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Abstract 
Nitrate supplementation in the form of beetroot juice (BRJ) has been shown to increase 

nitric oxide (NO), where nitrate can be reduced to nitrite and NO through both nitric oxide 

synthase (NOS) independent and dependent pathways. We tested the hypothesis that BRJ would 

augment the NO component of cutaneous thermal hyperemia. Dietary intervention consisted of 

one shot of BRJ for three days. Six subjects were equipped with two microdialysis fibers on the 

ventral forearm and randomly assigned to lactated Ringer’s (control) or continuous infusion of 

20mM L-NAME (NOS inhibitor). The control site was subsequently perfused with L-NAME 

once a plateau in the local heating response was achieved to quantify NOS-dependent cutaneous 

vasodilation. Skin blood flow via laser-Doppler flowmetry (LDF) and mean arterial pressure 

(MAP) were measured; cutaneous vascular conductance (CVC) was calculated as LDF/MAP and 

normalized to %CVCmax. Maximal vasodilation was achieved via local heating to 43°C and 54 

mM sodium nitroprusside infusion. There was a significant decrease in DBP after BRJ (Pre-BRJ: 

74 ± 1 mmHg vs. Post-BRJ: 61 ± 2 mmHg; p < 0.05) and significant reduction in MAP after BRJ 

(Pre-BRJ: 90 ± 1 mmHg vs. Post-BRJ: 80 ± 2 mmHg; p < 0.05). The initial peak and secondary 

plateau phase of cutaneous thermal hyperemia were attenuated at sites with continuous L-

NAME; however, there was no effect of BRJ on either the initial peak at control sites (Pre-BRJ: 

76 ± 3%CVCmax vs. Post-BRJ: 75 ± 4%CVCmax) or L-NAME sites (Pre-BRJ: 60 ± 4%CVCmax 

vs. Post-BRJ: 59 ± 5%CVCmax) or the secondary plateau phaseat control sites (Pre-BRJ: 88 ± 

4%CVCmax vs. Post-BRJ: 90 ± 4%CVCmax) or L-NAME sites (Pre-BRJ: 45 ± 5%CVCmax vs. 

Post-BRJ: 51 ± 3%CVCmax). The decrease in %CVCmax to L-NAME infusion during the plateau 

of local heating (i.e. post-L-NAME drop) was greater after BRJ (Pre-BRJ: 36 ± 2%CVCmax vs. 

Post-BRJ: 28 ± 1%CVCmax; p < 0.05). This resulted in a greater contribution of NOS to the 



  

plateau phase of local heating (Pre-BRJ: 57±3%CVCmax vs. Post-BRJ: 64±2%CVCmax; p < 0.05). 

These data suggest BRJ modestly improves NOS-dependent vasodilation to local heating in the 

cutaneous vasculature of healthy humans. 
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Chapter 1 - Introduction 
Cutaneous thermal hyperemia in response to rapid, non-painful local heating exhibits a 

biphasic response in skin blood flow. An initial transient increase in skin blood flow punctuated 

by a brief nadir, is followed by a prolonged secondary plateau phase mediated predominantly 

(~60%) by NO (Kellogg et al. 1999; Minson et al. 2001). This secondary plateau phase becomes 

insensitive to nitric oxide synthase (NOS) inhibition if local heating results in pain, suggesting 

different mechanisms facilitate a non-painful versus painful heating stimulus (Kellogg et al. 

1999). The initial peak phase in response to local heating is predominantly mediated by a sensory 

nerve axon reflex, possibly through neuropeptides substance P (SP) and calcitonin gene-related 

peptide (CGRP) (Brain et al. 1986). It has also been shown that adenosine receptors (Fieger et al. 

2010), H1 - histamine receptors (Wong et al. 2006), transient receptor potential vanilloid (TRPV) 

channels (Wong et al. 2010), neurokinin-1 receptors (Wong et al. 2011), noradrenaline and 

neuropeptide Y (Houghton et al. 2006; Hodges et al. 2008) and NO (Kellogg et al. 1999; Minson 

et al. 2001) contribute to one or more phases of cutaneous thermal hyperemia.  

Although nitric oxide has been shown to modestly contribute to the initial peak and nadir 

response to local heating, independent studies have demonstrated inhibition of NOS significantly 

reduces the secondary plateau phase of cutaneous thermal hyperemia by ~60-70% (Kellogg et al. 

1999; Minson et al. 2001), providing evidence that NO plays a substantial role in the plateau 

phase of the cutaneous thermal hyperemic response; however, NO is not the sole local 

vasodilator inasmuch as NOS inhibition does not abolish the response. Although the exact 

mechanisms underlying the increase in NO are not entirely understood, Kellogg et al. (2008) 

have recently provided evidence to suggest that most of the NO-component relies on functional 

endothelial nitric oxide synthase (eNOS).  
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Quantification of the NO-dependent vasodilation to local heating of the skin is frequently 

used to assess in vivo microvascular function in various populations, such as healthy aging, 

hypertension, and hypercholesterolemia (Holowatz et al. 2007; Minson et al. 2010). In these 

populations, NO-dependent vasodilation has been shown to be attenuated compared to healthy 

control subjects and reduced NO-dependent vasodilation has been shown to be correlated with 

atherosclerosis (Vallance et al. 2001). Thus, interventions that improve bioavailable NO and 

improve NO-dependent vasodilation in these patient populations are critical.   

Dietary nitrate supplementation via beetroot juice (BRJ) has been shown to have several 

positive health benefits, including reduced blood pressure (Kapil et al. 2010) and platelet 

aggregation (Webb et al. 2008), increased blood flow to contracting skeletal muscle (Ferguson et 

al. 2013), and enhanced peripheral vasodilation and endothelium-derived NO (Kenjale et al. 

2011). These improved physiological markers have been shown to occur in both healthy humans 

and in disease populations, suggesting BRJ supplementation has important and powerful health 

benefits. The increase in NO bioavailability from nitrate supplementation has been shown to 

occur through both NOS independent (Lundberg et al. 2004) and dependent (Vanin et al. 2006) 

pathways. Many studies have demonstrated that reduction of nitrate (NO3
-) to nitrite (NO2

-) and, 

subsequently, to NO can provide a valuable pathway in which the body can utilize NO through a 

NOS-independent system unlike the traditional L-arginine pathway that is reliant on the NOS 

enzyme and cofactors (Ca2+ and BH4).  Through this NOS-independent pathway, NO3
- can be 

reduced to NO2
- and NO through several different mechanisms including reductase enzymes in 

bacteria in the mouth and acidic environment of the stomach (Benjamin et al. 1994), various 

enzymes and proteins including deoxymyoglobin and xanthine oxidoreductase (Cosby et al. 

2003; Shiva et al. 2007; Lundberg et al. 2004), and in hypoxic conditions (Vanhatalo et al.2011). 
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In the presence of a reduced partial pressure of oxygen (PO2), eNOS has been shown to be able 

to utilize NO3
- to produce NO (Gautier et al. 2006). Thus, nitrate supplementation may provide a 

means by which to improve NO-dependent vasodilation through both NOS-independent and 

NOS-dependent mechanisms.  As stated above, NO is an essential component to the skin blood 

flow response to local heat stress. Therefore, it is possible BRJ supplementation and the 

associated increase in bioavailable NO levels may provide beneficial effects in the skin, 

particularly in pathological conditions that have impaired NO function such as obesity or aging 

(Minson et al. 2002). 

Augmenting NO bioavailability in the systemic circulation has been suggested to 

improve endothelial function in various patient populations (Gautier et al. 2006). Microvascular 

and endothelial function in the cutaneous circulation has been shown to have a high correlation 

with responses observed in the systemic circulation; therefore, a minimally invasive model (i.e. 

laser-Doppler flowmetry combined with intradermal microdialysis) to assess microvascular 

function specifically in the skin without influence from underlying muscle blood flow can be 

used as a comparative method between these two vascular beds (Holowatz et al. 2007; Saumet et 

al. 1988, Minson et al. 2010). Local heating of the skin is used as a clinical tool to assess 

microvascular and endothelial function in various patient populations including diabetes, obesity, 

Raynaud’s phenomenon, and aging, (Cracowski et al. 2006; Minson et al. 2002). Because the 

underlying mechanisms of the cutaneous thermal hyperemic response remain unclear, it is 

important to understand these mechanisms in healthy humans. Inasmuch as NO3
- 

supplementation with BRJ has been shown to have positive health benefits in healthy humans 

and animal models, the purpose of this study was to investigate the role of dietary NO3
-

supplementation via BRJ in the skin blood flow response to local heating in healthy humans. We 
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tested the hypothesis that nitrate supplementation would augment the NOS-dependent 

component and contribution to cutaneous thermal hyperemia in healthy humans. 
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Chapter 2 - Methods 
Ethical Approval 

The Institutional Review Board at Kansas State University approved all protocols of this 

study. A written informed consent was reviewed and signed by each subject prior to 

participation. All procedures and protocols were performed in conjunction with the standards set 

forth by the Declaration of Helsinki. 

Subjects 

Six subjects (6 men: age 24 ± 1 yr, height 177 ± 6 cm, mass 80 ± 13 kg, body mass index 

26 ± 3 kg/m2), participated in this study. All were healthy, non-smokers, taking no medications 

and were free of cardiovascular, respiratory, and metabolic disease as determined by a medical 

history questionnaire. Subjects were asked to refrain from exercise, consumption of abnormal 

amounts (>300g/day) of leafy green vegetables (e.g. spinach), and the use of mouthwash 

products (e.g. Listerine) during the BRJ supplementation period as shown by previous 

experiments (Govoni et al. 2008; Bailey et al. 2009). A study by Lundberg et al. (2004) 

demonstrated that if subjects used antiseptic mouthwash and/or did not swallow after nitrate 

ingestion, there was a reduction in circulating plasma NO2
- levels (Lundberg et al. 2004, Govoni 

et al. 2008). This suggests that bacteria in the mouth and saliva play an important first step in the 

reduction process of NO3
- to NO2

- to NO. Subjects were asked to refrain from caffeine and 

alcohol at least 12 hours prior to the study. Testing was administered in a thermoneutral 

environment with a room temperature of ~23°C. 

Dietary Intervention 

Finger-stick blood draws following an overnight fast of ~8-12 hours for the determination 

of blood glucose, C-reactive protein, and blood lipid variables were collected prior to the local 
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heating protocol for both pre- and post-BRJ. Upon completion of pre-intervention testing, 

subjects received three days of nitrate rich BRJ (4.7-5.5 mM/day; 0.4g of nitrates) (Beet It, 

James White Drinks, Ipswich, UK). Subjects were instructed to drink the supplement throughout 

the day and take the last shot approximately 1.5-2 hours prior to reporting to the laboratory for 

the local heating protocol. This time frame has been previously shown to elicit peak circulating 

NO2
- levels (Bailey et al. 2009, Vanhatalo et al. 2010) and peak circulating NO2

- levels have 

been shown to be correlated with reductions in systolic and diastolic blood pressure (Vanhatalo 

et al. 2010). 

Subject Instrumentation 

Testing was conducted with the subject resting in the supine position with the 

experimental arm at heart level. To avoid the use of anesthetics, ice was used to numb the 

desired location prior to placement of microdialysis fibers (Hodges et al. 2009). Fibers were 

placed approximately 3-5 cm apart. Microdialysis fibers 10 mm in length with a 55-kDa 

molecular mass cutoff (CMA 31 Linear Probe; CMA Microdialysis, Kista, Sweden) were placed 

by first threading a 23-gauge needle through the intradermal layer of the skin on the ventral 

aspect of the left forearm. A fiber was then threaded through the lumen of the needle, and the 

needle was then removed, leaving the membrane in place. Approximately 45-90 minutes were 

allowed for resolution of the trauma response following microdialysis fiber placement before the 

continuation of the protocol. During this time, all fibers were perfused with lactated Ringer’s 

solution at a rate of 2 µl/min. 

Mean arterial pressure was monitored beat-by-beat via photoplethysmography 

(NexfinHD; BMEYE, Amsterdam, The Netherlands) and verified every five minutes via 
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automated brachial auscultation (S/5 Light Monitor; Datex-Ohmeda, GE Healthcare; Madison, 

WI, USA).  

Red blood cell (RBC) flux was used as an index of skin blood flow via laser-Doppler 

flowmetry (LDF) (PeriFlux 5010 laser-Doppler perfusion monitor; Perimed; Jarfalla, Sweden). 

Laser-Doppler flowmetry provides a minimally invasive, highly reproducible technique without 

influence from underlying skeletal muscle blood flow (Saumet et al. 1988). Local heating units 

(PF5020 local heating units and PeriFlux 5020 Temperature Unit; Perimed; Jarfalla, Sweden) 

were placed on the skin directly over each microdialysis membrane, and an integrated laser-

Doppler probe (Probe 413; Perimed; Jarfalla, Sweden) was placed in the center of each local 

heating unit to measure RBC flux directly over each microdialysis site. 

Drugs Administered 

Lactated Ringer’s solution was administered at the control site. A 20 mM concentration 

of the L-arginine analog NG –nitro-L-arginine methyl ester (L-NAME) has been previously 

shown to non-selectively inhibit all isoforms of NOS in human cutaneous microvasculature 

(Kellogg et al. 1999). At the end of the local heating protocol, a 54 mM concentration of sodium 

nitroprusside (SNP) (i.e. NO donor) was administered while simultaneously locally heating the 

skin to 43°C to elicit maximal vasodilation (Kellogg et al. 2008). All drugs were infused through 

the microdialysis fibers at a rate of 2 µl/min via microinfusion pumps (Bee Hive controller and 

Baby Bee Syringe Pumps; Bioanalytical Systems, West Lafayette, IN, USA) to each randomly 

assigned site. 

Experimental Local Heating Protocol 

Baseline skin blood flow, blood pressure, and mean arterial pressure were collected for 

approximately 5-10 minutes after the trauma resolution period. Subsequently, one of two 



8 

 

treatments were infused at random to each microdialysis site: 1) lactated Ringer’s solution 

(control site) or 2) 20 mM L-NAME (non-selective NOS inhibitor). After a period of at least 45 

minutes of drug infusion, temperature of the local heating units were increased from 33°C to 

42°C at a rate of 1°C/10sec (i.e. rapid local heating) until a steady-state was achieved for 

approximately 20-30 min. Once a plateau was established and maintained, the control site was 

then infused with 20 mM L-NAME in order to quantify NOS-dependent vasodilation during 

local heating. Once a 5-10 minute plateau to L-NAME infusion at the control site was 

established (i.e. post-L-NAME drop), each site was infused with SNP and heated to 43°C to 

achieve maximal vasodilation. 

Data Collection and Analysis 

Data was digitized and stored at 100 Hz on a personal computer. Data were analyzed 

offline using signal-processing software (Windaq; Data Instruments, Akron, OH, USA). Skin 

blood flow measurements were normalized to mean arterial pressure and expressed as cutaneous 

vascular conductance (CVC), calculated as the ratio of red blood cell flux to mean arterial 

pressure (i.e. RBC flux/MAP). Cutaneous vascular conductance values were normalized as a 

percentage of maximal vasodilation (%CVCmax) via SNP infusion and local heating to 43°C.  

All data were analyzed via Sigma Stat 3.5 (Systat Software; Point Richmond, CA, USA). 

All values are presented as mean ± SEM, and P-values < 0.05 were considered to be significant. 

A two-way ANOVA with repeated measures was used to compare pre- and post-BRJ 

supplementation CVC values at control and L-NAME sites for: 1) the initial peak phase of 

cutaneous thermal hyperemia; 2) the plateau phase of cutaneous thermal hyperemia; and 3) 

absolute maximal CVC values.  The percent NOS-dependent vasodilation and all blood pressure 

variables for pre- and post-BRJ supplementation were compared using a paired t-test. Percent 
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NOS contribution was calculated at the control sites as ((LH Plateau - Post L-NAME Drop/LH 

Plateau)*100).  
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Chapter 3 - Results 

Blood pressure data pre- and post-BRJ (nitrate supplementation) are summarized in Table 

1. There was no effect of nitrate supplementation on systolic blood pressure pre-BRJ (122 ± 2 

mmHg) to post-BRJ (118 ± 2 mmHg). Diastolic blood pressure was significantly reduced from 

pre-BRJ (74 ± 1 mmHg) to post-BRJ (61 ± 2 mmHg; p<0.05). Mean arterial pressure was 

significantly reduced from pre-BRJ (90 ± 1 mmHg) to post-BRJ (80 ± 2 mmHg; p<0.05). Blood 

lipid variables including total cholesterol, high-density lipoprotein, low-density lipoprotein, 

triglycerides, blood glucose, and C-reactive protein for pre- and post-BRJ are shown in Table 2. 

Only triglycerides were significantly reduced from pre-BRJ (95 ± 12 mg/dL) to post-BRJ (72 ± 6 

mg/dL; p<0.05). 

Absolute maximal CVC values are shown in Table 3 for both pre-and post-BRJ. There 

was no significant difference in absolute maximal CVC values among control sites (Pre-BRJ: 

1.81 ± 0.21 vs. Post-BRJ: 1.61 ± 0.14) or L-NAME sites (Pre-BRJ: 1.93 ± 0.17 vs. Post-BRJ: 

1.70 ± 0.18). 

Figure 1 shows the group mean data for the initial peak of the thermal hyperemic 

response to local heating for pre-and post-BRJ at control (solid bars) and L-NAME (gray bars) 

sites. The initial peak at L-NAME sites was significantly attenuated (p<0.001) compared to 

control sites prior to BRJ (control: 76 ± 3%CVCmax vs. L-NAME: 60 ± 4%CVCmax) and post-

BRJ (control: 75 ± 4%CVCmax vs. L-NAME: 59 ± 5%CVCmax); however, three days of BRJ had 

no effect on the initial peak at either control sites (Pre-BRJ: 76 ± 3%CVCmax vs. Post-BRJ: 75 ± 

4%CVCmax) or L-NAME sites (Pre-BRJ: 60 ± 4%CVCmax vs. Post-BRJ: 59 ± 5%CVCmax). 

Figure 2 shows the group mean data for the secondary plateau phase of the thermal 

hyperemic response to local heating for pre-and post-BRJ at control (solid bars) and L-NAME 
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(gray bars) sites.  The secondary plateau was attenuated (p <0.001) at L-NAME sites compared 

to control sites prior to BRJ (control: 88 ± 4%CVCmax vs. L-NAME: 45 ± 5%CVCmax) and post-

BRJ (control: 90 ± 4%CVCmax vs. L-NAME: 51 ± 3%CVCmax). However, following three days 

of BRJ, there was no significant difference in the secondary plateau at either control sites (Pre-

BRJ: 88 ± 4%CVCmax vs. Post-BRJ: 90 ± 4%CVCmax) or L-NAME sites (Pre-BRJ: 45 ± 

5%CVCmax vs. Post-BRJ: 51 ± 3%CVCmax). 

Figure 3 shows the group mean data for the post-L-NAME drop. The decrease in CVC to 

L-NAME infusion during the plateau phase at control sites was significantlygreater after three 

days of BRJ supplementation (Pre-BRJ: 36 ± 2%CVCmax vs. Post-BRJ: 28 ± 1%CVCmax, 

p<0.05). Figure 4 shows theindividual responses (thin, dashed lines) and group mean (± SEM) 

data (thick, solid line) depicting contribution of %NOS-dependent vasodilation following three 

days of BRJto the plateau phase (i.e. NO component) of the cutaneous thermal hyperemic 

response to local heating. Following three days of BRJ, there was a significant increase in the 

NO contribution to the plateau of cutaneous thermal hyperemia (Pre-BRJ: 57 ± 3%CVCmax vs. 

Post-BRJ: 64 ± 2%CVCmax, p<0.05). The modest increase in NOS dependent vasodilation was 

due entirely from a greater decrease in %CVCmax to L-NAME infusion during the plateau phase 

at control sites (Figure 3).  As can be seen in Figure 4, most subjects showed a slight increase in 

NOS-dependent vasodilation from pre- to post-BRJ with one subject showing a robust (~20%) 

increase. Taken together, these data suggest BRJ supplementation augments the NOS-dependent 

component of the cutaneous thermal hyperemic response to local heating in healthy humans. 

 



12 

 

Chapter 4 - Discussion 

To our knowledge, this study is the first to investigate the effects of nitrate 

supplementation via BRJ on cutaneous thermal hyperemia during local heating in healthy 

humans. The primary finding of this study suggests nitrate supplementation modestly increases 

NOS-dependent vasodilation. Although we observed no significant effect of nitrate 

supplementation on the initial peak or secondary plateau phase of cutaneous thermal hyperemia 

with three days of BRJ, we did find a greater decrease in CVC in response to L-NAME infusion 

during the plateau at control sites. This suggests nitrate supplementation provides modest 

improvements to the NOS-dependent component of cutaneous thermal hyperemia and the 

augmented post L-NAME drop accounts for the entirety of the increase in the NOS-dependent 

contribution (Figure 3). Inasmuch as the secondary plateau did not differ from pre-BRJ to post-

BRJ, we conclude the increase in NOS-dependent vasodilation was due to further reductions in 

the post-LAME drop. 

Kellogg et al. (2008, 2009) effectively demonstrated that endothelial nitric oxide 

synthase (eNOS) was the primary NOS isoform responsible for NO generation during local 

heating in the skin. Although we used a non-specific NOS inhibitor (L-NAME) in this study, 

data from Bruning et al. (2012) confirmed the observations of Kellogg et al. (2008, 2009), which 

suggests our data are indicative of an increase in eNOS-dependent vasodilation.  In the context of 

eNOS and dietary nitrate supplementation, studies have demonstrated that eNOS can reduce 

NO2
- to NO during anoxia/hypoxia (i.e. low O2 levels) (Gautier et al. 2006; Vanin et al. 2006). 

Although local heating of the skin is not expected to reduce PO2, it is possible changes in blood 

temperature and/or skin temperature may affect the ability of eNOS to produce nitric oxide and 

nitrate supplementation may augment the ability of eNOS to produce NO. The NO-dependent 
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vasodilation during local heating of the skin in healthy humans is robust and, as such, changes in 

the ability of eNOS to produce NO during local heating would appear to be minimal. However, 

our present data demonstrating a modest improvement in NOS-dependent vasodilation suggests 

nitrate supplementation may improve eNOS function. More research is needed to determine how 

changes in temperature (blood, skin, etc.) and nitrates interact with eNOS. 

It has been proposed the local increase in temperature may increase bioavailable NO 

through the stimulation of endothelial cells in turn augmenting NO generation by increasing 

eNOS activity (Kellogg et al. 2008). It is possible that local heat application may increase the 

activity of heat shock protein 90 (HSP90), a signaling protein that can stimulate eNOS activity 

(Shah et al. 1999). Shastry et al. (2002) have shown the HSP90 inhibitor geldanamycin 

attenuates the secondary plateau by ~20% suggesting that HSP90 contributes to cutaneous 

thermal hyperemia and may enhance eNOS function and NO generation. To our knowledge, 

there has been no studies investigating a potential interaction between HSPs and nitrate 

supplementation; however, it is possible in the present study that dietary nitrates enhance HSP90 

activity and, in turn, aid in the function of eNOS to produce nitric oxide. Future studies 

examining a potential interaction between eNOS and HSP90 while supplementing with nitrates is 

warranted in order to support this concept. 

Although we observed a modest increase in NOS-dependent vasodilation, it is possible 

we did not observe a greater response due to a ‘ceiling effect’. In the present study, young 

healthy subjects had plateau values reaching ~90%CVCmax and higher suggesting minimal room 

for improvement. Minson et al. (2002) with healthy aging, have demonstrated, that the secondary 

plateau phase and contribution of NO is attenuated compared with healthy young subjects.  

Minson and colleagues therefore concluded that healthy aging diminishes cutaneous 
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microvascular function by reducing NO responsiveness and/or the production of NO itself. It is 

possible greater increases in NOS-dependent and independent vasodilation may be observed in 

populations with reduced responses, such as aging. 

Previous studies have shown the ingestion of nitrates can result in an increase in 

circulating nitrite levels (Lundberg et al. 2004). Further reductions of nitriteto NO can occur 

through various pathways and reduction mechanisms and can be introduced to the systemic 

circulation where NO can promote vascular smooth muscle relaxation and improve blood flow 

(Cosby et al. 2003). Nitrate supplementation has also been showed to improve exercise tolerance 

in peripheral artery disease (PAD) patients (Kenjale et al. 2011), lower the oxygen cost of 

exercise (Bailey et al. 2009; Larsen et al. 2007), and improve skeletal muscle blood flow 

(Ferguson et al. 2013). It is important to note the aforementioned studies demonstrated the 

effects of nitrate supplementation in the systemic circulation, whereas the present study and its’ 

primary outcomes are directed predominantly to the microvasculature of the cutaneous 

circulation. Although we observed a minimal increase in microvascular blood flow, we did 

observe significant reductions in DBP, MAP, and triglycerides, which is consistent with previous 

data (Kapil et al. 2010, Webb et al. 2008, and Zand et al. 2011), and suggests our dosing of 

BRJ/nitrates was effective. 

Experimental Considerations 

There are at least two limitations that need to be addressed in the present study. First, this 

study specifically incorporated male subjects in order to reduce skin blood flow variability due to 

changes in sex hormone levels across menstrual cycle and oral contraceptive phase in female 

subjects (Charkoudian et al. 2010). It is possible that reproductive hormones could affect NO 

bioavailability. To our knowledge there have been no studies investigating the relationship 
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between reproductive hormones and dietary nitrates. Second, the oral dosage or concentration of 

BRJ (0.4g of nitrates; ~5mM/day) supplemented could be insufficient in providing systemic 

effects and could possibly explain why we observed no change in the initial peak and secondary 

plateau phase of cutaneous thermal hyperemia during local heating. This seems unlikely 

inasmuch as three days of BRJ supplementation resulted in an approximately 10mmHg decrease 

in DBP and MAP and a decrease in triglycerides of ~25mg/dL in the blood. These findings 

suggest the dietary intervention was effective in providing an adequate amount of nitrate 

demonstrated by systemic and blood lipid profile improvements. However, we cannot rule out 

the possibility of the dietary supplement being diluted once it reached the cutaneous vasculature. 

For example, Wong et al. (2004) demonstrated that intradermal microdialysis infusion of an H1 

histamine antagonist attenuated the skin blood flow response to passive heat stress whereas an 

oral dose of antihistamine had no effect on skin blood flow during heat stress. This suggests 

doses of drugs administered orally may not reach the skin in sufficient concentration to have an 

effect. 

Conclusion 

This is the first mechanistic study to investigate the effects of nitrate supplementation via 

BRJ on cutaneous thermal hyperemia during local heating in healthy subjects.  Our findings 

suggest that nitrate supplementation provides a modest improvement of the NOS-dependent 

contribution of cutaneous thermal hyperemia. Future research is needed to better understand the 

effects of dietary nitrate supplementation on the skin blood flow response during local heating in 

not only healthy humans, but also patient populations where nitrate supplementation may have 

more marked effects in NO-mediated vasodilation. 
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Table 1. 

 

 
Values are means ± SEM; n = 6. Hemodynamic variables are presented Pre-BRJ and Post-BRJ 

supplementation. SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean 

arterial pressure; * P<0.05 vs. Pre-BRJ 

 
 
Table 2. 

 

 

Values are means ± SEM; n = 6. Blood lipid profiles were taken prior to and after BRJ 

supplementation. Total cholesterol (TC), high-density lipoprotein (HDL), low-density 

lipoprotein (LDL), triglycerides (TG), C-reactive protein (CRP) * P<0.05 vs. Pre-BRJ. 

 

 

Blood Pressure Data 
 

 
SBP (mmHg) DBP (mmHg) MAP (mmHg) 

 
Pre-BRJ 

 
122 ± 2 

 
           74 ± 1 

 
            90 ± 1 

 
Post-BRJ 

 
118 ± 2 

   
61 ± 2* 

   
80 ± 2* 

Blood Lipid Profiles & CRP 
       

 
TC 

(mg/dL) 
HDL 

(mg/dL) 
LDL 

(mg/dL) 
TG 

(mg/dL) 
Glucose 
(mg/dL) 

CRP 
(mg/dL) 

 

Pre-
BRJ 154 ± 13 78 ± 12 81 ± 20 95 ± 12 95 ± 4 0.46 ± .07 

 

Post- 
BRJ 

156 ± 11 62 ± 10 87 ± 13 72 ± 6* 102 ± 7 0.51 ± .07 
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Table 3. 

 

 

 

 

 

 

 

Values are mean ± SEM. There was no statistical difference between maximal CVC Pre-BRJ or 

Post-BRJ supplementation in either control or L-NAME sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Absolute Maximal CVC Values     
      

Treatment Site Maximal CVC 
Control        Pre-BRJ 1.81 ± 0.21 
L-NAME     Pre-BRJ 1.93 ± 0.17 
Control       Post-BRJ 1.61 ± 0.14 
L-NAME    Post-BRJ 1.70 ± 0.18 
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Figure 1. Group mean (± SEM) CVC data depicting initial peak following three days of BRJ 

 # P<0.001 vs. Control 
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Figure 2. Group mean (± SEM) CVC data depicting secondary plateau following three days of 

BRJ.# p<0.001 vs. Control. 
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Figure 3. Group mean (± SEM) CVC data depicting post-LNAME drop following three days of 

BRJ.* p<0.05 vs. Pre-BRJ. 
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Figure 4. Individual responses (thin, dashed lines) andgroup mean (± SEM) data (thick, solid 

line) depicting contribution of %NOS-dependent vasodilation following three days of BRJ.  

* p<0.05 vs. Pre-BRJ for the group data. 
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