MY TRIP PAL: AN ANDROID APPLICATION FOR TRACKING TRAVEL

By

SWAPNA BOJANKI

B.E, Andhra University, India, 2011

A REPORT

Submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2014

Approved By:

Major Professor

Mitchell L. Neilsen

Copyright © 2014 by Swapna Bojanki

All rights reserved.

No part of this Report may be replicated in any form or by any electronic or mechanical means.
The only exception is that it can be replicated by a reviewer, who may quote short excerpts in a
review. This Report is a description of work of the Project MyTripPal and its implementation.

Abstract

Smartphones have become an integral part of everyday life and a study conducted by Kantar World panel
ComTech (11/2012 — 02/2013) showed sales of all Android phones outpaced the iPhone by a hefty
margin: 52.1 percent to 43.5 percent. Moreover, Android is the OS for most of the mobiles like HTC,
Google, Samsung, Sony, Motorola etc.

As Steve Jobs said “It’s really hard to design products by focus groups. A lot of times, people don’t
know what they want until you show it to them.” There are a lot of common people out there who travel
often and book tickets on various websites; i.e., a person like me travels very often and books ticket on a
website which provides for the cheapest price. Most of the time the destinations might match and they
want to keep track of the websites the tickets are booked, track the dates travelled to a place, track the
price and various other details as it gets difficult to remember all details. Moreover, it is hectic to browse
through each and every website and check the previous travel. Similarly, if one travels on quite a number
of trips via car, one might want to keep track of those details, too. Hence to track all of these, it would be
very convenient if there was an application which can take in all details of personal trips so that you can

refer back to them whenever you want to do so.

MyTripPal is an Android application where a user can save past trips and future trips via flight or car and
a user can enter in all details and save trips. For a future trip, users can be reminded via alarm on a date
and time he chooses while entering the trip details in the application. Autofill option is given while
entering the source and destination where these are prompted from the values that are entered earlier in
previous trips. Google maps navigation option is given which provides the route from the source to the
destination. The user can also search for the trips and there is an Upcoming Trips tab which lists all future

trips via car or flight.

Contents

ST OF FIJUIES ...ttt bt e e bt e et e et e e e an b e e enb e e e bt e e et e e e nreeens %
LISt OF TADIES ...ttt et s Vi
ACKNOWIBAGEMEILS ...eeeeiiiei it e e e e e e e e s s e e e e e e e e e s s st bbb e et aeeeeeessanssraarereeeens vii
Chapter 1 - INErOGUCTIONeieiieeiie ettt ekttt et e et et e e e e e nnn e e e 1
ChapLer 2 = IMIOLIVALIONuiiieiiie ettt sttt et e bt e et e e e anbe e e anb e e e enbee e e 2
Chapter 3 — Background: Android Design and ArchiteCture...........ccccceeviiiiiiiiiieciee e 3
KT8 R = - o] (o | {11 PSSR 3
3.2 ANAroid AFCHIEECIUIEveeiieiiee ettt e st eeenbee e 3
TR B I 1= o 1] 1 PR 4
34 Kernel and STArtUP PrOCESS......c.uuiiiiiiaiii ettt ettt ettt e e e 5
I D | 1= B (0] £ T L= TP PP P PP PP 6
3.6 POWEE IMANAGEIMEINE ...ttt e e e n e e e e nn e e n e rnnann e e e e e e e e e aaas 7
37 REIAEA WOTK ...ttt e 7
Chapter 4 - ReqUIremMents ANAIYSIScoiuirieiiiii ettt e e e s e e e e st e e e s eraeeeee 8
4.1 Requirements Gatheringooiiiiiiieiie e e s r e e e e e s s st r e e e e e e e e e ans 8
4.2 Requirements SPECIFICATIONcoiuiiiiiiieiiiie it 9
4.2.1 SOTIWAIE REQUITEIMIENTS.eiiitiieitiie ettt ettt et e et e et e st e e e eneeas 9
4.2.2 Hardware REQUIFEIMEIESuuviieieeeeii ittt e e et e e e s sttt r e e e e e s s s sttt e e e e aeeesssesstabeseeeaeeeessnssnnnees 9

4.3 FeasiDIlIty ANAIYSIS ... 10
4.3.1 ECONOMIC FEASIDMIY ...covviiiiiie e 10
4.3.2 TeChniCal FEASIDIIIYccoiiiriieiiiiie et a e e e 10
Chapter 5 - System ArchiteCture and DESIgN...........coiiiiieiiiiiee e e e e e e e e s nneeeee e e 11
5.1 SYStEM ATCHIECIUIE.iiieiiii et eneeas 11
I UL N O B 1 o - 11 SO PPRSRRR 12
5.3 ClasS DIaQrAmS.c..ueieiiiiieiiiie ettt 13
5.3.1 Class Diagram for the HOMESCIBEN:..........eiiuiiiiiieeiiee et 14
5.3.2 Class Diagram for Trip Via FIght:oooiiiiiii e 15
5.3.3 Class Diagram for the Creating a new Trip via FIght: ..o, 16
5.3.4 Class diagram for Trip VIa Car:c.ooiiiieiiiieiiie et 17
5.3.5 Class Diagram for the Creating a Nnew Trip Via Car:.........cccveeiiiiiieeiiiiiie e 18
5.3.6 Class Diagram for UpCOMING TriPS:coueeriiiieiiieeiiie ettt 19

5.4 SEQUENCE DIAQrAM .. .oiiiiiiiiiii ettt e et e bbb nnneas 20

Chapter 6 - Android Framework COMPONENTS.........coiviriieiiiiieeeiiiiireeesiteee e s sieee e e ssare e e s s sbreeeeesrneeeeans 21

6.1 ANdroidManTEST. XMooiiieiiii e 21
6.2 ANArOIODEPENUENCIES. ... vveeee et e ettt e e e et e e e e e e e et e e e e e bt a e e s st e e e e e s e enteeaeeenees 24
8.3 ACTIVIEY ..ttt ettt ettt bRt Rt R R bttt n e ne e e ne e re e 24
I 4] (=T o PP PP T PPPRPPN 26
6.5 LaYOUL INFIALET ... e s e re e e e 26
Chapter 7 - GraphiCal USer INTEITACE.iiiceii i e e 27
7.1 HOME PagE ...ttt e e e e e e e e e e n e 27
7.2 TIPS VIR FIIGNE .o 28
7.3 AULOCOMPIETE OPLION: . eeiiiiiiiiiie it e et e e e s e e e s nnnre e e e e e nnees 29
7.4 Calendar view to choose date and Alarm Optionccceeeiiiiiiiie i 30
7.5 AlRIM ValdAtions..........coviiiiiiiii e 31
A T T 1 oo Vo OO TTPPPPRSPR 32
77 AITHPS Via FHIGNE ..o 33
7.8 Pasttrips Via FHONtooiiiiiiie e 34
7.9 FULUIE THIPS VIQ Gl .. .iiiiieiiiiiee ettt ettt e e e st e e e e st e e e e st e e e s anneeeeeeennees 35
7100 Create @ TIIP VIQ G ...couiieiiii ettt et e e et e 36

T 0L BN I EXPENSE. .o 37
712 View OF Edit TTIP VIB Ca&...o.vveiieiiiiiie ettt et ee e a e e nnees 38
A T D =] (I I 4« T O TPV UPPPRRPP 39
% TNV o - TSP 40
CRAPLET 8 = TESTING ...eeutveiee ettt ettt e e ettt e e e e bt e e e s be e e e st e e e e e e ne bttt eeennbeeeeeantneeeennn 41
8L UNIE TESTING .ttt ettt ettt b e ekt et e et e e e nb e e enbe e e nnbeeenneas 41
8.1.1 Unit Test Cases for Trip Via FIIghtcooiiiiiiii e 41
8.1.2 Unit TeSt CaSS TOr TP VIR CATvveeeiiiiiee it e ettt e e e siee e s e e s siee e e et a e e s nnae e e e annaeeeas 42
8.1.3 Unit Test cases for UPCOMING TIPS ...eovvreriirieiiieeiiie et ettt 43

8.2 CoMPALIDIITLY TESTING ..vvvvvieeeee ittt e e e e e s s s e e e e e e s s e bba e raeeaaeeesan 43
8.3 USADIITY TESTING ...vveeee et ettt et e et e e e et e e e et e e e s st e e e s nne e e e e e anreeaeeennees 43
8.4 PerfOrmanCe TeSTINGueeiteeeiiie ettt e bt ettt et e e anbe e e eneeas 44
8.4. L TraCeVIEW ANAIYSIScciiiiiiee ittt e et e e e et a e e s s e e e e s ananeeas 44
8.4.2 Battery CONSUMPLIONccitiiiieiiitiieeesiiete e e e ettt e e sttt e e e e st e e e sste e e e e st beeeeanbeeeeeanseeeeesaanneeeas 45
Chapter 9 CONCIUSION ..ottt e e e e e e e e nnbeeen 46
Chapter 10 FULUIE WOTK.......oviiiie i e e e e e e e e e e e e s st e e e e e e e e s s e ennnnaees 47

Chapter 11 References

Vi

List of Figures

Figure 3.1 Android Layered Architecture, [1, FIg.1].....oooeiiiiiieeiiiie et 4
Figure 3.2 Android Boot SEQUENCE [2, FIG.1]....uveeieiiiiiieeiiiiee ettt 6
Figure 5.1 MyTripPal System ArCRIECTUIE.ooiuiiiiieie e 12
Figure 5.2 MyTripPal Use Case DIagramcc.eoiiuiiiiiiiiiiie ettt 13
Figure 5.3 Class Diagram for HOMESCIEEN.coiiiiiiie ettt e e eaare e 14
Figure 5.4 Class diagram for Trip via FIIghtooviriiii e 15
Figure 5.5 Class Diagram for Create a Trip Via FIIgTc.oooiiiiiiiiei e 16
Figure 5.6 Class Diagram fOr TrP Vi Car..........ooiiuiiiiiiiiiiiee ettt 17
Figure 5.7 Class Diagram for Create @ Trip Vid Car........cccoiiieiiiieiiiieiiie e 18
Figure 5.8 Class diagram for UPCOMING TIPS ...vvveeeiiriiiieeiiiiieesiiieieeessieeeessitee e e sniree e e s sntree e e sineeeeans 19
Figure 5.9 Sequence diagram for Trip via FIIQNtooviiiiiiii e 20
Figure 6.1 Activity Life CyCle [12, FIg.1]ooiiieiiieiie e 25
Figure 7.1 HomeScreen View of the Application-MyTripPal............ccoooiiiiiiiiiiice e 27
Figure 7.2 Creating a Trip VIa FHGNEcoooiiiiiiii e 28
Figure 7.3 AULOCOMPIETE OPLION......uiiiiiiiiiee e e s e e e nrbe e e e e an 29
FIQUIE 7.4 DAt PICKET ... ettt 30
Figure 7.5 Alarm Time ValitationScoooviiiiiiiiiiie et 31
FIQUIE 7.6 TOAST IMESSAQES ... vvveeeiuttieeeeittee e e s ittt e e e et te e e e ettt e e e s et e e e e s e aaba e e e e s st aaeeeanaaaeeesansbesaeessnbraeeaan 32
o [0 (A N | I I SO PT PRSP PPPPPR 33
FIQUIE 7.8 PAST THID .ttt ittt ettt ettt ekttt ettt et e et e et e e e e e nn e e e 34
FIQUIE 7.9 FULUIE TTIDS ©.eeiieieeittie ettt ettt ekttt et et e et e e enb e e e s e e e 35
Figure 7.10 Creating TrP VIa Carccoiuiiieiiiiiie ettt e et e e e s e a e e s snbneeaee e 36
1o U T I 0= =T PRSP 37
Figure 7.12 View or Edit TrP VIR Car......coouiiiiiiiiiiieiiie et 38
FIQUIE 7. 13 DEIBTE THID e iiiiei ittt ettt ettt ettt e e e e s e e 39
Figure 7.14 Navigation from Source to Destination Values..............cccoiiiieiiieniii e 40

file:///C:/Users/SwapnaBojanki/Desktop/Swapna%20Bojanki_%20Final%20Report.docx%23_Toc404302624

List of Tables

Table 8.1 Test cases for Trip Via FHGNToooviiiii s 41
Table 8.2 TeSt CaSeS TOr THP VI CaAl.......uiiiiiiiiiee ittt et e st e e e e nnee e 43
Table 8.3 Test cases for UPCOMING TTIPSccuuurieeiiiiiieiiiiiteeeeeieieeesiier e e e sntee e e e snteeeeeesnnneeeeseneeeeeenneees 43
Table 8.4.1 ReSPONSE TiME ANAIYSIS......cciiiiiiiiieiiie it 44
Table 8.4.2 Battery CONSUMPLION........ccciiiiiiiiiie e eee et e e e e s s e e e e e e e e s et e e e e e e e s s e sntnbaaeereeeeas 45

Vi

Acknowledgements

I would like to express my sincere gratitude to my major professor, Dr.Mitch Neilsen, who has provided
me with constant guidance and encouragement throughout my project development. He has always been a
source of valuable suggestions and corrections which helped me gain immense knowledge.l would like to

thank my committee members, Dr.John Hatcliff and Dr.Torben Amtoft, for serving on my committee and

also | feel honored to have taken courses under you.

It was a pleasure taking courses under all the other Professors of the CIS Department. They provided me a
lot of real world experience and knowledge. | also thank all the staff of CIS Department for being such

warm people and helping me whenever needed.Special thanks to Dr.Gurdip Singh for having faith in me

as a Graduate Teaching Assistant which helped me gain a lot of experience.

| thank all my friends who provided me constant support and Pranay Roy Matcha for being with me

through thick and thin and for being a constant source of encouragement and motivation.

Finally, 1 would like to thank my parents Mr.Rambabu Bojanki and Mrs.Aruna Bojanki for everything
they have done for me and for giving their unconditional love and support, ‘You made me who I am

today’.

Vii

Chapter 1 - Introduction

MyTripPal is an Android application which targets any common user with an Android smartphone who
travels via flight or car. This application helps the user track travel including both previous and future
trips. The application mainly consists of three modules; Trips via Flight, Trips via Car, and Upcoming
Trips. For ‘Trips via Flight’, as a user he can add/modify/delete a trip. The add or edit feature involves
various fields needed by user like the Source, Destination, Trip date and time which in turn disables the
alarm option; i.e., if it is a previous date the user won’t be able to add an alarm option, Airlines, website
booked and flight information, cost incurred for the trip, people travelled with and alarm option where
you can specify exact and date and time to be reminded. For ‘Trips via Car’, a user is able to add/edit the
trip source, destination and time details. Users can also add the car rental information like the company
car is booked from and total number of people travelling and alarm option. Users can also use the
navigation button present on the trip information screen to get google map navigation for the trip. For
each of these he can track and search previous and future trips. The ‘Upcoming Trips’ module displays a

list of all future trips that are lined up via flight or car.

Chapter 2 - Motivation

The main motivation behind the project idea is my high frequency of travelling. | am a person who likes
to travel a lot. Let it be travel to visit relatives located in different parts of USA or India, or travel
involving road trips with friends on a car. While booking my air travel, | browse through all available
websites and book the ticket that is the cheapest. Hence, whenever | want to book a ticket for the same
destination or so, I go through the hassle of searching previous data in all sites. It would be very
convenient if | could store all my travel information in one place so that | can store my previous travel
history and at the same time other details so that it would be handy to check them whenever required. At
the same time I can have an alarm on my mobile device before some time or days to notify me that | have
a trip soon. The same for road trips, | can track all my trips and it is handy to have the navigation from a
past or future trip. Hence, in creating a solution to all of those problems, plus some extra features emerges

the application ‘MyTripPal’.

Chapter 3 — Background: Android Design and Architecture

3.1 Background
Android Operating System (AQOS) is a Linux-based Operating System which can be used on smartphones
and tablets. AOS is initially developed by Android Inc. and is later acquired by Google. It is an open

source development platform powered by a modified Linux 2.6 Kernel [1, pp.1].

3.2 Android Architecture
The layered Android Architecture can be seen in Figure 1 where the modified Linux 2.6 Kernel acts as
the Hardware Abstraction Layer (HAL) thus providing the memory management, device drivers, process

management and networking functionalities.

The libraries layer is interfaced by Java and contains the Android Specific Bionic libc which is a
lightweight, embedded version of Android’s own C library developed by the Android Community. The

Surface manager form the Libraries layer handles the User Interface windows.

Next is the Android Runtime Layer which contains the Core Libraries and the Dalvik Virtual Machine
(DVM). Android systems use the DVM which uses a special form of byte-code due to which java byte-
code cannot be executed on Android Systems but the java class files can be converted to Dalvik

executables (dex) using dx tool.

The next layer is the Android Application Framework which is responsible for the Application Life cycle.
The Content Provider is responsible for accessing the data from other applications and also to share an

applications’ own data. The Resource Manager helps accessing non code resources like graphics whereas

the Notification Manager helps displaying custom alerts.

The top layer contains the Applications like Calculator, Clock, and Calendar etc. [3, pp.2].

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Activity Window Content View Notification
Manager Manager Providers System Manager

Package Telephony Resource Location XMPP
Manager Manager Manager Manager Service

LIBRARIES ANDROID RUNTIME

Surface Media

Core

SJtRe Libraries

Manager Framework

OpenGL|ES FreeType WebKit

LINUX KERNEL

Display Camera Bluetooth Flash Memory Binder (IPC)
Driver Driver Driver Driver Driver

usBe Keypad WiFi Audio Power
Driver Driver Driver Drivers Management

Figure 3.1 Android Layered Architecture, [1, Fig.1]
3.3 Target Platform
As mentioned earlier, Android development platform powered by a modified Linux 2.6 Kernel and most
of the systems based on it are X86 based systems. But the mobile devices are ARM based which is a 32-
bit Reduced Instruction Set Computer Architecture (RISC). On the other hand, X86 is mainly base on
Complicated Instruction Set Architecture (CISC). As the name suggests, CISC instructions are more
complicated than RISC. This gives rise to issue with size, cost and power and to resolve this, ARM
provides a second 16-bit instruction set which is labelled as Thumb which can be interleaved with the
actual 32-bit ARM instructions. The main advantage of ARM design is it focuses on lower power
consumption. The major chipsets deployed in Android devices these days are Qualcomm Snapdragon

4

(HTC), Texas Instruments OMAP (Motorola) and Hummingbird (Samsung), all three are based on the

ARM Cortex-A8 Architecture.

3.4 Kernel and Startup Process
Though Android is based on Linux 2.6, it doesn’t have the standard Linux Kernel It has other
improvements like alarm driver, a shared memory driver, power management feature, kernel logger and
debugger and a binder for inter-process communication. On power, Boot ROM code starts executing and
loads the BootLoader into RAM and starts the execution where the BootLoader is a program which runs
before the Android OS. During the android boot process as shown in Figure2, the init process is called the

Android Linux Kernel which in turn accesses the init.rc and init.device.rc files.

In Java, a separate Virtual Machine instance will pop up in memory for each application. But since we
want the Android application to launch in the least possible time, launching different instance of the
Dalvik Virtual Machine for every application consumes lot of memory and time. Hence, this problem is
resolved by Android OS by a system named “Zygote” which enables sharing code across Dalvik Virtual
Machines, and lowering the memory footprint. Thus, the overall startup process is expedited. The System
Servers are then launched which contains the system services like starting the Power manager, Alarm
manager, Battery service, Activity manager, etc. Once all services are launched, the Startup process is

completed [2].

——

Step 1 Boot ROM
—
 J
Step 2 Boot
P Loeader

3.5 Data Storage

Dalvik VM

System Service
Servers Manager

Figure 3.2 Android Boot Sequence [2, Fig.1]

Android provides various options to save persistent data.

e Shared Preferences - Stores private primitive data in the form of Key-Value pairs.

e Internal Storage - Stores private data directly on the device.

e External Storage - Stores public data on a shared external storage.

e SQLite Database — Stores structured data on a private database.

e Network Connection — Stores data on the web with our own network server.

This application uses SQL ite database to store all of its data.

3.6 Power Management
Android based systems have their own power management infrastructure called Power Manager. The
applications and the services request CPU resources through wake locks via the Android application
framework and the native Linux libraries. Thus a processor will not consume power if the applications or
a service does not require any power. If there are no active wake locks, Android will simply shutdown the

processor [3].

3.7 Related Work

There are mobile applications for almost all of the travel or airline websites like apps for
www.orbitz.com, www.southwest.com, www.priceline.com etc. But there isn’t one which holds all the
data in one place and moreover, most of the mobile apps of these travel websites do not have the option to
view or search through all reservations. There aren’t many applications to store our travel via car, too.

Hence, users can make good use of an application like MyTripPal to track their travel information.

Chapter 4 - Requirements Analysis

In the requirements analysis we need to elicit the requirements by performing the requirements gathering

by analyzing the stakeholders and obtain a clear set on unambiguous requirements and record them.

4.1 Requirements Gathering

As this is an application for a common user, the graphical design that is the front end is a main aspect and
it should be taken care that it will be easy to use for any user and navigation shouldn’t be any confusing.
The application doesn’t target users from a particular region. Hence it can be used by any person all
throughout the world. Main requirements were gathered after brainstorming with couple of people like
my friends and my colleagues at my internship who provided me an insight that I should save the website
information for easier tracking. Some other requirements are obtained from my Major Professor Dr.Mitch
Neilsen. The main requirements suggested are that | can provide an auto-fill of the source and destination
from the list of places which were previously entered by the user and the other one is to provide
navigation via google maps from the source and destination entered. The main requirements of this

application are

Provide a button view to add Trips via Flight or Trips via Car or view Upcoming trips from both of

these.

e For each of the buttons Trips via Flight and Trips via car provide views which enable user to add,
edit or delete a trip.

e For Future Trips provide an alarm option and let the user specify the exact date and time when he
needs to be reminded.

e Provide navigation via Google maps from the source and destination entered by the user.

e View list of all trips once they are entered.

e Provide a tab view to view past, future trips and all trips and search through them.

4.2 Requirements Specification

4.2.1 Software Requirements

The set of software requirements for the application are listed below,

Development Perspective:
Operating System: Windows 8
Language: Android SDK, Java
Database: SQL.ite
Tools: Eclipse IDE
Technologies: Java, SQLite, Android, XML, Google Maps API

Debugger: Dalvik Debug Monitor Server (DDMS), Genymotion Simulator, Android mobile

device (HTC One M8).
Application Perspective:
Framework: Android SDK Version 3.2
Network Required: Mobile network and Internet (cellular or Wi-Fi)

4.2.2 Hardware Requirements

Development Perspective:
Processor: Pentium IV or higher
RAM: 256 MB
Space on disk: 250MB or higher

Application Perspective:

Device: Android phone with version 3.2 or higher

4.3 Feasibility Analysis

4.3.1 Economic Feasibility

This application is economically feasible as it requires an Android device with Android SDK'is 3.2 or
higher which can be downloaded for free. But in order to download the application, the users need Wi-Fi

or cellular network. Hence it is economically feasible.

4.3.2 Technical Feasibility

To develop this application we need a system to install Android SDK and develop the application and a
device to test or it canalso be tested on an emulator. This application has been tested on HTC One M8

and Genymotion Emulator. Hence it is Technically Feasible.

10

Chapter 5 - System Architecture and Design

5.1 System Architecture

The System architecture of an application gives us an overview of its interaction. The following is the
figure which illustrates a high level architecture of the application MyTripPal. The user provides input to
the application. This can be while Creating a tripviaFlight and tripviaCar, or while searching or editing
the trips mainly. Once the user provides the input to the User Interface, it interacts with the logic present
in the Java classes and other API’s and then later interacts with the database and provides the result back

to the User Interface for the user to view.

For example, in this application let us consider the case of creating a tripviaFlight. The user chooses the
button TripsviaFlight from Homescreen.java which provides the user interface to fill in the details from
MainActivity.java and in turn interacts with the database using TravelDatabase.java and then creates a

trip in the database and the confirmation is sent back to the user via the User Interface.

For the fields, the user input can be filled in the textarea provided. For source and destination and airline
name, there is an autocomplete option where the suggestions pop up from the values the user types in.
Similarly, the user can mention data and time of his trip using the DatePicker. Similarly once the user
checks the Alarm on checkbox, a DatePicker will be provided where he can mention the exact date and
time. There is also a navigation option, if the user selects the navigation option on the top right corner of
the trip, he will be given the navigation options from the source to destination he entered in the fields.
This has been done using Google MapsV2 API. Figure 5.1 shows the system architecture of MyTripPal

application.

11

User Input User Interface

Business Logic

Figure 5.1 MyTripPal System Architecture

5.2 Use Case Diagram

Use Case Diagrams in UML can help us to describe the functionality of any system in a horizontal way.
That is, instead of representing the details of individual features of a system, Use Case Diagrams can be
helping us to see all of its available functionality. Use case Diagrams basically vary from sequence
diagrams or flow charts because they do not represent the order or number of times that the systems
actions and sub-actions must be executed. Use case Diagrams doesn’t provide the exceptional cases. It

helps us provide a high level view of the system.
The major elements of a Use Case Diagram are explained below.
Actors: Specifies the role played by a user or it is any system that we are describing interacts with.

Use cases: Use case is a list of steps which typically defines the interactions between a role and a system,

to achieve a goal.

12

Lines: Lines help us in representing the relationships between the above elements.

The use case interactions of the application MyTripPal can be seen in the Figure 5.2 below. [5]

Select and ViewTripVia Flight

Select and Edit TripVia Flight

Create TripViaFlight

Select and DeleteTripVia Flight

Select and ViewTripVia Car

Select and EditTripVia Car

CreateTripViaCar

Select and DeleteTripVia Car

View Future TripsViaCar

Select and ViewTripVia Car and Flight

View FutureTripsViaCar and
Flight

Select and EditTripVia Car and Flight

ViewUpcomingTrips

Select and DeleteTripVia Car and Flight

Figure 5.2 MyTripPal Use Case Diagram

5.3 Class Diagrams

Class diagrams in the Unified Modeling Language help us understand the structure of a system by
showing us the system's classes, their attributes, methods and the relationships among objects. It is the

13

main building block of Object Oriented Modelling.

form of the class diagrams. [6]

5.3.1 Class Diagram for the Homescreen:

=<lava Class==
(2 TravelDatabase
praans. appl mytrippal

S5 DATABASE_WVERSION: int = 1
5 pATABASE_NAME: String = “alitrips. db™
S5F KEV_ID: String
%of KEY_FROM: String = “tripfrom”
SF KEY_TO: String = "tripto”
Zof KEY_TRWELID: String = “tripllD™
S5aF KEW_TRIPWIA: String = "tripwia™
Eof KE_TRIPDATE: String = “tripdate™
SoF KEW_TRIPTIME: String = “triptime”
Eof KEv_REMTRIPDATE: String
5oF KE'_REMTRIPTIME: String =
EF KEw_TRIPCOST: String =
SaF KEv_!
EF KEw_ALARM: String
%f KEY_SERVICE: String = ™
EcF KB _TRIPWITH: String = “tripwith™
5 TABLE_ALLTRIPS: String = “AlTrips™
SaF KEw_SERWICEND: String = "serviceho™
5aF KEY_TI LIS: String = “timeinmillis™
S KEY_REMINDTIMEINMILLIS: String = “remindtimeinmillis™
%of KEY_FROMANDTO: String = “tripfromandto”
S TABLE_FROMTOLIST: String = "Fromtolist™
SaF TABLE_AIRLINELIST: String = “Airlinelist™
o db: SQlLiteDatabase = null

‘remtripdate”

@ getinstance(Context): TravelDatabase
Ef TravelDatabase(Context, String, int)

@ close():void

@ onCreate(SQLiteDatabase) void

@ addToTrips(Upcomingtripdblisty:void
@ addTofromtoList(ContentWalues) void

@ onUpgrade(SQLiteDatabase,int,inty:void

~traweldb | 0.1

i L]

<<lJava Class=>
(2 UpcomingTrips
prasna._appl. mytrippal

& allfriplistview: ListView
& hwesc: Stringl = { "No trips found™ ¥

& sqlitedatabase: SQLiteDatabase

& altriplist: ArrayList<Upcomingtripdblist=

£ custom_adapter: Upcomingtripsrrayadapter
2 llbckBtn: LinearLayout

& searchEditbox: EditText

& UpcomingTrips()
< onCreate(Bundle):void
= loadListWiew (jvoid

==Java Class==
(& HomeScreen
praana_sppl.mytrippal

a cal Calendar

SeFRpas_1:int=1

2 buttonUpcomingtrips: Button
& buttonviaflight: LinearLayout
& buttonViacar: LinearLayout

& card: RelativeLayout

& sqgiDatabase: SOLiteDatabase 4 sgiDatabase: SQlLitsDatabase

4 calender: Calendar

& sender: Pendingintent

& alarmManager: AlarmManager

& ntfmngr: NotificationManager

& tripalarmpref: SharedPreferences

Figures 5.1 to 5.6

illustrates System design in the

<=Java Class=>
(& RemindersService
praana.appl.mytrippal

& HomeScreen)

= onCreate(Bundie) void
& callalarmservice()void

L2

S5 FTaG: String

“pckname”

favEventid: List=String= = new ArrayList=String=(}
favidsarray: ArrayList<String= = new ArrayList<String=(}
mysong: MediaPlayer

dateFormat: SimpleDateFormat = new SimpleDateFormat™yyyy—i
today: Date

sventdate: Date

ntfmngr: MotificationManager

notifipref: SharedPreferences.

ewventld: String

F soundResid: int = R.raw. notify_1

~traveldb

-minstance

0.1

&FReminderService()
@ onReceive(Context, Intent) void

==lava Class=>=
(& TripviaFlight
praana appl.mytrippal

flightTriplistview: ListWiew
autocompletelistview: ListWisw
buttonAlltrips: Button

buttonFuturetrips: Button
buttonPasttrips: Button

Stringll = { "No trips found®™ }
sqglitedatabase: SQliteDatabase
allflighttriplist: ArrayList<Flighttripsdblist=
custom_adapter: Flighttriparrayadapter
searchEditbox: EditText

tabno: int =0

hres

buttoncreatflighttrip: LinearLayout
llbckBtn: LinearLayout

3 O 2

& TripviaFlight()

< onCreate(Bundie}:void
< PastflightTrips():void
= AlfightTrips () void

= FutureflightTrips(jvoid
= loadListview ():void

<<lJava Class=>=
(= TripviaCar
prazna._appl.mytrippal

carTriplistview: ListWiew

buttoncreatcartrip: LinearLayout

lleckBtn: LinearLayout

hvex: Stringll = £ "Mo trips foun
ase: SQLiteD

allcartriplist: ArrayList<Cartripdblist=
customn_adapter: CartripArrayadapter
buttonAlitrips: Button
buttonFuturetrips: Button
buttonPasttrips: Button

& searchEditbox: EditText

4 tabne: int = 0

BEBBEREDED S

& TripviaCar()

< onCreate(Bundle}:void
< PastflightTrips():void
= AliflightTrips():void

= FutureflightTrips(}-woid
= loadListWiews ()void

Figure 5.3 Class Diagram for Home Screen

14

5.3.2 Class Diagram for Trip via Flight:

==lava Class>==
(® TravelDatabase
prazna. sppl.mytrippal

5F DATABASE_VERSION: int
5F DATABASE_NAME: String
3o KEY_ID: String

%F KEV_FRON
SFKEY_T
5 KE'v_TRWELID: String

5F KEV_TRIPVIA: String

5F KEY_TRIPDATE: String

S KEY_TRIPTIME: String

5F KEY_REMTRIPDATE: String

5af KE'v_REMTRIPTIME: String

3F KEv_TRIPCOST: String

S KE'v_WEBSITE: String

5F KEv_ALARM: String

%F KEY_SERVICE: String

5f KEY_TRIPWITH: String

F TABLE_ALLTRIPS: String

5F KEv_SERVICEND: String

String

%af KEY_REMINDTIMEINMILLIS: String
% KEY_FROMANDTO: String

5F TABLE_FROMTOLIST: String
SFTABL IRLINELIST: String

© db: SQLiteDatabase

& getinstance(Context) TravelDatabase
B TravelDatabase(Context,String,int)

@ close():void

@ onCreate(S0OLiteDatabase}:void

@ addToTrips(Upcomingtripdblist):void

@ addTofromtoList(ContentValues):.void
@ onUpgrade(SQlLiteDatabase,int,int):void

~allflighttriplist

==lava Class=>
(& TripviaFlight
prazna. appl.mytrippal

& flightTriplistuiew: ListWiew

& autocompletelistview: ListView
& buttonAlitrips: Button

& puttonFuturetrips: Button
@ buttonPasttrips: Button
& hvex: String[]

A : SQlLiteD
& searchEditbox: EditText
& tabno: int

4 buttoncreatfiighttrip: LinearLayout
& lbckBtn: LinearLayout

& TripviaFlight(}
<» onCreate(Bundle). void
<» PastflightTrips():void

= AllflightTrips(y:void

= FutureflightTrigsT} veid

==Java Class=>
(3 Flighttripsdblist
prazna. appl.mytrippal

s
a
a
a
a
a
a
a
s
a
a
a
a

_tripid: String
_tripvia: String
_tripfom: String
_tripto: String
_tripdate: String
_tripcost: String
_website: String
_tripservice: String
_tripserviceno: String
_tripwith: String
_alarm: String

_time: String
_timeinmilli: long

POOODOOOODODOOD

gettripld(y: String
gettripvial}:String
gettripfrom():String
gettripto(}:String
gettripcost(}:String
getwebsite():String
getservice():String
gettripwith():String
getalarm(}:String
gettripdate():String
gettriptime(}:String
gettimeinmilis(}:long
getserviceno():String

& Flighttripsdblist(String, String,String, String, String, String...

—my flightTrips

==Java Class==
(3 MainActivity
o i

ediTripcost: EditText
edtTripwebsite: EditText
ediTripflightno: EditText
edtTripwith: EditText
ediTripdate: TextView
edtTriptime: TextView
remindedtDate: Text\iew
remindediTime: TextWiew

edtTripto: AutoCompleteTextView
ediTripfrom: AutoCompleteTextView
alarmcheckbox: CheckBox
dialogsetbutton: Button
dialogcanelbutton: Button

dialog: Dialog

cal: Calendariiew

sdf: SimpleDateFormat

taskDate: String

contact_id: String

taskDate2: String
remindtaskDate: String

a8 o0bbbbbFEEEPEEEREEPR

o

remindcontact_id: String
remindtaskDate2: String
taskDateLong: Long
taskDateLong2: Long
remindtaskDateLong: Long

ooooooao

o

o remindtaskDateLong2: Long
4 istoday: boolean

& timeinmiliis: Ig,
sinmillis: lang

- : TimePicker

@ curHr: int

4 curlin: int

4 timeMin: int

4 timeHr: int

@ formatter1: DecimalFormat

o sTimeMin: String

o sTimeHr: String

& tripildprefs: SharedPreferences
& tripalarmpref: SharedPreferences
& createTripbutton: LinearLayout
4 lleckBtn: LinearLayout

4 card: LinearLayout
%FRas_1:int

4 sender: Pendingintent

& alarmManager: AlarmManager
a ntfmngr: MotificationManager

& arraylist ArrayList<String=

& flightarraylist: ArrayList<Strings
A i : SQLiteD:

edtTripairline: AutoCompleteText\View

==Java Class==
(3 Home Screen
prasns.sppl.mytrippal

& puttonUpcomingtrips: Button
& buttonViaflight: LinearLayout
& puttonViacar: LinearLayout

4 card: RelativeLayout

& sglDatabase: SQliteDatabase
& cal Calendar

& calender: Calendar

%Fpas_-
& sender: Pendinglintent

@ alarmManager: AlarmiManager

& ntfmngr: NetificationManager

& tripalarmpref: SharedPreferences

int

&FHomeScreen()
<+ onCreate(Bundle)void
@ callAlarmservice()void

==Java Class=>
(& ReminderService
praana.appl.mytrippal
3 1AG: String
& sqiDatabase: SOLiteDatabase

a favEventid: List<String=

o favidsarray: ArrayList<String=
& mysong: MediaPlayer

4 dateFormat: SimpleDateFormat
4 today: Date

& eventdate: Date

& ntfmngr: NotificationManager
& notifipref: SharedPreferences
o eventld: String

2F spundResid: int

& ReminderService(}
@ onReceive(Context, Intent):void

E <<Java Class=>
(S FlighttripArrayadapter
praana.zppl.mytrippal

& inflater: Layoutinflater
o minflater: Layoutinflater
o context: Context

OCFIignttripArrayadapter[cuntext.TripviaFlignt.int.ArrayList<FIign...
@ getCount(}:int

@ gettem(int):Object

@ getitemidiinty:long

@ getView(int,View, ViewGroup): View

@ onClick(View)-void

&F MainActivity ()

<> onCreate(Bundle}:void
<+ insertintoDatabase()ovoid
@ mainmethods(String)long

15

==Java Class=>
(& ViewHolder
prazna.appl mytrippal

4 trip_date: TextView
& trip_time: TextWiew
& trip_flight: TextWView
a trip_no: TextView
& frip_to: TextView

& alarmy: TextView
4 card: LinearLayout
& alert: boolean

A" viewHolder(}

Figure 5.4 Class diagram for Trip via Flight

5.3.3 Class Diagram for the Creating anew Trip via Flight:

<<Java Class=>
@ MainActivity
praana.applmytrippal

o edtTripcost: EditText

4 edtTripwebsite: EditText

4 edtTripfiightno: EditText

& edtTripwith: EditText

4 edfTripdate: TextView

& edtTriptime: Text\iew:

o remindectDate: Textwiew

4 remindediTime: TextWisw

& edtTripairine: AutoCompleteText\iew

——lava Classrs 4 ediTripto: AutoCompleteText\iew

@ ReminderService 4 edtTripfrom: AutoCompleteTextWiew

praana apel mytrippal & alarmcheckbox: CheckBox

S TAG: String < dialogsetbutton: Button

pckname’
sqiDatabase: SQLiteDatabase -« dialogeanelbutton: Button

&
4 favEventld: List<String= = news ArrayList<String=() < dialog: Dialog

4 favidsarray: ArrayList<String= = new ArrayList<String=(} © cal: Calendariiew

4 mysong: MediaPlayer = sdf: SimpleDateFormat
4 dateFormat: SimpleDateFormat = news SimpleDateFormat(yyyy-| = taskDate: String

4 today: Date = contact_id: String

4 eventdate: Date = taskDate2: String

4 ntfmngr: NotificationManager = remindtaskDate: String
4 notifipref: SharedPreferances & remindcontact_id: String
& eventia: String 5 remindtaskDate2: String

%l

soundResld: int = R.raw.notify_1 +{ = taskDatelong: Long

= taskDatelong2: Long

& remingtaskDateLong: Leng
@ remindtaskDateLono2: Long
4 istoday: boolean - false

& timeinmilis: long

P

& Reminderservice(y
© onReceive(Context,Intent}:void

4 remindtimeinmillis: long
= tp: TimePicker

& curtr: int

4 curMin: int

& timeldin: int

& timeHr: int

<<Java Class>>
(& TripviaFlight .
prasns.appl.mytrippal - = sTimeMin: String

” & sTimeHr: String

4 tripldprefs: SharedPreferences
- tripalarmpre: SharedPreferences.
a createTripbutton: LinearLayout

4 lleckBtn: LinearLayout

& card: LinearLayout

%ROS 1:int=1

& sender: Pendingintent

& alarmManager: AlarmManager

a ntfmngr: NotificationManager

& arrayList: ArrayList<String>

& flightArraylist: ArrayList<String>
4 sglitedatabase: SQliteDatabase
& Mainactiviey(y

< onCreate(Bundle):void

< insertintoDatabase():void

© mainmethods(String)long

= formattert: DecimalFormat

TlightTriplistview: Listuiew
autocompleteListview: ListWiew
buttenAltrips: Butten

buttonFuturetrips: Button
buttonPastirips: Button

Ivex: Stringl] = { "Ne trips found= }
sqlitedatabase: SQLiteDatabase
allfighttriplist: Arraylist<Flighttripsdblist>
searchEditbox: EdiTesxt

tabno: int = 0

buttoncreatflighttrip: LinearLayout
lpckBtn: LinearLayout

bbb bDEEDRDDDE

& TripviaFlight(y

< onCreate(Bundie):void
< PastflightTrips()woid
= AlflightTrips():void

= FutureflightTrips(}:void
= loadListview (}:void

~myflightfrips | 0..1

~custom_adapter | 0..1

<<Java Class=>
@ FlighttripArrayadapter
prasns appl mytrippsl

4 inflater: Layoutinflater
lightTrip: List<Flighttripsdblist=
= minflater: Layoutinflater

o context: Context

& FlighttripArr: pteriContest, Trips ght,int, Arrayl ighttrip: 3
@ getCount(yint
© gettem(inty:Object

~traveldb | 0.1

© gettemid(int)-long <<Java Class=~
@ getview int, View, ViewGroup) view (® TravelDatabase
® onClickiWiew):void prana appl.mytriposl
S pATABASE WERSION: int - 1
~travek Sof DATABASE_NAME: String = ~alitrips. db™
<<lava Class=> 0.1 N 5T KEV_ID: String —"_id
(3 ViewHolder Sof KE¥_FROM: String = “tripfrom”
praana. spel.mytrippsl Sof KEY_TO: String = “tripto
o trip_date: TextWiew 5oF KE_TRWELID: String = "tripliD”
& trip_time: Textwisw TRIPVIA: String = “tripwia”
& trip_flight: Text\iew Sof KEY_TRIPDATE: String = “tripdate”
4 trip_no: TextWView Saf KEY_TRIPTIME: String — “triptime
& trip_to: TextView 5 KEY _REMTRIPDATE: String = “remtripdate”
o alarmme: Textuiew %of KE_REMTRIPTIME: String
4 card: LinearLayout SoF KEV_TRIPCOST: String
4 alert: boolean S KEW_)

“of KEW_ALARN
SoF KEV_SERWICE: String = “service”

Sof KEY_TRIPWITH: String = “tripwith

S TABLE_ALLTRIPS: String = "AllTrips™
“of KEY_SERWICENQ: String = “serviceNo
Sof KEV_TIMEINMILLIS: String
5ol KEY_REMINDTIMEINMILLIS: String = "r P
Sof KEY_FROMANDTO: String = “tripfromandto”

“f TABLE_FROMTOLIST: String = "Fromtolist™

S TABLE_AIRLINELIST: String = "Airlinslist”

© gb: SQLteDatabase = nul

“iewHolder()

& getinstance(Context) TravelDatabase
& TravelDatabase(Context, String, int}

@ close(yvoid

@ onCreate(SQLiteDatabase) void

& addToTrips(Upcomingtrindblisty:void
© agdTofromtoList(Contentvalues yvoid
® onUpgrade(SQLiteDatabase, int,int):void o1

Figure 5.5 Class Diagram for Create a Trip via Flight

16

5.3.4 Class diagram for Trip via Car:

=<Java Class»»
(® TripviaCar
praana spplmytrippal

& carTriplistview: ListWiew

& buttoncreatcartrip: LinearLayout
& lbckBtn: LinearLayout

& Ivex: String(] = { "No trips found™ }
4 sqltedatabase: SQLiteDatabase

4 puttonAlitrips: Button <=Java Class>>
& buttonFuturetrips: Button (3 ReminderService
<=Java Classs=> & buttonPasttrips: Button praana.appl.mytrippal
(@ TravelDatabase & searchEditbox: EdifText S TAG: String = “pckname”
e & tabno: int = 0 & sgiDatabase: SQLteDatabase

SoF DATABASE_VERSION: int = 1 & TripviaCar() a favEventid: List<String= = new ArrayList<String=()

S DATABASE_NAME: String = "altrips db” & onCreate({Bundie):void a favidsarray: ArrayList<String> = new ArrayList<String=()

S KEY_ID: String & PastfightTrips():void 4 mysong: MediaPlayer

E\DFKEY_FHUM String B AlflightTrips():veid 4 dateFormat: SimpleDateFormat = new SimpleDateFormat™yyyy-...
- mycarTrips | & today: Date

A a eventdate: Date

® FutureflightTrips():void

5 KEY_TRVELID: String = “tripllD” el ® loadListView(}:void
Sf KEY_TRIPVIA: String = “tripvia”

5:F KEY_TRIPDATE: String = "tripdat
SoF KE'_TRIPTIME: String = "triptime
5 KEY_REMTRIPDATE: String = “remtripdate”
5F KEY_REMTRIPTIME: String = "remtriptime”
SFKE'Y_TRIPCOST: String = "tripcost”

S5 KEY_WEBSITE String
Sf KEY_ALARM: Siring

& ntfmngr: NotificationManager
a notifipref: SharedPreferences
4 eventld: String

o soundResid: int = R.raw.notify_1

0.1

oc ReminderService()
@ onReceive{Context Intent)-void

“website”
==lava Class=>

(@ CreateCartrip
prasna. appl.mytrippal

SoF KE'Y_TRIPWITH: String

SFIABLE ALLTRIPS: Stri & edtTripcost: EdifText
. = —3 4 sdfTripwebsite: EditText
nFKEY_SERVICENU: String = "serviceNo” . 1
Saf KE'_TIMEINMILLIS: String = "timeinmilis™ BTN E R
B = g=as) » 2 edtTripwith: EditText
DFKEY_REM\NDTIME\NMILLIS String = "r " 4 ediTripdate: TextView <<Java Class>>
% KEY_FROMANDTO: String = “tripfromandt (@ cCartripArrayadapter
5.F' — -~ 4 edtTriptime: TextView praana appl mytrippal
TABLE_FROMTOLIST: String = "Fromtolist B N
3 - ——— a remindedtDate: TextView L Hinfiat
DFTABLEJC\IRLINEL\ST' String = "Airlinelist .)) r: Layoutinflater
db: SQLiteDatab: Il & remindeatTime: TextView ream: InputStream
° chalabase = & ediTripservice: AutoCompleteTextView S
8 - o
& getinstance(Context) TravelDatabase ~traveldb 4 edtTripto: AutoCompleteTextView
& TravelDatabase(Context, String, int) 4 & edtTripfrom: AutcCompleteTextview
@ close()void & alarmcheckbox: CheckBox Occannpf-\rra @dapter(Context, TripviaCar int, ArrayList=Cartripdblist=)
@ onCreate(SQLiteDatabase) void & diglogsetbution: Button
@ addToTrips(Upcomingtripdblist):void = dislogcanelbutton: Button @ getitem(int):Objgct
@ addTofromtoList{ContentValues) void -minstan: 2 dislog: Dialog @ getitemid{int)-lon
@ onUpgrade(SQLteDatabase, nt,int):void 0.1 o cal: CalendarView @ getWiew (int, View YiewGroup):View

@ onClick(View):void

a

sdf: SimpleDateFormat
o taskDate: String

o contact_id: String

o taskDateZ: String

~allcartriplist, O~iistcarTrip| 0.*

o remindtaskDate: Strin
o remindcontact_id Strﬁm SIEDETEES <<lava Class==
- ViewHolder
o remindtaskDate2: String O _ _ (3 cartripdblist
prasna sppl mytrippal

o taskDateLong: Long praana.appl.mytrippal

o taskDateLong2: Long @ :’fpffate :Ej\\;_‘ew & _tripid: String
rY

o remindtaskDateLong: Long SAELELE0 & _tripvia: String

& trip_service: TextView

o remindtaskDateLong2: Long)) o _tripfom: String

& istoday: boolean = false 4 trip_no: TextView & _tripto: String

& timeinmilis: long 4 trip_to: TextView & _iripdate: String

& remindtimeinmillis: long et s 4 _tripcost: String

o tp: TimePicker & card: Linsarl ayout 4 _website: String

& curHr: int aeier bookean & _tripservice: String
& curMin: int & ViewHolder() & _fripserviceno: String
& timeMin: int o _tripwith: String

4 timeHr: int a _alarm: String

o formatter1: DecimalFormat & _time: String

o sTimeMin: String 4 _timeinmili: long
e & Cartripdblist(String, String, String,String, String,String,long,
4 tripldprefs: SharedPreferences © gettripld():String

4 tripalarmpref: SharedPreferences & gettripvia()String

& createTripbutton: LinearLayout @ gettripfrom(}:String
& |lbckBtn: LinearLayout @ gettripto():String

& card: LinearLayout & gettripcost():String

5%FROS 1 int=1
4 sender: Pendingintent

@ getwebsite():String
@ getservice() String

4 glarmManager: AlarmiManager @ gettripwithi). String
& ntfmngr: NotificationManager @ getalarm(}:String

4 arrayList: ArrayList<String= @ gettripdate():String
o carArraylist: ArrayList<String> @ gettriptime():String

4 sglitedatabase: SQlLiteDatabase @ gettimeinmilis():long
OECraataCarmp[} @ getserviceno():String

<» onCreate(Bundle):void
< insertintoDatabase():void
@ mainmesthods(String)long

Figure 5.6 Class Diagram for Trip via Car

17

5.3.5 Class Diagram for the Creating a new Trip via Car:

@?::\:’;I;:ls:;;se SR ETED <<lava Class==
praanz.zpplmytrippal (& CreateCartrip [€] I?rerrmrndersa.}n{me
&F DATABASE_WERSION: int = 1 Preane Sepl e 5 = === pel ey Epe
e s s Ty & ediTripcost: EditText of TAG: String = "pckname’
= : & edfTripwebsits: EditText 4 sqiDatabase: SOLiteDatabase
4 edfTripcarno: EditText 4 favEventld: ListsString= = new ArrayList<String=()
4 edfTripwith: EditText 4 favidsarray: ArrayList<String= = new ArrayList<String=(}
4 edfTripdate: TextView 4 mysong: MediaPlayer
guym & ediTriptime: TextWiew o dateFormat: SimpleDateFormat = new SimpleDateFormat(™yyyy-MM-dd HH:mm:ss")
SDFWMI o remindedtDate: TextView & today: Date
S ATl & remindedtTime: TextView a sventdate: Date
T T e S e & ediTripservice: AutoCompleteTextView | _———" | & ntfmngr: NotificationManager
S i T 4 edfTripto: AuteComplef 4 notifipref: SharedPreferences
SF KEY TRIPCOST: Siring - "ripcast’ & UtoCompleteTextView Arevenlld. sirng
ey e ~db a alarmeheckbox: CheckBox 2 soundResid: int = R.raw.notify_1
e e 0.1 4 dialogsetbutton: Button FReminderservice()
SFKEY_SERVICE. Strin OCEEIE TR © onReceive(Context Intent):void
S KEY_TRPWITH, String OCEEFERR) AT
S5f TABLE_ALLTRIPS: String o cal Calendariiew
e o o o sdf: SimplsDateFormat
SoF iKEY_TIMEINMILLIS: String = “ti @ taskDate: String
Sof KEY_REMINDTIMEINMILLIS: String Ciraveldn © contact_id: String e
%F KE'v_FROMANDTO: String = "tripfromandto” o ° lESk_Datez' String X (9 CartripArrayadapter
Sf TABLE_FROMTOLIST: String = “Fromtolist” BOEEER AT prazna.appl.mytrippal
SFTABLE_ARLINELIST String = “Airiinelist” ° remfndwmm"d: Str_mg a inflater: Layoutinflater
a db: SQLiteDatabase = nul O ORIy 4 inputStream: InputStream
5 - EEIr A o minflater: Layoutinflater
@& getinstance(Context). TravelDatabase o taskDateLong2: Long o contoxt. Context
& TraveDatabase(Context, String,int) O T T TS
@ close()void & remindtaskDateLong2: Leng octartripArrayadapter[tontexl.TnpviaCanmt‘ArrayLisktarmpdblist>}
@ onCreate(SQLiteDatabase) void istoday: boolean = fale @ getCount(yint
@ addToTrips(Upcomingtripdblist):void & timeinmills: long .~ @ getitem(int):Object
@ addTofromtoList(CententValues):void -minstance & remi il jong @ getitemid(int):long
@ onUpgrade{SQLiteDatabase, int, int):void 0.1 o6z Timeeﬁér ~clstom_adapter _| @ getView(int, View, ViewGroup):View
& curHrefat =] @ onClickiview):void
~traveldb |0..1 & cyritn:
N afimening int
- timeHr: int

formatter1: DecimalF ==lava Class=>
(& ViewHolder

praana appl.mytrippal

<<lava Class=>
(& TripviaCar
praana.spel.mytripeal

a trip_date: TextView

2 carTriplistview: ListView & trip_time: TextWiew

4 buttoncreatcartrip: LinearLayout

CreateTripbutton: LinearLayout & trip_service: TexiView
4 lbckBtn: LinearLayout & IbckBtn: LinearLayout & trip_no: TextView

2 Ivexc Stringll = {"No trips found™™ 3 ~CTpediirips | |l ot Py ——

2 sqltedatabase: SQL teDatabase 0.1 T e g

O ETITre = ErIry & sender: Pendingintent & card: LinearLayout

& buttonFuturetrips: Button alarmManager: Alarmlanager & alert: boolsan

& buttonPastirips: Bution

ntfmngr: NotificationManager

c, 7
4 searchEditbox: EdifText a ViewHolder()

& fabno: int=0

carArraylist: ArrayList=String>
sqlitedatabase: SOLiteDatabase

a
-
4 arrayList: ArrayList<String=
a

~listearTrip | 0.+
a

&F TripviaCar(}
% onCreate(Bundle):void

<<lava Class=>
(® Cartripdblist
praans.sppl mytrippsl

< PastflightTrips():void
| AllflightTrips():veid
@ FutureflightTrips():void
& loadListView ():void

& _tripid: String
& _tripvia: String
a _tripfom: String
& _tripte: String

& _tripdate: String
& _tripcost: String
~allcdMriglist | & _website: String

0.7 = & _tripservice: String
& _tripserviceno: String
a _tripwith: String
a _alarm: String
& _time: String
& _timeinmilli long

ODCarlripdblisl(Slring‘Slring.S(ring.Slring‘Slring.S(ring.lung.Slring‘Slr..
@ gettripld():String

@ gettripvia().String
@ gettripfrom(}: String
@ gettripto():String

© gettripcost():String
@ getwebsite():String
© getservice():String
@ gettripwith tring
@ getalarm(}:String
@ gettripdate():String

@ gettriptime():String
@ gettimeinmilis(yleng
@ getserviceno():String

Figure 5.7 Class Diagram for Create a Trip via Car

18

5.3.6 Class Diagram for Upcoming Trips:

==Java Class>>
(3 TravelDatabase
ersana.appl mytrippal

<<Java Classs>
& UpcomingTrips
prasna.apelmytrippal

SF DATABASE WERSION: int =1

SF DATABASE _MAME: String = ~alltrips.db™
SoF EY_ID: String i

S%FKEY_FROM: String = “tripfrom™
S%FKEY_TO: String = “triptoe

SoF KEY_TRWELID: String = “tripliD~

SoF KEY_TRIPVIA: String
SoF KEY_TRIPDATE: String = “tripdate”
SoF KEY_TRIPTIME: String = “triptime-

SoF KEY_REMTRIPDATE: String

[2 2

allfriplistview: Listiew
vex: Stringll
sglitedatabase: SALiteDatabase
alitriplist: ArraylList=Upcomingtripdblist=
lipckBtn: LinearLayout

& searchEditbox: EditText

& UpcomingTrips()
< onCreate{Bundle)void

<<lava Class>>
(& EditFlightTrip
praana.appl mytripeal

~trateldb

SoF KEY_REMTRIPTIME: String

SoF KEY_TRIPCOST: String = “tripcost”

SoF KEY_WWEBSITE: String = “website”
SoF KEY_ALARM: String = “alarm™

S%F KEY_SERVICE: String = "service™
SoF KEY_TRIPWITH: String = “tripwitn”

SF TABLE_ALLTRIPS: String = “AITrips™
Sef KEY_SERWVICENO: String = “serviceho”
Sef KEY_TIMEINMILLIS: String = “timeinmillis™
Sef KEY_REMINDTIMEINMILLIS: String = "r

~traveldb

%F KEY_FROMANDTO: String

“tripfromandto”

~traveldb

S TABLE_FROMTOLIST: String

Fromtolist

S TABLE_AIRLINELIST: String =
o db: SQLiteDatabase = null

“Airlinelist”

@ getinstance(Context):TravelDatabase
& TravelDatabase(Context, String, int)
close()void
onCreate(SOLiteDatabase):void
addToTrips(Upcomingtripdbiist):void
addTofromtoList(Contentvalues):void
onUpgrade(SQLiteDatabase, int,int}:void

[RCNCRONC]

-minstance

0.1

~custom_adag

= loadListView () void

<<Java Glass=>
(& UpcomingtripArrayadapter
praana apgl mytrippal

- A
&

o context: Context

nflater: Layoutinflater
listalitrips: List<Upcomingtripdblist=
chisck_status: String
_string_response: String
chisck_request_id: String
cancelstatus: String
infjutStream: InputStream
miaflater: Layoutin fiater

@ gefCount(iint
@ getitem(inty

& UgcomingtripArrayadapter(Co

@ gelitemid(intylong
@ getView(int, View, ViewGroup): View
@ onClick{\View jvoid

nitext, UpcomingTrips, int, ArrayList=Upcomingtripdblist=) |

<<Java Class=>
& Upcomingtripdblist
prasns sppl.mytrpps]

4 _tripid: String
& _tripvia: String

& _tripfom: String

4 _tripto: String

4 _tripdate: String

4 _tripcost: String

& _website: String

4 _tripservice: String

4 _tripserviceno: String
& _tripwith: String

& _alarm: String

& _time: String

4 _remindDate: String

4 _remingtime: String

& _timeinmilli: long

& _remindtimeinmilis: long

Q0000000000000 00

& Upcomingtripdblist{String, String, String, String, String, String, long, String, String, Stri

gettripld(}

gettripwvia
gettripfro

V]

m(y

gettripto()

gettripcost(}

getwebsite()

getservice()

gettripwith(y

getalarmi)

gettripdate()

gettriptime ()

gettripRe:

ddate()

gettripremindtime ()

gettimeinmillis(}long

getremindtimeinmillis () long

getservi

eno()

Figure

T =<lava Class>=

(& VviewHolder
praana. spplmytripps!

a

a

a

a

a

a

a

a

a

trip_date: TextWiew
trip_time: TextWiew
trip_flight: TextWiew
trip_ne: TextWiew
trip_te: TextWiew
alarmy: TextWiew
card: LinearLayout
alert: boolean
tripvialmg: ImageView

a5

WiewHolder()

19

2 ediTripcost: EdifText
- ediTripwebsite: EditText

.= sgdiTripflightno: EditText

' _ediTripwith: EdiText

= qiTrigdate: TextWisw

= ediFriptime: TextView

& remindediDale: TextWiew

2 remindedtTime: TextView

= ediTripte: AuteCompleteTaxtWiew
& ediTripfrom: AutoCompleteTextView

= alarmcheckbox: CheckBox,
o dialogsetbutton: Button ..

- dialogeanelbution: Butten
< dialog: Dialog
ialogExit: Dialog

= sdf: SimpleDateFor
© taskDate: String

& contact_id: String
© taskDateZ: String
& remindtaskDate: String

o remindcontact_id: String

& remindtaskDate2: String

a flightTripkd: String

© taskDateLong: Long

© taskDateLong2: Long

o remindtaskDateLong: Long

o remindtaskDateLong2: Long

o istoday: boolean = false

& timeinmills: long .
& remindtimeinmillis: long &
o tp: TimePicker
& curtr: int

o curlin: int Z
o timel

n: int

& timeHr: int -
o formattert: DeécimalFormat

o sTimeMin:String

o sTimeRi: String

& trigidprefs: SharedPrefersnces
o sdlitedatabase: SQLiteDatabase
£ lbckBtn: LinearLayout

o card: LinearLayout

& deleteFligttripimy: LinearLayout
& editFlight: LinearLayout

o showRoute: LinearLayout

o cancelSavelL: RelativeLayout
o createTripbutton: TextView

< canceButton: TextView
%l RQS 1:int=1

o sender: Pendinglntent
 alarmManager: AlarmManager
 ntfmngr: NotificationManager

a tripalarmpref: SharedPreferences
o arrayList: ArrayList<String=

o flightArraylist: ArrayList<String=
 isUpcoming: boolean = false

& EditFlightTrip(}

© onCreats(Bundis):void

= assignDetails(j:void

© insertintoDatabase(}void
® mainmethods(String):long

5.8 Class diagram for Upcoming Trips

<<Java Class==
& EditCarTrip
prasna appl mytrippal

%FRas 1

4 edtTripcost: EditText
4 edtTripwebsite: EditText

4 edtTripCarno: EditText

4 edtTripwith: EditText

4 edtTripdate: TextWiew

4 edtTriptime: Textwiew

4 remindedtDate: TextWiew

4 remindedtTime: TextWiew

4 edtTripservice: AutoCompleteTextview
4 ediTripto: AutoCompleteTextView

4 edtTripfrom: AutoCompleteTextview
4 alarmcheckbox: CheckBox

4 dialogsetbutton: Button

4 dialogeanelbutton: Button

4 dialog: Dialog

4 dialogExit: Dialog

o cal Calendarview

o sdf: SimpleDateFormat

o taskDate: String

o contact_id: String

o taskDate2: String

o remindtaskDate: String

@ remindcontact_id: String

o remindtaskDate2: String

o CarTripid: String

o taskDateLong: Leng

o taskDatelLong2: Long

o remingtaskDatelLong: Long

o remingtaskDatelong2: Long

4 istoday: boolean = false

4 timeinmilis: long

4 remingtimeinmilis: long

o tp: TimePicker

& curHr: int

a curlin: int
A timeMin: int

A timeHr: int

o formatter1: DecimalFormat

o sTimeMin: String

@ sTimeHr: String

4 tripidprefs: SharedPreferences
4 sglitedatabase: SQLiteDatabase
4 lIbckBin: LinearLayout

4 card: LinearLayout

- deleteFligtiripimy: LinearLayout
4 editCar: LinearLayout

4 showRoute: LinearLayout

4 cancelSavell: RelativeLayout
4 createTripbution: TextWiew

a cancelButton: TextWiew

int=1

4 sender: Pendingintent

4 alarmManager: Alarmianager
4 ntfmngr: Netificationianager
4 tripalarmpret: SharedPreferences
a arrayList ArrayList<String=

a CarArraylist ArrayList=String=
4 isUpcoming: boolean = false

SFEditCarTrip)

< onCreate{Bundle):void

= assignDetails():void

< insertintoDatabase():void
@ mainmethods(String}:long

5.4 Sequence Diagram

A sequence diagram shows the interaction of various processes. It shows the interaction of objects in an
arranged time sequence. Sequence diagrams are typically associated with use case realizations in the
Logical View of the system under development [13]. The sequence diagram for the events that occur

when the user selects the Trip via Flight and chooses to view a trip and edit a trip.

User HomeScreen TripviaFlight Edit/View/Dele

T T teTlrip

| |

(] |
|

R R
user runs applicafion \

|
|
|
|
|
I

B
dickonviewtip
Retrieve data from DB and
same on trips via flight list view

User views trip details |

B ey

user chooses edita Enp |

save changesto DB and s

same on trips via flight list view T
|
|

e B e |

—|7r| |__|——|_,._r———-1:r——

Details are shown to User |

nine diagramming & design] CI'@ALE|Y.com

Figure 5.9 Sequence Diagram for Create a Trip via Flight

20

Chapter 6 - Android Framework Components

The Android Software Development Kit (SDK) provides us all the required API libraries and developer
tools to build, test, and debug apps for Android. The application MyTripPal has been developed in
Eclipse Integrated Development Environment (IDE) with the Android Developer Tool (ADT) plugin. The
application can be run on an emulator or an .apk file can be generated which can be installed on an

android smartphone or tablet. [9]

6.1 AndroidManifest.xml

Every android application should have an AndroidManifest.xml file to work in its root directory. This file
provides the essential information about the application to the Android system. It provides the point from

where the application should start that is
<category android:name="android. intent.category. LAUNCHER" />
Among the other things, the manifest file does the following:

It names the Java package for the application which serves as a unique identifier for the android
application. It also provides a description of the components of the application that is the activities,
services, broadcast receivers, and content providers comprises. These declarations enable the Android

system to know the list of components and the conditions under which they can be launched.

It tells about the permissions an application has to access protected parts of the API and its permissions to
interact with other applications. Similarly tells us about the permissions other applications have to interact

with the current application components.

It also talks about the minimum sdk version and the target sdk version of the application. The manifest

file for MyTripPal can be seen below:

21

<?xml version="1.0" encoding="utf-8"?>

<manifest xmins:android="http://schemas.android.com/apk/res/android
package="praana.appl.mytrippal”
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk
android:minSdkVersion="14"
android:targetSdkVersion="20" />

<application
android:allowBackup="true"
android:icon="@drawable/logo_mtp"
android:label="@string/app_name"
android:theme="@style/NoActionBar" >
<activity
android:name="praana.appl.mytrippal.MainActivity"
android:label="@string/app_name"
android:screenOrientation="nosensor"
android:windowSoftInputMode="stateHidden|adjustResize" >
<intent-filter>
<action android:name="android.intent.action.MAINACTIVITY" />

<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>

<receiver
android:name="praana.appl.mytrippal.ReminderService"
android:label="@string/app_name" >
<intent-filter>
<action android:name="android.intent.action.REMINDERSERVICE" />

<category android:name="android.intent.category. DEFAULT" />
</intent-filter>

</receiver>

<activity
android:name="praana.appl.mytrippal.HomeScreen™
android:label="@string/app_name"
android:screenOrientation="nosensor"
android:windowSoftInputMode="stateHidden|adjustResize" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<activity
android:name="praana.appl.mytrippal.TripviaFlight"
android:label="@string/app_name"
android:screenOrientation="nosensor"
android:windowSoftinputMode="stateHidden|adjustResize" >
<intent-filter>

22

<action android:name="android.intent.action.TRIPVIAFLIGHT" />

<category android:name="android.intent.category.DEFALT" />
</intent-filter>
</activity>
<activity
android:name="praana.appl.mytrippal.TripviaCar"
android:label="@string/app_name"
android:screenOrientation="nosensor"
android:windowSoftinputMode="stateHidden|adjustResize" >
<intent-filter>
<action android:name="android.intent.action. TRIPVIACAR" />

<category android:name="android.intent.category.DEFALT" />
</intent-filter>
</activity>
<activity
android:name="praana.appl.mytrippal.CreateCartrip"
android:label="@string/app_name"
android:screenOrientation="nosensor"
android:windowSoftInputMode="stateHidden|adjustResize" >
<intent-filter>
<action android:name="android.intent.action.CREATECARTRIP" />

<category android:name="android.intent.category.DEFALT" />
</intent-filter>
</activity>
<activity
android:name="praana.appl.mytrippal.UpcomingTrips"
android:label="@string/app_name"
android:screenOrientation="nosensor"
android:windowSoftinputMode="stateHidden|adjustResize" >
<intent-filter>
<action android:name="android.intent.action.UPCOMINGTRIPS" />

<category android:name="android.intent.category.DEFALT" />
</intent-filter>
</activity>
<activity android:name="praana.appl.mytrippal .EditFlightTrip"
android:screenOrientation="nosensor"
android:windowSoftInputMode="stateHidden|adjustResize">
<intent-filter>
<action android:name="android.intent.action.EDITFLIGHTTRIP" />
</intent-filter>
</activity>

<activity android:name="praana.appl.mytrippal .EditCarTrip"
android:screenOrientation="nosensor"
android:windowSoftinputMode="stateHidden|adjustResize" >
<intent-filter>
<action android:name="android.intent.action.EDITCARTRIP" />
</intent-filter>
</activity>
</application>

</manifest>

23

From the manifest file, we can see that the minimum sdk version for this application is 13. Thus the
devices below sdk version 13 that is android Honeycomb_MR2 will not be able to run this application.

Different activities and their intents are mentioned in this file for MyTripPal [11].

6.2 AndroidDependencies
Android Dependencies is a virtual folder where we find JAR files that Eclipse uses for the project. It is a
virtual folder and will not be found on the hard disk. For MyTripPal android-support-v7-appcompat.jar

has been added to enable ActionBar and it in turn depends on v4 Support Library.

6.3 Activity

Activity is an important component in an application which helps providing screen for the users to
interact. All the activities in a system are managed as an activity stack that is the last in first out
procedure. So if a new activity is started, it is placed on the top and will be the current activity that is

running and the previous activity will be in the background.

e An activity has essentially four states:

e Anactivity which is in foreground and is running can be called active state.

e An activity that has lost focus but is still visible can be called a paused state

e An activity that is paused or stopped can be dropped by the system from memory by either asking

it to finish, or by killing its process.

An activity moves between states. For example while filling data when we open a calendar to fill in the

date the calendar activity is the current activity that is created and runs.

protected wid onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.create_trip);
traveldb = TravelDatabase.getInstance(MainActivity.this);

arrayList = new ArrayList<String>();
flightArraylist = new ArrayList<String>();

24

The previous activity with all the TextArea will be the background activity which is in onpause() state.

The following diagram shows the important state paths of an Activity. [12]

onCreate()

v

onstart() - onRestart()

* &

onResume() -

v

r N

B N
P N \
IL Appldllnd] \ running .-l

Another activity comes
into the foreground

User navigates
to the activity

User returns

+ to the activity
Apps with higher priority
need memory onPause()
|
The activity is

no langer visible)
Usar navigates
+ to the activity
onStop() J

I
The activity is finishing or
being destroyed by the system

¥

onDestroy()

-
C hetwy

I shut down |

Figure 6.1 Activity Life Cycle [12, Fig.1]

6.4 Intent

Intent is an android component which provides an abstract description of an operation which is to be

performed. The two primary forms of intents are

e Explicit Intents: These intents have a specified component that is via setComponent
(ComponentName) or setClass(Context, Class), thus providing the exact classes to run.

e Implicit Intents: These intents will not have specified a component. Thus they include enough
information for the system to determine which of the available components suits the best to run

for that intent [13].

Thus these intents helps in launching activities. You can call one activity from another. For example in

the code below, ManiActivity.this activity calls TripviaFlight.class.
Intent i = new Intent(MainActivity.this, TripviaFlight.class);

6.5 Layout Inflater

Layout Inflater android component helps loading the layout XML file into its view objects such as
ProgressBar, TextView etc. It is used in conjunction getLayoutinflater() or getSystemService(String) to

retrieve a standard LayoutInflater instance which is already hooked up to the current context [14].

LayoutInflater li = (Layoutinflater) context.getSystemService(Context. LAYOUT _INFLATER_SERVICE);

26

Chapter 7 - Graphical User Interface

The front end of the application that is the User Interface has been developed using XML. It is simple to
create and has richness of the data structure.

7.1 Home Page:
The Figure 7.1 below shows the HomeScreen for MyTrippal application. It contains buttons for

TripviaFlight to perform CRUD (Create Update and Delete) operations related to trips via flight.
Similarly it has the button Tripviacar to track the trips via car and there is an Upcoming trips tab which

lists all the past and future dated trips via flight and car.

L +| g I0® R 4, il 24% F 1:38 am

| MyTripPal

4 -

Trip via flight Trip via car

Upcoming trips

Figure 7.1 HomeScreen View of the Application-MyTripPal

27

7.2 Trips viaFlight
Once the user presses on the Trips via Flight button, he will be navigated to the screen where he will be
presented with a screen with tabs AllTrips, PastTrips and FutureTrips and he can choose to create a new
trip by clicking on the “+” button on the top-right corner of the screen, for which the fields are listed as
shown below in the diagram. Once all values are entered, he can click on the Save button present on the

top-right corner of the screen.

a 0N ® 2 4, .l 24% 71 1:38 av

(Alk Create trip Save

Figure 7.2 Creating a Trip via Flight
28

7.3 Autocomplete Option:

Allowing the application to be generic, I haven’t instilled any constraints on the source, destination and
the airlines. But at the same time to allow the user to have a feasibility of choosing the source, destination
or airlines from the values he previously entered, an autocomplete option has been provided which

provides the i=user suggestion by populating the values from the SQL ite database.

IO ® 2 45, il 24% T2 1:40 am

< + Create trip Save

Columbus

hou

Houston

Figure 7.3 Autocomplete Option

29

7.4 Calendar view to choose date and Alarm option

Instead of making the user go through the hassle of entering the date and confuse among various date
formats (as different countries have different date formats) , | have given a Datepicker to the user which
enables him to pick the date and at the same time traverse through various years or months. Another time

widget is added which enables the user to choose a time in 24 hour format in order to set the alarm. The

same widgets are used for the alarm option too.

a IO @D 2 4, .all 24% @ 1:39 am

()f Create trip Save

Houston

= November 201 4

Cancel

Figure 7.4 Date Picker

30

7.5 Alarm Validations

For any future trip; i.e., in both cases of trip via car or trip via flight, the alarm can be set and cannot be
set for past dates. Just in cases the user tries to do say, toast messages are displayed to let the user that it is

an invalid operation. Then, the user can save a trip.

C=E0 0D R 4, il 25% 7 1:44 am

< <= Create trip Save

Alaska
Chicago
11-Nov-2
Swapnc

Enterpri

Please select valid time

05-Nov-2014 Ul:40

Figure 7.5 Alarm Time Validations

31

7.6 Toast Messages

Toast messages are added for all required users to communicate with the user. Whenever a trip is saved or
alarm is turned on or off, when trips are edited and so on. These messages help communicate with the
user and at the same time do not require any input from the user to disable them. They just provide

feedback to the user and disappear.

L+ 0@ 2 4, .l 24% 77 1:39 am

(»f Trip via flight +

Past trips Future trips

Houston to Manhattan
B9 12-Nov-2014 () 02:38
Soithwest 3453

A ON

Figure 7.6 Toast Messages

32

7.7 All Trips via Flight
The user can is provided with three tabs to view the trips. One of them is All Trips. This tab is present in
both Trips via Flight and Trips via Car modules. For each of these modules, the tab All Trips provides the

list of all trips both past and future in a view as shown below in the figure.

X +] 0D & 46, il 25% 2 1:42 av

< Aik Trip via flight +

Past trips Future trips

Columbus to Houston
i 28-Oct-2014 (J) 01:40
American airlines 348

A OFF

Houston to Manhattan
M 12-Nov-2014 () 02:38
Soithwest 3453

A ON

Figure 7.7 All Trips

33

7.8 Pasttrips viaFlight

This is one of the three tabs and it presents the list of all past Trips for each of the module, Trips via
Flight and Trips via Car. An overview of the trip is shown which depicts information like the Source,
Destination, Trip date and time Airline and Flight Information and whether the alarm is turned on or off.

The rest of the details can be seen when the particular trip is selected.

a DD 7 4, il 25% CA 1:42 am

(»ik Trip via flight +

All trips Future trips

Columbus to Houston
B 28-Oct-2014 (7)) 01:40

American airlines 348

A OFF

Figure 7.8 Past Trip

34

7.9 Future Trips via Car

The last tab is Future Trips where the trip details are displayed and this helps us identify all the future
trips which are in line and also it displays then in the order on their occurrence. For all the three tabs a
search option has been given where the trips can be searched using the source or destination or even the

airline name.

[&] Saving screenshot...

< <= Trip via car

All trips Past trips

Alaska to Chicago
ff] 11-Nov-2014 (J) 01:42

Swapna Enterprise

A OFF

Figure 7.9 Future Trips

35

7.10 Create a Trip via Car
A user can create a trip via car and the figure below shows all of the fields provided. As a car can be a
rented one, an option to rental information is included and options to enter the number of people travelled

or the food expenses are added along with the common fields.

X +] 0D 2 4, il 25% 71 1:42 am

< <= Create trip Save

Figure 7.10 Creating Trip via Car

36

7.11 Enter Expense

To enter expenses for food or price of the flight or the car rental, the user can enter the value and since it

shouldn’t be a string, the input is limited to numbers.

CQOPEM 0Q7R <«

e il

I 25% 1:43 am

(= Create trip Save

Chicago

11-Nov-2014

Swapna

Enterprise

Figure 7.11 Expenses

37

7.12 View or Edit Trip via Car

For any of the listed trips, the user can view all of the details by selecting them or edit them by selecting

the small pen shaped icon and can save back the values which will be updated in the database.

CE4Q Q7 4, .l 25% 5 1:46

{ =~ View/Edit trip ? 5 s

Alaska

Chicago

11-Nov-2014

Swapna

Enterprise

05-Nov-2014

Figure 7.12 View or Edit Trip via Car

38

7.13 Delete Trip

Any trip can be deleted by choosing the delete (trashcan shaped) icon. Once the icon is selected, it asks
for a confirmation if the user wants to delete or cancel. If Yes is chosen, the trip will be deleted else if

cancel is chosen, the trip is retained back.

CQEAQ 007 4, .l 25% 7 1:46 av

{ === View/Edit trip 9 f (]

Alaska

Chicago
11-Nov-2014

Swapna

E Do you want to delete this trip?

CANCEL

05-Nov-2014

Figure 7.13 Delete Trip

39

7.14 Navigation
For any trip, let it be Trip via flight or Trip via car, once the user clicks on the trip, he will be presented
with a screen which shows all the details of the trip and on the same screen there is a navigation button on
the top- right corner, which when clicked provided the google navigation map from the source and

destination saved in the trip. The user can retain the same values or modify them for his convenience.

QEA+Q '0'Q 7 4. il 25%) 1:47 v

o= & 5o A

— =4

© Columbus, OH

O Houston, TX

@ via -40 W 18 hr O min
bR
@ via -70 W 18 hr 16 min
A
hD) O O

Figure 7.14 Navigation from Source to Destination Values

40

Chapter 8 - Testing

Our primary goal behind testing is to find defects. It helps us verify if the system meets all the
requirements like functional, reliability, usability and so on. It also helps us validate if the product we
built is in accordance with the user requirements. Thus helping us improve and reduce the ambiguity of
the product. There are various types of testing. Some of them are performed for the application and are

explained below.

8.1 Unit Testing

Unit Testing is the process where we test individual units of the source code are tested to verify if they
function as desired. While testing it is taken care that each and every activity and every textarea of the
screens are thoroughly unit tested. Also the interaction between various activities and screen loading is
tested. The unit tests performed and their results for three modules Trip via Flight, Trip via Car and

Upcoming Trips are tabulated below.

8.1.1 Unit Test Cases for Trip via Flight

Table 8.1 TestCases for Trip via Flight

S.no Test Case Expected Result Result

1 On load Start up screen Display three tabs Trip via Flight, Trip via | Pass

car and Upcoming Trips

2 On click of Trip via Flight Display the screen with the three tabs all | Pass
trips, past trips and future trips and other

icons to create a trip.

3 On click of + button on top- | Open the screen with all the fields to fill in | Pass
right corner for a new trip creation.
4 On click of date field Open up the date time picker widget Pass

41

5 On type in source, If place is already in the database provide | Pass
destination and airlines auto fill suggestions
field

6 On click on save button Save the trip to database and show the list | Pass

of trips.

7 On click of Past Trips | List all the trips that are from a date lesser | Pass
button than current date

8 On click of Future trips | List all the trips that are from a date greater | Pass
button than current date

9 On click on a listed trip Display all the trip information. Pass

10 On click on delete icon on | Delete the trip from the view and the | Pass
top right corner of the trip | database.

11 On click on edit icon on top | Open up the trip with editable fields. Pass
right corner of the trip

12 On click on navigate icon | Provide google maps navigation for the | Pass
on top right corner of the | Source to Destination as entered by the user.
trip

13 Set an alarm and see if it | Alarm notified at the specified time Pass

notifies

8.1.2 Unit Test cases for Trip viacar

For trips via car, we have the same test cases as the ones in Trip via Flight. Any additional test cases are

tabulated below.

42

Table 8.2 Testcases for Trip via Car

S.no Test Case Expected Result Result

1 On click of Trip via Car Display the screen with the three tabs all | Pass
trips, past trips and future trips and other

icons to create a trip.

2 On click on Price field Open the numeric keypad Pass

3 On click of time field Open up the date time picker widget with | Pass

time in 24 hour format.

8.1.3 Unit Test cases for Upcoming Trips

Table 8.3 Testcases for Upcoming Trips

S.no Test Case Expected Result Result

1 On click of upcoming Trips | List all the future trips form Trip via Car | Pass

and Trip via Flight.

8.2 Compatibility Testing

This application has been installed on various devices to test its compatibility. 1t has been installed on
HTC One m8, Google Nexus 4, Samsung Galaxy 4 and Samsung Galaxy Tab 10.1 and the application ran
with proper resolution. To provide proper image resolution images are stored with various resolutions in
folders hdpi, xhdpi, xxhdpi and so on.

8.3 Usability Testing

Two of my friends have installed MyTripPal application on their phone and tested all the modules and
provided with some defects. All of these bugs/defects are corrected in the modified version of the

application.

43

User 1 and User 2 Provided with the following inputs,

e Error checking for the Alarm was missing. User was able to add an alarm for past trip.
e User was able to set an alarm for a past date for a future trip but on a date prior to the tripdate.
e The field destination didn’t have error checking; i.e., it needs to be filled in compulsorily.

e [haven’t had an option to save the website booked on option.

Upcoming trips had all trips instead of having just the future trips.

All of these have been incorporated and the application has been re-coded to include all these inputs

received from Usability testing.

8.4 Performance Testing

Performance testing enables us to know how effective an application is performing. It can be measured in

various ways like analyzing the thread execution, checking the battery consumption, reliability etc.

8.4.1 Traceview Analysis

Traceview is a graphical viewing tool which helps us view execution logs that are created by the Debug
class to log tracing. The timeline panel describes when each method started and stopped as shown in the

figure below. The below table gives the response times of various screens in the application.

Table 8.4.1 Response Time Analysis

Screen Name Response Time (ms)
View All Trips 0.59
View Past Trips 0.57
View Future Trips 0.56
Upcoming Trips 0.61
Create Trip 0.24

44

Edit Trip 0.28
Trip Via Car 0.33
Trip Via Flight 0.36

8.4.2 Battery Consumption

The battery consumption has been tested using a HTC Onem8 device. The application was tested for the
time where the battery percentage started at 100% and reduced to 10 %. In the first case the phone was
used to perform normal operations like audio playback, voice calls, WhatsApp texting and voice calls. In

the second case along with the normal operations, the MyTripPal application was running in the

background. In both the cases, the phone was using Internet with Wi-Fi or 4G/LTE Networks.

Table 8.4.2 Battery Consumption

S.No Applications Running Time taken for the battery to
reduce to 10%
1 Normal operations like audio playback, voice calls, 117 minutes
WhatsApp texting and voice calls
2 MyTripPal Application along with other normal 105 minutes

operations

45

Chapter 9 Conclusion

It is a great learning curve for me since this is my first attempt towards Android development. The
application MyTripPal helps a user to track their travel history by providing a user friendly interface to
create/view/edit/delete a trip and if the trip is a future-dated trip, the user has the option of setting an
alarm if he desired. It also provides the user with the feasibility to get directions to navigate from the

source to the destination of the trip by clicking an icon which redirects the user to Google maps.

This application followed the complete Software development life cycle with Analysis followed by
Requirements gathering, Implementation which is done using Eclipse with ADT plugin and Testing
which is done on real devices. Throughout this process | have learnt Android development and
understood its various components and the functionality. It also helped me gain knowledge on the SQL.ite

database and Google Maps API.

46

Chapter 10 Future Work

The application MyTripPal can be extended to incorporate the following features:

e Unit testing can be done using monkey runner instead of the manual testing. It can also be done
using Junit tests.

e The application can be further enhanced and another module which helps tracking trips via Train
can be added.

e The application can redirect to travel websites if needed and booking a ticket on one of those sites

can automatically save the trip in the application.

47

Chapter 11 References

[1] “Mobile Devices - An Introduction to the Android Operating Environment”,

http://www.dhtusa.com/media/Androidinternals.pdf , Retrieved October 8, 2014.

[2] “Android Boot sequence/ Process”, [Online],

http://www.kpbird.com/2012/11/in-depth-android-boot-sequence-process.html , Retrieved

October 14, 2014.
[3] “Storage Options”, [Online],

http://developer.android.com/quide/topics/data/data-storage.html , Retrieved October 15, 2014.

[4] “Who’s Winning, iOS or Android? All the Numbers, All in One Place”, [Online],

http://techland.time.com/2013/04/16/ios-vs-android/ , Retrieved October 14, 2014.

[5] “UML Use Case Diagrams”, [Online],

https//www.andrew.cmu.edu/course/90-754/umlucdfag.html , Retrieved October 26, 2014.

[6] “Use Case”, [Online],

http://en.wikipedia.org/wiki/Use case , Retrieved October 26, 2014.

[7] “Class Diagram”, [Online],

http://en.wikipedia.org/wiki/Class diagram , Retrieved October 27, 2014.

[8] “To Draw Use Case Diagrams”, [Online],

https://creately.com/app/# , Retrieved October 29, 2014.

[9] “App Manifest”, [Online],

http://developer.android.com/quide/topics/manifest/manifest-intro.html , Retrieved October 29,

2014
[10] “Activity”, [Online],

http://developer.android.com/reference/android/app/Activity.html#Fragments , Retrieved

48

http://www.dhtusa.com/media/AndroidInternals.pdf
http://www.kpbird.com/2012/11/in-depth-android-boot-sequence-process.html
http://developer.android.com/guide/topics/data/data-storage.html
http://techland.time.com/2013/04/16/ios-vs-android/
https://www.andrew.cmu.edu/course/90-754/umlucdfaq.html
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Class_diagram
https://creately.com/app/
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/reference/android/app/Activity.html#Fragments

November 3, 2014
[11] “Intent”, [Online].

http://developer.android.com/reference/android/content/Intent.html , Retrieved

November 5, 2014
[12] “Layout Inflater”, [Online],

http://developer.android.com/reference/android/view/Layoutinflater.html , Retrieved

November 4, 2014
[13] “Sequence Diagrams”, [Online],

http//en.wikipedia.org/wiki/Sequence diagram , Retrieved November 20, 2014.

49

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/view/LayoutInflater.html
http://en.wikipedia.org/wiki/Sequence_diagram

	List of Figures
	List of Tables
	Acknowledgements
	Chapter 1 - Introduction
	Chapter 2 - Motivation
	Chapter 3 – Background: Android Design and Architecture
	3.1 Background
	3.2 Android Architecture
	3.3 Target Platform
	3.4 Kernel and Startup Process
	3.5 Data Storage
	3.6 Power Management
	3.7 Related Work

	Chapter 4 - Requirements Analysis
	4.1 Requirements Gathering
	4.2 Requirements Specification
	4.2.1 Software Requirements
	4.2.2 Hardware Requirements

	4.3 Feasibility Analysis
	4.3.1 Economic Feasibility
	4.3.2 Technical Feasibility

	Chapter 5 - System Architecture and Design
	5.1 System Architecture
	5.2 Use Case Diagram
	5.3 Class Diagrams
	5.3.1 Class Diagram for the Homescreen:
	5.3.2 Class Diagram for Trip via Flight:
	5.3.3 Class Diagram for the Creating a new Trip via Flight:
	5.3.4 Class diagram for Trip via Car:
	5.3.5 Class Diagram for the Creating a new Trip via Car:
	5.3.6 Class Diagram for Upcoming Trips:

	5.4 Sequence Diagram

	Chapter 6 - Android Framework Components
	6.1 AndroidManifest.xml
	6.2 AndroidDependencies
	6.3 Activity
	6.4 Intent
	6.5 Layout Inflater

	Chapter 7 - Graphical User Interface
	7.1 Home Page:
	7.2 Trips via Flight
	7.3 Autocomplete Option:
	7.4 Calendar view to choose date and Alarm option
	7.5 Alarm Validations
	7.6 Toast Messages
	7.7 All Trips via Flight
	7.8 Past trips via Flight
	7.9 Future Trips via Car
	7.10 Create a Trip via Car
	7.11 Enter Expense
	7.12 View or Edit Trip via Car
	7.13 Delete Trip
	7.14 Navigation

	Chapter 8 - Testing
	8.1 Unit Testing
	8.1.1 Unit Test Cases for Trip via Flight
	8.1.2 Unit Test cases for Trip via car
	8.1.3 Unit Test cases for Upcoming Trips

	8.2 Compatibility Testing
	8.3 Usability Testing
	8.4 Performance Testing
	8.4.1 Traceview Analysis
	8.4.2 Battery Consumption

	Chapter 9 Conclusion
	Chapter 10 Future Work
	Chapter 11 References

