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I. INTRODUCTIOCH -

fblded plate roof structures have become widely used in re-
cent years because of their simlicity in forming, their appeal-
ing appearance and their superior performance. Reinforced con-
crete, prestressed concrete, steel, wood and plastic have been
used to construct folded plate bunkers, cooling towers, stair-
cases,'barrel shells, and even foundationslg. In the recent
past, the rapid expansion of the literature on folded plate
structures indicates the growing interest of the engineering
profession in this type of structure.

The elasticity method in analyzing folded plate:structures
subjected to uniform normal and tangential loads has been pre-

sented by Goldberg and Level

. To the writer's knowledge, however,
no elasticity analysis for folded ﬁlates has been published pre-
viously which includes effects of other types of load such as
concentrated or 1iné'loads in a plate, or ridge loads. This
report is concerned with the folded plate structures under the
action of concentrated plate loads ( normal loads moments, and
tangential loads ), and concentrated or line ridge loads. Only

single span, single cell, simply supported structures are con-

sidered herein.

NOTATION — The -letter symbols used in this report are defined
in the appendix.



IT. REVIEW OF LITERATURE

Numerous methods 1,2,3,4,6,7,8,9 for the analysis and design
of folded plate structures have been presented and have proved to
be satisfactory within the limitations inherent in -their assump-
tions. All methods have the following basic assumptions:

1. The material is aomogeneous, isotropic, and linearly
elastic.

2. The length of each plate is greater than twice its width,
and the thickness is small compared to its width.

3. The longitudinal Jjoints are assumed completely monolithic.

4, All plates are rectangular. Each plate has uniform thick-
ness.

5. The structure is supported on end diaphrams which are
assumed to be completely rigid in the in—piane direction
and perfectly flexible in the direction normal to the
plane.

In 1963, the American Society of Civil Engineers2 suggested

a method for analyzing simply supported prismatic folded plate
3

structures., It is based on Gaafar's original paper, and has the
following major assumptions:
1. The longitudinal distribution of all loads on all plates
is the same.
2.The structural action is considered as a combination of
transverse continuous one-way slab action and longitudi-

nal plate action or beam action. The longitudinal stress-

es are assumed to vary linearly across the plate width.



3. Displacements due to forces other than bending moments

are neglected.

The ASCE recommended method may be divided into two steps.
The first step is the primary analysis. The relative Jjoint dis-
placements are obtained by analyzing the slab action and beanm
action and satisfying stress compatibility at the edges. The se-
cond step is the correction analysis. The values for stresses and
displacements can be found due to the relative joint displacements
created in the primary analysis. The actual ctresses and disPIacé—
ments can be deterﬁined by .combining these two steps.

Another method for solving folded plate structures has been
published by Fialkow#. The method is based on the minimum energy
principle. The following assumptions are made in this method:

1. The applied lcocads are longitudinally symmetrical.

2, The longitudinal stress varies linearly across the width

of each plate.

The deflection curves in the longitudinal (u), transverse(v)
and normal direction(w), with respect to each plate must be
assumed first. Each deformed shape has an undetermined coeffi-
cient. By using the minimum energy method, these deflection -oef-
ficients can be obtained. Thus the deflection curves can be found
and various stress resultants may-be expressed in terms of deflec-
tions.

Goldberg and Level

also developed a solution for the stress-
es in a folded plate structure with uniform normal and tangential

loads applied. Additional assumptions are implicit in this



method:

1. The structure system is assumed to act as a combination
of two-way slabs on elastic: supports at the ridges for "out of
plane " deflections and as plates or beams for "in-plane" defle-
ctions.,

2. The applied loading is also expanded epproximately by a
Fourier series.

Equations are derived which relate each joint forcé to a
linear combination of the Jjoint displacements. In this manner,

compatibility is automatically satisfied at each joint.



III. ANALYSIS

Fig. 1 shows a typical plate element and its coordinate
system. For the ith plate, the relationship of the internal
forces and deformations for a mode m of the trigonometric series

are 1'6:

2 nT muox ___I __Z
Myi"MFyi + Dy o sin— [(A + Ayl ) sinh

+ ( Azy EE.I + A,. ) cosh m_;rz] (3-1a)

_ ma . MTX mer y .y MUY
Nyi" NFyi"’ Dos; —a sin =2 I:( A5i =% gy ) sinh =

nwy mwy , _
+(A7i L + Ags ) cosh = :l (3-1b)
m-r . MTX mw y . MY
Nei= Npgi * Dog =5~ s1n =3 [(AQi g + Aqp3)sinh =3
m
+(A11i —az + Agng ) cosh -m?“'l:l (3-1c)
me mar X Ty . o MMV
N NFx;yi + Dyy —3— cos [( A'Bi =ik i Aqqi)s:.nh =
mw m
+ (Ayg; —Z + Ayps ) cosh TET :l (3-14d)
_ 1 s mrXx . mw
wi= 5 sin = [( -A 5T + A'l‘?i ) sinh _?z
me
3 ( “ABiy + Agas ) cosh .._a_l:] (3-1e)
a1 . mwx = _ mwy mr
6= 5 san =g [F Ari= 833 37+ T3 Mas
- 8a3Pn1 Bchm) ginh RTY (-p,. ROY , DT,
5 4 a FTV7Mi Ta tTa AMqoi
i
2

8a P ABm .
- A+ — 3 ) cosh ——1] (3-11)




Fig. 1-a Slab Coordinate System for ith Plate

+Z

Fig. 1-b Internal Forces and Displacements



Fig. 1-c¢ Transverse Strip through ith Plate
with Edge Forces and Deformations



The internal forces at the j and k ridges are

My = Mpg +§§§‘-’?—5§ sin == [ C1; 85 + Gy x
~ Cgg Wy + Cyy ﬁkj] (3-22)
- .5
Vie = Vpgx * T;_f-%?? E‘; sin ==X |: Csy éa + Cgs 8
- c,?:L Wi + Cas _v—vkj:l (3-2v)
Eihi m _._ MmwX - .
Njk = Nij + m — Ein —= [ _C9i vjk + c_l{)i vk;j
- Clllu,] + Cyog ﬁk :I (3=-2¢)

1+‘Ifi
= C155 95 + 015 “k] (3-24)
M M Eihi5 — sin ax C 5 + C 2]
ki Fkj 12(1—1’1 y & a 1i Yk 21 %)



Eih:i.5 m2 mT X = =
V.. =V, . + sin — [ - Ce: 6, = C.. ©.
kJ FkJ 12(1_v32) 22 a 51 “k ei 7
E.h
ii m _. mwx -
Nkj = NFka + ) 7 Sin —; [ - 091 ka + ClOi vjk
i
+Cy13 % - G104 uj] (3-2g)
E.h.
v = By s kb, L o TR Ouge Vs ¥ Bape Ve
SkJ Fkj * (1+%§3§' a a 131 "kj 141 7 jk
= Cisi Y + C64 “;j] (3-2h)

In the above, each stress equation contain two parts: the
first part is the stress due to the fixed edge forces; the second

part is the stress due to the edge displacements. M

Fyi* “Byi °
Nin , and Nnyi are the internal forces induced by the applied

plate loads under the condition of fixed edges, while Mij, Mij,
Nij, Nij,Vij, Vij, Sij, Sij are therfixed edge forces at the

edges of plate. The edge deformations are defined as:

éj’ ék = the maximum values of the rotation at edges j and k

respectively of the ith plate for mode m;
ﬁjk’ ij = the maximum values of the displacement in the z;
direction at edges j and k respectively, of the ith

plate for mode m;
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?jk’ ‘_rkj = the maximum values of the displacement in the y;

direction at edges j and k respectively of the ith

plate for mode m;

ﬁj, ﬁk = the maximum values of the displacement in the x. di-
rection at edges j and k respectively of the ith

plate for mode m.

The equations of the internal forces, with concentrated
loads applied on the plates, and with the condition of fixity at

the edges, will be derived in the following.

Plate Loads and Fixed Edge Force Equations

Consider a rectangular plate with edges simply supported and
bent by moments along the edges y= i' b/2. The deflection w has
been presented by fl?imoa-‘,henko5 for mecde m of the longitudinal

Fourier series

2 sin BTX E!
w = a . 23 |: _i_(dmtanho(m cosh E.-;I.l
27D m cosho(m
n
- BEY ginn BEY ) 4+ —B ( cothol sinh ZTY
p a
sinh
- T2 cosh BT ) (3-3)
sin m’.a'u'x E
. _a m . mer y
From which, w_ = =m— ( ol tanhd sinh
’ y 2D m I:COSho(m m m a
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msr DT Y . my m
- ~—-é—1 cosh — sinh e )+ sinha_ (r,{m cothdm

cosh 2T¥ - m:y sinh -m—aﬂ - cosh %1 ):l (3 —4)

a

In the above, the s-u-bscripf ¥ indicates "g_y‘

The slopes at edges y= s b/2 are

. MTX
q Sin == . 5 y
(wy)y=b/2= ST = - B} (o(m sechd + tanh m)
+ Ef (o(m cschgolm— cotholm):l (34a)
g BB m;'rx ' 2
(wy)yz-b/2= 5= - I: Ep (4 sech®™  + tanhol )
— 2
+ Efy (d esehol - cothoﬂm):l (3-4Db)

where Ey and Ej depend on the loading conditions.

Case a, Plate With Normal Concentrated
Load Applied (Fig. 2)

The deflection for a simply supported plate ig?

Py maT X E ner
W= — — =5 ! A in —2 i
. s sin = 2, gw sin = (y + b/2) (3=5)
where
sin Ea"—"s- sin ———nb" (t + b/2)
(3-52)

nd

a"mn [ESJ,ﬂe]a

a

o
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Then
l“_P [~ 3
- n in BTX X 1 a__ b
swy = —3;-1;-2-5 Sin = n admn ces B (.’)T + 3 ) (5"'6)
n=1
-4Pn mnx ‘?m'
b = i W -
(swy)y= 5 —TBab = sin = ) B W, cos nw (3-62)
n=1
4P f= ]
_ n ._mmx _
('yy- -3 = 3,75 s . s e
nN=

From Egs. (3-4a), (3-4b), (3-6a), (3-6b) and applied bound-

ary conditions,

(Wy)y= % + (Swy)y= _'g =0

) b+ (w_) b =0

(w_)__ w_)__
yy= -3 8 Y I= =3

1 1 : i
aEm and aEm are given as following

- 4P m -—
aE1;1 = ——>—5 s 1 awm (1 - cos nv) (3-72)
T &b Bl
n=1
-4P m =
n <
aEI'l'1 = 525 ‘. n awmn (1 + cos nm) (3-7b)
- “a"“b"B
2 n=1
where
& .
Bl = o!m sech o(m + tanhokm

- 2 '
B2 = o(m csch o(m - coth oﬁm

Upon combining Egs. (3-3) and (3~5), the deflection function

is
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2 E!
g a a - m mwy
aW - 2112Dm2 [ coshdm ("(m tanho(m cosh a
EII
_nw i mwy a m ; mwy
._a_l sinh a ) + -s-m; ( olm cothc{m sinh a
' " <
P
meaT meF . N b
- —a—l cosh _a—l):l + ;4—— L awmn sin F(.‘H 5
abD
sin m;rxr (3-8)

The fixed edge plate moment is

aMFy = ~D ( wyy + vV wXX)= m— l: (’I-—v(ol tallhd

cosh m;ry - m;rx sinhlll;LZ ) - 2 cosh %I:l

EII
+ E_Sl— I: (']—V) (dm cothdm sinh %Z
mw m 7T mar 4En
———‘-zcosh—"z-) - 2 sinh = y:l +
a a a &
T ab
< 2 2
£ n¥an (__m2V + 2-2) sin Tn-rr (y+ g-) sin, XX
n="1 a b )
| (3-9)
The effective plate shear is
aVFy = =D [Wm+ (2-v) Wm]
By . mmy
+ ZacoshiL [+ (“I-v)o(m tanhol =~ sinh =

+(14) sinh BT - (1-v) EZT cosh BIY |



15

mm E'

a nm " . mTr
e c l:(’l V)dmcothdmcosh ——Xa

+ (1+v) cosh —Em; - (1-v) —lm: sinh ——”;" :[

o0

4p N 2 2

n n m nw

B il + (2-v) ] n W__ cos =
abe':‘r n="1 I:'l—:? ZZ B b

(y+ -12)) } sin m-r;x (3-10)
At edges j and k

a'r = ~(aMpyly=p/2

= —( B + gEr) sin m;‘rx (3-11a)

_ _ _ . mmwX ' _
a Fkj~ (aMFy)y=—b/2 - (EEI;I aE;lll) =10 g (3-11b)

a'Fik= ~(aVryly=p/2

mm _E!'
—}m— [ (1-v) et (tanhEdm-’l)

]

a

m T Ell

+ (14+¥) tanh a(m] g —.2—55_‘—‘3 [(1-v)o(m(’1-coth20(m)

4P 2 2
n s [% + (2-v) %J

T ab n=-1 b

-(1+y) coth olm] -

n _W__ cos nw} sin m;x (3-123)

a mn

aVric;= CaVpyly=—p/2

nw _E!'
= {_ -_z-g_m_ (’I-]f)olm(tanhaoim— D+(1+V) tanhol ]
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m _E! 5
—__TZ_[“ U)o( (1= coth“ &k ) (1+u) coth ol :[

— z [-2 + (2-v)_2] n W psin B (3-12b)
‘ﬂ'a

Case b, Plate With Transverse Moment
‘Applied (Fig. 3)

The deflection function for a simply supported plate with
single transverse moment applied can be derived from (3-5) in

Case a by adding a load -P at a distance u+d from x-axis, or

4P
— gip OLTX m"rx (sin m:s - m'rrés+d2 )
ia

%‘, sin 1—15"1(1; +b/2)
Zs

= 112 >— sin -1% (y + b/2)
me J
[

n - mTwxX . mMTS .. mm8 mad
o e B e (sin = = Bim == one
w abD
® sin BT ($4b/2)
mes . mwd b ._ n-r b
- COS = sin ~ m2 n2 o] s1in --b—-(y+ E)
' n="1 [T _2]
a b
0 Mmay S ] d
) 4P tip BTX mud sin (1- cos 222 )
-n-EabD a a md
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miws .. MmMwdlee .. DT b
_ COB S—— S8~ < sin =/ (t+ -2) vin n-rr(y . E)
m;rd Z, m2 . n2]2 b 2
n=1 ;'2 :;2

a mad 2 2 2
i} n
a n="1 [—2 + -—2]
a b
.. mwd
—d sin
But as d-»0, Pnd--lﬂl, 1- cos m; -0, m'rrg —
a
Therefore
“ =
o 4M . g BTX 1 na b
bs¥ = - ;E;ZEB— men == g pioy 8in 5 (y + 5 )
n="1
(3-13)
where
cog ¥ ofw DR b)
W = 8 2 2 (3-132)
b mn [m2 n2 2
+
5B
Then
1 =
_ .omwx . nm b
bs ¥y~ e m sin — 7. n bhmn cos —E—(y + §)
n="1
(3-14)
S
: 4M . MTX 4
(bs“ﬁ)y= B,— - T;g;;gg m sin = ZLH n W, cosnm
L=

(3-14a)
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o0
41 s DT X m
(gt y)y— alios e m sin = n oW (3-14b)

Again, applying the boundary conditions of fixity, and using
(3-4a), (3-4b), (3-14a), (3-14b), give

E' = -———-2——2 Ll (l‘ - ?GS nw ) (5—’153)
Bl ,
w2 S
E" = B—:r-é;'—zL T ’f: (1 +- C‘?n nﬂ) (3-15b)

Combining (3-=%) and (3-13) yilelds the deflection function

2 E!
: b™m mwy
pY = > 7\'2]}1112 [ccshd ( o{ tanhot cosh =

Eﬂ
_nwy - mTy b m . mwy
——+ sinh & )+ TSR dm( ol coth olm sinh =3

m e mesr
- _é_l cosh TZ )J -

4Mm N7 - s_nw b . MTX
32200 L. pipy sin (7 + 3) ¢ sin = (3-16)

The plate moment and effective shear are

El
nwy
bMFy r—_coshd [(’I -ll)(c:im tanh el cosh =
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- m sinh E‘H ) - 2 cosh M]
a a a
'bE" 7 m
m . T EE
+ m; (1-V )(Oﬂm GOthO‘:m sinh 3

-Eg-rlcoshg-g—z)-z’sinh-@g—l]

- 2 2 .
i _z_l'ﬂgm_z bwmn ( m-V + QE ) sin n‘i; (y w % ) sin m;rx
ma b S a2 b
(3-17)
mw. E!
— b m : mwy
vay" S5 coshq_tm [(1-v)ozm tanhofm sinh =

+ (1+ V) smhf'-la"-’-i - (1 =¥) EIE"'E.X cosh %E]

m EV
" bm

_ miTy
25 sinh & [ (1 -v)ol  cothd cosh =

+ (1 +v) coshEaEz— (1 -U)E-;I-Isinhi'}aﬁ_l]

oo

2 2
apm n m . . B b
N R
n="1 =
mwx

sin

(3-18)

At edges J and k
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pirge = = GlMeyly - 5
; - m WX ¥
bMij = (bE' + bE") SR o= (3-19za)
Mrkej = GMeyly = -2
oMy = (g — pBp) sin S35 (3-19b)
oVrge = 7 Glryly = B
mw. B’
mTx b m 2
pVFx = Sin =5 e [(1 - V) dm(tanh o - 1)
m-"-bEl'l B
+ (1 + V)tanh & + — 2 (1 =w)e (1 -

2
coth olm) - (1 + V) coth dm

—

2
+:b z}} l:—g+ (2—1/)7:' LW cos nw

t:i

(3-20a)
pVrxj = “o¥eyly - -

b m 2
bVijz'T[(q"y)dm(.tanhdm—q)

nw. E"

(1 + ¥)tanh o{mJ = Tg—m[(q V) ol (1 -

+

coth® o ) - (1 +¥)coth olm] - _‘*21‘1_%2 [;.;g i
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2 g
(2 - ”)E’é] n W _ 3 sin =2 (3-20b)
a

Implicitly, the equations for Case b are similar to those

for Case a.

Case c. Plate With Concentrated Tangential
Load Applied (Fig. 4)

Let a concentrated tangential load Pt be expanded into

Fourier series as

o0
Po(x,7) = sin BIE N w o sin By + D) (3-21)
n=" '
where
4Pt : m'ﬁ"s%'o . n- b
Wyt = 35 sin =3 /. sin =5—(¢ + %) (3-21a)
n="1

To determine the fixed edge forces due to P, , associated
deflection function UF and Vi oo the general differential equa-

tions must be applied5

1= V. 1+ vV

U + +._%%_T. = 0 (3-22a)
1= 1+V P

Vyy ¥ T8 Vyx t '%%”uxy = 'EE_"Pt(X’y) (5-22b)

Let up = P+uH and vy = vp+vH , Where ﬁP and Vp must

satisfy (3-22a) and (3-22b) but not necessarily the boundary

condition of zero displacements and'uH andrvH must satisfy (3-

22a) and the homogeneous part of (3-22b) and also giﬁe the nece-
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ssary correction at the boundaries such that u v are zero.

F* F
For a particular solution, assume
< b
- mar X n

UP = um cos =) L cos -—-E—(y + —2‘) (5"253)
n="1
<

= s OWX L b =

Vp = ¥p sin === > sin —b—(y + ) (3-23b)

n="1

Substituting into (3-22a) yields

2
— - v — — 1
- G ETHE 6 (3 T2 Ly BT o

m ab
oo
. m /, m abmn( 1+ vV ) -
n="1
From (3-22b)
_Enz'rrz_’l-v‘_r m2'-1'2 +’I+Vﬁ mnTS vE_,Iw
m b 2 m 2 2 mab - Eh Tpt

o =
m abEh T2 L. [w= |, n°]°
a® b2
or
2 . oo . DT b
= 4Pt("l+'u) m o TS < o osin /(G + >
m ab'iTaEh a nL;I m2 . n2 Z
a2 B2
(3-26)
Substituting into (3-24) yields 2 2
4P (14 V) o= 55 +(1-v )2y
t .. mws\'a b

v = sin
m &b 'rszh a [/, [ma n2:] =
n="1 5 + =)
a b



23

(3-27)

For the homogeneous solution, let
dy = u*(y)eos = (3-28a)
vy = ¥*(7)sin T (3-28b)

Substituting into (3-22a) and the homogeneous part of (3-22b)

yields the solutions1

u*(y) = A%: cosh Egii + A%* sinh 9521
nwy mwy mwy o mwy
+ A;; = cosh ~ + Ag; = sinh =

(3-29a)

v*(y) (Ag --uA**)cosh E-II--Y-+ (A** -4 Az*)sinh ___Z

#x MY _l xx DMWY s oy
+ A8m cosh + A?m = sinh =

(3-29b)

By combining (3-28), (3-29), and (3-2%), the in-plane de-

flection functions are

= nw b mer
[ U cos —E—(y + E) + Ag; cosh —E—l

S— nvy «x OTY mwy
+ A6m sinh = + A?m = cosh =

(3-30a)

Vv_sin (y + 2)

ok _ g AKK nwy * % _ *%Yei L
+ (A6m JA7m)cosh = +(A5m *‘Asa)ulnh -E—E



Bl

+ AX* EE—X cosh m—;i 4+ AX* E-;LZ sinh El-—;l:l

8m 7m
(3-30b)
Applying boundary conditions
(wply. £ 5 =0
v + b =0
Ggly. + b
Yields
A _coshol_-usinho =
AX* = — o — m N\ ﬁm(’l+ cos nW)
S5m 2(d -4 sinhd_ cosh & ) /,
m m L
¢ sinho_ —ucoshd {3,
x _ _ ‘m m m - -
Adm = 2(od_ +ausinhk_coshd_) /, um“ cos nw)
m m m’ S
cosh & %",
In u | —
A’% - 2(d_ +usinhol_ coshel ) u‘m('T cos nw )
m m m’ 24
sinh =
- m %
Adm = 2( ol —usinho_ coshX_) /, um(’1+ cos nw )
m m m’ 524
Applying the stress-strain equations
- Eh Jdu dv
N =
X 1 - 'IJE ( oXx i3 2y )
Eh v 1
N = gu
y . g2levt ox
___Eh gu ov
Yo =2+ (o5 * Bx )
gives
oo
_ mwx Ehm N\ - m  wn = nw
Np, = sin = p Y Z, (- 0, = = vm)cosb(y
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b m nry
+5) + E[((-’] +V)A§I’;1 + ¥ (1 —u)AéE‘I) cosh =

+ ((-1 + V)AZ* + V(1 -u)‘**) sinhE;—Z

” By nxy
+(’I+v)A,’§;1_a cosh — |

+ (=1 + VvV )Agl’]"] EEIX sinh E}E]} (3-31)
(=]

Nﬁ‘y=;£hj;ésj‘ ma'n'xz (%" -v%u)cos —(y+ 2)
B n="1

+ %[((’l -y )Aé;l + (1 = u)A,’;;;) sin%l E;—Z
+ ((’i - V)A;I’]‘l + (1 - u)Agl’;) cosh E%Z

. nwy nmwy
+ (1 ,”')A% = GhEl =

+ (1 - »)az* —-—1 sinh —XJ (3-32)
<

NF:;:V= ,]EETL cos L /7, (- % ﬁm + g v )sn_n——(y+
n="1

+§[(2A§;1 + (1 -.u)Ag;'ﬁ) sinhgall

+ (2;;;;1 + (1 - u)A;;;E) cosh 9—5—’-1

+21'-!."“""‘a—“.v-.Sfl'].h——-—‘Z

/m
+ 28%% —?1 cosh i‘lé"ll:l} (3-33%)

The fixed edge forces are

)
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N_. = - (N b
Fik ( FY)F 5
<f~
Ehw . mTX - m =
Vpgx= = - 52 10 5 £, Y " V3 Up)e0s BT
n=
. B [ ((1 - VIAzE + (1 - u)A,’%‘;) sinh & _

+ ((’I - v)ag; + (1 - A)ﬁgl’;l ) cosh &

+ (1 - v)A,’;,; o(m cosh o(m + (1 = v)Agg‘l o sinh otm]

(3-34a)
= b
Ny~ (Npgdy - _ >
&
_ __Ehvw . MITX n = m =
Nij—,],_.lﬂ Sin =4 [__.IL'E m - Y3 Ynm
n="1

+ ifdl[- ((1 - AL+ (1 - u-)A%)sinh A

- * % - *

. ((1 MagE + (1 “")Aém) cosh &_

s 10 s v)A% o{m cosh o(m + (1 - v)Ag;; d.m sinh olm:l
(3-34b)

Spik= = (Npyy) -3

oo
. _ _ __Ehwm nrx \" : ; )
Srix™ T Za(l + v) 0% =/, l: (EAEEE + (1 - A7
n
i 4 ;
sinh o(m + ( 2.:16;5 + (1 =~ u)ﬂ,%‘l ) cosh o(m

+ 2}1% & sinh o+ 2A§§1 ol cosh d‘m} - (3-35a)
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ny)y = - %

[~ =]
_ Fhwm mTer * % - **)
Spki= T+ 97 °°° ~a é;H[ (2A5m + (1 = wagr
1=

Sij= (W

simh o + (2Ag;1 + (1 - u)A,’%‘l) cosh &

2A,"7‘;; ol sinh o 2A§I’E ol_ cosh dm] (3-%5b)

Edge Loads Expanded into Fourier Series

A concentrated load acting on a ridge (Fig. 5-a) may be

generally expressed,: for mode m, as

mwa

Q
Qe (x) = __c Bl = sin m;r:-c (3=-36)

In the case of a uniform load acting along the ridge, the

expression is

Qu

mwXxX

(3-37)

(1 - cos mm™) sin

Q,(x) =

In the above, Qc and Qu can be a vertical, horizontal load

or bending moment,

Matrix Formulation and Solution

Equations (3-2) may be written in matrix form

3 3 1 A2 3
S I I R e S W | I
k k o4 § OO k
¥y By Ci + O &5

where
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Fig., 5 Edge Loads

*
4 ki
r 1 S
VX 5 =
Jk Iikj
1;*.3 : ? ith plate
Mix
-
Iocal Coordinate System Global Coordinate System

Fig. 6 Plate lldge Forces in Local and Global

Coordinate Systems
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My 8,
Vrjx Wi
Npsx Vi
P || Sex N
Frs Mgy 5 55 C
VFi; Wy
e Vs
S | T
[ 8,5 =033 O 0 E Gy Gy O 0 |
Cgg =Cny O 0 | Cgy Cg; O 0
|
0 O g3 0441 ¢ O Cqo3 Cqps
. 0 0 ‘0'131'04515 0 0 -Ciys Cies
[ i]= il e S —
S Sug B0 %y Gy B O
|
g1 Cgg O O -0 —Gpy O 0
0 . 0101_C12ii 0 0 -Co; Cyqg
 © O Cquy C16ii O O Ciz1 a5y

in which, K. is an 8 x 8 diagnal matrix. The non-zero elements

are E.h2 m E.h. m
K.. = 1 1 2._ : K~.. = K E 3 K_.. = ._ll—.
14 123(1_ vi ) 21 1ia 51 a(q+ vi)g
Kyj = Kg5 5 Koy = Kq3 5 Koy = Kpy 5 Koy = Kg; = K3y
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As indicated in Fig. 6, the transformation from local co-
ordinates to a global coordinate system yields

* - = R 3
Fi = FiTi or Fi T:L F;
F*. = F_.T or F.. = T-lpx
Fi Fivi 5 Fi i “HFi
—_ *
where
1 0 0 0]
. 0 cos &+ -sin;ﬁi 0
1 0 -sin¢. =-cosg, 0
0 0 0 1 |
and Fﬁi represents
* B * 7
TMjkT 3 S
N* ¥
5% Jk : * NkJ
BE. = or Fk. =
Jk kj
S b *
| Tdk _SkJJ
Therefore
~1pd” ~1pd* (A - J*
Ti Fi Ti Fi Ci ; Ci L Si
=y oo e s ot o = | e ————— -+ : -—
<. Je* 1 k* 21 1 22 Ic*
iy Ty Fy Ci 1 64 dLT; &y

(3-38)

At edge 1, applying free edge boundary conditions yields

*
F:} + F; =0 where
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1

.~
J
-
1

; E
P'Je Ile
1 i
N . |n
Fl = | e or Fr =] ©
e 1 e i
Ve Ve
1 i
L Se < _Se -

in which, Mé Né V; Sé are the applied moments, horizontal
2 k 9

forces, vertical forces,longitudinal forces respectively on

the ilh edge. Since

% _ A My 1% o%
Fy = Ty + 1405 Ty 877+ 2007080
Therefore
11 g1# 12, g2 1%
2,601 81" + m,0l%, 857 - (2 + FO) (3-392)

Similarly, at free edge np+1

21 3 s 22 np+1* _ _ ,-np+1* np+1
TeCnptop Cmp * TnpCapTop o = (Fan + Fio M)

(5-59b)
Applying force equilibrium at edge k (or edge i+1 ) of ith plate

i41* i+* i+1

From (3-3%8)
“Aie* | o 1oitt L 21 el L 422, eit*
T; Fy =Ty Fpy + Gy Ty B +Cy Ty 87
or
—~i+1* i+1 21 T 22 i41%*
P = Fpl o+ 107 My 8 + D30T, 6 (3-40a)
Similarly, at edge J (edge i+1 ) of i+1th plate
i+1* _ 141* 11 14+1%* 12 i4+2*
Fivr = Fpivr * Ti1C51T501 B5e1 + 1410501 T541 B9
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From displacement compatibility

i+* i+1%*
5711 = 8; (3-40c)

Substituting (3-40a),(3-40b),(3-40c) into (3-39c) yields

21 ) g7 g L4
Tlcl Tl 5 + (Tici Ti + T1+1 i+1 1+1)
12 i+2% _ o i41F i+41%* i+
¥ Ti+’ici+’lTi+'1 1+ _-(FFi + Fpigq + Fg )

. (3-41)

Equations (3-39a), (3-39b),(3-41) result in a matrix equa-

tion
[x][e]- [7]
where
[K] = [T] [C] [T]' a 4(np+1) x 4(np+1) stiffness matrix
and )
Tngq + F1 )

2
TﬂFgﬂ + TeFFe + F

21 —_ i+1 i+ i+1
[7] - TiFpy + TiFpjq + Fo

D np np
Thp—ﬂanp—ﬂ TonFn; * Fe

p+1, nn+1
Tongnp e ]

a 4(np+1) fixed forces matrix.




B @ 8 B v s s, w = = @
[G]=]e « & o & & & & & x5

0 0 0 0 . - - 0 0
. np |
an 8np x 8np matrix;
- - —
Tl 0 0 0 0 = . . . . 0
0 Tl T2 0 0 . » - . . 0
0 0 0 T2 T5 0 % . * - 0
[T ] = - * - L ] L] ] L - L] L] . - -
0 [ 3 [ ] - L ] - L] - np-l np
o) 0 0 - . .
i 0 0 0 Tnp-j

a 4(np+1l) x 8np transformation matrix.
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IV. DESCRIPTION OF COMPUT=ZR PROGRAM

Goldberg and Leve had suggested a general procedure for
solving the basic folded plate structures. This procedure can oe
utilized in computer programming. However, some changes must be
made when using the computer to solve the problems. The stiffness
method for analysis:is prefered instead of the algebraic solution
which was used in Goldberg and Leve suggested procedure. The
matrix solution is used in the computer program. The general pro-
cedures are

l. Read 1n geometry data, plate's width, thickness, angle,
length, load data, and maximum mode number of Fourier series.

2. From plates' inclination angles, calculate transformation
matrices. |

3. For each mode m of Fourier series

a. From geometry data compute stiffness matrices.

b. From stiffness matrices compute structure stiffness
matrix.

¢. Compute structure flexibility matrix by inverting
structure stiffness matrix.

d. Compute fixed edge forces due to plate normal and tan-
gential concentrated loads and moments.

e. From the fixed edge forces, computed from d, and the
transformation matrix calculste fixed elge forces in
the global system.

f. Calculate the fixed edge forces matrix by combining the

line loads and concentrated loads at the edge with the
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fixed edge forces computed in e.

g. From the structure flexibility matrix and the fixed
edge force matrix calculate edge displacements and
store.

h, From the edge displacements calculate internal forces
and store.

i, Calculate internal forces with edges fixed.

Jj. Combining internal forces due to edge displacements
(procedure h), and those due to edges fixity (proce-
dure i), yields the final internal stresses for mode m.

4, Sum up forces and displacements for all modes of Fourier
series,

The IBM %60-50 computer at Kansas State University was used
for the solution of the examples in this report. This computer
program is a modification of a program writte- by Dr. Stuart E.
Swartz, Civil Engineering Department, Kansas state University,
in FORTRAN IV, which deals with the Goldberg solution to simply
supported folded plate structures subjected to uniform plate

loads. .
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V. NUMERICAL EXAMPLES

Example 1., This example is chosen from Mr. Shih-Ying Chang's

" A Model Study of A Folded Plate Structure"qo. The structure

and loading are shown in Fig. 7, other data are given as below :

Plate No. b, in. h, in. &, deg.

1 1.1250 01875 0

2 3.7518 0.1250 60

3 b7 202 0.1250 80

i 3.7762 0.1250 100

5 3.7518 0.1250 120

6 1.1250 0.1875 180
Length of the structure a=26.25 in. '
Poisson's ratio V=0.375
Elastic Modulué E=477.5 ksi

The longitudinal stresses at midspan &nd near the end dia-
phrams are found and listed in Table 1. Those results were
obtained by the following methods :

a, ASCE recommanded methodqo.

b. Filalkow's minimum energy method ©

c. Goldberg's method ( loading is considered as a equivae-
lent line load and use Fourier series maximum modr
number 7 )

d. Goldberg's method ( concentrated lodi, use Fourier
series maximum mode number 15 )

Example 2. Same as example 1 except that the eight concentrated

loads acted on edge 2. ( unsymmetrical loading )
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Results and comparison are listed in Table 2.
Example 3. An example previously solved by Fialkow4 and Gaafar3
will be used to compare the results between Gaafar, Fialkow and
Goldberg method. The model structure and loading conditioﬁ are

shown in Fig. 8. Other given data are

Plate No. by im. by Bt #, deg.
9 2.5 0.13 0.0
2 3.5 0.13 575
5 3.5 .15 90.0
E = 10.5 x 10° psi

v = 0.0-

Results and comparison are listed in Table 3.



Edge concentrated loads

8Q = 50 1bs.

ete S A

L‘ 12.937 ing “!

Fig. 7 Model Analyzed by Chang
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% = 58.35 1bs.

o
o
Ho

Fil
1) (5 j!
C S
7 > 25 dn.

9.4 in.

Fig. 8 Model Analyzed by Fialkow and Gaafar
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VI. DISCYSSLl

l. In examples 1 and 2, the results of the Gcldberg method agre
very well with those of the ASCE recommended method and ener~y
method. It is seen that the results from the Goldberg mrthod
agree more closely to the experimental values than the other
methods. The ASCE recomme. =71 method and energy method are
compar: tively not so exact for the following reasons

a. Ioisson's ratio has been assumed to be zero ir the Ar
recommended method and energy method, while the Gold ::rg
method takes the effects of Poisson's :atio iato consi-
deration.

b. The ASCE recommenced methbd nezlects the effects of slab
bending in the longitudinal direction, slab twisting,
and the effect of membrane stresses in the transverse
direct-on. The energr method also neglects the strain
energy due to normel membrane stresses in th trans-
verse direction. In developing the strain energy due to
slab bending, the energy method considers one-way bend-—
ing in each direction by excluding the effect of Poi-
sson's ratio. The Goldberg method is an elar 5icity me-
thod which “nelude¢ - the effect of all membrone stresses
and the two -way b ding of the slab.

2. From Table 4, it is cleur that for a simply supported foldsd
plate structure with corcentrated loads applied along the
ridges, the Fourier ser =s converges quickly. A desirable

result:-can be obtained Ly setting the maximum mode number



equal to 7. If the co:entrated loads are expanded into a
uniform line lcad, th- series converges m re ra,idly. This car
be seén from eq. (3-2 ). Since only odd terms are need for
computations, the com; uter tiue is reduce although taere is
less than 10% difference. However, this discripancy can be
corrected by using a modified equivalent line load.

Formulas have been derived herein for a simple span struciure.
The Goldberg ...thod and formulas are appiicable to general load-

ing conditions,
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APPENDIX—NOTATION

force-displacement coefficients for ith plateq’6

5 .~B B (F.. 4w

]

- S . +6 am - -
= Aon(Hqi~Kep) (Bg#8, )+ Ay S (Mg =k XKW

o o ")
= hem(ej-l- Gk)- )\q_m -—a—(wjk- wa)
u — mTy -
= An{HMai- By (SO5+ B+ T A (kg = ke )y
ij)
“A {Foe T ) = .3
5 (Vop vkj) )\7m(uj+ uk)

= Ren it Kop) (Tt Tygd+ Agp( Mgy - ke MU= Ty

Pom(ost Kop) (it Fig5)=Aog (Mg = op )T+ Ty

=—A5i

)\ - — — _ - -
em 41 Kom) Tyt Fegd+ A gp(do- k) (e Ty)

_-..._A?i

- ‘\5111(“43'_" ktm)(-‘-'rij’ x-rkj)*“)\?m(u?i— kcm) (ﬁjﬂ_lk)
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Menl{Heit Bon) (Tt Tig)+ R gn (M- k) (@5- T)

2.k

_— (GJ.+ ek)+(1+ ktm) )\Lm(— wjk+ wkj)

cm ' 2m
5 - - - -
e )\’Im ktm(" ej+ Gk)+(’!+ kcm) )\Bm(wjk']' wkj)

Span length of structure between supports
(i.e. between end di~phrams)

Width of ith plate.

[ cosh °(m sinh otm .
™ — - . .
d.m cech o(m+ sinh dm o(m csch o(m- cosh ]
cosh ! sinh &4 -
ks T SEE R i
olm sech o sinh . “mc“cn o cosh ¢ m ]
- [ Cosbdm
H ol SESEGm“" SR o(r:
sianlr c-(m ;
= Bl - /l'- y- ]
A - Nl (
otm sech o~ Sinh oim i

n

2 coshd
mm m

cschol + cos: ok
m m m
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61

7i

8i

101

50

sinh atm .
ol sechd - sinh & :l
o m m

a
m %31
a
o In4
_m "_3[ sinh o(m
a ol , csch o(m+ c:oshclm
otm secholm— mnhdm ]
D ,‘TB[ Sinho(m
a olmcsch o(m+ cosh o(m
cosho{m :l
+ T
o{m sech o{m- sinh o(m
cosh &
'rr[.. o
- V.
olm sech o(m- ‘1-1-_»’; sinh olm
sinh dm
; e
clm c¢sch otm+ T’T cosh dm
' cosh
TH &
=V
d‘m sech olm— 7|-—J;——i-l- sinh otm
. sinh -
o el
- ¢sch dm+ ’i_-i-_l_f:: cosh o{m
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143
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161

cosho(m
= Trl:

LI
ol cschc(m TV v

sinh
m

A
'OSh

'

ol secho& + -3 sinhd.m

m ’E+V

_ [ coshdm

55— V.
:
olmcsch dm- AT vi osh o(m

sinh clm

+ =7
olm sech of _ 1”,

= Cqq3

= Cioi

il N
sinh olm

sinh ¢f
= M| - i}
[ 3-
orlm lo¥:1¢ ol - ‘l+1}

cosh

-
cosh o(m

-V

o sechod _+ —————-———cosho{m

il m 1Y

sinh &

=TT[ i
- 1.

ol

5
1
m ¢sch dﬂl_ 71':—1—}—1' cosh dm

cosh ul

5= v

Oim sech &+ sinh O(m

m’llf

+ (1+ '.Vi):l

]

]
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EI n
amnm, a’m

vPa , bEm

by

kcm

il ol ol
Mg, N5, Vo 55

Mxi, Myi,in,

Nosi, i, Qi

“rxi, Mryi,

oo Moo
Fxi, "Fyi,

]

3
Eihi

2 ‘
12(1- vy ) |

7
Eihi

241+ ?&)

- B;hy

2(1+ ?15

Young's Modulus and Poisson's Ratio for the ith

plate
5

Coefficients of deflection~-,

s

Coefficients of deflection fo C(Case a and Cose b
respectively.

Thickness of ith plate.

o o
- coth -
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ABSTRACT

This report deals with the analysis of prismatic, simply
supported folded pléte structures. The purpose of the study
may be summarized as follows

1. To develop equations for fixed end forces and moments
at edges and throughout each plate due %o concentrated normal
and tangentizl loads and moments in the plate.

2. To develop a matrix solution for folded plate struc-
tures subje :ted to un’iom and concentrated plate lsads and
moments, and edg line loads and éoncentrafi lcads and mo-
ments.

3. Nur rical examples are presented to provide a compar-
ison between the results of the proposed method and other me-

thods previously pub.ished.

4. The comparisons between the resulis ¢ the provosed
method and the model tests previously published a = presented

in this report.



