
OPTIMIZER DESIGN USING
TRANSFORMATIONAL ATTRIBUTE GRAMMARS
APPLIED TO INTERMEDIATE LOW-LEVEL TREES

by

STEPHEN V. YOUNG

B. S., Kansas State University, 1985

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1987

K'T
Major^Professor

A11ED2 bSTb3b

I

Table of Contents

mi
List of Figures ivn
Acknowledgements v

*c

*o v

Chapter One — Introduction 1

1.1. Optimization 1

1.2. Purpose of Optimization 1

1.3. Efficient Optimizer Design Considerations 1

Chapter Two — Optimization Techniques 4

2.1. Intermediate Representations 4

2.1.1. Quadruples 4

2.1.2. Trees 5

2.2. Attribute Grammars 6

2.3. Translational Grammars 9

2.4. Grammars Applied to Optimization 10

Chapter Three — Introduction to TAGs 12

3.1. Transformational Attribute Grammars (TAGs) 12

3.2. Intermediate Low-level Trees (ILTs) 13

3.2.1. ILT Decorations 14

3.2.2. TAG Attributes 16

3.3. Implementing Optimizations in TAGs,A Computer Language 16

3.3.1. TAG Syntax 17

3.3.2. The TAG Compiler 18

Chapter Four — Implementations Using TAGS 20

4.1. Constant Folding and Dead Code Elimination 20

4.1.1. Definition 20

4.1.2. Implementing the Concept 22

4.1.3. The TAG/ILT Constant Folding Optimizer.ConsFold 23

4.1.3.1. A Brief Description of the ConsFold Functions 23

4.1.3.2. Analysis and Transformations 24

— Constantness of Variables 25

— Constantness of Expressions 26

— Dead Code Removal in Forks 29

— Performing Constant Folding in Loops 30

— Processing Procedure/Function Calls 32

4.2. Loop Constant Removal 37

4.2.1. Definition 37

4.2.2. The TAG/ILT Loop Constant Optimizer, LoopCon . . 39

4.2.2.1. A Brief Description of the LoopCon Functions. 39

4.2.2.2. Analysis and Transformations 40

— Detecting Nonconstant Variables in a Loop 40

— Detecting Constant Items in a Loop 42

— Reserving Insertion Points 43

— Moving Loop-Constant Expressions 45

— Moving Loop-Constant Statements 48

-- Rewalking Moved Code 50

4.3. Notes on Implementation 52

4.3.1. Tools Built in TAGs 52

4.3.2. The Testing Process 53

Chapter Five — Conclusion 55

5.1. Findings 55

5.2. Future Work 56

n

Bibliography 58

Appendix A Predeclared Values and Functions Al

Appendix B Pascal/Quad Constant Folder Bl

Appendix C ConsFold TAG CI

Appendix D LoopCon TAG Dl

in

List of Figures

Figure 2.1. Representation of a code segment in quads 5

Figure 2.2. An AST for the program of figure 2.1 6

Figure 3.1. Initial ILT nodes and decorations 15

Figure 3.2. A program in ILT form 15

Figure 3.3. Example of a TAG production 18

Figure 4.1. An assignment tree 25

Figure 4.2. Moving an expression that is too small out of a loop 43

Figure 4.3. Moving a loop-constant item 44

Figure 4.4. Moving a loop-constant expression 45

Figure 4.5. Moving constant items out of nested loops (a) 50

Figure 4.5. Moving constant items out of nested loops (b) 51

Figure 4.6. Compiling and testing an optimizer 54

IV

Acknowledgements

I wish to thank Dr. Thomas Pittman for his suggestion of this topic.

His patient assistance was invaluable in the completion of this work.

Secondly, I wish to thank my major advisor, Dr. Virgil Wallentine and

my committee members, Dr. David Schmidt and Dr. Austin Melton for their

support of this thesis.

I would also like to thank my friends for their help and

encouragement. A sincere thanks goes to Scott Hammond and Steve Culp for

proof reading this thesis. Their many suggestions for its improvement were

greatly appreciated.

Lastly, and most of all, I thank my parents, Leonard and Wilma Young

for their love and many prayers. Without their support and consistent

encouragement during my graduate studies, I could never have finished.

Chapter One

Introduction

1.1. Optimization

Optimization can be defined as any attempt to improve the efficiency

of an algorithm from the time it is derived to the time it is converted into a

particular machine code. Although there is rarely a guarantee that resulting

code produced by an optimization is the best possible, any special algorithm

which performs transformations to code in an effort to improve its

efficiency is called an optimizer.

1.2. Purpose of Optimization

The goals of optimization are the reduction of execution time and the

reduction of code and data space. These two goals often conflict. For

example, in an attempt to reduce execution time, a procedure call can be

replaced with the procedure body (back substitution). Thus, the time it takes

to call the procedure is eliminated. As a result however, the amount of code

has been increased. This conflict is not always the case and usually some

compromise is possible so that a reduction in the amount of code also results

in a reduction in execution time as well.

1.3. Efficient Optimizer Design Considerations

This work is not concerned with the efficiency of different

optimizations, but rather with the efficiency of the design of optimizers and

the appropriateness of the intermediate language representation on which the

optimizations must operate.

The representation of a program is largely constrained by the

semantics of the source language and the peculiarities of the target machine.

Often, the program goes through several different representations as

different optimizations are applied (as in the Bliss-11 compiler [56]). This

tends to complicate the task of properly ordering the optimization phases and

consequently, the potential advantages of re-using optimization phases are

lost. A uniform representation which is the same language for the duration

of the optimization phases would preserve modularity and the ability to

reapply optimization phases.

The most common representations are forms of "three-address code"

(usually quadruples) as presented in several compiler texts [3] [7] [34]. A

more useful representation (at least for machine-independent optimizations)

is a program tree. Most of the tree languages that have been developed are

no more than simple abstract-syntax trees which lack the ability to represent

the target machine code (TCOL, Tree Computer Oriented Language

developed for the Bliss-11 compiler and later adopted for the Production

Quality Compiler Compiler (PQCC) [56]). A more useful form of tree is

presented in chapter three of this thesis.

In the next chapter the standard intermediate representations of quads

and trees are defined, the concepts of attributed grammars and translational

grammars are defined, and the application of grammars to optimization is

reviewed. Chapter three defines Intermediate Low-level Trees (ILTs) and

Transformational Attribute Grammars (TAGs), which were proposed as a

way of doing optimization [39]. In chapter four the optimizations of constant

folding, dead code elimination, and code motion (loop constant removal) are

discussed and the implementation of these optimizations in TAGs is

presented.

Chapter Two

Optimization Techniques

2. 1 . Intermediate Representations

In a compiler, the front-end translates a source program into an

intermediate representation from which the back-end generates target code.

Intermediate representations of the program are an "interface" between the

high-level structure of the source language and the low level details of the

target language. An intermediate language usually consists of a list of

operations which is semantically equivalent to the source program.

Optimization is applied to the program at this intermediate level and the

definition of the intermediate code language will have a considerable effect

on the complexity of the optimization algorithm [6].

2.1.1. Quadruples

Optimizations that are very machine-specific require an intermediate

representation that encodes the necessary low-level details about the target

machine hardware. The most common representation for this form is much

like assembly language and is called "quads" (a form of three-address code

[3]). Each individual program operation can be represented as a quad. A

quad consists of one or two source operands, an operator and a destination

operand. The operands are normally specified by variable names, either as

specified by the original programmer or as temporaries by the compiler.

High-level programming constructs, such as loops and array accesses, are

decomposed in the quad notation to compares, branches and explicit address

calculations. A short program segment and its quad representation are

shown in figure 2.1.

Most of the program structure is lost in the quad representation and

therefore, for a compiler that uses quads as an intermediate code language,

much of the work of the optimizer is concerned with reconstructing

information about the program structure [3] [7].

:=
/ 1 / , X

X- 1
L1: <,X,10,T0

WHILE (X < 10) DO BRF/TO,
,
L2

BEGIN X *
,
A

, B , T

1

¥A = A*B + C*D < *
>
c

/
D

«
T2

X=X+1 + ,T1,T2,A

END +
>
x

> 1 i
x

BR, , ,L1

L2:

Figure 2. 1 . Representation of a code segment in quads.

2.1.2. Trees

The most convenient intermediate program representation for

machine-independent optimizations is a tree or acyclic graph.

Machine-independent optimizations require information about the program

structure and in order to achieve many of these structural requirements, a

compiler must take advantage of the structure available in the syntax of the

source program. To preserve the structure , it is necessary that the

intermediate representation be capable of representing that structure. The

representation which preserves the natural hierarchical structure is an

abstract-syntax tree (AST). The program segment of figure 2.1 is

represented in an AST in figure 2.2. The major limitation with AST

intermediate languages is that they lack the ability to represent the details of

the target machine code that is inherent in quads.

An AST results from syntax analysis. With an attribute grammar

(defined in the following section) an "attributed" tree (AT) can be obtained

by associating attributes with nonterminal symbols in the grammar and

correspondingly, with the nodes of the AST and evaluating attributes as

specified by the rules of an attribute grammar.

X
' WHILE

/C'JX
X 10 =

=

/\ /\
A +

* *

A B C D

X +

/\
X 1

Figure 2.2. An AST for the program segment of figure 2. 1

.

2.2. Attribute Grammars

Attribute grammars were originally proposed as a means of defining

the semantics of programming languages [26]. Since then, they have been

employed for many purposes, often to give a theoretical framework for

semantic analysis in compiler writing [28] [50] (in code generation [15] [16]

and optimization [17] [39]).

An attribute grammar is an extension of a context-free grammar. It

associates a set of attributes (possibly empty) with each nonterminal symbol

in the vocabulary of the grammar. Each attribute represents a specific

property of a nonterminal and can take on any of a specified set of values.

There are two classes of attributes; inherited and derived (synthesized).

Inherited attributes are passed down the parse tree to the nonterminal with

which they are associated. Derived attributes are passed up the tree to

productions containing references to their nonterminal. Consider Knuth's

example of a grammar for binary numbers.

S ->N
N->L
N -> L "." L

L ->B

L ->LB
B -+ "0"

B -VT

This context-free grammar generates all binary numbers in the

form of a sequence of ones and zeros optionally followed by a binary

point and another sequence of ones and zeros. The value of a

binary number represented by this grammar is derived on the basis

of the value of each digit and its position in the string. This value

can be expressed by extending the above CFG into an AG as follows.

S —> N Tvalue

N T value —» L >l T value T length

—> L I T value 1 T length 1
"." L i (-length2) T value2 T length2

{value = value 1 + value2}

L -l scale T value T length —> B -l scale Tvalue

{length = 1}

—> L vl (scale + 1) T valuel T lengthl B X scale T value2

{length = lengthl + 1}

{value = valuel + value2}

B X scale T value —>
"0"

{value = 0}

->"1"

{value = 2** scale}

Each nonterminal symbol has associated with it a list of attributes

("I" indicates an inherited attribute and "T" indicates a derived attribute). In

this example there are three attributes; iscale , lvalue and ^length .

Every bit (B) inherits a scale factor corresponding to its position in the

bit string and derives a value which is either (if the bit is "0") or 2 raised to

the power of scale (if the bit is "1").

A list of bits (L) inherits a scale factor and derives a value and a length.

If the list is a single bit (L -> B), then the length is one, the value is the value

of that bit, and the scale is the scale that was inherited by the list. If the list is

a list followed by a bit (L -> LB), then the derived length is one greater than

that of the list in the right part of the rule, the value is the sum of the values

of the list in the right part and its following bit, the scale inherited by the list

in the right part is one greater than that inherited by the list and the scale of

the bit is the same as the scale inherited by the list.

A number (N) has no inherited attributes but it derives a value which is

8

the value of its (single) list of bits (N -> L), or the sum of the values of the

two lists (N -» L'V'L). The scale of the list to the right of the binary point is

the negative of the length of that list and the scale of the other (or only) list is

zero.

2.3. Translational Grammars

Translation can be formally defined via a grammar with two right

parts to each production rather than just one. A "transduction" grammar is

an extension of a context-free grammar. A second right part is added to a

CFG which will generate a new string of terminal and nonterminal symbols.

Each occurrence of a given nonterminal in one right-part must have a

corresponding occurrence of the same nonterminal in the other right-part,

but not necessarily in the same order. The second right-part generates a

string in either the same or possibly a different language than the underlying

context-free grammar. The result is also a context-free grammar. A

transduction grammar produces a translated copy of the input as output, and

they can be used for such string-to-string translations as prefix, postfix or

infix notation.

A transduction grammar with an underlying CFG that generates

expressions containing addition and multiplication operators is shown below.

This grammar defines a translation from infix to postfix notation.

S -»E =>E

E ->E + T =>ET +

E ^T =>T

T ->T*F =>TF*
T ->F =>F

F -> (E) => E

F -> a => a

The translation of the string (a + a) * a is illustrated in the following

parallel derivation.

E E
T T
T * p TP*
F*F FF*
(E)*F EF*
(E + T) * F ET + F *

(T + T) * F TT + F *

(F + T) * F FT + F *

(F + F) * F FF + F *

(a + F) * F aF + F *

(a + a) * F aa + F *

(a + a) * a aa + a *

Transduction grammars must follow a rule of preserving the items in

the input string (every nonterminal in the right-part of the underlying CFG

must appear in the translational-part of the transduction grammar). A

grammar which does not preserve the input object but instead translates

(transforms) the input object into another form, is called a

"Transformational Grammar". Not every nonterminal in the right part of

the underlying CFG is regenerated in the right-part of the transformational

grammar. Rather than implementing complex reorderings (such as postfix

notation) with string-to-string (transduction) grammars, strings can be

translated at least partially into trees and then the trees are transformed with

transformational grammars.

2.4. Grammars Applied to Optimization

Combining the power of an attribute grammar with a transformational

grammar has been proposed as an effective means of implementing

10

optimizations.

In the MUG2 compiler generator [17], a transformational grammar is

applied to an attributed program graph. Optimization is done by

transformation of the program graph into another graph in the same

representation. The grammar they use is called an "Attributed

Transformational Grammar" (ATG).

We use a "Transformational Attribute Grammar" (TAG) [39] which

extends an attribute grammar into a transformational grammar. A TAG is

similar to the ATG of the MUG2 project but has eliminated some of the

inconsistencies for greater grammatical clarity and implementation. TAGs

are applied to attributed (decorated) program trees (ILTs) and are presented

in the next chapter.

11

Chapter Three

Introduction To TAGs

3.1. Transformational Attribute Grammars (TAGs)

TAGs were introduced as a powerful, intuitive language for the

specification of optimizing transformations in a compiler [39]. A

Transformational Attribute Grammar is a Transformational Grammar that

is also an Attribute Grammar and is applied to attributed program trees

(ILTs) to produce program trees in the same language. The power of TAGs

is in their ability to pass information through attributes to the point where it

is needed and their ability to specify transformations based upon the

evaluation of attributes. Applying TAGs to ILTs is an effective means of

implementing optimizations and demonstrating this efficiency is the

intention of this work.

Optimization has been well defined in the literature, and has been

broken up into several distinct transformations (One work distinguishes 27

different kinds of optimization [39]). Each optimization generally follows

the same pattern and each usually requires two (maybe not distinct) phases;

analysis and transformation. In a TAG, attribute grammars function to

specify both the analysis and transformation phases. The transformations of

the second phase are distinguished by extending the AG into a TAG, with

transformational parts in some or all of the rules. Thus, TAGs are suitable

for specifying most of the known optimizations.

12

3.2. Intermediate Low-level Trees (ILTs)

The intermediate representation of a program plays an important role

in the development of compiler back-ends. The level of detail representative

of the intermediate language will determine the level of effort spent in

optimizing and code-generating algorithms. The information needed is the

preserved structure of the original source program and a knowledge of the

target code. Quads have the capability of representing the target machine but

almost all of the original program structure is lost. High-level trees, on the

other hand, are an excellent vehicle for preserving the program structure but

rarely provide enough knowledge for generating the target machine code.

An intermediate language that is superior to representations in quads

and high-level trees is "Intermediate Low-level Trees". ILTs have the

combined capability of capturing the ability of quads for representing the

details of the target machine and retaining the high-level structure of the

program that is typical of high-level trees.

The front end of a compiler translates a source program into an

intermediate language, optimizing modules perform transformations on that

language and the final pass of the compiler translates the intermediate

language into the target machine code. The information needed for all

phases of optimization and code generation is represented in an ILT. Thus,

only a single intermediate language is needed, which is contrary to other

methods in which the program goes through several different

representations before the final code is generated (as in the Bliss- 1 1 compiler

[56]). The use of ILTs as intermediate representations does not restrict the

ordering of optimizations and the ability to reiterate optimizations is

preserved. The uniformity of the program representation (ILTs) between

different optimizations also provides a basis for the specification of

optimization algorithms in a uniform language (TAGs).

13

3.2.1. ILT Decorations

As the front end translates the source language into an ILT, syntactic

and semantic information regarding the source program is associated with

the nodes of the tree. The tree is (by conventional terminology) "attributed"

with one or more items of information at each node and in effect, is a sort of

directed graph as a result of node decorations which are links to other nodes.

These links however, are not actual tree edges and are used only in the

evaluation of attributes. Thus, the complexities of an arbitrary graph

traversal are not present in the traversal of ILTs.

Two links which exist in an ILT are those to variable and procedure

declarations. Declaration links are provided from each variable cell in the

program to its declaration (DCLN) node. Information regarding the

variable cell, such as its size and type, can be obtained via this link; The

DCLN node is decorated with the corresponding variable's type (a TYPE

node) and the TYPE node is decorated with the corresponding variable's

size. A link is also provided from each procedure reference (CALL node) to

its corresponding procedure tree (PROC node).

The front end places all of the initial information needed for

optimization in the ILT and when applied, optimizations may add to, or

change the decorations at each node in the tree. A list of the nodes and

their initial front-end decorations is given in Figure 3.1. Figure 3.2

illustrates the representation of a trivial source program as an ILT with

most of its initial decorations.

14

NODE NAME DECORATIONS
PROG none
PROC procedure index

TYPE size

DCLN variable index, type

PAIR none
LOOP control variable index

IF none
COPY variable index, variable declaration

CALL procedure declaration

GOTO loop reference

BINOP/op expression type

UNOP/op expression type

FETCH variable index, variable declaration

CELL variable index, variable declaration

CONSTANT value, type

Figure 3.1. Initial ILT nodes and decorations.

' \ i i
-

—

\ \ '
j (CONST ANT)g10

program example;

yar

x,y,z : integer,

begin

x:= 10

if (y < z) then

X:= z

else

x:=y

*
\~"~ "" (binop/<)

\ \ , (FETCH)*y (FETCH)* z (fETCH)*z (CELU*x (FETCH)

^ x/ jr jr Tir .

S
* \v_ ^CELL)gy (CELL>z j£ELL>

> ^ - -c- _ - - "

Figure 3.2. A program in ILT form.

15

3.2.2. TAG Attributes

As an optimization walks the program tree, information derived from

the tree can be carried through the program tree with the attributes in a TAG

and transformations can be made to the tree based upon the evaluation of

these attributes. Since optimizations require context information, any data

that is obtainable from the tree is a candidate to be passed by attributes to

wherever it is needed in the tree. This includes not only decorations but also

parts (references to nodes) of the tree. Transformations on non-contiguous

parts of the program can be performed with TAGs due to the context

information that is made available through the attributes of the grammar.

Thus, transformations are not restricted to local parts of the tree.

3.3. Implementing Optimizations in TAGs, A Computer Language

TAGs are implemented as a data flow language. Operations are not

necessarily performed as they occur sequentially in the TAG but when the

values that they depend upon are available. Specific sequencing of

operations can be accomplished by forcing dependencies.

Attributes are represented as identifiers but each attribute is assigned a

value only once in each attribute-evaluation part of a production rule. Each

production in a TAG is implemented as a (attribute-evaluation) function

where the attributes associated with a given nonterminal constitute value and

reference parameters. Functions which manipulate attributes but do not

necessarily operate on tree nodes may be included in the grammar as

pseudo-nonterminals and are not distinguishable from nonterminals. Other

functions are available for attribute evaluation which (like

pseudo-nonterminals) are not part of the original underlying CFG and are

built into the TAG language as intrinsics encoded in a separate module (as

"predeclared"s). A description of the "predeclared" functions is given in

16

Appendix A.

3.3.1. TAG Syntax

Figure 3.3 illustrates the form of each production in a TAG function.

The four main components which make up a TAG production are a left part,

a right part, attribute evaluations and an optional transformational part.

The left part (corresponding to a left part of the underlying CFG

production) consists of the nonterminal identifier, and its associated list of

attributes (identifiers) and their types.

The right part consists of the tree pattern which is the right part of the

underlying CFG production.

Attribute evaluations are enclosed in braces and consist of function

references, direct assignments to attributes, and alternatives. Alternatives

distinguish the different actions to be taken based upon certain criteria

(constraints), much like a high-level language CASE-statement.

The transformational part is delimited by a double arrow and indicates

the new pattern which the left part will be transformed into. More than one

new tree pattern may be indicated in the transformational part (seperated by

"or" bars) in which case the pattern that is chosen depends upon the path

(alternative) taken in the attribute evaluations.

In the example form of figure 3.3, there are three alternatives matched

with three different transformations. Only one alternative is taken (the

"true" one). If the first constraint is "true" then the first alternative is taken

and the input tree (node) is transformed into a different node (NEW NODE).

If the first is "false" but the second is "true" then the second alternative is

taken and the tree is transformed into "R" which is a subtree of the original

node. If neither of the constraints are "true" then the "otherwise" alternative

is taken and the tree is transformed into "N" which is itself (that is, the

17

original node is not transformed at all). Some productions may not perform

transformations in which case a transformational part will not appear.

nonterminal
identifier

i

Attributes (Identifiers)

and associated types

tree: STMT^Integer -iSei ^Table Tlntege

six 4 Inset lvalue T newva

—> N:<N0DE L : tree R : tree>*decoretion

(L : STMT 4.x ^Inset lvalue ty ttemp}

(R : STMT'4-x sUemp lvalue Tz ttemp2}

r TSet ; Le

il toutset J~P
a

j

1

Left

rt

Right
part

i

(y=-Z < constraints

==> tnewval : y + z

{:addset itemp2 tnewval toutset}
y « z 4-

==> tnewval : y - z

{:addset itemp2 inewval toutset}
otherwise

==> tnewval : value

toutset : temp2
}

<NEW NODE>«decoration
|
R

|
N

*

Attribute
Evaluation

•Transformation part

i i

transformation alternatives

Figure 3.3. Example of a TAG production.

3.3.2. The TAG Compiler

A prototype compiler to translate TAGs into Pascal code was

18

developed on the Macintosh computer and later ported to the Vax 1 1/780. It

has been used in the classroom at Kansas State University and was used to

compile the TAGs presented in this work.

19

Chapter Four

Implementations Using TAGs

4.1. Constant Folding and Dead Code Elimination

4.1.1. Definition

The constant folding optimization, also known as subsumption and

constant propagation, is the evaluation of any expressions involving constant

operands at compile-time. Variables which have been set to a constant value

are replaced by the constant itself, and any operator node that has constant

subtrees is replaced by a constant node which is the evaluation of the

operator node. Consider the following example:

A = 10 A = 10

B = 20 B = 20

C = A+B C = 30

IF (C = 30) THEN \ IF (30 = 30) THEN
D = 40 D = 40

ELSE ELSE

D = 50 D = 50

END IF END IF

The constants assigned to A and B in statements 1 and 2 replace the

uses of A and B in statement 3. The expression can then be evaluated at

statement 3. This finds C=30 which is then propagated to the use of C in the

20

IF expression. The same example can be represented as follows in an ILT.

PAIR PAIR

COPY

10 A COPY

/\
20 B COPY PAIR

30 C IF

30 30

COPY

/\
50 D

COPY

/\
40 D

An immediate and obvious result of constant folding is dead

(unreachable) code. Instructions are considered dead when they cannot be

executed, either because they are in an area of the program which can no

longer be reached, or because their results are never used. Most dead code is

located in branches of a fork where the condition of the fork is constant. In

the previous example the constant value for C was propagated into the IF

expression. The result is that the IF condition becomes constant also (both

subtrees of the BINOP/= node are constant) and is folded by evaluating the

expression at the BINOP node. Once folded the condition becomes "IF

(true) then". We can see that the ELSE block is now dead code and can be

removed. Furthermore, the IF statement is no longer needed because of its

constant-true condition and is also removed (Actually, the IF node is

transformed into the THEN subtree. If the condition would have been

constant-false then the IF node would have been transformed into the ELSE

21

subtree.). The tree now appears as follows.

PAIR

COPY PAIR

10 A COPY PAIR

/\ y
20 B COPY PAIR

/\ y
30 C COPY

40 D

In addition, if it is determined that A, B and C are no longer needed

(their results are no longer used), then the assignments to these variables are

also considered "dead". In this case we are left with the following single

statement.

PAIR

COPY

/\
40 D

Constant folding and dead code elimination have many obvious

advantages and no disadvantages.

4.1.2. Implementing the Concept

As can be seen, the concept of constant folding and dead code

elimination is straightforward and simple. However, the implementation of

an optimizer to perform such analysis and transformations is not an easy

22

task.

As stated previously in chapter two, the intermediate program

representation upon which the optimizer works will make a big difference in

the difficulty level of the design for the optimizer. The standard of

quadruples was used as an intermediate representation in the design of an

optimizer which performed the transformations of constant folding and dead

code elimination discussed above, with Pascal being used as the

implementation language (Appendix B). The design of the optimizer became

very complex and nerve racking, not to mention very time consuming. As a

result of the complexity of the code, the module was extremely difficult to

debug.

The same optimizations were implemented using a TAG which would

operate on Intermediate Low-level code Trees (Appendix C). Admittedly,

the process was not trivial but the analysis was easier, transformations were

straightforward and debugging was less of a problem. The overall

complexity level of the algorithm is far less than that of the above optimizer

designed for quads and thus, the time and effort spent in implementation was

far smaller.

An effort was made to keep track of the time that it took to design and

implement each of these modules. It is estimated that the Pascal/Quads

version took approximately 1/3 longer to build than did the TAG/ILT

version.

4.1.3. The TAG/ILT Constant Folding Optimizer, ConsFold

4. 1 .3. 1 . A Brief Description of the ConsFold Functions

ConsFold is broken up into several different functions, namely;

STMT, EXPN, SCALAR, CrossFold, WalkParam, WalkArg and Exclude.

23

The two main functions are STMT and EXPN. STMT is used to traverse the

statements in the program tree (Traversal of the program starts and ends in

STMT). When an expression is encountered in a statement, EXPN is

invoked to traverse it. All possible constant folding transformations are

performed in the productions of the EXPN function. No other function

performs transformations with the exception of STMT where the

transformations performed are those of dead code elimination at an IF node.

The three functions, CrossFold, WalkArg and WalkParam are

dedicated solely to the processing of subroutine calls. WalkArg is used to

traverse the argument list of a subroutine call, WalkParam is used to traverse

the formal parameter list in the subroutine declaration and CrossFold is used

to start the traversal of the subroutine body.

The remaining two functions, SCALAR and Exclude, have nothing to

do with walking the program tree. SCALAR is used to determine if a

variable type is scalar (integer, boolean or character) and Exclude is used to

remove an item from a set. Exclude could very well have been included in

the predeclared file but as an example of TAG versatility, it was encoded in

the TAG as a pseudo-nonterminal.

A complete commented listing of these functions (the ConsFold

optimizer) can be found in Appendix C.

4.1.3.2. Analysis and Transformations

This section will illustrate the analysis and transformations of constant

folding and dead code elimination. A description of what needs to be done

will be given, followed by an explanation of how it is done in the ConsFold

TAG. To simplify the discussion some attributes are left out at first and then

added to productions as they are needed. The complete listing of ConsFold is

24

in Appendix C.

The analysis required to perform constant folding can be classified as a

simulated execution of the intermediate program [39]. That is; the optimizer

effectively interprets the program and as much information as can be

determined at compile-time is computed. The analysis is performed in the

same pass as the transformations with the exception of loops (Two passes are

performed on the body of a loop. The first pass performs the analysis and

the second the transformations.).

Constantness of Variables

In order to perform constant folding transformations, the analysis

must establish whether or not a variable is constant before that variable is

referenced in the program. The "constantness" of a variable can only be

determined when an assignment is made to that variable.

C0PY)«X

(cell)*x EXPRESSION
TREE

Figure 4.1. An assignment tree

At an assignment node such as that in figure 4.1, the expression subtree

is traversed and a report of its constantness is returned along with its value

(The value is only meaningful if the variable is constant). If it is found that

the expression is constant then the variable X can be recorded as constant and

a record can be made of its constant value. The following production is how

25

this analysis at a COPY node is implemented in the ConsFold TAG.

STMT -isconin -valin Aisconout Avalout

-> < COPY E:tree < CELL > > %varid
{EiEXPN -isconin -valin Aconstnt Avalue Avaltemp Aiscontemp)
(constat ><0 #expression was constant

=>{ :addset -varid -isconloop Aisconout) #add id to iscon set

{:into -valtemp -varid -value Avalout} #put const, value in table

otherwise # variable is not constant

=>{:Exclude -varid -iscontemp Aisconout) #remove id from iscon
Avalout : valtemp

}

Sets and tables are passed as attributes up and down through the tree as

it is traversed. The two attributes isconin and isconout actually represent

the same set. Isconin is the set which contains the id numbers of variables

which are considered constant upon arrival at the current point (node) in the

tree. Isconout represents the same set (with possible additions) to be

returned from the current node to the parent node. References to this set are

usually made by calling it the "iscon" set. Valin and valout also represent a

common table. Valin is a table which contains variable ids along with their

corresponding constant values upon arrival at the current node and valout is

the same table to be returned. This table is called the "value" table.

When an identifier is determined to be constant, its id number is

entered into the iscon set. The same id is also entered in the value table along

with its corresponding constant value. If however, the identifier is

determined to be nonconstant (the expression is not constant) then the

variable's id number must be removed from the iscon set.

Constantness of Expressions

When a reference to a variable is made in an expression, evidence of

its constantness can be obtained by checking the iscon set. Consider the

26

production for the FETCH node in the EXPN function.

EXPN -isconin -valin Aisconout Avalout Aconstnt Avalue

-> F: < FETCH < CELL >>% varid

{ F: examine Adecnode } # get DCLN node
(decnode:examine Atipe) # get TYPE node
[varid in isconin # variable is constant

=> { :from -valin -varid Avalue } # retrieve its constant value
Aconstnt : 1 # return constant flag as true

{T <- value} # decorate new node with value

{Tidecorate -tipe } # decorate new node with tipe

otherwise # this node is not constant

=> Aconstnt : # return constant flag as false
Avalue : # no constant value to return

}

Aisconout : isconin
Avalout : valin

=> T: < CONSTANT > I F

If the variable's id (varid) occurs in the iscon set then it is constant and

the first alternative is taken. The variable's constant value is retrieved from

the value table, the FETCH node is transformed into a CONSTANT node and

decorated with its value and type, and the attribute constnt is returned as 1,

meaning that this node is constant. Otherwise, if the variable's id does not

occur in the iscon set then the variable is not constant at this node. The

FETCH node is preserved and constnt is returned as 0, meaning that this

node is not constant. In either case, the attribute value is returned. When

the variable is constant, the attribute value will return with the variable's

constant value. In the case where the variable is not constant, value is

returned with a default value of 0.

A FETCH node may occur as an expression itself, but it will more

likely be an operand for a larger expression. The operator nodes, BINOP

and UNOP, are analyzed and transformed in basically the same way as a

FETCH node. The difference is that the BINOP and UNOP nodes have

27

subtrees which must be analyzed before anything can be done at the operator

node. The following production shows how the analysis and transformations

are performed at a typical BINOP/+ node.

EXPN -isconin -valin Aisconout Avalout Aconstnt Avalue
-> B: < BINOP/add L:tree R:tree >

{L:EXPN -isconin -valin Aiscontemp Avaltemp Alconstnt Alvalue}
{R:EXPN -iscontemp -valtemp Aisconout Avalout Arconstnt Arvalue)
{B:examine Atipe)
Avalue : lvalue + rvalue

{lconstnt == 1 rconstnt == 1 # both subtrees are constant
=> Aconstnt : 1 # this node is constant

{T <- value} # decorate new node with value

{T : decorate -tipe} # decorate new node with type

otherwise # at least one subtree is not constant

=> Aconsrnt : # this node is not constant

}

=> T: < CONSTANT > I B

As can be seen, the two operand subtrees are traversed first, each of

which returns a report of its constantness (lconstnt and rconstnt) and a value

(lvalue and rvalue). In order to consider the BINOP node constant, both

subtrees must be constant (lconstnt and rconstnt must both be 1). The test is

made and the appropriate actions are taken similar to those at a

FETCH node. The productions for the remaining BINOP and UNOP nodes

follow a similar pattern.

An operand of an expression may also be a function call. When a

CALL node occurs in an expression tree, the function that is being called

must be identified and walked (provided that it has not been previously

walked). This must occur so that the status of variables can be updated in the

iscon set and the value table. The detail concerning functions will be

bypassed here because all function/procedure calls are handled in basically

the same way and are discussed later in this section.

28

Dead Code Removal in Forks

Although there is no opportunity for constant folding at an IF node

(tree fork), the analysis for constant folding which is performed on the IF

expression provides the opportunity for the removal of dead code in the

fork. If an IF expression is determined to be constant with a value of "true"

then the statements in the ELSE tree become dead code and conversely, if the

expression in found to be "constant-false" then the THEN block is dead code.

In either case, if the IF expression is constant then the condition at the IF

node no longer serves a purpose and can be eliminated. However, if the

analysis of the IF expression reveals the fact that the expression is not

constant then there is no dead code to be removed. Additionally, a record

must be kept of those variables whose values are changed in the branches of

the fork. These variables should no longer be considered constant at the

statement following the fork. The following production is how this analysis

and the above transformations are implemented in ConsFold.

STMT -isconin -valin Aisconout Avalout Anotcon
-> I: < IF X:branch T:tree E:tree >

{X:EXPN -isconin -valin Aisconx Avalx Aconstnt Avalue Anotconx}

{constnt == 1 value == 1 #expn is constant-true - walk then tree

=> {T:STMT -isconx -valx Aisconout Avalout Anotcont}

{ :union -notconx -notcont Anotcon } # join notcon sets

constnt == 1 value == #expression is constant-false - walk else tree

=> {E:STMT -isconx -valx Aisconout Avalout Anotcone

}

{ :union -notconx -notcone Anotcon } # join notcon sets

otherwise # the expression was not constant - walk both subtrees

=> {T:STMT -isconx -valx Aiscont Avalt Anotcont}

{E:STMT -isconx -valx Aiscone Ava1e Anotcone)

{ :union -notconx -notcont Anotcoi 1
1 ; »join notcon sets

{ :union -notcone -notconf Anotcon

)

{:difference -isconx -notcon Aisconoui)#remove nonconstants
Avalout : valx

}

=>T I E I I

29

As previously described, when an expression tree is walked, a report

of its constantness (constnt) is returned along with the expression's value

(value). In the above production, if constnt is 1 and value is 1 then the

expression was constant with a value of "true" and the EF node is transformed

into the THEN subtree. If constnt is 1 and value is then the expression was

constant with a value of "false" and the IF node is transformed into the ELSE

subtree. Otherwise, if constnt is then the expression was not constant and

the IF node is preserved. In this later case, both subtrees are traversed and

each returns a set of variables (notcont and notcone). This set, known as the

"notcon" set, consists of those variables that have been assigned a value in the

branch of the fork from which the set is returned. These variables cannot be

considered constant below the fork and are therefore combined and removed

from the iscon set.

Performing Constant Folding in Loops

A loop is also considered as a fork in the program and is handled in

basically the same way. When a loop is encountered in the traversal of the

program, two passes are made on the body of the loop. The first pass is

required to identify variables whose values are changed in the body of the

loop. As in a fork, these variables must not be considered constant below the

loop and additionally, they must not be considered constant in the loop. Once

these variables have been identified, a second pass can be made on the loop to

perform the possible transformations.

The production for the LOOP node occurs in the STMT function in

ConsFold as follows.

STMT -isconin -valin -isloop Aisconout Avalout Anotcon

-> < LOOP BODY:tree > # pass 1 - analysis, pass 2 -- transformation

{BODY:STMT -isconin -valin -1 Aisconloop Adontcarel Adontcare2}

30

{BODY:STMT -isconloop -valin ~0 Aisconout Avalout Anotcon}

The same function is used for both the analysis and transformation

passes of the loop, and as a means of distinguishing the two passes, the

attribute isloop is used. All productions which manipulate the analysis

information or transform the tree must test isloop before taking any actions.

On the first pass, isloop is passed down as 1 to indicate that it is in the

analysis pass of a loop and no transformations should yet be made. Upon

returning from the analysis pass, the iscon set (isconloop) contains only those

variables that are constant (not changed) in the loop. All variables whose

values are changed in the loop have been removed from the iscon set. This

set (isconloop) is then passed down on the second (transformation) pass of

the loop and isloop is passed down as to indicate that transformations may

now take place.

All of the work is actually done in the production for the IF node

which is the same as previously illustrated with the addition of a test on

isloop in the constraints of each alternative.

STMT -isconin -valin Aisconout Avalout Anotcon
-> I: < IF X:branch T:tree E:tree >

{X:EXPN -isconin -valin Aisconx Avalx Aconstnt Avalue Anotconx}

{constat == 1 value == 1 isloop == #not on analysis pass of a loop

=> {T:STMT -isconx -valx Aisconout Avalout Anotcont}

{ :union -notconx -notcont Anotcon) # join notcon sets

constnt == 1 value == isloop = #not on analysis pass of loop

=> {E:STMT -isconx -valx Aisconout Avalout Anotcone}

[:union -notconx -notcone Anotcon) # join notcon sets

otherwise # the expression was not constant - walk both subtrees

=> (T:STMT -isconx -valx Aiscont Avalt Anotcont)

(E:STMT -isconx -valx Aiscone Avale Anotcone}

{:union -notconx -notcont Anotconf) #join notcon sets

{ :union -notcone -notconf Anotcon}

{ :difference -isconx -notcon Aisconout}#remove nonconstants
Avalout : valx

}

=>T I E I I

31

On the analysis pass of the loop the "otherwise" alternative is taken

(because isloop is 1) and no transformation is performed. All three subtrees

are walked and each returns a notcon set. The combined notcon sets

(notconx, notcont and notcone) identify those variables which should not be

considered constant in or below the loop. Consequently, the variables in the

notcon set are removed from the set of constants, iscon. The resulting iscon

set is then returned to the parent LOOP node. On the second pass of the loop,

isloop will be and transformations can be performed the same as

previously described for the IF node.

Processing Procedure/Function calls

The analysis and transformations applied to the code of a subroutine

are the same as that applied to the main program. The difficulty of

processing subroutines is in the analysis of the "interface" that the subroutine

has with its caller. The analysis must be able to identify global variables

whose values are changed in the subroutine and any variables changed by

pass-by-reference parameters. These variables cannot be considered

constant at the point in the code following the subroutine call.

32

Consider the following example.

PROGRAM EXAMPLE
VAR A, B, C,D,E,F : INTEGER

PROCEDURE CHANGE (VAR X: INTEGER; Y,Z:INTEGER)
VAR V : INTEGER

BEGIN
V= 15
WHILE (X < V)DO

Y = Y + Z

X = X+ 1

END VHILE

C = X *Y
END

BEGIN BEGIN
A= 10 A= 10

B = A*10 B=100
C = A + B . C= 110
CHANGE (A,B,C) \ CHANGE (A,B,C)

D = A + B <r D = A + 1 00
E = B + C E=100 + C
F=E*D F=E*D

END END

When we reach the procedure call at statement 4 in the main program,

variables A, B and C are constant. However, at statement 5 following the

call, only B remains constant. The variable A is no longer constant because it

is passed as an argument which is matched up with a pass-by-reference

parameter and consequently, its value will be changed. C is no longer

constant because, being a global variable, its value was changed in the

subroutine body. Thus, at the end of the main program, the only constant

variable is B.

When subroutines are called, either their effects on the program

variables must be taken into account or optimization must be abandoned

across procedure calls. Most methods of subroutine optimization treat each

subroutine as a separate program and make notes of side effects [56]. In

33

ConsFold a method is used where, in effect, a subroutine is opened up in line.

The subroutine is not actually "back-substituted" (although this would be a

good place to perform that optimization) but rather the subroutine is

traversed when a call is made to that subroutine. The argument list is

matched up with the parameter list (pass-by-reference parameters are

identified) and the procedure is analyzed and transformed (global variables

affected in the subroutine are identified). Care is taken however, so that

recursive procedure walks are avoided. The attribute procset is used for

this purpose. Procset is a set which contains the ids of those procedures

which are currently "open" (being traversed) starting with the procedure on

the outer level of the calling sequence. Also, there is no need to walk a

procedure (analyze and transform) more than once. In order to tell if a

procedure has already been walked at some time or another in the program

tree, the set attribute walked is used. This set is passed up and down through

the entire program tree and contains the ids of those procedures which have

been walked.

There are three main functions that are used to process subroutines in

ConsFold. WalkArg is used to traverse the argument list of the CALL node.

It walks each argument and enters the position number (where it occurs in

the argument list) and the id of the actual argument into a table called match .

If the argument is some type of expression then a default value of -99 is

entered (because the argument will not be pass-by-reference and will not

concern us when the arguments are matched up with the formal parameters)

The parameter list of a procedure is traversed using function

WalkParam. Each parameter is analyzed and if it is pass-by-reference then

the corresponding argument (variable id) is retrieved from the match table

that was derived in function WalkArg. This variable id is then removed

34

from the iscon set.

Function CrossFold receives the PROC node of the procedure that is to

be traversed and is encoded in ConsFold as follows.

cross:CrossFoId -isconin -valin -isloop -argmatch -procset -walkedin Awalkedout
Aisconout Avalout Anotcon

-> P:< PROC PARAM:tree BODY:tree >%pid #PROC is only possible node
{PARAM:WalkParam -isconin -valin -argmatch -1 -procset Anewiscon

Anewval Adontcare} # walk parameter list

{pid in walkedin # procedure has been walked already

=> {P:examine Anotcon} #retrieve the procedure's set of nonconstants
Awalkedout : walkedin

otherwise # the procedure hasn't been walked yet

=> {BODY:STMT -Empty -Empty -isloop Ajunkiscon Ajunkval
Anotcon}

(P:decorate -notcon) # decorate the proc with its notcon set

{ :addset -pid -walkedin Awalkedout] # add proc id to walked set

}

{:difference -newiscon -notcon Aisconout) # remove from set of constants
Avalout : newval

First, the parameter list is walked and a new iscon set is returned.

Next, the walked set is checked to see if the procedure has already been

walked. If it hasn't then the procedure body is traversed and a notcon set is

returned, the PROC node is decorated with the notcon set and the procedure

id is added to the walked set. On the other hand if the procedure id occurs in

the walked set, then the set of nonconstants (notcon) can be retrieved from

the PROC node. Finally, the set of nonconstants of the procedure (notcon) is

removed from the set of constants (iscon) to be returned to the parent CALL

node.

A subroutine can appear in a program as a statement, as a function in

an expression, or as an argument. In ConsFold a production exists for each

of these possibilities. They are all almost identical and for the discussion

here, the production for the CALL node from function STMT is presented.

35

STMT -isconin -valin -isloop -procset ~walkedinAwalkedoutAisconoutAvaloutAnotcon
->C:<CALL/call ARG:walka>

(C:examine Aproc} # retrieve PROC node
[proc -> nextid} # get procedure id

{ARG:WalkArg -isconin -valin -isloop -procset -walkedin Awalkedt
Aargmatch Aiscont Avalt Anotcont} # walk argument list

(nextid in procset #detected a recursive call-don't walk again

=> Aisconout : iscont
Avalout : valt
Anotcon : notcont
Awalkedout : walkedt

otherwise # no recursion detected yet ~ walk the procedure
=> { :addset -nextid -procset Apidset} #add id to recursion set

{proc:CrossFold -iscont -valt -isloop -argmatch -procset -walkedt
Awalkedout Aisconout Avalout Anotconout}

{ :union -notcont -notconout Anotcon} # join notcon sets

}

As can be seen, the procedure id is retrieved from decoration and the

argument list is walked. If the procedure id occurs in procset then a

recursive call loop has been detected and the subroutine is not walked.

Otherwise, if no recursion is detected then the procedure id is added to

procset and a call is made to function CrossFold.

36

4.2. Loop Constant Removal

4.2.1. Definition

The removal of loop constants is referred to as code motion in most of

the literature [4] [18] [39]. Code motion can be defined as moving a

subexpression if the value available to its uses is not changed by the move and

if the move will not cause side effects [4]. More simply, code motion (as

applied to loops) is the process of moving out of a loop any computations that

are the same for each iteration of the loop. The basic intent is to move

instructions from frequently executed areas of the program to less

frequently executed areas. As an example, consider the following program

segment.

WHILE (X < 10) DO T1 =F * G

BEGIN B = H *
I

A = F *G + X v C = B

B = H * I \ WHILE (X < 10) DO
X = X + 1 ' BEGIN

A = F A = T1 +X
C = B X = X + 1

END A = F

END

The expression, F*G, in statement 1 is loop-constant and can be moved

because the values of F and G never change in the loop. The same is true for

H*I in the second statement. However, since the whole expression is constant

and B is only assigned once in the loop, the whole statement is loop constant.

In statement 3 the whole expression F is constant but is not worth moving

because that would amount to replacing one variable with another and adding

another assignment statement to the code above the loop. Furthermore, the

37

whole statement is not constant because A is assigned twice in the loop.

Statement 4 does not appear to be loop constant because of the assignment to

B in statement 2, but once statement 2 is removed, statement 4 becomes

loop-constant also. This example is represented as follows in an ILT.

LOOP
I

IF

<

/\
X 10 PAIR

GOTO/exit

PAIRCOPY

/\ ^ ^
+ A COPY

/\ /\ ^
* X * B COPY

PAIR

COPY PAIR

* T1 COPY PAIR

/\ /\ /\
F G * B COPY LOOP

/\ /\ I

H IB C IF

»
/\
X 10 PAIR

GOTO/exit

COPY

PAIR + A <>

PAIR T1 X

/\ /\ /

\

/ \
F G H I + X COPY COPY

/\ /\ /\
X 1 F A B C

PAIR

PAIR

COPY PAIR

/ \ / \
+ X COPY <>

/\ /\
X 1 F A

It has been found that most of the execution time of a program is spent

in the inner loops [27]. Thus, the primary advantage of removing loop

constants is the reduction of the number of instructions executed. The

disadvantage of code motion however, is that usually register usage is

extended.

38

4.2.2. The TAG/ILT Loop Constant Optimizer, LoopCon

4.2.2.1. A Brief Description of the LoopCon Functions

LoopCon consists of 11 functions: FindCon, STMT, WalkArg,

WalkParam, CrossFind, WalkLoop, rewalk, exmoveit, stmoveit, getdec and

gluedec.

STMT is the main function. Traversal of the program tree starts at

(and is controlled by) STMT. No pertinent analyses or transformations take

place until a loop is encountered.

As in ConsFold, two passes are made on a loop. The first pass

performs the analysis and the second does the transforming. Function

FindCon is called to perform the analysis and function WalkLoop is called to

start the transformation pass on the loop.

Functions WalkArg, WalkParam and CrossFind are used during the

analysis pass to process subroutines, and perform basically the same

functions as they did in ConsFold.

When items are found to be loop constant, functions exmoveit and

stmoveit are called to move them out and glue them back into the tree above

the loop. Exmoveit is used to move a loop-constant expression while

stmoveit is used to move a loop-constant statement.

When an expression is moved out of the loop by exmoveit, it is

assigned to a new variable above the loop. Function exmoveit calls function

gluedec to create a DCLN node for this new variable and glue it into the tree

in the current routine's declaration list. The point at which the new DCLN

node is entered into the tree has been previously reserved by function getdec.

Function getdec is called at the beginning of the traversal of each

subroutine (each PROC node) and at the beginning of the program (PROG

node). It returns a pointer to the spot in the respective subroutine's DCLN

39

list where new DCLNs for that routine should be entered.

The last of these functions is rewalk. This function is used to start a

traversal on the code that was moved out of a loop. In the case of nested

loops, loop-constant items that are moved out of the inner loop may also be

loop-constant in the outer loop. It is for this reason that the moved code is

"rewalked".

4.2.2.2. Analysis and Transformations

In this section, the analysis and transformations of Loop Constant

Removal are illustrated. A description of what needs to be done is given,

followed by an explanation of how it is done in the LoopCon TAG. To

simplify the discussion some attributes are left out at first and then added to

productions as they are needed. The complete listing of LoopCon is in

Appendix D.

Detecting Nonconstant Variables in a Loop

When a loop is encountered in the traversal of the program tree, no

transformations may take place until variables that are nonconstant in the

loop are identified. Any variable which is assigned a value in the loop may

not be considered constant in any expression in the loop (There is one

exception to this rule as shown in the previous example). Also, a record

must be kept of those variables that are assigned a value more than once in

the loop. Statements that make an assignment to one of these variables are

not loop constant.

In LoopCon this analysis is performed in function FindCon. Two sets

are used to keep track of the variables described above. The notcon set

contains the ids of those variables that are assigned a value in the loop and

40

twice is the set that contains the ids of those variables assigned to more than

once in the loop. These variables can be detected at a COPY node.

FindCon -notconin -twicein Anotconout Atwiceout
-> < COPY L:find R:find > %varid

{L:FindCon -notconin -twicein Alnotcon Altwice}

{R:FindCon -lnotcon -ltwice Arnotcon Artwice}

{ varid in motcon # variable has been assigned more than once
=> { :addset -varid -rtwice Atwiceout}

Anotconout : rnotcon

otherwise # this is the first assignment to the variable

=> { :addset -varid -rnotcon Anotconout}
Atwiceout : rtwice

)

After walking the left and right subtrees, the notcon set is tested for the

variable id. If it occurs in the notcon set then the variable evidently is

assigned to more than once in the loop and is added to the twice set. If it is

not already in the notcon set then it is added to notcon in the otherwise

alternative.

When a procedure/function call is encountered during the analysis

pass, the subroutine must be walked and variables whose values are changed

in the subroutine (either by direct assignment or by a pass-by-reference

parameter) must be recorded. Since these variables are assigned new values

in the loop, they may not be considered loop-constant in any expression in

the loop.

In LoopCon, the same method is used to walk a subroutine and its

parameters as was used in ConsFold. The subroutine is, in effect,

back-substituted at the point of call. The subroutine is walked and variables

which are assigned a value in the subroutine are recorded in the notcon set.

Upon return to the CALL, this notcon set from the subroutine is added to the

current notcon set for the loop. If a variable already occurs in the notcon set

then it is added to the twice set. Once walked, a subroutine's id is added to

41

the walked set and the subroutine's notcon set is hung (as a decoration) on

the PROC node. Also, as in ConsFold, a set, procset , is passed down each

subroutine calling sequence in order to avoid a recursive walk.

Detecting Constant Items in a Loop

Part of the analysis is performed in the actual transformation pass of

the loop in LoopCon. Constant weights are assigned to each node based on

the constantness of its branches.

Before an expression may be moved to the outside of a loop, it must of

course be constant and additionally, it must be big enough to warrant that

moving it will result in optimization. In the example of section 4.2.1, the

expression of statement 3 is indeed constant. However, moving this

expression would result in adding instructions as illustrated in figure 4.2.

In order to avoid this problem, expressions should not be moved on

the basis of their constantness alone, but also based on their size. The leaf

nodes, CELL and CONSTANT, are given a minimum constant weight of 2.

Thus, any expression which is determined constant must have a constant

weight greater than 2 in order to be moved. This constant weight is derived

up the tree using the attribute iscon . Each node derives a constant weight

(iscon) from each of its subtrees. Each node can then test the constant

weights of its subtrees to determine if a subtree should be moved.

42

(loop)

(pair)

(copy)

(fetch) (cell) ka

(CELL)%F

»

(pair)

(copy) (loop)

(fetch) (cell)%T1

(cELl) jEF

(pair)

(copy)

(fetch) (cell) sea

(cell) *T1

Figure 4.2. Moving an expression that is too small out of a loop.

Reserving Insertion Points

To move a constant item out of a loop, information is needed to

indicate where in the tree that it should be glued back in. Figure 4.3

illustrates the transformation that takes place. As can be seen, each loop

constant item is spliced into the tree at a new PAIR node above the loop.

43

(pair)

CD (loop)
I

I

I

CD
CD CD

Loop Constant

(pair)

CD

Figure 4.3. Moving a loop-constant item.

Each node in the loop inherits a link to the PAIR node where the

loop-constant code should be moved to. As code is moved out of the loop this

pointer is updated to point to a new insertion point. The attribute gluept

carries this pointer.

Moving a loop-constant expression is a little more involved than

moving a statement. Figure 4.4 illustrates the moving out of a loop-constant

expression. Not only is the expression moved out, but it is also assigned to a

new variable cell. Thus, for this new cell, a DCLN node must be created and

glued into the tree. In LoopCon, instead of inserting this new DCLN node

right into the middle of the program (as in figure 4.4), a pointer to an

insertion point in the declaration block (of the current routine) is inherited

and the new DCLN is glued in there. This pointer is derived at the beginning

of each subroutine by function getdec and is carried by the attribute decpt

.

Like gluept, decpt is inherited by each node. As new DCLNs are created this

pointer is updated to point to a new insertion point.

44

(Tajr)

(loop)

(_) (copy)

(pair)

»
(pair)

(pair) (loop)

(dcln)sti(cqpy)

(BINOP) (CELL) %Y
(BIN0P)(fc~ELL^)%T1 ()

(fetch) (cqnst)«io
(fetch) (const) 810

C_J(wpy)

(CELL)gX
(CELL)%X

(fetch) ("cell)%Y

(CELL)%T1

Figure 4.4. Moving a loop-constant expression.

Moving Loop-Constant Expressions

The simplest of expressions is an expression consisting of a single

datum. This item is a leaf node in the tree (a CONSTANT node or a FETCH

to a CELL). As previously described, by itself it is not large enough to move

and is given a constant weight of 2. However, a constant expression may

exist in the address calculation subtree of the FETCH node.

STMT -notcon -twice -gluept -decpt Anewgluept Anewdecpt Aiscon

-> F: < FETCH V:tree > %varid
{ V:STMT -notcon -twice -gluept -decpt Avgluept Avdecpt Aviscon}

{viscon»2 varid in notcon vgluept >< NULL
=> # variable is not loop constant but cell calculation is

{vgluept:exmoveit ~<TYPE <CONSTANT> <CONSTANT»
-V -vdecpt Anewdecpt Anewgluept Adecnode)

{decnode -> varno} # get new variable id

{C <- varno} # decorate new cell with its variable id

{C: decorate -decnode) # decorate new cell with its DCLN
{E <- varno} # decorate new fetch with its variable id

{E: decorate -decnode} # decorate new fetch with its DCLN
Aiscon : # constantness of this node is returned as zero

viscon == 2 # the expression was just a CELL
=> {varid in notcon # variable is not loop constant

=> Aiscon : # this node is not constant

45

otherwise # this node is constant with a CELL
=> Aiscon : 2

}

Anewciecpt : vdecpt
Anewgluept : vgluept

otherwise # this whole node may be loop constant

=> Aiscon : viscon # return constant weight
Anewgluept : vgluept
Anewdecpt : vdecpt

}

=> < FETCH E: < FETCH C: < CELL >» I F I F

The expression tree (address calculation) is walked and its constant

weight (viscon) is returned. If the constant weight is greater than 2 then the

subtree can be moved. However, it can only be moved out if the variable is

not loop constant and of course only if currently in a loop (gluept will not be

NULL if in a loop). If the variable's id appears in the notcon set that was

created in the analysis pass, then it is not loop constant. If the variable is loop

constant (the otherwise alternative is taken) then the FETCH node itself is

loop-constant and will be moved out at a node higher up in the tree. If viscon

is 2 then the subtree was a CELL node and we must test to see if that variable

is loop-constant. Otherwise, the subtree is constant or doesn't weigh enough

or the whole node is loop-constant.

If the first alternative is taken, the expression subtree is moved with

function exmoveit and a pointer to the new DCLN node is returned. The

new variable id is retrieved and the new FETCH and CELL nodes created in

the transformation part are decorated with the new DCLN and the new

variable id.

An operator node is handled a little differently. A BINOP node has

two subtrees whose constant weights must be checked and whether or not a

subtree is moved depends on not only its own weight, but also on the constant

weight of the other subtree.

46

STMT -notcon -twice -gluept -decpt Anewgluept Anewdecpt Aiscon

->B:<BINOP L:tree R:tree >
(B: examine Atipe}

{L: STMT -notcon -twice -gluept -decpt Algluept Aldecpt Aliscon}

(R: STMT -notcon -twice -Tgluept -ldecpt Argluept Ardecpt Ariscon}

{liscon » 2 riscon = gluept >< NULL #left const, right not, in loop

=> { rgluept:exmoveit -tipe ~L ~rdecptAnewglueptAnewdecptAdec

}

(dec -> varno} # retrieve varible id from new DCLN node
(C <- varno} # decorate new cell with id

{C: decorate -dec} # decorate new cell with DCLN node
{F <- varno} # decorate new FETCH with variable id

(F: decorate} # decorate new FETCH with DCLN node
riscon» 2 liscon == gluept >< NULL #right const, left not, in loop

=> { rgluept:exmoveit -tipe ~R ~rdecptAnewglueptAnewdecptAdec

}

(dec -> varno} # retrieve varible id from new DCLN node
{C <- varno} # decorate new cell with id

(C: decorate -dec} # decorate new cell with DCLN node
{F <- varno} # decorate new FETCH with variable id

(F: decorate} # decorate new FETCH with DCLN node
otherwise

=> Anewgluept : rgluept
Anewdecpt : rdecpt

}

Aiscon : liscon*riscon # increase expression weight

=> < BINOP F:< FETCH C:< CELL » R > I

<BINOP L F:< FETCH C:<CELL>» I B

In order for one subtree to be moved, its constant weight must be large

enough and the other subtree must not be constant. If both subtrees have a

constant weight then the BINOP node becomes constant and the constant

weight is increased and returned. The transformations performed in the

first two alternatives are the same as the transformation performed at the

FETCH node.

A UNOP node has only one subtree and no significant analysis is

required. Because a unary operator will not change the constantness of its

operand, the constant weight of the UNOP node is simply returned,

reflecting the constantness of its subtree (The weight does increase though if

the subtree is constant).

47

Moving Loop-Constant Statements

Moving a loop-constant statement out of a loop is not quite as involved

as moving an expression. However, the analysis involved is a little more

detailed. In order for the statement to be loop-constant, all expressions in the

statement must be loop-constant, the statement must not be in a branch of a

fork and if it is an assignment statement, the variable it is assigning cannot be

assigned by any other statement in the loop.

In LoopCon, since the constant weight (iscon) of a subtree is returned

to the parent node, it is easy to test each subtree of a statement to determine if

they are all constant. To determine if a variable being assigned to, is

assigned to more than once in the loop, the twice set which was derived in the

analysis pass of the loop, can be checked. If the variable's id occurs in the set

then the statement is not constant. Finally, to determine if a statement is in a

fork branch, the attribute inlF is used. InlF is passed down as 1 in the

subtrees of an IF, and in any other case is passed as 0. The following

production is an abbreviated version of the production for the COPY node in

LoopCon to illustrate the analysis.

STMT -notcon -twice -gluept -inlF -decpt Anewdecpt Anewgluept Aiscon

-> CY: < COPY L:tree R:tree > %varid

{L:STMT -notcon -twice -gluept -0 -decpt Aldecpt Algluept Aliscon)

{RrSTMT -notcon -twice -lgluept -0 -ldecpt Ardecpt Argluept Ariscon}

{liscon » 2 riscon ==0 gluept >< NULL
=> # left subtree is constant but right isn't and in loop

. . . move left subtree (expression)
Aiscon :

liscon == riscon » 2 gluept >< NULL
=> # right subtree is constant but right isn't and in loop

. . . move right subtree (cell calculation)
Aiscon :

liscon» 2 riscon= 2 varid in twice gluept >< NULL
=> # both trees const but right not big enough & var assigned twice

. . . move right subtree (cell calculation)
Aiscon :

liscon» 2 riscon» 2 varid in twice gluept >< NULL
=> # both subtrees constant and var assigned twice

48

. . . move right subtree (cell calculation)

. . . move left subtree (expression)
Aiscon :

otherwise

=>{inIF==0 # not in branch of a fork

=> Aiscon : liscon * riscon

otherwise # in a fork branch
=> Aiscon :

}

}

In the first four alternatives, either one of the subtree expressions is

not constant, or the variable being assigned to occurs in the twice set.

Consequently, the constant weight for the COPY node (iscon) is returned as

0. In the last alternative (otherwise), inlF is tested to determine if this node

is in a fork branch. If so, the constant weight is returned as 0. If all analysis

tests are passed (both subtrees are loop-constant, varid is not assigned more

than once in the loop and this node is not in an IF subtree) then a constant

weight is returned and the statement (COPY node) will be moved from

somewhere higher up in the tree.

Loop-constant statements (blocks) are detected and moved at a PAIR

node.

STMT -notcon -twice -gluept -inlF -decpt Anewdecpt Anewgluept Aiscon

-> P: < PAIR L:tree R:tree >
{L:STMT -notcon -twice -gluept -inlF -decpt Aldecpt Algluept Aliscon)

(R:STMT -notcon -twice -lgluept -inlF -ldecpt Andecpt Argluept
Ariscon}

{liscon» 2 riscon ==0 gluept >< NULL
=> (rgluept: stmoveit ~L Anewgluept)

liscon = riscon » 2 gluept >< NULL
=> (rgluept: stmoveit ~R Anewgluept)

otherwise

=> Anewgluept : rgluept

}

Aiscon : liscon* riscon # increase expression weight
Anewdecpt : rdecpt

=><PAIR <> R> I <PAIR L <» I P

49

The actions taken at a PAIR node are similar to those at a BINOP node.

The constant weights of the subtrees are tested and a subtree is only moved if

the other subtree is not loop-constant. If both subtrees have some weight or

neither subtree was big enough or neither subtree was loop-constant, then no

transformation is made and iscon is returned reflecting the constantness of

the PAIR subtrees (
Aiscon : liscon*riscon).

Rewalking Moved Code

In the case of nested loops, items that are loop-constant in the inside

loop may also be loop-constant in the outside loop. In figure 4.5(a)

loop-constant items of the inside loop are moved out. The constantness of the

items that were moved can then be checked in the outside loop. If they are

constant in the outside loop they can also be moved to the outside of it, as

illustrated in figure 4.5(b).

WHILE (Y< 5) DO WHILE (Y < 5) DO

BEGIN BEG 'N

WHILE (X < 10) DO

BEGIN

A = F *G + X

B = H *
I

X = X + 1

A = F

C = B

END
Y = Y+ 1

C = Y + C
END

=>

T1 =F *G
B = H *

I

C = B

WHILE (X < 10) DO

BEGIN
A = T1 +X
X = X+ 1

A = F

END
Y = Y + 1

C = Y + C

END

(a)

50

WHILE (Y < 5) DO T1 =F *G
BEGIN B = H *

1

T1 -F * G WHILE (Y < 5) DO

B = H *
I

BEGIN

C = B C = B

WHILE (X < 10) DO WHILE (X < 10) DO

BEGIN \ BEGIN

X = X+ 1 X = X+ 1

A = F A = F

END END

Y = Y+ 1 Y = Y + 1

C = Y + C C = Y + C

END END

(b)

Figure 4.5. Moving constant items out of nested loops.

In LoopCon, after a loop has been analyzed and all loop-constant items

have been moved out, the items that were moved are rewalked for the level

outside the loop.

STMT -notcon -twice -gluept —inlF -decpt Anewgluept Anewdecpt Aiscon

-xLOOP B:tree>

analysis pass

{B: FindCon -Empty -Empty -Empty Anotconset Atwiceset}

transformation pass

{B: STMT -notconset -twiceset ~P -0 -decpt Aldecpt Algluept Aliscon}

rewalk the moved code
(P: rewalk -notcon -twice -gluept -inlF -Idecpt Anewdecpt Anewgluept}
Aiscon :

=> P: < PAIR <> < LOOP B »

As shown in the production for the LOOP node, the tree (starting at

node P) that results from moving loop constant code out of the loop is

rewalked before returning from the LOOP node.

51

4.3. Notes On Implementation

4.3.1. Tools Built in TAGs

Since some of the tools that are needed when testing TAG modules

perform manipulations on ILTs, they were also designed in TAGs.

A front end was available which would produce an ILT from a source

program. However, this front-end (a prototype) did not fully decorate nodes

to fit the specifications of ILTs and would only accept integer and boolean

types. To fill this gap, a module was designed in a TAG to walk the program

tree and "redecorate" its nodes to fit the specifications. Types such as

character and real were manually created after the front-end had generated

the source ILT. The redecorator would simply change designated variables

in the program tree into another type (character, real, etc.). This was a

matter of changing the TYPE node decorations on DCLN nodes.

The actual file representation of an ILT consists of a list of septuples of

integer numbers. In order to be able to read the output of a TAG, it was

converted to a readable form. A tool (pretty printer) was built in a TAG that

would walk an ILT and produce a representation of the tree which would

show each node and the hierarchical structure in indented or "outline" form.

This tool proved to be very useful in determining if nodes were decorated

correctly and other precise details.

Once one is no longer concerned with low-level details such as node

names and decorations, the output can be transformed into a higher-level

representation. To perform this conversion another tool was designed in a

TAG (a decompiler) that would simply convert the ILT back into its original

high-level language (in this case; Pascal). With this representation it is easy

to tell if the proper optimizations were performed on the program by

comparing it with a listing of the original source program.

52

4.3.2. The Testing Process

The process of compiling and testing each TAG involved several

different modules. Figure 4.6 illustrates the process of compiling and testing

a TAG.

Compiling a TAG actually consists of two compilations. First, the

TAG is compiled by the TAG compiler which produces Pascal code. The

Pascal code is then compiled into object code. The resulting module is the

executable optimizer.

To test each optimizer, a test program was converted by the front end

into an ILT. The source ILT was then redecorated with the redecorating

module and the resulting ILT could then be pretty-printed into a readable

form before optimization. The optimizer being tested would then perform

optimization on the test program and produce an optimized ILT. This final

ILT was then converted into a readable form (using the pretty-printer and/or

the decompiler) and compared with the representation before optimization

to determine if the optimizer performed correctly.

Debugging a TAG was not hard due to the clarity of the notation.

Logic errors were the hardest to find. When a TAG is executed it generates

a rather large file in which information is recorded concerning the execution

(provided that the debug flag is set when the TAG is compiled). The

information recorded in this "optimizer-trace-information" file consists of

node names as they are visited, predeclared function names when they are

called, and pseudo-nonterminal names as they are invoked (and exited) along

with the value of their attributes. Also, "DEBUGging" functions (in the

predeclared module) could be called to print various items, such as the

contents of sets or attribute values, at any point during execution. This

53

information could be used to determine what actions were taken at particular

points in the tree and together with the resulting tree (pretty-printed ILT),

errors could be detected.

TAG

test

source

compiler

trace

info.

TAG
compiler

front

end

optimizer

trace

info.

Pascal

code

source

ILT

Pascal

compiler

redecorator

object

code

ILT'

r
pretty

printer or

decompiler

optimizer

r
pretty

printer or

decompiler

ILT

readable ILT

(before optimization)

readable ILT

(after optimization)

Figure 4.6. Compiling and testing an optimizer.

54

Chapter Five

Conclusion

5.1. Findings

The application of TAGs to ILTs is presented in this work as an

efficient method for the specification and implementation of optimizations in

a compiler. Each optimization typically requires phases of analysis and

transformation, and TAGs function to specify both phases. TAGs utilize the

power of an attribute grammar to pass information through attributes and

the power of a transformational grammar to make transformations based

upon attribute evaluation.

The TAG notation is unique. Understanding the concept of the

underlying grammar and how transformations are performed on ILTs are

the only prerequisites to writing optimizers in a TAG. The TAG language is

versatile. Not only are nonterminals of the underlying CFG included as

functions, but also pseudo-nonterminals (nonterminals which are not part of

the underlying CFG) needed for attribute evaluation can be.

Any information which is derivable from the program tree (including

nodes of the tree) can be passed by attributes to wherever it is needed. Thus,

remote transformations on noncontiguous parts of the program can be

performed with TAGs. As in the removal of loop constants (illustrated in

section 4.2), a reference to a node in the tree can be passed as an attribute to a

different point in the tree where transformations on that node can be

performed.

The level of detail included in the intermediate program

representation has a significant effect on the amount of effort spent in

55

optimization algorithms. The information contained in the intermediate

representation of ILTs makes it superior to those of quads and other forms

of abstract syntax trees. The high-level structure of the source program

required for machine independent optimizations and the low-level detail

needed for machine dependent optimizations are both preserved in an ILT.

Very little effort is spent on reconstructing the original program in

optimizers (designed with TAGs) that use ILTs as an intermediate language

and consequently, the complexity of the optimization algorithm is much less

than that of algorithms which use other methods.

A consistent program representation between different optimization

phases is necessary for providing the ability to reapply optimization phases.

Since ILTs can represent the information needed for most types of

optimization, each optimization phase operates on an ILT and produces a

tree in the same representation. The initial ordering of optimization phases

and the ability to reiterate phases are at the discretion of the compiler

designer.

TAGs provide the necessary framework for the compiler writer and

decompose the optimization process into easily manageable components.

The application of TAGs to ILTs provides an efficient method for the timely

development of highly optimizing, correct compilers.

5.2. Future Work

The optimizations of constant folding, dead code elimination and loop

constant removal were implemented in this project using TAGs. A complete

optimizer of course would include several other optimization phases. The

56

opportunity therefore exists to implement other optimizations in TAGs as

well.

Other optimizations could also be added to the optimizers

implemented in this work. In ConsFold there is a unique opportunity to

include the optimization of back substitution (replacing a procedure call with

the procedure body). The optimizations of loop unrolling (eliminating the

loop overhead by unrolling a small loop into sequential code) and loop fusion

(joining two or more loops together which have the same number of

iterations) could also be included in LoopCon.

57

Bibliography

1. Aho, A. V., Sethi, R., Ullman, J. D., "A Formal Approach to Code
Optimization", SIGPLAN Symposium on Compiler Opimization,

Vol 5, No. 7, 1970. New York NY.

2. Aho, A. V., Sethi, R., Ullman, J. D., "Code Optimization and Finite

Church-Rosser Systems", Design and Optimization of Compilers,

(1972), Rustin, R. (ed.), pp 89-106.

3. Aho, A. V., Ullman, J. D., Principles of Compiler Design, Addison-

Wesley, New York, NY 1985.

4. Allen, F., Cocke, J., "A Catalogue of Optimizing Transformations",

Design and Optimization of Compilers, (1972), Rustin, R. (ed.),

pp 1-30.

5. Barrett, W. A., Bates, R. M., Gustafson, D. A, Couch, J. D., Compiler

Construction Theory and Practice , 2nd edition, Science Research

Associates, 1986.

6. Bassett, S., "Multipass Compilers Produce Tight Code", Computer
Design, Vol 23, No. 1, Jan 1984, pp 44-47.

7. Bauer, F. L., Eickel, J., Compiler Construction: An Advanced Course,

2nd ed. Lecture Notes in Computer Science, Springer-Verlag, New
York 1976.

8. Burkhard, N. A., "Machine-Independent C Optimizer", SIGPLAN
Notices, Vol 20, No. 11, Nov 1985, pp 23-26.

9. Cattell, R. G. G., Newcomer, J. M., Leverett, B. W., "Code
Generation in a Machine Independent Compiler", SIGPLAN
Symposium on Compiler Construction, 1979, Denver, Colorado,

pp 65-75.

58

10. Cocke, J., Markstein, P. W., "Measurement of Program Improvement

Algorithms", Information Processing, North-Holland, Amsterdam
1980, pp 221-228.

11. DeRemer. F. L., "Transformational Grammars", Bauer, F. L.,

EickelJ. (editors), Compiler Construction: An Advanced Course, 2nd

ed., Lecture Notes in Computer Science, Springer-Verlag, New York

1974, pp 121-145.

12. Fairman, R. N., Kortesoja, A. A., "An Optimizing Pascal Compiler",

Proceedings of COMPSAC, IEEE 1979, New York, pp 624-628.

13. Feign, D., "A Note on Loop Optimization", SIGPLAN Notices,

Vol 14, No. 11, Nov 1979, pp 23-25.

14. Frailey, D. J., "An Intermediate Language for Source and Target

Independent Code Optimization", SIGPLAN Notices, Vol 14, No. 8,

Aug 1979, pp 188-200.

15. Ganapathi, M., Fischer, C. N., "Description-Driven Code Generation

Using Attribute Grammars", Ninth Annual ACM Symposium on

Principles of Programming Languages, 1980, Albequerque, NM,
pp 108-119.

16. Ganzinger, H., Giegrich, R., "Attribute Coupled Grammars",
SIGPLAN Symposium on Compiler Construction, 1984, Montreal,

pp 157-170.
"

17. Ganzinger, H., Ripken, K., Wilhelm, R., "Automatic Generation of

Optimizing Multipass Compilers", Proceedings of the IFIP 1977

Congress, American North-Holland, 1977, pp 535-540.

18. Goldgerg, P. C, "A Comparison of Certain Optimization

Techniques", Design and Optimization of Compilers, (1972),

Rustin, R. (ed.), pp 31-50.

19. Goss, C. F„ Meretzky, M. S., Pollak, B., "Optimizing Compilers",

UNIFORUM 1986 Conference Proceedings, 4-7 February, Anaheim,

CA., (Santa Clara, CA, /usr/group 1986), pp 125-140.

59

20. Harbison, S. P., "Architectural Alternative to Optimizing Compilers",

SIGPLAN Symposium on Architectural Support for Programming
Languages and Operating Systems, Vol 17, No. 4, April 1982,

pp 57-65.

21. Harrison, W., "A New Strategy For Code Generation - The General

Purpose Optimizing Compiler", IBM Watson Research Center, 1976.

22. Hunter, R., Compilers : Their Design and Construction Using Pascal,

Wiley, New York, 1985.

23. Jazayer, M., Hayden, M., "Optimizing Compilers Are Here (Mostly)",

SIGLAN Notices, Vol 21, No. 5, May 1986, pp 61-63.

24. Jullig, R. K., DeRemer, F. L., "Regular Right-Part Attribute

Grammars",SIGPLAN Symposium on Compiler Construction,

Vol 19, No. 6, June 1984, pp 171-178.

25. Keller, S. E., Perkins, J. A., Payton, T. F., Mardinly, S. P., "Tree

Transformation Techniques and Experiences", SIGPLAN Symposium
on Compiler Construction, Vol 19, No. 6, June 1984, pp 190-200.

26. Knuth, D. E., "Semantics of Context-Free Languages", Mathematical

Systems Theory, Vol 2, No. 2, Springer-Verlag, New York, 1968,

pp 127-145.

27. Knuth, D. E., "An Empirical Study of Fortran Programs", Software

Practice and Experience, Vol 1, No. 2, 1971, pp 105-133.

28. Koskimies, K., Raika, K. J., Sarjakoski, M., "Compiler Construction

Using Attribute Grammars", SIGPLAN Notices, Vol 17, No. 6, June

1982, pp 153-159.

29. Landwehr, R., Jansohn, H., Goos, G., "Experience with an Automatic

Code Generator Generator", SIGPLAN Notices, Vol 17, No. 6, June

1982, pp 56-66.

30. Lee, J. A., The Anatomy of a Compiler (2nd ed.), Van Nostrand

Reinhold, 1974.

60

31. Lewi, J., DeVlaminick, K., Huens, J., Steegmans, E., A Programming
Methodology in Compiler Construction -- Part II : Implementation ,

North-Holland, 1983.

32. Lewis, P. M., Rosenkrantz, D. J., Stearns, R. E., Compiler Design

Theory , Addison-Wesley, 1976.

33. Markstein, V., Cocke, J., Markstein, P., "Optimization of Range
Checking", SIGPLAN Symposium on Compiler Construction, Vol 17,

No. 6, June 1982, pp 114-119.

34. McKeeman, W. M., "Compiler Construction", Compiler
Construction, Bauer, F. L., Eickel, J. (editors), Springer-Verlag,

1976, pp 1-36.

35. Mintz, R. J., Fisher, G. A., Sharir, M., "The Design of a Global

Optimizer", SIGPLAN Symposium on Compiler Construction,

Denver, Colorado, 1979, pp 226-234.

36. Nakata, I., Sassa, M., "L-attributed LL(1) Grammars are

LR-attributed", INF. PROCESS. LETT. (Netherlands), Vol 23, No. 6,

3 Dec 1986, pp 325-328.

37. Peters, P. S., Ritchie, R. W., "On the Generative Power of

Transformational Grammars", Information Science, Vol 6, 1973.

38. Pittman, T., "Using Transformational Attribute Grammars For Code
Optimization", Kansas State University, 1987.

39. Pittman, T., "Practical Code Optimization by Transformational

Attribute Grammars Applied to Low-Level Intermediate Code Trees,

PhD Thesis, Univ. of California at Santa Cruz, 1985.

40. Pollak, B. W., Compiler Techniques , Averbach, 1972.

41. Powell, M. L., "A Portable Optimizing Compiler for Modula-2",

SIGPLAN Sumposium on Compiler Construction, Vol 19, No. 6,

June 1984, pp 310-318.

61

42. Reif, J. H., Lewis, H. R., "Efficient Symbolic Analysis of Programs",

Journal of Computer and System Sciences, Vol 32, pp 280-314.

43. Rosen, B. K., "Tree-Manipulation Systems and Church-Rosser
Theorms", Journal of ACM, Vol 20, No. 1, 1973, pp 160-187.

44. Rudmick, A., Lee, E. S., "Compiler Design for Efficient Code
Generation and Program Optimization", SEGPLAN Symposium on

Compiler Construction, Denver, Colorado, 1979, pp 127-138.

45. Rustin, R. (editor), Design and Optimization of Compilers (Courant

Computer Science Symposium #5), Prentiss-Hall, 1972.

46. Sassa, M., "ECLR-Attributed Grammars: A Practical Class of

LR-Attributed Grammars", INF. PROCESS. LETT. (Netherlands),

Vol 24, No. 1, 15 Jan 1987, pp 31-41.

47. Spector, D., Turner, P. K., "Limitations of Graham-Glanville Style

Code Generation", SIGPLAN Notices, Vol 22, No. 2, Feb 1987,

pp 100-108.

48. Symposium on Compiler Optimization, SIGPLAN Notices, Vol 5,

No. 7, 1970.

49. Teuris, P. M., Rosenkrantz, D. J., Stearns, R. E., Compiler Design

Theory , Addison-Wesley, 1976.

50. Tiennari, M., "On the Definition of an Attribute Grammar",
Semantics Directed Compiler Generation (Lecture Notes in Computer

Science), Springer-Verlag, 1980, pp 408-414.

51. Turner, P. K., "Up-Down Parsing With Prefix Grammars",

SIGPLAN Notices, Vol 21, No. 12, Dec 1986, pp 167-174.

52. Waite, W. M., "Optimization", Bauer, F. L., Eickel, J. (ed) Compiler

Construction, Springer-Verlag, 1976, pp 549-602.

53. Weber, J., Program Transformation With Attributed

Transformational Grammars. Tech. Univ. Munchen 7604, 1976.

62

54. Wolfe, M., Macke, T., "Where are the Optimizing Compilers?",

SIGPLAN Notices, Vol 20, No. 1 1, Nov 1985, pp 64-68.

55. Wolfgang, Polak, Compiler Specification & Verification . (Lecture

Notes in Computer Science), Springer-Verlag, 1981.

56. Wulf, W. A., Johnsson, R. K., Weinstock, C. B., Hobbs, S. Q., The
Design OfAn Optimizing Compiler . American Elsevier, New York,

1975.

57. Wyrostek, P., "On the Size of Unambiguous Context-Free

Grammars", THEOR. COMPUT. SCI. (Netherlands), Vol 47, No. 1,

1986, pp 107-110.

63

Appendix A

Predeclared Values and Functions

Predeclared values and functions are encoded seperately from a TAG
in a "predeclared file". These functions and values are needed by the TAG
compiler and for attribute evaluations in a TAG. When a TAG is compiled,

the predeclared-module is included in the compilation. The values and
functions defined below are those generally needed by the TAG designer.

The TAG designer may however, define his own values and functions in the

predeclared file.

Values/attributes

Empty — May be used as an empty set, an empty table or a

reference to no tree.

Universe — A special set that contains every set as a subset

True, False — Distinctive values of true and false.

Functions (Pseudo-nonterminals)

General
- NEWVARNO

definition: {mewvarno Avarno}

This function will return the next available variable id number.

Generally used when creating a new variable cell.

Set Functions

-UNION
definition : { :union -seta -setb Aunionset}

This function receives two sets (seta and setb) and returns a set

(unionset) which is the union of the two sets.

A1

INTERSECT
definition : { intersect -seta -setb Aintersectset}

Intersect receives two sets (seta and setb) and returns a set

(intersectset) which contains the items which were members of

boths sets, seta and setb.

DIFFERENCE
definition : { [difference -seta -setb Mifference set}

Difference receives two sets and returns a set (differenceset)

which is the difference of the two sets (members of setb are

removed from seta).

ADDSET
definition : { :addset -varno -oldset Anewset}

Addset receives an item (possibly a variable id number, varno)

and a set (oldset) and returns a set (newset) which is the old set

with the item (varno) added.

Table Functions

- OPENFRAME
definition : { :openframe -Empty Anewtable}

Openframe is used to initialize a new symbol table.

-INTO
definition : { :into -oldtable -varno -value Anewtable}

Into receives a symbol table (oldtable), some item (typically a

variable id number, varno) and a value to associate with that

item and returns a new symbol table (newtable) which is the

result of adding the item and its value to the old table.

A2

FROM
definition : {:from -symtable -varno Avalue}

From receives a symbol table (symtable) and an item (varno) to

be searched for in the table. If the item is in the table then the

value which was entered (associated) with that item (value) is

returned. If the item was not in the table then the function fails.

Decoration Functions

- DECORATE
definition : {N:decorate -item}

Decorate will attach an item to the specified node (N).

- EXAMINE
definition : {Niexamine Adecoration}

Examine will retrieve a decoration from a node (N) which was
originally placed there with function Decorate.

- PACK4
definition : { :pack4 -iteml ~item2 ~item3 ~item4 Apacked)

Pack4 receives four items, "packs" them into one and returns

the compressed item (packed). Because a node may only be

decorated with one item (using function Decorate), several

items may be packed together using this function when it is

desirable to decorate with more than one item.

- UNPACK4
definition : {:unpack4 -packed Aiteml Aitem2 Aitem3 Aitem4}

Unpack4 is the opposite of Pack4. It receives the "packed" item

and returns the "unpacked" items (in the same order that they

were packed).

A3

NOTE: Decorating tree nodes may be done in three different ways.
A node may be decorated using the Decorate function defined above and/or by
using one of the following two methods:

to decorate a node with "item" to retrieve decoration "item"

=> . . . <node . . . > %item ->...< node . . . > %item

{Noitem} {N->item}

These two methods can be used interchangably. They may NOT however, be

used in conjunction with functions Decorate and Examine.

Debugging Functions

NOTE: The following functions have attributes "-in" and
"Aout".

These attributes are dummy attributes provided only for use in

forcing dependencies.

- PRINTNODE
definition : {Niprintnode -in Aout}

Printnode will print a picture of the specified node (N) to the

screen/trace file. (i. e. ifN is a FETCH node then "< FETCH >"

will be printed.

- DEBUGNL
definition : {:DEBUGnl -in Aout}

DEBUGnl will send a new line to the screen/trace file.

- DEBUGINT
definition : { :DEBUGint -value -in Aout}

DEBUGint will print the specified value to the screen/trace file.

- DEBUGCHR
definition : { :DEBUGchr -ordinal -in Aout}

DEBUGchr will print chr(ordinal) to the screen/trace file.

A4

DEBUGNODE
definition : {:DEBUGnode -node -in Aout}

DEBUGnode will print "< integer form of node >" to the

screen/trace file.

DEBUGSET
definition : {DEBUGset -theset -in Aout}

DEBUGset will print "[all members of theset]" to the

screen/trace file.

A5

Appendix B

Pascal/Quad Constant Folder

(* Pascal/Quad Constant Folder and Dead Code Eliminator. *)

(* This program is designed to read in an intermediate program representation in *)

(* the form of quads and perform the following constant folding optimizations: *)

(* 1 . Constant Folding *)

(* - constant expression evaluation *)

(* - constant propagation *)

(* 2. Dead Code Removal *)

(* *)

(* Optimization across procedure/function calls is not attempted. *)
}* *\

(* The input file (in the form of quads) should be in the following format: *)

(* lable, dest., opcode, si constant flag, sourcel, s2 constant flag, source2 *)

(* *)

(* This program will produce an output file called "after" which will also be in the *)

(* form of quads. *)

program constfold(input,output,after)

;const

n = 100 (* block list size *)

;m = 100 (* variable list size *)

;NOP = (* op codes *)

;BRA = 1

;BRF = 2

;RETN = 4
;assign = 5

;less = 15

;greater =16
;equal = 17

;lsoreq= 13

;groreq = 14

;unequal = 18

;plus = 6

;minus = 7

;star = 8

;divv = 9

;modd = 10

;neg = 19

;nott = 20
;andd = ll

B1

;orr= 12

;call = 3

type

quadfile = text

;quadptr = Aquadtype

;quadtype = record (* a quad *)

labl : integer (* label field *)

;dest : integer (* destination field *)

;opcode : integer (* op code *)

;sflagl : boolean (* source 1 constant flag *)

;sourcel : integer (* source 1 field *)

;sflag2 : boolean (* source2 constant flag *)

;source2 : integer (* source2 field *)

;qptr : quadptr (* pointer to next quad *)

end (* record quadtype *)

;predptr = Amember (* pointer to predecessor list *)

;blocktype = record

top : quadptr

;bottom : quadptr

;left : integer

;right : integer

;list : predptr

(* a block -- [head, tail, left, right] *)

(* pointer to head quad of block *)

(* pointer to tail quad of block *)

(* block # of left branch - not always used *)

(* block # of right branch *)

(* pointer to predecessor list *)

end (* record blocktype *)

;arrayl = array [l..n] of blocktype (* the block list *)

;member = record (* one member of the predecessor list *)

bl : integer (* the block number of predecessor *)

;nextbl : predptr (* link to next pred. *)

end (* record member *)

;vecttype = record

value : array [l..m] of integer

;iscon : array [l..m] of boolean

;notcon : array [l..m] of boolean

end (* record vecttype *)

;array2 = array[L.n] of vecttype

;array3 = array[L.n] of boolean

(* a const/value vector for block *)

(* value of variable in block *)

(* is the var definitly const? *)

(* is the var definitly not const? *)

var

after : quadfile

;head : quadptr

;blocks : array 1

;numblocks : integer

(* output file *)

(* pointer to head quad (first quad of prg.) *)

(* program blocks *)

(* the number of basic blocks *)

B2

;vect : array2

;visited : array3

;curblock : integer

;change : boolean

(* const/value vector for analysis *)

(* tells if block has been visited in analysis *)

(* the current block number *)

(* false until program analysis stabilizes *)

(* The following procedure is designed to read in the list of quads from the input file. *)

(* It reads them into a linked list. This procedure is called by the main program. *)

procedure readquads

»

var

dumbl : integer

;dumb2 : integer

;curptr : quadptr

;newptr : quadptr

(* dummy for input *)

(* dummy for input *)

(* pointer to current quad *)

(* another quad pointer *)

begin

new(head)
;with headA do
begin

readln(labl,dest,opcode,dumbl,source l,dumb2,source2)
;sflagl:= odd(dumbl)
;sflag2:= odd(dumb2)

end (* with *)

;new(curptr)

;headA.qptr:= curptr

;while not eof do
begin (* read in quads *)

with curptrA do
begin

readln(labl,dest,opcode,dumbl,source l,dumb2,source2)

;sflagl:=odd(dumbl)

;sflag2:= odd(dumb2)
end (* with *)

;if not eof then

begin

new(newptr)
;curptrA.qptr:= newptr
;curptr:= newptr

end (* if then *)

end (* while *)

end (* procedure readquads *)

(* The following procedure is designed to identify the basic blocks in the quad. It is *)

B3

(* called by the main program. *)
/**>,

procedure identblocks

var

curquad : quadptr (* the current quad pointer *)

;endfound : boolean (* true if the end of a block is found *)

begin

curblock:= 1

;curquad:= head

;blocks [1].top := head (* start of first block is first quad *)

;while curquadA.qptr <> nil do
begin

endfound:= false

;while not endfound do
begin (* find end quad of block *)

if curquadA.qptr = nil then

endfound:= true

else

if (curquadA.qptrA.labl <> 0)or(curquadA.opcode in [0,BRA,BRF]) then

endfound:= true

else

curquad:= curquadA.qptr
end (* while *)

;blocks[curblock].bottom:= curquad (* record pointer to tail of block *)

;if curquadA.qptr <> nil then

begin (* we have not found the last quad *)

curquad:= curquadA.qptr
;curblock:= curblock+1

;blocks[curblock].top:= curquad
end (* if then *)

end (* while *)

;blocks[curblock].bottom:= curquad (* record end of last block *)

;numblocks:= curblock

end (* procedure identblocks *)

(* The following procedure is called upon by procedure buildtree to record a pred- *)

(* ecessor to the current block. *)

procedure recpred(x,pred:integer)

var

ptrl : predptr (* pointer in the predecessor list *)

B4

begin

if blocks[x].listA .bl = then

blocks[x].listA.bl:= pred (* record predecessor *)

else

begin (* there is already a pred. recorded *)

ptrl:= blocks [x]. list

;while ptrl A.nextbl <> nil do
ptrl:= ptrl A.nextbl (* find the next available slot *)

;new(ptrl A.nextbl)

;ptrl A.nextblA.bl:= pred (* record predecessor *)

end(* if else *)

end (* procedure recpred *)

(* The following procedure is designed to analize the block list and link it togetherby *)

(* following the flow of execution. It is called by the main program and calls pro- *)

(* cedure recpred to record predecesors for each block *)

procedure buildtree

»

var

tail : quadptr (* pointer to the end quad of the current bl. *)

;jump : integer (* holds the block number dest. of a branch *)

;i : integer (* index and induction var. *)

begin

curblock:= 1

;while curblock <= numblocks do
begin (* go through each block *)

blocks[curblock].left:= (* intitialize *)

;blocks[curblock].right:= (* intitialize *)

;tail:= blocks[curblock].bottom
;if (tailA .opcode = BRA) or (tailA.opcode = BRF) then

begin

jump:= tailA .dest

;if tailA.opcode = BRF then

begin (* record pred. *)

blocks[curblock].right:= curblock+1 (*record con. to next blk*)

;recpred(curblock+l,curblock) (* curblock is pred to curblck+1*)

end (* if then *)

;i:=l

;while jump <> blocks[i].topA .labl do
i:= i+1

;blocks[curblock].left:= i (* record block number of branch *)

;recpred(i,curblock) (* records i as predecessor to curblock *)

end (* if then *)

else (* fall through to next block *)

if curblock <> numblocks then

B5

begin (* don't do this for last block *)

blocks[curblock].left:= curblock+1
;recpred(curblock+ 1 ,curblock)

end(* if else *)

;curblock:= curblock+1

end (* while *)

end (* procedure buildtree *)

s** *\

(* The following procedure is called by the main program to initialize the const- *)

(* ant/value vectors for each block before the constant analysis begins in procedure *)

(* traverse. *)
/** *\

procedure initvects

var

i : integer (* loop and index var *)

begin

curblock:= 1

;while curblock <= numblocks do
begin

new(blocks[curblock].list) (* used later in buildtree *)

;blocks[curblock].listA.bl:=

;for i:= 1 to m do
begin

vect[curblock].iscon[i]:= false (* initialize for traverse *)

;vect[curblock].notcon[i]:= false (* initialize for traverse *)

end (* for to do *)

;curblock:= curblock+1

end (* while *)

end (* procedure initvects *)

(* The following procedure is called by procedure traverse and procedure foldconst *)

(* to calculate a working vector for the current block from its predecessor's vectors. *)

/** * \

procedure calcvect(curblock:integer;var blvect:vecttype)

»

var

ptrl : predptr (* pointer in predecessor list *)

;i : integer (* loop and index var *)

B6

begin

if blocks[curblock].listA .bl <> then

begin (* there is a predecessor *)

ptrl:= blocks [curblock]. list

;for i:=l to m do
begin (* transfer first pred to working vector *)

blvect.value[i]:= vect[ptrl A .bl].value[i]

;blvect.iscon[i]:= vect[ptrl A.bl].iscon[i]

;blvect.notcon[i]:= vect[ptrl A .bl].notcon[i]

end (* for to do *)

;ptrl:=ptrl A.nextbl

;while ptrl onildo
begin (* for each pred. do *)

for i:= 1 to m do
begin

case blvect.iscon[i] of

true :case vect[ptrl A .bl].iscon[i] of

true :ifblvect.value[i]ovect[ptrl A.bl].value [i] then

begin

blvect.iscon[i]:= false

;blvect.notcon[i]:= true

end (* if then *)(*else iscon=T & already mark*)
;false:if vect[ptrl A.bl].notcon[i] then

begin

blvect.iscon[i]:= false

;blvect.notcon[i]:= true

end (* if then *)(*else iscon=T for now & al- *)

end (* case *) (* ready marked *)

;false:case vect[ptrl A.bl].iscon[i] of

true :if not blvect.notcon[i] then

begin

blvect.iscon[i]:= true

;blvect.value[i]:= vect[ptrl A.bl].value[i]

end (* if then *)(*can't have iscon=T & not=T *)

;false:if vect[ptrl A.bl].notcon[i] then

blvect.notcon[i]:= true

end (* case *)

end (* case *)

end (* for to do *)

;ptrl:=ptrl A.nextbl

end (* while *)

end (* if then *)

end (* procedure calcvect *)

(* The following function is called by procedure whichop to calculate the value of an *)

(* expression when it has been determined that source 1 and source2 of a quad are *)

(* both constant. This function receives the operator and both source values in order *)

(* to do the calculation and returns the calculated value. *)

B7

function calc(code,sl,s2:integer): integer

begin

case code of

star,andc i : calc:= sl*s2
;plus : calc:= sl+s2
;minus : calc:= sl-s2

;divv : calc:=sl div s2

;modd : calc:=sl mods2
;orr : calc:=ord(sl+s2>0)
;less : if si <s2then

calc:= 1 (* true *)

else

calc:= (* false *)

;gTeater : if si >s2then
calc:= 1 (* true *)

else

calc:= (* false *)

;equal : if si =s2 then

calc:= 1 (* true *)

else

calc:= (* false *)

;lsoreq : if si <=s2 then

calc:= 1 (* true *)

else

calc:= (* false *)

;groreq if si >=s2 then

calc:= 1 (* true *)

else

calc:= (* false *)

;unequal if si <> s2 then

calc:= 1 (* true *)

else

calc:= (* false *)

end (* case *)

end (* function calc *)

(* The following procedure is designed to determine if source 1 and source2 of the *)

(* current quad are constant. If they are then it calls function calc to calculate the *)

(* value for the destination. This procedure is called by procedure findconst. *)

procedure whichop(code:integer;curquad:quadptr;var blvect:vecttype)

B8

var

checked : boolean (* true if sources have been checked previously *)

begin

checked:= false

;with curquadA do
begin

if not sflagl or not sflag2 then

if not sflagl and blvect.notcon[sourcel] then

begin (* source 1 is definitely not const. *)

blvect.notcon[dest]:= true

;blvect.iscon[dest]:= false

;checked:= true

end (* if then *)

else (* see below *)

else (* source 1 is a constant *)

if not sflag2 and blvect.notcon[source2] then

begin (* source2 is definitely not const. *)

blvect.notcon[dest]:= true

;blvect.iscon[dest]:= false

;checked:= true

end (* if then *)

;if not checked then

B9

if sflagl then (* sourcel is a const. *)

if sflag2 then

begin (* source2 is a const. *)

blvect.iscon[dest]:= true

;blvect.notcon[dest]:= false

;blvect.value[dest]:=calc(code,sourcel,source2)

end (* if then *)

else (* source2 is a variable *)

if blvect.iscon[source2] then

begin (* source2 var. is const. *)

blvect.iscon [dest]:= true

;blvect.notcon[dest]:= false

;blvect.value [dest]:= calc(code,sourcel,blvect.value[source2])

end (* if then *)

else (* source2 not known as const - notcon check done above*)
else (* sourcel is a variable *)

if sflag2 then (* source2 is a const. *)

if blvect.iscon [sourcel] then

begin (* sourcel is a var. const. *)

blvect.iscon[dest]:= true

;blvect.notcon[dest]:= false

;blvect.value[dest]:=calc(code,blvect.value[sourcel],source2)

end (* if then *)

else (* sourcel not known as const — notcon check done above*)
else (* source2 is a variable *)

if blvect.iscon [sourcel] and blvect.iscon [source2] then

begin (* sourcel and source2 are const, vars. *)

blvect.iscon[dest]:= true

;blvect.notcon[dest]:= false

;blvect.value[dest]:= calc(code,blvect.value[sourcel],blvect.value[source2])

end (* if then *)

else (* sourcel and 2 are not known as const. ~ notcon check*)
end (* with *) (* was done above *)

end (* procedure whichop *)

(* This procedure is called by procedure traverse and procedure foldconst to determine *)

(* if the current quad contains a constant expression. This procedure calls procedure *)

(* whichop depending upon which opcode is sent from the caller. *)

procedure findconst(code:integer;curquad:quadptr;var blvect:vecttype)

begin

case code of

assign :

B10

begin (* assignment statement *)

with curquadA do
begin

if sflagl then

begin (* source 1 is a constant *)

blvect.iscon[dest]:= true

;blvect.notcon[dest]:= false

;blvect.value[dest]:= sourcel

end (* if then *)

else (* sourcel is a variable *)

if blvect.isconfsourcel] then

begin (* var sourcel is definitely const. *)

blvect.iscon[dest]:= true

;blvect.notcon[dest]:= false

;blvect.value[dest]:=blvect.value[sourcel]

end (* if then *)

else (* var sourcel is not known to be const. *)

if blvect.notcon[sourcel] then

begin (* definitely not const. *)

blvect.notcon[dest]:= true

;blvect.iscon[dest]:= false

end (* if then *)

end (* with *)

end (* case of assign *)

;star : whichop(star,curquad,blvect)

;divv : whichop(divv,curquad,blvect)

;modd : whichop(modd,curquad,blvect)

;plus : whichop(plus,curquad,blvect)

;minus : whichop(minus,curquad,blvect)

;neg :

begin (* assignment statement *)

with curquadA do
begin

if sflagl then

begin (* sourcel is a constant *)

blvect.iscon[dest]:= true

;blvect.notcon[dest]:= false

;blvect.value[dest]:= sourcel*-l

end (* if then *)

else (* sourcel is a variable *)

if blvect.isconfsourcel] then

begin (* var sourcel is definitely const. *)

blvect.iscon[dest]:= true

;blvect.notcon[dest]:= false

;blvect.value[dest]:= blvect.value[sourcel]*-l

end (* if then *)

else (* var sourcel is not known to be const. *)

if blvect.notcon[sourcel] then

begin (* definitely not const. *)

blvect.notcon[dest]:= true

;blvect.iscon[dest]:= false

B11

end (* if then*)
end (* with *)

end (* case of neg *)

;nott :

begin (* assignment statement *)

with curquadA do
begin

if sflagl then

begin (* source 1 is a constant *)

blvect.iscon[dest]:= true

;blvect.notcon[dest]:= false

;blvect.value[dest]:= 1-sourcel

end(* if then *)

else (* source 1 is a variable *)

if blvect.iscon[sourcel] then

begin (* var source 1 is definitely const. *)

blvect.iscon[dest]:= true

;blvect.notcon[dest]:= false

;blvect.value[dest]:= l-blvect.value[sourcel]

end (* if then *)

else (* var sourcel is not known to be const. *)

if blvect.notcon[sourcel] then

begin (* definitely not const *)

blvect.notcon[dest]:= true

;blvect.iscon[dest]:= false

end (* if then *)

end (* with *)

end (* case of nott *)

;andd : whichop(andd,curquad,blvect)
;orr : whichop(orr,curquad,blvect)

;less : whichop(less,curquad,blvect)

;greater : whichop(greater,curquad,blvect)

;equal : whichop(equal,curquad,blvect)

;lsoreq : whichop(lsoreq,curquad,blvect)

;groreq : whichop(groreq,curquad,blvect)

;unequal : whichop(unequal,curquad,blvect)

end (* case *)

end (* procedure findconst *)

(* The following procedure is a recursive procedure which is called by the main program*)
(* to follow the tree structure and in the end, determine the constant variables. It is *)

(* continually called until no more changes are made in the const/value vectors and the *)

(* analysis stabilizes. Not only does this procedure call itself but also the procedures *)

(* calcvect and findconst. *)

procedure traverse(curblock:integer; var change:boolean)

B12

var

blvect : vecttype (* the working vector for the current block *)

;curquad : quadptr (* pointer to the current quad *)

;i : integer (* loop and index var *)

begin

if curblock <> then

begin

if not visited[curblock] then

begin (* haven't been to this block yet *)

calcvect(curblock,blvect)

;curquad:= blocks [curblock].top

;while curquad <> blocks[curblock+l].top do
begin (* iterate through entire block *)

if not (curquadA.opcode in [BRA,BRF,NOP,call,RETN]) and

not ((curquadA.opcode=0) and (curquadA.labl=0)) then

(* screen out BRs, sub calls, nop's and returns *)

findconst(curquadA.opcode,curquad,blvect) (* & last quad *)

;curquad:= curquadA.qptr

end (* while *)

;for i:= 1 to m do
begin (* transfer working vector to block vectors *)

if (blvect.iscon[i] <> vect[curblock].iscon[i]) or

(blvect.notcon[i] <> vect[curblock].notcon[i]) then

begin (* changes have been made *)

change:= true (* not stable *)

;vect[curblock].iscon[i]:= blvect.iscon[i]

;vect[curblock].notcon[i] := blvect.notcon[i]

end (* if then *)

;vect[curblock].value[i]:= blvect.value[i]

end (* for to do *)

;visited[curblock]:= true

;traverse(blocks[curblock].left,change)

;traverse(blocks [curblock] .right,change)

end (* if then *)

end (* if then *)

end; (* procedure traverse *)

(* The following function is called by procedure foldconst to check on a certain block *)

(* to see if it is no longer needed. It returns true if the current block is the only *)

(* predecessor to the block in question and false otherwise. It also returns the block *)

(* number of the dead code. *)

function deadcode(i:integer;var dead:integer):boolean

var

target : integer (* the block in question *)

B13

;pred : predptr (* pointer in predecessor list *)

;marker : predptr (* marks where the current block is in pred list *)

;found : boolean (* true if current block is not only pred. *)

begin

target:= blocks[i].left (* get left branch *)

;pred:= blocks[target].list (* get list of predecessors *)

;found:= false

;while (pred <> nil) and not found do (* see if there is a block in *)

if predA .bl <> i then (* the pred list other than the current *)

found := true (* there is *)

else

begin

marker:= pred (* keep location of current block in pred list *)

;pred:= predA.nextbl

end (* if else *)

;if not found then

begin (* found that current block was the only pred to target *)

deadcode:= true

;dead:= target

end (* if then *)

else (* found that current block was not the only pred to target *)

begin

deadcode := false

;if blocks[target].list = marker then (* rm cur block from list *)

blocks[target].list:= markerA.nextbl (* first in list *)

else (* rm current block from list — somewhere else in list *)

begin

pred:= blocks [target], list

;while predA.nextblA.bl <> i do
pred:= predA.nextbl

;predA.nextbl:= predA.nextblA .nextbl

end (* if else *)

end (* if else *)

end; (* function deadcode *)

(* The following procedure is called upon by the main program once all of the analysis *)

(* is done. It determines how the quads are to be output depending upon the result of *)

(* the analysis. It writes to the file "after". This procedure calls the procedures calcvect *)

(* and findconst and the function deadcode. *)

procedure foldconst

const

zero =
;one = 1

B14

type

sett = set of 1..100

var

i : integer (* index and loop control *)

;curquad : quadptr (* pointer to current quad being processed *)

;jumpquad : quadptr (* pointer to quad which is BRAing *)

;blvect : vecttype (* working vector for the current block *)

;deadblock : integer (* a returned value from function deadcode *)

;deadlist : sett (* set of blocks determined to be unreachable *)

begin

rewrite(after)

;deadlist:= [] (* initalize to no dead blocks found yet *)

;deadblock:=

;i:= 1 (* start at first block *)

;while i <= numblocks do
begin (* process all blocks *)

calcvect(i,blvect) (* must recalculate a working vector *)

;curquad:= blocks[i].top

;while curquad <> blocks[i+l].top do
begin (* repeat for entire block *)

with curquadA do
begin

if not ((opcode=0) and (labl=0)) then (* not at last quad *)

if not (opcode in [BRA,BRF,call,RETN,NOP]) then

begin (*screen out ops - no const, will exist except BRF*)
findconst(opcode, curquad.blvect) (* redeterm. value *)

;if blvect.iscon[dest] then (* destination is const *)

writeln(after,labl,dest,assign,one,blvect.value[dest],zero,zero)

else (* check see if sourcel is const. *)

if blvect.iscon [source 1] then (* replace ref. with value *)

writeln(after,labl,dest,opcode,one,blvect.value[source 1],

ord(sflag2), source2)

else (* check see if source2 is constant *)

if source2 <> then (* make sure we have a source first *)

if blvect.iscon[source2] then (* replace ref. with value *)

writeln(after,labl,dest,opcode,ord(sflagl),sourcel,one.

blvect.value[source2])

else (* print quad -- it has no const, opt. *)

writeln(after,labl,dest,opcode,ord(sflagl),sourcel,

ord(sflag2),source2)

else (* print quad - we have no source2 *)

writeln(after,labl,dest,opcode,ord(sflag 1),source 1 ,zero,zero)

end (* if then *)

else

if (opcode = BRF)then

B15

if blvect.iscon[sourcel] and (vect[i].value[sourcel]=0) then
begin (* always false-change to BRA and remove unreachable code*)

jumpquad:= curquad (* save pointer to BRAing quad *)

;while (curquadA .qptrA.labl=0)or(i+l in deadlist) do
(*no lable on next block*)

begin (* code to end of block is unreachable *)

i:= i+1 (* move to next block *)

;curquad:= blocks[i].bottom (* skip to bottom *)

;if curquadA .opcode in [BRA,BRF] then (*if branch*)
if deadcode(i,deadblock) then (*branch was to dead code*)

deadlist:= deadlist+[deadblockJ

end (* while *)

;if curquadA.qptrA .labl <> jumpquadA.dest then

with jumpquadA do
(* we aren't just jumping to next stmt so print branch *)

writeln(after,labl,dest,BRA,zero,zero,zero,zero)

else (* we are just jumping to next stmt *)

if not (curquadA.labl = 0) then

(* must print label on BRAing quad*)
writeln(after,jumpquadA.labl,zero,zero,zero,zero,zero,zero)

end(* if then *)

else (* check for useless branch *)

if blvect.iscon [source 1] and (vect[i].value[sourcel] = 1) then

begin (* don't print useless branch and check for dead code *)

if deadcode(i,deadblock) then

deadlist:= deadlist+[deadblock] (* block is dead *)

end (* if then *)

else

writeln(after,labl,dest,opcode,ord(sflagl),sourcel,ord(sflag2,

source!)

else

begin

jumpquad:= curquad (* save ptr to current quad *)

;if opcode = BRA then

begin (* remove dead code here too *)

while (curquadA.qptrA.labl=0)or(i+l in deadlist) do
(* no lable on next block *)

begin (* code of next block is unreachable *)

i:= i+1 (* move to next block *)

;curquad:= blocks[i].bottom (* skip to bottom *)

;ifcurquadA .opcode in [BRA,BRPJ then (*if branch*)

if deadcode(i,deadblock) then (*branch was to dead code*)

deadlist:= deadlist+[deadblock]

end (* while *)

;if curquadA.qptrA .labl <> jumpquadA.dest then

with jumpquadA do (* we aren't just jumping to next stmt *)

writeln(after,labl,dest,BRA,zero,zero,zero,zero)

else (* we are just jumping to next stmt *)

if not (curquadA.labl = 0) then

(*must print labl on BRAing quad*)

writeln(after,jumpquadA.labl,zero,zero,zero,zero,zero,

B16

zero)

end (* if then *)

else (* just print out the quad *)

writeln(after,labl,dest,opcode,ord(sflagl),sourcel,ord(sflag2,

source2)

end (* if else *)

else (* prints out last quad *)

writeln(after,labl,dest,opcode,ord(sflagl),sourcel,ord(sflag2),source2)

end (* with *)

;curquad:= curquadA.qptr

end (* while *)

;i:= i+1 (* increment to next block *)

;while i in deadlist do (* while we have a block which was deter- *)

i:= i+1 (* mined unreachable -- move to next block *)

end (* while *)

end (* procedure fold *)

begin (*** M A I N PROGRAM***)
readquads (* input quad list *)

;identblocks (* identify and set up basic blocks *)

;initvects (* initialize vectors for locating constants *)

;buildtree (* identify & build tree struct, of prog's logic flow *)

;change:= true

;while change do
begin (* continue until stablized (not change) *)

change := false

;for curblock:= 1 to numblocks do
visited[curblock]:= false (* initialize *)

;curblock:= 1

;traverse(curblock,change)

end (* while *)

;foldconst (* fold constants & output optimized quads *)

end. (*** MAIN PROGRAM**)

B17

Appendix C

ConsFold TAG

CONSFOLD - A constant folding and dead code removing optimizer.

The following TAG analyzes the program tree and optimizes all nodes which are

determined to be constant by folding the node (performing the operation of the

node) into a constant node., All unreachable tree branches, (dead code) resulting

from constant folding, are removed (Dead Code Elimination).

Tree node and node-subtitle specifications:

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

1 PROG BINOP UNOP CALL GOTO
2 PROC + 0- Ocall Oexit

3 UNOP 1- 1 not 1 return 1 again

4 BINOP 2*
5 PAIR 3div
6 COPY 4 mod
7 FETCH 5 and

8 CONSTANT 6 or

9 CELL 7<=
10 CALL 8>=
11 LOOP 9<
12 GOTO 10 >
13 IF 11 =
14 DCLN 12 <>
15 TYPE

predefined Empty, Dummy, Ref, Val,

openframe -VALSET AVALSET;
into -VALSET -Integer -Integer AVALSET;
from -VALSET -Integer AInteger;

union -CONSET -CONSET ACONSET;
difference -CONSET -CONSET ACONSET;
addset -Integer -CONSET ACONSET;
pack4 -NODE -Integer -Integer -Integer ADECRTN;
unpack4 ADECRTN ANODE AInteger AInteger AInteger;

transformer ConsFold:

C1

The following function is the start function for the TAG

start: STRT;

-> N:start

{ :STMT -Empty ~0 -Empty -Empty -Empty AdontcareO Adontcare 1
Adontcare2

Adontcare3

}

The following function is the main driver of the TAG. Traversal of the

program tree starts here and ends here.

tree : STMT -CONSET -Integer -IDSET -VALSET -IDSET AIDSET AVALSET
ACONSET ACONSET;

-isconin -isloop -procset -valin -walkedin Awalkedout Avalout
Anotcon Aisconout

WHERE:
-isconin - is the set of variables constant upon entering this function.

-isloop - is 1 if we are in a loop and if we are not in a loop (isloop==l

during the analysis pass of the loop and isloop==0 on the next
(transformation) pass of the loop).

-procset - a set which is carried on the downward traversal of a tree branch.

It contains the ids of procedures called during the traversal of this path.

It is used solely to detect (prevent) a recursive walk.

-valin - is the symbol table of variables and their current values upon
entering this function.

-walkedin - is the set of procedure ids which have been walked upon
entering this function. If a procedure id occurs in this set then it has

been walked and has a decoration of the set of var ids which are not

constant in the particular procedure.

Awalkedout - is the set of procedure ids which have been walked upon
exiting this function.

Avalout - is the symbol table of variables and their current values upon
exiting this function.

Anotcon - is the set of vars. which have been assigned to in the branches of

a fork (loop) or the body of a procedure. Variables in this set are

known to be NON-constant. Notcon is always returned and is only

important upon returning from branches in an IF node or from a CALL
to a procedure.

Aisconout - is the set of variables constant upon exiting this function.

The PROG node is the first node of the tree and the first visited. At the start we
ignore declarations, initialize a new symbol table and begin traversal of the

program body. All attributes are insignificant at this point (inhereted and

derived).

-> <PROG PARAM BODY:tree> # Root node

{ :openframe -Empty Atable } # initialize table

{BODY:STMT -Empty -0 -Empty -table -walkedin Awalkedout Avalout Anotcon

C2

Aisconout}

-> <DCLN> I <GOTO> I <> # nothing happens at these nodes
Avalout : valin # pass everything on through
Aisconout : isconin
Anotcon : Empty
Awalkedout : walkedin

-> <PROC> # don't walk procedures until they are called
Avalout : valin # pass everyting on through
Aisconout : isconin
Anotcon : Empty
Awalkedout : walkedin

If a CALL node is a CALL/retn then we have arrived at the end of a particular

segment of code ~ pass everything on through. If the node is a CALL/call
however, then we have a call to a procedure and we must analyze it. The
corresponding PROC node decoration is retrieved along with its id and the

argument list is walked. If it is determined that we are on a recursive path

(nextid in procset) then we are done here. If not then we must walk the

procedure and add its set of nonconstants to the nonconstant set.

-> <CALL/sub> # "sub" is really "rem" -- see subtitles defin.
Avalout : valin # pass everything on through
Aisconout : isconin
Anotcon : Empty
Awalkedout : walkedin

-> C:<CALL/add ARG:walka> # "add" is really "call" - see subtitles defin.

{Qexamine Aproc} # retrieve decoration (PROC node)

(proc -> nextid} # get procedure id and then walk the arg. list

{ARG:WalkArg -isconin -valin -isloop -Empty -1 -procset -walkedin Awalkt
Aargmatch Adontcare Aiscont Avalt Anotcont}

{nextid= nextid I nextid in procset # if the proc id is in

=> Avalout : valt # procset, it must be recursive
Anotcon : notcont # Don't walk it again!
Aisconout : iscont
Awalkedout : walkt

otherwise # no recursion detected yet — walk the procedure

=> {:addset -nextid -procset Apidset} # add it to recurs, set

{proc:CrossFold -iscont -valt -isloop -argmatch -pidset -walkt
Awalkedout Avalout Anotconout Aisconout}

{:union -notcont -notconout Anotcon} # join nonconst. sets

}

The first thing checked at the IF node is the expression. If it is constant

(
Aconstnt returns 1) then only one branch of the fork needs to be traversed (the

other will disappear). The branch to be walked is determined by the attribute

valexpn. If valexpn returns 1 then the IF expn was contant-true, the

THEN-tree is walked and the ELSE-tree is thrown away (the IF node is

transformed into the THEN-tree). If the IF expn was constant-false (valexpn

C3

returns 0) then the ELSE-tree is walked and the THEN-tree is thrown away (IF

node is transformed into the ELSE-tree). If constnt returns then the IF

expression was not constant and both the THEN and ELSE trees must be

walked. If isloop is 1, then we are in the analysis pass of a loop and both trees

must be walked disregarding the fact that the IF expn may have been constant.

The next time through (the transformation pass) isloop will be — see

production for LOOP node. It is also taken into account here that the THEN
and ELSE trees may be NULL.

-> I:<IF X:branch T:tree E:tree> # walk the expression first

(X:EXPN -isconin -valin -isloop -procset -walkedin Awalkt Aconstnt Avalexpn
Avalx Aisconx Anotconx}

{constnt==l isloop==0 valexpn— 1 T>«> #expression always true

=> (T:STMT -isconx -isloop -procset -valx -walkt Awalicedout Avalout
Anotcont Aisconout}

{:union -notconx -notcont Anotcon} # join notcon sets

TRANSFORM IF node to T subtree.

constnt==l isloop==0 valexpn==l T==<> #expression always true

=> {T:STMT -isconx -isloop -procset -valx -walkt Awalkedout Avalout
Anotcont Aisconout}

{:union -notconx -notcont Anotcon} # join notcon sets

TRANSFORM IF node to NULL -- T was null

constnt==l isloop==0 valexpn==0 E>«> #expression always false

=> {E:STMT -isconx -isloop -procset -valx -walkt Awalkedout Avalout
Anotcont Aisconout}

{:union -notconx -notcont Anotcon} # join notcon sets

TRANSFORM IF node to E subtree.

constnt==l isloop— valexpn==0 E==<> #expression always false

=> {E:STMT -isconx -isloop -procset -valx -walkt Awalkedout Avalout
Anotcont Aisconout}

{:union -notconx -notcont Anotcon} # join notcon sets

TRANSFORM IF node to NULL -- E was null

otherwise => #are on the analysis pass of a loop or the expn.was not constant.

{T:STMT -isconx -isloop -procset -valx -walkt Awalke Avalthen
Anotcont Atiscon}

{E:STMT -isconx -isloop -procset -valx -walke Awalkedout Avalelse
Anotcone Aeiscon)

{:union -notcont -notcone Anotconf} #combine known non-constants

[:union -notconf -notconx Anotcon} #combine known non-constants

(:difference -isconx -notcon Aisconout} #remove from set of constants
Avalout : valx

}

:> T I <PAIR <> <» I E I <PAIR <> <» 1

1

At a PAIR node we simply go down the left tree, go down the right tree, and

C4

combine the set of known non-constants to be returned.

-> PxPAIR L:tree R:tree>

{L:STMT -isconin -isloop -procset -valin -walkedin AwalktAvaltemp
AlnotAiscontemp

}

{R:STMT -iscontemp -isloop -procset -valtemp -walkt Awalkedout Avalout
Arnot Aisconout}

{:union -lnot -mot Anotcon) #combine sets of known non-constants

At the COPY node the var. being assigned to is added to the notcon set. The CELL
node is examined to obtain the celTs DCLN node (decnode). The DCLN node (decnode)

is then examined to get the class (tipe) of the variable. The expression tree is

traversed and the returned data is analyzed. If the expression was constant

(econstnt=l) and we are not in the analysis pass of a loop (isloop=0) and the

variable is scalar (tipe=scalar) then we can add the var to table and the constant set

isconin. Otherwise (if we are analyzing a loop or if the exp. wasn't constant or if the

var. is not scalar) we remove the var from the set of constants and return constnt as

(false).

-> C:<COPY E:branch CL:branch>%v
(Cexamine Adecnode) # retrive DCLN node
{decnodeiexamine Atipe} # get variable type

{ :addset ~v -Empty Anotconv} # put var id in nonconstant set

{CL:EXPN -isconin -valin -isloop -procset -walkedin Agg Aaa Abb Add AeeAff

}

{E:EXPN -isconin -valin -isloop -procset -walkedin Awalkedout Aeconsmt
Avalue Avalt Aiscont Anotconx}

{:union -notconv -notconx Anotcon) # join non-constant sets

{econstnt >< isloop == # not analyzing loop and const, expn
=> {tipe : SCALAR} #if node not scalar then this al-

{:addset ~v -iscont Aisconout} # temative fails

{:into -valt -v -value Avalout} # put const value in value table

otherwise # expn wasn't constant or we are analyzing a loop

=> {:Exclude ~v -iscont Aisconout} # remove var from set of constants
Avalout : valt

}

The LOOP tree is traversed twice. Once to analyze and find the true constants (any

vars. assigned to in the loop are not const) and second to make any possible

transformations. The first time isloop is passed down as 1 to distinguish that we are

the analysis pass of a loop and the next time it is passed down as so that other

productions can make transformations. After the analysis pass of the loop, we have

obtained the set of constants (isconloop) from the first pass and it is passed down as

the set of legal constants (as isconin) in the second pass.

-> L:<LOOP BODY:tree> # pass 1 -- analysis, pass 2 -- transformation

{BODY : STMT -isconin -1 -procset -valin -walkedin Awalkloop Avaloutloop
Anotconloop Aisconloop)

{BODY : STMT -isconloop -0 -procset -valin -walkedin Awalkedout Avalout Anotcon
Aisconout}

C5

The following function is used to check a variable type to see if it is scalar (integer,

boolean or character). This function will fail if the type does not match this pattern.

typpe: SCALAR;

-> <TYPE <CONSTANT> <CONSTANT» # Scalar type node pattern

Function EXPN is used to traverse expressions in the program tree.

branch:EXPN -CONSET -VALSET -Integer -IDSET-IDSET AIDSET integer
AVARVAL AVALSET ACONSET ACONSET;

-isconin -valin -isloop -procset -walkedin Awalkedout Aconstnt
Avalue Avalout Aisconout Anotcon

WHERE:
-isconin - is the set of variables constant upon entering this function.

-valin - is the symbol table of variables and their current values upon entering

this function.

-isloop - is 1 if we are in a loop and if we are not in a loop (isloop==l during

the analysis pass of the loop and isloop==0 on the next (transformation) pass

of the loop).

-procset - a set which is carried on the downward traversal of a tree branch. It

contains the ids of procedures called during the traversal of this path. It is

used solely to detect (prevent) a recursive walk.

-walkedin - is the set of procedure ids which have been walked upon entering this

function. If a procedure id occurs in this set then it has been walked and has a

decoration of the set of var ids which are not constant in the particular

procedure.

Awalkedout - is the set of procedure ids which have been walked upon exiting this

function.

Aconstnt - is used to tell if the expn. was constant. It returns 1 if the expn. was
constant and if not.

Avalue - returns the value of the expression and is only meaningful if constnt

returns as 1 (true).

Atipe - returns the tipe node of the expression

Avalout - is the symbol table of variables and their current values upon exiting

this function.

Aisconout - is the set of variables constant upon exiting this function.

Anotcon - is the set of vars. which have been assigned to in the branches of a fork

(loop) or the body of a procedure. Variables in this set are known to be

NON-constant. Notcon is always returned and is only important upon
returning from branches in an IF node or from a CALL to a procedure.

The following 12 functions are basically the same. The left subtree is traversed and

then the right subtree is traversed. ALcon and Arcon both are received as either 1 or

depending on whether the left or right expn was constant. If they both come back 1

C6

then both trees were constant, the BINOP node is transformed into a CONSTANT node
and Aconstnt is returned as 1 (true). The values received from the left and right

subtrees are computed (depending on the operation) and the result is returned in

Avalue. Avalue is meaningless unless Aconstnt returns true.

-> B:<BINOP/add L:branch R:branch>
{L:EXPN -isconin -valin -isloop -procset -walkedin Awalkt Alcon Aleftvalue Avalt

Aiscont Anotconl}

{R:EXPN -iscont -valt -isloop -procset -walkt Awalkedout Arcon Arightvalue Avalout
Aisconout Anotconr}

(B:examine Atipe}

{ :union -notconl -notconr Anotcon } # combine sets of nonconstants
Avalue : leftvalue + rightvalue # perform operation

{Icon == 1 rcon == 1 isloop == # both operands constant and
=> Aconstnt : 1 # not analyzing loop

{T <- value} # decorate new CONSTANT node with value

{T:decorate -tipe} # decorate new node with its type

Icon == 1 rcon == 1 isloop == 1 # both operands constant but

=> Aconstnt : 1 # we are analyzing a loop

otherwise # at least one operand wasn't constant

=> Aconstnt :

=> T:<CONSTANT> I B I B

-> B:<BINOP/sub L:branch R:branch>
{L:EXPN -isconin -valin -isloop -procset -walkedin Awalkt Alcon Aleftvalue Avalt

Aiscont Anotconl}

{R:EXPN -iscont -valt -isloop -procset -walkt Awalkedout Arcon Arightvalue Avalout
Aisconout Anotconr}

{B:examine Atipe)

|:union -notconl -notconr Anotcon}
Avalue : leftvalue - rightvalue

{Icon == 1 rcon == 1 isloop ==
=> Aconstnt : 1

{T <- value}

{T:decorate~tipe}

Icon == 1 rcon == 1 isloop == 1

=> Aconstnt : 1

otherwise

=> Aconstnt :

}

=> T:<CONSTANT> I B I B
-> B:<BINOP/mpy L:branch R:branch>

{L:EXPN -isconin -valin -isloop -procset -walkedin Awalkt Alcon Aleftvalue Avalt

Aiscont Anotconl}

{R:EXPN -iscont -valt -isloop -procset -walkt Awalkedout Arcon Arightvalue Avalout

Aisconout Anotconr}

{B:examine Atipe}

C7

{ :union -notconl -notconr Anotcon)
Avalue : leftvalue * rightvalue

{Icon == 1 rcon == 1 isloop ==
=> Aconstnt : 1

{T <- value}

{T:decorate~tipe}

Icon == 1 rcon == 1 isloop— 1

=> Aconstnt : 1

otherwise

=> Aconstnt :

}

=> T:<CONSTANT> I B I B

-> B:<BINOP/modd L:branch R:branch>
{L:EXPN -isconin -valin -isloop -procset -walkedin Awalkt Alcon Aleftvalue Avalt

Aiscont Anotconl]

{R:EXPN -iscont -valt -isloop -procset -walkt Awalkedout Arcon Arightvalue Avalout
Aisconout Anotconr}

(B:examine Atipe}

{ :union -notconl -notconr Anotcon}
Avalue : leftvalue - ((leftvalue /rightvalue) * rightvalue)

{Icon= 1 rcon == 1 isloop =
=> Aconstnt : 1

{T <- value}

{T:decorate~tipe}

Icon= 1 rcon == 1 isloop == 1

=> Aconstnt : 1

otherwise

=> Aconstnt :

}

=> T:<CONSTANT> I B I B

-> B:<BINOP/dvd L:branch R:branch>
{L:EXPN -isconin -valin -isloop -procset -walkedin Awalkt Alcon Aleftvalue Avalt

Aiscont Anotconl}

{R:EXPN -iscont -valt -isloop -procset -walkt Awalkedout Arcon Arightvalue Avalout
Aisconout Anotconr}

{B:examine Atipe}

{ :union -notconl -notconr Anotcon}
Avalue : leftvalue / rightvalue

{Icon == 1 rcon == 1 isloop ==
=> Aconstnt : 1

{T<- value}

{T:decorate~tipe}

Icon == 1 rcon == 1 isloop == 1

=> Aconstnt : 1

otherwise

C8

=> Aconstnt :

}

=> T:<CONSTANT> I B I B

-> B:<BINOP/great L:branch R:branch>
{L:EXPN -isconin -valin -isloop -procset -walkedin Awalkt Alcon Aleftvalue Avalt

Aiscont Anotconl}

{R:EXPN -iscont -valt -isloop -procset -walkt Awalkedout Arcon Arightvalue Avalout
Aisconout Anotconr}

{B:examine Atipe}

{ :union -notconl -notconr Anotcon)

{Icon = 1 rcon = 1 isloop ==
=> Aconstnt : 1

{leftvalue» rightvalue => Avalue : 1

otherwise => Avalue :

}

{T<- value}

{T:decorate~tipe}

Icon == 1 rcon == 1 isloop == 1

=> Aconstnt : 1

Avalue :

otherwise

=> Aconstnt :

Avalue :

}

=> T:<CONSTANT> I B I B

-> B:<BINOP/less L:branch R:branch>
{L.EXPN -isconin -valin -isloop -procset -walkedin Awalkt Alcon Aleftvalue Avalt

Aiscont Anotconl}

{R:EXPN -iscont -valt -isloop -procset -walkt Awalkedout Arcon Arightvalue Avalout
Aisconout Anotconr}

{Biexamine Atipe}

{ :union -notconl -notconr Anotcon}

{Icon == 1 rcon == 1 isloop ==
=> Aconstnt : 1

{leftvalue« rightvalue => Avalue : 1

otherwise => Avalue :

}

{T <- value}

{T:decorate~tipe}

Icon == 1 rcon = 1 isloop = 1

=> Aconstnt : 1

Avalue :

otherwise

=> Aconstnt :

Avalue :

C9

}

=> T:<CONSTANT> I B I B

-> B:<BINOP/equal L:branch R:branch>
{L:EXPN -isconin -valin -isloop -procset -walkedin Awalkt Alcon Aleftvalue Avalt

Aiscont Anotconl}

{R:EXPN -iscont -valt -isloop -procset -walkt Awalkedout Arcon Arightvalue Avalout
Aisconout Anotconr}

{B:examine Atipe)

{ :union -notconl -notconr Anotcon)

(icon = 1 rcon == 1 isloop ==
=> Aconstnt : 1

{leftvalue ==rightvalue => Avalue : 1

otherwise => Avalue :

}

{T <- value}

{T:decorate~tipe}

Icon == 1 rcon == 1 isloop == 1

=> Aconstnt : 1

Avalue :

otherwise

=> Aconstnt :

Avalue :

}

=> T:<CONSTANT> I B I B

-> B:<BINOP/noteq L:branch R:branch>
{L:EXPN -isconin -valin -isloop -procset -walkedin Awalkt Alcon Aleftvalue Avalt

Aiscont Anotconl}

{R:EXPN -iscont -valt -isloop -procset -walkt Awalkedout Arcon Arightvalue Avalout
Aisconout Anotconr}

{B:examine Atipe}

{ :union -notconl -notconr Anotcon}

(Icon == 1 rcon = 1 isloop =
=> Aconstnt : 1

{ leftvalue >< rightvalue => Avalue : 1

otherwise => Avalue :

}

C10

{T <- value}

{T:decorate~tipe}

Icon == 1 rcon= 1 isloop == 1

=> Aconstnt : 1

Avalue :

otherwise

=> Aconstnt :

Avalue :

}

=> T:<CONSTANT> I B I B

-> B:<BINOP/greq L:branch R:branch>
{L:EXPN -isconin -valin -isloop -procset -walkedin Awalkt Alcon Aleftvalue Avalt

Aiscont Anotconl}

{R:EXPN -iscont -valt -isloop -procset -walkt Awalkedout Arcon Arightvalue Avalout
Aisconout Anotconr}

{B:examine Atipe)

{ :union -notconl -notconr Anotcon}

[icon == 1 rcon == 1 isloop ==
=> Aconstnt : 1

{leftvalue» rightvalue I leftvalue == rightvalue => Avalue : 1

otherwise => Avalue :

}

{T<- value}

{T:decorate~tipe}

Icon == 1 rcon == 1 isloop = 1

=> Aconstnt : 1

Avalue :

otherwise

=> Aconstnt :

Avalue :

}

=> T:<CONSTANT> I B I B

-> B:<BINOP/lseq L:branch R:branch>

{L:EXPN -isconin -valin -isloop -procset -walkedin Awalkt Alcon Aleftvalue Avalt
Aiscont Anotconl}

{R:EXPN -iscont -valt -isloop -procset -walkt Awalkedout Arcon Arightvalue Avalout
Aisconout Anotconr}

{B:examine Atipe}

{ :union -notconl -notconr Anotcon}

{Icon == 1 rcon == 1 isloop ==
=> Aconstnt : 1

{leftvalue« rightvalue I leftvalue= rightvalue => Avalue : 1

otherwise => Avalue :

}

{T<- value}

C11

{T:decorate~tipe}

Icon == 1 rcon= 1 isloop = 1

=> Aconstnt : 1

Avalue :

otherwise
=> Aconstnt :

Avalue :

}

=> T:<CONSTANT> I B I B

-> B:<BINOP/andd L:branch R:branch>
{L:EXPN -isconin -valin -isloop -procset ~walkedin Awalkt Alcon Aleftvalue A valt

Aiscont Anotconl}

{R:EXPN -iscont -valt -isloop -procset -walkt Awalkedout Arcon Arightvalue Avalout
Aisconout Anotconr}

{B:examine Atipe}

{ :union -notconl -notconr Anotcon}

{Icon == 1 rcon == 1 isloop ==
=> Aconstnt : 1

{leftvalue >< rightvalue >< => Avalue : 1

otherwise => Avalue :

}

(T<- value}

{T:decorate~tipe}

Icon == 1 rcon == 1 isloop = 1

=> Aconstnt : 1

Avalue :

otherwise

=> Aconstnt :

Avalue :

}

=> T:<CONSTANT> I B I B

-> B:<BINOP/orr L:branch R:branch>
{L:EXPN -isconin -valin -isloop -procset -walkedin Awalkt Alcon Alval Avalt Aiscont

Anotconl}

(R:EXPN -iscont -valt -isloop -procset -walkt AwaLkedout Arcon Arval Avalout
Aisconout Anotconr}

(B:examine Atipe}

{ :union -notconl -notconr Anotcon}

[icon == 1 rcon == 1 isloop ==
=> Aconstnt : 1

(lval >< I rval >< => Avalue : 1

otherwise => Avalue :

}

{T <- value)

{T:decorate~tipe}

C12

Icon == 1 rcon = 1 isloop == 1

=> Aconstnt : 1

Avalue :

otherwise

=> Aconstnt :

Avalue :

}

=> T:<CONSTANT> I B I B

The UNOP nodes are basically the same as the BINOP nodes except there is only one
operand tree to analyze.

-> U:<UNOP/add E:branch> # "add" is really "sub" -- see subtitles def.

{E:EXPN -isconin -valin -isloop -procset -walkedin Awalkedout Aconstnt Aexpvalue
Avalout Aisconout Anotcon)

{U:examine Atipe} # retreive expression type
Avalue : expvalue * (1-2) # perform operation

{constnt == 1 isloop == # expn was const and not analyzing loop
=> {T <- value} # decorate new CONSTANT node with value

{T:decorate -tipe} # decorate new CONSTANT node with type

otherwise # expn was not constant or we are analyzing a loop

=> # do nothing

}

=> T:<CONSTANT> I U

-> U:<UNOP/sub E:branch> # "sub" is really "not" — see subtitles defin.

{E:EXPN -isconin -valin -isloop -procset -walkedin Awalkedout Aconstnt Aexpvalue
Avalout Aisconout Anotcon}

{U:examine Atipe} # retreive expression type

{constnt == 1 isloop == # expn was const and not analyzing loop
=> {expvalue = 1 => Avalue : # perform node operation

otherwise => Avalue : 1

}

{T <- value} # decorate new CONSTANT node with value

(T:decorate -tipe} # decorate new node with type

otherwise # expn was not constant or we are analyzing a loop

=> Avalue : # do nothing

}

=> T:<CONSTANT> I U

At a FETCH node we must check to see if the variable (v) that we are fetching is in

the set isconin. If it is then we can retrieve that variable's value from the symbol

table valin and return Aconstnt as 1 (true). Otherwise we return Aconstnt as

(false). If we are analyzing a loop and the variable was constant (in isconin) then

we can't make a transformation. But if we were not in the analysis pass of a loop we

C13

can transform the FETCH to a CONSTANT node.

-> F:<FETCH C:branch>%v
{F:examine Adecnode} # retrieve DCLN node
{decnode:examine Atipe} # get var type

{C:EXPN -isconin -valin -isloop -procset -walkedin Agarb Asowhat Adontcare Aaa
Abb Acc}

{isloop == 1 v in isconin # analysing loop and var in constant set

=> { :from -valin ~v Avalue} # get var's value from table
Aconstnt : 1

isloop= v in isconin # not analyzing and var in constant set

=> { :from -valin ~v Avalue} # get var's value from table
Aconstnt : 1

{T <- value} # decorate new CONSTANT node with value

{T:decorate -ripe} # decorate new node with its type

otherwise # var was not in the constant set

=> Aconstnt :

Avalue :

}

Avalout : valin
Aisconout : isconin
Anotcon : Empty
Awalkedout : walkedin

=> F I T:<CONSTANT> I F

At a cell node we must examine the node to obtain the DCLN node for the cell. We can
then examine the DCLN node and get the var. type. Next, we check to see if the var. is

constant (v in isconin) and of scalar type. If it is then we can retrieve its value
from the table and send back a report that it is constant (

Aconstnt : 1). Otherwise it

is not constant (
Aconstnt:0). No transformation here.

-> C:<CELL>%v
{Cexamine Adecnode} # retrieve DCLN node
(decnode:examine Atipe} # get var type

(isloop == isloop v in isconin # var is constant

=> {tipe : SCALAR} # if node not scalar this alter-

{ :from -valin ~v Avalue } # native will fail

Aconstnt : 1

otherwise # var is not constant

=> Aconstnt :

}

Avalout : valin
Aisconout : isconin
Anotcon : Empty
Awalkedout : walkedin

At a CONSTANT node we must first examine the node and get the decoration so we can

check to see if the variable is scalar. If so, we can return its value. If not, we return

C14

Aconstnt as (false).

-> C:<CONSTANT>%value
{Cexamine Atipe } # get node type

(isloop == isloop

=> {tipe : SCALAR} # make sure its scalar
Aconstnt : 1

otherwise # this constant was not scalar type

=> Aconstnt :

}

Avalout : valin
Aisconout : isconin
Anotcon : Empty
Awalkedout : walkedin

It is possible that an expression will be a function call. It is handled basically the

same way as in the STMT function.

-> C:<CALL/add ARG:walka> # "add" is really "call" - see subtitles def.

{Cexamine Aproc} # retrieve corresponding PROC node
{proc -> nextid} # get procedure id and walk argument list

{ARCWalkArg -isconin -valin -isloop -Empty -1 -procset -walkedin Awalkt
Aargmatch Adontcare Aiscont Avalt Anotcont}

{nextid == nextid I nextid in procset # if the proc id is in procset

=> Avalout : valt # it must be recursive
Anotcon : notcont # don't walk it again!
Aisconout : iscont
Awalkedout : walkt

otherwise # we have called a non-recursive procedure... walk it

=> { :addset -nextid -procset Apidset) # add it to recurs, set

{proc:CrossFold -iscont -valt -isloop -argmatch -pidset -walkt Awalkedout
Avalout Anotconout Aisconout)

{runion -notconout -notcont Anotcon) # join notcon sets

}

Aconstnt : # we have to
Avalue : # send these back
Atipe : # with something

The following function is called when we have a subroutine to walk. PROC is the only

possible node for this function.

cross:CrossFold -CONSET -VALSET -Integer -VALSET -TDSET -IDSET
AIDSET AVALSET ACONSET ACONSET;

-isconin -valin -isloop -argmatch -procset -walkedin
Awalkedout Avalout Anotcon Aisconout

C15

WHERE:
-isconin - is the set of variables constant upon entering this function.

-valin - is the symbol table of variables and their current values upon entering

this function.

~isloop - is 1 if we are in a loop and if we are not in a loop (isloop==l during

the analysis pass of the loop and isloop— on the next (transformation) pass

of the loop).

-argmatch - the table of argument numbers and their corresponding var ids (var

id will be -99 if arg was an expn).

~procset - a set which is carried on the downward traversal of a tree branch. It

contains the ids of procedures called during the traversal of this path. It is

used solely to detect (prevent) a recursive walk.

-walkedin - is the set of procedure ids which have been walked upon entering this

function. If a procedure id occurs in this set then it has been walked and has a

decoration of the set of var ids which are not constant in the particular

procedure.

Awalkedout - is the set of procedure ids which have been walked upon exiting this

function.

Avalout - is the symbol table of variables and their current values upon exiting

this function.

Anotcon - is the set of vars. which have been assigned to in the branches of a fork

(loop) or the body of a procedure. Variables in this set are known to be

NON-constant. Notcon is always returned and is only important upon
returning from branches in an IF node or from a CALL to a procedure.

Aisconout - is the set of variables constant upon exiting this function.

The parameter list is walked first. The set of walked procedures (walkedin) is

checked to see if the current proc. has been walked yet. If the proc. id occurs in the

set then it has been walked and is decorated with the set of non-constants derived in

the proc. This set is retrieved and removed from the set of known constants. If the

procedure id does not occur in procset then it has not yet been walked. If this is the

case, the procedure is walked, the PROC node is decorated with the set of non-
constants derived from the procedure and the proc. id is added to the walked set.

-> P:<PROC PARAM:walkp BODY:tree>%pid # only possible node here

{PARAM:WalkParam -isconin -valin -argmatch -1 -procset Anewiscon Anewval
Ajunk)

{pid == pid pid in walkedin #proc has been walked already

=> {P:examine Anotcon) # get decoration (set of non-constants)
Awalkedout : walkedin

otherwise # proc has not been walked yet — walk it

=> {BODY:STMT -Empty -isloop -procset -Empty -walkedin Awalkt Ajunk 1

Anotcon Ajunk2}

{P:decorate -notcon) # decorate with set of non-constants

{:addset -pid -walkt Awalkedout) #add proc id to walked set

}

{:difference -newiscon -notcon Aisconout} # remove set of non-const
Avalout : newval # from returning set of constants

C16

WalkArg is called when a CALL/call (procedure call) is encountered in the program
tree. This function walks the argument list and returns a symbol table (matchset)

containing the argument numbers (order of occurance) and their corresponding
variable ids (id = -99 if the argument was an expression). When the proc. is

walked (in function CrossFold) this table is passed to function WalkParam so that

arguments can be matched with their corresponding parameters.

walka:WalkArg -CONSET -VALSET -Integer -VALSET -Integer -IDSET -IDSET
AIDSET AVALSET ^Integer ACONSET AVALSET ACONSET;

-isconin -valin -isloop -matchin -pnumin -procset -walkedin
Awalkedout Amatchset Apnumout Aisconout Avalout Anotcon

WHERE:
-isconin - is the set of variables constant upon entering this function.

-valin - is the symbol table of variables and their current values upon entering

this function.

-isloop - is 1 if we are in a loop and if we are not in a loop (isloop— 1 during

the analysis pass of the loop and isloop==0 on the next (transformation) pass

of the loop).

-matchin - the argument list table upon entering this function

-pnumin - the number of the current argument in the list being traversed.

-procset - a set which is carried on the downward traversal of a tree branch. It

contains the ids of procedures called during the traversal of this path. It is

used solely to detect (prevent) a recursive walk.

-walkedin - is the set of procedure ids which have been walked upon entering this

function. If a procedure id occurs in this set then it has been walked and has a

decoration of the set of var ids which are not constant in the particular

procedure.

Awalkedout - is the set of procedure ids which have been walked upon exiting this

function.

Amatchset - the table of arguments upon exit from the function

Apnumout - the number for the next argument (pnumin + 1)

Aisconout - is the set of variables constant upon exiting this function.

Avalout - is the symbol table of variables and their current values upon exiting

this function.

Anotcon - is the set of vars. which have been assigned to in the branches of a fork

(loop) or the body of a procedure. Variables in this set are known to be

NON-constant. Notcon is always returned and is only important upon
returning from branches in an IF node or from a CALL to a procedure.

-> <BINOP> I <UNOP> I <CONSTANT> # argument is an expression

{:into -matchin -pnumin -(1-100) Amatchset) # place in arg list table
Apnumout : pnumin + 1 # increment argument counter
Aisconout : isconin
Avalout : valin
Anotcon : Empty
Awalkedout : walkedin

It is possible that an argument will be a function call. It is handled basically the

same way as in the STMT function.

C17

-> C:<CALL/add ARG:walka> # "add" is really "call" -- see subtitles def.

{Cexamine Aproc) # "call" is only possibility for arguments

(proc -> nextid} # get procedure id and walk the argument list

{ARG:WalkArg -isconin -valin -isloop -Empty ~1 -procset -walkedin Awalkt
Aargmatch Adontcare Aiscont Avalt Anotcont}

{nextid= nextid I nextid in procset # if proc id is in procset,

=> Avalout : valt # then it must be recursive!
Anotcon : notcont # don't walk it again
Aisconout : iscont
Awalkedout : walkt

otherwise # we have called a non-recursive procedure... walk it

=> { :addset -nextid -procset Apidset} # add it to recurs, set

{proc:CrossFold -iscont -valt -isloop -argmatch -pidset -walkt Awalkedout
Avalout Anotconproc Aisconout}

{:union -notcont -notconproc Anotcon} # join notcon sets

}

{:into -matchin -pnumin -(1-100) Amatchset) # record arg as (pass-by-val)
Apnumout : pnumin + 1 # increment argument counter

-> <FETCH>%vn # argument is a varible ~ possibly pass-by-ref.

(:into -matchin -pnumin ~vn Amatchset} # record arg no. and vn in table
Apnumout : pnumin + 1 # increment argument counter
Aisconout : isconin
Avalout : valin
Anotcon : Empty
Awalkedout : walkedin

-> <PAIR L:walka R:walka>
{L:WalkArg -isconin -valin -isloop -matchin -pnumin -procset -walkedin Awalkt

Amatcht Apnumt Aiscont Avalt Anotl}

{R:WalkArg -iscont -valt -isloop -matcht -pnumt -procset -walkt Awalkedout
Amatchset Apnumout Aisconout Avalout Anotr}

{:union -notl -notr Anotcon) # join non-constant sets

-> <>
Amatchset : matchin
Apnumout : pnumin
Aisconout : isconin
Avalout : valin
Anotcon : Empty
Awalkedout : walkedin

WalkParam is called from function CrossFold to walk a procedure's parameter list.

The parameters are walked and if the parameter is pass-by-ref then the

corresponding var id is retrieved from the argument list table (passed in as

argmatch) and that var id is removed from the set of constants (iscon).

walkp:WalkParam -CONSET -VALSET -VALSET -Integer -IDSET ACONSET
AVALSET AInteger;

C18

~isconin -valin -argmatch -pnumin -procset Aisconout
Avalout Apnumout

WHERE:
-isconin - is the set of variables constant upon entering this function.

-valin - is the symbol table of variables and their current values upon entering

this function.

-argmatch - the table of argument ids and the corresponding arguments obtained

from walking the argument list of the CALL which invoked the function being

traversed, (table from function WalkArg)
-pnumin - current parameter id upon entering this function.

-procset - a set which is carried on the downward traversal of a tree branch. It

contains the ids of procedures called during the traversal of this path. It is

used solely to detect (prevent) a recursive walk.

Aisconout - is the set of variables constant upon exiting this function.

Avalout - is the symbol table of variables and their current values upon exiting

this function.

Apnumout - number of the next parameter (pnumin + 1)

-> <DCLN/kind>%vn
{kind == Ref # argument was pass-by-ref

=> { :from -argmatch -pnumin Aargid} #get var id from arg table

{ :Exclude -argid -isconin Aisconout} # remove from const set

otherwise # argument was not pass-by-ref.

=> Aisconout : isconin

}

Avalout : valin
Apnumout : pnumin + 1 # increment parameter counter

-> <PAIR L:walkp R:walkp>
{ L:WalkParam -isconin -valin -argmatch -pnumin -procset Aiscont Avalt Apnumt}

{ R:\ValkParam -iscont -valt -argmatch -pnumt -procset Aisconout Avalout Apnumout}

-> <>
Aisconout : isconin
Avalout : valin
Apnumout : pnumin

The following function will remove an item (varno) from a set (inset) and return

the resultant set (outset).

excl : Exclude -Integer -VARSET AVARSET;
-varno -inset Aoutset

-> N:excl

{ :addset -varno -Empty Atempset}

{ :difference -inset -tempset Aoutset}

C19

end ConsFold

C20

Appendix D

LoopCon TAG

LOOPCON - A Loop Constant Optimizer

The following TAG analyzes the program tree and optimizes its loops. All items

which are determined to be constant in the loop are moved out of the loop and glued

into the tree just above the loop. Such items may be a constant statement or a

constant expression. When a statement is found to be constant, the entire statement

is clipped from its place in the loop and glued back into the tree just above the loop

node. When an expression is found to be constant, that expression is removed from
its place in the loop and replaced with a fetch to a new variable cell. The removed
expression is then glued into the tree just above the loop and assigned to the new
variable which replaced it in the loop. The declaration for this new variable is also

glued into the tree in the declaration list of the subroutine in which the loop-constant item

occures.

Tree node and node-subtitle specifications:

1 PROG BINOP UNOP CALL GOTO
2 PROC 0+ 0- Ocall Oexit

3 UNOP 1 - 1 not 1 return 1 again

4 BINOP 2*
5 PAIR 3div
6 COPY 4 mod
7 FETCH 5 and

8 CONSTANT 6 or

9 CELL 7<=
10 CALL 8>=
11 LOOP 9<
12 GOTO 10>
13 IF 11 =
14 DCLN 12 <>
15 TYPE

predefined Empty, Dummy, Universe, Min, Max, Ref,

openframe -VALSET AVALSET;
into -VALSET -Integer -Integer AVALSET;
from -VALSET -Integer AInteger,

union -CONSET -CONSET ACONSET;
difference -CONSET -CONSET ACONSET;
addset -Integer -CONSET ACONSET;
pack4 -NODE -Integer -Integer -Integer ADECRTN;
unpack4 -DECRTN ANODE AInteger AInteger AInteger;

D1

newvarno AInteger;

transformer LoopCon:

The following function is the start function for the TAG
start: STRT;

-> N:start

{:STMT -Empty -Empty -Empty -0 -0 -Empty AsowhatO Asowhatl Asowhat2
Asowhat3 Asowhat4)

The following function takes care of the analysis of a loop. It is invoked when a

LOOP node is encountered in the traversal of the program tree. What we are

interested in (in the analysis) are the variables which are changed in the loop.

All of the action in this function takes place at the COPY node (assignment) and
the CALL node (subroutine call).

find:FindCon -VARSET -VARSET -IDSET -TDSET AIDSET AVARSET
AVARSET;

-notconin -twicein -procset -walkedin Awalkedout Anotconout
Atwiceout

WHERE:
-notconin - the set of variable ids known to be non-constant upon entering

this function. These vars take on new values in the loop (have been
assigned a value at least once).

-twicein - the set of variable ids known to be non-constant upon entering

this function. These vars have been assigned a value in the loop at least

twice.

-procset - a set which is carried on the downward traversal of a tree branch.

It contains the ids of procedures which have been called during the

traversal of this path. It is used solely to detect (prevent) a recursive

walk.

-walkedin - is the set of procedure ids which have been walked upon entering

this function. If a procedure id occurs in this set then it has been walked
and has a decoration of the set of var ids which are not constant in that

particular procedure.

Awalkedout - is the set of procedure ids which have been walked upon exiting

this function.

Anotconout - the set of non-constant var ids upon exiting this function.

Atwiceout - the set of non-constant var ids which have been assigned to at

least twice upon exiting this function.

-> <PAIR L:find R:find> I <BINOP L:find R:find>

{L:FindCon -notconin -twicein -procset -walkedin AwalkedtAnotcontempAtwicetemp}
{R:FindCon -notcontemp -twicetemp -procset -walkedt Awalkedout Anotconout

Atwiceout)

-> <COPY L:find R:find>%varno

D2

{L:FindCon -notconin -twicein -procset -walkedin Awalkedt Alnotcon Altwice}

{R:FindCon -lnotcon -ltwice -procset -walkedt Awalkedout Amotcon Artwice}

{varno==varno varno in motcon # var is already in notcon set

=> { :addset -varno -rtwice Atwiceout} # put it in twice set
Anotconout : rnotcon

otherwise # var doesn't occur in notcon set — this is its first

=> { :addset -varno -rnotcon Anotconout) # put it in notcon set
Atwiceout : rtwice

}

-> <IF X:find T:find E:find>

(X:FindCon -notconin -twicein -procset -walkedin Awalkedx Axnotcon Axtwice}

{T:FindCon -xnotcon -xtwice -procset -walkedx Awalkedt Atnotcon Attwice}

{E:FindCon -tnotcon -ttwice -procset -walkedt Awalkedout Anotconout Atwiceout)

-> <CELL> I <CONSTANT> I <DCLN> I <GOTO> I <>
Anotconout : notconin # nothing interesting at these nodes
Atwiceout : twicein # pass everything on through
Awalkedout : walkedin

If a CALL node is a CALL/retn then we have arrived at the end of a particular

segment of code -- pass everything on through. If the node is a CALL/call
however, then we have a call to a procedure and we must analyze it. The
corresponding PROC node decoration is retrieved along with its id and the

argument list is walked. If it is determined that we are on a recursive path

(nextid in procset) then we are done here. If not then we must walk the

procedure and add its set of non-constants to the notcon set.

-> <CALL/sut» # "sub" is really "return" -- see subtitles definition
Anotconout : notconin # pass everything on through
Atwiceout : twicein
Awalkedout : walkedin

-> C:<CALL/add ARG:walka> # "add" is really "call" -- see subtitles def.

(Cexamine Aproc} # retrieve PROC node
{proc -> nextid} # get procedure id and walk argument list

{ARG:WalkArg -Empty -procset -walkedin -Empty -1 Amatchset Apnumout Awalkedt
Anotcont}

(:intersect -notconin -notcont Atwicet}

{ :union -twicet -twicein Atwicex} # join twice sets

[:union -notconin -notcont Anotconx} # join notcon sets

{nextid= nextid nextid in procset # if the proc id is in

=> Anotconout : notconx # procset, it must be recur-
Awalkedout : walkedt # sive. Don't walk it again!
Atwiceout : twicex

otherwise # no recursion detected yet - walk the procedure

=> { :addset -nextid -procset Apidset] #add it to recurs, set

(proc:CrossFind -Empty -pidset -walkedt -matchset Awalkedout Anotcony}

[:intersect -notconx -notcony Atwicey}

{:union -twicex -twicey Atwiceout} # join twice sets

(:union -notconx -notcony Anotconout} # join notcon sets

D3

-> <FETCH T:find> I <UNOP T:find>

{T:FindCon -notconin -twicein -procset -walkedin Awalkedout Anotconout Atwiceout]

-> L:<LOOP B:find> # a nested loop

{B:FindCon -notconin -twicein -procset -walkedin Awalkedout AnotconoutAtwiceout}

WalkArg is called when a CALL/call (procedure call) is encountered in the

program tree. This function walks the argument list and returns a symbol table

(matchset) containing the argument numbers (order of occurance) and their

corresponding variable ids (id = -99 if the argument was an expression). When
the proc. is walked (in function CrossFind) this table is passed to function

WalkParam so that arguments can be matched with their corresponding
parameters.

walka: WalkArg -CONSET -IDSET -IDSET -VALSET -Integer AVALSET
AInteger AIDSET ACONSET;

-notconin -procset -walkedin -matchin -pnumin Amatchset
Apnumout Awalkedout Anotconout

WHERE:
-notconin - the set of variable ids known to be non-constant upon entering

this function. These vars take on new values in the procedure.

-procset - a set which is carried on the downward traversal of a tree branch.

It contains the ids of procedures which have been called during the

traversal of this path. It is used solely to detect (prevent) a recursive

walk.

-walkedin - is the set of procedure ids which have been walked upon entering

this function. If a procedure id occurs in this set then it has been walked
and has a decoration of the set of var ids which are not constant in that

particular procedure.

-matchin - the argument list table upon entering this function.

-pnumin - the number of the current argument in the list being traversed.

Amatchset - the table of arguments upon exit from this function

Apnumout - the number for the next argument (pnum +1).
Awalkedout - is the set of procedure ids which have been walked upon exiting

this function.

Anotconout - the set of non-constant var ids upon exiting this function.

-> <BINOP> I <UNOP> I <CONSTANT>
{:into -matchin -pnumin -(1-100) Amatchset} # put in arg list table
Apnumout : pnumin + 1 # increment argument counter
Anotconout : notconin
Awalkedout : walkedin

D4

It is possible that an argument will be a function call.

It is handled basically the same way as in the Findcon function.

-> C:<CALL/add ARG:walka> # "add" is really "call" -- see subtitles def.

(Cexamine Aproc} # "call" is only possibility for arguements
[proc -> nextid} # get procedure id and walk argument list

{ARG:WalkArg -Empty -procset -walkedin -Empty -1 Aargmatch Apnumout
Awalkedt Anotcont}

{:union -notconin -notcont Anotconx} # join notcon sets

(nextid == nextid nextid in procset # if proc id is in procset,

=> Anotconout : notconx # then it must be recursive!
Awalkedout : walkedt # Don't walk it again,

otherwise # no recursion detected yet — walk the procedure
=> { raddset -nextid -procset Apidset) # add it to recurs set

{proc:CrossFind -Empty -pidset -walkedt -argmatch Awalkedout Anotcony}
{:union -notconx -notcony Anotconout) # join notcon sets

}

{ :into -matchin -pnumin -(1-100) Amatchset} # put in arg list table
Apnumout : pnumin + 1 # increment argument counter

-> <FETCH>%vn # argument is a variable — possibly pass-by-ref

{ :into -matchin -pnumin ~vn Amatchset} #put arg no. and vn in table
Apnumout : pnumin + 1 # increment argument counter
Awalkedout : walkedin
Anotconout : notconin

-> <PAIR L:walka R:walka>
{L:WalkArg -notconin -procset -walkedin -matchin -pnumin Amatcht Apnumt

Awalkedt Anotcont)

(R:WalkArg -notcont -procset -walkedt -matcht -pnumt Amatchset Apnumout
Awalkedout Anotconout}

-> <>
Amatchset : matchin
Apnumout : pnumin
Awalkedout : walkedin
Anotconout : notconin

WalkParam is called from function CrossFind to walk a procedure's parameter

list. The parameters are walked and if the parameter is pass-by-ref then the

corresponding var id is retrieved from the argument list table (passed in as

argmatch) and that var id is added to the set of non-constants (notcon).

walkp: WalkParam -CONSET -VALSET -Integer -IDSET AInteger ACONSET;
-notconin -argmatch -pnumin -procset Apnumout Anotconout

WHERE:
-notconin - the set of variable ids known to be non-constant upon entering

this function. These vars take on new values in the loop (have been

D5

assigned a value at least once).

~argmatch - the argument list table upon entering this function

-pnumin - the number of the current parameter in the list being traversed.

-procset - a set which is carried on the downward traversal of a tree branch.

It contains the ids of procedures which have been called during the

traversal of this path. It is used solely to detect (prevent) a recursive

walk.

Apnumout - number of the next parameter (pnumin + 1

)

Anotconout - the set of non-constant var ids upon exiting this function.

-> <DCLN/kind>%vn
{kind == Ref # argument is pass-by-ref

=> { :from -argmatch -pnumin Aargid} # get var id from arg table

(:addset -argid -notconin Anotconout} # add to notcon set

otherwise # argument was not pass-by-ref

=> Anotconout : notconin

}

Apnumout : pnumin + 1 # increment parameter counter

-> <PAIR L:walkp R:walkp>
{L:WalkParam -notconin -argmatch -pnumin -procset Apnumt Anotcont}

{R:WalkParam -notcont -argmatch -pnumt -procset Apnumout Anotconout}

-> <>
Anotconout : notconin
Apnumout : pnumin

»

The following function is called when we have a subroutine to walk. PROC is the only

possible node for this function.

cross:CrossFind -CONSET -IDSET -IDSET -VALSET AIDSET ACONSET;
-notconin -procset -walkedin -argmatch Awalkedout Anotconout

WHERE:
-notconin - the set of variable ids known to be non-constant upon entering

this function. These vars take on new values in the loop (have been
assigned a value at least once).

-procset - a set which is carried on the downward traversal of a tree branch.

It contains the ids of procedures which have been called during the

traversal of this path. It is used solely to detect (prevent) a recursive

walk.

-walkedin - is the set of procedure ids which have been walked upon entering

this function. If a procedure id occurs in this set then it has been walked
and has a decoration of the set of var ids which are not constant in that

particular procedure.

-argmatch - the argument list table upon entering this function

Awalkedout - is the set of procedure ids which have been walked upon exiting

this function.

Anotconout - the set of non-constant var ids upon exiting this function.

D6

The parameter list is walked first. The set of walked procedures (walkedin) is

checked to see if the current proc. has been walked yet. If the proc. id occurs in

the set then it has been walked and is decorated with the set of nonconstants
derived in the procedure. This set is retrieved and added to the returning set of

non-constants. If the procedure id does not occur in procset then it has not yet

been walked. If this is the case, the procedure is walked, the PROC node is

decorated with the set of non-constants derived from the procedure and the

proc id is added to the walked set.

-> P:<PROC PARAM:walkp BODY:find>%pid # only possible node here

{PARAM:WalkParam -notconin -argmatch ~1 -procset Ajunk Aargnotcon]

[pid == pid pid in walkedin # proc has already been walked
=> {P:examine Anotcon) # get set of non-constants

Awalkedout : walkedin

otherwise # proc. has not been walked yet ~ walk it

=> {BODY:FindCon -Empty -Empty -procset -walkedin Awalkedt Anotcon
Atwiceout}

{P:decorate -notcon} # decorate with set of non-constants

{ :addset -pid -walkedt Awalkedout} # add proc id to walked set

}

{:union -argnotcon -notcon Anotconout) # add set of non-constants

;
to returning set of constants.

The following function is the main driver of the TAG. Traversal of the program
tree starts here and ends here. Nothing happens until a LOOP is encountered.

Two passes are made on each loop encountered. On the first pass function

Findcon is called to analyze the loop. On the second pass any possible

transformations are made on items which are determined to be loop constant.

tree : STMT -CONSET -CONSET -NODE -Integer -NODE -IDSET AIDSET
ANODE ANODE AInteger ACONSET;

-notcon -twice -gluept -inlF -decpt -walkedin Awalkedout
Anewdecpt Anewgluept Aiscon Anewcons

WHERE:
-notcon - the set of variable ids known to be non-constant upon entering this

function. These vars take on new values in the loop (have been assigned a

value at least once).

-twice - the set of variable ids known to be non-constant upon entering this

function. These vars have been assigned a value in the loop at least

twice.

-gluept - The spot reserved above the loop for putting the next item found to

be loop constant upon entering this function.

-inlF - An attribute used to distinguish whether or not we are in a branch of

a fork. It is 1 if we are in a fork and otherwise (always in an

expression tree).

-decpt - The spot reserved in the DCLN block for putting the next new DCLN
node upon entering this function.

-walkedin - is the set of procedure ids which have been walked upon entering

this function. If a procedure id occurs in this set then it has been walked

D7

and has a decoration of the set of var ids which are not constant in that

particular procedure.

Awalkedout - is the set of procedure ids which have been walked upon exiting

this function.

Anewdecpt - The spot reserved in the DCLN block for putting the next new
DCLN node upon exiting this function.

Anewgluept - The spot reserved above the loop for putting the next item found
to be loop constant upon exiting this function.

Aiscon - Returns the subtree's constant weight.

Anewcons - A set containing var ids which were created for loop constant

expressions that were moved out somewhere below the current level of

the tree traversal.

At both the PROG node and the PROC nodes the first thing done is a place is

made in the DCLN block for inserting new var. DCLNs. The program/procedure
tree is then walked.

-> <PROG PARAM BODY:tree>%jj I <PROC PARAM BODY:tree>%jj
{BODY:getdec ~jj

Abdecpt} #get pointer for glueing in new dcln nodes

(BODY:STMT -notcon -twice ~<> ~0 -bdecpt -walkedin Awalkedout Anewdecpt
Anewgluept Aiscon Anewcons}

-> <TYPE> I <>
Aiscon : 2
Anewgluept : gluept
Anewdecpt : decpt
Anewcons : Empty
Awalkedout : walkedin

Each time a DCLN node is encountered in the program/procedure tree a counter
must be incremented so that when we need to create new var ids we will have a

new one (unused consecutive number). The predeclared function "newvamo",
each time called, increments a counter for this purpose.

-> <DCLN>
{mewvarno Adontcare} # increment so we can create new ones
Aiscon : 2
Anewgluept : gluept
Anewdecpt : decpt
Anewcons : Empty
Awalkedout : walkedin

-> <GOTO> I <CALL>
Aiscon :

Anewgluept : gluept
Anewdecpt : decpt
Anewcons : Empty
Awalkedout : walkedin

-> <UNOP T:tree>

{T:STMT -notcon -twice -gluept -0 -decpt -walkedin Awalkedout Anewdecpt

D8

Anewgluept Aexpiscon Anewcons}
Aiscon : expiscon*expiscon # increase expression weight

At a PAIR node, the left subtree is walked, and then the right subtree is walked.
The sets of new constants returned are joined together and then the constant

weight of each subtree is checked. 1) If the left tree's constant weight is great

enough (iscon » 2) and the right tree has no constant weight then the left

subtree is loop constant and can be moved out (provided that we are in a loop

(gluept not equal to NULL)). 2) If the right subtree's constant weight is large

enough and the left has no constant weight then the right subtree is moved out.

3) Otherwise, we are not in a loop, both subtrees had some constant weight, or

niether subtree had a constant weight. In cases 1 and 2 the PAIR node is

transformed by removing the subtree which was determined to be constant and
replacing it with a NULL. The constant subtree is passed to function "stmoveit"

to be glued in above the loop. In case 3 no transformation takes place.

-> P:<PAIR Lrtree R:tree>

{L:STMT -notcon -twice -gluept -inlF -decpt -walkedin Awalkedt Alnewdec
Alnewglue Aliscon Alnewcons}

{R:STMT -notcon -twice -lnewglue -inlF -lnewdec -walkedt Awalkedout Anewdecpt
Arnewglue Ariscon Arnewcons}

{:union -lnewcons -rnewcons Anewcons} # join sets of new consts

|liscon»2 riscon==0 glueptxo #left const, right not, in a loop
=> {rnewglue:stmoveit ~L Anewgluept} # glue branch back in

riscon»2 liscon==0 glueptxo #right const, left not, in a loop
=> {rnewglue:stmoveit -R Anewgluept) # glue branch back in

otherwise # not in loop, both trees were constant or both weren't

=> Anewgluept : rnewglue # keep the same gluept

}

Aiscon : (liscon*riscon) # increase expression weight

=><PAIRoR> I <PAIRL<» I P

Basically the same thing happens at the BINOP node as does at the PAIR node.

The difference is that at a BINOP node the constant expression is moved out and

replaced with a FETCH to a new CELL. Function "exmoveit" is called to glue the

expression back in above the loop. Exmoveit returns the DCLN node of the new
variable cell so that the new <FETCH <CELL» can be decorated here.

-> B:<BFNOP/op L:tree R:tree>

{B:examine Atipe} # retrieve expression type

{L:STMT -notcon -twice -gluept -inlF -decpt -walkedin Awalkedt Alnewdec
Alnewglue Aliscon Alnewcons)

{R:STMT -notcon -twice -lnewglue -inlF -lnewdec -walkedt Awalkedout Arnewdec
Arnewglue Ariscon Arnewcons}

{:union -lnewcons -rnewcons Atempnewcons) # join new constant sets

D9

(liscon»2 riscon==0 glueptxo # left const, right not, in loop

=> {mewglue:exmoveit —tipe ~L -mewdec Anewdecpt Anewgluept Adecnode
Almnewcons}

{:union -lmnewcons -tempnewcons Anewcons}
[decnode -> varno} # retrieve new variable id

[C<- varno} # hang variable id on new cell

[Cdecorate -decnode} # decorate new cell with DCLN node
(F <- varno} # hang variable id on FETCH to new cell

{F:decorate -decnode} # decorate FETCH with DCLN node
riscon»2 liscon==0 glueptxo # left const, right not, in loop

=> (mewgluerexmoveit -tipe ~R -mewdec Anewdecpt Anewgluept Adecnode
Armnewcons}

{:union -rmnewcons -tempnewcons Anewcons}
[decnode -> varno} # retrieve new var id.

{C <- varno } # hang variable id on new cell

{Cdecorate -decnode} # decorate new cell with DCLN node
{F <- varno} # hang variable id on FETCH to new cell

{Frdecorate -decnode} # decorate FETCH with DCLN node
otherwise

=> Anewgluept : mewglue # keep the same loop glue point
Anewdecpt : decpt # keep the same dcln glue point
Anewcons : tempnewcons

}

Aiscon : (liscon*riscon) # increase expression weight

=><BINOP F:<FETCH C:<CELL» R> I <BINOP L F:<FETCH C<CELL>» I B

At an IF node the three subtrees are walked but only the expression subtree's

constant weight is tested for transformation. The expression is moved out

only if one of the other trees (THEN or ELSE) has a constant weight of

liscon*eiscon = 0). This is so because if both subtrees, THEN and ELSE, have
some constant weight then it is possible that the whole IF statement may be
loop constant. If it is then the whole statement will be moved out at the next

level up in the program tree.

-> I:<IF X:tree T:tree E:tree>

{X:STMT -notcon -twice -gluept -0 -decpt -walkedin Awalkedx Axdec Axgluept
Axiscon Axnewcons}

{T:STMT -notcon -twice -xgluept -1 -xdec -walkedx Awalkedt Atdec Atgluept Atiscon
Atnewcons}

(E:STMT -notcon -twice -tgluept -1 -tdec -walkedt Awalkedout Aedec Aegluept
Aeiscon Aenewcons}

{:union -xnewcons -tnewcons Aholdnewcons} # join new constant sets

(:union -holdnewcons -enewcons Atempnewcons}
[xiscon»2 tiscon*eiscon==0 gluept >«># exp. const, t & e not, in loop

=> { egluept:exmoveit ~<TYPE <CONSTANT>%0 <CONSTANT>% 1 > -X -edec
Anewdecpt Anewgluept Adecnode Axmnewcons}

{:union -xmnewcons -tempnewcons Anewcons}
(decnode -> varno} # retrieve new var id

{C <- varno} # decorate new cell with var id

{Cdecorate -decnode} # decorate new cell with its DCLN

D10

{F <- varno} # decorate new FETCH with var id

{F:decorate -decnode} # decorate new FETCH with var DCLN
Aiscon :

otherwise # not in loop or exp not const or t & e had some weight
=> { inlF == # not in branch of fork

=> Aiscon : (xiscon*tiscon*eiscon) # increase weight

otherwise # in branch of fork ~ can't move this stmt

=> Aiscon :

}

Anewgluept : egluept # keep the same loop glue point
Anewdecpt : decpt # keep the same dcln glue point
Anewcons : tempnewcons

}

=><IF F:<FETCH C:<CELL» T E> I I

At a COPY node we, again just like the PAIR and BESTOP nodes, check the constant

weight of the subtrees and make the appropriate transformations. If the right

subtree is to be moved, we must send an Integer type node to function exmoveit.

-> CY:<COPY L:tree R:tree>%varid

{L:STMT -notcon -twice -gluept ~0 -decpt -walkedin Awalkedt Aldecpt Alnewglue
Aliscon Alnewcons}

{R:STMT -notcon -twice -lnewglue -0 -ldecpt -walkedt Awalkedout Ardecpt
Amewglue Ariscon Arnewcons}

{:union -lnewcons -mewcons Atempnewcons} # join new constant sets

[liscon»2 riscon==0 glueptxo # left const, right not, in loop
=> {CY:examine Adec} # retrieve var DCLN

[dec:examine Atipe} # get var type

[rnewglueiexmoveit -tipe ~L -rdecpt Anewdecpt Anewgluept Adecnode
Almnewcons}

{•.union -lmnewcons -tempnewcons Anewcons}
[decnode -> varno} # retrieve var id of new DCLN
[C<- varno} # hang variable id on new cell

[Cdecorate -decnode} # decorate new cell with DCLN node

[F <- varno} # hang variable id on FETCH to new cell

{F:decorate -decnode} # decorate FETCH with DCLN node
Aiscon :

liscon==0 riscon»2 glueptxo # right const, left not, in loop

=> {rnewglue:exmoveit ~<TYPE <CONSTANT>%Min <CONSTANT>%Max>
~R -rdecpt Anewdecpt Anewgluept Adecnode Armnewcons}

send a numeric type because its an address calculation

{:union -rmnewcons -tempnewcons Anewcons}

[decnode -> varno} # retrieve new var id

[C<- varno} # hang variable id on new cell

{Cdecorate -decnode} # decorate new cell with DCLN node

{F <- varno} # hang variable id on FETCH to new cell

{F:decorate -decnode} # decorate FETCH with DCLN node
Aiscon :

liscon»2 riscon==2 varid in twice glueptxo
=> {mewglue:exmoveit ~<TYPE <CONSTANT>%Min <CONSTANT>%Max>

D11

~R -rdecpt Anewdecpt Anewgluept Adecnode Armnewcons}
send a numeric type because its an address calculation

{:union ~rmnewcons -tempnewcons Anewcons}
{decnode -> varno} # retrieve new var id

{C <- varno} # hang variable id on new cell

{Cdecorate -decnode} # decorate new cell with DCLN node
{F <- varno} # hang variable id on FETCH to new cell

(F:decorate -decnode} # decorate FETCH with DCLN node
Aiscon :

liscon»2 riscon»2 id in twice glueptxo
=> # move expression tree out

{CY:examine Adec} # retrieve var DCLN
{dec:examine Atipe} # get var type

[rnewglue:exmoveit -tipe ~L -rdecpt Atdecpt Almnewglue Aldecnode
Almnewcons}

{:union -lmnewcons -tempnewcons Acellnewcons}

[ldecnode -> varno} # retrieve var id of new DCLN
{C<- varno} # hang variable id on new cell

{Cdecorate -ldecnode} # decorate new cell with DCLN node
{F <- varno} # hang variable id on FETCH to new cell

{F:decorate -ldecnode} # decorate FETCH with DCLN node
move cell calculation out

{lmnewglue:exmoveit~<TYPE <CONSTANT>%Min <CONSTANT>%Max>
~R -tdecpt Anewdecpt Anewgluept Ardecnode Armnewcons}

send a numeric type because its an address calculation

{:union -rmnewcons -cellnewcons Anewcons}
{rdecnode -> id} # retrieve new var id

{D <- id } # hang variable id on new cell

{D:decorate -rdecnode} # decorate new cell with DCLN node
(E <- id} # hang variable id on FETCH to new cell

{E:decorate -rdecnode} # decorate FETCH with DCLN node
Aiscon :

otherwise # not in loop or niether tree was const or both were
=> {inlF == # not in a fork branch

=> Aiscon : liscon*riscon

otherwise # in a fork branch — cant move this stmt

=> Aiscon :

}

Anewgluept : mewglue # keep the same loop glue point
Anewdecpt : rdecpt # keep the same DCLN glue point
Anewcons : tempnewcons

}

:> <COPY F:<FETCH C:<CELL» R> I <COPY L FxFETCH C:<CELL>»
I <COPY L FxFETCH C:<CELL>»
I <COPY FxFETCH C:<CELL» E:<FETCH D:<CELL>» I CY

-> F:<FETCH V:tree>%varid

{V:STMT -notcon -twice -gluept -0 -vdecpt -walkedin Awalkedout Avdecpt Avgluept
Aviscon Avnewcons}

D12

{viscon»2 varid in notcon glueptxo # address const, var not
=> {vgluept:exmoveit ~<TYPE <CONSTANT>%Min <CONSTANT>%Max> ~V

-vdecpt Anewdecpt Anewgluept Adecnode Atnewcons}
send a numeric type because its an address calculation

{:union -vnewcons -tnewcons Anewcons}
{decnode -> varno} # retrieve new var id

{C<- varno} # hang variable id on new cell

{Cdecorate -decnode} # decorate new cell with DCLN node
{E <- varno) # hang variable id on FETCH to new cell

{E:decorate -decnode} # decorate FETCH with DCLN node
Aiscon :

viscon=2 # the subtree was just a CELL
=> {varid==varid varid in notcon # var not loop-constant

=> Aiscon :

otherwise # the cell is const but not big enough
=> Aiscon : 2

}

Anewdecpt : vdecpt
Anewgluept : vgluept
Anewcons : vnewcons

otherwise # this FETCH is not loop constant

=> Aiscon :

Anewdecpt : vdecpt
Anewgluept : vgluept
Anewcons : vnewcons

}

=> <FETCH ExFETCH C:<CELL>» I F I F

-> <CONSTANT> I <CELL>
Aiscon : 2 # return minimum constant expression weight
Anewgluept : gluept # pass everything else on through
Anewdecpt : decpt
Anewcons : Empty
Awalkedout : walkedin

When a LOOP node is encountered, two passes are made on it. Function FindCon
is called to analyze the loop and return the sets of non-constants (notconset

and twiceset). These sets are passed to function STMT when the loop body is

walked for transformation. However, before the body is walked, the LOOP node
is transformed so that there is a spot above the loop for glueing the items

which are found to be loop constant. This node (P) is passed to function STMT
as "gluept" and also indicates to functions which perform transformations that

we are indeed in a loop. After returning from the transformation pass on the

loop we check to see if the whole loop was constant. If so, then the whole loop

body is moved out. After all loop constant items are moved out we must rewalk

them (moved items) for the next level. This may have been a nested loop, so we
must now check to see if these items are also loop constant on the next level out.

D13

-><LOOPB:tree>
(B:FindCon -Empty -Empty -Empty -walkedin Awalkedt Anotconset Atwiceset}

{B:WalkLoop -notconset -twiceset ~P -0 -decpt -walkedt Awalkedx Aldec Aloopgluept
Aloopiscon Alnewcons}

lnewcons is received back containing the new vars created to

hold the values of expressions moved out of this loop

{ :union -lnewcons -notcon Anewnotcon) # add them to nonconst. set

The items which were moved out of this loop are rewalked

in case this loop node is in a loop.

{P:ReWalk -newnotcon -twice -gluept -inlF -Idee -walkedx Anewdecpt Anewgluept
Anewcons}

Aiscon :

Awalkedout : walkedx

=> P:<PAIR <> <LOOP B»

This function is called from function STMT to start a transformation pass on a loop.

walkkWalkLoop -CONSET -CONSET -NODE -Integer -NODE -IDSET AIDSET
ANODE ANODE AInteger ACONSET;

-notcon -twice -gluept -inlF -decpt -walkedin Awalkedout
Anewdecpt Anewgluept Aiscon Anewcons

WHERE:
-notcon - the set of variable ids known to be non-constant upon entering this

function. These vars take on new values in the loop (have been assigned a

value at least once).

-twice - the set of variable ids known to be non-constant upon entering this

function. These vars have been assigned a value in the loop at least

twice.

-gluept - The spot reserved above the loop for putting the next item found to

be loop constant upon entering this function.

-inlF - An attribute used to distinguish whether or not we are in a branch of

a fork. It is 1 if we are in a fork and otherwise (always in an

expression tree).

-decpt - The spot reserved in the DCLN block for putting the next new DCLN
node upon entering this function.

-walkedin - is the set of procedure ids which have been walked upon entering

this function. If a procedure id occurs in this set then it has been walked
and has a decoration of the set of var ids which are not constant in that

particular procedure.

Awalkedout - is the set of procedure ids which have been walked upon exiting

this function.

D14

Anewdecpt - The spot reserved in the DCLN block for putting the next new
DCLN node upon exiting this function.

Anewgluept - The spot reserved above the loop for putting the next item found
to be loop constant upon exiting this function.

Aiscon - Returns the subtree's constant weight.

Anewcons - A set containing var ids which were created for loop constant

expressions that were moved out somewhere below the current level of

the tree traversal.

-> I:<IF X:tree T:tree E:tree>

{X:STMT -notcon -twice -gluept ~0 -decpt -walkedin Awalkedx Axdec Axgluept
Axiscon Axnewcons}

{T:STMT -notcon -twice -xgluept -0 -xdec -walkedx Awalkedt Atdec Atgluept Atiscon
Amewcons}

{E:STMT -notcon -twice -tgluept -0 -tdec -walkedt Awalkedout Aedec Aegluept
Aeiscon Aenewcons}

{:union -xnewcons -mewcons Aholdnewcons) # join new constant sets

[:union -holdnewcons -enewcons Atempnewcons}
{xiscon»2 # loop expression is constant

=> {egluept:exmoveit ~<TYPE <CONSTANT>%0 <C0NSTANT>%1> -X -edec
Anewdecpt Anewgluept Adecnode Axmnewcons}

{:union -xmnewcons -tempnewcons Anewcons}
{decnode -> varno} # retrieve new var id

{C <- vamo} # decorate new cell with var id

{C:decorate -decnode} # decorate new cell with its DCLN
{F <- varno} # decorate new FETCH with var id

{F:decorate -decnode} # decorate new FETCH with var DCLN
otherwise # expression is not loop-constant

=> Anewgluept : egluept # keep the same loop glue point
Anewdecpt : decpt # keep the same dcln glue point
Anewcons : tempnewcons

}

Aiscon :

=><IF F:<FETCH C:<CELL» T E> I I

Obviously there may be nested loops. Items which are loop constant in the

inside loop may also be constant in the outside loop. Function ReWalk is called

from function STMT after the transformation pass of a LOOP is completed. This

function rewalks the items which were moved out of the loop so that their loop

constantness can be checked for the level which they are now on.

levkReWalk -CONSET -CONSET -NODE -Integer -NODE -IDSET ANODE
ANODE ACONSET;

-notcon -twice -gluept -inlF -decpt -walkedin Anewdecpt
Anewgluept Anewcons

D15

WHERE:
-notcon - the set of variable ids known to be non-constant upon entering this

function. These vars take on new values in the loop (have been assigned a

value at least once).

-twice - the set of variable ids known to be non-constant upon entering this

function. These vars have been assigned a value in the loop at least

twice.

-gluept - The spot reserved above the loop for putting the next item found to

be loop constant upon entering this function.

~inIF - An attribute used to distinguish whether or not we are in a branch of

a fork. It is 1 if we are in a fork and otherwise (always in an
expression tree).

-decpt - The spot reserved in the DCLN block for putting the next new DCLN
node upon entering this function.

-walkedin - is the set of procedure ids which have been walked upon entering

this function. If a procedure id occurs in this set then it has been walked
and has a decoration of the set of var ids which are not constant in that

particular procedure.

Anewdecpt - The spot reserved above the loop for putting the next item found
to be loop constant upon exiting this function.

Anewgluept - The spot reserved in the DCLN block for putting the next new
DCLN node upon exiting this function.

Anewcons - A set containing var ids which were created for loop constant

expressions that were moved out somewhere below the current level of

the tree traversal.

-> P:<PAIR M:tree L:tree> #M = the constants moved out of loop L
#L = the loop we just worked on

{M:STMT -notcon -twice -gluept -inlF -decpt -walkedin Awalkedout Anewdecpt
Atgluept Atiscon Anewcons}

{tiscon»2 # all items were constant for this level

=> (tgluept:stmoveit ~M Anewgluept) # glue branch back in

otherwise

=> Anewgluept : gluept

}

=> <PAIR <> L> I P

The following function is used to glue an expression which has been determined

to be loop constant back into the tree at the "gluept" above the loop. A new var

id is created to assign the expression to, a DCLN node for the new var is created

using function gluedec, the appropriate transformations are made to glue in the

constant expression, the new nodes are decorated with the necessary data and a

new loop gluept is returned.

D16

exmove:exmoveit -NODE -NODE -NODE ANODE ANODE ANODE
ACONSET;

-twigtype -twig -decpt Anewdecpt Anewgluept Anewdecnode
Anewcons

WHERE:
-twigtype - The TYPE node for the expression being glued.

-twig - The expression tree which is being glued into the tree

-decpt - The spot reserved in the DCLN block for putting the next new DCLN
node upon entering this function.

Anewdecpt - The spot reserved in the DCLN block for putting the next new
DCLN node upon exiting this function.

Anewgluept - The spot reserved above the loop for putting the next item found
to be loop constant upon exiting this function.

Anewdecnode - The new DCLN node which was created for the new var to hold
this expression.

Anewcons - A set containing var ids which were created for loop constant

expressions that were moved out somewhere below the current level of

the tree traversal.

-> <PAIR <> R:tree> # only structure possible for this function

{:newvarno Avamo} # get a new id number
{decpt:gluedec Anewdecpt Anewdecnode} # glue in the new DCLN
[:addset -varno -Empty Anewcons} # add the var to the notcon set

{ newdecnode :decorate -twigtype] # decorate new DCLN node with type

{newdecnode <- varno} # decorate the new DCLN node with its var id

{C <- varno) # decorate the new CELL with the var id

{CY <- varno} # decorate the new COPY node with the var id

{Cdecorate -newdecnode} # decorate new cell with DCLN node
{CY:decorate -newdecnode} # decorate new COPY with DCLN node

=> <PAIR CY:<COPY twig C:<CELL» newglueptxPAIR <> R»

The following function is used to glue a statement which has been determined

to be loop constant back into the tree at the "gluept" above the loop. The
appropriate transformations are made to glue in the constant expression and a

new gluept is returned.

stmove:stmoveit -NODE ANODE;
-twig Anewgluept

WHERE:
-twig - The constant statement to be glued in.

Anewgluept - The spot reserved above the loop for putting the next item found

to be loop constant upon exiting this function.

D17

-> <PAIR o R:tree> # only structure possible for this function

=> <PAIR twig newglueptxPAIR <> R»

Getdec is called before the beginning of the program tree traversal and each
procedure tree traversal. It is used to find and reserve a spot at the DCLN block

of the procedure for placing new DCLNs.

getglu:getdec -Integer ANODE;
-junk Anewdecpt

WHERE:
-junk - An attribute used to force dependencies.

Anewdecpt - the new DCLN gluept

-> <PAIR guts:tree return :tree>
Anewdecpt : guts

Gluedec is used to create a new DCLN node. The node is created and its

reference along with a new DCLN gluept are returned.

adddec:gluedec ANODE ANODE;
Anewdecpt Anewdecnode

WHERE:
Anewdecpt - a new DCLN gluept.

Anewdecnode - a reference to the new DCLN node just created.

-> <PAIR L:tree R:tree>

=> <PAIR newdecpt:<PAIR L newdecnode:<DCLN» R>

end LoopCon

D18

OPTIMIZER DESIGN USING
TRANSFORMATIONAL ATTRIBUTE GRAMMARS
APPLIED TO INTERMEDIATE LOW-LEVEL TREES

by

STEPHEN V. YOUNG
B. S., Kansas State University, 1985

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillmeni of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1987

ABSTRACT

A TAG (Transformational Attribute Grammar) is used to specify

program optimizations. TAGs operate on an intermediate program

representation called ILTs (Intermediate Low-level Trees). ILTs are

superior to other intermediate languages in that they preserve the high-level

structure of the source program while including low-level details for the

target machine code. Analysis is accomplished by passing information

contained in the tree with the attributes of the grammar to wherever it is

needed. Optimization is accomplished by manipulating the tree with

transformations specified by the grammar. Remote optimizations can be

performed with TAGs utilizing the context information which is available

through its attributes. TAGs can be used to implement most types of

optimization and with the domain of ILTs only one intermediate

representation is needed for all phases of optimization. To illustrate the

efficiency of designing optimizers with TAGs, the optimizations of constant

folding, dead code elimination and code motion (loop constant removal) are

discussed and the implementation of these optimizations in TAGs is

presented.

