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INTRODUCTION

The discovery of the algebraic solution of the general

quadratic equation is attributed to the Hindus. Tartaglia

obtained the solution of the general cubic by radicals in the
4- y.

16 century and about the same time, Ferrari solved the general

quartic by radicals. In the following years, mathematicians

attempted to solve the general polynomial equation of degree

greater than four by radicals. In 182^, N. H. Abel proved that

such solutions cannot exist.

Early in the I9 century, E. Galois (I8II - 1832) proved

that an equation is solvable if and only if its group is a

solvable group. By showing that the group of the general

polynomial of degree n is the permutation group on n letters,

Galois proved that the general polynomial of degree greater than

four is not solvable by radicals. Galois' work had particular

significance in the fact that his was the first attempt to

utilize group theory as a tool.

A discussion of the development of his theory and its

application to the general solution of polynomial equations

is included in this report.



The theorems on commutator subgroups and solvable groups

from group theory are introduced when needed. All other basic

ideas from group theory and ring theory have been assumed.

It should be noted in this report that unless otherwise

stated, all fields are assumed to have characteristic zero.

This insures that every irreducible polynomial in a field of

characteristic zero will be seperable. It should also be noted

that following modern usage, polynomials are solvable and have

roots.



Definition 1 : A field F is a set of elements on which are defined

two binary operations (called + and x for simplicity) which satisfy

the following postulates:

Postulate 1: F is closed under + and x.

Postulate 2: + and x are commutative and associative.

Postulate 3: The set contains an identity element e for + and

e, for X.

Postulate hi x is distributive over +.

Postulate 5s Every element has an inverse with respect to + and

X except e , which does not have an inverse with respect to x.

Suppose E and F are two fields on which the same two operations

are defined. If every element of F is an element of E, then F is

a subfield of E, denoted by FCE. If FCE, E is called an extension

of F.

Definition 2 ; A non-empty set V is said to be a vector space

over a field F if V is an abelian group under an operation denoted

by +, and if for every a 6 F, v C V, there is defined an element,

written as av, in V subject to

(1) a(v+w)=av+aw

(2) (a + b)v = av + bv

(3) a(bv) = (ab)v

(4) Iv = V

for all a,b€F, v,weV (where the 1 represents the unit element of

F under multiplication.) ""-^

The following two examples attempt to clarify the concept of a vector

space.



Example 1 ; Let K be a field and let F be a subfield of K. Then

K is a vector space over F. Let the + of the vector space be the

addition of the elements of K. Define av, for a £ F, v €K, to be the

product of a and v as elements in the field K. Axioms (l)» (2), and

(5) are then consequences of the right-distributive, left-distributive,

and associative laws, respectively, which hold since K is a field.

Example 2 > Let F be any field and let V = FfxJ , the set of

polynomials in x over F. FCxJ is obviously an abelian group under

+. It is also true that a polynomial can always be multiplied by

an element of F. With these natural operations, FQxJ is a vector

space over F.

Definition 3 ? If FCE, the degree of E over F is the dimension

of the vector space E over F where the dimension of E over F is

the number of vectors in a basis. This will be denoted by (E:F).

If (E:F) is finite, E will be called a finite extension of F.

Theorem 1 ; If F, B, and E are three fields such that FCBlCE,

then (E:F) = (E:B)(B:F).

Proof: Let w , i: l,...,m, form a basis for E over B and

u^, i: l,,,.,n, form a basis for B over F. Then for any x C E,

X can be represented as a linear combination of w, ,...,w , i.e.:
1' ' m

(1) X = £r w , r B.

J=i -^ "^ '^

Similarly

(2) r . = >^ a. .u. , a. . F.

Substituting (2) into (l), an expression for x is obtained

(5) X =£ ia (u w )

Suppose X = 0, Then (l) implies that all r = 0, j: l,...,m. If



all r.= 0, (2) implies that all a.. - 0, j: l,...,in, i: l,...,n. But

this implies that the m*n elements in (5) are linearly independant

with respect to F. Hence (E:F) «= m'n.

But (B:F) = n and (E:B) = m.

Hence (E:F) = (E:B)(B:F).

Corollary ; If F^,...,F are n fields such that F^C. ^2*-^'""^n*

then (F^tF^) - {F^:T^)iF^tF^) . . ,{7^tF^_^)

.

Proof: The proof is obtained by extending the same technique

used in proving the preceeding theorem.

An expression of the form a„x + a, x + ... + a is called^ 1 n

a polynomial in F of degree n if the coefficients a-,..., a are

elements of a field F and a„ = 0. A polynomial in F is called

reducible in F if it is equal to the product of two polynomials in

F each of degree at least 1. Polynomials which are not reducible

in F are called reducible. If f(x), g(x), and h(x) are polynomials

in a field such that f(x) = g(x) h(x), then g(x) divides f(x) in F

or g(x) is a factor of f(x). Certainly the degree of f(x) is

equal to the sum of the degrees of g(x) and h(x), so that if

neither g(x) nor h(x) is a constant then each has degree less than

f(x). Hence by a finite number of factorizations, a polynomial

can always be expressed as a product of irreducible polynomials in

a field F.

Definition ^ t Let E be an extension field of a field F. Let

a^E. If there exist polynomials with coefficients in F which

have a as a root, a is called algebraic with respect to F.

Let FCK, and let a € K. Let M be the collection of all subfields
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of K which contain both F and a. M is nonempty since K€M. Now consider

the intersection of all subfielda of K which are eltanents of M. This

intersection is again a subfield of K and will be denoted by F(a).

Some properties of F(a) are:

1. F(a) contains both a and F.

2. Every subfield of K in M contains F(a), yet F(a) is itself in M.

Thus F(a) is the smallest subfield of K containing both F and a. F(a)

is the subfield obtained by adjoining a to F.

At this point a more constructive description of F(a) is considered.

Consider all elements in K which can be expressed in the form

a
Bq + B,a + ... + B a , where the B's range freely over F and s can

be any non negative integer. As elements in K, one such element can

be divided be another excluding division by zero. Let U be the set

of all such quotients. U can be shown to be a subfield of K.

Certainly FCU and a € U. Hence F(a)CU. Any subfield of K which

contains both F and a by virtue of closure under addition and

multiplication, must contain all elements B„ + B, a + . . . + B a^.
u 1 s

B^€ F. Hence F(a) must contain all these elements; being a subfield

of K, F(a) must contain all quotients of such elements. Hence UCF(a).

But UCF(a) ')

F(a)CU
I

r

Hence an internal construction of F(a) is obtained, namely U.

Theorem 2 t The element aCK is algebraic over F if and only if

F(a) is a finite extension.

Proof: Assume F(a) is a finite extension of K and let (F(a):F) = m.

Consider l,a,a , . . . .a"" 6 F(a). These elements are linearly dependant



over F. Therefore, there are elements b„,b, ,...,b f-F, not all zero
1 m ^

such that b_l + h^a. + , . , + h a. =0. Hence a is algebraic over F.
1 m ^

Let p(x)CFQx] be a monic polynomial of lowest positive degree

satisfied by a. Let deg p(x) = n. p(x) «»x +b^x' +...+b,

b.€F. Certainly a +b,a~ +...+b =0,

Hence a = -b,a ~ -...- b .
1 n

n J J^+1 n+1 , n , n-1 ,Consider a , a = -b,a - b„a -...-b a' 12 n

= -b.(-b,a -...-b ) -b„a -,..- b a.1^1 n ' 2 n

Hence a is a linear combination of the elements l,a,a ,...,a

n+kover F. Continuing this process for k2 0, a can be shown to

be a linear combination over F. Now consider T =
|
B„ + . . . + B i^"^" (

where B. 6 F. Clearly T is closed under addition and multiplication.

Hence T is a ring. Certainly a6T and FCT. That T is also a field

is shown by the following: let + u = B„ + ...+B ,a"~^T and
u n-l

let h(x) « Bq + ... + \_]^x"" € FCxJ . Since u+0, and u = h(a),

h(a) + 0, then p(x) does not divide h(x). Hence p(x) and h(x) are

relatively prime. Since this is true, there exists polynomials s(x)

and t(x)^FCx] such that p(x) s(x) + h(x) t(x) = 1 which implies that

1 = p(a) s(a) + h(a) t(a). But p(a) = 0. Hence 1 = h(a) t(a) or

1 = u t(a). Therefore u~ = t(a). In t(a) all powers of a higher

than n-l can be replaced by a linear combination of l,a,..,a"~ over

F, hence t(a)fT. Thus every non zero element of T has an inverse

in T and T is a field.

Clearly TCP(a), yet F and a are both contained in T. Therefore

T = F(a). Hence F(a) - {x
|
x = B^ + ... + B^_^a""^j . T is spanned
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n T

over F by the elements l,a,...,a "
. Hence (T:F) < n.

Consider b^ + b^ + ... + b _-,sJ^~ = where b.g F, and not all

b. = 0. This would imply that a satisfies a polynomial of degree less

than n which contradicts the original choice of p(x) as the monic

polynomial of lowest degree. Hence l,a,...,a ~ are linearly

independant over F and form a basis of T over F. Hence (T:F) = n.

Since T = F(a), (F(a):F) = n and F(a) is then a finite extension of F.

In the previous paragraphs algebraic elements in a given extension

K of F were discussed, that is, elements which satisfy polynomials in

F£xJ. The following paragraphs discuss the problem of finding an

extension of F in which a given polynomial has a root. The problem

reduces to actually constructing the field.

Definition 5 ; If p(x)^P[x], then an element a lying in some

extension field of F is called a root of p(x) if p(a) = 0.

Theorem 5 ; (Kronecker) If p(x) is a polynomial in FCx;j of

degree n>l and is irreduuj-ble over F, then there is an extension

E of F such that (E:F) = n, in which p(x) has a root.

F Txl 1Proof: Let E = ^"'-. Since p(x) is irreducible, E is a field!
(p(x))

Let F =ra +(p(x))l a€F7. Let T be the mapping from Ffxl into / , s\
«- " -» • -« (p(x))

such that f(x)T = f(x) + (p(x)). Consider the mapping T of F onto F.

Clearly F is isomorphic to F. Since FCFfxJ, FCE. E lis an extension

of F and since F = F, E can be considered an extension of F, Consider

the dimension of E over F. The elements 1 + (p(x)), ... , x""''- + (p(x))

form a basis of E over F. Hence the degree of E over F equals the

1
For a proof, refer to Elements of Modern Abstract Algebra . Miller, page 85.



degree of p(x). For convenience of notation, let the element

xT = X + (p(x) in the field E be denoted as a. For f(x)£ ^OQt

consider the element f(x)T where f(x) = B„ + . . . + B.x . Then

f(x)T = BqT + (B^T)(xT) + ... + (Bj^T)(xT)^. But xT = a and B^T - Bq.

Hence f(x)T = B^T + (B^T)a + ... + (B T)a^

= Bq + B, a + , . . + B, a

= f(a)

Certainly p(x) £ (p(x)), hence p(x)T = 0. But p(x)T = p(a). Hence

the element a = xT in E is a root of p(x).

Corollary : If f(x)f FQO then there is a finite extension E of F

in which f(x) has a root. Moreover, (E:F) ^ deg f(x).

Proof: Let p(x) be an irreducible factor of f(x); any root of p(x)

is a root of f(x). By the preceeding theorem there is an extension E

of F with (E:F) = deg p(x)^deg f(x) in which p(x) and so f(x) has a

root.

Theorem k t Let f (x) € FfxJ be of degree n2l. Then there is an

extension E of F of degree at most n! in which f(x) has n roots.

Proof: A root of multiplicity m is counted as m roots. By the

preceeding corollary, there is an extension E- of F with (E^:F)^ n

in which f(x) has a root OC. Hence in E^CxJ , f(x) = (x-oc) q(x) where

the degree of q(x) = n-1. Continuing the above process, there is an

extension E of E^ of degree at most (n-l)! in which q(x) has n-1 roots.

Wow every root of f(x) is either OC or a root of q(x), hence all n roots

of f(x) have been obtained. Then (E:F) = (E:E )(Eq :P) ^ (n-l) !n = n!

Definition 6: Let f{x)£FOQ. A splitting field over F for f(x)

is a finite extension E of F if over E, but not over any proper subfield
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of E, f(x) can be factored as a product of linear factors.

Theorem k guarantees the existence of a splitting field. Given

a polynomial of degree n over P, the splitting field for this polynomial

is a finite extension of F of degree at most n! over F. Given a

splitting field of f(x), this splitting field will be the minimal

extension of F in which the polynomial f(x) has n roots where n

equals the degree of f(x).

Consider now any two splitting fields for a polynomial over a field

F. The following theorems will prove that a splitting field is unique

up to an isomorphism.

Lemma 1 i Let P and F' be two fields and let T be an isomorphism

of F onto F' such that aT = a' for a6F and a'€F'. Let T be a

mapping from FQxT] to F'CtJ such that f(x)T = (^0*" + . . . + a )T -

ait + ... + a'. Then T, is an isomorphism,
u n i

Proof: f(x)T, + gCx)!^ = (a't"^ + ... + a') + b't'^ + ... + b'\/j^o\/j^\Q n'O n

= (a^ -. b^)t" + (a- + b')t''-^ + ... + (a^ + b^) = (f(x) + g(x))T^.

Similarly for multiplication. Hence T^ is operation preserving.

Clearly T, is one-to-one and onto since T is one-to-one and onto.

Hence T, is an isomorphism.

FPG F'CtJ
Lemma 2 ; There is an isomorphism T„ of /„/ >v onto /^./^w

2 (f(x)) (f'(t))

with the property that for every a € F, aT_ =» a', where a'GFi

Proof: Let T^ be defined by (g(x) + (f(x)))T2 = g'(t) + (f'(t)).

The proof follows.

Theorem 5 : If p(x) is irreducible in F GO and if v is a root of

p(x), then F(v) is isomorphic to F'(w) where w is a root of p'(t);
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moreover, this isomorphism T can be so chosen that

1. vT = w

2. aT = a' for every a^F.

Proof: Let v be a root of p(x) lying in some extension K of

F. Let M =
[ f(x)€ Ffx] | f(v) = oj . Trivially M is an ideal of

F[x3, and M + FCxJ. Hence M = (p(x)). Let T^^ be a mapping such thatj

q(x)Tj^ = q(v) for all q(x)f F[xJ. The kernel of T, is p(x). By the

F fxTfundamental homorphism theorem for rings, ^ •* ^ F(v). Let
(p(x))

this isomorphism be denoted by Tp, Clearly for every a 6 F,

Oil!-, = a. Under this isomorphism every element of F remains fixed

and V = (x + p(x))T2. p(x) irreducible implies that p'(t) is

irreducible in F'ftT. Again there exists an isomorphism T, of / r/lw

onto F'(w) such that T, leaves every element of F' fixed and

ice(t + (p'(t)))T^ = w. By Lemma 2, -^^ =
(v't?))

' ^^"'

^w= -mi = -mi ^ -w-
Then v —^ x + (p(x)) —^ t + (p'(t)) =y w and vT = w, where

T = T^T^T^. For a6F, a -^ a + (p(x))-^ a' + (p'(t))—^ a'.

Hence aT = a •

.

Theorem 6 ; Any two splitting fields E and £• of the polynomial

f(x)€F(x7 and f'(t)eF'Ct7, respectively, are isomorphic by an

isomorphism T^^ with the property that aT, = a' for every a € F.

Proof: Let (E:F) = 1. Then E = F. By Lemma 1, f'(t) splits

over F' into a product of linear factors which implies that E' = P',

Then T^ = T will be the required automorphism where f(x)T =

(a^x" + ... + a )T = a't" + ... + a'.
*-' no n

Assume the result to be true for any field F_ and any polynomial

f(x)£FCx] provided the degree of some splitting field E of f'(x)
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has degree less than n Over F-^, that is, (E„:F„)<n. Let (E:P) = n>l.

Since n>l, f(x) has an irreducible factor p(x) of degree r>l. But

E splits f(x), hence E must split p(x). This implies the existence

of an a^E such that p(a) = 0. Bu Theorem 5, (p(v):P) = r.

Similarly there exists a w€E such that p'(w) = 0. By Theorem 5»

P(v) ^F(w). Now (F(v):F) = r>l. Hence (E:F(v)) =
^^^;^^^ )

= -^ ^ n.

E is a splitting field for f(x) considered as a polynomial over F_ = F(v),

for no subfield of E, containing F^, and hence F, can split f(x), since

E was assumed to be a splitting fiela for f(x). Likewise E* is a

splitting field for f'(t) over F» - F'(w). Bu the induction hypothesis

there is an isomorphism T, of E onto E* such that aT = aT for all a€F^.

Since FCFq, aT^ = aT = a'.

Corollary ! If p(x) is a polynomial in a field F, then any two

splitting fields for p(x) are isomorphic.

Proof: Let E = P« and T be the identity mapping. Then the

corollary follows from Theorem 6.

By an automorphism of a field K is meant a mapping from K onto

itself such that this mapping is operation preserving and one-to-one.

Two automorphisms T^ and T^ of K are said to be distinct if T,(a) f T (a)

for some element a K.

Theorem 7 t Let K be a field. If T^,...,T are n distinct

automorphisms of K, then it is impossible to find elements a,,..,, a .1' ' n'

not all zero, in K such that a,T(u) + ... + a T (u) = for all u€K.
i 1 n n

Proof: Assume that there exists a set of elements, a, a €. K.
1 ' n '

not all zero, such that a^Tj^(u) + sl^'^^^u) + . . . + a T (u) = for all

uCK. Then there exists a minimal relation:

(l) a^T (u) + ... + a^T^(u) = 0, where a. + 0.11 mm' ' 1
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Let m = 1, then a,T, (u) = for all u^K implies a, = 0. Hence m>l.

Since these automorphisms are distinct, there exists a c6K such

that T, (c) 4 T (c). Consider a, T, (cu) + ... + a T (cu) = 0. ThisI'm^' 11^' mm'
must hold true since cu6K. But T. is an automorphism. Hence

(2) a.,']:Ac)l!Au) + ... + a T (c)T (u) = 0.ll'l^' mm^'m^'
Multiply (l) by T^(c) and subtract from (2). This results in

(3) a^CT^Cc) - T^(c))T2(u) + ... + a^(T^(c) - T^(c)) = 0.

Let b. = a.(T.(c) - T^(c)) for i: 2,...,m; b^ = \(\('') " ^^(c)) ^ 0,

since a + and T * T, (c). But (5) is then a sum of fewer terras than
m ml

the original relation wich was assumed to be minimal. Hence the

theorem is proved.

Corollary » If E and E' are two fields, and T-,...,T are n mutually

distinct isomorphisms mapping E into E', then T, ,...,T are independant.

Definition 7 : If G is a group of automorphisms of K, then the fixed

field of G is the set of all elements a( K such that T(a) = a for all

T,6G.

Lemma 3 » The fixed field of G is a subfield of K.

Proof: Let a,b be in the fixed field of G. The fixed field is

non empty since T(1) = 1 for all T€ G.

T(a-b) = T(a) + T(-b) = T(a) - T(b) = a - b

T(ab-^) = T(a)T(b-^) = T(a)(T(b))-^ =. ab'^

Hence the fixed field of G is a subfield of K.

Theorem 8 ; If T^,...,T^ are n mutually distinct isomorphisms of

a field E into E«, and if F is the fixed field of E, then (EjF)>n.

Proof: Assume (E:P) = r<n. Let w^,...,w^ be a generating system

of E over P.

Consider the homogeneous linear equqtions:



(1) T^(w^)x^ + l!^{if^)x^ + ... + T^(w^)x^ =

(2) T^(w2)x^ + 'r^{w^)x^ + ... + T^(w2)^n ° °

(r) T^(w^)x^ + T2(w^)x2 + ... + \i^^)\ = 0.

Since there are more unknowns than equqtions, there exists a non- trivial

solution. Let the non trivial solution be denoted by x^,,»,.x .•'I' ' n

For any oc £ E, oC= a,w^ + ... + a w , a. ^ F. Multiply equation (l) by

T, (a,), equation (2) by T„(ap), equation (r) by T (a ). Since a.€ F,

T,(a.) = T.(a.). Also T.(a.)T.(w.) = T (a.w.).

Now T.(a, Wt)x- + ... + T (a, w^)x =i^ll'^l n^ll'^n

T- (a w )x, + . . . + T (a w )x =0,
1^ r r' 1 n^ r r"^ n

Consider the sum of these equations. It is true that

T.(a^w^) + T.Ca^w^) + ... + T.(a^w^) = T.(a^w^ + ... + a^w^) = T.(oC).

Hence a non-trivial dependance relation T, (c5<.)x, + ... + T (cjC )x =
1 ^ ' 1 n^ ' n

is obtained. By the corollary to Theorem 7» this is impossible.

Hence (E:F)>n.

Corollary I If T^,...,T are automorphisms of the field E, and if

F is the fixed field, then (E:F)> n.

Definition 8 : An extension field E of a field F is called a

normal extension of F if E is a finite extension of F such that F is

the fixed field of G(E,F) where G(E,F) is the group of automorphisms

of E that leave F fixed.

Certainly it is true that the field F may be smaller than the

fixed field of G(E,F) since there may be some elements in E that

remain fixed by every automorphism in G(e,F).

Theorem 9: If T^,...,T^ is a group of automorphisms of a field E
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and if F is the fixed field of T,,...,T , then (E:F) = n.

Proof: Let the identity of T, ,...,T be T. . Assume that
•^ 1' ' n 1

(E:P)> n. Then there exist oc. » ij l,...,(n+l), 6E which are

linearly independant with respect to F. There exists a non-trivial

solution in E to the system of equations:

x^T^(oc^) ^ X^T^COC^) + ... ^ x^^^T^(oc^^^) =

Vn(^l) ^ Vn(*=^2) ^ ••• -^ ^n.l^n(^.l) = °-

The solution cannot lie in F, otherwise the first equation would be

a dependance between oC^ , . . , , <X . Let a, , . . . ,a ,0, ... ,0 be thei
1' ' n+1 1' » r» » »

nontrivial solution with the least number of elements different from

zero, r 4 1 since a, T, ((X,^) = implies a, = 0. Assume that oC = 1,

Then:

(1) a^T-CoC,) + ... + a ,T.(cx ,) + T.(oC ) =
' 1 1^ 1' r-1 1^ r-1'' 1^ T^

for i: l,...,n. Now a. .....a , cannot all be elements of F. Let
' 1' ' r-1

a, € E, a, ^F. Let T, be the automorphism for which T, (a, ) f a,.

Consider T, T, ,...,T, T , This is a permutation of T,,...,T .K i ' K n In
Apply Tj^ to (1):

Ti,(a,)Tj^T.(oC,) ..... T^(a^_^)Tj^T.(0C^_^) . T^T.(oC^) =

for j: l,...,r, so that from T, T . = T.
k J X

(2) \(ai)T.(oC^) + ... + Tj^(a^.i)T.(oC_^) + T.(a^) =

Subtract (2) from (l).

(5) (a^ - Tj^(a^))T.(a^) + ... + (a^_^ - Tj^Ca^.^ ))T. (a^_^) = 0.

(3) is a non trivial solution to the system having fewer than r elements

different from 0, contrary to the choice of r. Hence (E:F) = n.

Corollary 1 : If F is the fixed field for the finite group G,

then each automorphism T that leaves F fixed must belong to G.
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Proof: Let (E:P) = order of G = n. Let T be an automorphism

not in G. Then F would remain fixed under the (n+l) elements; T

and the elements in G. Hence (E:F) = (n+l) which contradicts

Theorem 9«

Corollary 2 : There are no two finite groups G, and G- with the

same fixed field.

Definition 9 » Let f(x) be a polynomial in P, then f(x) is called

separable if its irreducible factors do not have repeated roots. An

element a6E where E is an extension of P is called separable if it

is a root of a separable polynomial f(x) in P. E is a separable

extension if each element of E is separable.

Lemma 4 t Let K be the splitting field of f(x) in F(x) and let

p(x) be an irreducible factor of f(x) in PCxJ. If the roots of

p(x) are a-,...,a , then for each i there exists an automorphism

T^€G(K,P) such that Tj^(a^) = a^.

Proof: Let a,, a. be any two roots of p(x). Consider F^ = P(a, )

and P^ = F(a^), by Theorem 5, Pt — P^ • This automorphism maps a,

onto a. and leaves every element of P fixed. K is the splitting

field for f(x) over F^ and P ' . Hence there exists an automorphism

T^ of K such that T^(a^) = T{a^) - a., where T is the automorphism

of F, onto F' and T. leaves every element of F fixed.

Theorem 10 : K is a normal extension of F if and only if K is

the splitting field of some polyno::ial over P.

Proof: Assume that K is a normal extension of P. Consider

K = P(a), and p(x) = (x - T^(a)) ... (x - T^(a)) where p(x) is a

polynomial over K and T^€G(K,P). Then p(x) = x" - ... + (-l)"b

where the b^ are the elementary symmetric functions in a = T, (a),...,T (a).
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But then b, ,...,b are each invariant with respect to every T€G(K,F).

Since K is normal over F, each b. must be in F. Hence K splits the

polynomial into a product of linear factors. It has been shown that

F(a) is the minimal subfield containing F and a, hence K is the

splitting field of p(x) over F.

Assume that K is the splitting field of some polynomial over

F. The proof is by induction: assume that for any pair of fields

K^, F, of degree less than (K:F) that whenever K is the splitting

field over F, of a polynomial in F, £x^ , then K, is normal over F^

.

If f(x) over F splits into linear factors over F, then F = K.

Hence K is a normal extension. Let p(x) be an irreducible factor

of degree r>l. Now a,,..., a 6 K. Certainly K is the splitting

field of f(x) considered as a polynomial over F(a-). Now

(K:F(aj^) = (v(a j-p") ~ ^ ^' Hence K is a normal extension

of F(a^). Let u K be left fixed by every T. G(K,F). Certainly

every T^ £ G(K,P(a, ) ) leaves F fixed, hence leaves u fixed. This

implies that u€F(a^). Thus u = B^ + ... + B _-,a^~ where B. G F.

By Lemma k, there exists a T. ^ G(K,F) such that T. (a, ) = a.. But

T. leaves u and B, fixed. Now apply T. to u. u =« B^ + . . . + B ,a'r"'^1 1 "i r-li
for i: l,...,r. Consider q(x) = (B„ - u) + B, x + ... + B ^x^"'^

1 r-1

^[^7* ^(^) has degree at most r-1 but has r roots. Hence all

coefficients must be zero and u « Bq, Hence u6F and K is normal

over F.

Definition li t Let f (x) be a polynomial in F(x] and let K be

its splitting field over F. The Galois group of f(x) is the group

of all automorphisms of K leaving every element of F fixed. This

group will be denoted by G(K,F).

in
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The following theorem gives the relation between the structure

of a splitting field and its group of automorphisms. It is known as

the fundamental theorem of Galois Theory.

Theorem 11 : If p(x) is a separable polynomial in a field F, and

G the group of the equation p(x) " where E is the splitting field

of p(x), then

(1) Each intermediate field, B, is the fixed field for a subgroup

G„ of G and distinct subgroups have distinct fixed fields.

(2) The intermediate field B is a normal extension of F if and

only if the subgroup G^ is a normal subgroup of G. In this case the

group of automorphisms of B which leaves F fixed is isomorphic to

the factor group (g/g„).

(5) For each intermediate field B, (B:F) = index of G„ and

(E:B) = order of G^.

Proof: (1) Let p(x) lie in any intermediate field. Then E

is the splitting field for p(x). Hence, E is a normal extension of

each intermediate field B; then B is the fixed field of the subgroup

of G consisting of the automorphisms which leave B fixed. By

Corollary 2, Theorem 9» distinct subgroups have distinct fixed fields.

(5) Let FCBCE. Since B is the fixed field for G^, of G,

(E:fl) = order of G^. (Theorem 9) Let o(G) = order of the group G,

and i(G) = index of G. o(G) = o(Gg) i(Gg). But (E:F) = o(G) and

(E:F) = (E:B)(B:F) together with o(G) - o(Gg)(B:F) imply that

(B:F) = iCGg).

(2) Let Gg be a subgroup of G. Let T^,T2€Gg. Then for any

a6B, T^(a) =«. T^Ca). Let TT^^, TT^CG^. Then for any a€B,
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TT^(a) = T(a) = TT^Ca). Hence the elements of G in any one left

coset of Gj, map B in the same way. Let T, T£T, G., and T„TCT„G^

where T^.T^e G. Now T^T(a) = T^(a) and T2T(a) = T^Ca) for all a £ B*

Suppose T^(a) = T^Ca). This implies T'^ T^(a) = a which implies that

T^ T^ is an element of G^. Let T^^T^ = T, £ G^. Then T^^ = T^T which

implies that T^^G^ = T^T^G^ = T2Gg. Hence elements of different

cosets give different isomorphisms. The number of distinct

isomorphisms is equal to the index of Gt, in G.
B

Each isomorphism of B which is the identity on P is given by

an automorphism belonging to G, i.e., it maps B isomorphically into

some other subfield B' of E and is the identity on F. Let T€G,

T^Gg. Let b£B, b>6B' and T(b) = b'. Let Gg be the group of B.

Then TGgT~^(b') = TGgT"^T(b) = TG^Cb) = T(b) = b'. Hence the group

TGgT leaves every element b'eB' unaltered. Hence the isomorphisms

are identical to the automorphisms if and only if G„ is a normal

subgroup of G, if and only if G^ = TG^T'-^". Hence the number of

automorphisms of B is equal to the index of G_ in G and equal to

(B:F) if and only if G is a normal subgroup of G. But B is a

normal extension of F if and only if the number of automorphisms

of B is (B:F).

Definition 12 ; A group G is said to be solvable if there exists

a finite chain of subgroups G = Nq C N^^ C . . . C Nj^ = (e) where each

N^ is a normal subgroup of N^_^ and such that every factor group

^^_l/
N^ is abelian.

The symmetric group on three letters is a solvable group. Let

N-]^ =
I
(e), (1,2,3), (l,5»2)j , N^ is a normal subgroup of S, and

N^/ (e) and S^/ N^ are both abelian of orders 3 and 2 respectively.
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Given the group G and a,bCG, then the commutator of a and b

is the element a b ab. The commutator subgroup, G', is the subgroup

generated by all the commutators in G. G' is a normal subgroup of G.

Let oc^,...,CX^€G'. Then x'-'-C5C^,...,c>:^£ G'. Let oC = a'-^b'-'-ab.

,-1 -lv-1 v^„-l_ ^ -. ^
-1-1 -Iv-l... -1.-1,x" a' b" abxx" eK.^...CK^x = (x' a" xx" b" xx" axx" bx)(x" oC p. . .«: x)

„. .. C<^3
d n

(x* ax)" (x" bx)" (x'''-ax)(x"''"bx)(x"'^ ...oC x). But

(x ax) (x bx) (x ax)(x~ bx) is a commutator and hence is an

element of G'. Continuing this process, x" csC , . . • OC x can be shownIn
to be a product of commutators. Hence x" G'x = G' and G' is a normal

subgroup of G. G/ G' is abelian: for let a,b 6 G, (aG')(bG') = (ab)G'

= ab(b"-'-a"-'-ba)G' = (ba)G« = (bG')(aG').

Let M be a normal subgroup of G such that G/M is abelian. Then

G'CM. Let a,b£G, then (aM)(bM) = (bM)(aM). (ab)M = (ba)M implies

a b abM = M which implies that a" b" ab M. Hence M contains all

commutators and thus contains the group these generate.

(2) • (2)Consider G^ = (G'). G^ '' is the subgroup of G generated by all

elements (a')' (b')"-^a'b' where a',b'eGl The proof that G^^^ is a

normal subgroup of G' and G is similar to the proof that G' is a

normal subgroup of G. Define G^"' = g'"'""'"^'.

Lemma 3 : G is solvable if and only if G = (e) for some integer k.

Proof: If G^ = (e), let N^ = G, N^ = G', N^ = G^^\..., H^ = G^^^= (e).

Then G = Nq^ N^::P ... •I>Nj^ = (e). Each N^ is normal in G, hence each

N. is normal in N._^. Now N._yN. = G^"Vg^ = G^"V(G^"^)'. Hence.

G /G is abelian. Hence G is solvable.

If G is a solvable group, then G - N^ ^ N^-:^ ... 3N = (e).

Hence the commutator subgroup N,' - of N. ^ must be contained in N .i~i 1—1
j_
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Hence N^D N^ = G', N^O N|Z> (G')' = G^^\ N^^D N^ 3?N^ 3(G^)' = G^f

,..., N. Jp G^, (e) = N :D G^. Hence G^^^ = (e).

Corollary : If G is a solvable group and if G is a homomorphic

image of G, then G is a solvable group.

— If

Proofs Since G is a homomorphic image of G, (g) is the image

of G^ \ bince G = (e) for some k, (g) =(e) for the same k, hence

by Lemma 5» G is solvable.

Lemma 6 : Let G = S , where ni:5» then G for k: 1,2,..., contains

every 5- cycle of S .

Proofs If N is a normal subgroup, then N* must also be a normal

subgroup. wow if N is a normal subgroup of G = S , where n2 5»

which contains every 3-cycle, then N' must also contain every 5-cycle.

Let a = (1,2,5), b = (l,4,5) C N. Then a"-''b"-'-ab =

(3,2,l)(5,4,l)(l,2,5)(l,'f,5) = (1,^,2) must be in N'. Since N< is a

normal subgroup of G, for any TT € S , TT ''(1,'^ ,2)TT 6 N. Choose a

TT e S^ such that 17(1) = i^, J\{k) = i^, and TT(2) = i , where

^^t^2*^'^* are any distinct integers in the range from 1 to n; then

TT (l»^»2)Tr = (ij^.i^ji,) is in N'. Hence N' contains all 5-cycles.

Wow let N = G. G is normal in G and G' contains all 5-cycles;

since G' is normal in G, G^ ' contains all 5-cycles; since G^^'

is normal in G, G^ '' contains all 5-cycles. Continuing this process,

It
G contains all 3-cycles for arbitrary k.

Theorem 12 : S is not solvable for n7 5.n ~ ^

1,

Proofs If G - S by Lemma 6, G contains all 5-cycles in S^ n

for every k. Therefore G 4 (e) for any k, hence G cannot be SBolvable.

Theorem 15: Let P be a field and let P(x^,...,x ) be the field
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of rational functions in x, ,...,x over F. Let S be the field of

symmetric rational functions: then

(1) (P(x^,...,x^):S) = n!

(2) G(F(xj^, ,. .,x^),S) = S^, the symmetric group of degree n.

(3) If a,,..., a are the elementary symmetric functions in

x^,...,x , then S = F(a,,...,a ).

(4) F(x , ...,x ) is the splitting field of the polynomial

t -a-j^t + ... + (-1) a over F(a,,...,a ) = S.

Proof: Let S be the symmetric group of degree n: for 0— £ Sn n

Let Cr(i) be the image of i under (j- for li i < n. For cr€S , and
n

r(x^,...,x^) € F(x, ,...,x ), define the mapping which takes

r(x^,...,x^) onto r(v<i ) » * * * V(n) ^* Certainly the elements of S

define automorphisms of F(x. ,...,x ). The fixed field of F(x, ,...,x )1 n in
with respect to S^ will consist of all i-ational functions r(x, ,...,x )n 1 ' n'

such that r(x^,...,x^) = ^^V(l ) ' * * * ' V(n) ^ ^°^ allO" € S^. But this

fixed field then consists of elements in F known as the symmetric

rational functions, hence the fixed field is S. Since S is a
n

group of automorphisms of F(x , ...,x^) leaving S fixed, S C G(f(x, ,...,x ),S)
J. n nl''n

Hence (P(x^, . .
.
,x^) :S) > o(g(f(x^, . . . ,x^) ,S) ) ^ o(S^) = n! Consider

the field F(a^,...,a^) obtained by adjoining a^,...,a to P where

n

^1 ° ^ \* ^2 = ^. '^i'^j
•••' ^n " V2'"\' 2^"^® a.C S,

and the a^ represent the elementary symmetric functions, the field

F(aj^,.. .,a^) (3 S. Now consider the polynomial p(t) = t" -a, t"""'"+. . . + (-l)"a

where a £ F(a , . . . ,a ). p(t) factors over F(x, ,...,x ) as
•* X II in

p(t) = (t-Xj^)(t-X2)...(t-x^). Hence p(t) splits as a product of
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linear factors over P(x-,...,x ). Suppose p(t) splits over a proper

subfield K of F(x , ...,x ). K would contain F and all the roots of

p(t), hence K = P(x^, . . . ,x^) . Therefore F(x^,...,x ) is the splitting

field of p(t). But p(t) has degree n, hence (f(x^,...,x ):F(a.,...,a ))

is less than or equal to n! Now

n! >(F(x^,...,x^):F(a^,...,a^)) = (f(xj^ , . . . ,x2:S)(S:F(a^, . . . ,a ))Zn!

But this implies that (F(x,,...,x ):S) = n!, hence (S:F(a, , . . .,a )) = 1,

which implies that S = F(aj^,...,a ). nl> o(G(f(x , . . . ,x ),S))2o(S )=n!

and S^C G(F(x^,...,x^),S), implies G(F(x^,...,x ),S) = S .

Definition 13 « Given a field F and a polynomial p(x) F x , p(x)

is solvable by radicals over F if there exists a finite sequence of

fields, P^ = P(w^), F^ = F^(w2),...,Fj^ = Fj^.^C^) such that w[l € F,

*2 ^^^\*'"*\ ^^^k-1 ^^°^ *^^* *^® roots of p(x) all lie in P, .

'f *5 2Example: Consider the polynomial x + 5x + 5x + 3x + 1^ over

the field of rational numbers. The roots of the polynomial are

-? -f^ and llfTl. Let P^ = Hlpl), ^if^ F, P2 = F^(V^),

(Y-l) € P^. The extension field P contains all the roots of the

given polynomial. The sequence of fields is finite, hence p(x) is

solvable by radicals over P.

Definition Ik t Let P(a^,...,a^) be the field of rational functions

in the n variables a^,...,a^ over P. The general polynomial of

degree n over P, p(x) = x"^ + b^x"'""- + ... + b can be considered as

the particular polynomial p(x) = x" -a, x""-"- + ... + (-l)"a over the
i ^ ' n

field P(a^,. ..,a^). p(x) is solvable by radicals if it is solvable

by radicals over F(a, ,...,a ),1' ' n''
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Lemma 7 « Let F be a field containing all n roots of unity

for some n. Let a ^ GF. Let x - a C Ffx} and let K be its

splitting field over F. Then:

(1) K = F(u) where u is any root of x - a.

(2) The Galois group of x - a is abelian.

Proof: Since F contains all n roots of unity, it contains

2TTi
^

w = e "
. Certainly w =1. Let u €K be any root of x^ - a, then

u, wu, w u,...,w u are distinct roots of x - a. Suppose the roots

are not distinct: w'''u = w'^u, 06i<:j<n, then (w''" - w*')u = 0,

i 1 iu 4= 0, implies w = w*^ . Dividing both sides of the equation by w

yields w*^"^ = 1. But 0<:j-i<n. Hence w"^"^ + 1, w"^ ^ w^ and the

roots are distinct.

Since w € F, u, wu, . .
.

,
w"^" u ^F(u). Hence F(u) splits x" - a.

F(u) is the smallest subfield containing F and u. Hence F(u) = K.

Let T^.T^G G(f(u),F). Since u is a root of x" - a, T (u) and

T^Cu) are roots of x" - a and T^(u) = w^u, T^Cu) = w"^u for some i

and j. Thus T^T^Cu) = T^Cw^u) = T^(w^)T,(^)
^ ^J.^^^) ^ ^J^i^ ^

w^ ''u. Similarly T^T^Cu) = w'^'^^u. Therefore T T and T T agree

on u and F, hence they agree on F(u). But this implies that

^1^2 ~ ^2'^1* ^®"°6 the Galois group is abelian.

Theorem ik t If p(x) ^ F Cx^ is solvable by radicals over F,

then the Galois group of p(x) is a solvable group.

Proof: Let the Galois group of p(x) over F be G(K,F). Let K

be the splitting field of F. Since p(x) is solvable by radicals,

there exists a sequence of fields:
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PC Fi = F(w^) CFg = F^(w2)C ..• C\ = Fj^_;^(wj^) where w^^C F,

w_2£p ,,jw l^f F, ^ and K (7 F, . Certainly F, can be assumed to

be a normal extension of F, F, is a normal extension of any

intermediate field, or F, is a normal extension of each F. . By

Lemma 7i each P. is a normal extension of F. ,, now since F, is
1 1-1' k

normal over F._^, by the Fundamental Theorem, G(F, ,F. ) is a normal

subgroup of G(P. ,F. ). Consider:

(e) C ^(\f\.i)C ... CG(Fj^,P2) C G(Fj^,F^) C G(Fj^,F). Then:

G(F.,P. ,) ^ ^^^k«^i - l^ . By Lemma 7, G(P. ,P. . ) is an abelian
G(Fj^,F.)

^-^

G(Fj^,F )

group, hence is abelian. Hence G(P, ,P) is solvable.
G(Fi^,F.)

Now K C Fj^ and since K is a splitting field, K is normal over P.

By the fundamental theorem, G(F, ,K) is a normal subgroup of G(F ,F)

^ G(Fj^,F)
and G(K,P)= , By the corollary to Lemma 5, the

G(F^,K)

homomorphic image of a solvable group is solvable. G(K,F) is then

a solvable group.

Hence if p(x) is solvable by radicals, the Galois group is a

solvable group. And equivalently, if the Galois group is not a

solvable group, then p(x) is not solvable by radicals. The latter

form is the one used in proving Abel' Theorem. The preceeding

theorem directly relates the solvability by radicals of p(x) to

the solvability of the Galois group.

Theorem 15; The general polynomial of degree n > 5 is not

solvable by radicals.
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Proof: The general polynomial of degree n can be considered

as the particular polynomial over the field of rational functions

of the roots. By Theorem 13 » the Galois group of the polynomial

is S . By Theorem 12, S is not solvable for n "? 5« Hence the
n n —

general polynomial of degree n 2^ 5 is not solvable by radicals.
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The purpose of this report is a study of Galois' application

of group theory to the general solution of polynomial equations

culminating in the proof that general polynomial equations of

degree greater than four are not solvable by radicals.

Basic properties of fields, vector spaces, and extension

fields are introduced first. Some properties of polynomial

equations are taken into consideration. The Kronecker Theorem

insures that for every irreducible polynomial over a field,

there exists an extension field in which this polynomial has

a root. A direct application of this theorem is the existence

and structure of the root field of a polynomial. Automorphisms

of such a field are considered. These automorphisms give

meaning to the Galois group of a polynomial. The fundamental

theorem of Galois theory gives the relation between the structure

of a splitting field and its group of automorphisms. This

theorem and some definitions and theorems concerning solvable

groups contribute further to the basic theory needed to

determine necessary conditions for the solvability of a polynomial

equation by radicals.

One of the main objectives of Galois theory is to determine

the solvability of a polynomial equation. Possibly the most

important case of this is the proof that the general polynomial

equation of degree greater than four is not solvable by radicals.


