

BIOSECURITY RISK AND IMPACT CALCULATOR

by

SOMIL CHANDWANI

B.E., Rajiv Gandhi Technical University, Bhopal, 2006.

A REPORT

submitted in partial fulfillment of the requirements for the degree

 MASTER OF SCIENCE

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2008

Approved by:

Major Professor
Dr. Daniel Andresen

Abstract

 “BRIC” is a web survey application that can provide feedback to the feedyard managers

regarding the different types of risk involved in their feedyards. By answering a set of basic

questions in the survey, the application generates three categories of reports for the managers

which provide them with measures to improve the existing condition of their feedyard. These

dynamically generated reports can help to decrease the risk of introduction of some disease or its

impact once it is introduced in a feedyard.

The survey can be beneficial to collect data from various feedyards through the internet.

This collected data can be used to make some interesting analysis and beneficial conclusions in

this field of research.

 iii

Table of Contents

List of Figures ... v

List of Tables ... vi

CHAPTER 1 - Introduction .. 1

1.1 Aim ... 1

1.2 Scope ... 1

1.3 Need of the Application .. 2

1.4 Related Work and Problems ... 2

1.5 Platform Specifications - Deployment .. 2

CHAPTER 2 - System Requirement Analysis.. 4

2.1 Information Gathering .. 4

2.2 System Feasibility ... 4

CHAPTER 3 - System Analysis ... 6

3.1 ER Diagram .. 6

3.2 Data Flow Diagrams ... 7

3.3 State Transition Diagram .. 8

CHAPTER 4 - Design ... 9

4.1 Design Goals ... 9

4.2Architectural Design .. 9

4.3 Procedural /Modular Approach .. 11

CHAPTER 5 - Implementation ... 12

5.1 Database Implementation ... 12

5.2 User Interface Design and Implementation .. 12

5.3 Technical Discussions ... 16

CHAPTER 6 - Testing .. 17

6.1 Unit Testing .. 17

6.2 Integration Testing .. 18

6.3 Validation Testing ... 18

6.4 White Box Testing .. 19

 iv

6.5 Stress and Performance Testing .. 19

CHAPTER 7 - Results .. 25

7.1 Biosecurity Practices ... 25

7.2 Biocontainment Practices .. 26

7.3 Security Practices .. 27

CHAPTER 8 - Conclusion .. 29

8.1 Limitations .. 29

8.2 Scope for Future Work ... 29

References ... 30

 v

List of Figures

Figure 3.1 ER Diagram of the BRIC .. 6

Figure 3.2 Context Level Data Flow Diagram.. 7

Figure 3.3 Level 1 Data Flow Diagram .. 7

Figure 3.4 State Transition Diagram ... 8

Figure 4.1 Architectural Context Diagram ... 9

Figure 4.2 Component Diagram ... 10

Figure 5.1 Database Implementation using MS Access ... 12

Figure 5.2 Instructions provided at the beginning and on the click of help button. 13

Figure 5.3 Initial Information Screen, user ID is generated here. ... 13

Figure 5.4 Validations used for compulsory questions. .. 14

Figure 5.5 Menu has sub sections enabled only when the section has been completed. 14

Figure 5.6 Reports generated with a different Menu to view different reports and options. 15

Figure 5.7 Reports can be saved using Microsoft Excel or Adobe PDF options. 15

Figure 6.1 While recording a script WAS monitors IE to capture all incoming data and stores it

into a database file. ... 21

Figure 6.2 We can specify the number of simulated clients by setting the number of threads and

number of sockets on each thread ... 21

 vi

List of Tables

Table 6-1 The following report was generated by the WAS tool for testing the performance. 24

Table 7-1 Proportion of 106 feedyards in 5 Central Plains states at which practices relevant to

biosecurity were implemented .. 26

Table 7-2 Proportion of 106 feedyards in 5 Central Plains states at which practices relevant to

biocontainment were implemented. .. 27

Table 7-3 Proportion of 106 feedyards in 5 Central Plains states at which practices relevant to

feedyard security were implemented. ... 28

 vii

Acknowledgements

I would like to express my deepest gratitude to Dr Mike Sanderson and Mr Joe Nisil,

College of Veterinary Medicine, for their support, assistance and all other facilities that were

required during the development of this application.

Heartiest thanks to Dr Daniel Andresen for his encouragement, guidance and his valuable

advices during the course of my work.

I would like to thank Dr Gurdip Singh and Dr Mitchell Neilsen for serving in my

committee and for their valuable cooperation during this project.

I would like to thank Aric Brandt, D.V.M., Kansas State University, for his patience and

support for making me familiar with the terminologies used in the Veterinary Science.

 1

CHAPTER 1 - Introduction

1.1 Aim
The aim of this application is to provide a platform which can provide feedback to the

feedyard owners and managers. This feedback is to be provided in the form of preventive

measures to improve the existing condition of their feedyards and minimize the existing risk. The

application provides the following facilities:

1. A convenient and easy to use web survey interface which consists of basic set of

questions. Answers to these questions can determine the risk involved in the

feedyards.

2. A smart navigation system which allows the user to change the answers at any point

of time if the section has been already completed.

3. Three dynamically generated and categorized reports based on the type of risk

involved in the feedyards.

4. Exporting the reports to Excel or PDF to save it on the end user’s machine.

5. Basic knowledge about the various diseases that might be a possibility within the

feedyard animals or humans.

6. Basic principles which may decrease the risk of accidental disease introduction.

1.2 Scope
The application can be used for collecting surveys over a number of feedyards and help

improve their existing condition. The data collected from the survey can prove very beneficial

for the research involved in this field as it helps the researchers in this field to understand the

current feedyard security practices. This data can be used to get an idea about the chances of a

particular disease introduction in a feedyard and the cause of such a disease. Reports generated

by the web application can be either used by the feedyard managers to minimize the risk in their

feedyards or it can be used by researchers for comparison when making recommendations in

these areas.

 2

1.3 Need of the Application
There is little research data available in the area of feedyard biosecurity, biocontainment,

and security. Objective data on real versus perceived risk is difficult to obtain for intentional

disease introduction risks. Data about endemic agents in feedyards are more readily available but

still limited. Some data is available on current practices in other animal production systems.

More research is needed to understand which practices will be economically rewarding.

Gathering data through surveys is an effective way to determine what the current

biosecurity practices are in feedyards. Surveys also help identify perceptions held by industry

representatives about biological threats, routes of introduction, and the importance of mitigation

strategies aimed at prevention or control. The results of this work will provide benchmarks for

feedyard managers in the areas of biocontainment, biosecurity and security. Consulting

veterinarians can use this information for comparison when making recommendations in these

areas.

1.4 Related Work and Problems
There are various third party websites which do provide electronic surveys for users with

a facility to add questions using their own template. The end users of our application are not very

technical. Designing a survey application from the scratch makes it possible to develop a simple

application. The responses to certain questions are dependent on other questions which can be

answered only when a set of certain questions have already been answered. This dependency is

decided dynamically and is not available in third party surveys. Categorizing the survey and the

navigation from one part to another is not available in third party surveys. Also, the format of the

report and its categorization is not available in third party surveys.

1.5 Platform Specifications - Deployment

1.5.1 Hardware Specification

Processor P III

RAM 128 MB

Minimum Space Required 10 MB

Display 16 bit color

 3

1.5.2 Software Specification

Operating Environment Win 2000/XP

Platform .Net Framework & IIS

Database MS Access 2000

 4

CHAPTER 2 - System Requirement Analysis

2.1 Information Gathering
For the development of this project I referred to the professors and students involved in

research related to feedyard security practices including Dr Mike Sanderson, Associate Professor

at College of Veterinary Medicine. As the survey should be convenient for the feedyard

managers, I was provided with the details regarding important terminologies to be used in the

application. The working of the survey is forced to be sequential and questions are categorized

into specific sections to make it convenient and easy to use for the end user. Dr Sanderson is

involved in the research of risk assessment for the feedyards and helped me to improve the user

interface to a great extent as he is familiar with the view with which feedyard managers will look

at the application. Dr Andresen, Associate Professor, CIS provided regular feedback and guided

me to add more functionality to the project.

Other than this, I did a lot of research on various other survey applications which have

already been implemented and was able to incorporate a few more stronger features into the

application. The tools and controls used in the application are recommended ASP.NET controls

by Microsoft which improves the navigation and report generation to a great extent.

2.2 System Feasibility
The system feasibility can be divided into the following sections:

2.2.1 Economic Feasibility

The project is economically feasible as the only cost involved is having a computer with

the minimum requirements mentioned earlier. For the users to access the application and

complete the survey, the only cost involved will be in getting access to the Internet.

2.2.2 Technical Feasibility

To deploy the application, the only technical aspects needed are mentioned below:

Operating Environment Win 2000/XP

Platform .Net Framework & IIS

Database MS Access 2000

 5

For Users:

Internet Browser

Internet Connection

2.2.3 Behavioral Feasibility

The application requires no special technical guidance and all the views available in the

application are self explanatory. Also for any kind of queries, instructions are provided on the

starting page of the application. A user can read these instructions at any point of time in the

survey.

 6

CHAPTER 3 - System Analysis

Working closely with the Dr Sanderson and analyzing the requirements and functionality

of the web application, I had three important diagrams by the end of the analysis phase. The ER

diagram, data flow diagram and the state transition diagram which were a basis for finding out

entities and relationships between them, the flow of information and the various states the

application can have.

3.1 ER Diagram

Figure 3.1 ER Diagram of the BRIC

 7

3.2 Data Flow Diagrams

Figure 3.2 Context Level Data Flow Diagram

Figure 3.3 Level 1 Data Flow Diagram

 8

3.3 State Transition Diagram

Figure 3.4 State Transition Diagram

During this phase of the development, I had a lot of discussions with the professor

involved in the research. After collecting the information, I was able to create the ER diagram

which is one of the most useful model forming tools to organize this application. ER diagram is a

model that describes stored data of the system at a high level of abstraction. The processes and

the flow of information were analyzed in detail which resulted into a detailed data flow diagram.

Also, the states were analyzed and the transition of one state to another is depicted in the state

transition diagram.

 9

CHAPTER 4 - Design

4.1 Design Goals
The design of the web survey application involves the design of the following:

1. Design of a database schema which holds the user information, responses and can

generate reports dynamically.

2. Design of a structure which helps the user to navigate from one part of the survey

to the other at any point of time.

3. Design of interactive reports which should facilitate printing and saving at end

user's machine.

4.2Architectural Design

4.2.1Architectural Context Diagram

Figure 4.1 Architectural Context Diagram

 10

4.2.2 Description of Architectural Design

In this context diagram, the information provided to and received from the ‘Feedyard

Survey Application’ is identified. The arrows represent the information received or generated by

the Feedyard Survey Application. The closed boxes represent the set of sources and sinks of

information.

In the system, we can observe that the user interacts with the application through a

graphical user interface. The inputs to the system are the feedyard information provided by the

user and all the responses to the survey questions. Also, the output is in the form of reports which

are based on the responses the user makes. There are some static outputs which do not change

over the execution of the project such as principles and disease fact sheets.

Other than this, the maintenance of the system can be done by the administrator which

can be addition, edition or deletion of more questions in the survey.

4.2.3 Component Diagram

Figure 4.2 Component Diagram

 11

4.3 Procedural /Modular Approach
Following are all the modules designed for the web survey application.

4.3.1 Initial Information Submission Module

This module starts with the generation of a ‘Feedyard ID’ for the user and the session of

the user is maintained until the end of the application. The ID is an automatically generated

primary key in the database and if any updates are made to the initial information they are

updated using the same ID in the database.

4.3.2 User Navigation Module

This module allows the end user to navigate back and forth in the survey. Also if any

section of the survey has already been completed the user can navigate to that section at any

point of time. The module makes sure only those options are available to the end user for which

the user is eligible.

4.3.3 Data Submission Module

This is the key module where user submits all his information. All the selections made

during the survey are submitted in the database. After the data has been submitted, the user

cannot make any changes. The user is prompted to wait until the reports are generated.

4.3.4 Report Generation Module

This is the module where the feedback for the user is generated in the form of reports.

The user can select from various options to view the different category of reports. The user is

given the option to convert the report to PDF or EXCEL and save it.

 12

CHAPTER 5 - Implementation

5.1 Database Implementation
The design of the database was similar to the analysis phase. The database has been

developed using MS Access 2007.

Figure 5.1 Database Implementation using MS Access

5.2 User Interface Design and Implementation
The user interface of the application has been designed using Microsoft Visual Studio

2005. The main controls used in the design are Multi View control, Menu Control, Report

Viewer and these controls are provided with ASP.NET 2005. Following are the screenshots of

the user interface.

 13

Figure 5.2 Instructions provided at the beginning and on the click of help button.

Figure 5.3 Initial Information Screen, user ID is generated here.

 14

Figure 5.4 Validations used for compulsory questions.

Figure 5.5 Menu has sub sections enabled only when the section has been completed.

 15

Figure 5.6 Reports generated with a different Menu to view different reports and options.

Figure 5.7 Reports can be saved using Microsoft Excel or Adobe PDF options.

 16

5.3 Technical Discussions
The implementation of the database application has a table named

‘QUESTIONS’. This database table consists of all the questions in the survey. But the

user interface implementation still consists of questions which are static and are not

retrieved from the database. The reason for this redundant implementation is to improve

the navigation between the different categories of questions. If data is retrieved from the

database, the speed of the navigation is affected and the navigation from one part of the

survey to the other becomes comparatively slower. As the survey consists of 19 views,

the slower navigation affects the performance of the application and increases the survey

completion time for the user.

Also, as per the specifications of the application from the client, the questions of

the survey will not be changed in the near future. So keeping the questions static on the

user interface was a satisfactory implementation to improve the performance of the

navigation of the survey. If in the near future, there are a huge number of questions added

in the survey, a better approach would be to retrieve the questions from the database

dynamically.

The application consists of 4079 lines of code and the time taken to complete the

application is around 5 months. 15 hours per week were spent for the development.

 17

CHAPTER 6 - Testing

Software testing is a process of running with intent of finding errors in software.

Software testing assures the quality of software and represents final review of other phases of

software like specification, design, code generation etc.

6.1 Unit Testing
Unit testing emphasizes the verification effort on the smallest unit of software design i.e.;

a software component or module. Unit testing is a dynamic method for verification, where

program is actually compiled and executed. Unit testing is performed in parallel with the coding

phase. Unit testing tests units or modules not the whole software.

I have tested each view of the application individually. As the modules were built up

testing was carried out simultaneously, tracking out each and every kind of input and checking

the corresponding output until module is working correctly.

The functionality of the modules was also tested as separate units. As we have

mentioned, the user navigation module works along with the other modules, it was also tested

independently without considering the other modules. The next button and the back button

functionality was an important way to test as they fall under the separate cases in the logic. Each

individual case was tested independently which made sure that each view of the survey was

working as a separate unit.

Also, as the user data submission module submits all the information gathered from the

survey into the database, responses from each view were tested independently. As the survey was

being implemented, it was made sure that responses to all the questions are recorded into the

database. An individual submission with each question has been tested for the response capture.

The report generation module has been tested as an independent unit. A user is provided

with many selections options in order to view the reports. While configuration of the reports,

each individual report was independently tested for its functionality. It was made sure that the

desired data related to a particular report is retrieved from the database.

 18

6.2 Integration Testing
In integration testing a system consisting of different modules is tested for problems

arising from component interaction. Integration testing should be developed from the system

specification. Firstly, a minimum configuration must be integrated and tested.

In my project I have done integration testing in a bottom up fashion i.e. in this project I

have started construction and testing with atomic modules. After unit testing the modules are

integrated one by one and then tested the system for problems arising from component

interaction.

6.3 Validation Testing
It provides final assurances that software needs all functional, behavioural & performance

requirement. Black box testing techniques are used.

There are three main components

- Validation test criteria (no. in place of no. & char in place of char)

- Configuration review (to ensure the completeness of s/w configuration.)

- Alpha & Beta testing-Alpha testing is done at developer’s site i.e. at home & Beta testing once

it is deployed.

Test Cases- I have used a number of test cases for testing the product. There were different

cases for which different inputs were used to check whether desired output is produced or not.

1. Proper run time generation of the Feedyard ID.

2. Correct reports are generated at the end of the survey for this ID.

3. With the back button, if changes are made, they are reflected correctly in the application.

4. Each question’s response is reflected to the correct question ID in the database.

5. Options within the Menu are enabled once the specific page has been completed.

6. Back and Next button navigates the user to the correct and desired page.

7. Once submitted user should not be able to make changes.

 19

6.4 White Box Testing
In white box testing knowing the internal working of the product, tests can be conducted to

ensure that internal operations are performed according to specification and all internal

components have been adequately exercised. In white box testing logical path through the

software are tested by providing test cases that exercise specific sets of conditions and loops.

Using white-box testing software developer can derive test case that

• Guarantee that all independent paths within a module have been exercised at least once.

• Exercise all logical decisions on their true and false side.

• Exercise all loops at their boundaries and within their operational bound.

• Exercise internal data structure to ensure their validity.

At every stage of project development I have tested the logics of the program by supplying

the invalid inputs and generating the respective error messages. All the loops and conditional

statements are tested to the boundary conditions and validated properly.

6.5 Stress and Performance Testing
Performance testing is an essential element in successfully deploying a Web application.

It's important to understand how the application and the Web server would behave as more and

more users visit the Web site. In order to simulate that type of usage for a Web application, we

would either need to coordinate with hundreds or even thousands of real users to access our Web

site within a designated period of time or work with a testing tool that can reproduce such user

loads.

Many Web performance testing tools are available to help. Basically, these tools allow us

to use a minimal number of client computers to simulate a large number of virtual users,

concurrently requesting predefined pages of the Web site. Each of these virtual users emulates

the exact communication protocols between a real Web browser and the Web server.

The tool that has been used in this application is called the Web Application Stress Tool -

WAS from Microsoft. The test script was created which completes the survey and the settings

 20

were changed to simulate 100 users hitting the site for 1 hour and performance was tested with a

low dial up bandwidth. The steps and the results have been demonstrated as follows:

The concept behind WAS is simple: We can create a test script by capturing a browser

session using Internet Explorer basically walking through our application, as a typical user would

do. As we do this WAS captures the content of all these Web requests. WAS captures

everything: Hyperlink clicks, Form submissions, Redirect links and everything needed to capture

the user's session through our site. We can use the Browser Recorder to capture a browser

session and have WAS generate a test script from captured links. There are quite a few options

we can choose for the Browser Recorder: Capture delay, and record cookies and host headers.

The delay between requests will result a more realistic test in terms of how people are actually

navigating a site, giving us a more accurate picture of how users on a site map to connections on

the Web server. When we click Next|Finish on the browser recorder we are whisked into IE and

ready to capture requests in our browser. Once we are done, we can switch back to the running

WAS application in the background and click on the Stop Recording button (Figure 6.1).

If we look closely at the WAS form before clicking the ‘Stop Recording’ button we can

see how WAS is capturing the browsers progress. The data is captured and stored in an Access

(MDB) database file including any content captured from form variables.

 Once we have captured the script we can see that our captured Web links are shown on

the right in the data view of the main WAS window. With the links captured our next step is to

configure the load options for running the script. We do this using the Settings option in the list

and we can see a dialog as shown in Figure 6.2.

After running the test script with 100 concurrent users and for 1 continuous hour, there

were no performance issues and no socket errors and all essential details are obvious from the

above observations generated from the WAS tool.

 21

Figure 6.1 While recording a script WAS monitors IE to capture all incoming data and

stores it into a database file.

Figure 6.2 We can specify the number of simulated clients by setting the number of

threads and number of sockets on each thread

 22

Stress Level

This property determines the number of threads that will be run by WAS to hit the client

application.

Stress Multiplier

This property determines the number of sockets that are created on each of the above

threads. The end result is that the Stress Level times the Stress Multiplier equal the number of

clients you are simulating. Threads * Sockets = Total clients.

Test Run Time

This option allows you to specify how long to run the test. This is great to start up a test

and let it run for exactly 1 hour for example, to see exactly how continuous pounding will affect

performance.

Request Delay

The request delay allows you to provide more realistic user simulation, since users don't

continuously click on links as soon as a page loads. Typically users look around a page, find a

link and then click it. Even a familiar user may take 5 seconds between requests – new users will

take much longer.

Throttle Bandwidth

This option causes WAS to monitor the traffic being generated both on the outgoing on

incoming links and optionally allows limiting the bandwidth available.

My goal here however is to see how well the backend performs and I try to actually run

as many hits as I possibly can before the system becomes to loaded: CPU close to 100% and

pages returned taking more than 10 seconds from another machine.

With 100 continuous clients I'm not even close to the 100% mark: 35% CPU utilization

and when hitting the server with a separate browser any requests are returned immediately. So, I

double the count to 200 clients (20 threads/10 sockets). Now things get more interesting – the

CPU is running at 75% average with occasional spikes close to 100%.

 23

In order to truly test operation under load we need to stress test for long periods. I like to

run my tests for at least 1 hour. Applications tend to get more resource hungry the longer they

run – it's not uncommon to see slowdowns over long periods of hard operation.

In all fairness, though, WAS does provide the ability to log NT Performance counters

from the Web server to allow logging of server performance statistics over time. WAS generates

a file hcounters.csv which contains these counter values, which you can then manipulate and

graph externally (in tools such as Excel for example).

 24

Table 6-1 The following report was generated by the WAS tool for testing the performance.

 25

CHAPTER 7 - Results

The application is being used by researchers at K-state to perform analysis over the data

collected using the survey. As there are three main reports generated by the application, a brief

introduction about the biosecurity, biocontainment and security practices have been given here

along with the analysis and calculations made over all the three practices.

7.1 Biosecurity Practices
Biosecurity was defined earlier as management strategies for prevention of disease entry

which are different for each animal production system. Feedyards accept various degrees of risk

depending on the different sources of cattle imported, but observing cattle at arrival will help

determine their arrival state of health and may reduce the risk of importing disease into the

feedyard.

Traditional biosecurity involves controlling introduction of disease by quarantine and

testing of imports prior to introduction to the resident herd. During a quarantine period, animals

should be monitored for signs of illness, tested and vaccinated to match the immune status of the

herd. If animals cannot be kept on another site, they should be kept on the edge of the premises

away from contact with other cattle. Most feedyards keep cattle in the receiving facility until

they are processed and within three days they are introduced to the rest of the cattle and placed in

their home pen. The idea of quarantine may not be well accepted because facility design will not

support separation of cattle for a long period of time when the optimal goal is to keep every pen

full.

A quarantine period also allows time for testing cattle for potential high risk diseases.

Testing cattle on arrival at the feedyard is impractical for most diseases with the possible

exception of bovine viral diarrhea virus (BVDV). This disease will be discussed in further detail

later. However, feedyards will likely continue to import cattle that have been commingled with

other cattle at the auction market without testing or a period of isolation.

Table 7-1 shows the responses made related to biosecurity practices in 106 surveys and

the analysis and calculations used by researchers at K-state.

 26

Table 7-1 Proportion of 106 feedyards in 5 Central Plains states at which practices relevant

to biosecurity were implemented

7.2 Biocontainment Practices
Biocontainment is achieved by implementing strategies to reduce risk associated with the

transmission of pathogenic agents among cattle within a feedyard. The large number of animals

and relatively high population density in modern feedyards make biocontainment an important

issue. Disease of cattle within feedyards is inevitable, but it can be managed with strategies such

as segregation of sick animals from healthy animals or cleaning and disinfection of equipment

and facilities to decrease exposure of susceptible cattle. These principles apply to many diseases

endemic to cattle in US feedyards.

Table 7-2 shows the responses made related to biocontainment practices in 106 surveys and

the analysis and calculations used by researchers at K-state.

 27

Table 7-2 Proportion of 106 feedyards in 5 Central Plains states at which practices relevant

to biocontainment were implemented.

7.3 Security Practices
Security begins with identifying the factors posing the biggest threat in terms of both

likelihood and impact. Threats to the feedyard may include everything from theft of feed,

supplies or cattle by disgruntled neighbors, employees or activist groups intending to make a

statement of their ideology. Potential threats should be evaluated in reference to the likelihood of

occurrence.

Table 7-3 shows the responses made related to security practices in 106 surveys and the

analysis and calculations used by researchers at K-state.

 28

Table 7-3 Proportion of 106 feedyards in 5 Central Plains states at which practices relevant

to feedyard security were implemented.

 29

CHAPTER 8 - Conclusion

The ‘BRIC - Biosecurity Risk and Impact Calculator’ is designed to provide a platform

through which researchers and feedyard managers can make an improvement over the existing

condition of the feedyards. I hope that the information collected through this survey application

will be beneficial for a lot of data analysis by the researchers. Also, there can be a significant

improvement if the feedyard managers work upon the measures generated in the form of reports

through this application.

The survey application development has been a learning process as it has been

implemented using the .NET framework. Reporting and navigation has been implemented in an

efficient manner which makes the application easy to use for the end user. The application has

been created for the College of Veterinary Medicine which is a totally different environment for

a software developer. Thus the application taught me to understand the specifications of

veterinary science and work accordingly. Also the tools used for performance testing were from

Microsoft which was again a learning process.

8.1 Limitations
The survey does not incorporate a way to add, edit or delete the questions through a user

interface. For this reason, the maintenance part of the survey needs a programmer who should be

familiar with latest technology using which the survey has been designed.

8.2 Scope for Future Work
The application can be modified to incorporate an administrative module. This module

can provide the administrator with a user interface through which modifications can be made in

the survey. This can add the functionality of editing the survey using the user interface which

will eliminate the need of a programmer to maintain the survey.

 30

References

[1] Aric Brandt, Feedyard biocontainment, biosecurity, and security risks and practices of central

plains feedyards

http://krex.k-state.edu/dspace/bitstream/2097/343/1/AricBrandt2007.pdf

[2] Microsoft Report Viewer Control

http://msdn.microsoft.com/enus/library/microsoft.reporting.webforms.reportviewer(VS.80).aspx

[3] Microsoft Menu Control

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.menu.aspx

[4] Microsoft Multi View Control

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.multiview.aspx

[5] Software Testing

http://en.wikipedia.org/wiki/Software_testing

