
AN ANALYSIS OF THE INTERFEROMETRIC

ACOUSTO-OPTIC SPECTRUM ANALYZER

by

ALAN LEWIS FERGUSON

B.S., Kansas State University, 1986

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Electrical and Computer Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

198S

Approved by:

Major Professor

lb

Aloha

E£C£
I

c. 2
II

III

IV

AllEOfi S331bl

Table of Contents

Introduction 1

Interferometric Acousto-optic Spectrum Analyzers 1

A System Model 4

A Computer Algorithm 15

Summary of Results 18

Conclusions 47

References 51

Appendix (Computer Programs) 52

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

List of Figures

Conventional Acousto-optic Spectrum Analyzer

Interferometric Acousto-optic Spectrum Analyzer

Equivalent Low-Pass Model of IFAO

Coherent Detector Implementation

Rectangular Pulse in Time Domain

FFT of Rectangular Pulse

PN Reference in Time Domain

FFT of PN Reference

Frequency Sweep Reference in Time Domain

FFT of Frequency Sweep Reference

Sum of Sinusoids Reference in Time Domain

FFT of Sum of Sinusoids Reference

Shift Register for Generation of PN Sequence

Bragg Cell Windows in Frequency Domain

Diode Aperture in Frequency Domain

Diode Output in Time Domain, Rectangular Pulse Input

FFT of Diode Output, Rectangular Pulse Input

Output from Coherent Detector in Time Domain

FFT of Output from Coherent Detector

Effect of Changing v~

Effect of Changing v^ on Output in Time Domain

Simplified IFAO Model

Effect of Different Reference Signals on Output

Effect of Bragg Cell Window on Output

Effect of Carrier Offset on Output

List of Figures (continued)

Figure 26 Effect of Different Pulse Widths on Output

Figure 27 Pulse Delay for PN Reference Signal

Figure 28 Pulse Delay for Frequency Sweep Reference Signal

Figure 29 Pulse Delay for Sum of Sinusoids Reference Signal

Acknowledgments

I would like to thank Dr. Donald Hummels for his support and technical

expertise throughout this project. Also, I would like to thank the Motorola

Government Electronics Group for the financial support of the project.

Thanks also go to my mother and father for their support through all my

years of schooling.

I. INTRODUCTION

Acousto-optic (AO) spectrum analyzers have been found to be a very

efficient device to perform real-time spectral analysis on signals. An AO

spectrum analyzer uses the interaction between surface acoustic waves (SAW)

and a light source to produce the spectrum of a signal. This report gives a

mathematical basis for the interferometric acousto-optic (IFAO) spectrum

analyzer and a computer algorithm to predict the system performance.

The development begins with work done by Vander Lugt [1] in analyzing

the IFAO spectrum analyzer. The development is subsequently enlarged to

make the mathematical model more flexible. This allows for more general

input signal and reference waveforms. A computer algorithm is then

developed, and some results obtained using the algorithm are presented and

interpreted.

Interferometric Acousto-optic Spectrum Analyzers

The standard AO spectrum analyzer is shown in Figure 1. A

monochromatic light source, usually a LASER, illuminates the analyzer. The

signal to be analyzed, r(t), is input through a Bragg diffraction cell which

modulates the light with the incoming signal. The light then passes through a

lens which focuses the light beam at the plane of a photo-diode array. The

amplitude of the light along the diode array is proportional to the Fourier

transform of the input signal.

An IFAO spectrum analyzer differs slightly from the standard AO

analyzer. In the interferometric analyzer, two light beam paths are

used. The configuration of such an analyzer is shown in Figure 2. One

of these paths illuminates a Bragg diffraction cell and is modulated bv

CD

"3
O

•H
-d >>

i as
o fi
-p G
o <
x;
K

0)

u

ccj C
0) -H

ou

1

CM

I
fc

the signal waveform, r(t). The other light beam path passes through

another Bragg cell and is modulated by a reference waveform, d(t). The

two modulated beams are then combined and passed through a lens which

focuses the sum at the plane of a photo diode array. The light at the diode

array depends on the interference pattern created by the two light sources, and

hence the name "interferometric AO spectrum analyzer". The output signals

of the diodes are then filtered and detected to provide an analog of the

spectrum of r(t)

.

The IFAO spectrum analyzer has been proposed as being a device that

will have extended dynamic range over the standard AO spectrum analyzer.

Since photo-diode current is proportional to light intensity, conventional AO

spectrum analyzers have an output that is proportional to the square of

the input signal. Vander Lugt [1], in an analysis which is expanded in

Section II, showed that when the optics are properly adjusted, the IFAO

spectrum analyzer has photo-diode outputs which are linearly dependent on the

input signal. The result is that the dynamic range of the hardware

implementation of the analyzer, when expressed in dB, is essentially

doubled with an IFAO approach.

II. A SYSTEM MODEL

An equivalent mathematical model for one diode channel of the IFAO

spectrum analyzer is shown in Figure 3. The analysis will begin with

the signal beam path, and a similar derivation will hold for the

reference path. A signal, r(t) , is applied to the Bragg cell.

modulating the light that illuminates it. The light leaving the cell

may be expressed as

I
-p

o
<D

o

fl
(1) •

fc M u
V- s £

IJ)

ps
© o

o
O

(D

O

o
+>
o

HI

co

7>

CM

p

+J

C

£? B& -p

T3
CU

o

o -p

-p ->
g O
m

w

a
o
•H
+>
o
id

o
p

H
1)

jC
oo
J3
+>

o
<
s

o

o
s
CO

CD

>

m

2

0=

en
<
3

Re{ E
c
J2tut e^W

} (1)

where v is the frequency of the light and

1*00 = f + ^
ra

r(t - x/v). (2)

In (2), i>Q
and ^ are constants, v is the velocity of the acoustic wave

produced by r(t), and r(t) is the radio frequency signal for which a

spectral analysis is desired. In general, r(t) may consist of signal

s(t) plus random noise n(t).

A series representation for e^x
' is

eJ^W = t + j^xj + _ (3)

Normally the phase variations, j>(x) , are small so that the first two

terms of the series are a good approximation. Thus (1) is essentially

equivalent to

Re{ E
c

eJ2m [1 + j^(x)] }. (4)

Substitution of (2) into (4) yields

Re{ E
c

ei 2 *ut [1 + j^ + j^r(t - x/v)] }. (5)

It is convenient to represent r(t) as

r(t) = Re{ f(t) e } (6)

where f(t) is the complex envelope of r(t) and a is the center or

carrier frequency of r(t). The first order term in (5) and the one of

interest in this case is

Re{ jE
c

ei 2jut ^r(t - x/v) }. (7)

The complex amplitude of the light is

J?*m
E
c
r(t - x/v) = j^m

E
c
Re{ f(t - x/v) e^c *

}. (8)

The representation in (8) does not take into account any mask at the

Bragg cell or any variation in the intensity of the light entering the

cell. These effects may be taken into account by adding a window

function w(x) to (8) so that the complex amplitude of the light leaving

the cell becomes

jw (t-x/v)

JVc WW M f(t -x/v) e
c

}. (9)

The lens focuses the light at the plane of the photo diode array. The

complex light amplitude at the focal plane, from the signal path is the

Fourier transform [2] of (9). Specifically, we have

C ~
J Wr.(t-X/V) ~ -iW„(t-X/v)

A^p.t) = C
t
J w(x)[r(t-x/v)e

C
r(t-x/v)e

c
] e^dx

—oo

(10)

where Cj = J^m
E
c/

2 and p is a radian spatial frequency variable given by

p = 2w£/F. Here, £ is the actual spatial variable at the focal plane

of the lens, and F is the focal length of the lens. Now make the change

of variables

u = t - x/v,

with the result

Al(P>t) _, t
, oo - +j2x(f + P)u

-\^- = e JPvt
{ / w(t-u) r(u) e

c » du

—oo

.oo ~* -j2r(f - P^)u !

+
J

w(t-u) r(u) e
zx

du]. (11)

Fourier transform relations may be used to rearrange (11) into the form

ClV
= e

(/ R
(
f) J

w(t - u) e L c 2j
J du df

-co -X

z-
00 ~* /.» -J2xf-f + (f -P)lu ,

/ R(-f) / w(t - u) e L c ^J du df
}

(12)

-co -00

The cases of interest involve window functions w(x) which are real and

even. Observing that the Fourier transform of w(t - u) is

-j2x[-f + (f -H)]t

(13)

allows further simplification of (12). After substitution and some

manipulation, we have

A
t
(p,t) j2rf t

1 _ „ c u
df^ " •

C
/ R (f) »[

"f " (
f
c

+ g)]

eJ2rft

-oo

-j2jrf t ,.00
~* «_**

+ e
c
/ R(-f) V[-f + (f

c
- g)]

eJ 2rft df . (14)

The advantage of this form is that the complex light amplitude is

expressed in terms of the Fourier transforms of the signal envelope r(t)

and the window function w(x). These transforms are readily computed

using fast Fourier transform (FFT) methods.

A similar analysis can be carried out for the reference path. Let

d(t) represent the reference waveform of our choosing. There are a

number of possible choices for d(t). The main criteria to be satisfied

are that d(t) have a frequency spectrum that is essentially flat over

operating frequency band of the analyzer and that d(t) be easy to

generate. One possible reference choice is to use a carrier at the

center of the operating band that is modulated by a pseudonoise (PN)

sequence that has a clock rate somewhat greater than the input bandwidth

of the analyzer. For the analysis, it is not necessary to specify the

reference waveform. Repeating the pattern of the earlier analysis of

the signal path will show that the complex amplitude of the light at the

focal plane of the lens, from the reference path is given by

A
2
(p,t) j'2rf,t 00 - .„ r

= e
a

f D(f) WT -f - (f
d

+ g) j
e
j2!r±t

df

—oo
w

* e"
j2rfdt

/
-

5(-f) V[-f + (f
d
- g)]

eJ 2rft df (15)

-oo

where D(f) is the Fourier transform of the complex envelope, d(t), of

the reference signal, and f^ is the center frequency of the reference

signal. Henceforth, we set f^ = f , and assume frequency differences

are accounted for in the complex envelopes of the signal and reference.

This is not essential and indeed is unlikely to be the case, but it does

simplify the arguments that follow without loss of generality.

The total light at the plane of the photo diode array is the sum of

the two sources. The complex amplitude is then the sum of Aj(p,t) and

A
2
(p,t). Since the diode current is proportional to the intensity of

the light reaching the diode junction, the output of any one diode is

proportional to

I
AjCp.t) A

2
(p,t)

|

2
=

|
A^p.t)

|

2
+ 2Re{ A^p.t) A

2
*(p,t) }

I

A
2
(p,t) \\ (16)

Consider the terms on the right side of (16). The first may be writt;en

Aj(p,t)
|

J2xf t
c r-

+ e
-j^c* .-1

F"
1

!
R(f) V[-f - (f

c
+ g)] }

* k

F"
1

!
R(-f) W[-f + (f

c -{£)]} (17)

,-1
where F {•} denotes the inverse Fourier transform. This term

represents the output of a conventional AO spectrum analyzer.

10

Completing the indicated square will result in a baseband term

proportional to the square of a windowed version of the signal envelope

and a similar term centered on 2 f Hz. Neither term is of interest

here since they are more readily obtained in a conventional AO receiver,

and they lack the desired linear dependence on the signal envelope r(t).

The same arguments hold for the term Wp,t) |
. Our attention

focuses now on the product term 2Re{ A-^p^) A
2

(p,t) }, as it should

have the desired linear dependence on the signal.

A difficulty that may not be evident at this point remains to be

overcome. The temporal frequencies contained in the cross product term

overlap with those in the square terms, so that the terms may not be

isolated in the present form. Vander Lugt solved this problem by

adjusting the optics in the reference path, so that the spatial

frequency of the light represented by A
2
(p,t) was shifted slightly. The

effect was a corresponding shift in the temporal frequency of the cross

product which allowed the desired linear term to be isolated. We

proceed by replacing p by p + pQ
in A.

2
(p,t) to account for the

optical adjustment and form the cross product term as

*
Al(P>t) A

2
(p+pQ

,t)

C
1
C
2
V

F"
1

!
R(f) V[f + (f

c
+ g)] }

F-^ 6(f) V[f (f
c

+ ^0 v)
]

}*

F"
1

!
R(-f) W[f - (f

c
- g)] }

F"
1

!
5(-f) W[f-(f

c
-^v)]

(18)

where a term with temporal frequencies around 2 f Hz has been

11

discarded. Since R(f) , D(f) and V(f) are all low pass functions, it is

evident that the terms in (18) are disjoint with regard to the spatial

frequency variable, p. Numerical solution is made simpler by the

substitutions,

"1 = <c + 27 •

'2 = 'c-E.

(19)

(20)

and

P v

"2? (21)

Equation (18) then becomes

Aj^t) A
2

(v+v
Q
,t)

*~T
C
1
C
2

V

F
X

{
R(f) W(f + v

x) }
F"

1
! D(f) W(f v

x
„
Q

)

'

F"
1

!
R(-f) W(f - u

2) }
F^ D(-f) W(f - v

2
„
Q)

}
(22)

The output of a diode having an aperture centered on u.
t

v* = 0. or

equivalently a spatial frequency of f Hz may now be written by

integrating (22) over the appropriate aperture function,

12

e
d
(t) =

G f l

G
d^l)!

2
Re

j

F_1{^f
)
V

(
f +

"i)}
F_1

{

S (f) V(f +
»i

+
%))\ ^i +

G / l

6
d^2)!

2
Re F_1f ("f

)
V

(
f " ^2)} F_1 {D(-f

)
V (f " "

2
+

"0^}
\

dv2-

(23)

The factor Gq is a gain constant which depends on (L , C
2

and v, and

the aperture characteristic is denoted as
|
Gj(^)

|
•

It was determined by Vander Lugt [1] that when d(t) is chosen

correctly, a component in e^(t) is sinusoidal with frequency v~ Hz and

has amplitude linearly proportional to the spectrum of r(t) at frequency

f
c

- The signal e_i(t) will have baseband terms, which have been

discarded and are not evident in (23). It is necessary to filter off

the component at v^ Hz and detect its amplitude to obtain the output of

the spectrum analyzer. The filter must be narrow enough to filter out

the unwanted terms.

A detector with a linear characteristic is needed to detect the

signal. This ensures that the extended range of the interferometric

spectrum analyzer is utilized. Using something other than a linear

detection scheme, such as square-law detection, would nullify any gains

made. Two types of detection are most likely, coherent detection and

the use of a log video detector [3]

.

Coherent detection is assumed for this analysis, where the necessary

reference signal at v
Q

Hz is obtained by injecting a low-level sine wave

into the signal path at the edge of the analyzer input band. Taking the

13

impulse response of the output filter to be li(t), the output from one

diode in the interferometric AO spectrum analyzer may be written in the

form

e
Q
(t) =

J*
e
d
(r) h(t-r) dr cos(2Ti/

Q
t + <j>) (24)

where <j> is a phase constant of the detector reference and is adjusted

for maximum output. Since the phase of the signal is not known in

advance, practical implementations will require two detectors with

in-phase and quadrature references.

Although the extensive use of the Fourier transform simplifies the

computer algorithm, it does not provide for much intuition regarding the

operation of the IFAO spectrum analyzer. The following derivation

attempts to make the operation more clear.

Only the first term of e
d
(t), as given in (23), is considered. A

similar derivation will hold for the second term. As a model for a very

narrow aperture, we assume that the diode aperture function, IG.f^)!
2

,

|
d v

l'
|

is an impulse function at v^ = 0. Then, the first term becomes

G
Q

Re^ F
-1

R(f) V(f)
}

F *{ 5(f) V(f + „
Q) }

1 (25)

Conjugation and taking inverse Fourier transforms yield

G
Q

Re r(t) * w(t)
~*

d (t) w(t) e

+j2x i/

Q
t

i

(26)

14

From this it can be seen that the action of the Bragg cell is to

convolve the input with the window function corresponding to the

particular cell. To get any output, both the signal waveform and the

reference waveform must be non-zero simultaneously. Therefore it is

important that the reference signal illuminate each diode in the array

and that the illumination of the diodes be equal and constant over time.

Equation (26) shows the large effect that the reference has upon the

output of the analyzer.

Equations (23) and (24) provide a sufficient mathematical model for

the IFAO spectrum analyzer. From this model a computer algorithm may be

constructed to compute a variety of waveforms and spectra for the

analyzer.

A Computer Algorithm

The computer algorithm was developed from the mathematical model

just described. Extensive use of the fast Fourier transform (FFT) is

made throughout the algorithm. An outline of the algorithm is as

follows:

1. Initialize or input the following for the case of interest:

r(t) -> signal waveform in time domain

d(t) -» reference waveform in time domain

V(f) -> Bragg Cell window in frequency domain

2
I^WI "• diode aperture function

H(f) -> frequency response of BP filter.

2. Compute R(f) and form R(f) V(f + vA.

15

3. Compute D(f) and form D(f) W(f + v^ + iO .

4. Compute the appropriate inverse transforms and form:

Re F"
1

}
R(f) V(f + v

x) }
F"

1

]
5(f) W(f + p

%
+ v

Q) }
1 (27)

5. Multiply the result of Step 4 by G
Q |

G.(f)
|

2
.

6. Repeat Steps 2 through 5 for a sequence of values of v. where

2
|G
d

(i/
1
)| is significant. Sum the results each time and

multiply by the step size, Aj/, to obtain a numerical

integration of the first integral in (23).

7. Repeat steps 2 through 6 for the second integral in (23) and

then sum the two to obtain e, (t).

8. Filter the signal with a bandpass filter centered on u^ Hz.

To do this, first form the transform E,(f) and then multiply

by the filter transfer function.

9. Perform coherent detection of the signal to obtain the

envelope of the output signal. See Figure 4 for block diagram

of the algorithm coherent detector.

The algorithm described was implemented in the C computer language and

runs on a Digital Equipment VAX 11/750 computer. To provide the needed

frequency resolution, 1024 data points are used. This implementation

takes about 35 minutes of CPU time to execute the program. Several data

files are produced by the program to monitor the performance at

different points in the IFAO spectrum analyzer structure.

16

i°

DO

O

7K"

I
tu

e
09

H
eH

8

c

3

u

1<

u

3>
•H
I*

17

III. SUMMARY OF RESULTS

As currently written, the computer program requires the user to

provide several inputs. Among these are parameters of input signal, the

type of reference signal and the periods and sample times of analyzer

waveforms. Also, the type of Bragg cell window and type of bandpass

filter need to be defined. The parameters and waveforms used in many of

the examples are described in the following paragraphs.

Signal Waveforms

Since the computer program used an equivalent lowpass model in the

algorithm, any complex envelope which corresponds to a real signal could

be used. It was decided to use a radar pulse for analysis. The case of

zero rise and fall time was used; thus r(t) is a rectangular pulse (see

Figures 5 and 6 for the time and frequency domain representations).

Such signals may also be delayed or changed to represent delayed pulses

or different pulse widths.

Reference Waveforms

Four reference waveforms were used in the analysis: an impulse, a

carrier modulated with pseudo-random noise, a reference with saw-tooth

frequency sweep and a sum of sinusoids. The time and frequency domain

representations for these signals can be seen in Figures 7 to 12. All

four waveforms met the desired characteristic of having relatively flat

frequency spectra in the range of interest and were easy to generate.

The impulse reference was included for analytical use only and would not

be a possible reference signal.

18

•

-

m
a

oo
c\ o

X! >i
-P cdn h
•H 0)

S Q
.

0) (U

CQ (Q

2 2
.

.

•

.

t

•

"

.

•

•

.

1 1 1 1
1 • 1 '

o

tri

o
00

o
o
^

c rta o
o

•H

K) QJ O
CO

-J

1)

<0

1

•H

o CO *— •H* *<~s

tt tf)

0) H
£ 3
(- H

H
po bO

(0 C
n

*— +3
o
31

«

o
o ^
oo

%d •H

00* I 008*0 009*0 OOfr'O 003*0

apn^iidiuv

o
6

19

0*08
1
0'09

en

9

a
<n

ro

O

o
c
a)

3V

u

H
bD

-p
O

Eh

sO

•H

0*0fr O'OS

20

I

S

•09 t O'Ofr

(c_Ol.)
*^O0 UA 1° apn;iu6D^i

22

en

o
c
o
o

m
CO

<D

QZ'i
I ' » ' i ' <

008*0 OOt'O 0*0
i ' ' ' I

OOfr'O- 008'0-

E-i

B

0)

a
a
a)

apn;i|diiiv

21

o
CO

tri

• o
.00
• +

c

O
Q

• o 01-O a
•

• •* •H

G
/—

\

•H

0) 0)

c
o
G
11

• o
-CM

•

o
o

• K> <D
0)

CO

1

CD

O CO

- o ^~ >1_* ^ ^ C)

nN o 3

E
^

H- fc

• O fTN

_co
• » -J

i

" oo
-«0

02*1 008*0 OOfr'O 0*0 OOfr'O-

apn;i|dujv

008*0-

o
o

23

o

O
s

a
CD

CD

I
CD

I

I

3-

'OSS
1

1 '

'OOS 'OS I

I I
I

I I I

'00 L

' I ' '

O'OS

o
-o

oo n £
<D FO —
— %!

E £

91
CD

2
COIO

1-
^*^ B

CD

>s 3

O y

c H
0)

fc

3 '-H

cr o

t
u. E

o
tH

v
H
3
au

P 8 fe

(C-(U) 'Poo jjj jo apn}iu6Dfl

2k

00*9 00> 00*2 0*0 00*2- 00>-

9pn}i|diuv

25

o
.CM

o
o

oo
so

o

o
01

• T-

d v-'

9 g

K

oo

o °

ij

N

oow
•o

00* L 008*0 009*0 OOfr'O OOZ'O

•poo jjj -.o apn;ju6D|A-

26

The PN sequence was generated by using a shift register PN. sequence

generator with a sequence length of 511 bits before repeating. Figure

13 shows the particular implementation. Each bit was held for 5 time

samples to prevent aliasing problems. The bit was then used to change

the phase of the reference carrier by or i radians according to

whether the bit was zero or one. A linear sweep was used for the

frequency sweep reference. The reference sweeps the frequencies of -40

MHz to 40 MHz about f twenty times over the period of the input

waveform. This ensures that the reference is continually sweeping

through the frequencies contained in the input pulse.

The sum of sinusoids reference is a sum of five sinusoids centered

at Uq spaced 4 MHz apart. Only the sinewave at frequency i/
Q

is needed as

reference signal for the channel of interest. The others would be necessary for

adjacent diodes in the IFAO spectrum analyzer and are included to provide a

check on adjacent channel interference.

Bragg Cell Window and Filtering

Two types of Bragg cell windows are implemented in the program:

the Gaussian window and the rectangular window. It is the frequency

domain representation of these windows that is of most interest. Figure

14 shows the differences in the two windows. The Gaussian window is

obtained from

W(f) = £1 e"
x f la

(28)

where <r = 36.966 x 10
12

sec
2

. This equation is found in [4] and has

27

+3

a
+>

O

V

<r

A

CD

1

I
CO

tH
o

c
o
•H
-P

fl
0)

h c
<D CD
4^ O
to

•H M
tap o
O) -H
W

HP a)

<H -P
•H w
J3 •H
CO bO

CD

W
+J

SI
-C
CO

O
,-.

•H

28

OS* I

1 « r
008*0

-* 1

OOtr'O

«
1 r

0*0

o
to

o
d

Q
o >>

d c
CDN •-N

N 3

X CD

to
£

o c
•H

*^""

\„^ n
O 2

*o >»
o

u a
c •H

0)

3 H
cr
a>

a

o
L. h0

•

o 3es PQ

1

J*

o •r-:

• (x,o

o
!

8pn;iu5o^

29

been modified to represent a 250 ns Bragg cell window. The rectangular

window assumes a time of 250 ns for the acoustic signal to propagate

across the Bragg cell. Note that the two are similar except in the

tails of the windows, where the (sin x)/x function shows up.

The type of diode aperture used for the results given herein was

also found in [4]. It has a trapezoidal shape with physical dimensions

that translate to a plateau width of 2.5 MHz and a 3 dB bandwidth of 5

MHz. This is shown in Figure 15. It is important to note that the

equivalent bandwidths of the Bragg cell window and the diode aperture

have a large effect on the output.

To simplify the program and the subsequent analysis, a one-pole

bandpass filter was used to filter the diode output signal. Such a

filter would not exhibit the ringing that higher order filters would

have and allows for easy interpretation of the results.

Testing the Algorithm

To fully test both the algorithm and the computer implementation.

several test cases were developed and compared. The parameters varied

were:

Spatial Frequency Shift i/

Q
- 15 MHz, 20 MHz, 30 MHz

Type of Reference - Impulse, Pseudo-random Noise, Frequency Sweep.

Sum of Sinusoids

Type of Bragg Cell Window - Gaussian or Rectangular

Carrier Frequency Offset - 0, 1, 3 MHz

Pulse Width - 100, 200, 300, 400 ns

Pulse Delay - 0, 1, 2, 3, 4 /zs

From these test cases, the effect of different parameters on the IFAO

30

: *

oo
*

oo

o
.o

o
o

oo

oo
cs

1

oo
in

I

oo
00* t 008*0 009*0 OOt'O 002*0

N
X

•H

u
c

&
0)

H

c

O
p

o> <
li <D*"

t3
o
•H
Q

-^

apn;iu6D^

31

spectrum analyzer could be determined. The effects are summarized in

the following sections. The case of a 300 ns rectangular pulse with a

Gaussian aperture and PN reference is often used for comparison.

Figures 16 through 19 show the response for these conditions at several

places within the spectrum analyzer.

The diode output in the time domain is shown in Figure 16. Note

that the envelope of the sinusoid appears to be the convolution of the

pulse and the window. The frequency of the sinusoid is v„ (15 MHz), as

can be better seen in Figure 17. Figures 18 and 19 show the resulting

output of the filtering and coherent detection operations. Comparison

of the time response of Figure 18 with the diode output of Figure 16

shows the former to be the envelope of the latter. These were the

expected outputs of an IFAO spectrum analyzer with coherent detection.

Spatial Frequency Shift v~

Changing the value of v^ changes the position in the spatial

dimension that the spectrum appears. In the hardware implementation

this is done by adjusting the optics. Changing the length of the

reference path will change the temporal frequency center v~. The result

is best seen in Figure 20, where the frequency domain representation of

the diode output signal is shown. Figure 21 displays the difference in

output from the various choices of v
Q

. The difference in amplitudes is

due to the variations in the PN sequence for the different cases.

32

ra

fl

o flO nj
o^ O -H

to

1 1 CO s
3

X! >» c8 1 tsl

-d h <D s
•H (D 1 o
* Q C u^

5 <D tH
<D <D O SH
(0 10 X) <D 1

h h a <+H

3 p -h
ft ft s O

«^"

o
iii

o
to

-p

^
o rHo 3
*

nj
4-1

^—

\

o

0) «
TJ
c no

•

o H

in 0) o
to

CO s

1

•H
H

o
o c

H* v»x
+>N

Q>
3
PM

E 3«— ' iP
0)

O •H
CD «

MD

O
O

}nd}no »P0!Q

33

o
r-CM

oo

+>

I

K

oo

£>-

u
p
H
fa

0*08 0*09 O'Ot 0*02

o
o

(c-0l) *nd}no aP°!Q ±° spn-jiuBo^ jjj

34

o
-CO

CO

C

o ao crl

c> o •H

1 i

rrl

£
X! >> i M
+» cd

H
o

0) gjj
•H 0) 1 y3 R c u^

3 a; tH
m CO o M
n w Tj <D 1

t £
a

* ^

oo

o
tN

0)

•o
c
o
a
v
to

CO

Io

w

•H
trj

S
o
R

Eh

a
H
H
o
^>
o

-f->

R
•p
C
a)

x;
ou
s
o
H

' O T-

Oh

E °

CO

O
CO

p
•H

orz
i | i

—r—r
00**0

oo
•80

d

o
o

;nd;no

35

o

oo
CM

>>
O W
a a
CD

3 O fl

c^o cduno •H
u
fe, 1 1

3H£ >. n3 1 NJ

cti -P nj O a
-P TJ H 0) £
CJ -H (U 1 o
0) S O c u^
e £ 0) vH

rt <u

t3 w ta

o ^
TJ CD 1

£ i—1
i—

1

fl <+H
3" Si d •H CD o
&H fi ft ^ ffi

?*

I
1 1 r

'091
T—i 1—

P

*0S I

—I 1 r
0*08

~> 1

—

crot

o
o

oo
Io

oo
(0

o

oo

u
o

*~\ -p

n o
© S3

D. n
E -p

o 0)

0) M
CI)

JZ
rj oo o

O -p

c s
© 5
3 a

^ EH

ON

oo
CM

CD

§>
•H

(C-(U) ^nd^no jo 9pn;iu5o^ jjj

36

o
ts)

£
O
en

xs
o
CM

X

*0

oo
CM

>>
o ra

a a
a>

3 O a
o<o nj
<d en o •H
J-l

fc 1 |

ra s
ra ft

nj 1h x: >>
ctj -P nj O•PtiH CD

C -H <D 1 O
0) 55 Q a
e S CD

M <D CD
-9 co ra

O U
Tj <D

rt H ^ C <H

fc ft ft
•H CO

SB ft;

o
o

oo *~\
a 0)

•o
Q.

E
o
0)

oo o j*

to r~ tlO

•o v-/
•H

>\ £
o ctf

c a

3 o

o +»o o
**•
* it 'ino

d
C\J

uoo 1
cs •H

IV

"00

1

0*08 0*09 0'Ofr 0*0Z

o
o

3?

o
in

a

o
.o

o
.CM

o
.«*

h cm

Of)

o
c
O
O
©
CO

CD

©

F
o
.co

c
•H

-P
3
ft
+3

O
C

C
•H
bfl

C
ctj

x:o

o

-p
O
CD

Ch
<h
W

s s
o o
0^ CM

CM

•H

OO'C
-i—i—i—

i—i—i—

r

OS'Z
T—i—r-r-T—j—

T

00'2 OS'

I

00* 1 005*0

;nd;no

38

Type of Reference Signal

As shown in Equation (26) the output of the IFAO spectrum analyzer

is largely dependent on the reference signal. Figure 22 gives a diagram

of Equation (26) which further explains the action of the analyzer. To

get output from the analyzer the output from both the reference and the

signal path must be non-zero simultaneously. A good reference should be

continuously present and have a component to each that has a constant

envelope. References must have frequency components with the frequency

band of both the Bragg cell window and the diode aperture. Figure 23

shows the varied outputs from different reference signals. The sum of

sinusoids provides the best output because it meets the above criterion

very closely. The other reference signals produce less output amplitude

because they contain frequencies that are not passed through and vary

with time.

Type of Bragg Cell Window

Figure 16 shows that the rectangular window is somewhat broader

than the Gaussian window, in terms of a spatial frequency band. This

allows increased reference and signal energy to be passed with a

resultant increase of output, as shown in Figure 24. Also notice that

the output for the case of the rectangular window exhibits small

variations, probably due to the (sin x)/x window function.

Carrier Frequency Offset

Figure 25 shows the effect of moving the carrier frequency of the

input signal away from the center. To produce output the signal must be

passed through both the Bragg cell and the diode aperture. These

39

1

¥
<M

U

7T

0)

/FT

*&
os
c

g

3
•H
CO

N

+

+

A

-P

^0

o
r-CO

in

w
C

o ao cd
<TSO tH

cq

i i to

3
x: >» ni N
+> niO pC
Ti H ,>'

•H CD 1

3 « u*>

£ •H
(1)0)0
CO W T) 1

d d c
f

ft s & r

o
1-9

> o

1

1

1 1 1 1 1 [1 1 1

1

1 1

1

1 1 1 1 1 1 1 1

1

00*9 00*S 00'*
1 1

1
1

00*E
II I IT | I I I I I ! I I I

|

00'Z 00*1

-p
3
P(
-H
3
O
fl
O

W
H

M
•H
CO

CD

o
S

O
ĈD

K

Of)

c

o

CO

H

O ^

CO

I

o

Q)
O

-P
o
CD

Ch

W

CM

fc

}nd}no

4i

w
c

oo

i K

<u o
3 Q C >A

<D -rH

a) <d u
W M <D I

d 3 <D

ft ft K ^

OZ'C

o
.CO

in

o
.00

3
-p

<* 3

•-N
01

T3
n

c 3

• a
c
•H
3

K) H
01 H

a)

CO u
bO

1
52

O T—
pq«* s./

CN
0J

E •p

F
CH
63

O
CO .

•
^}-

T-

00

008*0

•jnd^no

42

5

oono
DO

BO

3

•H CD

CD

tQ W Ti CD

q <h
•H CD

CD S
o

CD ^H

o
-co

tm

o

oo
<*

4^

ft
/—

x

-P
01 3
t3 '-'

c Cow
•

o
u

O

K) V CD

Wn ft
ft

CO

!

o
U

O H
o T— H

I

N-/

cs
Q>

a

E
ft
o

P ft
o
ai

ft

o ft

CO m

C\i

p

o •Ho fc
so

6

I
—i—I—i—i—I—i—

r

OO'C OS'Z
t—j—i—r-i—i—i—i—i—

r

00*3 OS* I OOS'O

}nd}no

43

devices have 3 dB equivalent bandwidths of about 4.0 MHz and 5.0 MHz

respectively. Moving outside of these bandwidths should decrease output

significantly. The 1.0 MHz offset has higher amplitude than no offset.

This is probably due to differences in PN reference signals. The 3.0

MHz offset does show the expected decrease in amplitude and output

shape. The results of the program may be used to predict the ability of

the analyzer to resolve signals which are closely spaced in frequency.

Pulse Width

Pulses of width 100, 200, 300 and 400 ns were entered into the

computer program. Figure 26 shows how differing pulse widths change the

output. The program produced outputs that were proportional to the

pulse width of the inputs. Because of the convolution operation of the

Bragg cell, pulses of short length are "stretched". The time it takes a

pulse to propagate across the Bragg cell lengthens the output to at

least the length of the Bragg cell. Therefore shorter pulses are not as

accurately reproduced as are longer pulses. This phenomena was also

found in [4]. Note that the shorter pulses have lower amplitudes, due

to less energy in the signal.

Pulse Delay

Delaying the pulses for different references provides further

insight into the working of the IFAO spectrum analyzer and the

importance of choosing a proper reference signal. The impulse reference

signal is not considered for this case, since the output is near zero

for any amount of delay.

For the PN reference, Figure 27 shows how variable the output is.

44

a
aO -H

i w K
>Ul ! S
nj O SH <D S
<U I O

S d) T-l(DOM
h q <h

ft 13 PC ?»

ra DO

a

oo oo oo
CM

o
-co
• 10

• «t

oo

o
-cn

I
—i—r—i—|—i i i—j—

r

ovz 00*3 09'

L

i—i—|—i—i—t"^i i
%

i—

p

OS' l 008*0 OOfr'O

9)o
C
o
o
n

co

O
19 C
N

O
t-to

d)

&
-P

o
c
o

CO

x;
-p

•H

a

u
a
<H
<H
•H
Q
<H

+>
cj

Jj

tH

s

C\2

cu

U

i
fx,

O
*o

;nd;no

43

n
3
~

C"\
to -
C <M

O -rH GO > nj
<r\o -h

i i co g
i NP nio p~)

Ti H 35
•H 0> 1 o
» O fl ^A

s oj ^H
0) 0) O Jh

ID Mfl <d 1

h h a <H

3 3 e!
ft ft 5=

<D o
K T

o
in

o

>

\

00*C
I

i i i—i—I—I—

r

OS'Z 00*3 OS't

;nd;no

oo* i

1
i

•

009*0

o
o 22B

hoH
CO

>*~s 0)

0)
o

a 93

c 1-1

11o <H

o 0)

n SB

(O u
o

>»

• CM

E g

P 3

:S

oo

C\l

46

The output of the analyzer is very dependent on the state of the PN

sequence. At certain periods the PN reference does not provide the

proper frequencies to pass through the Bragg cell and the diode

aperture, thus the output is small.

The frequency sweep reference has a similar response. Figure 28

displays the pulse for several delay times. While the sweep is going

through zero frequency, the output becomes small, because the low

frequencies are not passed. When the frequency is near u
Q

, the output

amplitude is larger. This large dependence on the reference signal

leads to the consideration of a sinusoidal reference signal. Such a

signal would not exhibit the problems of either the PN or frequency

sweep reference signals.

A sum of sinusoids, centered at j>

q
and spaced by the diode spacing.

4 MHz, was then used for reference. This type of reference would meet

the requirements defined when observing Figure 22, the simplified IFAO

model. The sum of sinusoids reference signal was relatively constant

over time and was within the frequency bands needed. The output for the

sum of sinusoids reference was very good for all delay times, see Figure

29. It appears that this type of reference signal is one of the best to

consider for implementation because of the excellent results. However,

as a practical matter, such signals are difficult to implement because of the

large peak to RMS ratio they usually exhibit.

IV. CONCLUSIONS

A mathematical representation for the IFAO spectrum analyzer was

developed, and a computer algorithm was produced. Then a computer

program was implemented to emulate the analyzer using this algorithm.

47

^
to

3
s

^3- m
<r* >s

to - o
C <N G

m 0)

o t-\ a 3O « nj c^nO'H <D

co in

1 1 CO fa
3

x: >> nj 1 N

a) s
•H CD 1 o
> Q a *r\

£ CD tH
CD O H

co co tJ CD 1

H rH R <H

ft ft :
CD O
K *

o
in

J\

1 1 1 1 1 1 1 1 1
1

1 1

1

'009 '00S
1 1

1
1 1 1

1

00
1 1 PI I

o
-w
ri

o

• o
-CO

g
H
en

<D

o
C
<D

cm
CD

K
ft

CD

»

>t
O
C
<D

CT<

CD

M

M
o

E H
,= <D

0)

TJ
C
o
a
a>
(0

CO

IO

Q>

o
oa

<D

CO

H
3

co
Cxi

<D

M

g.
•H

*00£ '002 *00l

o
o

(C_0L) ^nd^no

48

w
13

M •H
3 O

(0
i* 3

«t C
0^ •H

ra •> en
C CM

a <Ho t-i a oo - njI^OtI £
ra ^3

1 1 CO CO
3

-C !>> nj 1 N

g
•H 1 os a c »o

s iH
O fi

Id Id T) d) 1HHfi <h
P P ,H
ft ffi »

o

o
in

K oo

> o

1 1 1 1 1 1 1 1 1
1

1 1

1

00*9 00*9

d
s
ho
•H
en

o
C

h

«fi

K
CQ

" H
.£ 8

c g
O -H

o m

en o

CO

IO
o -
N

• o
-<o

O
E
P

3
en

Fh

o

>>
oi

H
Q

ON
CM

Ml
•H

;nd^no

iio

Several test cases were then run through the program.

From the results it was found that the reference signal has a large

influence on the performance of the IFAO. A reference signal that is

centered around the frequency v* and that provides a component to each

diode that has a constant envelope was found to be the best. In

practice a large diode array of possibly 100 or more diodes would be

used. This type of implementation might make the sum of sinusoids

reference signal more difficult to use. Therefore, the PN or the

frequency sweep reference signal might be more appropriate.

Also, the signal and the reference must pass through both the Bragg

cell window and the diode aperture to produce output. The properties of

these system elements are a major factor in choosing a reference signal that

gives good system performance.

Future work could be done in further evaluating different types of

reference signals for maximal output. The effect of other parameters,

such as Bragg cell window and diode aperture, in the IFAO could also be

investigated. A further generalization of the mathematical model could

be enlarged to include noise and provide a more extensive measure of

system performance.

50

REFERENCES

[1] A. Vander Lugt, Interferometric Spectrum Analyzer, Applied Optics .

Vol. 20, No. 16, August 15, 1981.

[2] M. King, W. R. Bennett, L. B. Lambert and M. Arm, Real Time

Electro-optical Signal Processors with Coherent Detection, Applied

Optics . Vol. 6, No. 8, August, 1967.

[3] L. M. Ralston, A. M. Bardos, "Wideband, Interferometric Spectrum

Analyzer Improvement", AFWAL-TR-84-1029, Harris Corp., Melbourne,

FL 32902, Submitted to AFWAL/AADO-2, Wright-Patterson AFB, Ohio

45433, May 7, 1984.

[4] B. K. Harms, D. R. Hummels, "An Analysis and Comparison of the

Channelized, Acoustooptic, and Frequency Compressive Intercept

Receivers", Final Report, Volume 1, Kansas State University Engineering

Experiment Station, Project 2851, Submitted to Motorola Inc..

Government Electronics Group, June 3, 1985.

51

Appendix

Computer Programs

52

/************************))c********************* +^*^^^ + ^ + ^^^ :(c;jc ^^+ :)c

Source File Name:

Calling Sequence:

ao recvr.c

main()

Usage: This program models an acoustoptic interferomet-
ric receiver. This implementation uses a 1-pole
bandpass filter in the lowpass equivalent and
phase invarient coherent detection.

Parameters: None.

Return: None

Author: Alan L. Ferguson

Date: 5/27/88

^include "amath.h"
^include "ao_recvr.h"
^include <math.h>
#include <stdio.h>

/* Complex math file
/* Special definitions

/* Declare arrays (complex and doubles)

COMPLEX output 1[N POINTS], output2 [N_P0INTS]

,

ref
resu
r_row
s row

double

erencelN_P0INTS+6] , result [N POINTS]

,

ultc[N_POINTS], results [N POTNTSl

,

ow[N_P0INTS], signal [NJPOINTS],
ow[N_POINTSJ , temp[N_P0INTS+6J

;

plot [N_P0INTS] , wind_diode[2*F_P0INTS]

;

main()

{

int

long int

double

error, four, i, j, k, nine, out,
shift_reg, sum, tap, type, wtype;

differ, f_shift;

amplitude, delta_f, delta_t, frequency,
nu, nu_0, r_time, p_delay, p_width,
sample_f, s_time, t, wind_f;

char df [NAME LEN1 , dt [NAME_LEN]

,

name [NAME_L
of [NAME LEN
rf[NAME LEN"

EN]

ot

rt
NAME LEN
NAME LEN

COMPLEX windowQ, cfilterQ;

/

*/

*/

53

FILE "data, *sig, *ref, *wind;

/* Initialize result array and others
for(i = 0; i < N_P0INTS; i++)

result [i] = cmplx(ZERO, ZERO);

nine = 0x0080; /* Output at bit 4
four = 0x1000; /* Tap at bit 4
shift_reg = 0x1010; /* Seed for random number generator

/*

/* Enter parameters about signal and system

/* puts("Data file?");

data = fopen

11 < mil ,i .

(name, V);

fscanf (data, '7.1f , &s_time);

fscanf (data, "Xlf , &p_width)

;

fscanf (data, "Xlf" , &r_time)

;

fscanf (data, •7.1f
M

, &p_delay);

fscanf (data, "Xlf" , Samplitude);

fscanf (data, "Xlf" , &delta_f)

;

fscanf (data, "Xlf" , &nu_0)

;

fscanf (data, *7,d", fcwtype)

;

fscanf (data, "Xd", ttype)

;

fscanf (data, "Xs", dt);

fscanf (data, "Xs", df);

fscanf (data, "Xs", ot);

fscanf (data, "Xs", of);

fscanf (data, "Xs", rt);

fscanf (data, "Xs", rf);

fclose (data)

;

*/

*/

7
7
-7

7

54

/* Input parameters by hand
puts("Enter sample length (time)");
scanf("7Jf", &s_time);

puts("Enter pulse width");
scanf("7.1f", &p_width)

;

puts("Enter rise time");
scanf("7.1f", &r_time);

puts("Enter pulse delay");
scanf("7Jf", &p_delay)

;

puts("Enter amplitude");
scanf("7Jf", Samplitude);

puts("Enter frequency difference");
scanf("7.1f", &delta_f);

puts ("Enter Nu 0");
scanf("7.1f", &nu_0)

;

puts("Enter type of Bragg Cell aperature window in time");
puts("(0 for Gaussian, 1 for Rectangular)");
scant ('7.d", fcwtype)

;

puts("Enter for impulse 1 for PN sequence, 2 for sweep")
scanf("7.d", fctype)

;

P }

puts ("Reference file name (time)");
scanf("7.s", rt);

puts ("Reference file name (frequency)");
scant ("7.s", rf);

puts("Diode output file name (time)");
scant ("7.s", dt);

puts ("Diode output file name (frequency)");
scant ("7.s", df);

puts("Output file name (time)");
scant ("7.s", ot);

puts ("Output file name (frequency)");
scanf("7.s", of);

/
//* Set up the signal sequence */

i = 0;

delta_t = s_time / (double) N_P0INTS;
sample_f = ONE / s_time;

55

printf('7.1f is sample freq\n", sample_f)

;

/* Set up initial zero */
while(i * delta_t < p_delay)

signal [i] = cmplx(ZERO, ZERO);

/* Set up rising edge */
while(i * delta_t < r_tirae + p_delay)

signal [i] = cmplx((amplitude / r time)*
(i * delta_t - p_delay) , ZERO]";

P
/* Set up plateau */

while(i * delta_t < p_width + p_delay)

signal [i] = cmplx(amplitude, ZERO);

r
/* Set up falling edge */

while(i * delta_t < r_time + p_delay + p_width)

signal [i] = cmplx((p_width + r_time + p_delay - i
*

delta_t) * (amplitude / r_time), ZERO);

j«,

/* Set up trailing zero */
for(j = i; j < N_P0INTS; j++)

'

signal [j] = cmplx(ZERO, ZERO);

/* Add frequency shift from center */
for(i = 0; i < N_POINTS; i++)

signal fi] = cmult (signal [i] , cexpon(2.0*PI*i*delta t*
delta_f));

/* Write signal in time domain to disk */
/* puts("Signal File name (time)");

scanf ('v.s" , name);
sig = fopen(name, V);
fprintf(sig, "7.d \n", N_P0INTS)

;

for(i = 0; i < N_P0INTS; i++)
fprintf(sig, "7.d Hi \n", i, signal [i] .re)

;

fclose(sig); */

56

/* Transform the signal to the frequency domain */

error = cfft (signal, N POINTS, FORWARD);
puts("FFT done");

/* Write signal in frequency domain to disk */
/* puts ("Signal file name (frequency)");

scanf('7.s", name);
sig = fopen(name, "w");
fprintf(sig, "7,d \n", N_P0INTS)

;

for(i = 0; i < N_P0INTS; i++)

plot[i] = cmag(signal[i]);
fprintf(sig, Hd Zlf\n" , i, plot[i]);

fclose(sig); */

/* Create reference signal in time domain */

switch(type)

/* It is a impulse at zero for this case */
case 0:

reference [0] = cmplx(5.0, ZERO);
for(i = 1; i < N_P0INTS; i++)

reference[i] = cmplx(ZER0,ZER0)

;

break

;

/* Pseudo-random noise generator */
case 1:

'

for(i = 0; i < (int)N_P0INTS/5; i++)

/* Check for output bit set */
if((shift_reg k nine) != ZERO)

out = 0x8000;
else

out = 0x0000;

/* Check for tap bit set */
if((shift_reg k four) != ZERO)

tap = 0x8000;
else

tap = 0x0000;

/* Shift register rolling in sum of tap and output*/
sum = tap " out;
shift_reg = shift_reg » 1;
shift_reg = shift_reg k OxTfff;
sluft_reg = shift_reg

|
sum;

57

Check output */

if (out != ZERO)
for(j = 0; j < 5; j++)

reference[i*5 + j] = cmplx(0NE, ZERO);
else

for(j = 0; j < 5; j++)
reference[i*5 + j] = cmplx(-ONE, ZERO);

Multiply by exp(j2PInu_ot) */
for(i = 0; i < N_POINTS; i++)

\

t = (double) i * delta_t;
reference [i] = cmult (reference [i]

,

cexpon(2.0*PI*t*nu_0));

break

;

This is the case for the frequency sweep (40 MHz) */
case 2:

for(j = 0; j < 20; j++)

for(i = 0; i < (int)N_P0INTS/2O; i++)

t = (double) i * delta_t;
reference[(int)i*(N POINTS/20) + i] = cexponf

20.0*2.0*PI*t*t*40.0e6*
sample_f - 2.0*PI*40.0e6*t)

;

}

Rotate the frequency in time */
for(i = 0; i < N_P0INTS/2; i++)

temp[il = reference [i + N POINTS/21;
for(i = N_P0INTS/2 ; i < N_P0lNTS; i++j

terap[i] = reference [i - N_P0INTS/2]

;

for(i = 0; i < N_P0INTS; i++)
reference [i] = temp[i];*/

break;

Sine wave case */
case 3:

for(i = 0; i < N_P0INTS; i++)

t = delta t * i;

referenceXi] = cexpon(2.0*PI*nu_0*t)

;

break;

58

/* Sum of sinusoids */
case 4:

for(j = -2; j < 3; j++)

for(i = 0; i < N_P0INTS; i++)

t = delta t * i;

reference~[i] = cadd(reference[i]

,

cexpon(2.0 * PI *(nu_0 + j * 4.0e6) * t));

}

}

break;

puts("done");

/* Write reference in time domain to disk */
/* ref = fopen (it, "w");

'

fprintf(ref, '7.d \n", N_P0INTS)

;

for(i = 0; i < N POINTS! i++)
fprintf(ref, "7A 7.1f\n", i, reference [i] .re)

;

fclose(ref) ;*/

/* Transform to frequency domain */
error = cfft (reference, N POINTS, FORWARD);
puts ("After cfft for ref "J;

/* Write reference in frequency domain to disk */
/* ref = fopen(rf, V); '

fprintf(ref, "7,d \n", NJOINTS)

;

for(i = 0; i < N_P0INTS; i++)

plot[i] = cmag(reference[il)

;

fprintf(ref, VA 7.1f\n", i, plot[i]);

fclose(ref);*/

puts ("Reference done!");

/* Create Photodiode frequency window */

i = 0;
'

nu = 3.75e6 / (double) F_P0INTS;

59

/* Create plateau
while((double)i*nu < 1.25e6)

wind_diode
wind_diode

r
F_POINTS+i
F POINTS-i

= ONE;
= ONE;

/* Create sloped sides
while((double) i*nu < 3.75e6)

wind_diode
wind_diode

r
F_P0INTS+i
F POINTS-i

= -4e-7 * i*nu +1.5;
= -4e-7 * i*nu +1.5;

/* Output to file the diode aperature window
/* ref = fopen ("diode. dat", V

;

fprintf(ref, '7.d \n", 2*F_P0INTS)

;

for(i = 0; i < 2*F POINTS; i++)
fprintf(ref, "Zd 7.1f\n", i, wind_diode[i])

;

fclose(ref); 7

/* Step through signal matrix a row at a time */

torn = -F_P0INTS+1; j < F_P0INTS; j++)

printf ("Iteration 7,3d\r", j+F_P0INTS);

^^^

/ Create signal row

s_row[0] = cmult (signal [0] , window (wtype,nu*i))

;

s_row[N_P0INTS/2] = cmult (signal N_P0INTS/2],
window(wtype, sample f*N POINTS/2 + nu*i));

for(k = 1; k < N_P0INTS/2; k+"+)

s_row[kl = cmult (signal[k], window(wtype, sample_f*k
+nu*j));

s_row[N_POINTS-k] = cmult (signal [N POINTS-k]

,

window(wtype, -sample_f*k + nu*j));

Inverse transform the row of the signal matrix
error = cfft(s_row, N_P0INTS, INVERSE);

7

60

/* Create reference row */

r_row[0] = cmult (reference [0] , window(wtvpe. nu*j +

nu_0));
r_row[N_P0INTS/2] = cmult (reference [N POlNTS/2]

,

window (wtype, saraple_f*N POINTS/2 + nu*j + nu 0));
for(k = 1; k < N_P0INTS/2; k++)

r_row[k] = cmult (reference [k] , window(wtype,
sample_f*k + nu*j + nu_0));

r_row[N_POINTS-k] = cmult (reference [N_P0INTS-k]

,

window(wtype, -sample_f*k + nu*j + nu_0));

/* Inverse transform the row of the reference matrix */
error = cfft(r_row, N_P0INTS, INVERSE);

/* Multiply rows element by element taking real part only */

for(i = 0; i < N_P0INTS; i++)

s_row
s row
}"

= cmult (s row[i], cconj (r row Til))
i].im = ZER0T

/* Multiply rows by diode aperature sequence */

for(i = 0; i < N_P0INTS; i++)
s_row[i].re = s_row[i].re * wind_diode[F_POINTS+j]

;

/* Form resulting array */

for(i = 0; i < N_P0INTS; i++)
result [i] . re = result [i] . re + s_row[i].re;

/* Create signal row (second term) */
/****************¥***********************************

s_row[0] = cmult(cconj(signal[0]), window(wtype,
-nu*j));

s_row[N_P0INTS/2] = cmult (cconj (signal [N_P0INTS/2])

,

window(wtype, sample i*N POINTS/2 - nu*i));
for(k = 1; k < N_P0INTS/2; kT+)

s_row [k] = cmult (cconj (signal [N_P0INTS-k])

,

window (wtype, sample_f*k - nu*j));
s_row[N_POINTS-k] = cmult(cconj (signal [k])

,

window(wtype, -sample_f*k - nu*j));

61

/* Inverse transform the row of the signal matrix */

error = cfft(s_row, N_P0INTS, INVERSE);

/* Create reference row (second term) */

r_row[0] = cmult (cconj (reference [0])

,

window (wtype, -nu*j + nu_0));
r_row [N_P0INTS/2] = cmult (cconj (reference [N POINTS/2])

,

window(wtype, sample_f*N_P0INTS/2 - nu*j + nu 0)1;
for(k = 1; k < N_P0INTS/2; k++)

r_row[k] = cmult (cconj (reference [N_P0INTS-k])

,

winaow(wtvpe, sample_f*k - nu*j + nu_0)j;
r_row[N_POINTS-k] = cmult (cconj (reference [kl)

,

window (wtype, -sample_f*k - nu*j + nu_0));

/* Inverse transform the row of the reference matrix */
error = cfft(r_row, N_P0INTS, INVERSE);

/* Multiply rows element by element taking real part only */

for(i = 0; i < N_P0INTS; i++)

s_row[i] = cmult (s_row [i] , cconj (r_row[i]))

;

. im = ZERO;s row

}

/* Multiply rows by diode aperature sequence */

for(i = 0; i < N_P0INTS; i++)
s_row[i].re = s_row[i].re * wind_diode[F_POINTS+j]

;

I* Form resulting array */

for(i = 0; i < N_P0INTS; i++)
result [i] . re = result [i] . re + s_row[i].re;

/* Write diode output in time domain to disk */
/* ref = fopen(dt, V);

fprintf(ref,"7,d \n", N_P0INTS)

;

for(i = 0; i < N_P0INTS; i++)
fprintf(ref, "7.d 7,e\n", i, result [i] .re)

;

fclose(ref);*/

62

/* Transform */

error = cfft (result, N_P0INTS, FORWARD);

/* Write diode output in frequency domain to disk */
/* ref = fopen(df, V);

fprintf(ref,"7.d \n", NJOINTS);
for(i = 0; i < N_P0INTS; i++)

plot[i] = cmag(result[il)

;

fprint! (ref, V,d 7.e\n'\ i, plot[i]);

fclose(ref);*/

/* Bandpass signal to retrieve signal w/ 1-Pole filter */

puts ("Bandpass filter of signal");

result [0] = cmult(cfilter(0.0, 1, 2.0E6), result [01):
result [NJOINTS/2] = cmult(cfilter((N POINTS/2) *sample f-

nu_0, 1, 2.0E6), result [NJOINTS/2])

;

for(i = 1; i < N_P0INTS/2; i++)

resultfil = cmult(cfilter((i*sample_f)-nu_0, 1, 2.0E6),
result [il)

;

result [NJOINTS-i] = cmultfcf ilter((-i*sample f)+nu 0,1,
2. 0E6), result [N_P0INTS-i])

;

~

/* Output to file the filtered response */
/* ref = fopen("filter", V);

for(i = 0; i < NJOINTS; i++)
fprintf(ref, "7.1f\n", cmag(result[i]))

;

fclose(ref);*/

/* Detect signal envelope using coherent detection */

puts("Detecting output envelope");
f_shift = (long) (nu / sample f)

;

differ = (long) (2 * (NJOINTS/2 - f_shift));

/* Phi = (cosine) */
/* Case of X(f + fc) *'/

for(i = 0; i < differ+f shift; i++)
output l[i] = result"[i+f_shift]

;

63

for(i = differ+f_shift; i < N POINTS; i++)
outputl[i] = result [i-(f_shift+differ)

]

;

/* Case of X(f - fc) */
for(i = 0; i < f_shift; i++)

output2[i] = result [i+f_shift+differ]

;

for(i = f_shift; i < N_P0INTS; i++)

output2[i] = result [i-f_shift]

;

for(i = 0; i < N_P0INTS; i++)
resultc[i] = cadd (output 1 [i] , output2[i]);

/* Implement brick wall lowpass filter */
for(i = f_shift; i < N POINTS-f_shift; i++)

resultc[i] = cmplx^ZERO, ZERO);

/* Phi = 90 degrees (sine) */

/* Case of X(f + fc) */
for(i = 0; i < differ+f_shift; i++)

outputl[i] = cmult(cexpon(-PI/2.0), result [i+f_shift])

;

for(i = differ+f_shift; i < N POINTS; i++)
outputl[i] = cmult(cexpon"[-PI/2.0), result [i-(f_shift+

differ)]);

/* Case of X(f - fc) */
for(i = 0; i < f_shift; i++)

output2[i] = cmult(cexpon (PI/2.0), result [i+f_shift+
differ]);

for(i = f_shift; i < N POINTS; i++)
output2[i] = cmult^cexpon (PI/2.0), result [i-f_shift])

;

for(i = 0; i < N_P0INTS; i++)
results [i] = cadd(outputl [i] , output2[i]);

/* Implement brick wall lowpass filter */
for(i =f_shift; i < N_POINTS-f_shift; i++)

results[i] = cmplx(ZERO, ZERO);

/* Transform back to time domain */

error = cfft(resultc, N_P0INTS, INVERSE);
error = cfft (results, N_P0INTS, INVERSE);

64

/* Put sine and cosine detected arrays together for output
for(i = 0; i < N_P0INTS; i++)

result [i

resu
result [il.im = ZERO;

}

re = sqrt(resultsri] .re*results[i] .re +
tc[i] .re*resultc[i" re);

/* Output file in time domain to disk */
ref = fopen(ot, V);
fprintf(ref,"7.d \n", N POINTS);
for(i = 0; i < N_P0INTS"; i++)

fprintf(ref, "U 7.e\n", i, result [i] .re)

;

fclose(ref)

;

/* Switch back to frequency domain */
error = cfft (result, N_P0INTS, FORWARD);

/* Output frequency domain of output signal */
/* ref = fopenfof, V); '

fprintf(ref, n
7.d \n M

, N POINTS);
for(i = 0; i < N_P0INTS"; i++)

plot[il = cmag (result Til);
fprint* (ref, Hd %e\a\ i, plot[i]);

fclose(ref);*/

}

65

Source File Name: ao_recvr.h

Calling Sequence: ^include ao_recvr.h

Usage: Include file for ao_recvr.c. Defines number of
points used for sequences and iterations.

Parameters: None.

Return : None

.

Author: Alan L. Ferguson

Date: 5/27/1988

tfdefine NJOINTS 1024 /* Points in sequence */
#define F POINTS 10 /* Frequencies for integration*/
#define NA~ME_LEN 30 /* Length of file names */

66

Source File Name: amath.h

Calling Sequence: #include "amath.h"

Usage: Complex structure definition and other math.

Parameters: None.

Author: Alan L. Ferguson

Date: 1/4/87

/*Define complex data structure */
typedef struct complex

double re,im;

} COMPLEX;

/* Define useful constants
#define ZERO 0.0
#define ONE 1.0
#define TWO 2.0
#define PI 3.141592654

/* Define complex math routines
COMPLEX cadd();
COMPLEX cconj();
COMPLEX cdiv();
COMPLEX cexpon();
double cmag();
double cmagsqh;
COMPLEX cmplx();
COMPLEX cmultf);
COMPLEX cneg();
double cphaseQ;
double cphaseaO;
COMPLEX csqrtQ;
COMPLEX csub();
double crealO;
double cimag();
int cfft7)

;

COMPLEX cpowQ;
double sincQ;
double ccabs();

/* Define forward and inverse for FFT routine
tfdefine FORWARD 1

tfdefine INVERSE -1

67

Source File Name: cadd.c

Calling Sequence: cadd(zl,z2)

Usage: This routine adds two COMPLEX numbers.

Parameters: zl,z2 COMPLEX
The numbers to be added.

Return: COMPLEX
The resulting complex addition.

Author: Alan L. Ferguson

Date: 11/16/87

^include "amath.h"

COMPLEX cadd(zl,z2)
COMPLEX zl,z2;

{

COMPLEX result;

result. re = zl.re + z2.re;
result, im = zl.im + z2.ini;

return(result);

/

68

Source File Name: ccabs.c

Calling Sequence: ccabs(z)

Usage: This routine calculates the absolute value
of a COMPLEX number.

Parameters: z COMPLEX
The number to find the absolute
value of.

cabs double
The resulting absolute value.

Author: Alan L. Ferguson

Date: 7/28/87

*** l

include "amath.h"
| include <math.h>

double ccabs(z)
COMPLEX z;

double result;

result = sqrt(z.re*z.re + z.im*z.im);
return(result)

;

69

Source File Name: cconj.c

Calling Sequence: cconj(z)

Usage: This routine returns the conjugate of z.

Parameters: z COMPLEX
The COMPLEX variable of interest.

Return: COMPLEX
The conjugate of the argument.

Author: Alan L. Ferguson

Date: 11/16/87

^include "amath.h"

COMPLEX cconj(z)
COMPLEX z;

COMPLEX result;
result. re = z.re;
result. im = -(z.im)

;

return(result)

;

}

70

Source File Name: cdiv.c

Calling Sequence: cdiv(zl,z2)

Usage: This routine performs a COMPLEX division
on zl and z2.

Parameters: zl,z2 COMPLEX
The COMPLEX numbers to be multiplied

Return: COMPLEX
The resulting division.

Author: Alan L. Ferguson

Date: 11/16/87

#include "amath.h"

COMPLEX cdiv(zl,z2)
COMPLEX zl,z2;

{

COMPLEX result;
double temp;

COMPLEX cmult(),cconj();
double creal();

result. re = ZERO;
result. im = ZERO;
if(z2.re == ZERO kk z2.im ==ZER0)

puts("ERROR: Divide by Zero");
return(result)

;

temp = creal(cmult(z2,cconj(z2)));
result = cmult(zl,cconj(z2));
result. re = result. re / temp;
result. im = result. im / temp;
return(result);

71

/**#***

Source File Name: cexp.c

Calling Sequence: cexp(z)

Usage: Performs the complex exponential function on
a complex variable.

Parameters: z COMPLEX
A COMPLEX variable.

Return: COMPLEX
The complex exponential of the argument.

Author: Alan L. Ferguson

Date: 11/16/87

**/

^include <math.h>
include "amath.h"

COMPLEX cexp(z)
COMPLEX z;

I

}

COMPLEX result;
result. re = exp(z.re) * cosfz.iml;
result. im = exp(z.re) * sin(z.im);
return(result)

;

72

/***

Source File Name: cexpon.c

Calling Sequence: cexpon(w);

Usage: This function evaluates e raised to the jw.

Parameters: w double
The argument in rad.

cexpon() COMPLEX
The result.

Author: Alan L. Ferguson

Date: 10/16/87

/

^include <math.h>
include "amath.h"

COMPLEX cexpon(w)
double w;

COMPLEX result;

result. re = cosfw}

;

result. im = sin(w)

;

return(result)

;

73

Source File Name: cfft.c

Calling Sequence: cfft (data, n, flag)

Usage: This routine performs the FFT operation on
the data pointed to by x. It must be a
power of two !

!

Parameters: datafl COMPLEX
A COMPLEX pointer addressing the
data array.

n int

An integer with value equal to the
length of the data sequence.

flag int

A flag denoting forward or inverse
transform.

1 Forward
-1 Inverse

Return: int

The number of iterations in process.

Author: Alan L. Ferguson

Date: 11/16/87

#include "amath.h" /* Complex definitions */
| include <math.h>
^include <stdio.h>

int cfft (data, n, flag)
COMPLEX data[];
int flag,n;

COMPLEX gtemp , ht emp , w , temporary

;

int l
, j , iterat ion , m , no_iterat ions , n_point s , offset

,

number , result , t emp
,
power , r_power , rev

;

double multiplier, sign;

Check for the number of iterations
number = 1;

no_iterations = 0;
while(number < n)

{

number = number * 2;

no_iterations++;

71

/* Determine type of transform to perform
if (flag == FORWARD)

multiplier = (double) 1/number;
sign = -1.0;

}

if (flag == INVERSE)

multiplier = (double) ONE;

sign = 1.0;

/* Begin FFT process by method of frequency decomposition */

result = no_iterations;
number = pow((double)TVO,(double)no_iterations)

;

offset = number;
n_points = number;

for(iteration=l; iterations no_iterations; iteration++)

offset /= 2;

for(i=0; j < number; j+=n_points)

w = cmplx(cos(2.0*PI/fdouble)n_points)

,

sign*sin(2. 0*PI/ (double) n_points));
for(m=0; m<offset; m++)

gtemp = cadd(data[m+j] , data [m+j+offset]);
htemp = cmult((csub (data [m+j] , data [m+j+off set]))

,

(cpow(w, (double)m)))

;

}

data
data

}

>+j] = gtemp;
m+j+offset] = htemp;

n_points /=2;

Swap the bit-reversed coeffecients
n_points = number/2;
temp = 1;

for (i=l; i<number; i++)

if (i < temp)

temporary = data[temp-l"
data[temp-l] = data[i-l"
data[i-l] = temporary;

for(j = n_points; j<temp; j/=2)
temp -=j;

75

temp +=j;

/* Scale by multiplier

for(i=0; i<=number-l; i++;

latafi .re = data[i].re * multiplier;

data[i).im = data[i].im * multiplier;

return(result);

76

Source File Name: cfilter.c

Calling Sequence: cfilter(f, filtkey, f3)

Usage: This routine scales a variable with the
scaling being dependent where in a certain
filter the frequency occurs.

Parameters: f double
The frequency of interest. The
magnitude.

filtkey int

A key refering to what type of
filter is to be used.

f3 double
The 3 dB frequency of the filter of
interest.

The following filters are available:

Key Filter Type

1 1-Pole Butterworth
2 2-Pole Butterworth
3 3-Pole Butterworth
4 4-Pole Butterworth
5 5-Pole Butterworth
6 6-Pole Butterworth
7 7-Pole Butterworth
s 8-Pole Butterworth

9 SAW Filter

10 T-second Integrato:

11 2 -Pole Chebyshev
12 2 -Pole Chebyshev
13 2 -Pole Chebyshev
14 2 -Pole Chebyshev
15 3 -Pole Chebyshev
1G 3 -Pole Chebyshev
17 3 -Pole Chebyshev
18 3 -Pole Chebyshev
19 4 -Pole Chebyshev
20 4 -Pole Chebyshev
21 4 -Pole Chebyshev
22 4 -Pole Chebyshev

3.00 dB Ripple
1.00 dB Ripple
0.10 dB Ripple
0.01 dB Ripple
3.00 dB Ripple
1.00 dB Ripple
0.10 dB Ripple
0.01 dB Ripple
3.00 dB Ripple
1.00 dB Ripple
0.10 dB Ripple
0.01 dB Ripple

77

23 5 -Pole Chebyshev 3.00 dB Ripple
24 5 -Pole Chebyshev 1.00 dB Ripple
25 5 -Pole Chebyshev 0.10 dB Ripple
26 5 -Pole Chebyshev 0.01 dB Ripple
27 6 -Pole Chebyshev 3.00 dB Ripple
28 6 -Pole Chebyshev 1.00 dB Ripple
29 6 -Pole Chebyshev 0.10 dB Ripple
30 6 -Pole Chebvshev 0.01 dB Ripple
31 7 -Pole Chebyshev 3.00 dB Ripple
32 7 -Pole Chebyshev 1.00 dB Ripple
33 7 -Pole Chebyshev 0.10 dB Ripple
34 7 -Pole Chebyshev 0.01 dB Ripple
35 8 -Pole Chebyshev 3.00 dB Ripple
36 8 -Pole Chebyshev 1.00 dB Ripple
37 8 -Pole Chebyshev 0.10 dB Ripple
38 8 -Pole Chebyshev 0.01 dB Ripple

39 2 -Pole Linear Phasefl sec delay at w=0'
40 3 -Pole Linear Phase (1 sec delay at w=0

<

41 4 -Pole Linear Phase fl sec delay at w=0
<

42 5 -Pole Linear Phase fl sec delay at w=0
<

43 6 -Pole Linear Phasefl sec delay at w=0*
44 7 -Pole Linear Phasefl sec delay at w=0^
45 8 -Pole Linear Phase (1 sec delay at w=0*

Author: Alan L. Ferguson

Date: 8/25/87

^include <math.h>
^include <stdio.h>
^include "amath.h"

COMPLEX cfilter(f,filtkey,f3)
double f, f3;
int filtkey;

int i;

COMPLEX jw, a[12], result, tempi, temp2;

/ SpI" "i w ~~ q ;k /

jw = cmplx(ZER0,(double)f/f3);

/* Set the default value to Zero */
result. re =0.0;
result. im =0.0;

78

/* Zero the imaginary part of the coeffecients
for(i=0; i<12; i++)

a[i] .im = 0.0;

r Choose the appropriate filter
switch (filtkey)

1

case 1:

a
"0"

.re =!•;

a
"1"

.re =0.;

a
"2'

.re =0.;

a
"3"

.re =i-;

a
"4"

.re =i.;

a
"5'

.re =0.;

a
"6"

.re =0.;
a

"7"
.re =0.;

a
"8'

.re =0.;
a

"9"
.re =0.;

a "1(
)] .re =0.;

a
b]

LJ .re

ik:

=0.;

case 2:

a
"0"

.re =i-;

a Y .re =0.;

a
"2"

.re =0.;

a
"3"

.re =1.;
a

'4"
.re =1.41421;

a
"5"

.re =1.;

a
'6"

.re =0.;

a
"7"

.re =0.;

a
"8"

.re =0.;

a
'9"

.re =0.;

a "l()] .re =0.;
a

bi

.1 .re

ik;

=0.;

case 3:

a
"0"

.re =i-;

a T .re =0.;

a ~2
.re =0.;

a
'3'

.re =1.;
a

"4"
.re =2.;

a
"5'

.re =2.;
a

"6'
.re =!•;

a
"7'

.re =0.;
a

"8'
.re =0.;

a
'9'

• re =0.;
a '101. re =0.;
a '11

J .re =0.;

*/

*/

break

:

79

case 4:

a 0"

a
"1"

a ~2

a
"3"

a
"4'

a
"5"

a
"6'

a
"7"

a
"8"

a
"9"

a "10

a "11

re =1.

re =0.

re =0.

re =1.

re =2. 6131
re =3. 4142
re =2. 6131
re =1.

i

re =0.
i

re =0.
i

.re =0
• ;

.re =0
• ;

break

;

case 5:

case 6:

a
"0"

.re =1.

a
"1"

.re =0.

a
"2"

.re =0.

a
'3'

.re =1.

a
'4'

.re =3.2361
a

"5"
.re =5.2361

a
"6'

.re =5.2361
a

"7'
.re =3.2361

a
"8'

.re =i.;
a

"9"
.re =0.;

a 1()] .re =0.;

a
h

u . .re =0.;
break

;

a
"0'

.re =!•;

a
"1"

.re =0.

a
"2"

.re =0.

a
"3"

.re =1.

a
"4"

.re =3.8637
a

"5'
.re =7.4641

a
"6"

.re =9.1416
a

"7"
.re =7.4641

a
"8'

.re =3.8637
a

"9"
.re =1.;

a "1C)] .re =0.;
a '11 " .re =0.

!

break

;

case 7:

a ro" .re =i-;
a T .re =0.;
a

"2"
.re =0.;

a
"3"

.re =i-;
a

"4"
.re =4.4940;

a
"5"

.re =10.0978;

SO

case 8:

a
'6"

.re =14 5918
a

"7'
.re =14.5918

a
'8"

.re =10.0978
a

'9'
.re =4.4940;

a "l()] .re =i.;

a '11.' .re =0.;

break;

a .re =i.;
a

"1'
.re =0.

a
"2'

.re =0.

a 3" .re =1.

a
'4'

.re =5.1258;
a

"5'
.re =13.1371

a
"6'

.re =21.8462
a

"7'
.re =25.6884

a
"8'

.re =21.8462
a

"9'
.re =13.1371

a "ItI] .re = 5.1258;
a "U " .re =1

I

break;

case 11

a
'0'

a
'1"

a
2'

a
'3'

a
'4'

a
"5'

a
"6'

a
"7'

a
"8'

a
"9'

a "10

a "11

break;

.re =.50062;

.re =0.;

.re =0.;

.re =.70715;

.re =.64452;

.re =1.

.re =0.

.re =0.

.re =0.

.re =0.

.re =0.

.re =0.

case 12:

a 0' .re =.66276;
a Y .re =0.;
a

'2'
.re =0.;

a
'3'

.re =.74363;
a r •re =.90151;
a

"5'
.re =1.

;

a
"6"

.re =0.;
a

"7"
.re =0.;

a
"8'

.re =0.;
a '',)'

.re =0.;
a "1(

] .re =0.;
a

bi

'11

•et

' .re =0.;
k;

81

case 13:

a[01. re =.86760;
a

"

f .re =0.;
a

'

2 .re =0.;
a

"

3" .re =.87765;
a

"

i .re =1.22081;
a' 5^ .re =i.;
a' 3' .re =0.;

a' f .re =0.;
a' $.re =0.;
a' 3] .re =0.;
a

'

101. re =0.;
a[If .re =0.;

break;

case 14:

a[<)] .re =.95420;
a '.' ' .re =0.;
a

'
i .re =0.;

a': \ .re =.95530;
a"' [.re =1.34868;
a'! f .re =i.;

a](r .re =0.;
a

"'
7
\ .re =0.;

a* f .re =0.;

a'<)' .re =0.;
a'l.0] .re =0.;
a[1 1" .re =0.;
break

;

case 15:

a[C1] .re =.25035;
a'l '. - re =0.;
a "5

'. - re =0.;
a '2 i .re =.25035;
a>

!
- re =.92774;

a l .re =.59706;
a '6 .re =i.;

a '7
.re =0.;

a'fi
;

- re =0.;

a '8 .re =0.;

a'l 01. re =0.;
a'l 1 .re =0.;
break

;

case 16:

a '()"

a 'l"

a h 2"

a "3

a 4'

a
"5'

.re =.37429;

.re =0.;
•re =0.;
•re =.37429;
•re =1.03303;
.re =.90268;

S2

6' .re =1.

;

"7"
.re =0.;

'8"
.re =0.;

'9'
.re =0.;

"10
1 . re =0

.

'11 I.re =0.

break

;

case 17:

a
"0'

a
"1'

a '2

a
"3'

a
"4'

a
"5"

a
"6"

a
"7'

a
'8'

a
"9'

a "10

a "11

.re =.61123;

.re =0.;

.re =0.;

.re =.61123;

break

;

.re =1.

.re =1,

.re =1.

.re =0.;

.re =0.;

.re =0.;

.re =0.;

,re =0.;

,36286;

,39582;

case 18:

a

a

"0'

T
a

'2'

a
"3"

a
"4'

a

a

'5'

"6'

a

a

"7"

"8'

a
"9"

a '10

a "11

break

;

.re =.78718;

.re =0.;

.re =0.;

.re =.78718;

.re =1.64659;

.re =1.69337;

.re =1.

;

.re =0.;

.re =0.;

.re =0.;

re =0.;
re =0.;

case 19:

a
"0"

a T
a

"2"

a
"3"

a
'4'

a
'5"

a
"6"

a
"7"

a
"8"

a
"9"

a "10

a "11

break;

re =.1252;
re =0.;
re =0.;
re =.1769;
re =.4046;
re =1.1689;
re =.5812;
re =1.

;

re =0.;
re =0.;

.re =0.;

.re =0.;

S3

case 20:

a[01. re =.1998;
a

'

1" .re =0.;

a

'

2' .re =0.;
a

'

3" .re =.2242;
a

'

i .re =.6360;
a

'

5' .re =1.3112;
a' 6' .re =.9049;
a' 1 .re =1.;
al 3' .re =0.;
a" 3' .re =0.;
a

'

101. re =0.;

a'
br

111. re =0.;
*ak;

case 21:

a[()l.re =.3782;
a' L' .re =0.;
a':X .re =0.;
a":S .re =.3826;
a'<1' .re =1.1346;
a'!5" .re =1.7850;
a"($" .re =1.4869;
a"'r" .re =1.;
a'!1' .re =0.;
a"<)' .re =0.;
a':101 .re =0.;
a[:

br<

Lll.re =0.;
>ak;

case 22:

a[()l.re =.5622;
a"lL .re =0.;
a|5!' .re =0.;
a i\ .re =.5629;
a 4[' .re =1.5990;
t't>' .re =2.2936;
a'(>' .re =1.9125;
a'/'" .re =1.;

a;«f -re =0.;
a S•J.re =0.;
a'l 01. re =0.;
a[l

bre

11. re =0.;
ale;

case 23:

a[0l.re =.06261;
al " .re =0.;
a '2 " .re =0.;
a '3

" .re =.06261;
a '4 •re =.4078;
a [5

' .re =.5488;

S4

a J
a

"7"

a
"8"

a
"9'

a "10

a '11

.re =1.4147;

.re =.5745;

.re =1.

;

.re =0.;

re =0.;

re =0.;

break;

case 24:

a
"0"

a T
a

'2"

a
'3'

a
'4'

a r 5"

a
"6"

a
"7'

a
"8"

a
"9'

a "10

a "11

break

;

.re =.1040;

.re =0.;

.re =0.;

.re =.1040

.re =.5083

.re =.8820

.re =1.5803;

.re =.9062;

.re =1.

;

.re =0.;
".re =0.;

.re =0.;

case 25:

a
"0"

a
'1'

a
'2"

a
'3'

a
"4"

a
"5'

a
"6'

a
"7'

a
"8'

a
'9'

a '10

a '11

break

;

.re =.2177;

.re =0.;

.re =0.;

.re =.2177;

.re =.8660:

.re =1.6407

.re =2.1520

.re =1.5369

.re =1.

;

.re =0.;
re =0.;
re =0.;

case 26:

a '()"

a
'1"

a
'2'

a 3'

a
"4'

a
'5'

a
"6'

a
"7"

a
"8'

a
"9"

a "10

a '11

break

;

.re =.3627;

.re =0.;

.re =0.;
•re =.3627;
•re =1.3347
•re =2.4383
.re =2.8469
•re =2.0480
.re =1.

;

re =0.;
.re =0.;
.re =0.;

85

case 27

a
"0'

a T
a

'2'

a
"3"

a
'4'

a
'5"

a "G'

a
"7"

a
a

'8'

"9'

a "10

a "11

break;

re =.031305;
re =0.;

re =0.;

re =.044219;
re =.16335;
re =.698804;
re =.69044;
re =1.66249;
re =.57068;
re =1.

;

.re =0.;

.re =0.;

case 28:

break

;

.re =.053455;

.re =0.;

.re =0.;

•re =.059978;
•re =.27353;
.re =.85633;
.re =1.12151;
.re =1.84353;
.re =.90698;
.re =1.

;

re =0.;
re =0.;

case 29:

U
break

;

.re =.12015;

.re =0.;

.re =0.;

.re =.12154;
•re =.57829;
.re =1.43530
.re =2.12876
.re =2.48288
.re =1.56658
.re =1.

;

.re =0.;

.re =0.;

case 30:

•re =.21859;
•re =0.;
•re =0.;
.re =.21884;
•re =.99163;
•re =2.25965;

SG

break

;

.re =3.25896

.re =3.31983

.re =2.13412

.re =1.

;

.re =0.;
re =0.;

case 31:

a
"0"

a

a

"1'

'2'

a
'3"

a
"4'

a

a

"5'

"6"

a
"7"

a

a

a

'8'

"9"

"10

a '11

.re =.015660;

.re =0.;

.re =0.;

.re =.015660;

.re =.14614;

.re =.29999;

.re =1.05175;

.re =.83139;

.re =1.91147;

.re =.5684;
re =1.

;

re =0.;
break;

case 32:

a
"0"

a

a

'1'

'2'

a
'3'

a
"4'

a
"5'

a
'6'

a
"7"

a
"8'

a

a

"9"

'10

a '11

break

;

•re =.027253;
.re =0.;
.re =0.;
•re =.027253;
.re =.19291;
•re =.50381;
.re =1.26811
.re =1.35757
•re =2.10317
re =.90750;
.re =1.

;

re =0.;

case 33:

a
"0'

a
'1"

a
'>'

a
'3"

a
'4'

a
'5'

a
'6'

a
"7'

a
"8'

a
:»;

a 10

a[ll
break;

re =.064585;
re =0.;
re =0.;
re =.064585;
re =.37852;
re =1.06716;
re =2.07911;
re =2.60152;
re =2.79095;
re =1.58543;
•re =1.

;

•re =0.;

87

case 34:

a[0] .re =.12595;
a 1" .re =0.

;

a '2' .re =0.;
a "3"

.re =.12595;
a "4" .re =.68572;
a '5' .re =1.85737;
a '6' .re =3.29509;
a'7' .re =4.04874;
a '8" .re =3.73515;
a'9].re =2.19127;
a '101. re =1.;

aflll.re =0.;
break

;

case 35:

a
"0'

a
'1'

a

a

"2"

"3"

a
"4'

a
"5'

a
'6'

a
"7'

a
'8'

a
"9'

a '10

a '11

.re =.0078288;

.re =0.;
•re =0.;
.re =.011058;
.re =.056474;
.re =.32070;
.re =.47185;
.re =1.46650;
•re =.97189;
.re =2.16057;
re =.56696;
re =1.

;

break

;

case 36:

a
"0"

a
'1'

a
'2"

a 3'

a
'4'

a
"5"

a
"6"

a
"7'

a "S"

a
'9'

a.
'10

a '11

break

;

.re =.013831;

.re =0.;

.re =0.;

.re =.015519;

.re =.097971;
•re =.41410;
•re =.79334;
•re =1.74349
.re =1.59161
.re =2.36061
re =.90788
.re =1.

;

case 37:

a
"0"

a
'1"

a r2"

a
"3'

a
"4"

a
'5"

.re =.034141;

.re =0.;

.re =0.;

.re =.034536;
•re =.22902;
•re =.78720;

8N

a x .re =1.67634
a

"7"
.re =2.79177

a "S" .re =3.06245
a

'9"
.re =3.08426

a '101. re =1.59803;
a '11" .re =1.;

break;

case 38:

a
"0"

.re =.070308;
a

"1"
.re =0.;

a
"2"

.re =0.;

a
'3'

.re =.070308;
a

'4'
.re =.44639;

a
'5'

.re =1.42188
a

'6'
.re =2.93459

a
'7"

.re =4.41480
a

'8'
.re =4.80689

a
'9'

.re =4.10960
a "1()].re =2.23073;
a '11.' .re =1.;

break;

case 39:

a
"0"

.re =1.61804;
a Y .re =0.;
a

"2"
.re =0.;

a
"3"

.re =1.61804;
a

'4'
.re =2.20321;

a
"5"

.re =1.

;

a
"6'

.re =0.;
a

"7'
.re =0.;

a
'8'

.re =0.;
a.

"9"
.re =0.;

a '10
1 .re =0.;

a Mi " .re =0.:

break;

case 40:

a 0"
.re =2.7718;

a l" .re =0.;
a

2"
.re =0.;

a 3' .re =2.7718;
a 4"

.re =4.86637;
a 5"

.re =3.41750;
a 6' .re =1.

;

a 7' .re =0.;
a 8'

•re =0.;
a 9'

•re =0.;
a 10 .re =0.;
a 11 .re =0.;
break;

89

case 41

a[01. re =5.25828;
a

'

1' .re =0.;
a

'

2' .re =0.;
a

'

3" .re =5.25828;
a

'

4" .re =11.11552;
a

'

5' .re =10.07023;
a"6' .re =4.73057;
a

'

7' .re =1.;

a

"

8' .re =0.;

a
[

9].re =0.;
a

'

101. re =0.;

a[11" .re =0.;

break;

case 42:

a[01. re =11.21331;
a

"

1' .re =0.;
a

'

2' .re =0.;
a

"

3' .re =11.21331
a

'

4' .re =27.21909
;

a" 5' .re =29.36504
a

[

6' .re =17.82010
;

a
'

7' .re =6.17948;
a

'

8' .re =1.;
a

"

9' .re =0.;
a

'

101. re =0.;
a[11' .re =0.;
break;

case 43:

a[01. re =26.6313;
a

'

1" .re =0.;
a' 2' .re =0.;
a

'

3' .re =26.6313;
a

'

4" .re =71.9941;
a' 5' .re =88.4667;
a' 3' .re =63.7755;
a''X .re =28.7348;
a 'J

3' .re =7.7681;
a'lJJ.re =1.;
a

'

LOl.re =0.;
a '.'

LI' .re =0.:
break;

case 44:

a[()].re =69.2265;
a'l , .re =0.;
at!' .re =0.;
a'c!' .re =69.2265;
a '4

[.re =204.3353;
Si %j J. re =278.3697;

90

a 'G"

a
"7"

a
"8"

a
'9'

a "10

a "li

break;

.re =228.2392;

.re =122.4894;

.re =43.3861;

.re =9.48609;
re =1.

;

re =0.;

case 45:

a
"0"

a
r

l"

a Y
a

"3'

a
"4"

a
'5'

a
"6"

a
'7'

a
"8'

a
"9'

a '10

a '11

.re =194.054;

.re =0.;

.re =0.;

.re =194.054

.re =617.007

.re =915.511

.re =831.692

.re =508.541
•re =215.592
.re =62.3170

re =11.3223
re =1.

;

break

;

case 9:

result. re = (l./.54)*sin(.2264*PI*f/f3)/
\2264*PI*f/f3)*
.54*sin(.566*PI*f/f3)/
'.566*PI*f/f3)+
:23*sin(PI+.566*PI*f/f3)/
(PI+.566*PI*f/f3)+
.23*sin(.566*PI*f/f3-PI)/
(.566*PI*f/f3-PI));

return(result);

case 10:

result = cmult(cmplx(sin(PI*f*f3)/
(PI*f*f3),0.),
cmplx(cos(PI*f*f3),
-sin(PI*f*f3)));

return (result);

default

puts("Selected filter not available");
return(result)

;

}

/* Polynomial Transfer Function */

91

/* Evaluate numerator */

tempi = a[0];

for(i=l; i<3; i++)
tempi = cadd(templ,cmult(a[i],cpow(jw,(double)i)));

/* Evaluate denominator */

temp2 = a[3];

for (i=4; i<12; i++)
temp2 = cadd(temp2,cmult(a[i],cpow(jw,

(double)(i-3))));

/* Calculate result */

result = cdiv(templ,temp2);

return(result);

92

/Jit***

Source File Name: cmag.c

Calling Sequence: cmag(z)

Usage: This routine calculates the absolute value
of a COMPLEX number.

Parameters: z COMPLEX
The number to find the absolute
value of.

Return: double
The absolute value of the argument.

Author: Alan L. Ferguson

Date: 12/06/87

**

/

^include "amath.h"
^include <math.h>

double cmag(z)
COMPLEX z;

double result;

result = sqrt(z.re*z.re + z.im*z.im);
return(result);

93

Source File Name: cmplx.c

Calling Sequence: cmplx(x,y);

Usage: This routine creates a complex variable from
two double variables.

Parameters: x,y double
The real and imaginary parts.

Return: COMPLEX
A complex variable of the two doubles.

Author: Alan L. Ferguson

Date: 11/16/87

#include "amath.h"

COMPLEX cmplx(x,y)
double x,y;

COMPLEX result;

result. re = x;

result. im = y;
return(result)

;

}

94

Source File Name: cmult.c

Calling Sequence: crault(zl,z2)

Usage: This routine performs a COMPLEX multiplica-
tion on zl and z2.

Parameters: zl,z2 COMPLEX
The COMPLEX numbers to be multiplied

Return: COMPLEX
The resulting complex multiplication.

Author: Alan L. Ferguson

Date: 11/16/87

#include "amath.h"

COMPLEX cmult(zl,z2)
COMPLEX zl,z2;

COMPLEX result;

result. re = fzl.re * z2.re) - fzl.im * z2.imk
result. im = (zl.im * z2.re) + (zl.re * z2.ini);

return(result)

;

95

Source File Name: cpow.c

Calling Sequence: cpow(z,n)

Usage: This routine evaluates the power of a
COMPLEX number.

Parameters: z COMPLEX
The argument to be taken to a power.

n int

An integer indicating the power.

Return: COMPLEX
The resulting complex value.

Author: Alan L. Ferguson

Date: 11/16/87

#include "amath.h" /* Complex definitions */
^include <math.h>

COMPLEX cpow(z,n)
COMPLEX z;

double n;

COMPLEX result;
double scale, theta;

/* Check for exponent of ZERO */
if (n == ZERO)

'

result. re =1.0;
result. im =0.0;
return(result)

;

scale = pow(ccabs(z) , n)

;

if(z.re == ZERO)
if(z.im < ZERO)

theta = - PI / TWO;
else

theta = PI / TWO;
else

theta = atan2(z.im, z.re);

result. re = scale * cos(n * theta);
result. im = scale * sin(n * theta);
return(result)

;

%

Source File Name: csub.c

Calling Sequence: csub(zl,z2)

Usage: This routine subtracts z2 from zl.

Parameters: zl,z2 COMPLEX
The numbers to be subtracted.

Return: COMPLEX
The resulting complex subtraction.

Author: Alan L. Ferguson

Date: 11/16/87

^include "amath.h"

COMPLEX csub(zl,z2)
COMPLEX zl,z2;

COMPLEX result;

result. re = zl.re - z2.re;
result. im = zl.im - z2.im;
return(result)

;

97

Source File Name: creal.c

Calling Sequence: creal(z)

Usage: This routine takes the real value of a
COMPLEX number.

Parameters: z COMPLEX
The complex number of interest.

Return: double
The real part of the argument.

Author: Alan L. Ferguson

Date: 11/16/87

^include "amath.h"

double creal(z)
COMPLEX z;

{

double result;

result = z.re;
return(result)

;

}

Source File Name: since

Calling Sequence: sinc(x)

Usage: This routine calculates the sin x / x
function.

Parameters: x double
The argument of the function.

Return: double
The resulting sin x / x

Author: Alan L. Ferguson

Date: 11/16/87

^include <math.h>
^include "amath.h"

double sinc(x)
double x;

double result;

if (x == ZERO)
result = ONE;

else
result = sin(x) / x;

return(result)

;

99

Source File Name: window.

c

Calling Sequence: window(type, f)

Usage: This function returns the window function evalu-
ated at the frequency of interest (f) for either
a Gaussian aperature or a rectangular aperature.

Parameters: f (input) double
The frequency of interest.

type (input) int
Type of aperature for Bragg cell

- Gaussian
1 - rectangular

Return: COMPLEX
The window function at f.

Author: Alan L. Ferguson

Date: 5/27/1988

#include <math.h>
^include "amath.h" /* Complex definitions */

COMPLEX window (type, f)

int type;
double f:

{

double alpha2 = 36.966el2;
COMPLEX result;

/* Gaussian window in time 250 ns */
if (type == 0)

'

result. re = exp(- (PI*PI * f*f) / alpha2);
result. im = ZERO;

.
)

else

/* Rectangular window in time 250 ns */

result. re = sinc(2.0*PI * f * 250.0e-9);
result. ira = ZERO;

}

/* Return window value at given frequency */
return(result);

}

100

AN ANALYSIS OF THE INTERFEROMETRIC

ACOUSTO-OPTIC SPECTRUM ANALYZER

by

ALAN LEWIS FERGUSON

B.S., Kansas State University, 1986

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Electrical and Computer Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1988

Abstract

A mathematical model and a computer algorithm for predicting the

performance of the interferometric acousto-optic (IFAO) spectrum analyzer are

provided. The work of Vander Lugt is reviewed and made more general in

nature, allowing for more generalized input and reference signal waveforms.

After a generalized representation for the analyzer is derived, a computer

algorithm is developed. The algorithm is the basis for a computer program

written to emulate the analyzer using coherent detection as the means for

detecting the signal. The results of the program for several test cases are

analyzed and compared to the theoretical results. Several conclusions are

drawn from the computer results that should be taken into consideration when

implementing the IFAO spectrum analyzer in hardware.

