from the 5th percentiles of each column in Table (a) of Figure 4.3. Similarly, 
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the empirical median distribution is from the medians of each column, and the empirical 

95th percentile distribution is from the 95th percentiles of each column in Table (a). 

3) The final parametric null distribution is evaluated by the final empirical distribution by 

matching the corresponding 5th, median and 95th percentiles of their empirical 

distributions to their corresponding parametric distributions to see how close they are. 

 
Figure 4.3: The empirical distributions of the three test statistics from 200 bootstraps 
Using tg* as an example, tg*b is a vector with 4600 element, i.e., bb tgtgtg ],...,,[tg 4600*2*1**   
from the bth bootstrap. The empirical distribution of tg* will be listed in Table (a) using 100 
percentiles (1 to 100). Similarly, the empirical distributions of the SSD* and *

TR  can be 
generated. 

 4.3. Results in fad2 Dataset 

 4.3.1. Choose the Null Distributions 

Table 4.1 shows the counts of minimum D statistics for the 4 candidate distributions from 

the 200 bootstrap samples in fad2 data. Among the 200 minimum D statistics 

in ),...,,...,,( 200**2*1**
Min

b
MinMinMinMin DDDDD  , 101 minimum D statistics are from the exponential 

distribution. The exponential distribution is chosen to be the null distribution class for tg* since 

the exponential distribution outperforms the other three distributions by comparing 101 to 34, 48 
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and 17. By the minimum D criterion, the Weibull distribution is chosen for the statistics 

SSD*and *
TR . 

Figure 4.4 shows the distribution of the real values of Kolmogorov-Smirnov test (K-S test) D 

statistics from each model fitting procedure. The left panel of Figure 4.4 shows the 4 K-S D 

statistics distribution for the statistic tg*. Among the four D distributions, the exponential 

distribution contains smaller values of K-S D statistics compared to the other three well-known 

distributions. In the middle and right panels which plot the results of SSD* and *
TR , respectively, 

the Weibull distribution shows supporting evidence to be a better fit than other three well-known 

distributions with lower values of K-S D statistics. 

Table 4.2 lists the final parametric null distributions for all the three test statistics tg, SSD 

and RT in three forms: 5th percentile of MLEs distributions, mean estimates distributions and 95th 

percentiles of MLEs distributions. Note that in Table 4.2, the MLEs are the rate for the 

exponential distribution, shape and scale parameters for the Weibull distribution. 

 
Table 4.1: The counts of the minimum K-S test statistic DMin for the 4 candidate 
distributions.  
In the first row for tg*, among 200 minimum Ds in ),...,,...,,( 200**2*1**

Min
b

MinMinMinMin DDDDD  , 101 

minimum Ds are from the Exponential distribution, 34 minimum Ds are from the Gamma 
distribution, 48 minimum Ds are from the Lognormal distribution and 17 minimum Ds are from 
the Weibull distribution. The exponential distribution outperforms all other three distributions 
for *tg . Hence, the exponential distribution is chosen to be the null distribution for *tg . 

 4 well-known distributions 
Statistics Exponential Gamma Lognormal Weibull Total 

*tg  101 34 48 17 200 

*SSD  0 60 8 132 200 

*
TR  0 3 0 197 200 
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Figure 4.4: The distribution of K-S test statistic D for all three statistics tg*, SSD* and *
TR  

The box plots are from the values of the Kolmogorov-Smirnov test (K-S test) D statistics from 
the 200 bootstrap samples for each of the 4 well-known distributions. For example, in the left 
panel for statistic tg*, the 200 bootstrap D distribution is shown in the first box plot by fitting tg*s 
to the exponential distribution. The same tg* values are also fitted to the gamma, lognormal and 
Weibull distributions, and the distribution of their K-S test statistics D are shown with the other 3 
box plots in the left panel, respectively.  
 
Table 4.2: The final null distributions of the three statistics from the chosen parametric 
distribution with the parameter of estimates  
The null distribution is shown in three forms, i.e., 5th percentile, mean and 95th percentile 
parametric distributions for each statistics. The final null distribution for the three statistics tg*, 
SSD* and *

TR  are the chosen distributions from the minimum K-S D criterion. 

Statistics 5th percentile 

distribution 

Mean distribution 95th percentile 

distribution 

*tg  )53.0( Exp  )73.0( Exp  )023.1( Exp  

*SSD  )41.0 ,41.1(Weibull  )82.0 ,14.3(Weibull  )1.47 ,81.5( Weibull  

*
TR  )3.19 ,25.5(Weibull  )3.66 ,68.8(Weibull  )4.50 ,77.13( Weibull  

 

4.3.2. Assess the Final Selected Parametric Null Distributions using the Empirical 

Distributions and Fitting Results to the Data 

Figure 4.5 shows how well the selected Weibull distribution fits the empirical bootstrap 

distributions for the statistic SSD in three forms. Its 5th percentile, median and 95th percentile 

empirical distributions fit to the 5th percentile, mean and 95th percentile the chosen Weibull 

distribution. Similar procedures can be applied to the statistics tg and RT. Figure 4.5(a) shows 

that among the four well-known distributions the Weibull distribution has the smallest distance 

*
TR
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to the median empirical CDF compared with the distances between all other curves to the median 

ECDF. The final parametric Weibull model appears to be better than the other parametric 

models. Figure 4.5(b) shows the distributions of 20 different percentiles (from the 100) using 20 

box plots. The red curves are the 5th, median and 95th empirical null distributions which are from 

the 5th percentiles, medians and 95th percentiles of the 100 box plots. Figure 4.5(c) shows how 

well the final parametric Weibull distribution fits the empirical CDFs of the 20 box plots. The 

parametric Weibull distributions, including 5th, mean and 95th percentile distributions, are closely 

laid over the empirical box plots to their corresponding statistics. Figure 4.5(d) shows that the 3 

parametric Weibull distributions can match the three empirical distributions very well.  

The 95th percentile parametric null distributions are used to fit the three statistics in order 

to fit a mixture model. The 95th percentile distributions are used as a “bounding distribution” to 

represent a distribution that is analogous to the 95th percentile of a null distribution when testing 

a hypothesis with a univariate statistic.  Characteristics of this bounding distribution are be 

explored as future work. More discussions of this can be found in chapter 10 topic. 

Figure 4.6 shows the 95th percentile exponential distribution fitted to the statistic tg in 

fad2. The 95th percentile parametric exponential distribution )023.1( Exp  captures well the shape 

of the tg data distribution in the right tail area. The 95th percentile parametric exponential 

distribution is the parametric fit to the pink histogram from the 95th percentile of the empirical 

distribution. The significant lipid pairs should come from those tg’s that are close to 1, and that 

appears in the top area of the null distribution.  

Figure 4.7 shows the 95th percentile Weibull(5.815, 0.472) distribution fitted to the 

statistic SSD in fad2. It is also from the parametric fit to the pink histogram from the 95th 

percentile of the empirical distribution. Since the larger values of SSD are of most interest for the 

lipid pairs that are significantly affected by the mutation, the area on the right of the 95th 

percentile Weibull distribution should include the significant results. 
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Figure 4.5: ECDFs matches with the selected null Weibull CDFs for the statistic SSD 
(a): The thicker red line is the empirical CDF of the bootstrap null distribution which is 
summarized from the median distribution that is described in Figure 4.3 in determining the 
empirical distributions. The two thinner red lines are the 25th and 75th percentiles empirical 
distributions. The two thin red lines form a 50% region to capture the null distributions from the 
parametric null distributions that is shown in 4 dashed curves. The 4 dashed curves are 
exponential (blue), Weibull (green), gamma (purple) and lognormal (black) parametric null 
distribution, respectively. (b): The series of box plots show the empirical distributions from 20 
percentiles out of the 100 percentiles in Table (a) of Figure 4.3. The three red curves represent 
the three empirical distributions, 5th, median and 95th for SSD for panel (a). (c): The same 20 box 
plots from panel (b) are matched with the chosen parametric null Weibull distribution in three 
forms: 5th, mean and 95th parametric null distributions. (d): The final parametric Weibull null 
distribution is matched with the final empirical null distribution in three forms.  The three red 
curves are the empirical null distribution and the three dashed curves are the three parametric 
null distributions that are chosen by fitting the parametric model to the bootstrap statistics. 
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Figure 4.6: tg statistic parametric bootstrap null distribution overlaid with the tg 
distribution in fad2 
The red dotted line shows the tg statistics of all biologically functional AB pairs in fad2 which 
are close to 1. The green histogram represents the tg distribution in fad2. The dashed green curve 
is the 95th parametric null )023.1(Exp  that fits to the pink 95th empirical histogram.  
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Figure 4.7: SSD parametric bootstrap null distribution overlaid with the SSD distribution 
in fad2 
The green histogram is the SSD distribution in fad2. The pink histogram is the 95th percentiles of 
the empirical bootstrap data. The blue dashed line is the parametric 95th null )1.47 ,81.5(Weibull  
that fits to the pink 95th empirical histogram.  
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Figure 4.8 shows the overlaid plot of the selected 95th percentile )4.50 ,77.13(Weibull  

null distribution with the real data distribution for statistic RT in fad2 data. The 95th percentile 

parametric distribution did not fit the pink histogram from the 95th percentile of the empirical 

distribution very well. Since RT is a combined statistic using both tg and SSD, the bigger values 

of SSD may affect the RT parametric fitting. Since larger values of RT can give significant lipid 

pairs, the lipid pairs appearing on the right tail show the results of interest. 
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Figure 4.8: RT bootstrap null distribution overlaid with the distribution in fad2  
The green histogram is the RT distribution in fad2. The dashed blue curve is the 95th parametric 
null distribution )4.50 ,77.13(Weibull  that fits to the pink 95th empirical histogram.  

 

Some summary remarks 

A problem appeared in chapter 4 due to strong signal that is detected in the fad2 dataset. 

When the signal is strong (i.e. a strong mutation effect on lipid concentrations), a single 

parametric may be inadequate to capture the shape of an empirical distribution. Another 

technique will be explored in a later chapter. The bootstrap procedure is applied under a 

restrictive null hypothesis of F = G. Thus any treatment affecting most of the lipidome is likely 

to depart significantly from the null hypothesis under which the bootstrap procedure was carried 

RT

RT  Data 
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out. Still, it is worth noting that the techniques described herein should be appropriate in cases 

where the real interest in testing the high-dimensional null hypothesis given in (4.1).  
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Chapter 5 - A Mixture Normal Bootstrap Null Distribution 

Chapter 4 investigated the parametric bootstrap null distribution (PBN) fitting to the 

bootstrap test statistics tg, SSD and RT. There was a strong signal in fad2 data. To assess the 

mutation effects in the lipid pairs, it is important to know how strong the treatment effect is when 

comparing the MT treatment effect with the WT (control) in each dataset. The choice of 

technique for modeling a null distribution may change depending on the overall effect of the 

mutation on the entire lipidome. To find a proper null distribution to fit the empirical bootstrap 

distribution of the test statistic, a mixture normal bootstrap null distribution (MNBN) will be 

investigated  in this chapter. 

 5.1. Introduction to the Mixture Normal Distribution 

The history of mixture normal distributions can be dated back to the nineteenth century 

by Simon Newcomb and Karl Pearson (Wirjanto and Xu, 2009). Since then, mixture normal 

models have been widely used in biology, engineering, economics and other applied areas. 

Applications of the mixture normal distributions can be found in Everitt and Hand (1981), 

Titterington et.al. (1985), and Mclachlan and Peel (2000). The focus of the mixture normal 

distribution has been on the parameter estimation, and testing the number of components in the 

mixture normal models. Some R packages deal with finite mixture model fitting problems. In the 

R package "mixtools" (http://cran.r-project.org/web/packages/mixtools/mixtools.pdf), the 

authors developed a set of R objects to find the Maximum Likelihood Estimates of the 

parameters for a finite mixture model.  One advantage of the mixture normal distribution is its 

great flexibility in capturing shapes. The mixture normal distributions can capture multimodal or 

skewed continuous distribution very well. In this chapter, the flexibility of the mixture normal is 

utilized in capturing the shape of the bootstrap null distribution. 

 5.2. Mixture Normal Bootstrap Null Distribution (MNBN) 

The focus here will be on the bootstrap null distribution of *
TR  that was produced under 

the null hypothesis H0: F = G, because this test statistic includes information in both metrics, tg* 

and SSD*. Let x = *
TR . The probability density function for a normal distribution is 
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where  x , the mean parameter    and standard deviation 0 . The 

probability density function of the mixture normal distribution has the form of (2.5) with k 

normal distributions as its components. The mixture model will be used to fit the data using 

maximum likelihood estimation (MLE). So, technically, we are assuming that roughly 4,600 

lipid pairs satisfying the screening for y* = 2 are mutually independent. This assumption is likely 

not met in a lipidomics experiment. Nevertheless, it has been made in many high-dimensional 

"omics" studies for purposes of fitting a mixture distribution (for more references, see Gadbury 

et al., 2008).  

Let i be the number of lipid pairs in the dataset, and i = 1, 2, … , M, where M is around 

4600, depending on the dataset. The research interest is that H0i: The ith reactant and product pair 

is not affected by the mutation, i.e. F = G versus Hai: The ith reactant and product pair is affected 

by the mutation, i.e., F   G. The likelihood function for the *
TR  statistic from a normal mixture 

model with k components under the null hypothesis can be expressed as 
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where ix  is the *
TR  statistic for the ith test. j  is the mixing proportions on each of the 

component densities, satisfying the constraints 1
1




k

j
j ,  and 10  j . 

 5.3. Randomization Test for the Treatment Effects  

The randomization test is utilized to test the strength of the mutation effects in all 9 

experiments. The results from six fad datasets fad2, fad3, fad4, fad5, fad6 and fad7 are used as 

an illustration. In each dataset 5 samples are from the WT group and 5 samples are from the MT 

group. 252
5

10









 distinct treatment arrangements are chosen to calculate the randomization p 

value for each lipid. The proportion of the number of smallest p values out of the total number of 

p values in each dataset is used to measure the strength of the mutation effect on the FAD genes. 

Table 5.1 shows the number of smallest p values, the total number of p values, and the resulting 
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proportion in each dataset. Let wtx  and mty  denote the sample means for one lipid in the WT and 

MT groups. Let *
wtx  and *

mty  denote the group means for one lipid in the permutation samples. 

The p values from the two-tailed randomization test are calculated with  
252

)*(# dd  , where 

*** mtwt yxd   is the mean difference between the WT and MT groups in one lipid for the 

permutation samples, and mtwt yxd   is the observed mean difference between the WT and 

MT groups for the same lipid. The smallest p value is 0079.0
126

1
 .  

Table 5.1: Number of the smallest p values, number of p values, and proportion of the 
smallest p values in each dataset 

 fad2 fad3 fad4 fad5 fad6 fad7 
# of smallest p values 76 47 10 28 43 35 

# p values 136 127 129 130 135 132 

Proportion 0.56 0.37 0.08 0.22 0.32 0.27 

 

From Table 5.1, we can see that fad4 has the lowest proportion of the smallest p values 

and fad2 has the largest proportion of the smallest p values. Hence, fad4 dataset is expected to 

have the smallest overall mutation effect on the lipid concentrations, while fad2 has the highest 

mutation effect. Figure 5.1 shows the p value distribution from the randomization test for each 

dataset using bar charts. If there is strong mutation effect, we expect that the p value distribution 

will be a right-skewed distribution with a peak on the smallest p value, 0.0079. Otherwise, the p 

value distribution should be close to a flat shape, showing a weaker treatment effect. From Table 

5.1 and Figure 5.1 we can see that the strength of the signal from the strongest to the weakest 

from all the datasets should follow the order: fad2, fad3, fad6, fad7, fad5, and fad4. In the 

following parts of this thesis, the datasets fad2 and fad4 would be used as an illustration for the 

mixture model to fit the bootstrap null distribution.   
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Figure 5.1: Bar charts for the distribution of the p values from the randomization test 
The first bar on the left in each plot shows the frequency of the smallest p value 0.0079. The last 
bar shows the frequency of the biggest p value 1 in the randomization test.  

 5.4. MNBN in fad2 and fad4  Datasets 

 5.4.1. Find the MNBN Distributions  

To investigate how well the mixture normal model fits the bootstrap null distribution, the 

mixture normal model in (5.2) is used to fit the bootstrap null distribution of RT from Chapter 4 

which was produced from the 200 bootstrap samples under the null hypothesis  

H0: F = G. Since fad2 and fad4 are the datasets who show extremely big or small mutation 
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effects,  datasets fad2 and fad4 will be used in the illustration. Figure 5.2 shows the bootstrap 

null distribution overlaid with the RT distribution in fad 4.   
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Figure 5.2: The bootstrap distribution overlaid with the RT distribution in fad4 data 
(a). The RT statistics distribution from the fad4 data. (b). The empirical bootstrap null 
distribution which contains 4600  200 *

TR  statistics. Each bootstrap sample contains about 4600 
*
TR  statistics. (c). The bootstrap distribution, *

TR , (orange) overlaid with the data, RT, (green). 
 

Figure 5.2(a) shows the RT distribution in fad4, and Figure 5.2(b) is the histogram 

including all the bootstrap samples from the 4600  200 RT statistics. The big vector of RT 

statistics is overlaid in Figure 5.2(c). From Figure 5.3(c), we can see that the actual bootstrap null 

histogram covers a large portion of the data histogram. In chapter 4, a parametric distribution, 

which was generated by averaging the parameters obtained from fit of all the bootstrap samples, 

was used to fit the actual bootstrap sample. However, the selected parametric distribution in this 

way may miss the actual shape of the null distribution. Therefore, an alternative approach using a 

normal mixture model may better capture the shape of the bootstrap null distribution. 

Next, we need to focus on how to fit the mixture normal model to the orange histogram in 

figure 5.2 for getting a null distribution Parameter estimates for the five parameters 1 , 1 , 1  , 

2 , 2  are shown in Table 5.2. Figure 5.3 shows the two component mixture normal 

distribution fit to the bootstrap samples in fad4. Let x = *
TR . The MNBN distribution with two 

components in fad4 can be written as 

)44.0,76.3(72.0)26.1,44.3(28.0)(
0

NNxf H  . 

(c). Distribution Overlaid



67 

 

Table 5.3 shows the MLEs of the estimates for a three component mixture normal null 
distribution in fad4. Figure 5.4 is the graphical illustration of the three component mixture 
normal distribution from Table 5.3. 
 

Table 5.2: The MLEs and the log-likelihood value for mixture normal null distribution in 
fad4 with two components and five parameters  1 , 1 , 1  , 2 , 2 . 

Parameter 1  is the proportion weight for the first component. 1  and 2  are the means for the 

two components. 1  and 2  are the standard deviations for both components.  

Parameters Estimates Standard Error 95% confidence interval Log-likelihood

1  0.28 0.0071 (0.269, 0.297) 

1  3.44 0.0132 (3.413, 3.465) 

2  3.76 0.0038 (3.755, 3.77) 

1  1.26 0.0138 (1.232, 1.286) 

2  0.44 0.0036 (0.432, 0.446) 
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Figure 5.3: Two-component MNBN distribution of *
TR  in fad4 data 

The orange histogram is the bootstrap null distribution which contains about 4600  200 *
TR  

statistics. The two black solid curves are the two normal components. The red dashed curve is 
the mixture model from the two normal components. 
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Table 5.3: The MLEs and the log-likelihood value for mixture normal null distribution in 
fad4 with three components and seven parameters  1 , 2  , 1 , 1  , 2 , 2 , 3 , 3 . 

Parameter 1  and 2  are the proportion weights for the first two components. 1 , 2  and 2  

are the means for the three components. 1 , 2  and 3  are the standard deviations for the three 

components.  
Parameters Estimates Standard Error 95% CI Log-likelihood

1  0.603 0.030 (0.543, 0.662)

2  0.190 0.029 (0.132, 0.247)

3  0.208 0.007 (0.195, 0.221)

1  3.670 0.008 (3.654, 3.686)

2  4.287 0.081 (4.127, 4.446)

3  3.112 0.029 (3.054, 3.170)

1  0.380 0.006 (0.369, 0.391)

2  0.552 0.032 (0.489, 0.616)

3  1.252 0.015 (1.223, 1.281)
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Figure 5.4: Three-component MNBN distribution of *
TR  in fad4 data 

The three black solid curves are the three normal components. The red dashed curve is the 
mixture model from the three normal components. 
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The MNBN distribution with three components in fad4 can be written as 

)0.55 ,29.4(19.0)1.25 ,11.3(208.0)0.38 ,67.3(602.0)(
0

NNNxf H  . 

From the two component mixture normal distribution shown in Table 5.2, we can see that the 

95% confidence intervals (3.413, 3.465) and (3.755, 3.77) do not overlap. This provides one 

indication that two components are needed. However, in Table 5.3 the 95% confidence intervals 

for the three means (3.654, 3.686), (4.127, 4.446), and (3.054, 3.170) do not overlap, either. The 

question is how to choose the number of components? Allison et al. (2002) suggested a bootstrap 

method to test the number of components in the mixture model using a statistic 

)(2 1  LLQ , where L  and 1L  are the log-likelihood functions of the mixture model with 

  and 1  components, respectively. Another bootstrap method that is analogous to the method 

used in Allison et al. (2002) will be proposed in chapter 7 to test the number of components in a 

normal mixture model. Here, two component MNBN distribution will be used for further 

analysis since the two-component mixture model can capture the shape of the empirical 

bootstrap null distribution. 

5.4.2. The Results from fad4  and fad2 

The hypotheses testing would be conducted for H0: F = G, if there is no significant 

mutation effect in each lipid pair, versus Ha: G  F   assuming there is significant mutation effect 

in  each lipid pair. The two-component )44.0,76.3(72.0)26.1,44.3(28.0)(
0

NNxf H   MNBN 

distribution in fad4 is utilized to find the p values for testing if the lipid pair is effected by the 

mutation. Since bigger RT statistics show evidence for a real finding, an upper-tail test will be 

appropriate to get a list of significant findings. The p values are calculated as 

 



xx Hobserved dxNNdxxfxXP )44.0,76.3(72.0)26.1,44.3(28.0)()(

0
. 

where observedx  = RT are the observed statistics in the data. The local fdr multiple adjusting 

procedure is applied to control the false discovery rate in a family of 3000 lipid pairs in fad4.  

Table 5.4 shows a list of significant findings after the local fdr adjustment. Other multiple 

adjustment procedures holm, hochberg, bonferroni, BH and BY (Holm, 1979; Hochberg, 1988; 

Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001) are also explored. The method 

BY which was proposed by Benjamini and Yekutieli (2001) controls the false discovery rate in 

multiple testing under dependency. 
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Table 5.4: The list of significant findings using the MNBN distribution under the null 
hypothesis F = G 
The red lipid pairs are the biologically functional lipid pairs in fad4. The RT is the test statistic 
for that lipid pair. Pval is the p values. The rest of the columns are the adjusted p values using 
fdr, holm, hochberg, bonferroni, BH and BY multiple testing adjustment procedures. 

Lipid Pairs RT Pval fdr holm hochberg bonferroni BH BY 

PG34_3_PG34_4 12.182 5.43E-13 1.49E-08 1.61E-09 1.61E-09 1.61E-09 1.61E-09 1.38E-08 

PG34_3_lysoPG18_3 11.702 7.50E-12 9.99E-07 2.22E-08 2.22E-08 2.22E-08 1.11E-08 9.53E-08 

PG34_3_PG32_1 10.885 4.75E-10 0.000314 1.41E-06 1.41E-06 1.41E-06 4.70E-07 4.03E-06 

PG32_0_PG34_4 9.412 2.98E-07 0.0003 0.0009 0.0009 0.0009 0.0002 0.0019 

PG32_0_lysoPG18_3 9.341 3.92E-07 0.0003 0.0012 0.0012 0.0012 0.0002 0.0019 

PG34_3_PG34_2 9.310 4.42E-07 0.0007 0.0013 0.0013 0.0013 0.0002 0.0019 

PG32_0_PG32_1 9.170 7.55E-07 0.0143 0.0022 0.0022 0.0022 0.0003 0.0027 

PG32_0_PG34_2 8.530 7.46E-06 0.0198 0.0221 0.0221 0.0221 0.0028 0.0237 

PG34_0_PG34_4 8.147 2.61E-05 0.0198 0.0773 0.0773 0.0775 0.0084 0.0724 

PG34_0_lysoPG18_3 8.120 2.85E-05 0.0198 0.0842 0.0842 0.0845 0.0084 0.0724     
 

Table 5.4 shows that there are 10 significant lipid pairs in fad4 by using local fdr 

adjustment. Note that there will be less significant results if we use other multiple adjustment 

procedures. The pairs which are highlighted in red are the biologically functional lipid pairs 

provided by the biologists in the Lipidomics Research Center at Kansas State University. In total 

there are 7 biologically functional lipid pairs, and the MNBN method can capture 6 of them. This 

method may accurately catches the significant findings compared to the method in Chapter 4 

using the PBN which has 551 significant lipid pairs. The same MNBN procedure is applied to 

fad2 data. The significant findings include 2626 lipid pairs. The results from fad2 is 3207 lipid 

pairs using the PBN method.  

In Chapter 6, we would check whether we can improve the method by using the bootstrap 

method under a different assumption, GF   , which assumes that the population means are the 

same for both the wild type group and the mutant group data.  
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Some summary remarks 

In this chapter, we have used the Mixture Normal Bootstrap Null (MNBN) distributions  

to find the list of significant lipid pairs. MNBN is used to fit the empirical bootstrap data under 

the null distribution when F = G. We show that the MNBN distribution performs better than the 

PBN distribution used in Chapter 4 because the former method can more precisely select the 

most significant lipid pairs. We also show that the MNBN method seems preferred especially for 

the datasets whose mutation effects are weak, like fad4. For strong mutation effect datasets like 

fad2, this method can also improve the results to some extent. This is because the normal mixture 

model has more flexibility to capture usual shape and thus can be more discriminating in 

identifying real results in a large list of findings.  
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Chapter 6 - Bootstrap Methods Under the Equal Mean Hypothesis 

In chapter 4 a parametric method was used to find the parametric bootstrap null (PBN) 

distribution from the bootstrap sample under a restrictive null hypothesis H0: F = G,  which 

assumes that the underlying distributions are the same in the wild type and mutant groups if there 

is no mutation effect. Under the same null hypothesis, the mixture normal bootstrap null 

distribution (MNBN) was investigated in chapter 5. The MNBN method provides more accurate 

results than PBN, especially in the datasets where the mutation effects are weak. Efron and 

Tibshirani (1993) illustrated a bootstrap method for testing equality of means of two treatment 

groups using a test statistic. This can be an alternative way to generate the bootstrap samples. 

In this chapter the bootstrap samples would be generated under the equality of the 

means GF   , where F  and G  are the population means of the WT and MT groups in a 

lipid pair, respectively. The test statistics *
TR  will be generated in a similar way as in chapter 4. 

Both PBN and the MNBN methods will be investigated under the null hypothesis GFH  :0 . 

 6.1. Bootstrap Algorithm Under Equal Mean Hypothesis 

       The Bootstrap procedure to get the empirical null distribution under the assumption 

GF    is given below. 

1. Let the sample be a 141 by 10 matrix with the 141 rows representing the 141 lipid species 

and the 10 columns representing 5  WT samples and 5 MT samples. 

2. Let WT sample data be nwww ,...,, 21  with population mean F  and sample mean w . 

Let the MT data be nmmm ,...,, 21  with population mean G  and sample mean m .  

3. Transform the data by using xwww ii ~  and xmmm ii ~ , ni ,...,2,1 . Where 

x is the mean of the combined sample. 

4. Let B = 200, and Bb ,...,2 ,1  to denote the bth bootstrap sample ( bb mw ** ~,~ ). Where bw*~ is 

sampled with replacement from 51
~,...,~ ww  and bm*~  is sampled with replacement from 

51
~,...,~ mm . 
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5. Center and scale samples )~,~(x *** bbb mw  by using
*

**
*

s

xx
z ij

ij


  to get the mean 0 and 

standard deviation 1 for each lipid species. *
ijx and *

ijz denote the bootstrap data before and 

after scaling. 

6. Pair any reactant A* with any product B* to get approximately 19740
2

141
2 







  lipid pairs 

A*→ B*.  

7. Screen the relationships of  *
2

*
1   AA zz  and *

2
*

1   BB zz  according to the value 2* y for 

any arbitrary lipid pairs. In total, K = 4600 lipid pairs satisfy the conditions of 2* y . 

8. Calculate the statistic )log( ** RRT   for each lipid pair A*B* from the scaled bootstrap 

sample bz* with y* = 2. The test statistic is a vector with about 4600 elements from each 

of the bth bootstrap samples, i.e. )R,...,R,R(R *4600
T

*2
T

*1
T

*b
T  . The R* statistic is defined as  

                                                         2*2** ))684.2()1(R  SSDtg . 

9. Use the 4600 bootstrap statistics to determine the null distribution for the statistic  

      *
TR . 

Note that in step 3, the means of the WT and MT groups are first centered at zero by 

subtracting the corresponding group means. Then, the overall mean of the each lipid is shifted to 

x  by adding the overall mean x  to each of the ten centered WT and MT data. Also, centering 

and scaling the data do not change the correlation structure.  

Again datasets fad2 and fad4 are used here. The former shows the strongest mutation 

effect,  while the latter the weakest, as shown in the randomization test in chapter 5. In the 

following sections, these two datasets will be used as examples to illustrate both the PBN and 

MNBN methods under the null hypothesis GFH  :0 . Before further analyzing the two 

datasets, it will be interesting to check whether the *
TR  distributions are the same in the bootstrap 

samples under the two different assumptions of GF   and GF   . Figure 6.1 shows the 

comparison of the *
TR  bootstrap distributions of  fad2 and fad4  under the two above-mentioned 

null hypotheses. Table 6.1 shows the means and the five number summary of the *
TR  bootstrap 

distributions under the two hypotheses for fad2 and fad4 datasets. 
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Figure 6.1: The *
TR  bootstrap distribution comparison under the assumptions of GF   

and  GF    

The two box plots on the left are the *
TR  bootstrap distributions from fad2 under the assumptions 

GF   and  GF   , respectively. The two box plots on the right are the *
TR  bootstrap 

distributions from fad4  under the assumptions GF   and  GF   , respectively. 

 
Table 6.1: The means and the five number summary of the *

TR  bootstrap sample 

distributions in fad2 and fad4 datasets under the two assumptions  GF   and  GF   .  

  Min 1st Qu. Median Mean 3rd Qu. Max. 
GFH :0  0.52 3.23 3.54 3.55 3.96 8.35 

fad2 
GFH  :0  0.52 3.20 3.53 3.55 3.96 19.48 

 
fad4 

GFH :0  0.52 3.23 3.53 3.49 3.90 12.86 

 GFH  :0  0.53 3.21 3.54 3.58 3.99 19.48 
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From Figure 6.1 and Table 6.1 we can see that the distributions of *
TR  in fad2 and fad4 are  

similar. The *
TR  distributions under GF    are  heavier upertailed than those under GF   in 

both datasets fad2 and fad4. The third quartiles and the maxima are bigger under GFH  :0 . 

Since there are more larger values of *
TR  statistics in the null distribution under GFH  :0 , 

we investigate whether the null distribution under this hypothesis improves the results by giving  

a shorter list of significant lipid pairs versus the results under GF   in chapter 4. 

 6.2. Parametric Bootstrap Null (PBN) Distribution Fitting under GF    

 6.2.1. The Results from fad2 Dataset Using PBN 

Following the bootstrap procedure described in section 6.1, the test statistic *tg , *SSD  

and *
TR  from the bootstrap samples are fit to the four well-known distributions: Exponential, 

Gamma, Lognormal and Weibull. Table 6.2 shows the counts of K-S test statistics D from the 

200 bootstrap samples. By the minimum D criterion from chapter 4, the exponential distribution 

is chosen to be the distribution class for tg, and Weibull distribution is chosen to be the 

distribution class for SSD and RT statistics. Figure 6.2 uses the box plots to show the distribution 

of the K-S D statistic for the test statistics tg*, SSD* and *
TR . As you can see that the chosen 

distribution of K-S D statistics in Figure 6.2 are consistent with the results from Table 6.2. 

 

Table 6.2: The counts of the minimum K-S test statistic DMin for the 4 candidate 
distributions in fad2 dataset.  

 Distributions 
Statistics Exponential Gamma Lognormal Weibull Total 

*tg  183 1 11 5 200 

*SSD  2 29 4 165 200 

*
TR  0 69 1 130 200 

 

In the last row for *
TR , among 200 minimum Ds in ),...,,...,,( 200**2*1**

Min
b

MinMinMinMin DDDDD  , 

zero of them are from the Exponential distribution, 69 from the Gamma distribution, 1 from the 

Lognormal distribution, and 130 from the Weibull distribution. The Weibull distribution 
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outperforms all other three distributions for *
TR . Hence, the Weibull distribution is chosen to be 

the null distribution for *
TR . 
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Figure 6.2: The distribution of K-S test statistic D for all three statistics tg*, SSD* and  *
TR  

in fad2 
The box plots  show the values of the Kolmogorov-Smirnov test (K-S test) D statistics from the 
200 bootstrap samples for each of the 4 well-known distributions. 
 

Table 6.3 shows the parametric null distributions for the three statistics from the chosen 

parametric distribution class. Three distributions are shown for each statistics. The parameters of 

the 5th percentile, mean and 95th percentile distributions are summarized from the 200 bootstrap 

fittings from the 200 MLEs. To be consistent with chapter 4, the 95th percentile bounding 

distribution would be used as the null distribution to get the list of findings. In Figure 6.3, the 

95th percentile parametric null distribution )4.44 7.88,( ~ WeibullRT  is overlaid with the data RT 

in fad2. The p values for each test are computed from the following formula: 





x Hobserved dxxfxXP )()(

0
, 

where observedx  = RT is  the observed statistics in the data and )4.44 7.88,( )(
0

Weibullxf H  . The 

local fdr multiple adjusting procedure is applied to control for multiple testing in the family of 

4623 lipid pairs in fad2. There are 2159 lipid pairs in  the final list of significant findings using 

PBN under the hypothesis GF    in fad2. 
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Table 6.3: The final null distributions of the three statistics from the chosen parametric 
distribution with the parameter of estimates  
The null distribution is shown in three forms, i.e., 5th percentile, mean and 95th percentile 
parametric distributions for each statistics. The final null distribution for the three statistics tg*, 
SSD* and *

TR  are the chosen distributions from the minimum K-S D criterion. 

Statistics 
5th percentile 

distribution 
Mean distribution 

95th percentile 

distribution 

*tg  )50.0( Exp  )74.0( Exp  )1.1( Exp  

*SSD  )57.0,36.1(Weibull  )00.1,11.2(Weibull  )2.89,1.43( Weibull  

*
TR  )3.34 2.83,(Weibull  )3.84 4.95,(Weibull  )4.44 7.88,( Weibull  
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Figure 6.3: The 95th percentile empirical bootstrap distribution overlaid with the 95th 
percentile Weibull distribution and the real data from fad2 
The pink histogram is the 95th empirical bootstrap null distribution. The blue dashed curve is the 
95th percentile bounding distribution from the Weibull chosen distribution class. The green 
histogram is the distribution of RT from fad2. 
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 6.2.2. The Results from fad4 Dataset Using PBN 

In a similar way as in  section 6.2.1, the bootstrap samples under the null hypothesis 

GFH  :0  are  too fitted to the four well-known distributions to find the distribution class. 

Table 6.4  lists the counts of the minimum K-S test statistics Ds. In the last row for *
TR , among 

200 minimum Ds in ),...,,...,,( 200**2*1**
Min

b
MinMinMinMin DDDDD  , zero of them are from the Exponential 

distribution, 70 from the Gamma distribution, 2 from the Lognormal distribution, and 128 from 

the Weibull distribution. The Weibull distribution outperforms all other three distributions 

for *
TR . Hence, the Weibull distribution is chosen to be the null distribution for *

TR . 

Figure 6.4 shows the distribution of the K-S test statistics D. The null distribution classes 

are exponential for tg, and Weibull for both SSD and RT. The null distribution classes in fad4 are 

the same  as those in fad2. This is an indication that the characteristics of the bootstrap samples 

are well captured by the PBN method regardless of what datasets we are exploring. 

Table 6.5 gives the null distributions for 5th percentile, mean, and 95th percentile 

distributions for the three test statistics *tg , *SSD  and *
TR  from the chosen distribution classes. 

To get the final results, *tg  and *SSD  distributions are  ignored and the final results are derived 

from the 95th percentile distribution from *
TR  since  *

TR  combines the advantage of the two 

statistics *tg  and *SSD   as specified in chapter 3. Figure 6.5 shows that the 95th percentile *
TR  ~ 

)4.49 ,17.7( Weibull  can be used as the parametric null distribution to fit the 95th percentile 

bootstrap (pink) histogram to get a list of significant results in fad4 data. 

 

Table 6.4: The counts of the minimum K-S test statistic DMin for the 4 candidate 
distributions in fad4 under the assumption of GF     

 4 well-known distributions 
Statistics Exponential Gamma Lognormal Weibull Total 

*tg  158 3 31 8 200 

*SSD  0 40 5 155 200 

*
TR  0 70 2 128 200 
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Figure 6.4: The distribution of K-S test statistic D for all three statistics tg*, SSD* and *
TR  in 

fad4 
The box plots are from the real values of the Kolmogorov-Smirnov test (K-S test) D statistics 
from the 200 bootstrap samples for each of the 4 well-known distributions. 
 
Table 6.5: The final null distributions of the three statistics from the chosen parametric 
distribution with the parameter of estimates in fad4 
The null distribution is shown in three forms, i.e., 5th percentile, mean and 95th percentiles 
parametric distributions for each statistics. The final null distribution for the three statistics tg*, 
SSD* and *

TR  are the chosen distributions from the minimum K-S D criterion. 

Statistics 5th percentile 

distribution 

Mean distribution 95th percentile 

distribution 

*tg  )54.0( Exp  )74.0( Exp  )10.1( Exp  

*SSD  )56.0 ,41.1(Weibull  )1 ,11.2(Weibull  )1.46 ,09.3( Weibull  

*
TR  )3.38 2.92,(Weibull  )87.3 ,79.4(Weibull  )4.49 ,17.7( Weibull  
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Distributions overlaid for RT
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Figure 6.5: The 95th percentile empirical bootstrap distribution overlaid with the 95th 
percentile Weibull distribution and the real data from fad4 
The pink histogram is the 95th empirical bootstrap null distribution. The blue dashed curve is the 
95th percentile bounding distribution from the Weibull chosen distribution class. The green 
histogram is the distribution of RT from fad4. 

 6.3. Mixture Normal Bootstrap Null (MNBN) distribution Fitting Under the 
Equal Mean Hypothesis 

 6.3.1. The Results from fad2 Dataset Using MNBN 

The test statistics *
TR  from the bootstrap samples under the assumption GF    are  

overlaid with the RT distribution in fad2 in Figure 6.6. From Figure 6.6(c) we can see that there 

is still a large portion of the data to the right side of the null empirical distribution. Since the fad2 

dataset showed strong mutation effect  as shown in chapter 5 by the randomization test, a long 

list of findings are expected by using the MNBN method. It will be interesting to compare the 

results from the PBN and MNBN method in the strong signal dataset of  fad2. 
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(a). The Distribution of RT
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Figure 6.6: The *
TR  bootstrap empirical distribution overlaid with the RT distribution for 

fad2 under the hypothesis of GF    

(a).  the distribution of the RT in fad2; (b).  the empirical bootstrap distribution of *
TR . (c). The 

bootstrap empirical distribution overlaid with the real data. 
 
Two-component, three-component and four-component mixture normal distributions are  fit to 

the bootstrap empirical distribution. To be consistent with the results from the previous chapters, 

a two-component mixture normal distribution is used to find the final list of findings. The MLEs 

and the 95% confidence intervals for the parameters are given  in Table 6.6. Figure 6.7 shows the 

two-component mixture normal model to the empirical bootstrap distribution. 

 
Table 6.6: The MLEs and the log-likelihood value for mixture normal null distribution in 
fad2 with two components and five parameters: 1 , 1 , 1  , 2 , and 2 . 

Parameter 1  is the proportion for the first component. 1  and 2  are the means for the two 

components. 1  and 2  are the standard deviations for both components.  

Parameters Estimates Standard Error 95% confidence interval Log-likelihood

1  0.70 0.000957 (0.703, 0.707) 

1  3.58 0.000654 (3.58, 3.582) 

2  3.54 0.003752 (3.53, 3.545) 

1  0.43 0.000752 (0.431, 0.434) 

2  1.63 0.003074 (1.626, 1.638) 

 
 

-899496.6 
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Figure 6.7: Two-component MNBN distribution of *
TR  in fad2 

The two black solid curves are the two normal components. The red dashed curve is the mixture 
model from the two normal components. 

 

The two-component )1.63 ,54.3(30.0)0.43 ,58.3(70.0)(
0

NNxf H   MNBN 

distribution in fad2 is utilized to find the p values for the tests. Since bigger RT statistics show 

results, an upper-tail test is use to get a list of significant findings. The p values are calculated as 

 



xx Hobserved dxNNdxxfxXP )1.63 ,54.3(30.0)0.43 ,58.3(70.0)()(

0
, 

where observedx  = RT is  the observed statistics in the data. The local fdr multiple adjusting 

procedure is applied to control the type I error rate in the family of 4623 lipid pairs in fad2. 2643 

lipid pairs are found to be significant by using the MNBN method under the null hypothesis H0: 

GF   . In fad2, the final list is not shorter in  using the MNBN method  than the PBN method. 

Which method works better in the weak signal dataset in fad4?  This will be investigated in the 

next section. 
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6.3.2. The Results from fad4 Dataset Using MNBN 

The test statistics *
TR  from the bootstrap samples under the assumption GF    are  

overlaid with the RT distribution in fad4 in Figure 6.8. From Figure 6.8(c) we can see that there 

is a small portion of the data on the right side of the null empirical distribution.  

To be consistent with the results from the previous chapters, two-component mixture 

normal distribution is used to find the final list of findings. The MLEs and the 95% confidence 

intervals for the parameters are shown in Table 6.7. Figure 6.9 shows the two-component 

mixture normal model fit to the empirical bootstrap distribution in fad4. 

 

(a). The Distribution of RT

RT

D
e

n
si

ty

2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(b). The Distribution of RT
*

RT
*

D
e

n
si

ty

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

(c). Distribution Overlaid

RT

D
e

n
si

ty

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

 

Figure 6.8: The *
TR  bootstrap empirical distribution overlaid with the RT distribution for 

fad4 under the assumption of GF    

 (a).  the distribution of the RT in fad4. (b).  the empirical bootstrap distribution of *
TR . (c). The 

bootstrap empirical distribution overlaid with the real data. 
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Table 6.7:The MLEs and the log-likelihood value for mixture normal null distribution in 
fad4 with two components and five parameters  1 , 1 , 1  , 2 , 2 . 

Parameter 1  is the proportion for the first component. 1  and 2  are the means for the two 

components. 1  and 2  are the standard deviations for both components.  

Parameters Estimates Standard Error 95% confidence interval Log-likelihood

1  0.64 0.001296 (0.359, 0.364) 

1  3.57 0.002962 (3.58, 3.59) 

2  3.58 0.00075 (3.571, 3.573) 

1  0.40 0.002409 (1.433, 1.442) 

2  1.44 0.000767 (0.402, 0.405) 

-795694.8 
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Figure 6.9: Two-component MNBN distribution of *
TR  in fad4 data 

The two black solid curves are the two normal components. The red dashed curve is the mixture 
model from the two normal components. 

The two-component mixture )1.44 ,58.3(36.0)0.40 ,57.3(64.0)(
0

NNxf H   MNBN 

distribution in fad4 is utilized to find the p values for the tests. The p values are calculated as 
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 



xx Hobserved dxNNdxxfxXP )1.44 ,58.3(36.0)0.40 ,57.3(64.0)()(

0
. 

where observedx  = RT are the observed statistics in the data. The local fdr multiple adjusting 

procedure is applied to control the type I error rate in the family of 2964 lipid pairs in fad4. Only 

6 lipid pairs are found to be significant by using the MNBN method under the null hypothesis 

H0: GF   . 

 6.4. Discussion 

After the exploration of the methods using PBN and MNBN under two null hypotheses  

GFH :0  in chapter 4 and chapter 5, respectively, and GFH  :0  in chapter 6, a summary 

of methods is shown in Table 6.8. The PBN results were  produced under the 50th percentile 

parametric Weibull null distribution for RT statistics in each dataset. The MNBN results were  

generated by using the two-component mixture normal distributions from a large vector of RT 

statistics.  

Table 6.8: Comparison of  the results using PBN and MNBN methods under the null 
hypothesis GF    and GF   

The results from PBN method  are produced using the 50th percentile Weibull null distributions 
for RT statistics. "Prop. of findings" represents  the number of the significant findings in the total 
lipid pairs satisfying the y = 2 screening criteria. 

Methods PBN MNBN 

Datasets fad2 fad4 fad2 fad4 Null hypotheses 

Total number of lipid pair 4623 2964 4623 2964 

# of Significant findings 2623 92 2643 6 
GF    

Prop. of the findings 0.57 0.031 0.57 0.002 

# of Significant findings 3207 551 2626 10 
GF   

Prop. of the findings 0.69 0.19 0.57 0.0034 

 

In Table 6.8, the proportion of the findings indicate the proportion of significant pairs in 

the total number of lipid pair in the datasets fad2 and fad4 when the screening criteria y = 2 is 

satisfied. We can see that the proportions of the significant findings in the two  methods under 

the two different null hypotheses are both  very close to the mutation effects shown in Table 5.1. 

At this point, it is hard to conclude that one method is better than the other. Also, the two 
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different null hypotheses do not show a substantial difference in the performance of the methods. 

To get a conclusion on the performance of the methods, a further extensive simulation study 

should be considered. However, the MNBN distribution with two components has five 

parameters and the Weibull PBN distribution has two parameters. The MNBN distribution may 

have more flexibility to capture the shape of the bootstrap samples than the Weibull PBN 

distribution. Hence, the MNBN method will be used in chapter 9 when proposing a method to 

simulate realistic data and evaluate the properties of the simulated data.  

Summary remarks 

In this chapter, we have used the Mixture Normal Bootstrap Null (MNBN) distribution  

and the Parametric Bootstrap Null (PBN) distribution to find a  list of significant lipid pairs. Both 

MNBN and PBN are used to simulate the null distribution that is then fitted to the empirical 

bootstrap distribution . We suggest that the MNBN distribution may have more flexibility to 

capture the shape of the empirical bootstrap distribution than PBN. But in general the methods 

perform similarly under the two different null hypotheses GF    and  F = G. 
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Chapter 7 - A Mixture Model to Fit the RT Distribution in the Data 

 7.1. Normal Mixture Distributions for RT 

As shown in chapter 4, the bootstrap could be useful for finding a null distribution for a 

statistic whose distribution cannot be  not readily obtained. However, it  should be noted that the 

bootstrap technique requires resampling under a specified null hypothesis and that the specified 

null hypothesis  might be too restrictive for the current application of targeted lipid analysis in a  

WT-MT experiment. Efron (2004) proposed a method for finding an empirical null distribution 

for a standard normal test statistic (here referred  to as a z-score). A distribution of z-scores was 

obtained from tests of multiple hypotheses (if a test other than a normal distribution based test 

was done, the test statistic or p-value was transformed to a corresponding normal z-score). Using 

a combination of theory and some heuristics, Efron (2004) derived an empirical null distribution, 

one that was not necessarily the standard normal. Then, z-scores in the tails of this distribution 

that were deemed atypical were seen as evidence of true discoveries. An approach analogous to 

Efron’s (but for now less rigorously developed) is considered in this chapter, yielding some 

interesting results.      

Looking back at the distribution of the RT statistics from the fad2 dataset, one notices a 

pattern of an apparent bimodal distribution. Since large values of RT are considered most 

interesting, intuition suggests that there may be a distribution of lower values of RT that represent 

the empirical null cases (i.e., a pair is not affected by the mutation). A component distribution of 

larger values of RT may then be considered the "interesting cases". In fact, the bimodal shape 

suggests that a mixture of normal distributions may be sufficiently flexible for modeling the 

entire distribution of RT statistics. Rather than a bootstrap null distribution as was done in earlier 

chapters, in this chapter, the following questions will be addressed: (1). How many normal 

components are needed in a normal mixture model? (2). What are the parameter estimates and 

the confidence intervals for the parameters in the mixture model, and how can they be 

interpreted? (3). Using the normal mixture model, what are the posterior probabilities that, given 

the value of RT for each lipid pair, it is in fact a pair that is significantly affected by the 

mutation? (4). What is the proportion of significant pairs? 

The focus is on RT because this statistic includes information on both metrics, tg and 

SSD. Let x = RT. The probability density function for a normal distribution is expressed by 
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equation (5.1). The probability density function of the mixture normal distribution has similar 

form in (2.5) with k normal distributions as its components. Note that the mixture normal model 

approach in this chapter is similar with the Mixture Normal Bootstrap Null (MNBN) distribution  

which was introduced in chapter 5. The main focus of the MNBN is to find a null distribution 

using the mixture normal distribution. In this chapter, the mixture normal distribution would be 

used to fit the real data and use one of the components from the mixture to model the data under 

the alternative hypothesis (i.e. a pair is affected by the mutation). The mixture model will be 

used to fit the data using maximum likelihood estimation (MLE). Again, we are assuming that 

the roughly 4,600 lipid pairs satisfying the screening for y = 2 are mutually independent. This 

assumption is likely not met in a lipidomics experiment. Nevertheless, it has been made in many  

high-dimensional “omics” studies for the purpose of fitting a mixture distribution (some of these 

cited in Gadbury at al., 2008) as discussed in chapter 5. The fitted mixture distribution is still a 

representation of “relative model fit” in the sense of an expected fit over many realizations from 

the experiment. Correlation is likely to make results more variable from study to study.  The 

independence assumption will be discussed further in chapter 10 when future directions are 

discussed.  

Let i index lipid pairs in the fad2 dataset, where i = 1, 2, … , M, where M is around 4600, 

depending on the dataset. The research interest is  H0i versus Hai. In the H0i, the ith reactant and 

product pair is not affected by the mutation, and in the Hai, the ith reactant and product pair is 

affected by the mutation. 

The likelihood function for the RT statistic from a normal mixture model with 1k  

components can be expressed as in equation (5.2), where ix  is the RT statistic for the ith test. The 

probability density function of the normal mixture model can be expressed as  

 



k

j
jjijjjji xfxf

1

),/(),/(  ,                        (7.1) 

Where the subscript j stands for the jth component in the mixture model. j s are the mixing 

proportions on each of the component densities, satisfying the constraints 1
1




k

j
j , and 

10  j . 
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The most common mixture model in high-dimensional analysis tends to be a two 

component mixture model. One component is intended to model test statistics (or p-values) from 

tests for which the null hypothesis is true, and the other for tests for which it is false. Suppose 

that the mixture model with two normal components is used. The probability density function for 

a normal mixture model with two components is  

 0 0 0 1 1 0 0 0 0 1 1 1 1( / , , , , ) ( / , ) ( / , ), 1, ,i i if x f x f x i M               K ,         (7.2) 

where 0  = Pr (the lipid pair is not affected) 

           1 =1- 0 = Pr (the lipid pair is affected) 

           ),/( 000 ixf = the density of ix  (i.e. RTi ) under the null hypothesis if the lipid pair is 

not affected by the mutation. It has the form of (5.1) with the mean 0  

and standard deviation 0 .  

           ),/( 111 ixf = the density of ix  under the alternative hypothesis if the lipid pair is 

affected by the mutation. It has the form of (5.1) with the mean 1  and 

standard deviation 1 . 

By Bayes' rule, the posterior probability of a lipid pair at a given ix  = RTi that is affected by the 

mutation is defined as 
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
           (7.3) 

so that one minus the quantity in (7.3) is the posterior probability of a lipid pair that is unaffected 

by the mutation, which is the local false discovery rate (lfdr) defined by Efron (2004).  

The maximum likelihood estimates, MLEs, of the parameters j , j , and j  can be 

obtained by using the EM algorithm for a normal mixture model that maximizes the conditional 

expected complete-data log-likelihood at each M-step of the algorithm (McLachlan and Peel 

2000; Meng and Rubin 1993). The standard error can be obtained from the bootstrap samples in 

order to compute large sample confidence intervals for the population parameters in the model. 

The biologically functional lipid pairs which were introduced in chapter 3 will be used as an 

indication of some thresholds for RT for a specific lipid pair to evaluate whether it is significantly 

affected by the mutated genes.  
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 7.2. Test the Number of Components in the Normal Mixture Models  

Figure 7.1 shows the two-component mixture normal distributions fitting to the RT 

distribution in all fad datasets. Figure 7.2 shows the three-component mixture normal models in 

each dataset.  

Two components in fad2

RT

D
en

si
ty

-4 -2 0 2 4 6 8

0.
00

0.
15

0.
30

Two components in fad3

RT

D
en

si
ty

-6 -4 -2 0 2 4

0.
00

0.
15

0.
30

Two components in fad4

RT

D
en

si
ty

-5 0 5

0.
0

0.
2

0.
4

Two components in fad5

RT

D
en

si
ty

-5 0 5

0.
00

0.
15

0.
30

Two components in fad6

RT

D
en

si
ty

-5 0 5

0.
00

0.
15

0.
30

Two components in fad7

RT

D
en

si
ty

-5 0 5

0.
00

0.
15

0.
30

 

Figure 7.1: The two-component mixture normal distributions fitting to all the fads datasets 
The gray histograms are the RT distribution in each dataset. The two black curves are the two 
normal components. The red vertical lines are the real RT statistics for the biologically functional 
lipid pairs in each dataset. 
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Three components in fad2

RT

D
en

si
ty

-4 -2 0 2 4 6 8

0.
00

0.
10

0.
20

0.
30

Three components in fad3

RT

D
en

si
ty

-6 -4 -2 0 2 4

0.
00

0.
10

0.
20

0.
30

Three components in fad4

RT

D
en

si
ty

-5 0 5

0.
0

0.
2

0.
4

Three components in fad5

RT

D
en

si
ty

-5 0 5
0.

00
0.

15
0.

30

Three components in fad6

RT

D
en

si
ty

-5 0 5

0.
00

0.
15

0.
30

Three components in fad7

RT

D
en

si
ty

-5 0 5

0.
00

0.
15

0.
30

 

Figure 7.2: The three-component mixture normal distributions fitting to all the fads 
datasets 
The gray histograms show the RT distribution in each dataset. The three black curves are the 
three normal components. The red vertical lines stand for  the statistics RT from the biologically 
functional lipid pairs. 
 

Observing the two-component mixture model for fad2 in Figure 7.1, the two modes can 

be modeled by two well-separated normal components. It will be assumed that the normal 

component on the right-hand side models data for biologically functional lipid pairs (red vertical 

lines) and it will be used as the alternative hypothesis to get the final findings. The component on 

the left-hand side will be used as the null hypothesis model for the lipid pairs. In fad2 in Figure 

7.2, a three-component normal mixture model is used to fit the distribution of the statistics RT. 



92 

 

The component on the most right-hand side will be assumed to be the alternative model. The 

other  two components then represent the null model. From the two- and three-component 

mixture models in both Figures 7.1 and  7.2, it seems that fad2 can be modeled by both two- and 

three-component mixture normal distributions because there is a  clear separation between the 

null and the alternative model in each figure. On the other hand, for fad3 the three-component 

mixture model seems to be better than the two-component model, because in the three-

component mixture model the separation between the nulls and the alternative model is clearer. 

For the rest of the datasets, this method may not be applicable because neither two- nor three-

component mixture model can give a clear separation between the null and the alternative since 

there is insufficient density in the right tail of the distribution to identify a distinct normal 

component distribution. 

The fad2 dataset will be used as an example to illustrate the mixture model method in this 

chapter. A initial question regards the number of components that should be used in the normal 

mixture model. 

Bootstrap algorithm for testing the number of components 

1. Obtain the Maximum likelihood Estimates and the log-likelihood function from equation 

(5.2) for K  components and 1K  components mixture normal models, where K  = 1, 2, 

… k. 

2. Let loglik(k) and loglik(k-1) be the log-likelihood values for the mixture normal 

distribution with K  components and with 1K  components, respectively. Define the 

test statistics Tobs = loglik(k) – loglik(k-1), where Tobs is the observed test statistic. 

3. Simulate data from a 1K  component mixture model using the MLEs from step 1.  

4. Fit those data using both 1K  and K -component normal mixture models. Extract the 

log-likelihood values loglik(k*-1) and loglik(k*).  

5. Calculate the test statistic T* = loglik(k*)  ̶  loglik(k*-1) from models fit to the simulated 

data. 

6. Let B = 1000. Repeat steps 3 to  5 1000 times. Record the T*s from each loop to get a 

vector )T,...,T ,T(T *
1000

*
2

*
1

*  . 

7. Test the hypotheses  components 1:0 KH  versus components : KH A  by using the p 

value which is  calculated with 
1000

)T(T* # obs . 
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Note that bootstrap samples were generated under the null hypothesis with 1K  

components. In the fad2 dataset, the hypotheses H0: Two components versus HA: Three 

components was  tested with a p value equal to 0.038. Thus, the three-component mixture normal 

is selected. Then, H0: Three components versus HA: four components was  tested with a p value  

equal to 0.183. We conclude that the three-component mixture normal is an adequate fit versus 

the four component normal mixture. In the three-component mixture model, the component on 

the right-hand side  is modeling the larger values of RT and will be used as a component 

distribution to represent the significant findings.  

 7.3. Estimation and Confidence Intervals for the Parameters in Normal 

Mixture Models 

Three-component normal mixture models in fad2 is used here to illustrate the method. In 

the log-likelihood function in (5.2), a normal mixture model for the statistics RT with three 

components has eight parameters, 1 , 2 , 1 , 2 , 3 ,  1 , 2  and 3 , as defined in (7.1). The 

statistical software R package "mixtools" is used to complete the task of the EM algorithm. 

(http://cran.r-project.org/web/packages/mixtools/mixtools.pdf). The EM algorithm for normal 

mixture model maximizes the conditional expected log-likelihood at each M-step of the 

algorithm (McLachlan and Peel 2000). The MLEs are found after the convergence is declared at 

a maximized log-likelihood value. Meng and Rubin (1993) developed an ECM algorithm to add 

one more extra E-step in between the E- and M-step to update the estimates. In this extra 

conditional maximization E- step, the iteration can update the means conditional on variances or 

update the variances conditional on the means. Table 7.1 shows the MLEs for three-component 

normal parameters and the 95% confidence intervals. The log-likelihood values is -9940.318 

from the three-component model. The standard errors of the estimates can be obtained in the 

"mixtools" R package which utilized a bootstrap procedure for the specified mixture model.  

Table 7.1 shows that three confidence intervals for 1 , 2 , and 3  are  

(-0.421, -0.29), (1.947, 2.060) and (4.252, 4.641). Note that the means of the three components 

do not overlap, and their densities have separation. Also, the confidence intervals for 1 , 2  and 

3  are (1.139, 1.234), (0.289, 0.406) and (1.342, 1.585). The confidence intervals for the 

standard deviations did not overlap either. Figure 7.3 shows the three component normal density 
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curves (in black solid curves) and the three-component normal mixture curve (in red dashed 

line). 

 
Table 7.1: The confidence intervals for the parameters in a normal mixture with three 
components including eight parameters 1 , 2 , 1 , 2 , 3 ,  1 , 2  and 3 . 

Parameter j  is the mixing proportion for the jth component. j  and j  are the means for the  

jth components. The log-likelihood value is produced by using the MLEs from this table. 
Parameter Estimates Standard Error 95% CI Log-likelihood

1  0.689 0.011 (0.666, 0.711) 

2  0.093 0.010 (0.073, 0.113) 

1  -0.356 0.033 (-0.421, -0.29)

2  2.003 0.029 (1.947, 2.060) 

3  4.447 0.099 (4.252, 4.641) 

1  1.191 0.027 (1.139, 1.234) 

2  0.347 0.030 (0.289, 0.406) 

3  1.463 0.062 (1.342, 1.585) 

-9940.318 
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Figure 7.3: The mixture model fit of  RT in fad2 with three normal components 
The red dashed curve is the mixture model distribution. The black solid curves are the three 
normal components with the estimated parameters shown in Table 7.1.  
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From Table 7.1 and Figure 7.3 we can  see that the first normal component 

)1.191 ,3.0(N  on the left models most of the data with an estimated proportion of 0.689. The 

second component )0.347 ,003.2(N  models the least amount of the data with an estimated 

proportion of 0.093. The third normal component )1.463 ,447.4(N  models a moderate amount of 

the data with a proportion of 0.218. The mixture model with three components is: 

 

 )1.463 ,447.4(218.0)0.347 ,003.2(093.0)1.191 ,3.0(689.0)( NNNxf      (7.4) 

 

The normal component )1.463 ,447.4(N  will model the larger values of RT and will be used as 

the alterative model to find the interesting lipid pairs. The other two normal components 

)1.191 ,3.0(N  and )0.347 ,003.2(N  will be used as null components to model the lipid pairs 

with no mutation effects. The posterior probabilities for the interesting cases are then computed 

from  (7.3) except that the null density comprises two components. 

 7.4 The Results for fad2 Dataset by Using Three-component Normal Mixture 

The posterior probabilities are computed for each lipid pair in fad2 by using the mixture 

normal distribution with three components. There are 17 biologically functional lipid pairs in 

fad2. We want to know how many lipid pairs appear as significant results according to the 

posterior probabilities of each biologically functional pair.  

Figure 7.4 shows the posterior probabilities for all 4623 lipid pairs that satisfy the 

screening scheme 1Az  < 2Az  and   21 BB zz  in fad2. In Figure 7.4, the black solid curve is the 

posterior probabilities for each lipid pair at their RT statistic from the three-component normal 

mixture model. The 17 biologically functional lipid pairs posterior probabilities are used as 17 

different cutoff points above which "significant results" are determined. 
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Figure 7.4: The posterior probabilities of the RT for each lipid pair in fad2  
 The red dashed vertical lines are the biologically functional lipid pairs RT statistics. The solid 
black curve is the posterior probabilities from the three-component mixture.  
 

Table 7.2 shows the significant results by using 17 different cutoff points. The 17 

different cutoff points are from the corresponding 17 biologically functional pair posterior 

probabilities. In table 7.2 the 17 cutoff points are listed  in a descending order of their posterior 

probabilities. For example, the first pair, namely PC34_1_PC34_2, has the largest ( biggest 

posterior probability) cutoff point of 0.999 with a  RT value of 7.28. Among all 4623 lipid pairs, 

14 lipid pairs are significant with a proportion of 0.00303 of the total. Among the 14 significant 

lipid pairs, there are only 6 distinct reactants appearing in the results. 

In the last row  of Table 7.2, the biologically functional lipid pairs PC36_2_PC36_3 has a 

posterior probability of 0.94. This RT value, 4.135, is the smallest among all 17 biologically 

functional RT values. Its posterior probability 0.94 is also the smallest. If this posterior 

probability is used as the cutoff point, the proportion of significant pairs is 0.12 out of all 4623 

lipid pairs in fad2. The number of significant lipid pairs is 566 with 25 distinct reactants 

appearing in the 566 significant results. 

There are in total 67 possible reactants in the fad2 dataset that has  a total of 4623 lipid 

pairs satisfying the screening criteria for y = 2. The 25 distinct reactants from the significant lipid 

pairs in the last row of Table 7.2 are listed in Table 7.3. 
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Figure 7.5 shows the proportions of the significant pairs out of a total 4623 (y = 2) lipid 

pairs and the proportion of significant distinct reactants. Those two plots are produced from the 

last two columns in Table 7.2. Comparing Figure 7.5 (a) and (b), one can see that the two 

proportions both decrease dramatically as RT increases. This means in the significant results, the 

proportion of significant pairs can be decreased if we use a more restrictive cutoff points 

(posterior probability).  

 

Table 7.2: The results for the significant lipid pairs using 17 biologically functional lipid 
pairs from three-component mixture model 
Use i as the index for the 17 biologically functional lipid pairs. Column 1 is the number of the 17 
biologically functional lipid pairs. Column 2 shows the names of those biologically functional 
lipid pairs. Column 3 stands for the ith RT values for the ith biological pair. Column 4 shows their 
corresponding posterior probabilities. This whole table is sorted with the posterior probabilities 
in column 4 in a descending order. In column "Proportion", the ith proportion stands for the 
proportion of significant pairs using the ith posterior probability as the cutoff point. Column 
"Number sig.pairs" shows the number of significant pairs by using the ith posterior probability as 
the cutoff point. Column "Number distinct.reactant" shows the number of distinct reactants. 

 

Number AB.name RT 

Posterior 

Prob Proportion

Number 

sig.pairs 

Number 

distinct.reactant

1 PC34_1_PC34_2 7.280 0.99999997 0.003028 14 6 

2 PC36_2_PC34_2 7.255 0.999999967 0.003245 15 6 

3 PC36_2_PC38_5 6.858 0.999999837 0.009518 44 10 

4 PC34_1_PC38_3 6.522 0.999999393 0.01817 84 14 

5 PC36_2_PC38_3 6.507 0.999999355 0.018603 86 14 

6 PC36_2_LysoPC18_2 6.503 0.999999347 0.018819 87 14 

7 PE36_2_LysoPE18_2 6.310 0.999998623 0.025525 118 15 

8 PC38_2_PC38_3 6.151 0.999997477 0.031149 144 16 

9 PE34_1_PE40_2 6.062 0.999996464 0.035258 163 16 

10 PE36_2_PE40_2 6.014 0.999995768 0.036989 171 16 

11 PE34_1_LysoPE16_0 5.873 0.999992843 0.041964 194 17 

12 PE36_2_LysoPE16_0 5.830 0.9999916 0.044992 208 17 

13 PC34_1_PC40_4 5.698 0.999986278 0.051482 238 17 

14 PC36_2_PC40_4 5.688 0.999985784 0.051914 240 17 

15 PE36_2_PE38_5 5.426 0.999962949 0.061865 286 17 

16 PC34_1_PC36_3 4.139 0.99680312 0.122215 565 25 

17 PC36_2_PC36_3 4.135 0.996757692 0.122431 566 25 
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Table 7.3: The 25 distinct reactants from the significant lipid pairs using the lowest 
posterior probability for the biological pair PC36_2_PC36_3 from the last row of Table 7.4  
In this table, the order of the significant pair is by columns.  

PE34_1 PS42_1 PC38_2 PG34_1 PS36_4 

PC34_1 PS40_1 PI36_2 PE36_1 PE42_4 

PC36_2 PS34_1 PE34_4 PS38_1 PS36_1 

PE36_2 LysoPC18_1 PI36_1 PG32_1 PS36_2 

PI34_1 LysoPE18_1 DGDG34_1 DGDG36_4 PA36_2 
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Figure 7.5: The proportion of significant pairs and the proportion of significant distinct 
reactants in fad2  
(a) The proportion of significant pairs among 4623 pairs at 17 different cutoff points. The 17 
cutoff points are the posterior probabilities of the biologically functional lipid pairs. (b) The 
proportions of number of significant distinct reactants from their corresponding significant 
results from panel (a). The total number of possible reactants is 67 in all 4623 pairs. 
 

Some summary remarks  

In conclusion, the normal mixture model method appears to be a useful approach for 

identifying reactant-product lipid pairs that are significantly affected by the mutated genes in 

some datasets. Previous key assumptions  need more thorough consideration. The first is that the 

distribution of RT includes component distributions for the null results and results that are “true 

findings”. While this approach is consistent with other approaches commonly used for genetic 

expression data, some additional justification will be needed to characterize the “empirical null” 

RT  in fad2 RT  in fad2 
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distribution for RT and the degree to which a fitted normal mixture component is valid. This 

could involve considering the structure of the RT statistic as a function of the sample means, and 

then determining the distributional characteristics of the statistic. This is somewhat similar to the 

work that Efron (2004, 2007) did for an empirical distribution of a test statistics under the null. 

Another issue is the likely strong dependence among pairs. The degree to which dependence may 

affect the results and whether there should be  some adjustments for this need more 

consideration. This is similar to Efron’s (2007) adjustment to estimated FDRs for dependence 

among gene expression data (across genes).   
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Chapter 8 - ANOVA Approach for the Pathway Analysis  

 8.1. Two-way ANOVA Model with an Interaction Term 

In chapter 3 we explored the relations between a reactant A and a product B in the lipidomic 

data. The relations of the means in the lipid pair have to satisfy the screening scheme 1Az  < 2Az  

and   21 BB zz  in order for them to be a candidate reactant-product pair on the pathway. After 

consideration of the evidence in the data for pairs of lipids to be a candidate reactant-product pair 

affected by the mutation, it became clear that a simple ANOVA approach could be useful as 

well. This is explored here. Let ijkz  be the concentration of a lipid. Index i = 1, 2, denotes the 

lipid in a possible reactant-product pair. Index  j = 1, 2, denotes the treatment groups WT and 

MT. Index k = 1, 2, …, n denotes the samples in the jth treatment within the ith role of lipid, and n 

denotes the equal sample size 5 in both groups. The relations of concentrations of two lipids in a 

pair can be expressed in a two-way ANOVA model: 

 ijkijjiijkz   ,  (8.1) 

where ijkz  denotes the concentration of the ith lipid in the kth sample within the jth treatment. 

              is the unknown true overall mean in the population.  

 i  is the ith role lipid effect (i.e. role is product or reactant). 

 j  is the jth (WT or MT) treatment effect. 

 ij  is the interaction between lipid roles and the treatment types.  

 The effects i , j  and ij  are assumed to be fixed effects.  

            ijk  is a random component, assuming that ),0( 2 Niid
ijk   with mean 0 and 

 variance 2 . 

The following steps illustrate the ANOVA approach for finding  significant reactant and 

product pairs on the pathway. 

1. All lipid pairs are screened by the relations according to y = 2. Those lipid pairs 

will be discarded if the screening scheme does not hold. 
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2. The hypothesis 222112110 :  H  is tested to detect the treatment effect 

from the model (8.1). If there is no significant differences in the four means in 

ij , testing the interaction will be meaningless. 

3. If the means are significantly different, the interaction is tested with the 

hypotheses H0i: There is no significant interaction between the role of a lipid and 

the treatment type versus HAi: There is significant interaction between the role of a 

lipid and the treatment type. The interaction test in (8,1) can be expressed as H0i: 

0ij  versus H0i: 0ij . The index i is indexing the various hypotheses being 

tested for different pairs of lipids. 

4. A list of significant lipid pairs is given by using local fdr at three different levels,  

0.001, 0.01 and 0.05.  

In the following section, all 9 lipidomic experiment datasets are analyzed by using this 

ANOVA approach.  

 8.2. ANOVA Interaction Test Results for the 9 Lipid Datasets 

Figure 8.1 shows a typical interaction plots from a lipid pair. The non-parallel or 

significant interaction for the lipid pair PE34_1 and PS34_2 with  PE34_1 as the reactant and 

PS34_2 as the product with y = 2 in which the conditions 1Az  < 2Az  and   21 BB zz  hold. The 

red line stands for the WT group, and the black line stands for the MT type group. The two 

points in A are WT mean 1Az  (i.e., red triangle) and MT type mean 2Az  (i.e., solid black dot), 

respectively. Similarly, the two points for B are WT mean 1Bz  (i.e., red triangle) and 2Bz (i.e., 

solid black dot).  

All 9 lipid experimental datasets are  analyzed in the same manner. Table 8.2 shows the 

top 6 lipid pairs along with their tg, SSD, and p values from the interaction test that includes the 

corresponding lfdr values. Many lipid pairs show very small P values and the lfdr values. There 

are different numbers of significant lipid pairs  in each of the 9 lipid datasets.  The fad2 dataset 

has the most significant results.  
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Figure 8.1: Interaction plots for a lipid pair with a significant interaction 
The red line shows the WT group and the black dashed line shows the MT group. The significant 
interaction from the pair of A: PE34_1 and B: PS34_2 from the y = 2 pairs which satisfy s 1Az  < 

2Az  and   21 BB zz .  
 
Table 8.1: The top 6 significant lipid pairs from the results in fad2 data with lfdr < 0.001 
All the significant pairs are saved in different Excel files for lfdr < 0.05, lfdr < 0.01 and lfdr < 
0.001. The list is given in a descending order of the lfdr values in the last column.  

AB.name y tg SSD pvals lfdr 

PE34_1_PS34_2 2 0.988241 2.664968 2.32E-16 3.14E-13 

PC34_1_PS34_2 2 0.989289 2.66354 4.22E-16 3.14E-13 

PC36_2_PS34_2 2 0.989738 2.662928 5.38E-16 3.14E-13 

PE36_2_PS34_2 2 0.990124 2.662404 6.59E-16 3.14E-13 

PE34_1_PS40_2 2 0.985919 2.661875 8.05E-16 3.88E-13 

PI34_1_PS34_2 2 0.991131 2.661039 1.09E-15 3.88E-13 

 

Figure 8.2 is a comparison of the number of significant lipid pairs from  all 9 datasets at 

three different lfdr levels: 0.05, 0.01 and 0.001. From this figure, one can see that those 

mutations (i.e., genotypes) appear to have the most significant effect on lipid reactant-product 

pairs in fad2 and sfd3, as detected by the ANOVA interaction test. Meanwhile, in fad4 and sfd1 

the genotypes  have the least influence. 
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Figure 8.2: Comparison of the number of significant pairs in all  9 datasets 
The 9 groups of bars show  the number of significant lipid pairs in datasets fad2, fad3, fad4, 
fad5, fad6, fad7, sfd1, sfd2 and sfd3, respectively. In each group , the red bars are the number of 
significant lipid pairs for lfdr at level of 0.05, the green bars are the lfdr at level of 0.01, and the 
blue bars are the lfdr at level of 0.001. 
 

 8.3. ANOVA Interaction Test Results for the Roots-aerial data 

The interaction test is  also applied to the roots-aerial datasets from Fukushima et al. 

(2011). Treatment effects of tt4 and mtol in the roots and aerial are  compared with their WT 

(Col0) plants by using the interaction ANOVA model in (8.1). Figure 8.3 displays the number of 

significant metabolite pairs from the four datasets. The significant results are produced from the 

y = 2 screening, i.e., the condition that the mutation blocks a pathway. Figure 8.3 shows that the 

mutation has a larger effect in the roots than in the aerial portion at all the lfdr levels of 0.05, 

0.01 and 0.001 by comparing the  two left panels with the  two right panels. In the roots part (two 

left panels), the two mutations tt4 and mtol have similar effect with the WT. While in the aerial 

part (two right panels), the mtol effect is larger than that of tt4. 
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Figure 8.3: Comparison of significant metabolite pairs from the roots-aerial data using 
interaction p values 
Four different datasets are shown in four panels: roots WT vs tt4, roots WT vs mtol, aerial WT vs 
tt4, and aerial WT vs mtol. In each dataset, the red bars stand for  the frequency of the significant 
metabolite pairs by using lfdr at the level of 0.05, the green bars for the lfdr at the  level of 0.01, 
and the blue bars  for the lfdr at the level of 0.01.  
 

This chapter has compared the mutation effects of the 9 lipid datasets by using the 

ANOVA approach in a two-way model including an interaction. In the previous chapters, several 

methods have been explored for the analysis of the lipidomic datasets in identifying the reactant 

and product pathways. In chapter 9, realistic lipidomics datasets will be simulated under the 

assumption that there is no mutation effect in each lipid pair. We will explore the characteristics 

of the simulated data to see how well the test statistics can reflect the relation between the means 

of a lipid pair. The Mixture Normal Bootstrap Null (MNBN) distribution will be used in the 

simulated data to evaluate  the performance of this method.  
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Chapter 9 - Simulation of  Realistic Data  

 9.1. Introduction 

Many initial methods for analyzing gene-expression data made assumptions about 

independence among genes. It was shown that some methods still work well, on average, in the 

presence of dependence among genes or under assumptions of certain structures of dependence. 

It was later shown that some key results can be highly variable from study to study when gene 

expression data are dependent among genes. Recent work by Klebanov et al. (2007), Owen 

(2005), and Efron (2007; 2010) have investigated this dependence. Efron’s work included an 

adjustment to estimated FDR values for dependence among genes. Paranagama (2011) explored 

a method to stabilize the variance of FDR estimates in the high dimensional data under 

dependencies. The metabolite pathway analysis is still a new research area in which there are not 

many rigorous statistical methods developed. In this chapter, characteristics of simulated data and 

performance of the method MNBN under a null hypothesis of equal means will be investigated in a 

simulation. 

As methods for the analysis of gene expression data progressed over the past years, 

eventually attention turned to methods for simulating realistic high-dimensional data. Up to that 

point, data were simulated from multivariate normal distributions with restrictive dependence 

structures. Simulating more realistic gene expression data was considered in Gadbury et al., 

(2008). Simulating realistic lipidomic data is challenging. Still it will be necessary in order to 

evaluate the performance of new statistical methods for analyzing lipidomic data. Gadbury et al. 

(2008) proposed a plasmode method for generating data which were closer to the structure of 

real data. Paranagama (2011) extended this method and suggested a new plasmode method to 

simulate data with more original structure preserved in the datasets. Other techniques for 

simulating realistic data can be found in Hu et al. (2010) and Wang (2012).   

 9.2. Data Simulation Algorithms 

To simulate realistic data for the lipidomics experiment, the two characteristics from the 

screening scheme in Figure 1.5 will be considered in the data simulation algorithm. The mean 

and standard deviation vectors from the real data will be utilized in the simulation of the realistic 

data for the purpose of preserving the real data structure. This will keep the mean changes in the 
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significant lipid pairs on the pathway to be consistent with the characteristics in the scheme. Two 

algorithms are considered. 

Consider one of the datasets, fad4, as a multivariate data where there are  141 lipids and 5 

samples in each WT and MT group. Let the mean and standard deviation vectors from the WT 

and MT groups be W̂ , M̂ , W̂ , and M̂ , respectively. Let the WT correlation matrix WR  be a 

141 by 141 correlation matrix. The off-diagonal elements of the first 30 by 30 block diagonal matrix 

(in the red square) have correlation 0.5 in WR  as  shown in (9.1). The other off-diagonal elements 

have zero values  assuming independency in the lipid pairs.  
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WR ,                       (9.1) 

 

There are two ways to place the mutation effects into the simulated data. One way is to 

use the 7 biologically functional lipid pairs from the actual fad4 dataset as a criterion in the 

simulated dataset since their means and variances are preserved in the simulation. It is denoted 

by pairs.sim. The other way is to place the mutation effect on 7 arbitrary lipid pairs by changing 

the sign of the correlations. The 7 arbitrary lipid pairs are then called pairs.corr.  

The correlation matrix in the MT group MR  in (9.2) has a similar structure with WR , with 

a 30 by 30 block diagonal matrix (in the red square), but the correlations in the first 7 lipid pairs in 

the first row and first column of MR  (in the blue square) has changed to -0.5 in an attempt to 

simulate biologically functional lipid pairs.  
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The covariance matrices W̂  and M̂  for the WT and MT groups are computed by 

T
WWWW R  ˆˆˆ   and T

MMMM R  ˆˆˆ  . Then, the simulated fad4 data are  produced by 

using a multivariate normal distribution with the following forms: 

 )ˆ,ˆ(~ 141 WWW NX   and )ˆ,ˆ(~ 141 MMM NX  ,                       (9.3) 

The simulated "fad4 data" are  formed  with WX  as its WT group data and MX  as its MT group 

data. 

Algorithm 1: Simulate realistic fad 4 data and get the distribution of test statistic RT. 

1. Compute the mean and standard deviations W̂ , W̂ , M̂  and M̂  from fad4 data in 

the WT and MT groups, respectively. 

2. Simulate the correlation matrix WR  and MR  following the structure described above. 

3. Compute the covariance matrices W̂  and M̂  in the WT and MT groups, 

respectively. 

4. The simulated realistic data are  produced from multivariate normal distributions in 

(9.3) and  the dataset is denoted by sim.real. 

5. Center and scale the dataset sim.real using 
s

xx
z

ij

ij


  to get the mean 0 and 

standard deviation 1 for each lipid species. ijx and ijz denote the lipid before and after 

scaling, respectively. 

6. Proceed to create the distribution of RT as described in earlier chapters. 
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In Algorithm 1, the simulated realistic data are very close to the real data since it has 

preserved the mean and also the variance structure for each lipid. The simulated biologically 

biologically functional lipid pairs are generated by changing the sign of the correlation in the MT 

group to -0.5 for 7 lipid pairs to check whether correlation can be used as a criterion to find the 

significant lipid pairs on the lipidomics pathway. If the 7 arbitrary biologically functional lipid 

pairs (pairs.corr) are at the top of the list of results, we may conclude that altering correlations is 

a useful method to create lipid pairs in simulated data. Since the 7 simulated biologically 

functional lipid pairs (pairs.sim) have the same mean and variances in the simulated data, the 7 

simulated biologically functional lipid pairs with the 7 arbitrary biologically functional lipid 

pairs will be used as a criterion to evaluate the method and to investigate the properties of the 

simulated datasets.   

The simulated dataset (sim.real) from Algorithm1 will be used as "real data" in the 

simulation. Then, how to simulate a null dataset under the null hypothesis of no mutation effect 

in each lipid pair? The following Algorithm 2 proposes a method to generate a null dataset from 

which the bootstrap samples are produced. 

 

Algorithm 2: Simulate a null dataset and produce the bootstrap null distribution for RT 

under the null hypothesis GF   . 

1. Compute the covariance matrices W̂  and M̂  using the following formulas 

T
WWWW R  ˆˆˆ   and T

MWMM R  ˆˆˆ  . Common correlation matrix WR  is used 

in both covariance matrices. 

2. The simulated null distribution data are  produced from (9.3) and the dataset  is 

denoted by sim.null. 

3. Let the sim.null be a 141 by 10 matrix with the 141 rows representing the 141 lipid 

species and the 10 columns representing 5 WT samples and 5 MT samples. The data 

sim.null will be a template from which the 200 bootstrap null samples are generated. 

4. Let the WT sample data in the sim.null dataset be nwww ,...,, 21  with a population 

mean F  and a sample mean w . Let the MT data be nmmm ,...,, 21  with a 

population mean G  and a sample mean m .  
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5. Transform the data by using xwww ii ~  and xmmm ii ~ , ni ,...,2,1 , 

where x  is the mean of the combined sample. 

6. Let B = 200 and Bb ,...,2 ,1  denote the bth bootstrap sample ( bb mw ** ~,~ ), where bw*~ is 

sampled with replacement from 51
~,...,~ ww  and bm*~  is sampled with replacement from 

51
~,...,~ mm . 

7. Center and scale samples )~,~(x *** bbb mw  by using
*

**

*

s

xx
z

ij

ij


  to get the mean 0 and 

standard deviation 1 for each lipid species. *
ijx and *

ijz denote the bootstrap data before 

and after scaling, respectively. 

8. Pair every  reactant A* with every product B* to get approximately 19740
2

141
2 







  

lipid pairs A*→ B*.  

9. Screen the relationships of  *
1Az  < *

2Az  and *
2

*
1   BB zz  according to the 

value 2* y for any arbitrary lipid pairs. In total, about K = 4600 lipid pairs satisfy 

the conditions of 2* y . 

10. Calculate the statistic *
TR  for each lipid pair A*B* from the scaled bootstrap sample 

bz* with y* = 2. The test statistic is a vector with about 4600 elements from each of 

the bth bootstrap samples, i.e., )R,...,R,R(R *4600
T

*2
T

*1
T

*b
T  . The R* statistic is defined 

as  

                                                         2*2** ))684.2()1(R  SSDtg . 

11. Repeat steps 6  through 11 200 times to get about 4600200 bootstrap statistics to 

determine the null distribution for the statistic *
TR . 

The reason for using the common correlation matrix in step 1 in both WT and MT is that 

in the screening scheme, if there is no mutation effect in the AB lipid pair and the mutation did 

not block the pathway in the MT group, then Am  Bm will proceed in the same rate as  Aw  

Bw. So a common correlation matrix is used when producing null data for WT and MT. Note that 

to create the null data that satisfy the scheme under no mutation effect, the mean structure must 

be removed from the biologically functional lipid pairs, which is  implemented in step 9 of 

Algorithm2.  
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 9.3. Simulation Using fad4 Dataset  

The simulation is  done with sample size n = 5 and n = 20. To investigate the correlation 

effect on the simulated datasets, two forms of the correlation matrices WR  have been used. One  

is in the form of  (9.1) with a 3030 block values of 0.5. Another form is similar with the form of  

(9.1), but the 3030 block of values change to 0.8. The correlation matrix in the MT group is 

similar with their corresponding WT correlation matrix  WR  except that the 7 values for the 

arbitrary biologically functional lipid pairs (pairs.corr) change to negative. 

 

Simulation 1: Sample size n = 5 with correlation values 0.5 in the block matrix in WR . 

1) Choose WT correlation matrices WR  (9.1) and MR  (9.2). 

2) Compute T
WWWW R  ˆˆˆ   and T

MMMM R  ˆˆˆ   to get the simulated real 

dataset sim.real by following Algorithm 1. 

3) Compute T
WWWW R  ˆˆˆ   and T

MWMM R  ˆˆˆ   to get the simulated null 

dataset  sim.null by following  Algorithm 2, and also to get the bootstrap distribution 

for RT. 

4) Overlay the RT distribution from sim.real with the bootstrap distribution. Fit the 

bootstrap distribution using two-component mixture model. 

5) Get the P values from the two-component mixture model. Control the false discovery 

rate by local fdr at the level of 0.05 to find a list of findings. 

Simulation 2: Sample size n = 5 with correlation values 0.8 in the block matrix WR . 

Simulation 2 is similar with simulation 1 with sample size n = 5 except that the off-

diagonal values in the correlation matrices change to 0.8 in both WR  (9.1) and MR  (9.2). 

Simulation 3: Sample size n = 20 with correlation values 0.5 in the block matrix WR . 

Simulation 3 is similar with simulation 1 with the same correlation structure in both WT 

and MT groups except that the sample size increases to n = 20. 

Simulation 4: Sample size n = 20 with correlation values 0.8 in the block matrix WR . 

Simulation 4 is similar with simulation 2 with the same correlation structure in both WT 

and MT groups except the sample size increases to n = 20. 
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9.3.1. The Characteristics of the Simulated Datasets 

Figure 9.1(a) shows the scatter plot of tg ratio versus SSD in the actual data from fad4. 

The red points on the peak are the biologically functional lipid pairs (tg, SSD). The red data 

points show a region  where the significant findings should be located if the lipid pairs satisfy the 

screening scheme. Also, for the red points  their SSD values are close to max(SSD), i.e., 2.684, 

when sample size is 5, and  their tg values are close to 1. All these  properties are reflected in the 

R statistics formula which was defined in (3.6). In  Figure 9.1(b), the R statistics are  transformed 

to RT statistics. The red lines which represent the biological biologically functional lipid pairs RT 

statistics indicate that the "interesting" lipid pairs are shown by the larger values of RT. 
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Figure 9.1: The scatter plot tg versus SSD and the RT distribution in the actual dataset fad4 
(a). Scatter plot of tg vs. SSD in fad4. The red data points are the tg vs. SSD from the 
biologically functional lipid pairs. (b). The distribution of RT. The red lines represent the 
biologically functional lipid pairs' RT statistics. 
 

Figure 9.2 shows the scatter plots of tg versus SSD from the sim.real data (in Algorithm 

1) in each simulation. We can see that the simulated biologically functional lipid pairs (pairs.sim 

in red points)  appear on the top of each scatter plot. The positions of the simulated biologically 

functional lipid pairs ( pairs.sim) are similar with those in the actual fad4 data scatter plot shown 

in Figure 9.1(a). That means the biologically functional lipid pairs are a good indication of the 

lipid pairs on the pathway in both simulated data and real data.  

The arbitrarily paired lipid pairs (pairs.corr, orange points) did not appear in simulation 2 

because those pairs are screened out by the y = 2 criterion according to the mean relations in the 
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screening scheme. In all other plots in Figure 9.2, the arbitrary biologically functional lipid pairs, 

pairs.corr, are randomly scattered without concentrating on a specific position. The appearance 

of the pairs.corr (orange points) did not reflect the characteristics of the actual data like the 

simulated biologically functional lipid pairs (red points). Hence, the simulated biologically 

functional lipid pairs (pairs.sim) will catch the mutation effect more accurately than the arbitrary 

pairs (pairs.corr).  
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Figure 9.2: The scatter plot of tg versus SSD from the four simulations 
The scatter plots in the four panels are all produced from the simulated real data, i.e. sim.real, 
from the four simulations. In each panel, the red points show the pairs from the pairs.sim. The 
orange points stand for  the arbitrary biologically pairs from pairs.corr. 
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Now, let us compare the RT distribution in the actual data in Figure 9.1(b) and in the four 

simulations in Figure 9.3. In Figure 9.3, the RT values for the pairs.sim lipid pairs (red line) have 

resemble the pattern in Figure 9.1(b)  in modeling  large values of the statistics. 

The pair.real.corr arbitrary lipid pair statistics RT in each panel cannot model large RT 

statistics. Also, in simulation 2 the arbitrary biologically functional lipid pairs are screened out 

by the y = 2 criterion. Therefore, the arbitrary biologically functional lipid pairs cannot reflect 

the characteristics of the datasets. Furthermore, the correlation does not show a strong effect on 

the lipid pairs. Extensive simulation study should be conducted to investigate the correlation 

effect on the pathway to get a final conclusion. 
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Figure 9.3: The RT distribution in the four simulations 
The red lines show the RT statistics from the simulated biologically functional lipid pairs, 
pairs.sim. The orange lines represent the RT statistics from the arbitrary biologically functional 
lipid pairs from pairs.corr. 
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This simulation method provides a useful tool to simulate realistic data that is close to the 

actual fad4 data. The characteristics are similar in both real data and simulated datasets. In the 

next section, the MNBN method is applied to all four simulations.    

9.3.2. The MNBN Method to Fit to the Bootstrap Distributions 

Figure 9.4 shows the normal mixture model fitting to the actual fad4 dataset using two-

component mixture model. The green histogram is the RT distribution from fad4. The orange 

histogram shows the bootstrap samples distribution. Three- and four- component mixture models 

are also explored in the MNBN method. But two-component mixture normal model has been 

used to fit the bootstrap null distribution in the MNBN method since two-component mixture 

model can capture the shape of the empirical bootstrap distribution.   
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Figure 9.4: Normal mixture model fit to the actual fad4 dataset  
The black curves are the normal component densities and the red dashed lines are the mixture 
model density. The green histogram is the RT distribution in the actual data fad4. The orange 
histogram is the empirical bootstrap distribution. 
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Figure 9.5 shows the two-component normal mixtures fit to the empirical bootstrap 

distributions in the four simulations using the MNBN method. The results produced from those 

four two-component mixture models will be discussed in the next section. 
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Figure 9.5: Two-component normal mixture model fit in the four simulations  
In each panel, the green histograms stand for  the distribution of RT in the simulated real data 
from sim.real. The orange histograms represent the bootstrap samples produced from the 
bootstrap. The two black curves are the two normal densities and the red dashed curves are the 
density of the two-component mixture models.  

 9.4. Results and Discussion 

The fitting results of the two components with the MNBN method are listed in Table 9.1 

after local fdr multiple adjustments at level of 0.05. 

In Table 9.1, column 1 shows the four simulations with different sample sizes and 

correlation structures. Column 2 is the number of lipid pairs in the simulated real data set 

(sim.real) which will be used as the "real" data to overlay with the bootstrap distribution using 
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the MNBN method. Column 3 shows the total number of findings produced from the MNBN. 

Column 4 shows the number of simulated biologically functional lipid pairs (pairs.sim) appeared 

in the final findings. The last column shows the number of the arbitrary biologically functional 

lipid pairs (pairs.corr) in the final findings from column 3. 

In the last column of Table 9.1, the arbitrary biologically functional lipid pairs 

(pairs.corr) do not appear in any of the results. The correlations for the 7 simulated arbitrary pairs 

were changed from 0.5 to 0.8. The correlation change in the simulated biologically functional 

lipid pairs does  not promote the arbitrary pairs to the top of the list findings. In all four 

simulations, the correlation does not seem to play a vital role in determining the reactant-product 

lipid pairs. 

 

Table 9.1: The results from  the 4 simulations using the MNBN method 
The first column shows the four simulations. The second column represents the total number of 
lipid pairs in the simulated real data (sim.real). Column 3 shows the total number of lipid pairs in 
the final results. Column 4 shows the number of simulated biologically functional lipid pairs 
(pairs.sim) that appeared in the final results. The last column is the number of the arbitrary 
biologically functional lipid pairs (pairs.corr) in the final results. 

Simulation 
# of lipid pairs 

in sim.real 
Total number of 

significant results 
# of pairs.sim # of pairs.corr

n = 5, corr = 0.5 3323 0 0 0 
n = 5, corr = 0.8 2935 0 0 0 
n = 20, corr = 0.5 2606 10 7 0 
n = 20, corr = 0.8 2468 8 6 0 

 

Some summary remarks  

The simulation algorithms in this chapter provide a tool to simulate realistic lipidomic 

pathway data. The simulated realistic data captured the characteristics of the real data. The 

simulated null datasets are  produced in the situation when the null hypothesis, H0: no mutation 

effect, is true. The method MNBN is more precise (in capturing the biologically functional lipid 

pairs) with an increased sample size. Since the results in Table 9.1 are from four simulations, a 

concrete conclusion should be drawn from extensive simulations. Fukushima et al. (2011) 

addressed that strong correlation between the metabolite pairs is an indication of the pathway. 

Raamsdonk et al. (2001) investigated the metabolite pathway using the concentration change in 

WT and MT groups as introduced in chapter 2. In this simulation study, it shows that the 
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concentration change in the WT and the MT groups seems more relevant to the pathway than 

correlation analysis.  
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Chapter 10 - Summary and Future Work  

 10.1 Summary of This Dissertation 

Compared to previous methods for find a metabolic pathway, the method used in this 

research not only focuses on the mean concentration changes in a lipid pair, but also determines 

the reaction direction from a reactant (A) to a product (B), making use of the mutation effect in 

blocking a reaction. The main idea, which is reflected from the screening scheme, has been  

studied in an exploratory data analysis in chapter 3. Some numerical facts and relations between 

the means for a lipid pair were found. Three summary statistics tg, SSD and RT were  established 

and four methods proposed in chapters 4, 5, 6, 7 and 8. Chapter 4 explored a bootstrap procedure 

to find the parametric null distribution of the three test statistics. In this bootstrap method, a 

criterion, Minimum Kolmogorov-Smirnov (K-S) D statistics, was introduced and utilized to 

select a candidate parametric model as the null distribution of the test statistic. The parametric 

bootstrap null distributions from chapter 4 presented some challenges in capturing the structure 

in the data. This lead to the investigation of a mixture model fit to the bootstrap null distribution 

in chapter 5,  where a two-component mixture normal model has used to fit the bootstrap null 

distribution under the restricted null hypothesis of F = G. Chapter 5 also presented the 

randomization test for testing the treatment effect. Two datasets, fad2 and fad4, showed the 

strongest and weakest treatment effect among all datasets studied in this research. The data fad2 

has the largest number of lipid pairs in the final findings as expected. When a two treatment 

comparison test between WT and MT is performed on the 141 lipids, it can be seen that most are 

significantly affected by the mutation in fad2 data.  

For the application herein and considering the challenge of producing a valid null 

distribution, an alternative approach has been  considered in chapter 6 under a different null 

hypothesis, that is, one of equal means GF    rather than equal distribution as was done in 

chapters 4 and 5. The bootstrap methods, using the parametric distribution to fit the bootstrap 

samples as shown in chapter 4 and using the mixture normal distribution to fit the bootstrap null 

distribution as shown in chapter 5, are compared under the equal mean null hypothesis.  

To fit the statistic RT to the mixture model, an analogous approach to Efron's "empirical 

null distribution" has been  introduced in chapter 7, using a normal mixture model with two-, 

three-, and four-component. The number of components in a mixture model is tested based on a 
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parametric bootstrap procedure. A three-component mixture normal is selected by the bootstrap 

method and used to  fit  the data. In this model, one component  models the bigger values of RT 

for which the null hypothesis is  false, and the other two components  model results for which it 

is true. Some results have been shown by using the posterior probability that a lipid pair is 

affected by the mutation at a particular RT. In chapter 8, a more conventional approach has been 

explored by using a two-way ANOVA model with an interaction term. The interaction reflects 

the change in lipid concentrations that are of interest in this research. The results produced from 

this method after local fdr adjustments are similar with those from the other three methods.     

As methods for the analysis of gene expression data progressed over the past years, 

eventually attention turned to methods for simulating realistic high-dimensional data. 

Simulations are performed in chapter 9 to illustrate the method using mixture normal to fit the 

bootstrap null distribution under the equal mean assumption.   

 10.2 Future Direction 

10.2.1. Intersection-Union Test 

In chapter 4, a more restrictive null hypothesis F = G was applied to a specific null 

hypothesis for each lipid in the data sets. The problem is that the null distribution of the test 

statistics RT may deviate quite substantially from the actual distribution of RT
 seen in data. The 

results suggest strong mutation effects in the fad2 dataset. A less restrictive null hypothesis 

would be, 

 
AmAwH  :0  or BmBw    

AmAwAH  :  and BmBw   . 
(10.1) 

The above test was first defined in the Intersection-Union Tests (Berger 1997; Berger and Hsu 

1996) which rejects the H0 only if all the tests are rejected (http://statweb.calpoly.edu/jdoi/web 

/research/iut_paper_proc.pdf). 

Since we are interested in whether A and B are a reactant and product pair candidate or 

not, the alternative hypothesis in (10.1) reflects the screening scheme. Compared to the null 

hypothesis in (4.1), this hypothesis is less restrictive on the relations of the means for each lipid 

in a sense that only one of the two events, AmAw    or BmBw   , is required to be true, 

leading to less restrictive conditions on the four means in the lipid pair. The appropriate 
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bootstrap procedure would need to be explored that would bootstrap a null distribution for this 

set of hypotheses, and the characteristics of the test investigated for its use on high-dimensional 

data. 

10.2.2. Dependence in the Data 

An independence assumption was made in fitting the mixture model to data from lipid pairs. 

This was needed to write out the likelihood of the data. This likelihood expression is not technically 

the right likelihood, but it is considered a measure of relative model fit as it has been in other work 

on gene expression experiments. The lipidomic data described here are correlated in two ways. The 

first way was exploited when using the reactant-product pathways to identify interesting results. 

However, the fact is that many lipids may be on the same pathway and, therefore, there is likely to be 

correlation among pairs of lipids. Also, a common lipid may be present in many pairs giving another 

degree of dependence among data from paired lipids. What role does dependence play in 

characterizing reactant-product pairs or to what extent are results affected? Is an adjustment needed 

or will a new method be required to consider lipid reactions in longer chains? These questions are 

likely to be difficult to answer. In the simulation study in chapter 9, different correlation structures 

were applied to simulate realistic data to explore characteristic of the datasets. More extensive 

simulation should be done to investigate dependency in the data. 

10.2.3. Variance Structure in the Lipid Pairs 

The relations between the four means of a lipid pair is reflected in the screening scheme 

and also used in all the methods to develop the statistics in order to find the significant findings 

in the pathway. One may wondering if changes in variance may also help to identify lipid pairs 

whose pathway is affected by the mutation.  

A initial exploration is done to evaluate equal variances in the WT and MT group. The F 

test statistic which is a ratio of the variance of the WT group 2
w  to the variance of the MT 

group 2
m  is used as a test statistic. The distributions of the test statistics F and the p value 

distributions are shown in Figure 10.1.  
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Figure 10.1: The distribution of statistic F from the equal variance test 
The left panels show the distributions of the F test statistics (the histogram) from fad2 (top) and 
fad4 (bottom). The red dashed lines show  the theoretical F distribution with df1 = 4 and df2 = 4. 
The right panels show the p value distributions from the equal variance test in fad2 (top) and 
fad4 (bottom). 

 

The graph show some evidence of unequal variances across MT and WT groups for some 

lipids. To what extent, this manifests itself in lipid pathways that are modified by a mutation is a 

subject of future work. 
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Appendix A - The Lipidomics Experiment Information 

Background Information 

The modeling plant Arabidopsis thaliana are used in this experiment since this plant has 

small genome and also it is the first plant to be sequenced. The researchers have completed a list 

of databases for Arabidopsis thaliana to search for gene functions or to annotate their own 

sequence. In this experiment, researchers use Arabidopsis thaliana to prove the loss of function 

of mutated genes when the stress condition is applied to mutant plants compared to wild type 

plants. The targeted lipidomics data analysis is applied to 9 mutated genes with known gene 

functions (Fan, 2010). Those mutants include fad2 (Okuley et al. 1994), fad3 (Arondel et al. 

1992), fad4 (Gao et al., 2009), fad5 (Mekhedov et al. 2000), fad6 (Falcone et al. 1994) and fad7 

(Iba et al. 1993, Gibson et al. 1994). Three other mutants are produced by random mutagenesis. 

They are sfd1, sfd2 and sfd3. The detailed information on the mutants can be found in the paper 

Nandi et al. (2003). 9 experiments were conducted according to 9 mutants. There are two 

treatment groups, wild type plants and mutant plants. Since the wild type plant is planted without 

applying mutation conditions, it will be used as the control group for all 9 different mutants. In 

each treatment group, 5 samples are randomly chosen and analyzed. The plants were grown by 

Ashis Nandi who worked with Jyoti Shah from University of North Texas and Christen Buseman 

who worked with Ruth Welti from the Division of Biology at Kansas State University.  

Experiment Material Preparation 

Surface sterilized Arabidopsis thaliana seeds were germinated on agar plates and then 

transferred to soil. Plants were grow in a chamber with a 16-h light/8-h dark cycle at 23/21°C 

under cool fluorescent white light (200 µmol m-2s-1) with 58% relative humidity. Arabidopsis 

thaliana (Columbia ecotype) seeds were grown as the wild type plants in the fad mutant 

experiments and 1/8E/5 were used as the wild type plant in the sfd mutant experiments. The wild 

type and the mutant plants were grown in same chamber and sampled in the same time at the 

same growth stage.  

Sample Preparation and Lipid Extraction 

Leaves of the plants were harvest and used as the random samples and the lipid extraction 

procedure are similar with those in the paper Devaiah et al. 2006 and Fan 2010. For 

completeness, a summary is given below. 
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 3 to 5 leaves were quickly immersed in 3 ml isopropanol with 0.01% butylated 

hydroxytoluene at 75ºC to inactivate lipolytic activity. 

 After 15 minutes, 1.5 ml chloroform and 0.6 ml water were added and the tubes were 

shaken for 1 hour. 

 The extract was removed and the leaves were re-extracted with chloroform/methanol 

(2:1) with 0.01% butylated hydroxytoluene 5 times and each time tubes were shaken 

for 30 minutes. 

The above procedures were stopped until the leaves turned to white to make sure that most of 

lipids in the leaves were dissolved in the solvent. The remains of the leaf skeleton was dried 

overnight at 105ºC and weighed to be used for the MS data. The combined extracts were washed 

once with 1 ml 1 M KCl and once with 2 ml water, the solvent was evaporated under nitrogen, 

and then the lipid extract was dissolved in 1 ml chloroform. 

Mass Spectrometry High-throughput Data Analysis 

The targeted lipidomics profiling was performed by using the electrospray tandem mass 

spectrometry (ESI-MS/MS) (Welti and Wang, 2004). The electrospray tandem mass 

spectrometry provided high sensitivity comprehensive data analysis for identifying the 

composition of lipid species. It can identify and quantify the lipid compounds with small 

amounts of samples. In the experiment, unfractionated lipid extracts were introduced by 

continuous infusion into the ESI source on a triple quadrupole MS/MS (API 4000, Applied 

Biosystems, Foster City, CA). Samples were introduced using an autosampler (LC Mini PAL, 

CTC Analytics AG, Zwingen, Switzerland) fitted with the required injection loop for the 

acquisition time and presented to the ESI needle at 30 μl/min. More detailed information on the 

MS data process and the lipid profiling technique can be found in the paper Devaiah et al. 2006. 
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Appendix B – R Programs 

 B.1: Correlation Analysis from Fukushima et. al. (2011) in Chapter 2. 

# Functions:  
#     new.names: Get the lipid names in the reduced data. Delete the  
#            lipids if the sd = 0. 
#     data.s: Get the reduced dataset. Delete the lipids if the  
#            sd = 0. 
#     datWM: Get the indices of A and B from a matrix (dat) with n1  
#            samples from the WT group and n2 samples from the MT 
#            group.   
#     correl: Calculate spearman's correlation. 
#     t.stat: Calculate the single correlation H0: rho = 0. 
#     pval.t: Calculate two-tailed p values for the t-test. 
#     zstat: Test for the correlation differences H0: rho1-rho2 = 0  
#            using Fisher's transformation. 
#     p.diff: P values  for the correlation differences. 
#     cor.mat: Output the t-test and the Z test results by following  
#            the format from additional file 4 in Fukushima et. al.  
#            (2011). 
###################################################################### 
 
# dat is the input raw data with 141 by 10 matrix. Names is the list  
# of lipid names for the raw data. 
 
new.name = function(dat, names){ 
s = apply(dat,1,sd) 
n.names = names[s>0,] 
return(n.names) 
} 
 
data.s=function(dat){ 
s = apply(dat, 1, sd)  
dat1= dat[s>0,] 
return(dat1) 
} 
 
datWM = function(dat, n1, n2){ 
N = n1+n2 
n = dim(dat)[1] 
w = numeric() 
for (i in 1:(n-1)){ 

for(j in (i+1):n){ 
m1 = c(dat[i,], dat[j,]) 
w = c(w, m1, i, j)   # i and j are the indices of A and B lipids. 
} 

} 
mat = matrix(w, ncol=2*N+2, byrow=TRUE) 
return(mat) 
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} 
correl = function(dat){ 
n = dim(dat)[1] 
corre = c() 
p = numeric() 
for (i in 1:(n-1)){ 

for(j in (i+1):n){ 
corre = cor(unlist(dat[i,]), unlist(dat[j,]), method = 
"spearman") 
corre[is.na(corre)] = 0  
p = c(p,corre) 
} 

} 
return(p) 
} 

 
t.stat = function(r, n){ 
t = r*sqrt((n-2)/(1-r^2)) 
return(t) 
} 

 
zstat=function(r1,r2,n1,n2){ 
z = (0.5*log((1+r1)/(1-r1))-0.5*log((1+r2)/(1-r2)))/(sqrt(1/(n1-
3)+1/(n2-3))) 
return(z) 
} 

 
p.diff = 2*pnorm(-abs(zs), lower.tail=TRUE) 
 
cor.mat = function(cor1, cor2, n1, n2){ 
ts1 = t.stat(cor1, n1)   
ts2 = t.stat(cor2, n2) 
 
p1 = pval.t(ts1, df=n1-2) 
p2 = pval.t( ts2, df=n2-2) 
 
r.diff = cor1-cor2 
zs = zstat(cor1, cor2, n1, n2) 
p.diff = 2*pnorm(-abs(zs), lower.tail=TRUE) 
 
library(fdrtool) 
fdr.1 = fdrtool(p1, statistic="pvalue") 
fdr1 = fdr.1$lfdr 
fdr.2 = fdrtool(p2, statistic="pvalue") 
fdr2 = fdr.2$lfdr 
fdr.diff = fdrtool(p.diff, statistic="pvalue") 
fdr.D = fdr.diff$lfdr 
 
mat = data.frame(cor1, p1, cor2, p2, r.diff, p.diff,fdr1, fdr2, fdr.D) 
return(mat) 
} 
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 B.2: Produce Venn Diagram in Figure 2.4. 

# Function: venn.plot 
#      Output: Produce Venn diagram for grouping the correlation pairs  
#              in three treatment groups for WT, mtol and tt4 in  
#              Figure 2.4. This function can produce the Venn diagram  
#              with two events, three events and four events  
#              separately in a plot. In this figure, three events are 
#              used. 
#      list: consist of 2 or 3 or 4 numeric vectors to produce 2 or 3 
#            or 4 Venn diagrams. 
#      path: the directory for output the Venn diagram. 
#      mains: titles for the Venn diagram. 
#      filenames: give the file name for the output file. 
###################################################################### 
 
# library(VennDiagram) 
# library(gridBase) 
 
venn.plot = function(list, path, mains, filenames){ 
str(list) 
lis = lapply(list, lapply, length) 
names(lis) = lapply(list, length) 
num = length(names(lis)) 
 
if(num==2){ # Produce a Venn diagram with 2 events. 
venn.diagram( 
 x = list, 
 filename = paste(path,filenames, ".tiff",sep=""), 
            main = mains, 
            main.fontface = 2,  # bold face for the main. 
            main.cex = 2, 
 lwd = 4, 
 fill = c("cornflowerblue", "darkorchid1"), 
 alpha = 0.75, 
 label.col = "white", 
 cex = 4, 
 fontfamily = "serif", 
 fontface = "bold", 
 cat.col = c("cornflowerblue", "darkorchid1"), 
 cat.cex = 3, 
 cat.fontfamily = "serif", 
 cat.fontface = "bold", 
 cat.dist = c(0.03, 0.03), 
 cat.pos = c(-20, 14) 
 ) 
 } 
 
if(num==3){ # Produce a Venn diagram with 3 events. 
venn.diagram( 
 x = list, 
 filename = paste(path,filenames, ".tiff",sep=""), 
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            main = mains, 
            main.fontface = 2,  # bold face for the main. 
            main.cex = 2, 
 col = "transparent", 
 fill = c("red", "blue", "green"), 
 alpha = 0.5, 
 label.col = c("darkred", "white", "darkblue", "white", "white",             
                 "white", "darkgreen"), 
 cex = 2, 
 fontfamily = "serif", 
 fontface = "bold", 
 cat.default.pos = "text", 
 cat.col = c("darkred", "darkblue", "darkgreen"), 
 cat.cex = 2.5, 
 cat.fontfamily = "serif", 
 cat.dist = c(0.06, 0.06, 0.03), 
    cat.pos = 0 
 ) 
 } 
 
if(num==4){ # Produce a Venn diagram with 4 events. 
venn.diagram( 
 x = list, 
 filename = paste(path, filenames, ".tiff",sep=""), 
            main=mains, 
            main.fontface=2,  # bold face fo rthe main. 
            main.cex = 2, 
           col = "black", 
 lty = "dotted", 
 lwd = 4, 
 fill = c("cornflowerblue", "green", "yellow", "darkorchid1"), 
 alpha = 0.50, 
 label.col = c("orange", "white", "darkorchid4", "white", "white",  
                 "white", "white", "white", "darkblue", "white",  
                 "white", "white", "white", "darkgreen", "white"), 
 cex = 2.5, 
 fontfamily = "serif", 
 fontface = "bold", 
 cat.col = c("darkblue", "darkgreen", "orange", "darkorchid4"), 
 cat.cex = 2.5, 
 cat.fontfamily = "serif" 
 ) 
 } 
} 
 
 
 
 
 



135 

 

 B.3: Produce Test Statistics SSD in Chapter 3. 

# Function: F.new 
#      Output the F ration and the sum square distance SSD. SSD is the  
#      Euclidean distance between the WT and MT group centers. The F  
#      statistic is the F ratio where the SSD is used in the  
#      numerator. 
# Input: The raw data with 141 by 10 columns with sample sizes n1 and 
#      n2 from WT and MT groups. 
###################################################################### 

 
F.new = function( dat, n1, n2){ 
n = dim(dat)[1] 
N = n1+n2 
ratio = numeric() 
SSD = numeric() 

 
for(i in 1 : n){ 
Aw = dat[i,1: n1] 
Am = dat[i, (n1+1) : N] 
Bw = dat[i, (N+1) : (N+n1)] 
Bm = dat[i, (N+n1+1) : (2*N)] 
A = dat[i, 1 : N] 
B = dat[i, (N+1) : (2*N)] 
dist = sqrt((mean(Aw) - mean(A))^2 + (mean(Bw) - mean(B))^2) +    
       sqrt((mean(Am)- mean(A))^2+(mean(Bm) - mean(B))^2) 
MSB = dist^2/1  # numerator of the F_new. 
x1 = cbind(Aw, Bw) 
x2 = cbind(Am, Bm) 
result1 = numeric() 

for (j in 1:n1){ 
mat1 = rbind(x1[j,], c(mean(Aw), mean(Bw))) 
d1 = dist(mat1, method='euclidean')  
SSW1 = d1^2 
result1 = c(result1,SSW1) 
  } 

 
result2 = numeric() 

for (k in 1:n2){ 
mat2 = rbind(x2[k,], c(mean(Am), mean(Bm)))  
d2 = dist(mat2, method='euclidean') 
SSW2=d2^2 
result2=c(result2,SSW2) 
  } 

F.new = MSB/((sum(result1) + sum(result2))/(N-2))          
ratio = c(ratio,F.new)     
SSD = c(SSD,dist)  # dis=SSD. 
 } 

 
return(cbind(ratio,SSD))  # return F ratio, SSD distance. 
} 
 



136 

 

 B.4: Generate Bootstrap Under F = G and Make Plots in Chapter 4. 

# Functions:  
#      gofit: Fit the bth bootstrap samples to Exponential, Gamma,  
#             Lognormal and Weibull distributions. Extract the MLEs,  
#             AICs and BICs from all model fitting. 
#          Input: dat is a bootstrap sample with141 by 10 matrix. 
#       
#      get.count: Get counts for the minimum KS test statistics D and 
#             also the minimum AIC for each bootstrap sample. 
#          Input: mat matrix which is part of the output from function  
#             gofit. It contains mat[,1:4] to be the minimum  
#             statistics D and mat[,5:8] are the minimum AICs from  
#             distribution exponential, gamma, lognormal, weibull. 
###################################################################### 
 
gofit = function(dat){ 
library(fitdistrplus) 
 
a = fitdist(dat, "exp") 
b = fitdist(dat, "gamma")   
d = fitdist(dat, "lnorm")    
e = fitdist(dat, "weibull") 
 
rate1 = (a)[[1]]               # rate for exp distribution. 
gamm.s = b[[1]][1] 
gamm.r = b[[1]][2] 
logm = d[[1]][1]               # meanlog   
logs = d[[1]][2]               # sdlog   
wei.shape = e[[1]][1]          # shape   
wei.scale = e[[1]][2]          # scale 
 
f1 = gofstat(a) 
f = f1$ks                      # kstest D statistic for exp. 
g1 = gofstat(b) 
g = g1$ks 
h1 = gofstat(d) 
h = h1$ks 
i1 = gofstat(e) 
i = i1$ks 
 
AIC.exp = summary(a)$aic 
AIC.gamma = summary(b)$aic 
AIC.logn = summary(d)$aic 
AIC.wei = summary(e)$aic 
BIC.exp = summary(a)$bic 
BIC.gamma = summary(b)$bic 
BIC.logn = summary(d)$bic 
BIC.wei = summary(e)$bic 
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return(c(f, g, h, i, AIC.exp, AIC.gamma, AIC.logn, AIC.wei, BIC.exp,  
       BIC.gamma, BIC.logn, BIC.wei, rate1, gamm.s, gamm.r, logm,  
       logs, wei.shape, wei.scale)) 
} 
 
 
get.count = function(mat){   
min.D = apply(mat[,1:4], 1, min) 
exp.D = ifelse(mat[,1] == min.D, 1, 0)   # 0s or 1s for minimum D. 
gamma.D = ifelse(mat[,2] == min.D, 1, 0) 
logn.D = ifelse(mat[,3] == min.D, 1, 0) 
wei.D = ifelse(mat[,4] == min.D, 1, 0) 
 
Min.AIC = apply(mat[,5:8], 1, min)       # 200 minimum AICs. 
exp.A = ifelse(mat[,5] == Min.AIC, 1, 0) # give min.AICs 1. 
gamma.A = ifelse(mat[,6] == Min.AIC, 1, 0) 
logn.A = ifelse(mat[,7] == Min.AIC, 1, 0) 
wei.A = ifelse(mat[,8] == Min.AIC, 1, 0) 
 
exp.a1.count = sum(ifelse(exp.A[which(exp.D == 1)] == 1, 1, 0)) 
exp.a0.count = sum(ifelse(exp.A[which(exp.D == 1)] == 0, 1, 0)) 
gam.a1.count = sum(ifelse(gamma.A[which(gamma.D == 1)] == 1, 1, 0)) 
gam.a0.count = sum(ifelse(gamma.A[which(gamma.D == 1)] == 0, 1, 0)) 
logn.a1.count = sum(ifelse(logn.A[which(logn.D == 1)] == 1, 1, 0)) 
logn.a0.count = sum(ifelse(logn.A[which(logn.D == 1)] == 0, 1 ,0)) 
wei.a1.count = sum(ifelse(wei.A[which(wei.D == 1)] == 1, 1, 0)) 
wei.a0.count = sum(ifelse(wei.A[which(wei.D == 1)] == 0, 1, 0)) 
 
counts = data.frame(cbind(c(exp.a1.count, exp.a0.count),     
         c(gam.a1.count, gam.a0.count), c(logn.a1.count,  
         logn.a0.count), c(wei.a1.count, wei.a0.count))) 
colnames(counts) = c("exponential", "gamma", "lognormal", "Weibull") 
rownames(counts) = c("AIC.yes", "AIC.no") 
 
return(counts) 
} 
 
 
######################################################################  
# Bootstrap procedure under the null hypothesis H0: F = G for 9  
# datasets. Read in the raw data and output the bootstrap samples into  
# the specified file directory. 
###################################################################### 
 
dat.path="c:/3.2011research/" 
out.path="c:/3.2011research/dissertation/2.fad.boot/" 
bio.path="c:/3.2011research/Li.bio.pairs/" 
bio.file=list.files("c:/3.2011research/Li.bio.pairs")[1:9] 
 
filenames =c("fad.2_dat", "fad.3_dat", "fad.4_dat", "fad.5_dat",  
             "fad.6_dat", "fad.7_dat", "sfd.1_dat", "sfd.2_dat",  
             "sfd.3_dat"); 
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num<-length(filenames); 
 
for(i in 1:num){ 
name <-read.table("c:/3.2011research/names_141.txt",header=FALSE) 
file.names = paste(dat.path,filenames[i],".csv", sep="") 
dat<-read.csv(file.names,header=FALSE); 
names1=new.name(dat,name)  # function new.name(). 
red.dat=data.s(dat)  # reduced data 

 
# bootstrap 
B=200 
for (j in 1:B){ 
samp=sample(1:10,10,replace=T) 
dat.b=red.dat[,samp] 
b.names=new.name(dat.b,as.matrix(names1))  
red.dat.b=data.s(dat.b)   
m=t(apply(red.dat.b,1,scale))    # scale reduced data. 
mat=datAB(m)   
A.name=b.names[mat[,21]]   # replace the indexes to A's names. 
B.name=b.names[mat[,22]]   # replace the indexes to B's names. 
AB.names=paste(A.name,B.name, sep="_") 
 
F.OM = F.new(mat[,1:20]) # output SSD.  
 
Aw=apply(mat[,1:5],1,mean) 
Am=apply(mat[,6:10],1,mean) 
Bw=apply(mat[,11:15],1,mean) 
Bm=apply(mat[,16:20],1,mean) 
a=Am-Aw 
b=Bw-Bm 
tg=b/a 
y1=ifelse(a>0,1,0) 
y2=ifelse(b>0,1,0) 
y=y1+y2 
 
scaled=data.frame(mat,A.name,B.name,AB.names,y,a,b,tg,F.OM[,1], 

                       F.OM[,2]) 
names(scaled)=c("Aw1", "Aw2", "Aw3", "Aw4", "Aw5", "Am1", "Am2",  

                     "Am3", "Am4", "Am5", "Bw1", "Bw2", "Bw3", "Bw4",  
                     "Bw5", "Bm1", "Bm2", Bm3", "Bm4", "Bm5",  
                     "A_index", "B_index", "A.name", "B.name",  
                     "AB.name", "y", "avg(Am)-avg(Aw)", 
                     "avg(Bw)-avg(Bm)", "tg", "F_OM", "SSD") 

 
# extract the elements with y = 2. 
 
y.scaled=scaled[scaled[,26]==2,] 
write.csv(y.scaled, file=paste(out.path,'All.metric.y.dat.',  

               filenames[i],j,'.boot.csv', sep=''),row.names=FALSE) 
} 

} 
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######################################################################  
# Read in the bootstrap samples under the null hypothesis H0: F = G for 
# fad2 dataset. Overlaid the chosen parametric distribution with the  
# empirical bootstrap distribution. 
###################################################################### 
 
# Functions: 
#      lim: input the bootstrap statistics matrix. 
#           Output: The 5th, mean, and 95th percentile parametric null  
#                   distribution parameters. 
# -------------------------------------------------------------------- 
 
lim=function(mat){ 
means = round(apply(mat, 2, mean),2) 
sds=apply(mat,2,sd) 
 
LL=round(means-1.96*sds/sqrt(200),2) 
UL=round(means+1.96*sds/sqrt(200),2) 
 
quant=function (x) {quantile(x,  probs = c(0.05, 0.95))} 
fifth=t(apply(mat,2,quant)) 
 
limits=data.frame(LL,UL,means,fifth,row.names=c("exp.rate",  
                  "gam.shape,"gam.rate", "log.mean", "log.sd",  
                  "wei.shape", "wei.scale")) 
colnames(limits)=c("LL","UL","means","5th","95th") 
 
return(limits) 
} 
 
 
#-------------------------------- 
# Read in 200 bootstrap samples. 
#-------------------------------- 
 
b.F=list.files()[1:200] 
len=length(b.F) 
 
# Read in the actual fad2 dataset.  
fad2=read.csv("c:/3.2011research/All.metric.y.dat.fad.2_dat.csv") 
colnames(fad2) 
SSD.fad2=fad2[,36] 
tg.fad2=fad2[,34] 
 
R.fad2=(SSD.fad2-2.684)^2+(tg.fad2-1)^2  
nlogR.fad2= -log(R.fad2) 
s.nlogR.fad2 = nlogR.fad2+5   # adding a shift by +5. 
 
tg.ds = matrix(nrow=200, ncol=19,byrow=T) 
SSD.ds = matrix(nrow=200, ncol=19,byrow=T) 
R.ds = matrix(nrow=200, ncol=19,byrow=T) 
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# shifted negative logR matrix. 
s.nlogR.ds = matrix(nrow=200, ncol=19,byrow=T) 
 
big.tg = numeric() 
big.SSD = numeric() 
big.R = numeric() 
big.s.nlogR=numeric() 
count=numeric() 
 
# quantile of the shifted nlogR. 
q.tg.ds = matrix(nrow=200, ncol=100,byrow=T) 
q.SSD.ds = matrix(nrow=200, ncol=100,byrow=T) 
q.s.nlogR.ds = matrix(nrow=200, ncol=100,byrow=T) 
 
for (i in 1:len) { 
u<-read.csv(b.F[i]) 
u=u[u[,29]<=10,] 
tg.boot=c(u[,29]) 
SSD.boot=c(u[,31]) 
 
R.boot = (SSD.boot-2.684)^2 + (tg.boot-1)^2 
logR = log(R.boot) 
s.nlogR.boot = -log(R.boot)+5  
tg.ds[i,] = gofit(tg.boot) 
SSD.ds[i,] = gofit(SSD.boot) 
s.nlogR.ds[i,] = gofit(s.nlogR.boot) 
 
q.tg.ds[i,]=quantile(tg.boot, c(seq(0.01,1,by = 0.01))) 
q.SSD.ds[i,]=quantile(SSD.boot, c(seq(0.01,1,by = 0.01))) 
q.s.nlogR.ds[i,]=quantile(s.nlogR.boot, c(seq(0.01,1,by = 0.01))) 
 
count=c(count,length(tg.boot)) 
big.tg = c(big.tg, tg.boot) 
big.SSD = c(big.SSD, SSD.boot) 
big.R = c(big.R, R.boot) 
big.s.nlogR = c(big.s.nlogR,s.nlogR.boot)  
} 
 
colnames(SSD.ds)= c("exp.D", "gamma.D", "lognorm.D", "Weibull.D",  
            "AIC.exp", "AIC.gamma", "AIC.logn", "AIC.wei", "BIC.exp",  
            "BIC.gamma", "BIC.logn", "BIC.wei", "rate1", "gamm.s",  
            "gamm.r", "logm", "logs", "wei.shape", "wei.scale" ) 
 
colnames(tg.ds)= c("exp.D", "gamma.D", "lognorm.D", "Weibull.D",  
           "AIC.exp", "AIC.gamma", "AIC.logn", "AIC.wei", "BIC.exp",  
           "BIC.gamma", "BIC.logn", "BIC.wei", "rate1", "gamm.s",  
           "gamm.r", "logm", "logs", "wei.shape", "wei.scale" ) 
 
colnames(s.nlogR.ds)= c("exp.D", "gamma.D", "lognorm.D", "Weibull.D",  
          "AIC.exp", "AIC.gamma", "AIC.logn", "AIC.wei", "BIC.exp",  
          "BIC.gamma", "BIC.logn", "BIC.wei", "rate1", "gamm.s",  
          "gamm.r", "logm", "logs", "wei.shape", "wei.scale" ) 
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#-------------------------------------------------------------------- 
# Produce Figure 4.4: box plots for the K-S statistics D distribution 
#-------------------------------------------------------------------- 
 
par(mfrow=c(1,3)) 
boxplot(tg.ds[,1:4], xlab = " ", ylab = "ks.test statistic D",  
        main = expression('statistic D distribution for tg'^{*})) 
 
boxplot(ssd.ds[,1:4], xlab = " ", ylab = "ks.test statistic D",  
        main = expression('statistic D distribution for SSD'^{*})) 
 
boxplot(s.nlogR.ds[,1:4], xlab = " ", ylab = "ks.test statistic D",  
        main = expression('statistic D distribution for R'[T])) 
 
 
#--------------------------- 
# Produce Figure 4.5 for SSD 
#--------------------------- 
 
library("Rlab") 
y=c(seq(0.01,1,by = 0.01)) 
 
quant1=function(x){quantile(x,c(0.05))} 
quant2=function(x){quantile(x,c(0.95))} 
quant3=function(x){quantile(x,c(0.25))} 
quant4=function(x){quantile(x,c(0.75))} 
 
## Figure 4.5 (a). 
plot(apply(q.SSD.ds, 2, median), y, type="l", lwd=3, col="red",  
     xlab="SSD.boot", ylab="Cumulative probability", main="ECDF and  
     CDFs comparison for SSD.boot") 
 
lines(apply(q.SSD.ds, 2, quant3), y, lty=1, lwd=1, col="red") 
lines(apply(q.SSD.ds, 2, quant4), y, lty=1, lwd=1, col="red") 
 
plot(function(x) pexp(x, rate = lim.SSD[1, 3]), 
     from = min(big.SSD), to = max(big.SSD),  
     add = TRUE, lty = 2,lwd = 2,col="blue") 
 
plot(function(x) pgamma(x, shape = lim.SSD[2,3] , 
     rate = lim.SSD[3, 3]), 
     from = min(big.SSD), to = max(big.SSD),  
     add = TRUE, lty = 2,lwd = 2,col = "purple") 
 
plot(function(x) plnorm(x, meanlog = lim.SSD[4, 3],  
     sdlog = lim.SSD[5, 3]), 
     from = min(big.SSD), to = max(big.SSD),  
     add = TRUE, lty = 2,lwd = 2) 
 
plot(function(x) pweibull(x, shape = lim.SSD[6, 3], 
     scale = lim.SSD[7, 3]), 
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     from = min(big.SSD), to = max(big.SSD),   
     add = TRUE, lty = 5,lwd = 2,col = "green") 
 
legend("bottomright", legend = c("ECDF", "ECDF-25%,75%tiles",  
     "CDF-exp", "CDF-weibull", "CDF-gamma", "CDF-lognormal"),  
     lwd = c(2,1,2,2,2,2), col = c("red", "red", "blue", "green",  
     "purple", "black"), lty = c(1,1,2,5,2,2)) 

 
## Figure 4.5 (b). 
plot(apply(q.SSD.ds, 2, median), y, type="l", lwd = 3, col = "red",  
     xlab = "SSD.boot", ylab = "Cumulative probability",  
     main= "ECDF and CDFs comparison for SSD.boot") 
 
lines(apply(q.SSD.ds, 2, quant1), y, lty = 1, lwd = 1, col = "red") 
lines(apply(q.SSD.ds, 2, quant2), y, lty = 1, lwd = 1, col = "red") 
 
Pos = seq(0.01, 1, by = 0.05) 
bplot(q.SSD.ds[,pos*100], pos = pos, label.cex = 0,  
      horizontal = TRUE, add = TRUE) 
 
legend("bottomright", legend = c("CDF-Webull"), lwd = c(3, NA), 
      col = c("blue", NA),lty = c(1, NA)) 
 
 
#------------------------------------------------ 
# Produce Figure 4.8 for overlaid RT distribution 
#------------------------------------------------ 
 
p2.95 = apply(q.s.nlogR.ds, 2, quant2) 
hist(s.nlogR.fad2, ylim = c(0, 0.7), prob = TRUE,  
     xlab = expression('R'[T]), col = "green", density = 55,  
     main = expression('Distributions overlaid for R'[T])) 
 
hist(p2.95, breaks = 35, prob = TRUE, add = TRUE, 
     col = "pink", density=60) 
 
plot( function(x) dweibull(x, shape = lim.s.nlogR[6,5],  
    scale = lim.s.nlogR[7,5]), from = 0, to = 13, add = TRUE,  
    lty = 2,lwd = 2,col = "blue") 
 
legend("topright", legend = c("95th Weibull null", "95th empirical",  
    expression('fad2 R'[T])), col = c("blue", "pink", "green"),  
    lty = c(2, NA, NA),lwd = c(2, NA, NA),fill = c(NA, "pink",  
    "green"), border = FALSE) 
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B.5: Mixture Normal Distributions in Chapter 5. 

# Functions: 
#     m.norm: find the values of (1 – CDF) of the mixture normal with 
#             2 components. Inputs are statistics x, mu, sigma and the  
#             mixing proportions. Output the p values for each  
#             statistic. 
#     plot.mix: Produce the normal mixture plot with 2 normal curves  
#             and one mixture curve. Inputs are a set of parameters  
#             and the number of component. Output will a figure. 
###################################################################### 
 
m.norm <- function(x, mu, sigma, prop) { 
ps = prop[1] * pnorm(x, mu[1], sigma[1]) + (1 - prop[1]) * pnorm(x, 
mu[2], sigma[2]) 
return(1-ps) 
}               
 
plot.mix=function(par, compnum){ 

mix=matrix(par, ncol=compnum, nrow=3, byrow=TRUE) 
for(i in 1:compnum){ 
curve(mix[1,i]*dnorm(x,mean=mix[2,i],sd=mix[3,i]), add=TRUE) 
} 

} 
 
 
## Produce Figure 5.2. 
 
library(mixtools) 
boot.nlogR = c(big.s.nlogR, s.nlogR.fad4) 
 
par(mfrow=c(1,3)) 
hist(s.nlogR.fad4, prob = TRUE, ylim = c(0, 0.6), breaks = 35,  
    col = "green", density = 45, xlab = expression('R'[T]),  
    main = expression('(a). The Distribution of R'[T]),  
    font.main = 2, cex.lab = 1.5, cex.axis = 1, cex.main = 1.8) 
 
hist(boot.nlogR, prob = TRUE, col = "orange", breaks=35, density=90,  
    ylim = c(0, 0.7), xlab = expression('R'[T]^{paste("*")}),  
    main = expression('(b). The Distribution of R'[T]^{paste("*")}),  
    cex.lab = 1.5, cex.axis = 1, cex.main = 1.8) 
 
hist(s.nlogR.fad4, prob = TRUE, ylim = c(0, 0.8), breaks = 35, 
    col = "green", density = 45, xlab = expression('R'[T]),  
    main="(c). Distribution Overlaid", font.main = 2, cex.lab = 1.5,  
    cex.axis = 1, cex.main = 1.8) 
 
hist(boot.nlogR, prob = TRUE, col = "orange", breaks = 35,  
    density = 90, ylim = c(0, 0.7), add = TRUE, main="") 
 
mix.big2 = normalmixEM(boot.nlogR,k = 2, maxit=1000,epsilon=0.01) 
mix.big3 = normalmixEM(boot.nlogR,k = 3, maxit=1000,epsilon=0.01) 
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pars.2=c(mix.big2$lambda,mix.big2$mu,mix.big2$sigma) 
pars.3=c(mix.big3$lambda,mix.big3$mu,mix.big3$sigma) 
 
 
# Produce Figure 5.3: Fit two-component mixture normal distribution. 
 
hist(s.nlogR.fad4, prob = TRUE, ylim = c(0, 0.8), breaks = 35, 
     col = "green", density = 45, xlab = expression('R'[T]),  
     main = "Two Components Mixture Normal") 
 
hist(boot.nlogR, prob = TRUE, col = "orange", breaks = 35,  
     density = 90, ylim = c(0, 0.7), add = TRUE, main="") 
 
plot.mix(pars.2, 2)  
x<-seq(min(boot.nlogR), max(boot.nlogR),.01) 
Fx1 <- pars.2[1] * dnorm(x, pars.2[3], pars.2[5]) 
Fx2 <- pars.2[2] * dnorm(x, pars.2[4], pars.2[6]) 
Fx = Fx1 + Fx2  
lines(x,Fx,lty=2, lwd=2, col="red")  
 
legend("topright", legend = c("components","Mixture"), 
     lty = c(1, 2),lwd = c(2, 2),col = c("black", "red"),  
     border = FALSE) 
 
 
# Produce Figure 5.4: Fit three-component mixture normal distribution. 
 
hist(s.nlogR.fad4, prob = TRUE, ylim = c(0, 0.8), breaks = 35,  
     col = "green", density = 45, xlab = expression('R'[T]),  
     main = "Three Components Mixture Normal") 
 
hist(boot.nlogR, prob = TRUE, col = "orange", breaks = 35,  
     density = 90, ylim = c(0, 0.7), add = TRUE, main="") 
     plot.mix(pars.3, 3) 
     Fx1 <- pars.3[1] * dnorm(x, pars.3[4], pars.3[7]) 
     Fx2 <- pars.3[2] * dnorm(x, pars.3[5], pars.3[8]) 
     Fx3 <- pars.3[3] * dnorm(x, pars.3[6], pars.3[9]) 
     Fx = Fx1 + Fx2 + Fx3 
     lines(x, Fx, lty = 2, lwd = 2, col = "red")  
 
legend("topright", legend = c("components", "Mixture"), lty = c(1,2),  
     lwd = c(2, 2), col = c("black", "red"), border = FALSE) 
 
 
## Produce Table 5.3: the 95% CI for the parameters for three- 
## component mixture. 
 
summary(mix.big3) 
ses2 = boot.se(mix.big3, B = 100, arbvar = FALSE) 
ses2$lambda.se 
ses2$mu.se 
ses2$sigma.se 
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para2 = c(mix.big3$lambda, mix.big3$mu, mix.big3$sigma) 
se2 = c(ses2$lambda.se, ses2$mu.se, ses2$sigma.se) 
 
# z interval. 
 
mt4 = matrix(nrow=9, ncol = 2, byrow = TRUE) 
for (i in 1:length(para2)){ 
 mt4[i,] = round(para2[i] + c(-1, 1) * crit.val * se2[i],3) 
} 
 
mt5 = cbind(para2, se2, mt4) 
colnames(mt5)=c("Estimate", "SE", "LL", "UL") 
row.names(mt5)=c("prop1", "prop2", "prop3", "mu1", "mu2", "mu3", 
                 "sigma1", "sigma2", "sigma3") 
mt5   # Table 5.3 
 
 

 B.6: Mixture Normal Distributions to Fit the Empirical Distribution of RT in 
Chapter 7. 
# Test the number of components in a normal mixture model. 
# Step 1: fit the 2, 3 and 4 components mixture 100 times to pick out  
#         the maximum loglik from 100 model fits. 
# Step 2: test Two-component vs. Three-component 
# Step 3: test Three-component vs. Four-component 
###################################################################### 
 
# Step1. 
 
mat2 = matrix(, nrow = 100, ncol = 7, byrow = TRUE)  
mat3 = matrix(, nrow = 100, ncol = 10, byrow = TRUE) 
mat4=matrix(, nrow = 100, ncol = 13, byrow = TRUE) 
 
library(mixtools) 
for (j in 1:100){ 
mix.R2 = normalmixEM(nlogR, k = 2, maxit = 1000, epsilon = 0.01) 
mix.R3 = normalmixEM(nlogR, k = 3, maxit = 1000, epsilon = 0.01) 
mix.R4 = normalmixEM(nlogR, k = 4, maxit = 1000, epsilon = 0.01) 
 
mat2[j,] = c(unlist(mix.R2[c("lambda", "mu", "sigma")]),mix.R2$loglik) 
mat3[j,] = c(unlist(mix.R3[c("lambda", "mu", "sigma")]),mix.R3$loglik) 
mat4[j,] = c(unlist(mix.R4[c("lambda", "mu", "sigma")]),mix.R4$loglik) 
} 
 
par2 = as.vector(mat2[which.max(mat2[,7]),]) 
par3 = as.vector(mat3[which.max(mat3[,10]),]) 
par4 = as.vector(mat4[which.max(mat4[,13]),]) 
 
mat.comp2[i,] = par2 
mat.comp3[i,] = par3 
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mat.comp4[i,] = par4 
 
loglik2 = par2[7] 
loglik3 = par3[10] 
loglik4 = par4[13] 
 
stat2 = loglik3 - loglik2  # observed statistic for step2. 
stat3 = loglik4 - loglik3  # observed statistic for step3. 
 
## Step2: testing the number of components: Two-component vs. Three-  
## components. 
 
p = par2[1];  
mu1 = par2[3];  
mu2 = par2[4];  
sig1 = par2[5];  
sig2 = par2[6] 
 
len = length(nlogR) 
stat.s = numeric() 
 
for(k in 1:1000){ 
samp = runif(len) 
cont.f1 = sum(ifelse(samp < p, 1, 0)) 
 
nlogR.f1 = rnorm(cont.f1, mu1, sig1) 
nlogR.f2 = rnorm(len-cont.f1, mu2, sig2) 
 
logR.star = c(nlogR.f1, nlogR.f2) 
 
mix2s = normalmixEM(logR.star, k = 2, maxit = 1000, epsilon = 0.01) 
mix3s = normalmixEM(logR.star, k = 3, maxit = 1000, epsilon = 0.01) 
 
star = mix3s$loglik - mix2s$loglik 
stat.s = c(stat.s, star)   # stat stars. 
} 
 
pval2 = mean(stat.s > stat2) # p-value = 0.038  
 
 
## Step3: testing the number of components: Three-component vs. Four-  
## components. 
 
p1 = par3[1]; p2 = par3[2]; p3 = par3[3]  
mu1 = par3[4]; mu2 = par3[5]; mu3 = par3[6] 
sig1 = par3[7]; sig2 = par3[8]; sig3 = par3[9]  
 
stat3.s = numeric() 
 
for(l in 1:1000){ 
samp = runif(len) 
cont.f1 = sum(ifelse(samp < p1, 1, 0)) 
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cont.f3 = sum(ifelse(samp >= p1+p2, 1, 0)) 
cont.f2 = len-cont.f1-cont.f3 
 
nlogR.f1 = rnorm(cont.f1, mu1, sig1) 
nlogR.f2 = rnorm(cont.f2, mu2, sig2) 
nlogR.f3 = rnorm(cont.f2, mu3, sig3) 
 
logR.stars = c(nlogR.f1, nlogR.f2, nlogR.f3) 
 
mix3s = normalmixEM(logR.stars, k = 3, maxit = 1000,epsilon = 0.01) 
mix4s = normalmixEM(logR.stars,k = 4, maxit = 1000, epsilon = 0.01) 
 
stars = mix4s$loglik - mix3s$loglik 
stat3.s = c(stat3.s, stars)   # stat stars. 
} 
 
pval3 = mean(stat3.s > stat3) # pval = 0.184  
 
 
##-------------------------------------------------------------------- 
## Find the posterior probabilities using three-component mixture  
## model. Output all the results. Make posterior probability plot. 
##-------------------------------------------------------------------- 
 
library(mixtools) 
attributes(mix.R3) 
post = mix.R3$posterior 
post 
dt = cbind(nlogR.fad2, post[,3]) 
 
# get the posterior probabilities for the biologically pairs. 
 
fad2$prob3 = post[,3] 
colnames(fad2) 
 
bio.fad2 = read.table("c:/bio.nams_fad.2.txt") 
colnames(fad2) 
bio.dat = fad2[fad2$AB.name %in% bio.fad2[,1],] 
bio.tg = bio.dat$tg 
bio.SSD = bio.dat$SSD 
bio.nlogR = bio.dat$nlogR 
bio.dat = bio.dat[with(bio.dat, order(-nlogR)),] 
bio.prob3 = bio.dat$prob3 
 
prop = numeric() 
num.pairs = numeric() 
num.distin = numeric() 
dist.list = list() 
 
for (i in 1:length(bio.prob3)){ 
proportion = mean(fad2$prob3>bio.prob3[i]) 
prop = c(prop, proportion) 
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num.pairs = c(num.pairs, proportion*4623) 
 
react = fad2[fad2$prob3 > bio.prob3[i],]$A.name 
distin.react = unique(react) 
 
num.distin = c(num.distin, length(distin.react)) 
 
write.csv(distin.react,  
         file = paste("c:/dissertation/ 
         A.three.comp", i, ".csv", sep=""), row.names = FALSE) 
 
dist.list = list(distin.react[i]) 
} 
 
Prop 
num.pairs # number of significant pairs for total 4623 y = 2 file. 
num.distin 
dist.list 
 
mat = data.frame(bio.dat[,25], bio.dat$nlogR, bio.prob3, prop,  
      num.pairs, num.distin) 
 
colnames(mat)=c("AB.name", "nlogR", "posterior.prob", "Proportion", 
    "number.sig.pairs", "num.distinct.react") 
 
write.csv(mat,  
    file="c:/dissertation/posterior.three.comp.csv",row.names=FALSE) 
 
 
# Poster probability plots in Figure 7.5 (a). 
 
plot(nlogR.fad2, post[,3], type = "n", xlab = expression('R'[T]), 
     ylab = "Posterior Probability",main = "Posterior probabilities") 
     mat1 = dt[order(dt[, 1.]), ] 
     lines(mat1[, 1.], mat1[, 2.]) 
 
abline(v = bio.nlogR, col = "red", lty = 2, lwd = 2.6) 
 
points(bio.nlogR, bio.prob3) 
 
legend("topleft", legend = c("Bio-feasible lipid pair"),  
       lty = c(2),lwd = c(2.6), col = c("red")) 
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B.7: Simulation in Chapter 9. 
 
#--------------------------------------------------------------------- 
# Step 1: Calculate mean and sd vectors in the actual data fad4. 
#--------------------------------------------------------------------- 
 
name <- read.table("c:/names_141.txt",header=FALSE) 
dat <- read.csv("c:/fad.4_dat.csv",header=FALSE) 
names1 = new.name(dat, name)  # function new.name(). 
dt = data.s(dat)              # reduced data 
dim(dat) 
dim(dt)                       # 129 by 10. 
 
wt1=dt[,1:5] 
mt1=dt[,6:10] 
 
 
# Lipids with indices 12, 60, 102 have sd = 0 in wt. 
wt.m1=as.vector(apply(wt1,1,mean)) 
wt.s1=as.vector(apply(wt1,1,sd))  
 
length(wt.s1)    
length(names1) 
 
 
# Lipids with indices 14, 24, 25, 90, 116, 124 have sd = 0. 
mt.m1 = as.vector(apply(mt1, 1, mean)) 
mt.s1 = as.vector(apply(mt1, 1, sd))   
 
# Delete the lipid if the WT or MT sd = 0. 
not = c(which(wt.s1 == 0), which(mt.s1 == 0)) 
fad4 = dt[-not,] 
dim(fad4)   # 120 by 10 
 
lip.n = names1[-not]  # lipid names. 
length(lip.n) 
 
wt = fad4[,1:5]   # 120 by 5 
mt = fad4[,6:10]   # 120 by 5 
 
# Mean and sd vectors in the WT and MT groups. 
wt.m = as.vector(apply(wt, 1, mean)) 
wt.s = as.vector(apply(wt, 1, sd))  
mt.m = as.vector(apply(mt, 1, mean)) 
mt.s = as.vector(apply(mt, 1, sd)) 
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#------------------------------------------------------------------ 
# Step 2: Simulate realistic data that is close to the actual data. 
#------------------------------------------------------------------ 
 
# Simulate correlation matrix RW in (9.1), here cor is RW. 
 
r=diag(30) 
r[which(r==0)]=0.5 
r 
 
library(Matrix) 
r1=bdiag(r, diag(dim(wt)[1]-30)) 
r1 
cor=as.matrix(r1) 
cor 
 
# Simulate correlation matrix RM in (9.2), here cor1 is RM with the 
first 7 pairs to be negative correlations. 
 
cor1=cor    
cor1[1,2:8] = -0.5 
cor1[2:8,1] = -0.5 
cor1 
## Simulate realistic data. 
 
library(MBESS) 
library(Matrix) 
 
sigma.wt1 = cor2cov(cor, wt.s) # covariance for WT. 
sigma.mt1 = cor2cov(cor1, mt.s) # covariance for MT is not positive  
                                  definite. 
# change the covariance in MT to be positive definite. 
Sigma = nearPD(sigma.mt1, corr = FALSE,  
               keepDiag = FALSE, do2eigen = TRUE) 
 
sigma.m = as.matrix(sigma$mat)  # Covariance matrix for the WT. 
dim(sigma.m)# 120 by 120 
 
## generate multivariate normal data with sample size 5. 
 
library(mvtnorm) 
x.w1 = t(rmvnorm(5, wt.m, sigma.wt1))   
x.m1 = t(rmvnorm(5, mt.m, sigma.m)) 
sim1 = cbind(x.w1, x.m1) 
sim1 
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#------------------------------------------------------------------ 
# Step 3: Simulate null data using the common correlation matrix  
#         corr = RW. 
#------------------------------------------------------------------ 
 
r = diag(30) 
r[which(r == 0)] = 0.5 
r 
 
library(Matrix) 
r1 = bdiag(r, diag(dim(wt)[1]-30)) 
r1 
 
cor=as.matrix(r1) 
cor    
 
library(MBESS) 
sigma.wt=cor2cov(cor,wt.s)      # covariance for WT. 
sigma.mt=cor2cov(cor,mt.s)      # covariance for WT. 
dim(sigma.mt)                   # 120 by 120 
 
## generate multivariate normal data with sample size 5.. 
library(mvtnorm) 
x.w = t(rmvnorm(5, wt.m, sigma.wt))   
x.m = t(rmvnorm(5, mt.m, sigma.mt)) 
sim.null = cbind(x.w, x.m) 
sim.null 
 
 
#------------------------------------------------------------------- 
# Step 4: Generate bootstrap samples using the null data under the  
#         null hypothesis GF   .  
#------------------------------------------------------------------- 
 
out.path = "c:/simulation/boot.n5/" 
n.names = new.name(sim.null, as.matrix(lip.n))  # function new.name(). 
r.dat = data.s(sim.null) 
 
dim(sim.null) 
length(lip.n) 
length(n.names) 
dim(r.dat) 
 
# Remove the group means and center the overall mean to the overall  
# mean. 
 
r.mean.wt = apply(r.dat[,1:5], 1, mean) 
r.mean.mt = apply(r.dat[,6:10], 1, mean) 
o.mean = apply(r.dat, 1, mean) 
mod.WT = r.dat[,1:5] - r.mean.wt + o.mean 
mod.MT = r.dat[,6:10] - r.mean.mt + o.mean 
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mod.data = cbind(mod.WT, mod.MT) 
 
# bootstrap samples. 
 
B=200 
for (j in 1:B){ 
samp.w = sample(1:5, 5, replace = T)  # resample within WT and MT.  
samp.m = sample(1:5, 5, replace = T) 
 
dat.b = cbind(mod.WT[ ,samp.w], mod.MT[ ,samp.m]) 
b.names = new.name(dat.b, as.matrix(n.names))  
dat.b1 = data.s(dat.b)   
 
m = t(apply(dat.b1, 1, scale)) # scaled data. 
Mat = datAB(m)  
 
A.name = b.names[mat[ ,21]]   # replace the indexes to A's names. 
B.name = b.names[mat[ ,22]]   # replace the indexes to B's names. 
AB.names = paste(A.name, B.name, sep="_") 
 
F.OM = F.new(mat[ ,1:20])      # output the F.OM ratio and SSD. 
 
# Find y = 2 file. 
Aw = apply(mat[ ,1:5], 1, mean) 
Am = apply(mat[ ,6:10], 1, mean) 
Bw = apply(mat[ ,11:15], 1, mean) 
Bm = apply(mat[ ,16:20], 1, mean) 
a = Am-Aw 
b = Bw-Bm 
tg = b/a 
y1 = ifelse(a>0, 1, 0) 
y2 = ifelse(b>0, 1, 0) 
y = y1 + y2 
 
Scaled = data.frame(mat, A.name, B.name, AB.names,  
                   y, a, b, tg, F.OM[ ,1], F.OM[ ,2]) 
 
names(scaled) = c("Aw1", "Aw2", "Aw3", "Aw4", "Aw5", "Am1", "Am2",  
                  "Am3", "Am4", "Am5", "Bw1", "Bw2", "Bw3", "Bw4",  
                  "Bw5", "Bm1", "Bm2", "Bm3", "Bm4", "Bm5", "A_index",  
                  "B_index", "A.name", "B.name", "AB.name", "y",  
                  "avg(Am)-avg(Aw)", "avg(Bw)-avg(Bm)", "tg", "F_OM",  
                  "SSD") 
 
# extract the elements with y = 2. 
y.scaled = scaled[scaled$y == 2,] 
 
write.csv(null.scale, file = paste(out.path, 'sim.null.n5.', j,  
         '.boot.csv', sep=''), row.names = FALSE) 
} 
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