
/A Vibration Analysis System Using Spectral
Estimation Techniques/

by

Brick Andrew Verser

B.S., Kansas State University, 1982

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

Kansas State University
Manhattan, Kansas

Copyright, 1986, by Brick A. Verser

Approved by:

jcU/^-zlj^j-
Major Professor

V-/75

C2

II I llll III ili II

A112DT M8D7D3

A Vibration Analysis System Using Spectral
Estimation Techniques

Copyright, 1986, by Brick A. Verser

TABLE OF CONTENTS

I. INTRODUCTION 1

II. BACKGROUND 3

A. History 3

B. Definitions 3

C. Application to Vibration Analysis 6

III. PROJECT REQUIREMENTS 8

A. Data Acquisition System 9

B. Data Analysis System 11

IV. EVOLUTION OF THE DATA ACQUISITION SYSTEM 13

V. THE DATA ACQUISITION SYSTEM 19

A. The External Clock Hardware 19

B. The Data Acquisition Software 25

C. The PC Signal Analysis Software 32

VI. EVOLUTION OF THE DATA ANALYSIS SYSTEM 36

VII. THE DATA ANALYSIS SYSTEM 41

A. The VAS CONVERT Command 42

B. The VAS SPECTRUM Command 44

C. The VAS CORRELATION Command 68

D. The VAS TRANSFER Command 70

E. The VAS COHERENCE Command 71

F. The VAS PLOT Command 72

G. The VAS PRINT Command 73

H. Example—Multiple Sinusoids in White Noise ... 73

I. Example--Analysis of a Structure 82

VIII. PROPOSED ENHANCEMENTS 105

IX. CONCLUSIONS 107

REFERENCES 109

APPENDIX A- -VAS USER'S GUIDE Ill

APPENDIX B—DATA ACQUISITION SYSTEM PROGRAMS 158

APPENDIX C—DATA ANALYSIS SYSTEM PROGRAMS 208

I. INTRODUCTION

In the last 20 years, thanks to the discovery of the

Fast Fourier Transform (FFT) and the increasing use of

digital computers, spectral estimation has taken on

increasingly valuable roles in many different fields.

While various techniques of spectral estimation had been

used prior to the advent of the FFT, they were typically

of limited scale due to the expense of the methods in use

at the time [1]

.

One area where digital spectral estimation has been

welcomed is in the analysis of structural dynamics.

Understanding the way a structure behaves under dynamic

loading is important, and spectral estimation techniques

can be used to characterize the dynamic response of a

structure. Techniques for analytically calculating the

major vibration mode shapes and frequencies of simple

structures exist, but using these techniques for complex

structures often leads to inaccuracies from the inevitable

approximations and idealizations that must be made [2]

.

Thus, actual measurement of the response of a structure is

often necessary.

This paper describes a system which was created to

assist in the measurement of the dynamic characteristics

of structures through the use of real-time data

acquisition and off-line spectral estimation. The system

would also function well in acquiring and analyzing other

signals, but it has been specifically tuned to serve as a

structural dynamics signal analysis system.

II. BACKGROUND

A. History

While spectral estimation has very ancient roots,

beginning with the creation of calendars and clocks, the

modern era of spectral analysis is generally said to begin

in 1949 with J. W. Tukey's presentation of a paper which

described how to compute power spectra from empirical data

[3]. Tukey's methods were soon used to compute spectra

from hand-digitized data, though the work was slow. Even

with the increasing use of digital computers, spectral

estimation was an expensive process due to the large

computation time required for calculating auto-correlation

estimates. The introduction in 1965 of the fast Fourier

transform by J. W. Tukey and J. W. Cooley changed this,

making it possible to inexpensively analyze long time

series and vastly increasing the number of applications

which could make use of the techniques.

B. Definitions

For a wide sense stationary random process x(t), the

auto-correlation is:

R (t) = E{x(t)x(t+x) }

where E represents the statistical expectation operator.

From the Wiener-Khinchin theorem, the power spectral

density (PSD) is the Fourier transform of the auto-

correlation function:

S (f) = / R (T)exp(-j27Tfx) dT

In making PSD estimates of actual signals, the basic

problem is that it is never possible to have access to all

the sample functions of the random process, and typically

only a portion of one sample function is available [4]

.

Certain assumptions about the process must be made. The

process is assumed to be wide sense stationary such that

it is independent of absolute time; the mean is constant

and the auto-correlation function is a function of time

differences only. It is also assumed that the process is

ergodic so that time averages can be substituted for

statistical averages.

Given these assumptions and the limited time window

over which the process is sampled, the problem is then one

of attempting to estimate the auto-correlation of the

measured process such that the estimates do not vary

significantly from estimate to estimate. A great many

approaches to this problem have been tried and have met

with reasonable success [1][3].

In addition to attempting to understand a single random

process, it is often desirable to compare two random

processes. For example, comparing the movement at various

places along a beam which is being subject to a forced

vibration can lead to useful insights about the

transmission of the vibrations. For this, the auto-

correlation estimate can be extended to a cross-

correlation estimate from two wide sense stationary random

processes, x(t) and y(t):

R„„(t) = E{x(t)y(t+T) }xy

Similarly, a cross power spectral density can be defined:

S (f) = / R
xy

(T)exp(-j2irfT) dx

The transfer function of the two processes is defined as:

Sit)
t (f) = -a—
xy

s
y

(f)

The coherence function is defined as:

|s (f)f
K (f) = — -i
xy

s
x
(f)s

y
(f)

The coherence function is similar to a correlation

coefficient, but is a function of frequency. If the

coherence function is nearly zero at a particular

frequency, the two signals are incoherent at that

frequency, and are thus probably unrelated. If the

coherence function is nearly one at a particular

frequency, the signals are highly coherent at that

frequency and are probably closely related.

C. Application to Vibration Analysis

Understanding the dynamics of a structure is a complex

task. One approach to the problem is to determine various

physical characteristics of the structure and to then

attempt to calculate its expected response to dynamic

loading. The desired result is a description of the basic

vibration mode frequencies and shapes. An analytic method

is necessary and is usually fairly accurate. It is a time

consuming and error prone process, however, so for complex

structures, experimental determination of the actual

vibration modes is desirable.

One basic approach taken in experimental modal analysis

is to place accelerometers at several locations on the

structure and to record the ambient vibrations. The

recorded data can then be analyzed to find the major

vibration mode frequencies and shapes [5] [6]. As such

work has been done for many years, the equipment used has

generally been traditional analog data recorders, strip

chart plots, and for the more extensive investigations,

hardware spectrum analyzers.

Better technology for modal analysis has become

available recently. Hewlett Packard now markets several

dynamic signal analyzers which work well for real-time

analysis of data, but this approach still has several

drawbacks. The analysis is typically in real time which

requires that to analyze the results from several sensors

the data must still be recorded on analog or digital tape

so it can be replayed multiple times into the signal

analyzers. The cost of the equipment is also relatively

high.

A less expensive and less cumbersome approach to doing

modal analysis was obviously needed. Due to ever

decreasing costs and increasing power, the use of a

personal computer for the acquisition and analysis of the

data seemed ideal. Commercial hardware for converting

analog data to digital form was readily available for IBM

PC's, and the total cost of a system would certainly be

much less than the cost of a single spectrum analyzer.

III. PROJECT REQUIREMENTS

Several requirements were initially identified.

1. System should be capable of handling up to 8 channels

of data at up to 200 samples/second/channel for

durations of 20 minutes/test. System should provide a

real-time display of data as it is acquired.

2. System should compute single and dual channel Fourier

spectra.

3. System should compute dual channel transfer functions

and coherence functions.

4. System should compute auto and cross-correlations.

5. System should provide an interactive display of any

two items.

6. System should provide pen plotter output.

7. System cost should be kept as low as possible.

Adding data acquisition hardware to a PC appeared to be

a promising approach to the data acquisition problem.

While minimizing the system cost was not the top priority,

it was a concern. Zenith Z-150's are very common on

campus, and the use of a PC for the acquisition system

would allow the machine to be used for other purposes when

it was not actually collecting data. Thus, expenses could

be kept to a minimum if a system using a Zenith PC could

be put together.

The form the data analysis system would take was

initially unclear. Some thought was given to doing the

analysis on a PC, but it was quickly determined that a PC

does not have adequate speed. The KSU College of

Engineering has two Harris 800 minicomputers which would

perhaps have worked well for the system, but the machines

have only recently been installed and do not yet have the

base of terminals, software, and personnel needed to

support a major programming project. That left the

central campus mainframe as the most likely computer on

which to implement the analysis system.

A. Data Acquisition System

Real-time data analysis was not required for this

project. Indeed, real-time spectrum analyzers have been

used and suffer from the need to record the data samples

on some media that can be replayed multiple times into the

analyzer to obtain various calculations for each of the

channels. As a typical collection of data might consist

of 4 channels sampled for 20 minutes, to analyze each of

the individual channels, and then to perform cross-channel

analyses, represents a long process of repeated playbacks

of the data. Thus, real-time analysis by itself is not

practical.

While real-time analysis was not necessary, real-time

display of the data being sampled was very desirable so as

to ensure that the system was functioning properly during

the data collection. The structures at which data is

collected are often somewhat remote, and setting up the

sensors is occasionally difficult, so it is highly

desirable that the experimenter be able to ascertain that

he is indeed collecting reasonable data. A real-time

display of the data, as it is being collected, would

facilitate this.

The data acquisition system would have to be reasonably

portable. It did not have to be battery powered, but did

need to fit in a car. While a normal IBM PC with its

attendant keyboard and monitor is not usually considered

portable, for this application it was adequate.

The system had to be capable of handling 4 and

preferably 8 data channels, each running at 200 samples

per second for durations as long as 20 minutes

continuously. This corresponds to approximately 2 million

total samples in a single 20 minute period. Dealing with

10

this quantity of data turned out to be one of the more

difficult aspects of the data acquisition system.

It was desirable to have available some simple on-site

data analysis routines. The ability to replay a small

segment of the data or to compute a simple spectrum

estimate from a data channel would greatly aid the

experimenter in determining whether the sensors were

functioning properly and would aid in determining

necessary parameters such as the sample rate and external

lowpass filter settings needed.

B. Data Analysis System

Full-featured on-site data analysis was not considered

necessary for this system. The IBM PC, or equivalent

system, that was envisioned as the center of the data

acquisition system does not have adequate processing power

to speedily compute spectrum estimates from many thousands

of data values. While a PC can quickly compute the

Fourier transform of one thousand data points, computing a

spectral estimate from many thousands of values would be

impractical. Thus, the analysis system was expected to

run on a large host computer. The host system chosen was

the central campus mainframe, an IBM/370-compatible NAS

11

6630 running VM/SP CMS. The data collected during an

experiment would be uploaded to CMS at a later time for

complete analysis.

The mainframe analysis system needed to be able to

provide estimates of the following: power spectral

density and cross power spectral density, auto-correlation

and cross-correlation, transfer function, and coherence

function. Interactive and paper plots of the results were

required.

12

IV. EVOLUTION OF THE DATA ACQUISITION SYSTEM

The current implementation of the data acquisition

system was chosen after rejecting several alternate

approaches. The basic requirements of the system were not

absolutely steadfast, but it was desirable to achieve each

of the stated objectives if at all practical.

Some thought was given to trying to implement the data

acquisition system without using a personal computer.

This would have the advantage of not requiring a somewhat

expensive and delicate instrument be carried with the

sensors. But no alternative could provide the desired

simple on-site data analysis for a comparable price. A

stand-alone analog or digital tape recorder could be used,

but then the data is collected essentially blind since no

simultaneous playback is available with such a system.

After a set of data is collected, it can be played back to

a strip chart recorder to verify that something reasonable

was indeed collected; still, no analysis is available with

this approach. Adding a spectrum analyzer solves this

lack of processing power, but very significantly increases

the cost of the needed equipment. It was fairly apparent

that a PC based system would be less expensive.

13

Given that a PC with an analog-to-digital (A/D)

converter was going to be used, the next problem was to

find the hardware and software that would meet the project

requirements. Three A/D systems were reviewed in some

detail before the hardware was chosen.

Cyborg Corporation markets a relatively powerful and

well known group of data acquisition and control products

and seemed to have an appropriate system which attaches to

the IBM-PC. The ISAAC 2000 is essentially a stand-alone

system which contains its own processor, memory and A/D

equipment. This allows it to acquire data into a buffer

memory of up to 2MB which is transferred to the PC after

the experiment has ended. 2MB of memory is about enough

to satisfy the requirements for the amount of data that

needed to be collected in each run, but the ISAAC 2000

does not have provisions for the real-time display of the

collected data. In addition, the company had never tested

the system on a Zenith Z-150 IBM-PC compatible, was not

interested in doing so, and would not provide a system for

a trial period. As the Z-150 was the most likely PC to be

used for the data acquisition system, this was an

important consideration.

MetraByte Corporation makes several data acquisition

boards which can be plugged into the expansion slots of an

14

IBM-PC or compatible. While their DASH-8 board provided

the necessary eight A/D channels and would support sample

rates up to 30,000 samples per second, the interface to

the PC requires that the software continuously poll the

board to collect the data. This would make the continuous

collection of large amounts of data very difficult due to

the need for overlapping disk I/O with the data

acquisition. MetraByte also offers the DASH-16 which

interfaces to the IBM-PC via direct memory access (DMA).

This allows the PC to perform other functions (such as

disk I/O) concurrent with the data acquisition. While

this board would very probably have performed well for our

application, another board was chosen for a non-technical

reason.

The Data Translation DT2801-A was actually chosen to

provide the needed A/D functions. The board is

functionally similar to the MetraByte DASH-16 and was, in

fact, slightly more expensive. It provides 16 channels of

A/D input with a maximum sample rate of 27,500 Hz with a

DMA interface to the PC, 2 channels of D/A output, and 16

bits of digital I/O. The DT2801-A was made particularly

attractive due to the availability of a board for test

use. The KSU Department of Speech had previously

purchased a DT2801-A and made the hardware available for

15

an extended period. This allowed software development to

proceed considerably earlier than had the project had to

wait for another board to be purchased.

One of the requirements of the data analysis system was

that it be able to compare the phase of the input data

channels. Normal multi-channel A/D boards contain a

single A/D converter and simply gate the appropriate data

channel to the converter for each sample, thus causing the

channels to be converted at different times. For signals

with frequency components much less than the sample rate,

this will result in only minimal phase distortion, though

for signal frequencies near the Nyquist frequency, the

phase data will be very badly skewed.

This dictated that the data acquisition system be able

to simultaneously sample each of the data channels, or

that the sample rate be set much higher than the highest

frequency component in the data. Simply increasing the

sample rate causes a corresponding increase in the amount

of data collected and is thus very undesirable. Hardware

which simultaneously samples 4 channels of data was found,

but was considerably more expensive than equivalent

hardware which did not provide the simultaneous sampling

feature. In addition, this hardware suffered from the

requirement that the data be sampled at a rate of at least

16

200 samples per second which again would often create

excessive amounts of data. An alternative approach was to

use an external clocking device for the A/D hardware which

would send a stream of clock signals at the maximum rate

the A/D hardware can convert (one clock pulse for each

data channel), and follow it by a relatively long pause.

So long as the A/D conversion rate is considerably higher

than the sample rate, very little phase distortion will

occur.

Originally, it" was hoped that commercial software

meeting the requirements could be found. Many programs

for driving the A/D hardware were found, and many programs

for doing the necessary analysis were also found.

Unfortunately, no software for acquiring the data could be

found that met the requirement for collecting two million

samples per experiment, and that could provide real-time

data displays. Several of the programs are simply

routines designed to be called from interpreted BASIC

which fill BASIC data arrays. As this would limit the

acquisition to less than 30,000 samples, these packages

were completely unacceptable. Examples include Data

Translation's PCLAB and Laboratory Technologies' NOTEBOOK.

Other packages could meet the requirement for collecting

two million samples but provided no means of real-time

17

display. Examples of these include Signal Technology's

ILS-PC and Macraillan Software's ASYST. Were these

routines inexpensive, it might make sense to use them and

do without the real-time display, but ILS-PC and ASYST are

not inexpensive and come without program source. They

would not provide the desired function, would not be

tailorable to this particular application, and would not

be cheap. It thus made sense to write the data

acquisition software.

IS

V. THE DATA ACQUISITION SYSTEM

The data acquisition system consists of a Zenith Z-150

personal computer (note that a Z-158 will NOT work, as

will be explained later) with a 20 MB Winchester disk

drive and 8087 numeric coprocessor, a DT2801-A A/D board,

a DT707 screw terminal panel, and a custom-built A/D

clock. The DT2801-A and the A/D clock occupy two

expansion slots in the Z-150 and are connected to the

outside world through connectors accessible at the back of

the PC. The DT2801-A connects to the DT707 screw terminal

panel through a ribbon cable and the DT707 is placed in a

custom built sheet metal box which has BNC connectors for

each of the eight data channels. In addition the metal

box has a small phone plug connector which is used to get

the external clock from the A/D clock board in the PC to

the DT707.

A. The External Clock Hardware

A clock board was built to drive the DT2801-A external

clock input. The board plugs into an expansion slot in

the Z-150 and creates a train of pulses, one pulse for

19

each data channel, where the pulses within a burst are

separated by a small amount of time (the time is

programmable and is set by software to 4.0E-05 seconds),

and the time between bursts is set by software to the

sample rate per channel chosen by the user. This has the

effect of providing nearly simultaneous sampling of each

of the data channels when the overall sample rate is

considerably below 25 KHz.

The DT2801-A requires that, after it is programmed to

do the data acquisition, a one millisecond delay be

followed by a single synchronizing pulse on the external

clock input. After this, each succeeding pulse causes the

next data channel to be latched and converted. Thus, the

external clock must first send a single pulse and then

follow it with the pulse trains. The major difficulty

encountered designing the external clock was to provide

this careful synchronization. If a free-running pulse

generator is used to provide the clocking, the DT2801-A

will likely not be processing channel 1 at the time the

first pulse of the train arrives, and the PC will be

unable to determine which data channel is converted by the

first pulse of the train.

The board consists of an Intel 8253-A timer chip, a TTL

oscillator, the address decoding logic required to give

20

the board a unique hardware address (the addresses used

are hexadecimal 2B0, 2B1, 2B2 and 2B3) , and other

necessary support devices (see figure 1).

The 8253-A consists of three independent 16-bit

counters, each with several different modes of operation,

with its own external clock, gate input, and output [7]

.

Careful use of the gates and output signals, and

appropriate programming of the 8253, allows the board to

generate the desired synchronizing transition and clock

pulse train.

The board is built so that a single 500 KHz clock feeds

each of the three counters. The gate for counter 2 is

always enabled, thus allowing counter 2 to run at any

time. Counter 2 sets the overall sample rate when

generating the pulse trains. The output of this counter

is used as the gate for counter 1; counter 1 can run only

when the output of counter 2 is high. When generating

pulse trains, counter 1 enables counter for short

periods to allow counter to generate the correct number

of pulses; that is, counter 1 sets the number of pulses

generated. The output of counter 1 is then inverted and

used to gate counter 0; counter can run only when the

output of counter 1 is low. Counter feeds the DT2801-A;

when generating pulse trains it pulses once for each of

the channels to be sampled.

21

BM-PCBOS

BM-PC BUS

run
"

MOJO— -oX

F«TMkDe25

74U3CO

wax ADCLX

+5V>^^?-
4.7uF^ JJ1uF^ .

G»>5—A
'B1.B31

rJH

Figure 1. Schematic of external clock "board.

The programming of the 8253-A to generate the single

synchronizing pulse is fairly straightforward. Counter 2

is forced high and left that way to allow counter 1 to be

programmed as a one-shot into counter which is in turn

programmed to pulse low one time. Counter is attached

to the external clock interface of the DT2801-A. The

8253-A programming steps are shown:

Set CounterO mode to 1 (One-shot triggered by gate)
Set Counterl mode to 4 (Strobe triggered by software)
Set Counter2 mode to 4
Set CounterO value to 2 (To generate a very short

strobe when Counterl triggers our
gate

)

Set Counterl value to hex 800 (Clocked at 500 KHz,
this is 2 milliseconds)

As soon as a value is loaded into Counterl, it begins

counting down since Counter2, which provides the gate

signal, is set to allow Counterl to run. When Counterl

counts down to zero, it sends a pulse which causes

CounterO to send a pulse which is interpreted by the

DT2801-A as its synchronizing signal.

In a similar fashion, the counters can be programmed to

send the pulse trains. The output of counter is sent to

the DT2801-A external clock interface. It is programmed

to count at a rate near the 27.5 KHz maximum rate of the

DT2801-A, and is only allowed to count when its gate

signal is high. Counter 1 provides the gate signal for

counter 0. It is programmed to rise and stay high for a

23

short period when its gate signal goes active. The

duration of its high state is programmed so as to allow

"n" pulses from counter before counter 1 returns to a

low state, where "n" is the number of channels of data

being sampled. Finally, counter 2 provides the trigger

signal for counter 1 . Counter 2 is programmed to send a

square wave at the desired sample rate.

For this application, counter 0, which provides the

clock for the DT2801, is set to send one pulse every

several clock cycles. Counter 1 is set as a one-shot

which allows counter to run while counter 1 is counting

down. Counter 2 is set to send a square wave which is

used to start the counter 1 one-shot. Thus, the value

loaded into counter is chosen to send one pulse every 20

clock cycles where the clock runs at 500 KHz. This

provides the 4.0E-05 second spacing between adjacent

channel conversions and is close to the 27.5 KHz maximum

rate the DT2801-A can handle. The value loaded into

counter 1 determines how many pulses will be sent and thus

the number of channels that are converted during each

pulse train. The value loaded into counter 2 sets the

overall sample rate per channel. The programming steps

are shown

:

24

Set CounterO mode to 2 (Divide by N rate generator)
Set CounterO value to decimal 20
Set Counter2 mode to 3 (Square wave rate generator)
Set Counterl mode to 1 (One-shot triggered by gate)
Set Counterl value to 20*chancnt+2 (To let CounterO

pulse once for each channel

)

Set Counter2 value to sample rate (This will start
the pulse trains)

It should be noted that the order in which the modes and

values are set is not arbitrary; they are chosen so as to

prevent stray pulses from being sent while the timer is

being reprogrammed.

B. The Data Acquisition Software

The software that is used to drive the DT2801-A and

external clock boards was written in C and compiled using

the Computer Innovations C86 compiler. It takes advantage

of several of the run-time routines that are provided with

the CI compiler, but otherwise should be fairly easy to

port to another C compiler. Appendix B contains the

source listing of the DTDATA program. The DTDATA program

is menu driven, allowing the user to set several

parameters before beginning the data acquisition.

A real-time plot of one or two data channels on the

Z-150's graphic display is provided. If more than two

channels are being recorded, only two at a time can be

displayed, though the choice of the two channels can be

25

changed during the data acquisition. Due to performance

limitations, the real-time display can be run only up to a

total of 250 samples per second. One channel running at

250 sps can be displayed, or two channels running at 125

sps can be displayed, but two channels running at 200 sps

exceed the display speed. A faster processor, or the

coding of the display routine in 8086 assembler would

provide for faster real-time displays.

The acquired data is written to disk as it is obtained.

A short header, written at the start of the data file,

records several experiment parameters such as the current

time and date, the number of data channels recorded, the

sample rate, the external , lowpass filter setting for each

channel, the conversion multiplier needed to change the

12-bit integer data to units of centimeters per second per

second, and a 15 character ASCII string for each channel

which can be used to record other data such as a sensor

location code. The header contains only ASCII characters

and normal -ordered integers (rather than the byte swapped

integers used by the 8086). To record the sample rate and

conversion factor, a four byte integer is used as a base

and is multiplied by a four byte integer field, divided by

a four byte integer, multiplied by a two byte integer and

divided by a two byte integer. While this scheme appears

2 6

slightly awkward, it actually is fairly straightforward to

code and works well. It is highly desirable to avoid

putting binary floating point values in the header since

the internal floating point representations of machines

differ. Integer representations are much more standard.

When the user begins the DTDATA program, a menu is

presented to allow appropriate parameters to be set. The

menu is shown below:

A. Recall parameters
B. Disk filename: <no disk log>
C. Number of channels to record: 1

D. Sample rate per channel: 125.00 Hz
E. Duration of sampling: <continuous>
F. Number of display channels: 1
G. Clocking: EXTERNAL
H. Data log
I. Save parameters

Enter letter of item to change, RETURN to begin, or
ESC to exit:

The menu is ordered such that the user will likely

select choice A first, followed by B, and so on.

Selection A is used to retrieve previously recorded

parameters from the disk file, "DTDATA. DEF. " Selection I

writes this file using the currently set parameters. For

selections B, C, D, E, and F, the user is prompted for the

appropriate value after selecting the menu item.

Selection G, clocking, simply toggles between EXTERNAL and

INTERNAL while selections A and I simply perform the

27

requested function. When selection H, data log, is

chosen, the user is requested to enter data which is

placed in the header record. For each of the data

channels, the user is requested to enter a 15 character

location code, an external amplifier attenuation setting,

and a lowpass filter setting. The external amplifier

attenuation and lowpass filter setting are controls on the

Kinemetrics SC-1 signal conditioner which is normally used

to amplify the signals from the accelerometers.

After the appropriate parameters are set, pressing the

RETURN key will begin the data collection and display.

During collection, the upper part of the PC screen is used

to display the data, using left and right halves if two

channels are displayed. The bottom part of the screen

shows what channels are being displayed and has reminder

lines which describe how to stop the data collection, how

to change display channels, and how to change the gain on

the display. The adjustable gain is useful when low level

signals are being collected since only 128 graphics pixels

are available for plotting the vertical axis and the input

can take on 2048 values; unless the input is running at

nearly full scale, the display gain can be increased to

make better use of the display area available. Figure 2

shows an example of the display produced by DTDATA

collecting two channels of data.

28

•Jl

o
Sri

I
n

H
B

01 c
iK M
Si it:

i™ ;::n

* •;;

^ 31 :^i

o *• i«i

n"|-**

H a« o
dm oi .11

01 01 nS

a ™i *-'

C '

-•::t i'i:i

itj *x'< ns

o
ft!

Ul

•a na
ert».i c
i:~ m
isrfc! 31
m u

mini i«i ,5
a«...:i

'jl <x :.„'

ft ':,.':'

A i.ii.1

29

After the data collection has finished, either because

it was aborted by pressing the ESC key or because the

duration limit was reached, the menu is redisplayed. The

user can exit DTDATA and return to MS-DOS by pressing the

ESC key, or the parameters can be reset and another

collection can be started.

The use of DMA on the DT2801-A board allowed a fairly

simple scheme to collect data continuously for long

durations; the actual amount collected is limited only by

the size of the hard disk available to store the data.

This is done by allocating a large DMA buffer, programming

the DMA hardware on the Z-150 to repeat when it reaches

the end of the DMA buffer, and then starting the DT2801-A

collecting. The DT2801-A will simply send data to the DMA

controller as it is available while the DMA controller

will, while the PC is free to perform other tasks, place

the data in the memory of the PC using the circular

buffer. After the DTDATA program starts the data

collection, it simply reads the status of the DMA

controller to determine what address will be used next.

This value is continuously updated by the DMA controller

and therefore tracks the input. DTDATA can calculate how

much data has been processed, write it to disk and

optionally graphically display the values without

30

concerning itself with handling individual samples from

the incoming data. Without DMA, the PC software would

have to itself perform the multitasking which the DMA

controller handles. The software would have to

continuously poll the A/D device or handle interrupts from

it and issue appropriate commands to transfer data from

the hardware to memory, while at the same time display the

data and record it to disk. Because of the need for the

PC to be constantly polling or fielding interrupts, the

maximum data rate of the system would be significantly

slower than by using DMA, and the software would be

considerably more complicated.

Unfortunately, the use of the DMA controller chip in

its repetitive mode caused some problems. While this

worked perfectly on a Zenith Z-150, it did not work on the

newer Zenith Z-158. Some experimentation lead to the

conclusion that the DMA controller in the Z-158 was not

restarting its operation after it filled the input buffer

one time. It seemed to ignore the command it had been

given to reload itself when the buffer filled. A quick

look at the schematics of the Z-158 showed the reason for

this. While the Z-150 uses an Intel 8257 DMA controller

chip, identical to what the IBM-PC uses, the Z-158 places

all the DMA functions into a custom VLSI chip.

31

Apparently, the VLSI chip does not faithfully emulate the

Intel chip. Thus, DTDATA does not work on Z-158's and it

is unlikely that Zenith will re-engineer their VLSI device

just to fix this problem.

C. The PC Signal Analysis Software

In order to assist the experimenter in setting

appropriate parameters such as sample rate and lowpass

filter frequency, the programs PLTDAT, PLTDAT4, PLTFAS,

and PLTPSD were written. The programs provide very

limited on-site analysis and data verification; they are

not intended in any way to replace the mainframe data

analysis routines. Appendix B contains the source

listings of these programs, including source for several

ancillary routines required by these programs.

PLTDAT and PLTDAT4 produce screen plots of the first

1024 values of a data file. PLTDAT plots only one channel

of the data while PLTDAT4 plots four channels on the same

screen. They enable the user to verify that the data

actually did make it onto disk, and that the data visually

appears correct.

PLTFAS and PLTPSD produce screen plots of the Fourier

amplitude spectrum and power spectral density of the first

32

1024 points of a data file. No windowing or time

averaging is done on these plots so they will tend to be

be quite rough and inaccurate, but accurate enough in most

cases to provide the needed information. Their primary

use is in selecting appropriate settings for the sample

rates used in an experiment. Typically, the user will not

know the frequencies of the vibration modes of the

structure being tested and so will first collect a short

segment of data at a very high sample rate (>= 200 sps

)

with the lowpass filters set correspondingly high. By

looking at the displays produced by PLTFAS or PLTPSD, the

experimenter can determine the highest frequency of the

significant modes and choose an appropriate sample rate

and filter frequency to capture the desired modes without

oversampling. Both PLTFAS and PLTPSD can plot on a linear

or logarithmic vertical scale.

Figure 3 shows an example of the display produced by

PLTDAT4 and figure 4 shows a display from PLTFAS. The

data is the same in both cases and is simply a mixture of

multiple sinusoids.

33

Ill

i:!!i!i ii'i

ffil

- :E
(:s;i o
C!Bi;;i::i

H I

CD

Chi
1.1*1

I

1.1*1
I I

-
:|;

is:

1

1

I

w
III

l.l"l

*
U'l

'SC!
•::.i '.

i»-i

314

Ill

::., «a"
I..1..1 c.:!

SI
::<: —I
i'B

I I

:: ij'i

US I !

fti Hi

iU.i

35

VI. EVOLUTION OF THE DATA ANALYSIS SYSTEM

Once the data has been collected by the PC and A/D

hardware, it must be analyzed. While it would certainly

be possible to do the desired analysis on the PC, the time

required to do so makes the prospect somewhat unpleasant.

Given a PC approximately five times the speed of an IBM-

PC, microcomputer based analysis would make good sense.

Since such a machine was not available at a reasonable

cost, it was decided to use the campus mainframe.

The basic requirements for the analysis system were

that it be able to provide estimates of power spectral

density and cross power spectral density, auto-correlation

and cross-correlation, transfer function, and coherence

function. Interactive displays of any two of these

functions was desired in addition to high quality hardcopy

plots. The means of getting the raw data from the PC to

the mainframe is provided by the KERMIT file transfer

program [8] . While 9600 baud file transfers do not appear

particularly fast when moving a few megabytes of data, the

transfers can be started and allowed to run unattended so

the time demands on the user are relatively small.

36

Several tenets were developed very early in the design

of the system. These provided the basic philosophy that

shaped the system as design and implementation progressed.

It was decided early on that it would be inappropriate

to attempt to use a single computer language to implement

the system. While FORTRAN provides very good

computational functions, it is extremely lacking in

certain areas which were important. It has poor character

handling, poor structured programming constructs, and

limited I/O interfaces. Thus, while FORTRAN was used to

implement the basic computational routines, another

language was used for the higher level work. The C

programming language would have worked fairly well for

this, but the mainframe lacks a good C compiler. In

addition, C programs tend to be difficult to debug,

particularly for inexperienced programmers who might find

themselves working on this system in the future. PL/I

would have been a reasonable language for both the user

interface and the computational work, but it is a complex,

uncommon language which has implementations for only a few

computers. About the only remaining mainframe language

that would be appropriate for this function is REXX

[9] [10] [11]. REXX is an interpreted language which has

very powerful structured programming constructs, is easy

37

to debug, is not difficult to learn, and which interfaces

to the CMS command environment very naturally.

During the implementation, attempts were made to keep

the programs reasonably portable. In cases where there

seemed to be no alternative, such as in choosing REXX for

the user interface, portability was sacrificed. But the

basic FORTRAN programs which do the computation should be

relatively easy to port to another machine, including the

IBM-PC. Since a version of REXX is available for the PC

which provides an environment almost identical to that in

CMS, the entire analysis system should be fairly easy to

move to an IBM-PC compatible machine. To move the system

to a Unix, VMS, or Vulcan environment, several hundred

lines of REXX would have to be rewritten in another

language such as C; this would not require undue effort

since C uses many of the same language constructs as REXX.

Even if the user interface had been coded in C on the

mainframe, a fair amount of conversion effort would be

required since a certain amount of operating system

specific code is inevitable.

The analysis system is very modular. The basic

computation is done by several separate FORTRAN routines.

These routines are called by small REXX programs which

know the basic requirements of the FORTRAN code and can

38

issue the CMS commands to point the FORTRAN I/O units at

the data. These low level REXX routines are in turn

called by a higher level REXX program which provides the

command interface to the user. The user sees a single

command interface while the programmer sees a highly

modular collection of related programs without the types

of code and data interdependancies that would result from

trying to create a single large program to handle all

functions. In addition, the memory requirements of the

system are considerably reduced by this approach since

only the array space needed for a particular application

need be allocated while a combined program would have to

have arrays for each of the functions pre-al located

(thanks to the lack of dynamic memory allocation in

FORTRAN).

While the high degree of modularity somewhat dictated

this, another design consideration was that all the

working data be stored on disk rather than in CPU memory.

This was also forced in part due to the large potential

size of some of the input data expected (a single data

channel might well contain 250,000 samples). While the

mainframe and most large minicomputers could deal with

multiple megabyte memory requirements, most smaller

machines could not. Reading and writing the data to disk

3d

tends to slow the speed of the system, but in general this

should not be a major consideration as the processor time

required to perform the calculations usually far exceeds

the time required to read the data and write the results.

4

VII. THE DATA ANALYSIS SYSTEM

From the user's point of view, the entire data analysis

system consists of a single CMS command called "VAS"

(Vibration Analysis System). This one command accepts

many parameters and options to provide all the required

data analysis and display functions. In actual

implementation, a large number of separate REXX and

FORTRAN programs are used. Appendix C contains source

listings for the programs.

The data and results are stored in CMS disk files. In

CMS, files on a disk are identified by a filename and a

filetype which can each contain up to eight alphanumeric

characters. The filename is used by the VAS command to

uniquely identify a single experiment and appears on the

printed and plotted output as the test name. The filetype

is used internally by VAS to identify the kind of data

contained in the file. While CMS allows filetypes to be

up to eight characters in length, for portability

considerations only three character filetypes are used.

The user can in general concern himself very little with

the filetype. The following filetypes are reserved by the

VAS command:

41

FILETYPE Function
RAW Unprocessed data in the form created by the

DTDATA command
Dii Data for channel "i"
100 Various information about the data in other

files
Sij Cross PSD estimates for channels "i" and

"j" or auto PSD estimate if i=j
Cij Auto or cross-correlation estimates for

channels "i" and "j"

Kij Coherence function estimates for channels
"i" and "j"

Tij Transfer function estimates for channels
"i" and "j"

The user of the system seldom has to concern himself

with filetypes. The filetype of "RAW" must be used when

uploading the data, and filetypes are needed when using

standard CMS commands to list and manipulate disk

contents.

A. The VAS CONVERT Command

When a single file containing the data from a

particular experiment is uploaded, it must first be

converted to a format more amenable to processing on the

mainframe. The raw data file begins with a header record

which contains information about the experiment followed

by the data in reversed-byte integer format with the data

for multiple channels interleaved. The "VAS CONVERT"

command is used to separate the raw format data into one

42

CMS file for each data channel plus an informational file

which contains information from the header. The data is

kept in files with a filetype of "Dnn" where "nn" is "11"

for the first channel, "22" for the second channel,

through "88" for the eighth channel. The data is written

in internal REAL*4 format (in binary with four bytes per

value). The informational data is written to a file with

a filetype of "100". A single record containing the

sample rate and the date and time the data was collected

is followed by eight records containing the lowpass filter

frequency and location code for each channel. In all

cases, the filename of the files is identical to the

filename of the raw data. For instance, if the file

"TEST1 RAW" contained the raw data for an experiment run

with two channels, the command:

VAS CONVERT TEST1

would create three files: "TEST1 Dll," "TEST1 D22, " and

"TEST1 100."

The conversion function is performed by the FORTRAN

program SPCONV which is driven by a REXX program of the

same name ("SPCONV EXEC").

4 3

B. The VAS SPECTRUM Command

PSD estimates and cross PSD estimates are computed by

the "VAS SPECTRUM" command. For instance, the following

commands could be used to compute the auto and cross PSD

estimates containing 1024 frequency components of an

experiment called "TEST1":

VAS SPECTRUM TEST1 1 1 (LENGTH 1024
VAS SPECTRUM TEST1 2 2 (LENGTH 1024
VAS SPECTRUM TEST1 1 2 (LENGTH 1024

Options are available on the "VAS SPECTRUM" command to

select from two spectral estimation methods, to select a

smoothing window and to select the number of frequency

components the estimation is to use. Refer to the

Vibration Analysis System User 's Guide in Appendix A for

the complete format of the "VAS SPECTRUM" command.

The command uses files of filetype "Dii" and "Djj" as

input and produces a file with a filetype of "Sij" as

output where "i" and "j" represent channel numbers. For a

cross spectral estimate, "i" and "j" are different while

for an auto spectral estimate they are the same. The

resulting output file is written in C0MPLEX*8 format

(binary with 8 bytes per value, 4 containing the real part

of the result and 4 containing the imaginary part of the

result). For an auto-spectrum, the imaginary part of the

result is zero though the data is still written in complex

format.

44

Two methods of spectral estimation were implemented.

The default is the method of modified periodograms

suggested by Peter Welch and often known simply as Welch's

method, or as the method of weighted, overlapped, segment

averaging (WOSA) [12]. A cross PSD is computed using this

method by the following procedure:

1. The two input sequences, x and y, are broken into
subsequences of length, M, where the subsequences
are overlapped by 50%. The two sequences must be
of the same length.

2. Each subsequence is multiplied by the chosen
window.

3. The subsequences are zero padded to length 2*M to
improve the apparent frequency resolution.

4. The PSD of the subsequences of x and y are
computed as C0NJ(DFT(X))*DFT(Y)

.

5. The PSD of each of the subsequences is averaged
to produce the desired result after adjusting the
values to correct for the power reduction caused
by the application of the data window.

The second method of spectral estimation implemented is

an older method which is nicely outlined by Beauchamp

[13]. In this method, the input data is also broken into

subsequences (though the subsequences are not overlapped),

but the windowing is done on the auto-correlation

estimates of the subsequences rather than directly on the

data. The procedure outlined by Beauchamp is as follows:

15

1

.

Divide the input x and y of length N into
segments of M values each.

2. Attach M zeros to each segment and perform a 2M-
point FFT on the segments of x and y. This
produces X(f) and Y(f).

3. Average CONJ(X(f))*Y(f) over all the segments.
4. Produce the cross-correlation estimate of x and y

by computing the inverse FFT of the averaged
result.

5. Multiply the correlation estimate by the chosen
window

.

6. Produce the PSD estimate by computing the FFT of
the windowed correlation estimate.

The major advantage of this method appears to be speed.

For long sequences, Welch's method performs about twice

the number of FFT computations as this speedier

traditional approach. But the speed appears to come with

some penalties as the spectral estimates generally do not

have quite the same resolution and accuracy of those from

Welch's method.

Figures 5 (a-g) and 6 (a-g) show the results of

computing 512 point Fourier amplitude spectrum (FAS)

estimates of a synthesized signal. (The FAS is simply the

square-root of the PSD and is more applicable in many

cases to the study of structural dynamics than is the

PSD.) The signal, 8192 values sampled at 2000 Hz,

consists of the sum of sinusoids at 101 Hz and 796 Hz plus

an amplitude modulated sinusoid at 251 Hz with sidelobes

at 213 and 289 Hz, plus a swept frequency sinusoid which

begins at 480 Hz and ends at 520 Hz. Figure 5 shows the

46

aa^asm^i

1 1 1 1 1 1 1 1 1 1 1 1 1

1

II. II ftl.M
FREQUEHCT JN HZ

(a) Rectangular window.

"TTt

iJjjgSkam&Mfl^

FREOUENCT IN HZ

("b) Bartlett window.

Figure 5. Welch's method FAS estimate of summation of sines.

1*7

afflffl^&iMm

W.m hi'.M

'

FRtQUENCT JN HZ

(c) Hamming window.

' ' W.i

BBfflKiaflE

EQUEHCT IN HI

(d) Hanning window.

Figure 5. Welch's method FAS estimate of summation of sines (cont.

)

ue

gSJBSSRl'iiij jgiTWi/Jcoach'i .sj|
q,
.agiy&

FAEQUENCT IN HZ

(e) Kaiser window.

1

[CSTi TCST6 0B/28/SI 20:02 FM E9T1MTE

1

7

I

?
a

b.M ' ' hl.M k».M ••!• • • •
FREQUENCY IH HZ

(f) Blackman window.

Figure 5- Welch's method FAS estimate of summation of sines (cont,)

U9

imzarmmFM

Ii » i itii< t i r i

• .It It. II

FREQUENCT IN HZ

(g) Parzen window.

Figure 5- Welch's method FAS estimate of summation of sines (cont.

^0

, TEJTt TEST! 0«/2»/»« 20i02 fflj t
CMANNEli 1 ISIHULRTlfiNI Iff raEflt MS:

FflJ CSTINME IT!

W.ob io'.aa

FREQUENCT IN HE

(a) Rectangular window.

-Tear; ^ts^^ ob/?j/m zOiaj rm estiwite

g NUHHKi. 8WT.LEYJ , fT?7.StSPCHTi. Klg . WHE. fr

Ur ia'.oi W.ob it.ot
FREQUENCT IN HI

(b) Bartlett window.

Figure 6. Traditional FAS estimate of summation of sines.

51

„ TEST! ItSTJ Ot/il/tl 20:1! rMtSTI*
7 CHAMNELt 1 ISIWULATION) Iff ?pEQ« NONE
gjumaiii. nwmmc nlZKMHIa »" »wle

!io'. at W.(
FHEQUENCT IK HZ

(c) Hamming windov.

. test-, mm oe/ja/Bj 20,02 rns tsiiHUTt m

\t' ob ka'.i

FREQUENCY IN HZ

(d) Hanning window.

Figure 6. Traditional FAS estimate of summation of sines (eont.)

52

i^MSiigiHOtKi Ŵ'l ,29°,

FREQUENCY IN HI

(e) Kaiser window.

FREOUENCT ID HI

(f) Blackman window.

Figure 6. Traditional FAS estimate of summation of sines (cont.

)

53

m&dmflkmimTc m

(g) Parzen window.

Figure 6. Traditional FAS estimate of summation of sines (oont.

]

5li

FAS estimate computed with Welch's method while figure 6

shows the estimates computed with Beauchamp's method, each

using various windows. It can be seen that Welch's method

generally reduces the width of the spectral peaks and

reduces the magnitude of the valleys between peaks. These

plots also show the effects of applying the various

windows; the Hanning window in general seems to perform

nicely and is the default for the "VAS SPECTRUM" command.

Figures 7 (a-g) and 8 (a-g) show examples of computing

512 point FAS estimates of another synthesized signal.

The signal in this case is 2048 samples of a lowpass

filtered Gaussian white noise generator. The FAS of

unfiltered white noise should be flat over all

frequencies. The filter used in this case was a 6 pole

Chebyshev type II lowpass filter with a cutoff at 200 Hz

and a stopband attenuation of 20 dB. The expected PSD of

such a signal would be flat in the passband and have three

ripples in the stopband which peak at 20 dB below the

passband value. The ripples should peak at 222, 308 and

500 Hz while the PSD should be zero at 206, 252 and 390

Hz. Even more than in the previous example, the power of

Welch's method shows through in this example.

55

afflfasm^:
fl! EST I BUT!

su .»nyit.wnt, .uro

FREQUENCY IN HZ "1

(a) Rectangular window.

o
I<in«3Si. »ApTj.StT . cTS/.secBWT.. Sie . ume »it,.\m. . . .

at
*1 n
a
u
do
W
33
£» \ I

o
B
X V

T

"Yta Wit ii'.M St'.ii '
'

FREQUENCY IN HZ .10'
ki.M V

(b) Bartlett window.

Figure 7. Welch's method FAS estimate of filtered noise.

56

_ TtJT: riOllfl 0«/2S/lf JO; 02 'Hm triMTt
jmtic jieTE^ lom .

fHEWENCT IN HI • x'o?

(c) Hamming window.

ffl£2M2$tiffl
rja cstiiwtc

)..M
FRE8UENCT IN HZ «10'

(d) Hanning window.

Figure 7. Welch's method FAS estimate of filtered noise (cont.

c
>7

7
(OlOWi. MJ5EJ . F.T9/SE.G»E*T. .5)5 .JFVU. WTt, .IJOO

in '

» A-v^/"

-2
u

\ /
3
Cf
*2

T

l.W '
' W.M ' '

' kt'.M
'

j, ,«
'

FREOUENCT IN HZ «I0~
1MB <

(e) Kaiser window.

TtTt.
FREOUENCT IN HZ •10<

(f) Blackman window.

Figure 7 • Welch's method FAS estimate of filtered noise (cont.)

58

o mm*, rtoui .tfj/SttKlrVsji .SMncwid .1000

H
iU

Jo

5 V J3
^T

\f

o
a:
r

"

T
a

m)..•» u; •••• ya
FREQUENCY IN HZ «10 r

fcl'.M

(g) Parzen window.

Figure 7. Welch's method FAS estimate of filtered noise (cont.

)

sy

. TESTt FMSlSCt JB/Jl/St JO-.OJ r

5U 3WU.IW7E. .1000.

FREQUENCY IN HZ «l

(a) Rectangular window.

JjfflEigM&M
JM C3TIMTC (T)

Fi gure

H.M
FBEOUENCT IN HZ «10"

(b) Bartlett window.

Traditional FAS estimate of filtered noise.

60

1 02 FM eSTIHftTC (Tl

FREWENCT JM HZ "Ujf
-

(c) Hamming window.

jffl£22idmflfo££
MM ITI

FBE8UEHCT IN Hi mo'"

(d) Harming window.

Figure 8. Traditional FAS estimate of filtered noise (cont.

)

6l

. TEJTi FN0J9E5 0B/28/1I JOiOJ f*3 C3TIMTC IT]
'9° iWU.MU. .1MB.

T71.
FREBUENCT IN HI «10~

(e) Kaiser window.

BaHkt^**iJf/tM,
4ft.
wMt

M "T, ""u IT1

BiRoSu kjckwii. pt5/.sc6R«H,.5ij wu unTtt I0QO.
. . .

-2

o<~-
3 —
1- *-

I *

E

M
O

«id~

1

' ' l.'.» 1

FREQUENCY IN HI

Figure

(f) Elackman window.

Traditional FAS estimate of filtered noise (cont.

6-

mffiM28m MLimuat

W.M II.M 31.

M

FREQUEMCT JN HZ -10 r
ii ti iii i i rii i i i i r rrrr i i i r r r t t t

II.M U H \%.M

(g) Parzen window.

Figure 8. Traditional FAS estimate of filtered noise (cont.

)

S3

m^s^MMmiunit

Ml*. 80P .

It

I

S
i i iiiiiiiiitii i iiiiiiifiiiirirr

FREQUENCY IN HZ

(a) 128 points per segment.

mSkamiBMXZ*

ifcOUCNCT IN HZ

[to) 20U8 points per segment.

Figure 9- Welch's method FAS estimate of summation of sines.

64

Figure 9a shows the result of computing a 128 point FAS

estimate of the multiple sinusoid simulation while figure

9b shows the result of computing a 2048 point estimate.

It can be seen that with too few points, inadequate

frequency resolution results. Additional points in the

estimation adds very little to the result.

Figure 10a shows the result of computing a 128 point

FAS estimate of the filtered white noise simulation;

figure 10b shows the result of computing a 2048 point

estimate. Again, too few points in the estimate can be

seen to decrease the resolution, but at the same time it

can be seen that the additional time averages that this

allows smooths out the noisy estimate; given a 2048 point

signal, six overlapped subsequence estimates are averaged

to produce an estimate using Welch's method if 512 point

subsequences are used, while 30 subsequence estimates are

averaged if 128 point subsequences are used. Figure 10b,

a 2048 point estimate, includes no averaging of

subsequences and can be seen to be extremely noisy. In

general, the length of the sequence being analyzed should

be several times the length of the estimate to provide

many averages so as to minimize errors in the estimate.

Figure 11 shows the difference between a PSD estimate

and a FAS estimate using the filtered white noise. In the

6 5

JBBrigaMgaaaBi at me

r
IUTC

wr.£ jwte.. loon

in"

i -
o

I

Ti^T
FAEOUCNCT IN HZ mffl

(a) 128 points per segment.

pKEMaurur tJIIIWTt

. SMTLC MTCi.lMO

kWW%HMklff
1 ifyf

' '" 1wrf
1

T

.» IKS i '.M '
' i»j« '

'
' '*•.!«

' '

rREQUCNCT IN HZ -10

(b) 20U8 points per segment.

Figure 10. Welch's method FAS estimate of filtered noise.

66

1 CHHHHEL, 1 iBOUE) LPF FKji JOO
tlTIHKTt

»»' WE'- "PI

it'.tt W.m '

FREOUENCT IN HI -10'

(a) PSD estimate.

- UJt! FMIStl g«/;»/SI JJiOJ FFi

j.^£ak^BBl Bt
FM C3TIIMTC

»wu jmtc mm

FREOUENCT IN HI *\W

("b) FAS estimate.

Figure 11. Comparison of FAS and PSD estimates.

•V

FAS estimate, the stopband ripples peak at about 1/10 the

passband (20 dB down). In the PSD estimate, the stopband

ripple peak at about 1/100 the passband (40 dB) . In some

applications, a power estimate is more appropriate than an

amplitude estimate. The "VAS SPECTRUM" command actually

computes a PSD estimate; the "VAS PLOT" command is used to

convert to a FAS estimate if desired.

Additional examples of the use of the "VAS SPECTRUM"

command appear in subsequent sections.

C. The VAS CORRELATION Command

Auto-correlations and cross-correlations are computed

by the "VAS CORRELATION" command. The following commands

could be used to compute the auto and cross-correlation

estimates of the first two channels of an experiment

called "TEST2":

VAS CORRELATION TEST2 1 1
VAS CORRELATION TEST2 2 2
VAS CORRELATION TEST2 1 2
VAS CORRELATION TEST2 2 1

By default, 512 correlation lags are computed, though the

actual number can be changed by specifying the LENGTH

option on the command line.

68

The command uses files of filetype "Dii" and "Djj" as

input and produces a file with a filetype of "Cij" as

output where "i" and "j" represent channel numbers. For a

cross-correlation estimate, "i" and "j" are different

while for an auto-correlation estimate they are the same.

The resulting output file is written in REAL*4 format.

The brute force computation of correlation estimates is

a process which requires time proportional to the square

of the number of components in the data. This can be

significantly improved by using a method described by

Rabiner [14] in which the FFT is used to compute the

correlation estimate.

Figure 12 shows the result of computing the auto-

correlation and FAS estimate of a unit-variance Gaussian

white noise process. As expected, the auto-correlation

function is nearly zero except for a peak at a delay value

of zero. The value of the auto-correlation estimate at

zero is simply the variance of the signal; elsewhere the

signal is nearly uncorrelated as would be expected for

white noise. The FAS estimate is fairly flat as expected,

though it is quite rough; a smoother estimate would be

expected from a longer input sequence, which in this case

was 2048 points, or from computing fewer points in the

estimate, which in this case contains 512 points.

69

iM^£MjjSnti^MPJsrmM"m

TTri l lltTtltllltllll T-T r T f T
1,|| k.it i.w ».i

fine IN SECONDS

(a) Correlation estimate.

oTCSTi NS13E 09/23/3* 0Mi02 FflS CSTItWTC

»WU Mlti. 10W

(Id) FAS estimate.

Figure 12, Correlation and FAS estimates of white noise.

70

D. The VAS TRANSFER Command

Estimates of the frequency domain transfer function of

two data channels can be computed with the "VAS TRANSFER"

command. The following command could be used to compute

the transfer function estimate of the first two channels

of experiment "SAMPLE4":

VAS TRANSFER SAMPLE4 1 2

The command uses files of filetype "Sii" and "Sjj" as

input and produces a file with a filetype of "Tij" as

output where "i" and "j" represent channel numbers. That

is, its input is the auto PSD estimate of the data

channels and must previously have been computed by using

the "VAS SPECTRUM" command. The output is written in

C0MPLEX*8 format and is simply the result of dividing the

first channel PSD estimate by the second channel PSD

estimate.

Examples of the use of the "VAS TRANSFER" command

appear in following sections.

E. The VAS COHERENCE Command

An estimate of the coherence function of two data

channels can be computed with the "VAS COHERENCE" command.

71

The following command could be used to compute the

coherence function estimate of the first two channels of

experiment "SAMPLE5":

VAS COHERENCE SAMPLE5 1 2

The command uses files of filetype "Sii", "Sjj", and

"Sij" as input and produces a file with a filetype of

"Kij" as output where "i" and "j" represent channel

numbers. Its input is the auto PSD estimates of the

individual data channels and their cross PSD estimate;

these must previously have been computed using the "VAS

SPECTRUM" command. The output is written in REAL*4

format.

Examples of the use of the "VAS COHERENCE" command

appear in following sections.

F. The VAS PLOT Command

The results of computing PSD, correlation, transfer

function, and coherence function estimates as well as data

can be plotted by using the "VAS PLOT" command. Options

on the command allow the plots to be made either

interactively on a Tektronix 4010 compatible terminal or

on the mainframe Calcomp drum plotter. Other options

72

control such things as the number of points plotted, the

starting point number, whether the axes are to be scaled

linearly or logarithmically, etc. The Vibration Analysis

System User's Guide in Appendix A contains a complete

description of the options available.

G. The VAS PRINT Command

While the "VAS PLOT" command is used to graphically

display the results of computations, the "VAS PRINT"

command will print the results in tabular form. Again,

refer to the Vibration Analysis System User 's Guide for a

complete description.

H. Example—Multiple Sinusoids in White Noise

The plots of figure 13 (a- j) show the results of

computing several estimates from another simulated

sequence of data. Channel 1 of MANYSINS contains twenty

distinct sinusoids of varying amplitude, all with zero

initial phase shift, added to unit-variance Gaussian white

noise. Channel 2 contains twenty similar sinusoids with

varying initial phase shifts and slightly greater

amplitudes added to unit-variance Gaussian white noise.

The frequency of the sinusoids and their initial phase

shift is shown in the following table:

73

2 TEST, 1ANTJ1H3 0£/?2/8f I7t3« DATA

°3<wiE Mti. \oi

TiHE IN SEC8N0S

(a) Channel 1 data.

- iwtCl>>Tev log. . ! :

a

W*^[*4h W^iV^u lYV^MV^

n? k.M I'm Vti
TlHE IN 3CC0N03

I I I I I

—

<—1—I—I—

(b) Channel 2 data.

Figure 13. Analysis of summation of many sines on noise.

lh

-

TEJTi (l»MT3IKJ Oa/32/Sa HiJJ FM E3TIMTE
• CHANNEL 1 ISIhuIRTISnI IFF FflE3i NONE

1«L

(o) Channel 1 FAS estimate.

o :hanneLi 2 (sInulatT9n) lpf njEQ. none
fWOOHt. t*NKJHC. /7S/W«MTi 5U. JWLE JWTCi. 100

U
tn M

r-

JIIIu AIII1 "i
A /< V ^ L A / V^ I V^vw

*~

I
l.t»)•'.<• kf'.ti ai'.M ki'.oi ' '

FREQUENCY IN HZ

(d) Channel 2 FAS estimate.

Figure 13. Analysis of summation of many sines on noise (cont,
]

7S

ij MQ)o5BtaB»»>Twe

M/22/91 I1i» m C3TIMTC

rwxmnu sva. nvtuwu mo.

FREOUENCT in hi"

(e) Cross-FAS estimate phase.

7JST: umiTJIHJ 0«.'!?/8l 17, M 7«3 C371KKTC

^SfflKiBMB. W/gtWP. 5U. iWW-IJWTtu HB. . .

' Kg Jt'.ii

FHEQ—EOUENCT IN HZ

(f) Cross-FAS estimate magnitude.

Figure 13. Analysis of summation of many sines on noise (cont.)

7o

8
T
52

,
irr""

,""S °*/"/M ,
'' ,s ', MWMmi

y L4 WMw kd q^A*W*4-
fct'.M ii.it

'

FREQUENCY I.N HZ

(g) Coherence function estimate

oitjT-. hiiiitsim n/ti/tt i7i» iiwuarrn function

' MS mm '

FREQUENCY IN HZ

(h) Transfer function estimate.

Figure 13. Analysis of summation of many sines on noise (cont.

77

yghjjS|Hya^ m^rm™

b.W V.i* \.'n i.tt

TiHE IN SECONDS

(i) Channel 1 auto-correlation estimate.

DTCJTiMirmNS M/22/M HlM CMUICUI1IM

TiHE IN SECONOS"

(j) Cross-correlation estimate.

Figure 13. Analysis of summation of many sines on noise (cont.

)

78

Channel 1 Channel 2

Freq Amp Phase Freq Amp Phase
2 .05 2 .50
4 .10 4 .55 90
6 .15 6 .60
8 .20 8 .65 -90

10 .25 10 .70
12 .30 12 .75 90
14 .35 14 .60
16 .40 16 .85 -90
18 .45 18 .90
20 .50 20 .95 90
22 .55 22 1 .00
24 .60 24 1 .05 -90
2 6 .65 26 1 .10
28 .70 28 1 .15 90
30 .75 30 1 .20
32 .80 32 1 .25 -90
34 .85 34 1 .30
36 .90 36 1 .35 90
38 .95 38 1 .40
40 1.00 40 1 .45 -90

The simulated signal was sampled at 100 Hz for 8192

samples. A small section of each of the data channels is

shown in figure 13a and 13b. These plots were produced

using the following VAS command:

VAS PLOT (CALCOMP SCALE .5 FOR 199) MANYSINS DATA 2 2
MANYSINS DATA 1 1

The plots of figure 13c and 13d were produced from the

following VAS commands:

VAS SPEC MANYSINS 1 1

VAS SPEC MANYSINS 2 2
VAS PLOT (CALCOMP SCALE .5 FROM 2 LOGY) MANYSINS SPEC

2 2 MANYSINS SPEC 1 1

The first point of the FAS estimate was left off the plot

since it represents the DC coefficient of the spectrum and

is nearly zero, thus not fitting well on a logarithmic

scale.

79

It can be seen from figure 13c that the small amplitude

sinusoids are nearly lost in the white noise background.

The amplitude of the first few sines are .05, .10, .15,

and .20 and represent very unfavorable signal-to-noise

ratios (SNR's).

Figures 13e and 13f were produced from the following

commands:

VAS SPEC MANYSINS 1 2
VAS PLOT (CALCOMP SCALE .5 FROM 2) MANYSINS SPEC 1 2

(MAGNITUDE LOGY) MANYSINS SPEC 1 2 (PHASE)

As the cross-spectrum of a signal contains phase

information, the "VAS PLOT" command can be told to plot

either the magnitude or the phase.

The phase plot shows essentially what was expected from

the cross-spectrum. The phase of every other peak is zero

while the phase of the remaining peaks alternates from 90

degrees to -90 degrees. Between the peaks, the phase is

essentially random.

The plots of figures 13g and 13h were produced from the

following commands:

VAS COHER MANYSINS 1 2
VAS TRAN MANYSINS 1 2
VAS PLOT (CALCOMP SCALE .5 FROM 2) MANYSINS TRAN 1 2

MANYSINS COHER 1 2

The coherence at frequencies corresponding to the

spectral peaks is seen to vary from .15 in the worst case

80

to 1.0 where the spectral peaks were well above the noise

level. Between the peaks, the coherence function is

nearly zero which is as expected since the noise

background is uncorrelated.

The transfer function at frequencies corresponding to

spectral peaks should be expected to range from 0.1

(.05/. 50) for the first peak to .69 (1.00/1.45) at the

last peak. At frequencies between the peaks, the transfer

function should be about 1.0 corresponding to a constant

amplitude background noise. Figure 13h shows that this is

indeed about what was found. While the transfer function

at the first spectral peak is somewhat inaccurate, this is

to be expected given that the coherence function at that

frequency indicates that the noise is dominating the

estimate.

The final figures, 13i and 13 J , show the results of

computing auto-correlation and cross-correlation estimates

with the following commands:

VAS CORR MANYSINS 1 1

VAS CORR MANYSINS 1 2
VAS PLOT (CALC SCA .5 FOR 199) MANYSINS CORR 1 2

MANYSINS CORR 1 1

The auto-correlation shows the sinusoidal nature of

channel 1 much better than the plot of the data itself.

In addition, the value of the auto-correlation at zero is

4.55 while the value of subsequent peaks is about 3.5.

This indicates as expected that there is unit-variance

noise in the signal.

The value of the cross-correlation plot in this example

is questionable. It appears to provide very little

additional information.

I. Example -

-

Analysis of a Structure

While the purpose of this paper is not to describe the

analysis of structural dynamics, it would be incomplete

without at least including a demonstration of the system

in use examining a real structure.

For this study, the U.S. Grain Marketing Research

storage facility was used. This structure is a tall,

essentially rectangular building approximately 150 feet

high. Accelerometers were placed at four different

landings at heights of approximately 140 feet, 110 feet,

70 feet, and 30 feet and were feed into the Kinemetrics

SC-1 signal conditioner as channels 1 through 4. Due to

what appeared to be an intermittent failure in the channel

3 cable, only three useful data channels were collected.

The SC-1 provides signal amplification, variable in 6 dB

steps from about 100,000 to 200, and provides 60 dB per

decade lowpass filtering variable from 1 Hz to 100 Hz.

82

An initial on-site FAS analysis of a short sequence of

data collected at 500 sps/channel with the lowpass filters

removed indicated that the major spectral peaks were

confined to below about 40 Hz. The sequence of data named

SAMPLE4 was then collected with the lowpass filter set at

50 Hz and the sample rate set at 200 Hz; approximately

25,000 samples per channel were collected.

An on-site analysis of a small piece of SAMPLE4

indicated that the first vibration mode was at

approximately 2 Hz and a second major mode was located at

about 6 Hz. The third mode, much smaller than the first

two, was just below 10 Hz. The sequence of data named

SAMPLES was collected with the lowpass filter set at 10 Hz

and the sample rate set at 40 Hz; approximately 14,500

samples per channel were collected. 512 point estimates

of the spectrum, coherence, and transfer function where

calculated and the first 255 points after the DC component

are plotted; the values of the estimates beyond the

lowpass filter setting are not of interest.

Figures 14a and 14b show the first 400 samples of the

first and the fourth channels of SAMPLE5. As expected,

channel 1 (from the sensor located near the top of the

building) shows considerably greater acceleration than

channel 4. The first 4000 samples of the same data is

83

mg$M™z*S£:

i.M \M \.'m h.M
TIME IN SEC0N03

(a) ^00 data points from channel 1.

SamiE toHi. io.

Lit IV
TIME IN 3EC0N0S

(b) U00 data points from channel k.

Figure Ik, Analysis of a structure at low frequencies.

8k

oTEST; SHrtfLES 05/08/88 13;50
g CHANNEL: J (1 10 FT1 iPF FREQ. 10

TIME JN SECONDS

(c) U000 data points from channel 1.

oTEST; MfflEI OS/08/88 13:50 DATA
gCHANNELi U 130 FT) LPf FR«. 10

Figure lU.

U'.OO ' ' 10. OS
'

TiHE JN SEC0N05

(d) U000 data points from channel h.

Analysis of a structure at low frequencies (cont.

)

85

im^TOmif« eaTiBBTe

awit Mti. it.

k.bt fc.M h.bt

fheouenct IN HZ

(e) Channel 1 FAS estimate.

8

KINDS?.. uAtntlwS. >TJ/*««RTi SXS. IWLSOU^ 10

i

I

i L A. ..
fw '

'

"
'

'

k.b. U» k'.W " '" ' ' ' Vmrrr> ' ' '
'

FREQUENCY IN HZ

(f) Channel 2 FAS estimate.

Figure lit. Analysis of a structure at low frequencies (cont,]

><6

\mrnmyffltfKzz,«*

FREQUENCY in mz'"

(g) Channel 3 FAS estimate.

1 KJJ.iJTi.H- .85/««8'.15i50..f*» esTiimie

?HMHE JWTEv. 1

(h) Channel U FAS estimate.

Figure lU. Analysis of a structure at low frequencies (cont,)

87

os/oa/aa isiso rss tsTiwne

V.bt k.ba k.iw
FREOUENCT IN HZ

v»

(i) Channel 1:2 FAS estimate phase.

jIEST; SUKfLtS os/oa/aa 13.50 ms tannine

a ..i

FREQUENCY IN HZ

(j) Channel 1:2 FAS estimate magnitude.

Figure ih . Analysis of a structure at low frequencies (cont.J

StcsTi snflries os/os/at istso fas mtiiwte
CHAHNCLSt \,i

rs p
FAEOUENCT IH HZ

(k) Channel 1:U FAS estimate phase.

:»nrics os/oa/si n-.so rns cstimte

I i i fT~ i i i i i i i i i i i i*t—ri—^

FR?gUENCY IN ME
*""

(l) Channel l:h FAS estimate magnitude.

Figure lU. Analysis of a structure at low frequencies (cont.]

gTE3T; SRHTLES 35/06/88 I3 t 50 COHCflCHCC

k.M k.bt' k.b* i.i

frequency IN HZ

(m) Channel 1:2 coherence function estimate.

oTCJTt 3AHn.ES
gCHAHNCLSt li*
TEST: SAMPLES 05/08/86 13:50 COHCIICNCC

EQUENCY IN HZ

(n) Channel l'.k coherence function estimate.

Figure lU, Analysis of a structure at low frequencies (cont,

90

SHOO8HT.8AH !»»<!.

03/ot/ai 13:50 TfvuiSFcn function

3.M «.M I.M l.M
FREO.UENCT IN HZ

(o) Channel 1:2 transfer function estimate.

TE.3T-. 3»nfU5 OS/Ot/M 13;S0 TMNSrcn FUNCTION
CHflNNCLSi Hi

FREOUENCT IN HZ

(p) Channel 1:U transfer function estimate,

Figure 1^. Analysis of a structure at low frequencies (cont,

)

91

ihgsjjky** m° .s
|,,weL"t ","

TIME IN SECONDS

(q) Channel 1 auto-correlation estimate.

g^ii
g;j;^^o

f??
/
°gtf'r>ii? ,.

c°C1MM1I1K

1 rs eg EC '

TIME]N SECONDS

(r) Channel h auto-correlation estimate,

Figure lU. Analysis of a structure at low frequencies (cont.)

92

shown in figures 14c and 14d which gives a better

indication of the variability of the vibrations. The

areas where the vibrations are large correspond to periods

of high wind while the areas with weak vibrations

correspond to periods of little wind.

The auto FAS estimate of the four data channels of

SAMPLE5 are shown in figures 14 (e-h). Remembering that

channel 3 was not connected, they show the first two

vibration modes quite clearly, and signs of the third can

be seen near 9 Hz. It is interesting to note that the

magnitude of the first mode is much larger near the top of

the building than near the bottom, while the magnitude of

the second mode is almost constant.

Cross FAS estimates of SAMPLE5 are shown in figures 14

(i-1). These show very clearly the 180 degree phase shift

of the second mode which should occur about two-thirds of

the way up the structure. In the first mode, the entire

building sways back and forth with a single node at the

bottom. For the second mode, in addition to the node at

the bottom, a second node is found about two-thirds of the

way toward the top. Channel 1 is apparently above the

second node while channels 2 and 4 are below it.

93

Coherence plots are shown in figures 14m and 14n. As

might be expected, the coherence is close to unity at the

frequency of the first mode. Near 6 Hz, however, the

coherence function between channels 1 and 2 actually dips;

no explanation for this has been posited (and this same

dip is seen in SAMPLE4 coherence plots) . The coherence

function between channels 1 and 4 is much more reasonable.

The transfer functions shown in figures 14o and 14p are

self-explanatory.

Auto-correlation estimates for channels 1 and 4 are

shown in figures 14q and 14r. Channel 1 is obviously

dominated by the 2 Hz primary mode and contains relatively

little noise. Channel 4 is noisier relative to the signal

strengths, and obviously contains more than the single

primary mode.

Figures 15 (a-1) contain plots of the results of

analyzing SAMPLE4. Since SAMPLE4 covers frequencies up to

50 Hz, it is much busier and many other vibration modes

can be seen. No attempt is made here to explain these

plots in detail. Figures 16 (a-d) show in printed form

the channel 1:4 cross FAS estimate; for particularly busy

plots, the printed output is often useful for matching

frequency and phase components.

94

wtssaF* * si $r"

fStSUtMCT IN HI"

("b) Channel 1 FAS estimate.

Figure 15. Analysis of a structure at high frequencies

95

i llUnSi. afiHKllrt. rwtttuclfli S\i.)W.i WTCi. sua.

l»»Tiri»Tt l l>>>»tll>|lll>ltltlll
It.M It it :•• M.

FnfeQUENCT IN HZ

(c) Channel 2 FAS estimate.

m®sumw& "

1 1 1 1 1 1 1 1 1 1 1 1

1

MM MJ
frUucnct IN HZ

(d) Channel k FAS estimate.

Figure 15. Analysis of a structure at high frequencies (cont.)

96

JJ. S[»L£J 05/M/M Ut«\ fM ESTIMATE

E awi»l»o. /7»/«;iiEia> 51.;. awir wc ;op ,

fbeouemct in hi"

(e) Channel 1:2 FAS estimate phase.

test, sntim n/n/n ism m estimate

FHEOUENCT IN HI

(f) Channel 1:2 FAS estimate magnitude.

Figure 15. Analysis of a structure at high frequencies (cont,

JT

g resi- jiwriEt os/o«/it u.»i rns cstiimtc

FREOUENCT IN HZ

(g) Channel l:it FAS estimate phase.

o
EST; !«*!.(« 05/01/at 13i<<1 II! CSTIMTC

wmoSl MUM /IVJEMPtl. 512. WW JWTtL !00

"L^ -
A '

X nr / 1 Ao
1 A A^A

*\ A A rA,A . . A
UJ / \ /m M/nA /\ /vA\ a Av i\rfya f \l vl If ul V/ ^ J" \ / \ H *\ Ml W= \l v V r **» Vv^ l/w \ \ y u i *P- 1

V i
v

in/ \ V Ka /*•
'

v viju ~ * V
s

T
s

l.w w.'ti >.> >..« • •
•

FREQUENCY IN HI
•«•.•» 1

(h) Channel X:k FAS estimate magnitude.

Figure 15. Analysis of a structure at high frequencies (cont.

)

oTtji: jhhtlm os/oa/M u.m cowbewi
SCHitMICl.il 1.3

..U V.m Km it
FREOUENCT IN HZ

(i) Channel 1:2 coherence function estimate

gl£3'< SMTLEJ 0S/0B/8I 13,11 commence

FREQUENCY IN HZ

(j) Channel l:k coherence function estimate.

Figure 15. Analysis of a structure at high frequencies (cont,

99

TEST] 5«nf'.M 09/H/ai 13t«l TIUWSrCK ruacTIOH

W.M Jt.M W.M M.»
FHEOUENCT IN HZ

(k) Channel 1:2 transfer function estimate.

IfSb._,5 """r ! * OS/Oi/11 13.11 THM3rCH riJMCTIOB

rntauEKCT in miEQUEMCT

(l) Channel 1:U transfer function estimate.

Figure 15. Analysis of a structure at high frequencies (cont.

100

TEST: SAKPLE4 05/06/60 13:41 EAo coIlHA.t
CHANNELS: 1:4
• INOCIi: MANNING P rS/oEGCtN I : 512 jAKPLE *AIE: 200

f AGMTJCe MAGMTGCE tNLY /-Ao.illuLt.

0.19531
0.39063
0.53594
0.78125
0.57656
1.17188
1 . 36 7 1

9

1.56250
1.7S781
1.95313
2.14844
2.34375
2.53906
2.73438
2.92969
3.12500
3.32031
3.51563
3.71094
3.90625
4.10156
4.29688
4.49219
4.68750
4.88281
5.07813
5.27344
5.46875
5.66406
5.85938
6.05469
6.25000
6.44531
O.64063
6.83594
7.03125
7.22656
7.42188
7.61719
7.81250
8.00781
8.20313
8.39844
8.59375
a. 78906
8.98438
9.17969
9.37500
9.57031
9.76563

C.2556E-02
0.4907E-02
C.58G6t-02
C.6445E-02
0.8340t-02
G.101SE-01
C.2043E-01
C.5025E-01
C.8507E-01
C.1028E-00
0.9113E-CI
C.5826E-G1
0.2551E-01
0.9549E-02
G.6318E-02
0.4746E-02
C.4044E-02
C.3258E-02
C.2694E-02
C.l56*E-02
0.3013E-02
0.5438E-02
0.7324E-02
C.8623E-02
C.1037E-01
0.1167E-C1
G.1223E-01
C.1451E-01
C.2506E-01
0. 40436-01
0.5014E-01
C.4735E-01
0.3419E-01
0.1949E-01
C.1080E-01
0.7S64E-02
0.6684E-02
C.7067E-02
0.7419E-02
0.7390E-02
0.7576E-02
C.d6C8E-02
0.1031E-01
C.1197E-01
C. 12516-01
C. 11106-01
0.8130E-02
C.53&5E-02
0.4325E-02
0.4176E-02

5.46o94
lJ.13625
10.35150
10.54068
lo. 74219
1 J. 93750
11.13261
11.32813
11.52344
11. 71675
11.914GO
12.10538
12.304o9
12.5OO0O
12.09531
12.69063
13.08554
13.28125
13.47056
13.6716d
13.86719
14.06250
14.257ol
14.45313
14.040*4
14.64375
15.03900
15.2343d
15.429o9
15.625C0
15.82031
U.01563
10.21094
10.40625
lo.60156
io. 79088
lo. 99219
17.16750
17.38281
17.57813
17.77344
17.9o675
16.16406
10.35938
16.55469
18.75000
18.94531
19.14063
19.33554
19.53125

J.397OC-02
G.3O01E-G2
0.29o5t-02
O.162dE-02
0.4022t-02
O.104o6-01
O.20Olt-01
0.3U12t-01
0.3357E-01
0.3025t-ol
0.2627E-01
0.25266-01
0.22O5C-01
J.1832E-01
0.2021E-O1
O.2629E-01
0.3347C-01
0. 31666-01
0.2523E-01
0.20066-01
0.191*E-01
O.lollE-01
0.14156-01
0.1357E-01
0.1416E-C1
0.9604E-02
0.7404E-02
0.1202E-01
O.loOOE-01
0.1o27E-0l
O.l405t-01
0.991ot-02
0.5144E-02
0.2421E-02
0.32CdE-O2
0.4679E-02
0.5562E-02
0.5950E-02
0.66416-02
O.Ool7t-02
0.6298E-02
0.O794E-02
0.7175t-O2
0.5O3 7c-G2
0.2437E-O2
0.54o3e-02
0.39116-02
0.9oo7E-02
0.139U-01
0.1390E-01

1-..7205O
1 >. 92166
2o. 11719
20.31250
20.50761
20.70313
20.8964*
21.0937}
21 -2o50-3
2 1 .4o436
t I. 6 7969
21.07300
22. C7C31
22.2Q563
22.46094
22.05023
22.65130
23.04666
A3. 24215
23.43730
2 J.o32ol
^i. 12813
24.023*4
24.21875
24.414U6
24.00936
24.60*o9
23.00000
23.195JI
25.39063
A 5.56594
2 3.76123
23.57o5o
26.17166
2o.3o719
2O.5O250
2o. 75731
2o. .331 J

27. 1*644
21.34373
27.33500
27.734J6
27.9290*
26.12300
20.32031
26.31303
28.71054
28.90625
29. 10136
2*.24eod

0. 10o36-o

1

0.779lt-02
0.o7o1l-02
C.e0u9t-02
0.4660C-02
U.306OC-02
0.37O9C-02
0.3 J-»lc-o2
0.3*o3c-o2
0.3352E-02
0.314 Jt-Ofc
0.36o0c-o2
.33056-02

o. 90126-02
0.1120E-OI
0.14046-01
0.13*16-01
o. 14772-01
o.llo5c-Gl
o.7 735E-02
0.6 91 7 c-02
O.o4llc-02
C. 73olt-02
0. 04326-02
-o5o2c-02

0.77326-02
.46 766-2.2

.2 7o3t-02
O.4773t-o2
U.43o5c-o2
0.3214L-O2
o.2289t-02
0.31172-02
0.4272t-o2
o.472ot-02
0.452OE-O2
o. 41716-02
0.3033t-o2
U.3633t-02
0.35*46-02
o.*2*36-o2
o.03o3t-02
0.04*06-02
o. 5»5*6-02
0.50o7c-o fc

C.47706-o2
0.5137E-J2
G. 72256-02
0.1l*5t-ol
o . Io2*c-o 1

(a) Channel l:lt FAS estimate magnitude.

Figure ID. Output of VAS PRINT command.

101

TEST: SAMPLE* 05/03/8O 13:41 FAS ciriNAIb
CHANNELS: 1:4
UNDOU: HANMNG PTS/Studc*! : 512 SAXPLt KATE:

29.49219

24.68231
30.07813
30.2734*
30.46073
30.66406
30.86938
31.05469
31.25000
31.44531
31.64063
31.83594
32.03125
32.22656
32.421S8
32.61719
32.81250
33.00781
33.20313
33.39844
33.59375
33.78906
33.98438
34.17969
34.37500
34.57031
34.76563
34.96094
35.15625
35.35156
35.54688
35.74219
35.93750
36.13281
36.32813
36.52344
36.71875
36.91406
37.10938
37.30469
37.50000
37.69531
37.89063
38.08594
38.28125
38.47656
38.67186
38.86719
39.06250

CAGNITUCE

0.1885E-01
0.17446-01
0. 13146-01
0.8734E-02
G.6599E-02
0.6715E-U2
C.8012E-02
0.8952E-U2
0.8553E-02
C.65806-02
C.3998E-02
0.16016-02
0.2675E-02
0.324OE-O2
0.31976-02
0.3778E-02
0.3660E-02
0.26536-02
0.1313E-02
C. 19806-02
C. 30046-02
C.4298E-02
0.5661E-02
C.6713E-02
0.7295E-02
0.7304E-02
0.6784E-02
0. 62916-02
C.5707E-02
0.4797E-02
0.3345E-02
0.2043E-O2
0.2245E-J2
0.4983E-O3
0.3606E-02
0.4881E-02
0.3636E-02
0.69436-02
C. 10506-01
C.1169E-01
C. 10636-01
0.8159E-02
C. 58206-02
0.5811E-02
C.6174E-02
C.6631E-02
C.66416-02
0.5574E-02
C.4692E-02
C.4826E-02

EHciUENLY

i9.2Sldl
39.45313
J9.04644
39.H4J75
40.J390O
4U.234jd
40.42969
40.625GO
4w. 62031
41.01563
41.21094
41.40625
tl .60156
41.79666
41.99219
42.18750
42.38261
42.57613
42.7734t
42.96675
43.1o406
43.3593d
43.55469
43.75JCU
43.94531
44.14063
44.33554
44.53125
44.72656
44.92186
45.11719
45.J125G
45.50781
45.70313
45.89644
46.U9J75
46.289C6
46.4d4J6
4o.679o9
H6.875G0
47.07031
47.2Q563
47.460 J4
47.65625
47.85156
4d.046dd
4d.24219
4d. 43750
48.63281
4d.62dlJ

hagni ruct

O.3ldd6-02
0.4d50E-02
U.3J19E-02
0.2823E-02
0.1639fc-02
J.1071E-U2
0.1934E-U2
0.25t56-02
0.27336-02
0.3995E-02
0.64326-02
O.7107E-O2
G.57J2E-02
0.3556E-02
0.231SC-02
0.2657E-02
0.4727E-J2
0.7007E-02
0.7765t-02
0.6410E-02
J.5159E-02
0.7o25E-02
G.9o65c-G2
J.94Gd£-02
0.7712E-02
0.7o6l6-02
0.d9o96-G2
0.8716E-02
0.O453E-02
0.403lfc-C2
0. 43056-02
0.44956-02
0.34316-02
0.17226-02
0.1949E-02
0.1821E-02
0.15256-02
0. 11556-02
0.8575E-03
0.1553E-02
0.2O26E-O2
0.21u7E-02
0.l91<t-02
0.l45dE-02
G.dlod£-03
0.82e3c-03
0.10206-02
0.9394E-03
U. 10146-02
0.13126-02

f-Kc*G6NLY

49.t,23*4
49.*U75
49.^14Uo
*9.oU93d
49.6046V
5J.GGCGG

fAoNlToGt

u.la376-^2
u.illct-ii
0.27446-Ct
U.29446-02
J.23766-o2
G.23-,96-1,..

(b) Channel 1:1* FAS estimate magnitude (eont.)

Figure 16. Output of VAS PRINT command (cont.

)

IEST: SANPLE4 05/06/50 11:41 fAj cSIlHATE
CHANNELS: 1:4
HlNOOn: HANNING PTS/SEuKEN f : 412 SAnPLc rtAft: 200

FKEUUENC* PHASEtOcGI riltuuENLY PHAjtlOcGI FKt,utNCt ^J Jt [UCJ J

0.19531
0.39063
0.58594
0.78125
0.97656
1.17169
1.36719
1.56250
1.75781
1.95313
2.14844
2.34375
2.53906
2.73438
2.92969
3.12500
3.32031
3.51563
3.71094
3.90625
4.10156
4.29688
4.49219
4.68750
4.88281
5.07813
5.27344
5.46875
5.66406
5.85938
6.05469
6.25000
6.44531
6.64063
6.83594
7.03125
7.22656
7.42188
7.61719
7.81250
8.00781
3. 20313
8.39844
8.59375
8.78906
8.98438
9.17969
9.37500
9.57031
9.76563

-C.4441E»0l
-0.5649t.0l
-C.5510E.0l
-0.2187E.01
-G.l421E.01
-0.1602t.01
-0.1137E.01
-C.1204t+0l
-0.1246t.0l
-C.l283t.0I
-C.l334E.0l
-C.1431E.01
-C.1532E.01
0.1261L.O1
0.5682E-»01
0.4O95E.O1

-0.3420E.G1
-C.1076E.u2
-C.9657E.01
0.1932c. 02
C.1515E.03
C.1591E.03
0.1634E.03
C.1688E.C3
G.1726E.03
C.1747E.03
C.1762E.03
0.1770E.03
0.1773E.03
0.W75E.G3
0.1777E.03
C.l779t»03
C.l783t«03
0.1787E.03
0.1786E.03

-C.1799E.03
-0.1788E.O3
-0.l778t.03
-C.1761E.03
-C. 17846.03
C.1755E.03
C.1745E.03
C.1787E.03

-0.1768E.03
-C.1792E.03
C.1792t.03
C. i !: :',!:•-. !

-C.1796t.U3
-C.1788E.03
-0.l795c.03

9.96094
10.15625
10.35156
10.54684
10.742U
10.93750
11.13281
11.32613
11.52344
11.71875
11.9140a
12.10938
12.30469
12.50000
12.69531
12.89063
13.08594
13.23125
13.47656
13.67188
13.66719
14.06250
14.25761
14.43313
I. .64644
14.84375
13.0390a
15.23438
15.42969
15.62500
15.82031
16.01563
16.21094
16.40625
16.60156
16.79666
16.99219
17.18750
17.36261
17.57613
17.77344
17.(6875
16.16406
18.35936
18.5546-*
16. (5CCG
18.94531
19.14063
19.33594
19.53125

J.1771t.05
J.WGUt+03
0.1704E.03

-0.1477E.C3
-0.1430E+02
-0.6496E.01
-0.5623E.0l
-0.5l60c.01
-0.4l61E.0l
-O.3l78c.O0
0.9-.C4E.01
0.1651E.02
0.U29E.02
0.2O19E.02
0.3524C.02
0.3559E.02
J -3.94E.02
0.34O2C02
J.3563E.02
0.4196E.02
0.5006E.O2
0.5545E+02
0.7654E.02
0.1455t»03
0.1659E.03
0.1714E.03

-0.1126E.03
-0.1266E+03
-0.1480t.03
-0.1664t.03
0.1777E.03
0.l657t.03
0.15C2E.03
0.1156E.03
0.1726E.03

-0.1720E.03
-0.1799E.03
0.15C4E.03
0.1245E.03
0.1077E.03
0.8669E.02
0.6561E.02
0.5146E.02
0.4695t.02
-0.U27t.O3
-0.12226. 03
-0.6463E.02
J.2466t.02
0.3200t.02
0.4039E.02

19.7c636
19.92186
20.11719
20.31230
20.50761
20.70313
20.o9o44
21.09375
21.26906
21.46438
21.o79o9
21.67500
22.CK31
22.2o563
22.46094
22.o56*:5
22.65136
23.04666
23.24219
23.43150
23.63281
23.6cdl3
24.02344
24.21675
24.41406
24.60536
24.d04o9
23.00000
25.19531
25.39063
25.56394
23.76125
2 5.47656
26.1 7166
26.36719
20.56250
26.75761
26.43313
27.14844
27.34375
27.53906
27.13456
21.92469
28.12500
26.32031
23.51563
26.71054
20.40623
29. 10156
29.29668

.622 1 c» J2
O.lC.JCuJ
J . 1 DOOC »U

J

-J.l/cuc+uj
-U.l332t.03
-C.1377c.uj
-0.1438c.O3
-0.l374t.o3
0.1702E.UJ
U.1330C»u3
U.1.66E.0J

-0.1344c.u3
-0.l475t.OJ
-0.l49uc.J3
-0.1 j04c*G j

-0.1510c.u3
-0. 151oc*0

J

-J.153oc.03
-u. I 36UCU 3

-u.153oc.0J
-O.le01c.03
-u.1749t.u3
u.lo43e.03
0.1O03CO3
O.l3o9t. 05
U.1579C.03
0. 1637c. 03

-0.2299E. u2
-u.20o6t.01
u.^02 7c. 01

-C.4o7ut.01
-u.o2o.cuc
-0.604ot.0c
-u.403 7t.02
-O.col 7c*02
-0.99o6C*0l
0.4747E.OI
0.4125t.02
0.6117c.U2
0.7141t.u2

-0. 7038C01
-0.4344C.O2
-0.31e2e.uc
-0.35.3t.-2
O.5o73t.ul
u.52J3C*Uc
0.7Jo2ctCc
0.3127C02
0.2440c. 02
O.1177E.02

(c) Channel l.lt FAS estimate phase.

Figure 16. Output of VAS PRIHT command (cont.)

103

TEST: SAKPLE4 05/03/do 1_>:.1 F«j cSIlMATe
CHANNELS: 1:4
• INOOk: MANNING PTS/icl.«t N 7 : 512 SJHfLt KA7E: 200

FREQUENCY

29.49219
2S. 68750
29.89291
30.07813
30.27344
30.46875
30.66406
30.65939
31.05469
31.25000
31.44531
31.64063
31.83594
32.03125
32.22656
32.42198
32.61719
32.81250
33.00781
33.20313
33.39844
33.59375
33.78906
33.98438
34.17969
34.37500
34.57031
34.76563
34.96094
35.15625
35.35156
35.54689
35.74219
35.53750
36.13281
36.32813
36.52344
36.71875
36.91406
37.10939
37.30469
37.50000
37.69531
37.99063
38.08594
39.28125
36.47656
38.67189
38.96719

PHASElDeG)

0.7280E401
C.6864E401
C.9703E401
0.1978E402
C.2466E»02
C.1723E4G0

-C.308BE+02
-C.5507E4O2
-C. 73796402
-0.90566402
-0.113U»03
-0.1101E»03
0.2325E«U2
C.2882E4G2

-C.1845E401
-0.3344C402
-0.4433E402
-0.5695E402
-C.1120E403
0.1445E403
0.1376E403
G. 14036403
0.14066*03
0.1377E403
0.1313E403
C.1264E+03
C.1323E403
0.1437E*03
0.1364E403
0.10946*03
C.7517E402

-0.1493E»02
-0.73366*02
-C. 50686+02
C.89846+02
C.1053E403
0.1590E*03

-C. 85636+02
-0.7164E402
-0.6783E*02
-0.67O6E+O2
-C.7286E+02
-C. 105.it. 1

-C.1380E+03
-0.1497E+03
-0.1627E+03
-C.1698E+G3
-C.1616E+03
-0. 14436+03

39.06250 -C.1529E+03

F»6*uE.<l.Y

39.25781
39.45313
39.04044
39.84375
40.03900
40.2343d
40.429O9
40.62500
40.82G31
+1.01563
41.21094
41.40625
41 .6015o
41.79688
41.99219
42.16750
42.38291
42.57813
42.77344
42.9o675
43.16406
43.35936
43.55469
43.75000
43.94531
44.14063
44.33594
44.53125
44.72656
44.92166
45.11714
45.3125U
45 .50701
45.70313
43.89644
46.09375
40.26906
4o. 48433
46.67969
46.675QU
47.07031
47.26563
47.46094
47.65625
47.8515o
40.04666
4o. 24219
40. 43750
4d.632dl
4d.d2013

PHASE(GEb)

-j.loaotn.)
-0.1734E+03
-O.1772E+03
-0.1732E+C3
-0.156061-03
0.od87E+G2
0.7176E+02
G.o2o5t+02
G.296de*02

-G.556oE*02
-0.77216*02
-0.8294c+02
-0.67786+02
-0.97706+U2
-0.97076+02
-0.44426+02
-0.3520t*02
-0.40396+02
-0.40366+02
-0.55626*02
-0.47416+02
-0.12546+0 3

-0.1296E+03
-0.13186*03
-0.1292E»0j
-0.1166E*03
-0.11056*03
-0.10906+03
-0. 10536 + 03
-0.7168E+02
-0.2005c+02
-0.67356*01
U.53Cle»01
0.6220t+02
0.13226*03
0.12516+03
...II.1..MJ
0.1O6GE+O3
0.14486*03
-0.UG2E+03
-0.1O29E+G3
-0.1750E403
0.1769E+03
0.1765t»G3
G.1549E+03
0.5501t402
0.37 75t+G2
0.33O6E402
G.7217t+02
0.10116*03

FKt.ucNi-Y

49.02344
49.21975
44.4140a
44.6043d
44.60469
50.0000u

FnAjc (CcG

)

0.12u3fctGJ
0. l44et*UJ
J.1395C.UJ

-O.17o7t+U3
-0.152-JE4C3
-J.lld2E+G3

(d) Channel 1:14 FAS estimate phase (cont.)

Figure 16. Output of VAS PRINT command (cont,

)

10 1*

VIII. PROPOSED ENHANCEMENTS

No project is ever completely finished; there will

always be areas where enhancements can be made. Continued

use of the Vibration Analysis System will surely ferret

out additional changes that should be made, but already a

few are apparent

.

The analysis of signals really needs a good interactive

interface. Currently, careful analysis requires that data

be collected, calculations be made, and plots be viewed.

And since plots are often difficult to read accurately,

printed results are often needed. Since there are

multiple parameters which can be adjusted during the

analysis, the whole process is often repeated with slight

adjustments. Using a powerful interactive work station,

the need for hardcopy output during analysis would be

alleviated and the entire process would be much smoother.

Given a pointing device and appropriate software, the user

could view a plot and simply by pointing to appropriate

areas of the screen be shown printed values or

corresponding areas of other plots. With a very fast

processor, the user could quickly view the effects

changing various parameters would have on the

105

calculations. These are improvements to the user

interface; they do not provide better estimates, but

rather make the estimates easier to obtain.

The methods of spectral estimation implemented by this

analysis system are traditional, speedy, reliable

techniques that have been used for years. More recent

innovations in the science suggest themselves as

alternatives. The maximum entropy method (MEM) of

spectral estimation and autoregressive-moving average

(ARMA) models often provide much better spectral estimates

than the traditional methods, particularly when presented

with limited sequences of data [1][3]. It is unclear

whether these methods would provide significant

improvements when applied to the particular application of

vibration analysis, but additional study is surely

warranted.

106

IX. CONCLUSIONS

The Vibration Analysis System performs quite well.

Both the data acquisition system and the data analysis

system perform as expected and are not unduly difficult to

use. The system appears to function correctly, both on

empirical data and on synthesized data.

The data acquisition system meets the requirements

which were initially developed. It is able to provide a

real-time display of the data as it is being sampled, it

is able to sample eight data channels at well over 200

samples per second, and it is able collect over two

million samples in a continuous sampling period. Combined

with the simple on-site analysis programs, the system is

nearly ideal for its purpose. However, the equipment is

not as portable or as rugged as could be hoped, though it

is unclear whether this will become a problem; the system

has not been field tested sufficiently to know.

The data analysis system also works very well. It

provides the needed functions and runs with a relatively

simple command interface. It does suffer from working

within the complex CMS environment. This necessitates

107

that the user understand more about CMS than might be

desired, though the procedures needed to tailor the CMS

environment for the VAS command are not unduly long and

can be describe with a set of simple instructions.

It should be noted that the VAS is an experimental

system. It has not been subjected to thorough testing for

accuracy of results under all conditions. While it

appears to create accurate results, this cannot be

guaranteed. The system can be used as an adjunct to other

analysis methods, and is valuable in this role. However,

it should not be used as a substitute for these other

methods in any case where the results might impact the

safety of a structure.

108

REFERENCES

1. S. M. Kay and S. L. Marple, Jr., "Spectrum Analysis--A
Modern Perspective," Proceedings of the IEEE , Vol. 69,
No. 11, November 1982, pp 1380-1419

2. R. W. Clough and J. Penzien, Dynamics of Structures ,

McGraw-Hill, Inc., New York, 1975, pg. 208

3. E. A. Robinson, "A Historical Perspective of Spectrum
Estimation", Proceedings of the IEEE , Vol. 70, No. 9,
Sept. 1982, pp 885-907

4. P. Z. Peebles, Jr., Probability , Random Variables , and
Random Signal Principles , McGraw-Hill, New York, 1980,
pg 136

5. A. M. Abdel-Ghaffar and R. H. Scanlan, "Ambient
Vibration Studies of Golden Gate Bridge: I.
Suspended Structure, " Journal of Engineering
Mechanics , Vol. Ill, No. 4, April 1985, pp 463-482

6. A. M. Abdel-Ghaffer and R. H. Scanlan, "Ambient
Vibration Studies of Golden Gate Bridge: II. Pier-
Tower Structure, " Journal of Engineering Mechanics ,

Vol. Ill, No. 4, April 1985, pp 483-499

7. Intel Component Data Catalog , Intel Corporation, 1982

8. F. da Cruz, KERMIT : A File Transfer Protocol , Digital
Press, Digital Equipment Corporation, 1986

9. M. F. Cowlishaw, The REXX Language, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1985

10. R. P. O'Hara and D. R. Gomberg, Modern Programming
Using REXX , Prentice-Hall, Inc., Englewood Cliffs
NJ, 1985

11. VM/SP System Product Interpreter User 's Guide ,

SC24-5238, International Business Machines, 1983

12. P. D. Welch, "The Use of the FFT for Estimation of
Power Spectra: A Method Based on Averaging Over
Short, Modified, Periodograms, " IEEE Trans , on Audio
and Electroacoustics , Vol. 15, No. 2, 1967, pp 70-73

109

13. K. G. Beauchamp and C. K. Yuen, Digital Methods for
Signal Analysis , University Press, Cambridge, 1979,
pg 159

14. L. R. Rabiner and B. Gold, Theory and Application of
Digital Signal Processing , Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1975, pg 402

110

APPENDIX A--VAS USER'S GUIDE

This appendix contains the Vibration Analysis System

User's Guide.

Ill

Vibration Analysis System User's Guide

Copyright, 1986, by Brick A. Verser

112

VAS User's Guide

I . INTRODUCTION

The Vibration Analysis System (VAS) is a system of
hardware and software which runs on an IBM-PC running MS-
DOS and an IBM mainframe running VM/SP CMS to provide data
acquisition and spectral analysis capabilities to aid in
the analysis of structural dynamics. The IBM-PC is used
to provide data acquisition and very simple data analysis
while the IBM mainframe is used to provide extensive data
analysis.

The data acquisition system run on the IBM-PC consists
of a Data Translation DT2801-A analog-to-digital converter
PC expansion-slot board, a DT707 screw terminal panel, a
custom external clock expansion-slot board, and
appropriate software. The software is specifically
tailored to interface to a Kinemetrics SC-1 signal
conditioner which provides sensor signal amplification and
filtering.

The data analysis system consists of a set of programs
which run under IBM's VM/SP CMS operating system. The
programs provide powerful data analysis and display
capabilities, including the ability to obtain high quality
pen plots of the analysis results. Functions are provided
to compute auto and cross power spectral density
estimates, auto and cross-correlation estimates, and cross
channel coherence and transfer function estimates.

The notation used to define the command syntax in this
document follows the standard set forth in section 1 of
the IBM VM/SP CMS Command and Macro Reference (publication
number SC19-6209). Where an abbreviation of a command
parameter is permitted, the shortest allowable form is
shown in uppercase letters with the remainder in lowercase
(e.g. "CONvert" indicates that any of CON, CONV, CONVE,
CONVER, or CONVERT may be used). Uppercase letters and
words should be entered exactly as they appear in the
format box as should parentheses. An entire word printed
in lowercase is used to represent a variable for which an
appropriate value should be substituted (e.g. "nnnn"
might represent a numeric value which should be entered in
place of "nnnn" in the format box). Square brackets are
used to surround command parameters which are optional so
the brackets themselves should not be entered. Where one
of several choices must be selected, the choices are

113

VAS User's Guide

represented by stacking the mutually exclusive choices
vertically in the format box. An underscore is used to
indicate a default option or value.

The document assumes that the user is familiar with the
basic systems on which VAS operates. No attempt is made
to provide detailed instruction on the use of MS-DOS, CMS,
KERMIT, Tektronix 4010 graphics terminals, etc. The
assumption is also made that the system is being used with
the Kinemetrics SC-1 signal conditioner so the reader
should be somewhat familiar with this device. Other
sources of input signals can be used with the system, and
their use can be easily inferred from the descriptions of
the use of the SC-1.

This document is intended to describe the use of the
VAS. It will assume that the reader has some knowledge of
spectral estimation terminology and techniques. While it
is not intended to provide a tutorial on spectral
estimation, it does attempt to provide some suggestions
about use of the system to assure that reasonable
estimates can be made.

114

VAS User's Guide

II. THE DATA ACQUISITION SYSTEM

A. Hardware Description and Installation

The data acquisition system is a set of both hardware
and software which runs on an IBM-PC or compatible
computer. The following equipment is required:

1. IBM-PC or compatible with:
A. at least 256K RAM,
B. 8087 numeric coprocessor,
C. Color/graphics adaptor.

2. Data Translation DT2801-A board.
3. Data Translation DT707 screw terminal panel.
4. Custom External Clock board.

The PC should be equipped with at least 256K of RAM and
should also have an Intel 8087 numeric coprocessor
installed if the simple data analysis routines are to be
run on the PC. The data acquisition program itself,
DTDATA, does not require the 8087. For storage of the
data, a Winchester hard disk is suggested, though for many
applications a single 360K floppy disk drive is adequate.
With the Winchester disk, data acquisition at rates as
high as 7000 samples per second are possible. Using
floppy disks, the maximum throughput is reduced to about
1000 samples per second. The PC must also be equipped
with a graphics board and display which are compatible
with the IBM color-graphics board and color display.
Support for other forms of display boards is not included.

The PC component of the VAS consists of a DT2801-A A/D
board which must be installed in an expansion slot of the
PC, a custom-made external clock board which also should
be installed in an expansion slot of the PC, and the
software consisting of the programs DTDATA, PLTPSD,
PLTFAS, PLTDAT, and PLTDAT4.

Installation of the DT2801-A in the PC should be
performed as specified in the User Manual for DT2801
Series . The DT2801-A can be installed in any unused full-
size expansion slot. The board has multiple configuration
options but is configured properly at the factory, so no
jumpers should need to be changed. The board is
configured by default to run with 8 bipolar differential
data channels. The board is also factory configured to
use DMA channel 1 and a base I/O address of 2EC.

115

VAS User's Guide

The external clock board should be installed at the
same time as the DT2801-A, using another expansion slot.
As the bottom of the board has multiple wirewrap posts
protruding, exercise care in choosing an appropriate slot;
pick an expansion slot which will leave adequate room for
the clock board to fit. If it is at all possible that the
clock board might make contact with another board, insert
a piece of cardboard or some other insulating material
between the boards to keep them from contacting.

Once the boards are installed, the PC can be put back
together. Both boards have connectors for attaching
cables which should be accessible from the back of the PC.
When being transported, the cables can be removed from the
boards and reinstalled when the system is relocated. The
DT2801-A is connected to the DT707 screw terminal panel by
a wide ribbon cable. As the DT707 terminates in simple
screw posts, the board can be mounted in a small box and
the connections for channels to 7 attached to BNC
connectors. The posts are marked CH and RET, CH 1 and
1 RET, etc. In addition, the posts marked EXT CLK and D
GND should be connected to a 1/8" female phone plug (the
ground connection is on the outside of the phone plug)

;

this is the connection for the external clock board
connector.

B. External Interface

The DT2801-A is connected to the outside world through
the DT707 screw terminal panel, which in turn is attached
to BNC connectors to provide up to 8 channels of input
data. These channels may then be connected to input
signals. In general, this will be through the Kinemetrics
SC-1 signal conditioner which provides 4 channels of data.

The input data range of the DT2801-A is from +10V to
-10V. This provides full scale readings. The DT2801-A
provides overvoltage protection of its inputs to +/-20V
and should be protected from higher input voltages. The
SC-1 can create signals to +/-16V which will exceed the
DT2801-A full scale reading but should not damage the
board.

The DT2801-A does not provide lowpass filtering of the
input data. In almost all cases, it is extremely
important that input analog data be lowpass filtered to
prevent a phenomenon known as aliasing from adversely
affecting results. The SC-1 provides this filtering.

116

VAS User's Guide

C. Summary of Programs

Five MS-DOS programs are provided with the VAS. These
are DTDATA, PLTPSD, PLTFAS, PLTDAT, and PLTDAT4 . DTDATA
is used to drive the DT2801-A to collect data and is
generally the first program run in an experiment. PLTDAT
provides a means of graphically displaying portions of a
single channel of data which has been acquired and written
to disk. PLTDAT4 is similar to PLTDAT, but will display
four channels of data. PLTFAS and PLTPSD calculate
Fourier amplitude spectrum estimates and power spectral
density estimates from previously collected data and graph
the results. DTDATA is used to acquire input data while
the other programs are used to provide simple analysis of
the data to verify that experimental parameters have been
properly set.

D. Using DTDATA to Acquire Data

DTDATA is used to acquire data. It is menu driven and
is invoked by entering the command, "DTDATA" . It allows
the user to set various parameters such as the fileid of
the disk file to be created, the number of data channels
to be sampled, the sample rate, the duration of the
sampling, and the number of channels to be displayed in
real time. It also allows the entry of a few notebook
entries for each data channel, used to assist the operator
in recording pertinent information about the experiment
such as the location of the sensors and the settings on
the SC-1.

When the DTDATA command is started, it presents the
following menu:

A. Recall parameters
B. Disk filename: <no disk log>
C. Number of channels to record: 1
D. Sample rate per channel: 125.00 Hz
E. Duration of sampling: <continuous>
F. Number of display channels: 1
G. Clocking: EXTERNAL
H. Data log
I. Save parameters

Enter letter of item to change, RETURN to begin, or
ESC to exit:

117

VAS User's Guide

The current settings of the parameters are shown and
may be altered in any order simply by typing the letter of
the menu item. The parameters can also be saved or
recalled from disk.

The current parameters may be stored to disk by
selecting menu item I while selecting menu item A causes a
previously stored set of parameters to be recalled. The
disk file "DTDATA.DEF" is used to store the parameters.
Each of the specified parameters except the disk filename
are saved, including the data log parameters set by menu
selection H (recalling the disk filename would make the
accidental erasure of previously recorded data much more
likely). The use of parameter save and recall makes
collecting data easier and less error prone.

The fileid of the disk file to be used to store the
collected data is set by selecting menu item B. When "B"
is typed, the following prompt is received:

Enter filename for disk log file or RETURN for none:

The desired MS-DOS fileid may then be entered. In
general, a fileid of the form "filename. RAW" should be
used, as "RAW" is a special filetype used by the mainframe
analysis system, but any valid MS-DOS fileid may be used.
If the real-time display of the sampled data is desired,
but no disk record of the data is needed, the filename may
be left blank.

The number of data channels to be sampled is selected
by entering "C" in response to the menu prompt. The
following prompt will be received:

Enter number of channels to sample (1-8):

The sample rate is selected by entering "D" in response
to the menu prompt. The following will be displayed:

Enter sample rate per channel (in samples/second):

At this point, the number of samples per second per
channel can be selected. The value entered will be
changed if necessary to conform to the limitations of the
hardware, as only a distinct set of sample rates is
possible. The actual value used will be very close to the
chosen value in most cases; this becomes a problem only at
very high sample rates where the difference between

118

VAS User's Guide

adjacent sample rate possibilities is large. The total
sample rate (that is, the number of channels being sampled
times the sample rate per channel) is limited to a maximum
of about 7500 sps. The minimum value is also limited.
When using internal clocking, the overall sample rate is
limited to 12.3 sps. When using external clocking, the
sample rate per channel is limited to 7.65 sps.

By default, data collection continues until the ESC key
is pressed. This can be changed by selecting "E" in
response to the menu prompt. The following will be
displayed:

Enter duration in seconds or for continuous:

Data collection will continue for at least the specified
length of time. The actual sampling duration may be
slightly greater than the specified value.

When the sample rate is 250 sps per channel or below,
one channel of data can be displayed on the PC's screen in
real time. If two channels are to be displayed, the
sample rate per channel can be no greater than 125 sps.
To specify the number of channels to be displayed in real
time, enter "F" at the menu prompt. The following will be
displayed:

Enter number of channels to display in real time
(0-2):

If one channel is being displayed, the entire upper
section of the PC display is used to graph the data. If
two channels are being displayed, the upper section of the
screen is split to display the two channels side by side.
By default, data channel 1 will be displayed on the left
side and channel 2 will be displayed on the right side.

The channel being displayed can be changed during data
collection by pressing a function key. Pressing Fl causes
the channel number being displayed on the left-half of the
screen to increase by one while pressing F2 increments the
display channel for the right-half display. A sample
display showing the beginning of the collection of two
channels of data is shown in figure 1.

The display has a resolution of 128 points vertically
and 640 points horizontally. Since the input data can
take on 4096 distinct values, small amplitude inputs may

119

U1
:•''

Sri

e
I
a

fU,

, T ;

£!
o
en
i=
i-4

;:v

I

a,
I.M

I

I

i-i" "ll'l o

p.
01
-H

ui u
l-u*

111 in 'c
|™ ™i +*
|™' ""j ft
'IS

..,,,;
'Xi

1-1-1 i'i;;

o Ml
1 •.i::i 'XI

i::i'il-j;.« c
.5

1 01

:::rii..c-, 31
iTj

S-l

ill

n, ,„.:i

iji iX ''...:i

120

VAS User's Guide

show very little detail in the vertical direction if the
program is set to display the full input scale. The
display gain is therefore made adjustable. Pressing ALT-
Fl (hold down the ALT key and depress the Fl key) sets the
display to scale the full range of inputs values (from
-2048 to 2047) to fit within the 128 point screen.
Pressing ALT-F2 spreads out the display to show the input
values from -1024 to 1023. ALT-F3 will scale the display
to show values from -512 to 511, ALT-F4 shows -256 to 255,
ALT-F5 shows -128 to 127 and ALT-F6 shows input values
from -64 to 63.

The DT2801-A contains an internal clock which can be
used to set the sample rate. For applications where the
phase difference between channels is unimportant, the
internal clock provides an acceptable clock signal.
Applications which require evaluating the phase of cross-
spectrum harmonics, or which require careful cross-
correlation comparisons may require the use of the
external clock. The external clock board creates a clock
which allows the near simultaneous sampling of each of the
data channels. The internal clock provided by the
DT2801-A samples at a constant rate. For example, if the
sample rate per channel is set to 10 Hz and 4 channels are
being sampled, the internal clock will sample channel 1 at
time 0, channel 2 is sampled .025 seconds later, channel 3
is sampled .05 seconds after channel 1, and channel 4 is
sampled .075 seconds after channel 1; channel 1 is then
sampled again, .1 seconds after its first sample was
taken. The external clock board creates a pulse train
which causes the channels to be sampled at about the
maximum rate the A/D board can convert, then it pauses.
Using the external clock, channel 1 would be sampled at
time 0, channel 2 is sampled .00004 seconds later, channel
3 is sampled .00008 seconds after channel 1 and channel 4
is sampled .00012 seconds after channel 1; the sampling
then pauses for about .09988 seconds and channel 1 is
sampled again. This nearly simultaneous sampling is
required only when using cross-channel spectrum phase
plots, or when doing very exacting cross-correlation
analyses.

Entering "G" in response to the DTDATA menu prompt
causes the clocking parameter to toggle between INTERNAL
and EXTERNAL. When run with the parameter set to
EXTERNAL, the external clock board must be plugged into an
expansion slot of the PC, and the cable connector from it
must be plugged into the external clock input for the
DT2801-A board.

121

VAS User's Guide

Entering "H" in response to the menu prompt causes the
data log to be selected. The data log is rather like an
experimental notebook which allows a few experiment
parameters to be recorded with the data which is
collected. For each channel being collected (the number
of channels to be collected must be set before the data
log is selected), the user is prompted for a 15 character
location code, the SC-1 amplifier attenuation setting and
lowpass filter setting. The user is also asked whether a
12 dB external attenuator is present on the channel . The
location code can contain 15 non-blank characters and
would typically be used to record information about the
location and orientation of the sensors. The amplifier
attenuation is used to scale the input data to allow the
actual acceleration to be computed from the input
voltages; it is assumed that accelerometers are being used
which produce 2.5V/g and that the SC-1 signal conditioner
is being used (which amplifies the input signal by 100,000
with dB attenuation). In addition, 12 dB attenuators
can be placed on the input lines to reduce the voltage
further, and the user must respond "Y" or "N" to the
prompt asking whether the attenuator is present. Finally,
the lowpass filter setting may be entered as 5 characters.
This value is stored as a character string rather than as
a floating point number, so any 5 non-blank characters can
be entered.

The data log prompts are shown below:

Data log -- Present value shown in parens
Channel 1 Data. Press RETURN to leave unchanged
Enter location code <= 15 chars ():
Enter amplifier attenuation in db (0):
Is external 12 dB attenuator present (N):
Enter low pass filter setting <= 5 chars ():
Channel 2 Data. Press RETURN to leave unchanged
Enter location code <= 15 chars ():
Enter amplifier attenuation in db (0):
Is external 12 dB attenuator present (N J.-

Enter low pass filter setting <= 5 chars ():

In addition to the data log information, the header of
the data file created will contain the sample rate used,
and the date and time the data collection was started.
The date and time is obtained from MS-DOS and so should be
set correctly by the user when MS-DOS is initialized.

122

VAS User's Guide

E. Using PLTDAT and PLTDAT4 to Display Data

After a file of data has been collected by DTDATA, the
PLTDAT and PLTDAT4 programs can be used to verify that the
data was indeed collected correctly and was written to
disk.

PLTDAT is used to display a single channel of data on
the screen of the PC. It requires parameters to define
the fileid of the data and the number of the data channel
to be displayed. The format of the PLTDAT command is:

+

PLTDAT [fileid [channum]

]

+ + +

where:

fileid is an optional parameter which specifies the
name of the file on disk which contains the data
to be graphed. If not specified on the command
line, the user will be prompted for the name of
the file.

channum is an optional parameter which specifies the
channel number of the data to be graphed. If
only one channel of data is contained in the
specified file, this parameter is not required.
If not specified on the command line, the user
will be prompted for the channel number if more
than one channel exists.

The output of the PLTDAT command is a screen which
plots up to 1024 data values. The screen will be
annotated with the name of the file being displayed, the
channel number, the sample rate, the number of points
displayed, and the minimum and maximum value of the data
displayed. PLTDAT will leave the plot displayed until a
key is pressed.

PLTDAT4 is used to display up to 4 channels of data on
the screen of the PC. It requires parameters to define
the fileid of the data and the number of the first data
channel to be displayed. The format of the PLTDAT4
command is:

123

VAS User's Guide

+ +

PLTDAT4 [fileid [channum]]

+ +

where :

fileid is an optional parameter which specifies the
name of the file on disk which contains the data
to be graphed. If not specified on the command
line, the user will be prompted for the name of
the file.

channum is an optional parameter which specifies the
channel number of the data to be graphed. If
four or fewer channels of data are contained in
the specified file, this parameter is not
required. If not specified on the command line,
the user will be prompted for the channel number
if more than four channels exist. PLTDAT4 will
show the four sequential channels beginning with
the channel specified by the "channum"
parameter.

The output of the PLTDAT4 command is a screen which
plots up to 1024 data values. The first data channel will
be plotted at the top, followed by up to three more
channels of data. The screen will be annotated with the
name of the file being displayed, the channel number of
the first channel displayed, the sample rate, the number
of points displayed, and the minimum and maximum value of
the data displayed. PLTDAT4 will leave the plot displayed
until a key is pressed.

Figure 2 shows an example of the output of the PLTDAT4
command.

F. Using PLTPSD and PLTFAS to Calculate Spectra

Rough estimates of the spectrum of a data channel can
be calculated and graphed with the PLTPSD and PLTFAS
commands. A power spectral density estimate is calculated
with the PLTPSD command while a Fourier amplitude spectrum
estimate is calculated with the PLTFAS command. The FAS
of signal is simply the square-root of the PSD of the
signal

.

124

9i,i ii

'"'' £
i:::s o
Cisco

i —i
i;::;i

Clili

-"4 1,(1

'i'B II

!i!

125

VAS User's Guide

The PLTPSD and PLTFAS compute a spectrum estimate of up
to 1024 data values. No time averaging or data windowing
is provided, so these are extremely rough estimates and
will vary considerably from sample to sample. The
estimates are intended to provide the user of DTDATA with
an idea of the magnitude and location of the major
spectral peaks in the data being collected.

h + +

PLTPSD
PLTFAS

+

[fileid [channum [logflag]]]

-+

where:

fileid is an optional parameter which specifies the
name of the file on disk which contains the data
to be graphed. If not specified on the command
line, the user will be prompted for the name of
the file.

channum is an optional parameter which specifies the
channel number of the data to be graphed. If
only one channel of data is contained in the
specified file, this parameter is not required.
If not specified on the command line, the user
will be prompted for the channel number if more
than one channel exists.

logflag is an optional parameter which is used to
specify whether the y-axis is to be linear or
logarithmic. If the parameter is absent, the
plot will be linear, otherwise it will be
logarithmic. Any non-blank characters may be
substituted for "logflag."

G. Effectively Using the Acquisition System

The purpose of the PLTDAT, PLTDAT4, PLTFAS, and PLTPSD
programs is to assist the user in acquiring good data.
This section will attempt to provide some insight into
appropriate methods of selecting sample rates and filter
settings.

126

VAS User's Guide

A typical experiment will consist of several distinct
parts: equipment test, sensor placement, signal analysis,
and data acquisition.

If the sensors are going to be placed in somewhat
inaccessible locations, the equipment should be tested
before the sensors are put in place. The cables between
the SC-1 and the sensors should be attached and DTDATA
should be run, choosing a sample rate of about 200 sps,
sampling the appropriate number of channels and not
logging data to disk. Simply view the real-time display
and verify that each of the channels appears to be
working. While this won't guarantee that the equipment
will work when it is relocated, it will occasionally save
some time and effort.

When it appears that the SC-1, the accelerometers, the
cables, the PC, the DT2801-A, the DT707, the external
clock board, and the software are all functioning
properly, the cables can be strung to their appropriate
locations. If the system is not working, refer to the
section on trouble-shooting.

When the system is working and the sensors are in
place, the signal analysis phase can be performed. Here,
the experimenter is attempting to understand
characteristics of the signals being collected so as to
determine what sampling rate should be used for the long
duration data collection. Initially, DTDATA should simply
be set to display one data channel, sampling at about 200
sps, and the SC-1 attenuator settings for the channels
should be adjusted to provide nearly full scale coverage,
but being careful not to allow the input signal to
actually exceed the input range of the DT2801; it is much
better to not utilize the full 12-bit input range of the
DT2801-A than to have the signal exceed the input range.

With the attenuation set for each channel, the SC-1
should be set to provide lowpass filtering of the data at
about 100 Hz. DTDATA should be used to collect about 1000
data values from each channel (writing them to disk this
time) with the sample rate set to 400 sps. PLTDAT or
PLTDAT4 can then be run to ensure that the data was
actually collected. PLTFAS is then run to examine the
location of the spectral peaks. This is done to determine
what sample rate should be used for the next collections.
The horizontal axis plotted by PLTFAS represents frequency
where the left edge is Hz and the right edge is 200 Hz

127

VAS User's Guide

(one-half of the sample rate). The magnitude and location
of the peaks in the plot should be examined to determine
the frequency of the largest peak which is to be kept for
analysis. The lowpass filter for future collections
should then be set to a value slightly above this, and the
sample rate should be set to about 4 times the lowpass
filter setting for most work. In some cases, it may be
necessary to increase the sample rate to greater than four
times the lowpass filter setting.

For a given sample rate, only frequencies from to
one-half the sample rate can be correctly collected. But
the higher frequencies do not disappear, they are folded
back into the represented frequency range. If a signal is
collected at 400 sps, the represented frequency range is
from to 200 Hz. If the signal contains a sinusoid of
210 Hz, it will show up as a sinusoid of 190 Hz.
Similarly, a sinusoid of 390 Hz will appear as a 10 Hz
signal as will a 410 Hz signal. Thus, analog lowpass
filtering is required to remove these high frequency
signals before the signal is digitized.

With the lowpass filter set at 100 Hz, the frequencies
beyond 100 Hz are attenuated. The SC-1 uses a filter
which has an attenuation of 18 dB per octave; for every
factor of two increase in frequency (i.e., for each
octave) the filter attenuation increases by 18 dB (a
factor of 8). Signals with frequencies near 200 Hz are
are attenuated by a factor of 8, signals at 300 Hz are
attenuated by about 22, and signals at 400 Hz are
attenuated by about 64.

Using a lowpass frequency of 100 Hz and a sample rate
of 400 sps, the FAS spectrum will range from to 200 Hz.
Input signals in the range of 100 Hz to 200 Hz will be
appear unaliased, but will be attenuated by the filter.
Signals from 200 Hz to 300 Hz will be aliased and will
appear as signals from 200 Hz to 100 Hz and will be
attenuated by a factor between 8 and 22. Signals from 300
Hz to 400 Hz appear as signals from 100 Hz to Hz and are
attenuated by a factor between 22 and 64. Thus, if there
are strong spectral peaks in the range from 300 Hz to 400
Hz, an attenuation between 22 and 64 may not be great
enough to prevent the peaks from appearing in the spectrum
plot from to 100 Hz. In such a case, the sample rate
will need to be increased above 4 times the lowpass filter
setting. In addition it should be realized that the
lowpass filter used by the SC-1 actually begins

128

VAS User's Guide

attenuating the input signal somewhat before the cutoff
frequency; at the specified frequency the signal is
attenuated by 3 dB. For greatest accuracy, the filter
frequency should be well above the highest frequency
spectral component to be kept.

Once an appropriate lowpass filter setting and sample
rate are selected, a large number of samples should be
collected. In general, at least 8192 samples per channel
should be collected, and if possible 32768 or more samples
should be collected. Larger sample sizes allow improved
spectrum estimates.

The frequency resolution of a spectral estimate is
linear; if a signal is acquired at 1024 sps, and 512
frequency components are estimated, each component
represents 1 Hz. Relatively, low frequency signals have
poorer resolution than high frequency signals. If
increased resolution of low frequency components is
desired, the sample rate and lowpass filter cutoff should
be lowered and another set of data should be collected.
In a typical example, an initial set of data might be
collected at 200 sps and a second set could be collected
at 40 sps. The first run will require less than 3 minutes
to collect 32000 samples while the second run will require
about 14 minutes.

When possible, the real-time display should be used to
monitor the data acquisition to verify that appropriate
signals are being collected. Intermittent problems with
cable connectors may appear in the middle of a run or
large vibrations may cause the signal to exceed the input
range of the A/D board. Indeed, it is probably worthwhile
to collect several sets of data rather than trust that a
single set of data was collected without incident.

H. Trouble -shooting

As with any complex set of technology, the data
acquisition system will eventually fail to work. This
section attempts to anticipate a few common problems and
proposes ways of finding and solving them. Only problems
specific to the DTDATA acquisition system and software are
explored here; the PC and SC-1 are subject to their own
failure modes which must be diagnosed separately.

129

VAS User's Guide

Symptom : DTDATA presents error message "Timeout waiting
for status flag" as data acquisition is started.

Cause : The DT2801-A board is not being addressed
correctly by the PC. Verify that it is installed in a
slot and that the jumpers are set according to the Data
Translation manual. Be sure that no other expansion
boards are plugged in which might be conflicting with
address used by the DT2801-A. Try placing the DT2801-A in
a different expansion slot. Try a different DT2801-A.
Try a different PC.

Symptom : DTDATA presents error message "Timeout waiting
for A/D data" after screen is cleared. No data is
acquired.

Cause : The DT2801-A is not sending data to the PC. If
using external clocking, attempt to use internal clocking.
If internal clocking works but external clocking fails,
verify that the external clock board is plugged into a PC
expansion slot, that the board itself has no loose
components, and that the connector from the BNC box to the
clock board is connected. Check the integrity of the
cables and connectors and verify with a VOM meter that the
cable and connectors are not shorted and that there is
continuity between the output of the external clock board
and the DT707 external clock input. Using a logic probe
or oscilloscope, unplug the cable connecting the clock
board to the BNC box and verify that a pulsed signal is
being generated by the external clock board when DTDATA is
attempting to collect samples. If the clock board is not
generating a signal, recheck that the board is plugged in
and all components are installed, and verify that DTDATA
is set to use external clocking and that the acquisition
has been started by hitting RETURN (the screen of the PC
should clear). If the board is generating the signal with
the cable connecting it to the BNC box unplugged, verify
that the signal continues with the connection in place.
Verify that the signal appears on the DT707 screw terminal
panel connection. Verify that the signal appears on the
DT2801-A board (which may require removing the board from
the PC). Verify that no other PC hardware is using I/O
addresses 2B0, 2B1, 2B2, and 2B3. Try a different
external clock board.

130

VAS User's Guide

Symptom : DTDATA appears to be collecting data but the
real-time display shows a flat line.

Cause : The DT2801-A is receiving very low level signals,
incorrect signals, or no signals. Run DTDATA with the
input channel in question left unconnected and with the
display set for maximum gain (ALT-F6). If the display
shows no vertical deflection, the DT2801-A may not be
working; try the same test with other channels and check
the DT2801-A connection to the PC and to the DT707 screw
terminal panel. If a flat line continues on all channels
with DTDATA set for full display gain, use a signal
generator to apply a known signal to the input. If a
single channel appears to have failed, use other channels
or have the DT2801-A fixed. If a floating connection
shows tiny vertical changes, the DT2801-A is probably
working and the problem is with the signal conditioner,
(this can be verified by using a signal generator or some
other independent source of an input such as a 1 . 5V
battery--apply the input signal to the screw terminal
panel directly, bypassing the BNC connectors).

Many other problems may be encountered. A common sense
approach of isolating the problem to a particular
component will allow the user to solve many problems.
Most problems will generally involve connectors. The data
acquisition system has connectors from the BNC connector
box to the DT707 which is in turn connected to the
DT2801-A which is plugged into the PC. In addition, a
cable connects the external clock board to the BNC
connector box and the board itself plugs into the PC.
When the system is not working, the first step is to check
all the connectors, using the symptoms of the failure as a
clue. Also be sure the software is being used properly.
DTDATA attempts to present error messages to the user
rather than simply leaving the machine in an undefined
state or quietly exiting without having worked; if DTDATA
is presenting no error messages and is displaying data
which is not quite as expected, the odds are good it is
the input signal rather than the acquisition system.
Begin with the DT2801-A to SC-1 interface and work toward
the transducers when searching for the problem.

131

VAS User's Guide

III. THE DATA ANALYSIS SYSTEM

A. Overview

The VAS data analysis system runs under IBM's VM/SP CMS
operating system and provides functions to compute and
display spectral estimates, correlation estimates,
coherence estimates and transfer function estimates.

After one or more sequences of data have been collected
by DTDATA, they must be uploaded to the mainframe to be
processed by the data analysis system. The easiest way to
upload the data is with the KERMIT terminal emulator and
file transfer program.

Uploading raw data with KERMIT is relatively easy. The
steps outlined in the KSU Academic Computing Activities
KERMIT handout can be followed if two additional commands
are added to the CMS command set. The "SET FILE BINARY"
and "SET LRECL 64" commands should be issued after the CMS
"KERMIT" command is invoked and before the "RECEIVE"
command is issued. This will allow the binary data which
is recorded by DTDATA to be uploaded without ASCII to
EBCDIC translation. Further information about KERMIT can
be obtained from the KSU Computing Activities User
Information Center.

The raw data files which are uploaded to CMS must have
a filetype of "RAW." That is, the file which was created
by DTDATA should be named "filename. RAW" where "filename"
can be any alphanumeric field up to eight characters long.

The entire data analysis system in CMS consists of a
single CMS command called "VAS." This one command accepts
many parameters and options to provide all the required
data analysis and display functions. Functions are
provided to convert the raw input data into usable form,
to compute auto and cross-spectrum estimates, to compute
auto and cross-correlations, to compute coherence and
transfer functions, and to display or print the results.

In CMS, files on a disk are identified by a filename
and a filetype which can each contain up to eight
alphanumeric characters. The filename is used by the CMS
VAS command to uniquely identify a single experiment and
appears on the printed and plotted output as the test
name. The filetype is used internally by VAS to identify

132

VAS User's Guide

the kind of data contained in the file. For instance,
"RAW" is used to identify the raw binary data which is in
the form created by the DTDATA command. The following
filetypes are used by the VAS command:

FILETYPE Function
RAW Unprocessed data in the form created by the

DTDATA command
Dii Data for channel "i"
100 Various information about the data in other

files
Sij Cross PSD estimates for channels "i" and

"j" or auto PSD estimate if i=j
CiJ Auto or cross-correlation estimates for

channels "i" and "j"

Kij Coherence function estimates for channels
"i" and "j"

Tij Transfer function estimates for channels
"
i

" and "
j

"

The user of the system seldom has to concern himself
with filetypes. The filetype of "RAW" must be used when
uploading the data, and the use of filetypes will be
required when using standard CMS commands to list and
manipulate CMS disks.

In general, the analysis of a set of data will follow a
fairly well defined sequence. The user will log on to
CMS, change the CMS environment as specified in section
"J", upload the raw data with KERMIT, then use the "VAS
CONVERT" command to prepare the data for analysis. "VAS
SPECTRUM" commands are then used to compute desired auto
and cross-spectrum estimates. If desired, "VAS COHERENCE"
and "VAS TRANSFER" commands can then be used to compute
coherence and transfer function estimates. "VAS
CORRELATE" may be used to compute auto and cross-
correlations. The data itself or the results of the
computations can be plotted either interactively or on the
CALCOMP drum plotter with the "VAS PLOT" command, while
the "VAS PRINT" command produces non-graphical output.

B. The VAS CONVERT Command

After a single file containing the output from a
particular experiment is uploaded, it must first be
converted to a format more amenable to processing on the

133

VAS User's Guide

mainframe. The raw data file begins with a header record
which contains information about the experiment followed
by the data in reversed-byte integer format with the data
for multiple channels interleaved. The "VAS CONVERT"
command is used to separate the raw format data into one
CMS file for each data channel plus an informational file
which contains information from the header. The data is
kept in files with a filetype of "Dnn" where "nn" is "11"

for the first channel, "22" for the second channel,
through "88" for the eighth channel. The informational
file is given a filetype of "100" and contains the sample
rate used to collect the data, the date and time the data
was collected, and for each channel, the lowpass filter
frequency and location code.

The format of the "VAS CONVERT" command is:

VAS CONvert

-+

filename

+ + +

where :

filename specifies the name of the file on disk which
contains the raw data to be converted to
internal format. The file must have a filetype
of RAW.

If the file "SAMP1 RAW" contains the data for an
experiment run with four channels, the command "VAS CON
SAMP1" would create the five files "SAMP1 Dll", "SAMP1
D22", "SAMP1 D33", "SAMP1 D44", and "SAMP1 100".

C. The VAS SPECTRUM Command

Spectral estimates are computed using the "VAS
SPECTRUM" command. Options are provided to select from
two spectral estimation techniques, to select one of seven
possible smoothing windows, and to select the number of
frequency components the estimate is to calculate.

The format of the "VAS SPECTRUM" command is:

134

VAS User's Guide

+ +

VAS SPectrum filename chanl chan2 [(options...]

+ +

options:

+- -+ +-
WINdow Rectangular

HANning
HAMraing
Bartlet
Kaiser
Blackman
Parzen

Method Traditional
Welch

Length nnnn
512

where :

filename specifies the name of the files on disk which
contain the data.

chanl

chan2

options :

specifies the channel number of the first data
file.

specifies the channel number of the second data
file.

WINDOW winname
selects the type of smoothing window which is to
be used. The default HANNING window usually
produces a good estimate and should normally be
used. In special cases, an alternate window
might produce a better estimate. The window
which is specified is recorded in the
informational file associated with the
experiment (in the "filename 100" file).

LENGTH nnnn
selects the number of frequency components which
are to be be computed. The length must be a
power of 2 and must be no larger than 2048.

135

VAS User's Guide

Valid values include 2048, 1024, 512, 256, and
128. The default of 512 is reasonable in most
cases. The length which is specified is
recorded in the informational file associated
with the experiment.

METHOD methodname
selects the spectral estimation technique which
is to be used. The default method should
generally be used except when conserving CPU
time is crucial or in the rare case when the
alternate method of spectral estimation might
provide a better estimate. The default method
will use a little less than twice the CPU time
of the traditional method, but usually provides
better estimates. The method specified is
recorded in the informational file associated
with the experiment.

"VAS SPECTRUM" uses files named "filename Dii" and
"filename Djj" to produce the spectral estimate which is
put in the file "filename Sij " . If chanl and chan2 are
identical, an auto spectral estimate is computed while a
cross-channel estimate is made if they differ. For
example, the command "VAS S SAMP1 1 1" computes a 512
point auto-spectrum estimate of channel 1 of SAMP1. "VAS
SPEC SAMP1 1 2 (LEN 2048" produces a cross-spectrum
estimate with 2048 values.

The informational file associated with the experiment
is updated by the "VAS SPECTRUM" command to record the
method used, the number of components computed, and the
data window used. This information is used by the "VAS
PLOT" and "VAS PRINT" commands to annotate graphs and
tables. Note that the informational file only holds this
information for the LAST spectrum estimate. If estimates
for different channels are made using different methods,
windows, or lengths, the informational file will reflect
only the values set from the last estimate.

D. The VAS CORRELATION Command

Auto-correlations and cross-correlations are computed
by the "VAS CORRELATION" command. The format of the
command is:

136

VAS User's Guide

VAS CORrelat

+

filename chanl chan2 [(options...]

+

options:

Length nnnn
512

+

where

:

filename specifies the name of the files on disk which
contain the data.

chanl specifies the channel number of the first data
file.

chan2 specifies the channel number of the second data
file.

options :

LENGTH nnnn
specifies the number of correlation lags to be
computed. The length must be a power of 2 and
must be no larger than 2048. The default is
512. Specifying a smaller value does not
significantly speed up the computation.

"VAS CORRELATION" uses files named "filename Dii" and
"filename Djj" to produce the cross-correlation estimate
which is put in the file "filename Ci j

" . If chanl and
chan2 are identical, an auto-correlation is computed. For
example, the command "VAS CORR SAMP1 11" computes a 512
point auto-correlation of channel 1 of SAMP1. "VAS CORR
SAMP1 1 2 (LEN 128" produces a cross-correlation estimate
with 128 values.

137

VAS User's Guide

E. The VAS COHERENCE Command

Coherence functions (also known as coherence spectrums

)

are computed using the "VAS COHERENCE" command. The
format of the command is:

VAS COHerenc filename chanl chan2

where :

filename specifies the name of the files on disk which
contain the spectral estimates from which the
coherence function is to be computed.

chanl specifies the channel number of the first
spectrum file.

chan2 specifies the channel number of the second
spectrum file.

"VAS COHERENCE" uses files named "filename Sii",
"filename Sjj", and "filename Sij" to produce the
coherence estimate which is put in the file "filename
Kij". That is, it uses the auto-spectrum estimate of the
two channels and their cross-spectrum estimate; these must
previously have been calculated by the "VAS SPECTRUM"
command. For example, the command "VAS COH SAMP1 1 4"
computes a coherence function estimate for channels 1 and
4 of SAMP1.

F. The VAS TRANSFER Command

Frequency domain transfer functions are computed using
the "VAS TRANSFER" command. The format of the command is:

+

VAS Transfer

+ ^

filename chanl chan2

+

138

VAS User ' s Guide

where :

filename specifies the name of the files on disk which
contain the spectral estimates from which the
transfer function is to be computed.

chanl specifies the channel number of the first
spectrum file.

chan2 specifies the channel number of the second
spectrum file.

"VAS TRANSFER" uses files named "filename Sii" and
"filename Sjj" to produce the transfer function estimate
which is put in the file "filename Ti j

" . That is, it uses
the auto-spectrum estimate of each of the specified
channels; these must have previously been calculated by
the "VAS SPECTRUM" command. For example, the command "VAS
TRAN SAMP1 1 3" computes a transfer function for channels
1 and 3 of SAMP1.

G. The VAS PLOT Command

The results of computing spectrum, correlation,
transfer function, and coherence function estimates as
well as data can be plotted by using the "VAS PLOT"
command. Options on the command allow the plots to be
made either interactively on a Tektronix 4010 compatible
terminal or on the mainframe Calcomp drum plotter. Other
options control such things as the number of points
plotted, the number of the first point to be plotted, how
the axes are to be scaled, etc. The format of the command
is:

139

VAS User's Guide

VAS PLot [(globopts. . .)] fileidl [(fileopts. . .)]

[fileid2 [(fileopts. . .)] ...]

FROM nnnn
1

globopts:

+- -+ +- -+ +- -+ +-
I CALcomp I LOGX I LOGY I SCAle nn.nn
|
TEKtronix

| |
LINEX

| |
LINEY

| 1.0
+- -+ +- -+ +- -+ +- ~~

—
_

+- -+ +- -+ +- -+ +- _+
I RADians I I DOTs I PSD
I

DEGrees
| |

LINes
| |

FOURier
|

+ - -+ +- -+ +- -H

FOR nnnn I MAGnitude
4096

| MP
PHAse

fileopts:

+- -+ +- -+ +- -+ +-
I FOR nnnn I I FROM nnnn I I LOGX I LOGY

4096
I ill LINEX

I
|
LINEY

+ - -+ +-

+ - -+ +-
I RADians I I DOTs
|
DEGrees

| |
LINes

+- -+ +-

-+ +-

PSD
FOURier

MAGnitude
MP
PHAse

where:

fileidl completely identifies the file on disk which is
to be plotted and takes the form "filename
datatype chanl chan2". The filename specifies
the name of the experiment. Valid datatypes are
"Spectrum", "CORrelation" , "Transfer",

140

VAS User's Guide

"COHerence", and "Data". Chanl and chan2
specify channel numbers and both must be
specified. Examples of valid fileids include
"SAMPLE1 DATA 1 1" (channel 1 of the input data
of experiment SAMPLE1), "FUZZY SPEC 3 3" (the
auto-spectrum of channel 3 of experiment FUZZY),
and "WOOZY COHER 1 2" (the coherence function
estimate between channels 1 and 2 of experiment
WOOZY).

fileid2 (fileopts) ...
is one or more additional files to be plotted
and the options to be used for those files. Up
to eight files may be specified in a single "VAS
PLOT" command.

globopts :

Global options may be specified before the first fileid
and are surrounded by parentheses. These options affect
the way the each of the specified files is plotted.

CALCOMP specify where the plotted output is to be
TEKTRONI directed. If CALCOMP is specified, hardcopy

output is produced on the Calcomp pen plotter.
If TEKTRONIX is specified, the output is sent to
the user's terminal which should be a Tektronix
4010 or compatible device.

SCALE nn.nn
is used to specify a scaling factor to be used
to change the size of the resulting plot. The
default scaling factor of 1.0 causes plots with
a 10 inch horizontal axis and a 4 inch vertical
axis to be plotted on the Calcomp, or to just
fill the screen on a Tektronix 4010. Specifying
"SCALE .5" will cause a 5 inch horizontal axis
to be plotted while "SCALE .8" creates an axis 8
inches long.

globopts and fileopts :

Options specified in parentheses after a fileid apply only
to the preceding file.

FROM nnnn is used to begin a plot with other than the
first data value. For instance, specifying
"FROM 2" causes the first value to be skipped

141

VAS User's Guide

while specifying "FROM 40000"
39999 values to be bypassed.

causes the first

LOGY
LINEY

FOR nnnn specifies the number of points to be plotted.
By default, 4096 points or the entire file is
plotted. The maximum number of points which may
be specified is 4096.

specify whether the vertical axis is to be
plotted with logarithmic or linear scaling. The
default is linear. If logarithmic scaling is
specified, up to 7 orders of magnitude will be
shown; data points smaller than this (including
those with a value of 0) will not appear on the
plot. If the data contains negative values, the
plot will appear with linear scaling regardless
of the setting of this option.

specify how the horizontal axis is to be scaled.
The default is linear scaling. If the x-axis
contains non-positive values, the LINEX option
is forced; to use the L0GX option, the "FROM
nnnn" option should be specified to skip at
least the first data point (which is always 0).

specify whether the plot consists of individual
dots (actually, X's) for each data point, or
whether the data points are to be connected with
straight lines without dots. The default is to
plot straight lines.

specify whether SPECTRUM data is to be plotted
as a power spectral density (PSD) or a Fourier
amplitude spectrum (FAS). The FAS is simply the
square-root of the PSD. This option is ignored
if specified for a datatype other than SPECTRUM.

specify whether the phase portion of a cross-
spectrum is to be scaled in radians or degrees.
If RADIANS is specified, the plot will be scaled
from -pi to +pi radians. If DEGREES is
specified, the plot is scaled from -200 to +200
degrees and values near 180 degrees are adjusted
to minimize the number of zero crossings in the
plot (a phase of -170 degrees is identical to a
phase of +190 degrees). This option is ignored
if a cross-spectrum plot is not being produced.

LOGX
LINEX

DOTS
LINES

PSD
FOURIER

RADIANS
DEGREES

142

VAS User's Guide

MAGNITUD specify whether a magnitude-only, a phase-only,
PHASE or a magnitude and phase plot is to be produced
MP for a cross-spectrum file. The default is to

plot both the magnitude and phase. This option
is useful for suppressing the phase output, or
for specifying other options which are to be
applied only to the magnitude or phase portion
of a plot. For instance, to plot the magnitude
of a cross-spectrum using straight lines and the
phase using dots, "VAS PLOT SAMPLE SPEC 1 2
(MAG) SAMPLE SPEC 1 2 (PHASE DOTS)" might be
used. Just specifying "SAMPLE SPEC 1 2 (DOTS)"
would cause both the magnitude and phase to be
plotted with dots.

"VAS PLOT" produces two plots per logical page. The
plot of the second file specified appears above the plot
of the first file. If a third file is specified, it will
begin a new page.

A single example should make the use of "VAS PLOT"
apparent. Specifying "VAS PLOT (CALCOMP SCALE .5 LOGY
FROM 2 FOR 255) SLEEPY SPEC 1 1 SLEEPY SPEC 2 2 SLEEPY
SPEC 1 2 (MAG) SLEEPY SPEC 1 2 (PHASE LINEY DOTS)" will
produce three x-y plots on the Calcomp plotter scaled to
half size with a linear x-axis and logarithmic y-axis. A
fourth plot will be produced similar to the others but
will have a linear y-axis and the points will be plotted
with dots rather than straight interconnecting lines.
Each plot will contain 255 points and the first value of
each file will not be plotted (the DC component of a
spectrum estimate is always zero and therefore does not
fit well on a logarithmic axis). The first page will
contain the auto-spectrum estimates for channels 1 and 2
of SLEEPY. The second page will contain the cross-
spectrum estimate with the magnitude plotted as above but
the phase will be plotted with dots and on a linear y-
axis.

H. The VAS PRINT Command

The results of computing spectrum, correlation,
transfer function, and coherence function estimates as
well as data can be printed by using the "VAS PRINT"
command. The format of the command is:

143

VAS User's Guide

+

VAS PRint

+

[(globopts. . .)] fileidl [(fileopts. . .)]

[fileid2 [(fileopts...)] ...]

+ +

globopts and fileopts:

MAGnitude
MP
PHASE

RADians
DEGrees

[FOR nnnn]

+

+- -+ +-

I
PSD I FROM nnnn

|
FOURier

| 1
+- -+ + -

where :

fileidl completely identifies the file on disk whose
values are to be printed and takes the form
"filename datatype chanl chan2". The filename
specifies the name of the experiment. Valid
datatypes are "Spectrum", "CORrelation"

,

"Transfer", "COHerence", and "Data". Chanl and
chan2 specify channel numbers and both must be
specified. Examples of valid fileids include
"SAMPLE1 DATA 11" (channel 1 of the input data
of experiment SAMPLE1), "FUZZY SPEC 3 3" (the
autospectrum of channel 3 of experiment FUZZY),
and "WOOZY COHER 1 2" (the coherence function
estimate between channels 1 and 2 of experiment
WOOZY).

fileid2 (fileopts) ...
is one or more additional files to be printed
and the options to be used for those files. Up
to eight files may be specified in a single "VAS
PRINT" command.

globopts and fileopts :

Global options may be specified before the first fileid
and are surrounded by parentheses. These options affect

144

PSD
FOURIER

VAS User's Guide

the way the each of the specified files is printed.
Options specified in parentheses after a fileid apply only
to the preceding file.

FROM nnnn is used to begin printing with other than the
first data value. For instance, specifying
"FROM 2" causes the first value to be skipped
while specifying "FROM 8000" causes the first
7999 values to be bypassed.

FOR nnnn specifies the number of points to be printed.
The entire file is printed by default.

specify whether SPECTRUM data is to be printed
as a power spectral density (PSD) or a Fourier
amplitude spectrum (FAS) . The FAS is simply the
square-root of the PSD. This option is ignored
if specified for a datatype other than SPECTRUM.

RADIANS specify whether the phase portion of a cross-
DEGREES spectrum is to be printed in radians or degrees.

DEGREES is the default. This option is ignored
if a cross-spectrum plot is not being produced.

MAGNITUD specify whether a magnitude-only, a phase-only,
PHASE or a magnitude and phase print is to be produced
MP for a cross-spectrum file. The default is to

print both the magnitude and phase.

The "VAS PRINT" command reads the specified files from
disk, formatting and printing the data. The data is
formatted in three columns of 50 numbers each. The output
of the "VAS PRINT" command is sent to the virtual printer
of the CMS user. The spool file thus created can be
viewed interactively (see the KSU CMS command, "BROWSE")
or can be transfered to a printer to produce a hardcopv
result. *™

I. Example—Analysis of a Structure

For this study, the U.S. Grain Marketing Research
storage facility was used. This structure is a tall,
essentially rectangular building approximately 150 feet
high. Accelerometers were placed at four different
landings at heights of approximately 140 feet, 110 feet
70 feet, and 30 feet and were feed into the Kinemetrics'
SC-1 signal conditioner as channels 1 through 4. Due to

145

VAS User's Guide

what appeared to be an intermittent failure in the channel
3 cable, only three useful data channels were collected.

An initial on-site FAS analysis of a short sequence of
data collected at 500 sps/channel with the lowpass filters
removed indicated that the major spectral peaks were
confined to below about 40 Hz. A sequence of data was
then collected with the lowpass filter set at 50 Hz and
the sample rate set at 200 Hz; approximately 25,000
samples per channel were collected.

An on-site analysis of a small piece of the new data
indicated that the first vibration mode was at
approximately 2 Hz and a second major mode was located at
about 6 Hz. The third mode, much smaller than the first
two, was just below 10 Hz. The sequence of data named
SAMPLE5 was collected with the lowpass filter set at 10 Hz
and the sample rate set at 40 Hz; approximately 14,500
samples per channel were collected. 512 point estimates
of the spectrum, coherence, and transfer function were
calculated and the first 255 points after the DC component
are plotted; the values of the estimates beyond the
lowpass filter setting are not of interest.

Figures 3a and 3b show the first 400 samples of the
first and the fourth channels of SAMPLE5. As expected,
channel 1 (from the sensor located near the top of the
building) shows considerably greater acceleration than
channel 4. The first 4000 samples of the same data is
shown in figures 3c and 3d which gives a better indication
of the variability of the vibrations. The areas where the
vibrations are large correspond to periods of high wind
while the areas with weak vibrations correspond to periods
of little wind.

The auto FAS estimate of the four data channels of
SAMPLE5 are shown in figures 3 (e-h). Remembering that
channel 3 was not connected, they show the first two
vibration modes quite clearly, and signs of the third can
be seen near 9 Hz. It is interesting to note that the
magnitude of the first mode is much larger near the top of
the building than near the bottom, while the magnitude of
the second mode is almost constant.

Cross FAS estimates of SAMPLE5 are shown in figures 3
(i-1). These show very clearly the 180 degree phase shift
of the second mode which should occur about two-thirds of
the way up the structure. In the first mode, the entire

146

pfiEfoy^ »* »r

i.b«
-

\'09 k.M l.'i

TINE IN SECONDS

(a) UOO data points from channel 1.

iJ^SM3g£g

k,i» k.bo •
'

TINE IN SECONOS

(b) UOO data points from channel h.

Figure 3. Analysis of a structure.

ll*7

9 TEST: 3AnflE5 05/08/86 13:50 DATA
gCHftHMELj 1 I mO Ml LPF FflEQi 10jwnt Mte,. 40.

—
Ui
o
r-

-J
a.

HP i Vj nielli
9

f| r

"™rPfr wff" T

7
.00 W.o'o

'

W.ab "

' lo'.ob
'

TIME IN SECONDS
10.00

(c) HOOO data points from channel 1.

gCHAKNELi 4 (30 FT1 LfF FREOt 10"
SUKfLE .BBTEi. I|0'

io'.o'o ko'.ob io'.oo
'

TIME IN SECONDS

Cd) U000 data points from channel k.

Figure 3. Analysis of a structure (cont.

148

msskmM£

1

agM MTEi. 10

I I I I I 1 I I I)

(e) Channel 1 FAS estimate.

i&m^mMjffi! estimate

»BWLE J9TE.. 10.

' ' '

I io'
'

FREOUENCT IN HZ

(f) Channel 2 FAS estimate.

Figure 3. Analysis of a structure (cont.

1-:'

BariBaaasMfiTt

Bill i°.

FREOUEHCT IN HZ

(h) Channel It FAS estimate.

Figure 3. Analysis of a structure (cont.

)

150

§ TEJlt JjjnrUS 05/08/08 13-.50 FB3 estjubie

j UHQBHi. tlBNItlNO. .PT3/3EPWEMTi 51.2, SUHflE .BIjTti. 10,

2.00 k.00 t.00
FREQUENCE IN MZ

(i) Channel 1:2 FAS estimate phase.

05/00/88 13:50 ffl3 E3TJHB1E

FREQUENCY IN Hi

(j) Channel 1:2 FAS estimate magnitude.

Figure 3. Analysis of a structure (oont.)

151

JltJI. SflhfLtJ H/M/M UiSO m tmiMTC

Mi Uw'
• ^^ ^iOI

-

FREQUENCY IN HZ

(k) Channel 1:U FAS estimate phase.

a test, sflnries as/os/es istso r« estimate
JJCHflNNELSi I i 4
.jHWllH.. DOIKINO. MVMCItEllTi 5VZ. aWLE MTEi 10.

FBEOUENCT IN HZ

(l) Channel 1:U FAS estimate magnitude.

Figure 3. Analysis of a structure (cont.)

152

|iSUk«TO os/o»/«« Uiso cmcnciicc

i.M k
>

k.bo k.bo'
FREQUENCY IN HZ

(m) Channel 1:2 coherence function estimate.

5cHB»NELSr"i"
0i'°"" 1S,S0 «««"«

EOUENCT IN HZ

(n) Channel X;k coherence function estimate.

Figure 3. Analysis of a structure (cont.)

153

•fflffifflw
os/oa/aa 13,50 lmnsrtn ruHCTioit

FAEOUENCT IN HZ

Channel 1:2 transfer function estimate.

JESJjuJJWLfJ 05/OJ/M ISiSO TIWKSrOI FUMCTIOK

» iaoaai. whMdo. ^Ts/iEjuEKti si,;, >meit Miii. <o

re ii
fREOUENCT IN HZ

(p) Channel 1:1) transfer function estimate.

Figure 3. Analysis of a structure (cont.)

15U

Btfffifli r» i*s
iS
"

(q.) Channel 1 auto-correlation estimate.

WtiEM™*

re rw •'"''
v.i, ,

t)he in seconds

(r) Channel it auto-correlation estimate.

Figure 3. Analysis of a structure (cont.

)

155

VAS User's Guide

building sways back and forth with a single node at the
bottom. For the second mode, in addition to the node at
the bottom, a second node is found about two-thirds of the
way toward the top. Channel 1 is apparently above the
second node while channels 2 and 4 are below it.

Coherence plots are shown in figures 3m and 3n. As
might be expected, the coherence is close to unity at the
frequency of the first mode. Near 6 Hz, however, the
coherence function between channels 1 and 2 actually dips;
no good explanation for this has been posited. The
coherence function between channels 1 and 4 is much more
reasonable.

The transfer functions shown in figures 3o and 3p are
self-explanatory.

Auto-correlation estimates for channels 1 and 4 are
shown in figures 3q and 3r. Channel 1 is obviously
dominated by the 2 Hz primary mode and contains relatively
little noise. Channel 4 is noisier relative to the signal
strengths, and obviously contains more than the single
primary mode.

J. The CMS Environment

Using the VAS system necessarily requires that the
experimenter know something about the environment in which
it is running. Knowledge of a few simple CMS commands
such as LISTFILE, COPYFILE, ERASE, and RENAME will allow
the user to manipulate data in ways which aren't provided
for by the VAS command. Refer to the IBM VM/SP CMS User's
Guide (number SC19-6210) for general information~about
CMS. The IBM VM/SP CMS Command and Macro Reference
(SC19-6209) contains information about specific CMS
commands. In addition to these IBM manuals, the Kansas
State University Computing Activities publications CMS
Survival Kit , CMS Cookbook , and CP/CMS Guide provided
additional information about the specific CMS environment
at KSU.

The standard CMS environment created for a userid at
KSU will not allow the VAS command to run all of its
functions. The plotting libraries are not present, and
the virtual memory size allocated is inadequate. After
logging on to CMS, the following commands must be issued
before the VAS command can run:

156

VAS User's Guide

RESTOR 800K
SET LDRTBLS 5
GLOBAL TXTLIB VFORTLIB CALCOMP IGLSTUBS IGL

These commands increase the memory size to 800 kilobytes,
increases the amount of memory set aside by the program
loader for its own use (necessary when using the
interactive plotting routines), and makes the plotting
libraries known to the loader. The commands should be
issued right after logging on; they need not be executed
before every invocation of the VAS command.

157

APPENDIX B—DATA ACQUISITION SYSTEM PROGRAMS

This appendix lists the source programs of the the data

acquisition system. The programs are written in C and are

compiled under Computer Innovations CI-C86 compiler

(version 2.30A). They use routines from the C86 run-time

library, and several routines written by KSU Computing

Activities staff.

DTDATA should be compiled and linked using the

following commands:

CC DTDATA
LINK DTDATA,

, , C86S2S+IBMPCS

The PLTxxx commands do extensive floating point

computations and so should be compiled with the "-n"

option to force use of the 8087 numeric coprocessor.

CC -n PLTFAS
CC -n PLTPSD
CC -n PLTDAT
CC -n PLTDAT4
LINK PLTFAS+GR+PCGRAF+FFT+GETCON,

, , C86S2N+IBMPCS
LINK PLTPSD+GR+PCGRAF+FFT+GETCON,

, , C86S2N+IBMPCS
LINK PLTDAT+GR+PCGRAF+FFT+GETCON,

, , C86S2N+IBMPCS
LINK PLTDAT4+GR+PCGRAF+FFT+GETC0N,

, , C86S2N+IBMPCS

158

PROGRAM; DTDATA.C

* #
* Vibration Analysis System (VAS) *

* *
* (c) Copyright 1986 by Brick A. Verser *

* *

*

* MODULE NAME:

*

* DTDATA
*

* FUNCTION:

*

* To drive the Data Translation DT2801-A data acquisition
* board. This routine provides menu driven control of
* experiment parameters and allows real-time displays of
* data as it is acquired and written to disk.
*

* EXTERNAL ROUTINES REQUIRED:

* 8VDS.H - Basic Vibration Data Structure include file.
*

* Multiple routines from the Computer Innovations
* run- time library are used

.

*

* INPUT PARAMETERS:

*

* This command is called from the MS-DOS command
* level without any parameters. All parameters
* are entered interactively.
*

* OUTPUT:

* Sampled data may be written to any valid MS-DOS file.

* The file DTDATA. DEF is optionally used to store
* parameters which the user has entered from the menus.
*

* OPERATION:

*

* 1
.

Allocate a large buffer which does not cross a
* 64K segment boundary to be used to hold the
* DMA'ed data.

* 2. Prompt the user for experiment parameters.
* 3. Collect the data.

* 4. Return to step 2.

*

* REVISION HISTORY:

PROGRAM: DTDATA.C

* 1.0 ORIGINAL CODE

*

* REVISION DATE

*

* 1 .0

*

*/

((include "stdio.h"

((define TRUE 1

((define FALSE

JUNE 26. 198S

PROGRAMMER

BRICK VERSER

/* Include a "((define NOHARD" to compile to test without DT2801 */

typedef unsigned char UCHAR;

typedef unsigned long ULONG;

typedef unsigned short USHORT;

UCHAR cpyrightt] - "Copyright (c) 1986, Brick A Verser";

/* Include here the format of the header record written to the
front of all data files we create */

((include "bvds.h"

extern UCHAR inportbC) , outportbC)

;

extern int creat (), closet)

;

extern unsigned writeO;
extern FILE *fopen();

extern double oow() , logl 0()

;

extern unsigned dtexitO;
extern unsigned getoffO;
USHORT i2swap();

ULONG i4swap();

/* Define functions used to wait for the DT2801 hardware */
Kifdef NOHARD

((define dtcmdwtO if (1--0) return (FALSE)

((define dtwrtwtO if (1--0) return (FALSE)

((else

((define dtcmdwtO if (dtwait (DTS_CMDW.0, 1 000)) return (FALSE)
((define dtwrtwtO if (dtwait (DTS_WRTW.0xf f , 1000)) return (FALSE)
ttendif

/* 1/0 addresses of DT2801 board */
((define DT_DATA 0x2ec
((define DT_CMD 0x2ed
((define DT_STAT 0x2ed

160

PROGRAM : DTDATA .

C

/* DT2801 command opcodes */

((define DTC_CLRE 1

((define DTC_SIC 3

((define DTC_OUT 5

((define DTC_DOUT 7

((define DTC_SAD 13

((define DTC_RAD 14

((define DTC_STOP 15

/* Clear error condition */

/* Set internal clock */

/* Set digital port for output */

/* Write digital output immediate */

/* Set A/D parameters */

/* Read A/D */

/* Stop current command */

/* Mode bits for DT2801 commands */

((define DTM_ETRG 0x80

((define DTM_ECLK 0x40

((define DTM_C0NT 0x20

((define DTM_DMA 0x10

/* External trigger */

/* External clock */

/* Continuous conversion */

/* Use DMA */

/* Status bits for DT2801 */

((define DTS_CMDW 4

((define DTS_WRTW 2

/* Ready Flag (Command Wait) */

/* Data In Full Flag (Write Wait) */

/* Clock rate for DT2801A */

((define DTCLOCK 1.25e-06 /* 1.25 microseconds */

/* External clock data */

((define BV_CLK 0x2b3

((define BV_CLK0 0x2b0

((define BV_CLK1 0x2b1

((define BV_CLK2 0x2b2

/* Control word address of 8253 */

/* Counter */

/* Counter 1 */

/* Counter 2 */

/* Clock rate for external clock */
((define BVCL0CK 2.0e-06 /* 2 microseconds */

int logf lag;

int logfd;

char logfid[65];

char deffid[] =

int plotf lag;

int plotchnl

;

int plotchn2

;

int plotccnt

;

int plotgain

;

int chanstrt

;

int chancntl

;

int gain;

unsigne d period;

long te-rmcnt

;

int intclock;

float ampattn[8]
;

/* 1 if recording to disk, 2 if ready to */
/* File Descriptor of open log file */

/* Filename of log file */

"DTDATA. DEF"; /* Filename of saved parameters */

/* TRUE if we are displaying real-time */
/* Channel number we are displaying (org 0) */
/* Second displayed channel */

/* Number of channels to display */

/* Gain for display, 0-5 (powers of 2) */
/* Starting channel number (origin 0) */
/* Number of channels being recorded - 1 */
/* Preamp Gain (0,1,2,3) */

/* Internal-clock period */

/* Total number of samples to take */

/* TRUE if using internal clock, FALSE if external */

/* Attenuator value for each of 8 channels */

PROGRAM: DTDATA.C

UCHAR lpfval[8][6]; /* Low pass filter setting for each channel */

UCHAR loccode[8][16] ; /* Location code for each channel */

long «acount; /* Number of bytes processed */

int leftoflg; /* TRUE if an odd number of bytes were last processed */

int chanval; /* Channel number currently being processed */

int xcurl , xcur2; /* Current x coordinate for plotting */

unsigned scvaly[640] ; /* Coordinate of pixel set on last pass */

struct {USHORT year ,mnth, day , hour ,min, sec, hnd ; } timestam; /* set by qtimeO */

struct regval {unsigned ax,bx,cx,dx, si ,di , ds.es: }

;

struct rv {unsigned scs, sss, sds, ses;};

struct rv rv; /* Place for a copy of our segment registers */

ttdefine MAXPLOTR 252 /* Maximum sample rate for realtime plot */

ttdefine DMABSIZE 32*1024 /* Want a 32K byte DMA buffer */
unsigned dmapage; /* Page where DMA buffer is allocated */
unsigned dmaoff; /* Offset from page where DMA buffer is */
unsigned dmalen; /* Size of buffer - 1 */

main(argc.argv)

int argc;

char *argv[]

;

int

chanstrt = 0;

chancntl 0;

period » 4000;

gain « 0;

termcnt - 2147000000;

plotgain « 0;

plotchnl 0;

plotchn2 = 1

;

plotccnt 1

;

intclock - FALSE:

segreadCSrv)

;

printf

(

n%s\n\n\n",cpyright)

;

for (i-0: i<8; i++) { /* Loop once for each channel */
strcpy(&loccode[i][0] ,")

;

st rcpy (&lpfval [i] []
, " ")

;

ampat tn[i] 1

;

162

PROGRAM: DTDATA.C

if (allodma()) return; /* Go allocate buffer for DMA */

varinit ()

;

if (setmenu()) return

dtresetO;
dtsetup(chanstrt , chanstrt+chancntl

dtdmaset (dmapage.dmaof f , dmalen)

;

bavinit ()

;

dtcollectdtexi t)

;

bavfiniO;

/* Initialize variables */

/* Ask user what to do */

/* Reset the hardware */

period, gain)

;

/* Reset the DT2801 */

int dtreset(

)

{

int temp;

o u t po r t b (DT_CMD , DTC_STOP)

;

temp = inportb(DT_DATA)

;

dtcmdwtO ;

outportb(DT_CMD,DTC_CLRE)

;

return (TRUE)

;

/* Send STOP signal to board */

/* Be sure this is emptied */

/* Wait for completion */

/* Clear any error flags */

/* Wait for the specified flags (or NOT flags) for 'cnt' loops */
int dtwait (flag, xormask.cn t)

int flag, xormask.cn t

;

{

int c;

int i;

c - (int) inportb(DT_STAT) " xormask;
while ((c&flag) -- 0) {

if (cnt— < 0) {

fprintf (stderr,

"Timeout waiting for status flag %02x — flag - %02x\n",
flag.c);

delay(50); /* Delay about 5 seconds */
return (FALSE);

}

c - inportb(DT_STAT) * xormask;

}

return (TRUE);

PROGRAM: DTDATA.C

/* Prepare the DT2301 and external clock for data sampling */

int d t se t up (chans .chane, period, gain)

int chans, chane, gain;

unsigned period;

{

if (intclock) {

dtcmdwt ()

;

dtwrtwt ()

;

dtwrtwt ()

;

)

else {

/* Using internal clock */

outportb(DT_CMD,DTC_SIC)

;

outportb(DT_DATA,period&Oxf f) ; /# L/0 period byte */

outportb(DT_DATA,period»8) ; /* H/0 byte of period */

/* Using external clock */

/*

* 8253 CT2 output gates CT1 which is inverted to gate CTO.

* Counter 2 is turned on and left that way to allow counter 1

* to act as a one-shot into counter which will be programmed

* to delay long enough to give the DT2801 time to initialize
* after which it will go low for one clock cycle

*/

/* CTRO to mode 1 (gatetrig one-shot) */

/* CTR1 to mode 4 (softtrig strobe) */

/* CTR2 to mode 4 */

/* Set CTRQ LSB to 2 */

/* Set CTRO MSB—a very short pulse */

outportb(BV_CLK,0x32)

;

outportb(BV_CLK,0xb8);

outportb(BV_CLK,Ox78);

outportb(BV_CLK0,2)

;

outportb(BV_CLKO,0);

/* This will leave clock output high */

}

dtcmdwt ()

;

outportb(DT_CMD,DTC_SAD)
dtwrtwt ()

;

outportb(DT_DATA,gain)

;

dtwrtwt ()

;

outportb (DT_DATA, chans)

;

dtwrtwtO; outportb (DT_DATA, chane)

;

dtwrtwt (>; outportb(OT_DATA,Oxff)

;

dtwrtwtO; outportb (DT_DATA,Oxf f)

;

return (TRUE);

/* Want to set A/D parms */

/* Set the gain */

/* Set start channel */

/* Set end channel */

/* Dummy conversion count */

/* Dummy conversion count */

/* Prepare the PC's DMA controller to handle DT2801 data stream */
int dtdmaset (page, of f set , len)

unsigned page, of f set , len;

{

outportb(11,0x55);

outportbd 2,0)

;

outportb(2,0xff&offset)

outportb(2,off set»8) ;

outportb(3,0xf f&len)

;

outportb(3,len»8)

;

outportb (0x83, page)

;

outportbOO, 1) ;

/* Set DMA mode for WRITE, AUTOINIT, CH 1 */

/* Clear byte flip-flop */

/* L/O byte of offset */

/* H/0 byte of offset */

/* L/0 byte of count */

/* H/0 byte of count */

/* Set page register */

/* Enable DMA MASK channel 1 */

1G4

PROGRAM: DTDATA.C

return (TRUE);

/* This routine does the actual data collection. The exit routine
address passed to it is called whenever any data appears in the

DMA buffer. The exit routine must display and/or log the data
very quickly and return to this routine so it can continue
the data collection. */

int dtcollec(exitaddr)

unsigned int (*exitaddr) ()

;

{

unsigned of f ,oldoff , tocnt ,hioff,len,ef lag, temp;

hiof f - dmaof f+dmalen+1 ;

off - getoff ();

ttifndef NOHARD

if (off dmaoff) { /* Verify the DMA hasn't been dinked with */
fprintf (stderr,"DMA offset doesn't match original\n")

;

delay(50); /* Delay about 5 seconds */
return (FALSE);

>

ttendif

dtcmdwtO: /* Be sure board is ready for us */
if (intclock) /* Start continuous A/D collection using DMA */

outportb(DT_CMD,DTM_CONT+DTM_DMA+DTC_RAD)

;

else { /* External clocking requires some extra work */
out port b(DT_CMD,DTM_CONT+DTM_DMA+DTC_RAD+DTM_ECLK):

/* Start continuous A/D using DMA and external clock */
outportb(BV_CLK1 ,0); /* Set LSB of one-shot timer */
outportb(BV_CLK1 ,8); /* Set MSB—BOOh at 500KHz (2 ms) */
/* This should pause 2 ms, then send a single sync pulse */
for (tocnt=0; tocnt<65530; tocnt++) {

outportb(BV_CLK,0x40); /* Latch counter 1 */
temp » inportb(BV_CLK1) ; /* Fetch LSB */
temp - inportb(BV_CLK1) ; /* Fetch MSB */
if (temp > 8) break: /* Stop when count goes under */

ttifndef NOHARD
}

if (tocnt > 6553D) {

fprintf (stderr, "Timeout waiting for 8253 sync pulse\n");
delay(50); /* Delay about 5 seconds */
return (FALSE);

}

outportb(BV_CLK,0x34); /* CTRO mode-2 (gatetrig rate gen sends
* one pulse every N clock ticks */

outportb(BV_CLK0.20); /* 20 ticks at 500KHZ is 25KHz */
outportb(BV_CLK0,0);

PROGRAM: DTDATA.C

outportb(BV_CLK,0xb6) ; /* CTR2 mode=3 (square wave—doesn't

start until count loaded) */

outportb(BV__CLK,0x72) ; /* CTR1 mode-1 (gatetrig one-shot) */

outportb(BV_CLK1 , 20*chancnt1 +22) ; /* Set number of pulses */

outportb(BV_CLK1 ,0);

outportb(BV_CLK2.period&0xff) ; /* LSB of clock rate */

outportb(BV_CLK2,period»8) ; /* MSB of clock pate */

/* This should leave the pulse generator ticking #/

/* This is the main collection loop. GET0FFO is used to

fetch the current offset into out buffer from the DMA

controller. If this value changes, we call the exit. */

oldoff - off;

for {tocnt-0; tocnt<S5530; tocnt++) {

off - getoff ();

if (off » oldoff) continue; /* Wait for a byte */

tocnt 0; /* Reset timeout counter */

if (off < oldoff) { /* Handle wrap around */

len hiof f-oldof f;

eflag - (*exitaddr) (oldoff , len)

;

if (eflag -- 0) break;

oldoff dmaoff;

}

len of f-oldof f;

if (len«0) continue; /* Could happen on wrap */

eflag (*exitaddr) (oldoff , len)

;

if (eflag -= 0) break;

oldoff - off;

}

dtresetO;

if (tocnt >- 65530) { /* This is bad news */

fprintf (stderr , "Timeout waiting for A/D data\n");
delay(50); /* Delay about 5 seconds */

return(FALSE);

}

return (eflag)

;

varini to
{

int i;

eacount . 0;

leftoUg - FALSE

chanval - 0;

xcurl

xcur2 = 320;

PROGRAM: DTDATA.C

for (i»0; i<640; i++)

scvaly[i] 0;

return;

}

/* This is the exit routine for DTCOLLECC). It is called whenever

data is found in the DMA buffer. It is the job of this routine

to display the data if requested and to log it to disk. */

unsigned int dtexit (of f set , olen)

UCHAR *offset;

unsigned olen;

{

static unsigned maxlen»0,minlen=65000;

static int leftover;

unsigned len , val, loglen

;

UCHAR temp[DMABSIZE];

UCHAR *t;

char c;

len » olen;

/* Move data from DMA buffer to ours so C can easily get to it. */

/* This also allows us a little more time before buffer overruns. */

movblockfof f set ,dmapage«1 2, temp, rv. sds, len)

;

if (len > maxlen) maxlen » len;

if (len < minlen) minlen len;

t temp;

if (logflag -2)

eacount + len;

if (logflag*- 1) { /* Log data to disk if we need to */

loglen » writedogfd, temp, len)

;

if (loglen < len) {

f printf (stderr, "Error logging to disk\n")

;

delay(50); /* Delay about 5 seconds */

logflag - FALSE;

}

}

c = getcon(); /* Check for user striking a key */
if (c - EOF) {

switch (c) {

case *S': /* Status display */

crt_srcp(24,0,0)

;

printf <"CUR«Xd MAX-Xd MIN-Xd TOTAL-XD
len, maxlen, minlen, eacount)

;

break;

case '\033': /* Abort on ESC key */

return (FALSE);

break;

167

PROGRAM; DTDATA.C

3* i /* Clear counters */

maxlen = 0;

minlen = 65000;

break;

/# Special functions */

c • getconO; /* Get following character */

switch(c) {

case 0x3b: /* F1 , Change display channel 1 */

if (plotccnt<1) break;

plotchn1++; /* Set new channel */

if (plotchnl > 1+chancntl) plotchnl = 0;

if (plotflag) {

crt_srcp(21 ,0,0)

;

printf ("Displaying channel %d" .plotchnl +1)

;

>

break;

case 0x3c: /* F2, Change display channel 2 */

if (plotccnt<2) break;

plotchn2++; /* Set new channel */

if (plotchn2 > t+chancnt1) plotchn2 = 0;

if (plotflag) {

crt_srcp(21 ,40,0)

;

printf ("Displaying channel 7Sd" ,plotchn2+1)

;

}

break;

case 0x3d:

case 0x3e

:

case 0x3f:

case 0x40:

case 0x41

:

case 0x42:

break;

case 0x68:

case 0x69:

case 0x6 a:

case 0x6b:

case 0x6c:

case 0x6d:

plotgain c-0x68; /* Set gain */
break;

default:

break;

}

/* F3 */

/* F8 */

/* ALT F1-F6, Display gain */

if (leftoflg) {

leftoflg « FALSE;

PROGRAM: DTDATA.C

val = leftover + ((*t++)«8);

ten—

;

if (plotflag) valplot(val) ;

}

if (plotflag)

white (ten > 1) {

vat - *t++;

vat +- (*t++)«8;
vatptot(vat) ;

ten -= 2;

>

else ten &= 1

:

if (ten -- 1) {

teftoflg - TRUE;

leftover *t;

}

if (eacount>termcnt) return FALSE;

return (olen)

;

valplot (inval)

int inval;

{

int nxcur;

int vat;

if (plotflag) return;

if (plotccnt»-2) {

if (chanval « plotchnl) C

val - ((inval-2048) » (5-plotgain)) + 64;

if (vat > 127) vat - 127;

if (val < 0) vat - 0;

nxcur (xcur1--319) ? : xcur1+1;

crt_wdot (scvaly[nxcur] , nxcur ,0) ; /* Turn off dot */

crt_wdot (scvaty[xcur1]=val,xcur1 , 1) ; /* Turn on dot */

xcurl nxcur;

}

if (chanval « plotchn2) {

vat - ((inval-2048) » (5-plotgain))+64;

if (vat > 127) val - 127;

if (vat < 0) vat - 0;

nxcur - (xcur2«=639) ? 320 : xcur2+1

;

crt_wdot(scvaly[nxcur] , nxcur, 0) ; /* Turn off dot */

crt_wdot(scvaly[xcur2]-vat,xcur2, 1) ; /* Turn on dot */

xcur2 nxcur;

}

}

else if (plotccnt— 1) {

PROGRAM: DTDATA.C

if (chanval « plotchnl) {

val ((inval-2048) » (5-plotgain) }+64;

if (val > 127) val - 127;

if {val < 0) val - 0;

nxcur - (xcur1«639) ? : xcur1+1;

crt_wdot (scvalytnxcur] , nxcur ,0) ; /* Turn off dot */

crt_wdot (scvaly[xcur1]=val,xcur1 , 1) ; /* Turn on dot */

xcurl - nxcur;

}

>

if (++chanva1 > chancntl) chanval=0;

return;

/* Fetch the current DMA offset register value */

unsigned getoffO
{

ttifdef NOHARD

static unsigned dmaptr;

static int gotinit - FALSE;

if (gotinit) {

dmaptr+»l

;

if (dmaptr-dmaof f >= dmalen) dmaptr = dmaoff;

return (dmaptr)

;

} else {

dmaptr = dmaoff;

gotinit - TRUE;

return (dmaptr)

;

}

ttelse

unsigned x,y, i;

for <i=0; i<40; i++) {

x = inportb(2)

;

x +- inportb(2)«8;

y = inportb(2)

;

y +- inportb(2)«8;

if (x«»y) return (x)

;

>

fprintf (stderr, "Unable to get stable DMA offset\n");
delay(50); /* Delay about 5 seconds */
return (x)

;

Jtendif

}

/* Check for keyboard input and return character if found */

170

PROGRAM: DTDATA.C

int getconf

)

int status;

struct regval call_reg , ret_reg

;

call_reg.ax - 0x0600;

cal.l_reg.dx * OxOOff;

status - sysint21 (&call_reg,&ret_reg)

;

if (status&0x40) return(EOF);

return (ret_reg.ax & Oxff);

/* Wait for a character from the keyboard */

wgetcont

)

{

int i;

while((i=getcon()) « EOF)

return(i)

;

/* Prompt the user for parameters */

setmenu(

)

{

float samprate, duration . spschan;

int i,ii;

unsigned long 11;

FILE *outfd;

char inbuf[65],c;

logfid[0] « '\0'

;

logflag - FALSE;

duration = intclock ? termcnt*period*DTCL0CK/2

; termcnt*period*BVCL0CK/2/(1+chancnt1)

;

if (termcnt > 2000000000) duration = 0;

for (;;) {

samprate intclock ? 1 /(period*DTCL0CK)

: (1+chancntl)/(period*BVCLOCK)

;

termcnt * 2*duration*samprate;

if (termcnt « 0) termcnt = 2147000000;
duration termcnt/samprate/2

;

if (termcnt > 2000000000) duration = 0;

spschan samprate/(chancntl+1)

;

if <spschan*plotccnt > MAXPL0TR) plotflag = FALSE;
else plotflag TRUE;

if (plotccnt < 1) plotflag = FALSE;

printf ("\n")

;

printfCA. Recall parameters\n")

;

171

PROGRAM: DTDATA.C

printf ("B. Disk filename: ");

if (logflag) print f ("%s\n" , log fid)

;

else printf ("<no disk log>\n");

printf ("C. Number of channels to record: %d\n" ,chancnt1+1)

;

printf <"D. Sample rate per channel: %.2g Hz\n" , spschan)

;

printf ("E. Duration of sampling: **);

if (duration « 0) printf ("<continuous>\n")

;

else printf ("%.2g seconds\n", duration);

printf ("F. Number of display channels: ");

if (plotflag || plotccnt-»0) printf ("!id\n" .plotccnt)

;

else printf ("<none—display rate too high>\n");

if (intclock) printf <"G. Clocking: INTERNAL\n")

;

else printf ("G. Clocking: EXTERNALW) ;

printf ("H. Data log\n");

printf ("I. Save parameters\n") ;

printf ("\nEnter letter of item to change, RETURN to begin, ");

printf ("or ESC to abort:");

c tolower(wgetcon())

;

printf ("\n")

;

switch(c) {

case '\033
'

:

return FALSE; /* Set to abort */

break;

case '\r '

:

return TRUE; /* Set to begin */

break;

case 'b'

:

printf ("Enter filename for disk log file or RETURN for none: ");

fgets(inbuf,65,stdin)

;

sscanf (inbuf , "%65s" , logf id)

;

logflag = FALSE; /* Assume no log file */

if dogfid[0] - '\0') break; /* We guessed right */

logflag - TRUE;

outfd fopendogf id, "rb") ; /* See if file exists */

if (outfd - 0) {

printf ("***WARNING*** File %s already exists\n"

logf id)

;

fclose(outf d)

;

>

break;

case 'c'

:

printf ("Enter number of channels to sample (1-8): ");

fgets (inbuf ,65, stdin)

;

sscanf (inbuf , "Xd" , &ii)

;

if (ii < 1) ii - 1;

else if (ii > 8) ii - 8;

samprate - spschan*ii;

chancntl ii-1

;

172

PROGRAM: DTDATA.C

if {samprate > 7500) samprate » 7500;

period = intclock ? 1 /(samprate*DTCL0CK)

: (1+chancnt1)/(samprate*BVCLOCK)

;

break

;

case 'd'

:

printf("Enter sample rate per channel (in samples/ second) : "
)

;

fgets(inbuf ,65,stdin) ;

sscanf (inbuf

,

"%f "
, Sspschan)

;

samprate spschan*(chancnt1 +1)

;

if (samprate > 7500) samprate = 7500;

period « intclock ? 1 /(samprate*DTCL0CK)

: (1+chancntl)/(samprate*BVCL0CK)

;

break;

case '
e

'

:

printf ("Enter duration in seconds or for continuous: ");

fgets{ inbuf ,65,stdin)

;

sscanf (inbuf , "%f", &durat ion);

if (duration>86400) duration 86400; /* 24 hours */

if (duration<0) duration * 0;

break;

case '

f
'

:

printf ("Enter number of channels to display in real time (0-2): ");

fgets (inbuf, 65, stdin);

sscanf (inbuf , "%d",&plotccnt)

;

if (plotccnt>2) plotccnt-2;

break;

case 'g'

:

intclock intclock;

if (intclock)

period-. 5+period*BVCL0CK/DTCL0CK/(chancnt1+1)

;

else period».5+period*DTCL0CK/BVCL0CK*(chancnt1+1)

;

break;

case '

h

r

:

printf ("Data log — Present value shown in parens\n");
for (i-0; iOchancntl ; i++) {

printf ("Channel Xd Data. Press RETURN to leave unchanged\n" , i+1)

;

printf ("Enter location code <» 15 chars Us) : " ,&loccode[i] [0])

;

fgets(inbuf, 65, stdin);

if UnbuHO] - '\n') {

sscanf (inbuf , "%1 5s" ,Sloccode[i] [0])

;

}

printf ("Enter amplifier attenuation in dB (%d): ",

(int) (.5+20*logl0((double) ampattn[i])));

fgets(inbuf, 65, stdin)

;

if (inbuftO] - '\n') {

sscanf (inbuf ,

n
'/.d" , &ii) ;

ampattnfi] = pow(10.0, 11/20.);

}

printf ("Is external 12 dB attenuator present (N) : ");

173

PROGRAM: DTDATA.C

fgetsUnbuf ,65.stdin) ;

lower(inbuf)

;

if (inbuf[0] « 'y') ampattn[i] *= 3.98107;

printf ("Enter low pass filter setting <» 5 chars (Xs): ",

&lpfval[i][0]);

fgets{ inbuf ,65, stdin)

;

if (inbuf[0] - '\r-') {

sscanf (inbuf , "X5s H
, &lpfval[i][0])

;

>

}

break;

case '
i

'

:

outfd fopen(def f id, "w")

;

if (outfd -= 0)

printf ("Error opening file Xs",deffid);

else {

fprintf (outfd, "XD\n", (unsigned long) period)

;

fprintf (outfd, "%D\n", termcnt)

;

fprintf (outfd, "Xd\n" .chancntl)

;

fprintf (outfd, "Xd\n", plot cent)

;

fprintf (outfd, "Xd\n", in telock);

for (i»0; i<8; i++) {

fprintf (outfd, "Jle\n" , ampattn[i]) ;

fprintf (outfd, "Xs\n",&lpfval[i] [0])

;

fprintf (outfd, rt%s\n" ,&loccode[i] [0])

;

)

fclose(outfd)

;

}

break

;

outfd - fopen(def f id, "r")

;

if (outfd « 0)

printf ("Error opening file Xs",deffid);

else {

fgets(inbuf ,65, outfd)

;

sscanf (inbuf , "XD" ,&ll)

;

period 11;

fgetsUnbuf , 65, outfd);

sscanf (inbuf , "XD" ,&termcnt)

;

fgetsCinbuf. 65, outfd)

;

sscanf (inbuf , "Xd" .Schancntl)

;

fgetsUnbuf ,65,outfd)
|

sscanf (inbuf , "Xd" , Splotccnt)

;

fgetsUnbuf, 65, outfd) ;

sscanf (inbuf , "Xd",&in telock)

;

for (i-0; i<8; i++) {

fgets(inbuf, 65, outfd)

;

sscanf (inbuf , "Xf" , &attn[i])

;

fgetsCinbuf ,65, outfd);

174

PROGRAM: DTDATA.C

sscanf (inbuf . "Xs" ,&lpf val[i] [0] >

;

fgets(inbuf,65,outfd);

sscanf (inbuf, "Xs" , &loccode[i] [0]) ;

}

fclose(outf d)

;

samprate - intclock ? 1 /(period*DTCL0CK)

: (1+chancnt1)/(period*BVCLOCK)

;

duration termcnt/samprate/2;

}

break;

default

:

printf ("Invalid request\n");

break;

}

/* Initialize the log file and write the header to it. */

/* Also clear the CRT and preformat it. */

bavinitO

{

int temp.i;

ULONG tempi;

float samprate;

struct bv_hdr header;

UCHAR *ucp'tr;

if (logflag) {

logfd - creat(logfid.BWRITE);

if (logfd < 0) {

fprintf (stderr, "Error creating file Xs\n" , logf id)

;

return(FALSE);

}

ucptr - (UCHAR *) &header; /* Pointer to header */

for (temp 0; temp < sizeof (struct bv_hdr) ; temp++)

ucptr++ 0; / Clear header */

header ,bv_bv[0] - 'B'; /* Put identifier on header */

header. bv_bv[1] - 'V
header ,bv_ds[0] 'D'

header .bv_ds[1] » 'S'

header. bv_vers - i2swap(2); /* Version number 2 */
header. bv_compv = i2swap(2); /* Compatibility version */
header .bv_hdrsz * i2swap(sizeof (struct bv_hdr))

;

header. bv_csflg - BV_CSASC; /* Using ASCII */

header. bv_dvflg TRUE; /* Assume user set date */

qtimeO; /* Query the current time */
header ,bv_dtyy - i2swap(timestam.year)

;

header .bv_dtmo = i2swap(timestam. mnth)

;

175

PROGRAM: DTDATA.C

header . bv_dtdd i2swap(timestam.day)

;

header. bv_dthh - i2swap(timestam. hour)

;

header. bv_dtmi « i2swap(timestam. min)

;

hBader.bv_dtss = i2swap(timestam. sec)

;

header. bv_chnct - i2swap((unsigned) chancntl+1); /* # chans */
header. bv_chnof - 0; /* Number of first channel */
header. bv_offvl = i2swap(2048)

; /* Subtracted from each sample */

sampr-ate - intclock ? 1/(period*DTCL0CK) /(1+chancnt1)

: 1/(period*BVCL0CK):
tempi = samprate*100000.0+.5; /* Convert to long int */
header. bv_sps i4swap(tempi)

;

header. bv_spsm1 = i4swap((ULONG) 1); /* Multiply by 1 */
header. bv_spsd1 » i4swap((ULONG) 100000); /* Divide by 100000 */
header . bv_spsm2 = i2swap(1);

header. bv_spsd2 - i2swap(1);
for (i=0; i<8; i+t) {

header. bv_upiCi] - i4swap((ULONG) 384);

/* Units/incr is 1 volt per 384 cm/sec/sec */
header .bv_upim1 [i]«i4swap((ULONG) (. 5+1 000*ampattn[i]))

;

/* Multiplier */

header. bv_upid1 [i] = i4swap((UL0NGJ2048 * 316 * 316);
/* Divider (12 bits/word; ampgain=316**2) */

header. bv_upim2[i] - 12swap((USH0RT) 10);

/* Full scale reading is 10 volts */
header. bv_upid2[i] - i2swap((USHORT) (1«gain)*1000)

;

/* DT board gain and ampattn multiplier */
st rcpyUheader

. bv_locat [i] [0] , &loccode[i] [0]) ;

strcpy(&header.bv_lpf [i] [0] ,&lpfval[i] [0])

;

}

temp = write(logfd,&header,sizeof (struct bv_hdr));
if (temp » sizeof (struct bv_hdr)) {

fprintf (stderr, "Error logging to disk\n");
logflag - FALSE;

>

if (logflag && logfd>»0) closedogf d)

;

}

if (plotflag) crt_mode(6);
else crt_mode(2);

if (logflag) {

crt_srcp(20,0, 0) ;

printf ("Logging data to disk file Xs'Mogfid)-
}

if (plotflag) {

if (plotccnt>-1) {

crt_srcp(21 ,0,0)

;

printf ("Displaying channel %d",plotchnl+1)

;

if (chancntl > 0) printf (" F1 changes");
I

176

-

PROGRAM: DTDATA.C

if (plotccnt>=2) {

crt_srcp(21 ,40,0)

;

printf ("Displaying channel %d",plotchn2+1)

;

printf (" F2 changes");

>

crt_srcp(22,0,0)

;

printf (" ALT F1-F6 adjusts display gain");

}

crt_srcp(23,0,0)

;

if (logflag--2)

printf ("Press SPACE to begin disk logging or ESC to abort"

else printf ("ESC key ends data collection");

return TRUE;

/* Close the data log file and wait for the user to hit a key */

bavf ini (

)

{

crt_srcp(23,0,0)

;

printf ("Press any key to continue: ");

if (logflag)

if { close (logfd) «0)

fprintf (stderr, "\nError closing disk file %s" , logf id)

;

wgetcon()

;

crt_mode(2)

;

/* Allocate a buffer for DMA (which means it can't cross a

physical 64K boundary—silly DMA setup, isn't it?) */
allodma(

)

{

struct reg,val rr.sr;

unsigned flags;

unsigned long point;

sr.bx » OxffOO; /* Impossibly big request */
sr.ax - 0x4800;

sysint21 (&sr,S.rr)

;

/* Find out how much memory we have */
if (rr.bx <- 0x1 00+DMABSIZE»3) { /* Want double size buffer */

fprintf (stderr, "Insufficient memory—%xh paragraphs available\n"
rr.bx)

;

return FALSE;

}

sr.bx » DMABSIZE»3; /* Number of paragraphs wanted */
sr.ax * 0x4800;

flags = sysint21 (&sr,&rr) ; /* Allocate cache (ax gets segment) */

177

PROGRAM: DTDATA.C

if (flags&OxOU {

fprintf (stderr,"r

return FALSE;

)

dmalen - DMABSIZE-1
;

point (long)rr.ax * 16;

dmapage - point»16;
dmaoff point&Oxffff

ttifdef

tfendif

}

/* This should be impossible */
Where's the memory?\n")

;

/* 8237 wants length-1 */

/* Convert from segment to offset */

/* This is page where buffer starts */

/* This is offset into page */
.1 (<long)dmaoff+DMABSIZE-1 > Oxffff) { /* See if buffer spans page */

dmapage++;

dmaoff = 0;

}

printf ("dmapage-X04x. dmaof f-%04x, dmalen=%04x\n",
dmapage , dmaoff , dmalen+1)

;

NOHARD

filldmaf)

;

return TRUE:

ttifdef NOHARD

/* Put some dummy data into the allocated buffer to make the
simulated data collection more interesting */

filldmaO

int i.cnt;

float x.val;

unsigned of f set ,wave[2048]

;

float sps=»2000;

float pi2-6. 283185;

float freq1=101

;

float freq2-796;

float f req3-251

;

float freq4=480;

extern double sin();

printf ("Initializing simulated data");
for (i»0; i<2048; i++) {

if ((i&Oxff) -* 0) printf {".");
x = i*pi2/sps;

val - Sin(freq1*x)+sin(freq2*x)+2*sin((freq4-fi/51 .2)*x) ;

waveti] - 2048+200*<val * (1+sin(19*x))*sin(f req3*x))

;

printf ("\n");

cnt - (dmalen+1)/2048/2;
offset = dmaoff;

for (i«0; i<cnt; i++) {

PROGRAM: DTDATA.C

movblock(wave
r rv. sds, offset , dmapage«1 2, 2048*2) ;

offset += 2048*2;

/* What time is it? */
qtimeC

)

{

struct regval srv.rrv;

srv.ax » 0x2c00;

sysint21 (&srv,&rrv)

;

timestam.hour » rrv.cx » 8;

timestam.min = rrv.cx & Oxff;

timestam.sec = rrv.dx » 8;

timestam.hnd - rrv.dx & Oxff;
srv.ax « 0x2a00;

sysint21 (&srv,&rrv)

;

t imestam . year «• rrv.cx;

timestam.mnth - rrv.dx » 8;

timestam.day rrv.dx & Oxff;
return;

/* 0x21 interrupt to get back time */

/* now for the date */

/* Byte-swap a two-byte integer */
USHORT i2swap(inval)
USHORT inval;

{

return ((inval&Oxf f)«8)
| (inval»8)-

>

/* Byte-swap a four-byte integer */
ULONG i4swap(inval)
ULONG inval;

{

return ((inval&Oxf f) « 24)
|

(inval»24)
|

((inval&Oxf fOO) « 8) (

((inval&Oxf f 0000) » 8)

}

/* Twiddle the machine's thumbs for a specified length */
delay(tenths)

int tenths;

PROGRAM : DTDATA .

C

int I, J;

for (i»0; Ktenths; i++)

for (j«0; j<4500; j++)

INCLUDE FILE: BVDS.H

A**,,.,.,,.

* *
* Vibration Analysis System (VAS) *
* *
* (c) Copyright 1986 by Brick A. Verser *
* *

*

* INCLUDE FILE NAME:

*

* BVDS.H
*

* FUNCTION:

To define the format of the header created by the
DTDATA command, and read by other parts of VAS.

* REVISION HISTORY:

*

* 1 .0 ORIGINAL CODE
*

* REVISION DATE
*

* 10 JUNE 26, 1986
*

*/

PROGRAMMER

BRICK VERSER

struct bv_hdr {

UCHAR

UCHAR

USHORT

USHORT

USHORT

UCHAR

bv_bv[2];

bv_ds[2];

bv_vers;

bv_compv;

bv_hdrsz;

bv_rsv1[6];

UCHAR

UCHAR

USHORT

USHORT

USHORT

USHORT

USHORT

USHORT

UCHAR

/* Bits defined

define BV_CSASC 0x80
define BV_CSEBC 0x40

bv_csflg:

bv_dvf Ig;
bv_dtyy;

bv_dtmo;

bv_dtdd;

bv_dthh;

bv_dtmi;

bv_dtss:

bv_rsv2[2]

;

bv_csflg */

/* 000 'BV in ASCII (0x4256) */

/* 002 'DS' in ASCII (0x4463) */
/* 004 Version identifier */
/* 006 Compatible version id */
/* 008 Size of this header in bytes */
/* OOA Reserved for future expansion */

/* 010 Character set flag */
/* 011 Date valid flag (1 if date ok) */
/* 012 Year */

/* 014 Month */

/* 016 Day */

/* 018 Hour */

/* 01A Minute */

/* 01 C Second */

/* 01 E Reserved */

/* ASCII character set used */
/* EBCDIC character set used */

UCHAR bv_rsv5[0x60]; /* 020 Reserved */

INCLUDE FILE: BVDS.H

USHORT bv_chnct;

USHORT bv_chnof;

USHORT bv_offvl;

UCHAR bv_rsv6[10];

/* 080 Number of data channels in file */

/* 082 Number of first data channel (0 orig) */

/* 084 Offset to subtract from each sample */
/* 086 Reserved */

UL0NG bv_sps;

UL0NG bv_spsm1

;

ULONG bv_spsd1
;

USHORT bv_spsm2;

USHORT bv_spsd2;

ULONQ bv_upi[8]

;

ULONG bv_upim1 [8]

ULONG bv_upidl [8]

USHORT bv_upim2[8]

USHORT bv_upid2[8]

/* 090 Samples per second per channel */

/* 094 First sps multiplier */

/* 098 First sps divider */

/* 09C Second sps multiplier */

/* 09E Second sps divider */

/* 0A0 Units per increment (eg. Volts/bit or

CM/sec per bit) for each channel */

/* 0C0 First upi multiplier */
/* 0E0 First upi divider */

/* 100 Second upi multiplier */

/* 110 Second upi divider */

UCHAR bv_locat[8][16];/* 120 Location code for each of 8 channels */
UCHAR bv_lpf[8][6]; /* 1A Low pass filter setting for each chan */
UCHAR bv_rsv11[0x30]; /* 1 DO Reserved */

PROGRAM: PLTFAS.C

* *

* Vibration Analysis System (VAS) *

* *

* (o) Copyright 1986 by Brick A. Verser *

********************* ***

* MODULE NAME:

*

* PLTFAS

*

* FUNCTION:

*

* To compute and plot a Fourier amplitude spectrum
* of a single channel from a data file collected by
* the DTDATA command.
*

* EXTERNAL ROUTINES REQUIRED:

*

* FFT - C version of Fast Fourier Transform.
* GR - Simple C graphics routines.
* PCGRAF - Simple C graphics routines.
* GETCON - To check for keyboard characters.
* BVDS.H - Basic Vibration Data Structure include file.
*

* In addition, many routines from the C run-time
* library are used.

*

* REVISION HISTORY:

1 .0 ORIGINAL CODE

REVISION DATE

1.0 JUNE 26. 1986

*/

ftinclude "stdio.h"

((define TRUE 1

((define FALSE

PROGRAMMER

BRICK VERSER

typedef unsigned char UCHAR;
typedef unsigned long ULONG;
typedef unsigned short USHORT;

((include "bvds.h"

PROGRAM: PLTFAS .

C

UCHAR cpyi-ightf] = "Copyright (c) 198S, Brick A Verser";

extern double sqrt () , atan2 I) , logl 0()

;

USHORT i2swap();

ULONG i4swap();

main(argcargv)
int argc;

char *argv[]

;

{

double x,y,maxmag,mag;

double xr[1025].xi[1025];

char hdbuff [sizeof (struct bv_hdr)]

struct bv_hdr *header;

int offset, inval;

int i,j,k.icnt,fno,insize;

int period . chancnt , chanplot

;

int logflag=FALSE;

int promptf l=FALSE;

int argcpy;

char **argvpy

;

long tempi;

double sps, vpb;

FILE *fptr;

char inbuf [80], infid[65];

argcpy = argc-1

;

argvpy argv+1

;

if (argcpy < 1) {

promptfl - TRUE;

chanplot 1

;

printf ("Enter data fileid: ");

fgets(inbuf ,65, stdin)

;

sscanf (inbuf , "%65s", inf id)

;

if (infid[0] « '\Q') {

fprintf(stderr, "Aborted\n")

return;

}

/* Prompt if no parms given */

)

else {

strncpy(infid,*argvpy++, sizeof (infid)); /* First parm is fileid */
argcpy—

;

}

fptr = fopen(inf id,"rb")

;

if (fptr — 0) {

f printf (stderr, "Error opening input file %s\n",inf id)

;

return;

184

PROGRAM: PLTFAS.C

fno - f ileno(f ptr)

;

insize - read(fno,hdbuff ,sizeof (hdbuff)); /* Fetch a chunk of data */
if (insize - sizeof (hdbuff)) {

f printf (stderr, "File has no header\n");
return;

}

header = (struct bv_hdr *) hdbuff;

if (ckhdr(header) — FALSE) return; /* Exit if bad header */
chancnt = i2swap(header->bv_chnct

) ; /* Number of chans of data */
sps i4swap(header->bv_sps)*i4swap(header->bv_spsm1)/

i4swap(header->bv_spsd1)#i2swap(header->bv_spsm2)/
i2swap(header->bv_spsd2) ; /* Sample rate */

offset = i2swap(header->bv_of fvl) ; /* Offset */
k = i2swap(header->bv_hdrsz) - sizeof (hdbuff);
if (k > 0) /* Flush any remaining header */

for (i=0; i < k; i++)

if (read(fno,&inval, 1) = 1) nodataO;
if (read(fno,&inval,2) = 2) nodataO; /* Leave data in inval */•

if (chancnt « 1) { /* If only one channel in data... */
chanplot =1; /* Don't bother with parm or prompt */
argcpy— ; argvpy++;

>

else {

if (argcpy > 0) {

strncpy (inbuf ,*argvpy++, sizeof (inbuf))

;

argcpy—

;

}

else {

printf ("Enter channel number to plot (\-%d): ".chancnt)
f gets (inbuf ,65, stdin)

;

}

if (sscanf (inbuf , "JSd'\&chanplot)==0) chanplot = 1;

if (chanplot < 1) chanplot - 1;

if (chanplot > chancnt) chanplot chancnt-
}

if (argcpy > 0) logflag - TRUE; /* Any extra parm turns on dB plot */
else if (promptfl) {

printf ("Is logarithmic scaling desired (Y/N) : "
)

;

fgets(inbuf ,65, stdin)

;

if (inbuf[0]«'Y' || inbuf [0]--V) logf lag=TRUE;
}

vpb = (double) i4swap(header->bv_upi[chanplot-1]) *
(double) i4swap(header->bv_upim1 [chanplot-1]) /

(double) i4swap(header->bv_upid1 [chanplot-1]) *
(double) i2swap(header->bv_upim2[chanplot-1]) /
(double) i2swap(header->bv_upid2[chanplot-l]) ; /* Units/bit */

for (i-1; i<chanplot; i++) /* Skip to our channel */

PROGRAM: PLTFAS.C

if (read(fno,8.inval,2) =2) nodataO;

maxmag =0; /* Use maxmag as a sum */
for (i - 1 ; i<-1024; i-f+) {

xr[i] = vpb*(inval-of fset)

;

xi[i] - 0;

maxmag +» xr[i]

;

for (k = 1; k<chancnt; k++) /* Skip over channels */
read(fno,&inval,2)

;

if (read(fno,&inval,2) =2) break;

}

f closetf ptr)

;

icnt i; /* Number of elements we read */
if (icnt >1024) icnt - 1024;
maxmag /= icnt;

for (i = 1; i<=icnt; i++)

xr[i] xr[i] - maxmag;
for (i - icnt+1 ; i<=1024; i++) { /* Zero pad */

xr[i] - 0;

xi[i) - 0;

}

fft(xr,xi, 1024.0);
maxmag -1 ; /« Keep track of maximum magnitude */
for (i=1; i<=512; i++) {

mag - sqrt (xr[i]*xr[i]+xi[i]*xi[i])

;

if (mag>maxmag) maxmag mag;
xr[i] = mag;

}

for- (i=1 ; i<-512; i++)

xr[i] « xr[i]/maxmag; /* Normalize each value */
if (logflag) {

for (i=1; i<=51 2; i++) { /* Show 50 dB on plot */
if <xr[i] < .00001) xrti] - .00001;
xr[i] - (log10(xr[i])+5)/5;

)

}

grinit (1)

;

viewport ((double) 0.099, (double) .901, (double) .4, (double) 1);
window ((double) 0, (double) 512, (double) 0, (double) 1);
frame ()

;

for (y = .2; y<.999; y+-.2) {

moveto((double) 0, y);
drawto((double) 2, y)

;

moveto((double) 512, y);
drawto((double) 510, y)

;

J

for (x • 64; x<=51 1 ; x+-64) {

moveto(x, (double) 0);
drawto(x, (double) .015);

186

PROGRAM: PLTFAS.C

if (tint) x % 128 «- 0) drawto(x, (double) .03);
moveto(x, (double) 1);

drawto(x, (double) ,985);

if ((int) x % 128 « 0) drawto(x, (double) .97);

move tot (double) 0, (double) 0);
for (i - 1 ; i<=512; 1++) {

drawtof (double) i-1 , xr[i]);
}

crt_srcp{23,0,0)

;

printf("File '%s' Channel %d, Max Frequency=!i.4g"

,

inf id.chanplot, sps/2)

;

crt_srcp(24,0,0)

;

printf ("Max Amplitude^. 4g , 8Points=%d",
maxmag, icnt)

;

if (logflag) printf (", -20dB per vertical mark");
wgetcon()

;

grterm()

;

int ckhdr(header)

struct bv_hdr *header;

{

if (header->bv_bv[0] - 'B' || header->bv_bv[1] = 'V ||

header->bv_ds[0] f D' || header->bv_ds[1] - 'S') {

fprintf (stderr, "Incorrect or missing header\n");
return FALSE;

}

if <i2swap(header->bv_compv) 2) {

fprintf (stderr, /* We support header V1 */
"Header incompatibility—bv_vers=%d, bv_compv=%d\n'\
header->bv_vers, header->bv_compv)

;

return FALSE; •

>

if ((header->bv_csflg & BV_CSASC) =*= 0) {

fprintf (stderr, "Incompatible character set in file\n");
return FALSE;

>

return TRUE;

)

nodata(

)

{

fprintf (stderr, "Insufficient data in file\n");
exitO;

}

PROGRAM: PLTFAS.C

USHORT i2swap(inval)

USHORT inval;

{

return ((inval&Oxf f)«8)
|
(inval»8);

ULONG

ULONG

{

i4swap(inval)

inval;

return ((inval&Oxf f) « 24)
|

(inval»24)
|

((inval&Oxf fOO) « 8)
|

((inval&Oxf fOOOO) » 8):

PROGRAM: PLTPSD.C

* *
* Vibration Analysis System (VAS) *

* *
* (c) Copyright 1986 by Brick A. Verser *
* *

*

* MODULE NAME:

* PLTPSD

* To compute and plot a power spectral density estimate
* of a single channel from a data file collected by
* the DTDATA command.
*

* EXTERNAL ROUTINES REQUIRED:
*

* FFT ~ C version of Fast Fourier Transform.
* GR Simple C graphics routines.
* PCGRAF - Simple C graphics routines.
* GETCON - To check for keyboard characters.
* BVDS.H - Basic Vibration Data Structure include file
*

* In addition, many routines from the C run-time
* library are used.

* REVISION HISTORY:
*

* 1.0 ORIGINAL CODE
*

* REVISION DATE

JUNE 26. 19861 .0

«/

((include "stdio.h"

•tdefine TRUE 1

((define FALSE

typedef unsigned char UCHAR;
typedef unsigned long ULONG;
typedef unsigned short USHORT;

((include "bvds.h"

PROGRAMMER

BRICK VERSER

PROGRAM: PLTPSD.C

UCHAR cpyrlghtn - "Copyright (c) 1986, Brick A Verser";

extern double sqrt () ,atan2() ,log10()

;

USHORT i2swap();

ULONG i4swap();

main(argcargv)
int argc;

char

{

*argv[]

;

double x.y ,maxinag,mag;

double xr[1025],xi[1025];
char hdbuff [sizeof (struct bvjidr)];
struct bv_hdr *header;
int offset, inval;

int i, j,k,icnt,fno,insize;
int period,chancnt,chanplot;
int logflag=FALSE;

int promptfl=FALSE;
int argcpy;

char **argvpy;

long tempi;

double sps, vpb;

FILE *fptr;
char inbuf[80],infid[65];

argcpy = argc-1

;

argvpy = argv+1

;

if (argcpy < 1) { /» prompt if no parms given */
promptfl - TRUE;

chanplot = 1

;

printf ("Enter data fileid: ");

fgets(inbuf,65,stdin);

sscanf (inbuf , "X65s" , inf id)

;

if (infid[0] -= '\0') {

fprintf (stderr, "Aborted\n")

;

return;

}

}

else {

strncpy(infid,*argvpy++, sizeof (infid)); /* First parm is fileid */
argcpy—

;

}

fptr - fopen(inf id, "rb")
;

if (fptr == 0) {

fprintf (stderr, "Error opening input file Xs\n" , inf id) ;

return;

>

PROGRAM: PLTPSD.C

fno = f ileno(fptr)

;

insize - read(f no, hdbuff , sizeof (hdbuff)); /* Fetch a chunk of data */
if (insize - sizeof (hdbuff)) {

f printf (stderr, "File has no headerW);
return;

}

header = (struct bvjidr *) hdbuff;

if (ckhdr(header) == FALSE) return; /* Exit if bad header */
chancnt - i2swap(header->bv_chnct) ; /* Number of chans of data */
sps i4swap(header->bv_sps)*i4swap(header->bv_spsm1)/

i4swap(header->bv_spsd1)*i2swap(header->bv_spsm2)/
i2swap(header->bv_spsd2); /* Sample rate */

offset = i2swap(header->bv_of fvl) ; /* Offset */
k = i2swap(header->bv_hdrsz) - sizeof (hdbuff);
if (k > 0) /# Flush any remaining header */

for (i=0; i < k; i++)

if (read(f no.&inval, 1) - 1) nodataO;
if (read(fno.&inval,2) = 2) nodataO; /* Leave data in inval */
if (chancnt = 1) { /* If only one channel in data... */

chanplot =1; /* Don't bother with parm or prompt */
argcpy— ; argvpy++

;

>

else {

if (argcpy > 0) {

strncpy(inbuf ,*argvpy++, sizeof (inbuf))

;

argcpy—

;

)

else {

printf ("Enter channel number to plot (1-%d): ", chancnt)
fgets(inbuf ,65, stdin)

;

}

if (sscanf (inbuf , "%d" ,&chanplot)«0) chanplot = 1;

if (chanplot < 1) chanplot - 1;

if (chanplot > chancnt) chanplot = chancnt;
>

if (argcpy > 0) logflag - TRUE; /* Any extra parm turns on dB plot */
else if (promptfl) {

printf ("Is logarithmic scaling desired (Y/N) : ");

fgets(inbuf ,65, stdin);
if (inbuUOJ^'Y 1

|| inbuf[0]=='y') logf lag=TRUE;
}

vpb = (double) i4swap(header->bv_upi[chanplot-1
] } *

(double) i4swap(header->bv_upim1[chanplot-1]) /
(double) i4swap(header->bv_upidl [chanplot-1]) *
(double) i2swap(header->bv_upim2[chanplot-1

]) /
(double) i2swap(header->bv_upid2[chanplot-l]) ; /* Units/bit */

for (i«i; i<chanplot; i++) /* Skip to our channel */

PROGRAM: PLTPSD.C

if <read(fno,&inval,2) =2) nodataO;

maxmag 0; /* Use maxmag as a sum */
for (i « 1 ; i<=1024; i++) {

xr[i] * vpb*(inval-offset)

;

xi[i] = 0;

maxmag + xr[i]

;

fop (k = 1 ; k<chancnt; k++) /* Skip over channels */
readtfno,&inval,2)

;

if (read(fno,&inval,2) -2) break;

}

fclose(f ptr)

;

icnt = i; /* Number of elements we read */
if (icnt >1024) icnt » 1024;

maxmag /» icnt;

for (i - 1 ; i<«icnt; i+-f)

xr[i] xp[i] - maxmag;
for (i = icnt+1; i<=1024; i++) { /* Zero pad */

xr[i] = 0;

xi[i] = 0;

}

fft(xr,xi, 1024,0);

maxmag -1; /* Keep track of maximum magnitude */
for (i-1; i<-512; i++) {

mag - xr[i]*xr[i]+xi[i]*xi[i]

;

if (mag>maxmag) maxmag - mag;

xr[i] mag;

}

for (4—1 j i<«512; i++)

xr[i] xr[i]/maxmag; /* Normalize each value */
if (logflag) {

for (i-1; i<«512; i++) { /* Show 50 dB on plot */
if (xr[i] < .00001) xr[i] - .00001;
xr[i] - (log10(xr[i])+5)/S;

}

}

grinit (1)

;

viewport ((double) 0.099, (double) .901, (double) .4, (double) 1);
window ((double) 0, (double) 512, (double) 0, (double) 1);
frame ()

;

for (y = .2; y<.999; y+«.2) {

moveto((double) 0, y);
drawto((double) 2, y) ;

moveto((double) 512. y);
drawto((double) 510, y)

;

)

for (x - 64; x<-511; X+-64) {

moveto(x, (double) 0);

drawto(x, (double) .015);

192

PROGRAM: PLTPSD.C

if C(int) x % 128 « 0) drawto(x, (double) .03);

moveto(x, (double) 1)

;

drawto(x, (double) .985);

if ((int) x % 128 « 0) drawto(x, (double) .97);

}

moveto((double) 0, (double) 0);

for (i - 1 ; i<=512; i++) {

drawto((double) i-1 , xr[i]);

}

crt_srcp(23,O,0)

;

printf("File r Xs' Channel %d, Max Frequency=%.4g",
infid,chanplot,sps/2)

;

crt_srcp(24,0,0)

;

print f ("Max Amplitude=%.4g, #Points=%d"

,

maxmag, icnt)

;

if (logflag) printf(", -20dB per vertical mark");
wgetcon()

;

grterm()

;

int ckhdr(header)

struct bv_hdr *header;

{

if (header->bv_bv[0] - *B' || header->bv_bv[1] = 'V ||

header->bv_ds[0] - *D* || header->bv_ds[1] = 'S') {

fprintf (stderr, "Incorrect or missing header\n");
return FALSE;

}

if (i2swap(header->bv_compv) » 2) {

fprintf (stderr, /* We support header V1 */
"Header incompatibility—bv_vers=%d, bv_compv=%d\n",
header->bv_vers, header->bv_compv)

;

return FALSE;

>

if ((header->bv_csflg & BV_CSASC) « 0) {

fprintf (stderr, "Incompatible character set in file\n");
return FALSE;

}

return TRUE;

>

nodata(

)

{

fprintf (stderr, "Insufficient data in file\n");
exitO;

}

PROGRAM: PLTPSD.C

USHORT i2swap(inval)

USHORT i rival;

{

return ((inval&Oxf f)«8)
| (inval»8);

)

ULONG i4swap(inval)

ULONG inval;

{

return ((inval&Oxf f) « 24)
|

(inval»24)
|

((inval&Oxf f 00) « 8)
|

((inval&Oxf f 0000) » 8);

}

PROGRAM: PLTDAT.C

* *
* Vibration Analysis System (VAS) *

* *

* (c) Copyright 1986 by Brick A. Verser *
* *

*

* MODULE NAME:

*

* PLTDAT

*

* FUNCTION:

*

* To display up to 1024 data points of a single
* channel from a data file collected by the
* DTDATA command

.

*

* EXTERNAL ROUTINES REQUIRED:
*

* GR - Simple C graphics routines.
* PCGRAF - Simple C graphics routines.
* GETCON - To check fop keyboard characters.
* BVDS.H - Basic Vibration Data Structure include file.
*

* In addition, many routines from the C run-time
* library are used.

* REVISION HISTORY:
*

« 1.0 ORIGINAL CODE
*

* REVISION DATE
*

* 1.0 JUNE 26, 1986

PROGRAMMER

BRICK VERSER

((include "stdio.h"

((define TRUE 1

((define FALSE

typedef unsigned char UCHAR;
typedef unsigned long ULONG;
typedef unsigned short USHORT;

((include "bvds.h"

PROGRAM: PLTDAT.C

UCHAR cpyright[] • "Copyright (c) 1986, Brick A Verser";

USHORT i2swap();

ULONG i4swap<);

main(argc,argv)

int argc;

char *argv[];

{

double x

,

y , maxmag , minmag , mag

;

double xr[1025];

int i, j ,k, icnt, f no, insize;

int period .chancnt , chanplot

;

int inval,of f set

;

char hdbuff [sizeof (struct bv_hdr)];
struct bv_hdr *header;

int argcpy;

char **argvpy

;

long tempi;

double sps, vpb, val;

FILE *fptr;

char inbuf [80] , inf id [65]

;

argcpy = apgc-1

;

argvpy - argv+1

;

if (argcpy < 1) { /* Prompt if no parms given */
chanplot 1

;

printf ("Enter data fileid: ");

fgets(inbuf,65,stdin);

sscanf (inbuf , "%65s", inf id)

;

if Unfid[0] « '\0') {

fprintf (stderr, "Aborted\n")

;

return;

>

}

else {

strncpyUnf id, *argvpy++, sizeof (infid)); /* First parm is fileid */
argcpy—

;

>

fptr = fopen(inf id,"rb")

;

if (fptr == 0) {

fprintf (stdepp, "Error opening input file Tis\n", inf id) ;

netupn;

}

fno » fileno(fptn);

insize - peadtfno, hdbuff, sizeof (hdbuff)); /* Fetch a chunk of data */
if (insize - sizeof (hdbuff)) {

fprintf (stdepp, "File has no headep\n M
);

return;

196

PROGRAM: PLTDAT.C

>

header (struct bv_hdr *) hdbuff;

if (ckhdr(header) -- FALSE) return; /* Exit if bad header */
chancnt = i2swap(header->bv_chnct) ; /* Number of chans of data */
sps - i4swap(header->bv_sps)*i4swap(header->bv_spsm1)/

i4swap(header->bv_spsd1)*i2swap(header->bv_spsm2)

/

i2swap(header->bv_spsd2); /* Sample rate */
offset =» i2swap(header->bv_of fvl) ; /* Offset */
k = i2swap(header->bv_hdrsz) - sizeof (hdbuff);
if (k > 0) /* Flush any remaining header */

for (i»0; i < k; i++)

if (read(fno,&inval, 1) = 1) nodataO;
if <read(fno,&inval,2) - 2) nodataO; /* Leave data in inval */
if (chancnt « 1) chanplot * 1;

else {

if (argcpy > 0) {

strncpyUnbuf ,*argvpy++, sizeof (inbuf)) ;

argcpy—

;

}

else {

}

printf ("Enter channel number to plot (1-%d):
fgets(inbuf ,65,stdin);

" .chancnt)

;

if (sscanf (inbuf , "JSd" ,&chanplot)==0) chanplot = 1;
if (chanplot < 1) chanplot - 1;

if (chanplot > chancnt) chanplot - chancnt;
}

for <i-1; i<chanplot; i++) /* Skip to our channel */
if (read(fno,8.inval,2) »2) nodataO;

vpb = (double) i4swap(header->bv_upi[chanplot-1]) *
(double) i4swap(header->bv_upim1 [chanplot-1]) /
(double) i4swap(header->bv_upid1 [chanplot-1]) *
(double) i2swap(header->bv_upim2[chanplot-1]) /
(double) i2swap(header->bv_upid2[chanplot-1]); /* Units/bit */

maxmag = -9e19; minmag - -maxmag;
for (i * 1 ; i<=1024; i++) {

val = (inval-offset)*vpb;
xr[i] - val;

if (val>maxmag) maxmag » val
if (vaKminmag) minmag - val
for (k * 1 ; k<chancnt; k++)

read(f no,&inval, 2)

;

if (read(fno,&inval,2) »2) break

/* Convert data value */

/* Skip over channels */

fclose(fptr)

;

icnt " i
> /* Number of elements we read */

if (icnt >1024) icnt = 1024;

197

PROGRAM: PLTDAT.C

grinit (1)

;

viewports (double) 0.099, (double) .901, (double) .2. (double) 1);
window ((double) 0, (double) lcnt-1 , minmag, maxmag);
frame ()

;

moveto((double) 0. (double) 0);
for Ci » 1; i<=icnt; i++) {

drawto((double) (i-1), xr[i]);

)

crt_srcp(23,0,0)

;

printfC'File 'Xs\ Channel Xd. sps - X.2g", infid.chanplot .sps)

;

crt_srcp(24,0,0);

printf ("maximum = X.3g cm/sec/sec minimum = •/,. 3gom/sec/seo #pts • 7.A"

maxmag, minmag, icnt)

;

wgetconO ;

grtermt)

;

int ckhdr(header)

struct bv_hdr *header;

{

if <header->bv_bv[0] - 'B' || header->bv_bv[1] = 'V' ||

header->bv_dst0] » 'D' || header->bv_ds[1] • 'S') {

fprintf (stderr, "Incorrect or missing header\n");
return FALSE;

}

if (i2swap(header->bv_compv) = 2) {

fprintf(stderr, /» We support header V2 */
"Header incompatibility—bv_vers-Xd, bv_compv=Xd\n"

,

header->bv_vers, header—>bv_compv)

;

return FALSE;

}

if ((header->bv_csflg & BV_CSASC) == 0) {

fprintf (stderr, "Incompatible character set in file\n");
return FALSE;

}

return TRUE;

nodata(

)

{

fprintf (stderr, "Insufficient data in file\n")-
exitO;

J

PROGRAM: PLTDAT.C

USHORT i2sv«ap(inval)

USHORT inval;

{

return ((inval&Oxf f)«8)
|
(inval»8);

}

ULONG i4sv«ap(inval)

ULONG inval;

{

return ((inval&Oxf f) « 24)
|

(inval»24)
|

((inval&Oxf fOO) « 8)
|

((inval&Oxf fOOOO) » 8);

PROGRAM: PLTDAT4.C

/MX***:,:*******

* *
* Vibration Analysis System (VAS) *

* *
* (c) Copyright 1985 by Brick A. Verser *

* *

*

* MODULE NAME:

*

* PLTDAT4
*

* FUNCTION:

*

* To display up to 1024 data points of a single
* channels from a data file collected by the
* DTDATA command

.

*

* EXTERNAL ROUTINES REQUIRED:
*

* GR - Simple C graphics routines.
* PCGRAF - Simple C graphics routines.
* GETCON - To check for keyboard characters.
* BVDS.H - Basic Vibration Data Structure include file.

*

*

In addition, many routines from the C run-time
library are used.

* REVISION HISTORY:

* 1.0 ORIGINAL CODE

REVISION

*

*/

DATE

JUNE 26. 1986

PROGRAMMER

BRICK VERSER

((include "stdio.h"

(•define TRUE 1

((define FALSE

typedef unsigned char UCHAR;
typedef unsigned long ULONG;
typedef unsigned short USHORT;

((include "bvds.h"

PROGRAM: PLTDAT4.C

UCHAR cpyright[] "Copyright (c) 1986, Brick A Verser";

USHORT i2swap();

ULONG i4swap();

main<argc,argv)

int argc;

char *argv[]

;

{

double x,y,maxmag,minmag,mag, val;

float xr[4][1025];

int i,j,k,icnt,fno,insize;

int period.chancnt.chanplot

;

int inval, of f set, max j , skipj

;

char hdbuff [sizeof (struct bv_hdr)];
struct bv_hdr *header;

int argcpy;

char **argvpy

;

long tempi;

double sps, vpb[8]

;

FILE *fptr;

char inbuf [80] , inf id [65]

;

argcpy = argc-1

;

argvpy = argv+1

j

if (argcpy < 1) { /* Prompt if no parms given */
chanplot 1

;

printf ("Enter data fileid: ");

fgets(inbuf ,65,stdin);

sscanf (inbuf ,"%65s", inf id)

;

if (infid[0] « '\0'
) {

fprintf (stderr,"Aborted\n")

;

return;

}

}

else {

strncpytinf id, *argvpy++, sizeof (infid)); /* First parm is fileid */
argcpy—

;

}

fptr = f open(inf id, "rb")

;

if (fptr =- 0) {

fprintf (stderr, "Error opening input file %s\n" , inf id)

;

return;

}

fno = f ileno(fptr)

;

insize - read(f no. hdbuff , sizeof (hdbuff)); /* Fetch a chunk of data */
if (insize - sizeof (hdbuff)) {

fprintf (stderr, "File has no header\n");
return;

201

PROGRAM: PLTDAT4.C

}

header = (struct bv_hdr *) hdbuff;

if (ckhdr(header) =- FALSE) return; /* Exit if bad header */

chancnt « i2swap(header->bv_chnct) ; /* Number of chans of data */

sps i4swap(headei—>bv_sps}*i4swap(headei—>bv_spsm1)/

i4swap(header->bv_spsd1)*i2swap(header->bv_spsm2)/

i2swap(header->bv_spsd2) ; /* Sample rate */

for (i»0; i<8; i++) {

vpb[i] - (double) i4swap(header->bv_upi[i]) *

(double) i4swap(header->bv_upim1 [i]) /

(double) i4swap(header->bv_upid1 [i]) *

(double) i2swap(header->bv_upim2[i]) /

(double) i2swap(header->bv_upid2[i]) ; /* Units/bit */

}

offset » i2swap(header->bv_of fvl) ; /* Offset */
k « i2swap(header->bv_hdrsz) - sizeof (hdbuff);

if (k > 0) /* Flush any remaining header */

for (i=0; i < k; i++)

if (read(fno,&inval, 1) = 1) nodataO;
if (read(fno,&inval,2) - 2) nodataO; /* Leave data in inval */
chanplot - 1; /* Plot channel 1 first */

maxmag * -9E19; minmag = -maxmag

;

maxj - 4;

if (maxj > chancnt) maxj - chancnt;

. skipj - chancnt-maxj

;

for (i - 1 ; i<=1024; i++) {

for (j=0; j<maxj; j++) {

val * (inval-offset)*vpb[j] ; /* Convert data value */

if (val>maxmag) maxmag val;

if (val<minmag) minmag » val;

xr[j][i] - val;

if (read(f no,&inval, 2) «2) goto donerd;

>

for (k - 1; k<skip j ; k++) /* Skip over channels */

if (read(fno,&inval,2) «2) goto donerd;

}

donerd : fclose(f ptr)

;

icnt i; /* Number of elements we read */
if (icnt >1024) icnt - 1024;

grinitd)

;

for (j-0; j<maxj; j++) {

viewport ((double) 0.198, (double) 1,

(double) 1-(j+1)*.2, (double) 1-j*.2):
window ((double) 0, (double) icnt-1 , minmag, maxmag);
frame ()

;

moveto((double) 0, (double) 0)

;

202

PROGRAM : PLTDAT4 .

C

for (i = 1 ; i<=icnt; i++) {

drawto((double) (i-1), (double) xr-[j Hi])

;

)

}

crt_srcp(23,0,0)

;

printfC'File '%s', 1st Channel - Xd, sps - !S.2g", inf id.chanplot , sps)

;

cpt_srcp(24,0,0)

;

printf ("maximum - %.3gcm/sec/sec minimum » %.3gcm/sec/sec #pts = %d"
maxmag, minmag, icnt);

wgetconf)

;

grterm()

;

int ckhdr (header)

struct bv_hdn *header;

{

if (header->bv_bv[0] - 'B' || header->bv_bvi1] - 'V ||

header->bv_ds[0] - 'D' || header->bv_ds[1] = 'S') {

fprintf (stderr, "Incorrect or missing headerW);
return FALSE;

}

if (i2swap(header->bv_compv) - 2) {

fprintf (stderr, /* We support header- V2 */
"Header incompatibility—bv_vers»Xd, bv_compv=%d\n",
header->bv_vers, header->bv_compv)

;

return FALSE;

}

if ((header->bv_csflg & BV_CSASC) == 0) {

fprintf (stderr, "Incompatible character set in file\n");
return FALSE;

}

return TRUE;

nodata(

)

{

fprintf (stderr, "Insufficient data in file\n")-
exitO;

}

USHORT i2swap(inval)
USHORT inval;

[

return ((invallOxf f)«8) I (inval»8)-
}

203

PROGRAM: PLTDAT4.C

ULONG i4swap(inval)
ULONG inval;

{

return ((inval&Oxf f) « 24)
|

(inval»24)
|

((inval&Oxf fOO) « 8)
|

((inval&Oxf f 0000) » 8);

:04

PROGRAM: FFT.C

/*******************************»**»******* >,»*^*^»s^^^ ;(
.
;|t^ at:1.;|t;).!)

.
1|t:),^

* *
* Vibration Analysis System (VAS) *
* *
* (c) Copyright 1986 by Brick A. Verser *

* *

*

* MODULE NAME:

*

* FFT

* To compute the Fourier transform of a complex
* valued data sequence.
*

* CALLING FORMAT:

*

* f f t (xr.xi.n, inv)

;

*

* INPUT PARAMETERS:
*

* xr - Real part of the complex input data sequence in
* double precision format.

* xi - Imaginary part of the complex input data sequence
* in double precision format.
* n - The number of values in the input sequence.
* This must be a power of two, though this routine
* does not verify that it is.

* inv - inv - -> Forward transform
* inv - 1 -> Inverse transform
*

* OUTPUT PARAMETERS:
*

* xr Real part of the transformed sequence.
* xi - Imaginary part of the transformed sequence.
*

* EXTERNAL ROUTINES REQUIRED:

* Several routines from the CI run-time library.
*

* REVISION HISTORY:
*

* 0.0 Original code Fortran code from the FFT
* routine published in "Discrete-time
* Signals and Systems," Ahmed and Natarajan.
*

* 1 .0 Translated line-by-line to C

:o5

0.0 ? ?

1.0 JUNE 26, 1986 BRICK VERSER

extern double sin(), cost), atanO;

f f t(xr.xi,n,inv)

double xr[],xi[];

int n.inv;

{

double wr.wi.tr, ti;

double pi , s.wpwr, arg

;

int irem,nxp2;

int iter,it,i,nxp,mxp,m,n1 , n2,1,11,j2,k;

irem = n;

nxp2 = n;

for (iter-0; irem>1 ; irem«irem/2)
iter++;

pi 4*atan((double)1 .0)

;

s - (inv) ? 1 : -1
;

for (it-1; it<=iter; it++) {

nxp nxp2;

nxp2 « nxp/2;

wpwr » pi/nxp2;

for (m-1; m<=nxp2; m++) {

arg - (m-1)*wpwr;

wr * cos (arg)

;

wi - s*sin(arg);

for (mxp=nxp; mxp<=n; mxp+*nxp) {

j1 = mxp-nxp+m;

j2 - J1+nxp2;

tr = xr[11]-xr[j2];

ti - Xi[l1]-xi[i2];

xr[11] -f- xr[J2];
xi[i1] +- xi[j2];

xr[j2] - tr*wr-ti*wi;
Xi[j2] - tr*wi+ti*wr;

}

}

}

n2 - n/2;

n1 - n-1

;

J - 1;

for (i=1 ; i<=n1 ; i++) (

if (i < j) {

tp = xr[j]

;

ti - xi[J]:

xr[J] » xr[i];

xi[j] - xi[i];

xr[i] - tr;

xi[i] - ti;

}

k - n2;

while (k < j) {

3 - 3-k;

k - k/2;

)

i - j+k;

}

if (inv)

for <i«1; ion;
xr[i] /• n;

xi[i] /» n;

}

return;

PROGRAM: FFT.C

APPENDIX C—DATA ANALYSIS SYSTEM PROGRAMS

This appendix lists the source programs of the data

analysis system. The programs are written in FORTRAN 77

and REXX. The IBM VS FORTRAN compiler (Release 4.1) was

used to compile the FORTRAN while the REXX interpreter was

from IBM VM/SP CMS (Release 3).

The FORTRAN programs are compiled using commands

similar to the following:

FORTVS SPWELCH

They are linked into executable modules using commands

similar to the following:

GLOBAL TXTLIB VFORTLIB CALCOMP IGLSTUBS IGL
LOAD SPWELCH SPDISKIO IEEEFFT (CLEAR
GENMOD SPWELCH

The FORTRAN routines use the FFA and FFS routines from

the IEEE Programs for Digital Signal Processing package.

They also use routines from the IBM VS FORTRAN libraries

and from the KSU Computing Activities Calcomp graphics

libraries.

208

PROGRAM: VAS EXEC

* *
* Vibration Analysis System (VAS) *

* *
* (c) Copyright 1986 by Brick A. Verser *

* *

*

* MODULE NAME:

* VAS
*

* FUNCTION:

*

* To drive the Vibration Analysis System. The VAS
* command provides the entire user interface to
* the system.
*

* Refer to the VAS User's Guide for further information.
*

* OPERATION:

*

* 1
.

Input parameters are parsed to determine the
* function requested.

* 2. SUBROUTINE WELCH IS CALLED TO COMPUTE THE PSD ESTIMATE.
* 3. THE OUTPUT IS WRITTEN TO UNIT 30.
*

* EXTERNAL ROUTINES REQUIRED:
*

* SPBEAU - To compute a cross-spectral estimate using
* the traditional method as outlined by
* Beauchamp.

* SPWELCH - To compute a cross-spectral estimate using
* the WOSA method as outlined by Welch.
* SPC0NV2 - To convert a raw format input file.
* SPBINOP - To perform a point-by-point binary operation

on two input files, producing a new file.
* SPCOHER - To calculate a coherence function.
* SPCORRFT - To calculate a cross-correlation.
*

* REVISION HISTORY:
*

* 1-0 ORIGINAL CODE
*

* REVISION DATE PROGRAMMER
*

* 1-° JUNE 26, 1986 BRICK VERSER

PROGRAM: VAS EXEC

address command

arg inargs

parse upper var inargs function parms

if length(f unction) = then signal help

window = '

' ; seqlen = '
' ; method » '

'

'GLOBALV SELECT SPEC GET WINDOW SEQLEN SPECMETHOD'

if window '
' then window - 'HAN'

if seqlen = '' then seqlen » 512

if method » " then method - 'WELCH'

diskmode >= 'A'

select

when abbrev('CONVERT' .function, 3) then call convert
when abbrevf 'SPECTRUM' .function, 1) then call spectrum
when abbrev('CORRELATE' .function, 3) then call correlate
when abbrev('CORRELATION' .function, 3) then call correlate
when abbrevC 'TRANSFER' .function, 1) then call transfer
when abbrev('COHERENCE' .function, 3) then call coherence
/* PLOT and PRINT are run from external Execs */
when abbrev('PLOT' .function, 2) then call sppplot4 parms
when abbrev('PRINT' .function, 2) then call spprint parms
when abbrev(' LIST' .function, 1) then call list
otherwise call unknown

end

return result

UNKNOWN: /* Invalid function */

say 'Invalid function "'function'" requested'
return 24

CONVERT: /* CONVERT filename */

parse var parms fn rest

if length(rest) <> then do

say 'Invalid parameter "'rest'" for CONVERT function'
return 24

end

infid » fn 'RAW *'

outfids - fn '100' diskmode /* Start fileid list with info data */
do i-1 to 8

outfids outfids fn *D'i||i diskmode
end

'EXEC SPC0NV2' infid outfids
return re

SPECTRUM: /* Compute Power Spectral Density Estimate */
parse var parms fn chanx chany badparm '(' p
if parsefnxy('SPECTRUM' fn chanx chany) > then return 24
if statechxy(fn chanx chany) <> then return 24
if words(badparm) > then do

say 'Invalid parameter '"badparm""

210

PROGRAM: VAS EXEC

for SPECTRUM function 1

return 24

and

do while words(p) >

parse var p pi p
select

when abbrev< 'WINDOW, p1) then parse var p window p
when abbrev('LENGTH', pi) then parse var p seqlen p
when abbrevC METHOD', pi) then parse var p method p
otherwise do

say 'Invalid parameter "'pi'
return 24

end

end

end

if abbrev('WELCH', method)
| abbrev('WOSA' .method) then

dine - 'EXEC SPWELCH' infidl infid2 fn 'S' chanx| | chany diskmode
'SEQLEN' seqlen 'WINDOW' window 'OVERLAP'

else if abbrev('TRADITIONAL*, method)
| abbrev('BEAUCHAMP'

cline = 'EXEC SPBEAU * infidt infid2 fn
'SEQLEN* seqlen 'WINDOW* window

else do

say 'Invalid estimation method
return 24

end

cline /* Execute SPWELCH or SPBEAU */
if re O then return re
pull statline /* A status line should have been stacked */
'EXECIO 1 DISKW' fn '100' diskmode *10 (STRING' statline /* Write record 10 */
return

.method) then
'S'chanx| | chany diskmode

.

'method'" for SPECTRUM function'

CORRELATE:

parse var parms fn chanx chany badparm '('
p

if parsefnxy('CORRELATE' fn chanx chany) then return 24
if statechxy(fn chanx chany) <> then return 24
if words(badparm) O then do
say 'Invalid parameter '"badparm""
return 24

end

lags - 512

do while words(p) >

parse var p pi p
select

when abbrevCLENGTH'.pl) then parse var p lags p
otherwise do

say 'Invalid parameter *"pi'» f or CORRELATE function'
return 24

end

PROGRAM: VAS EXEC

outfid - fn 'C'chanx| | chany diskmode

'EXEC SPCORRFT' Lags infidl infid2 outfid

return re

TRANSFER:

parse var parms fn chanx chany p

if parsefnxy('TRANSFER' fn chanx chany) then return 24

if length(p) O then do

say 'Invalid parameter M 'p'" for TRANSFER function'

return 24

end

infidl - fn 'S'chanx| | chanx '*'

'CMDCALL ESTATE* infidl

if re <> then do

say 'Missing channel "'chanx'" autospectrum for TRANSFER function'

return 28

end

infid2 fn 'S'chany
|
|chany '*'

'CMDCALL ESTATE' infid2

if re o then do

say 'Missing channel "'chany'" autospectrum for TRANSFER function'

return 28

end

'EXEC SPBINOP COMPLEX' infidl infid2 fn 'T' chanx
|

| chany diskmode 'DIVIDE'

return re

COHERENCE:

parse var parms fn chanx chany p

if parsefnxy('COHERENCE' fn chanx chany) then return 24

if length(p) <> then do

say 'Invalid parameter '"p 1 " for COHERENCE function'

return 24

end

infidl fn 'S'chanx| | chanx '*'

'CMDCALL ESTATE* infidl

if re <> then do

say 'Missing channel "'chanx'" autospectrum for COHERENCE function'
return 28

end

infid2 » fn ' S' chany
|

| chany '*'

'CMDCALL ESTATE' infid2

if re <> then do

say 'Missing channel "'chany'" autospectrum for COHERENCE function'
return 28

end

infid3 fn ' S'chanx
|

| chany '*'

'CMDCALL ESTATE' infid3
if re <> then do

say 'Missing cross-spectrum for COHERENCE function'

212

PROGRAM: VAS EXEC

return 28

end

'EXEC SPCOHER' infidl infid2 infid3 fn 'K'chanx| jchany diskmode
return re

LIST:

parse var parms f n rest

if length(rest) <> then do

say 'Invalid parameter '"reset"1 for LIST function'

return 24

end

if length(fn) = then fn = '*'

q queuedO
'LISTFILE' fn '*' diskmode '(LIFO ALLOC*

Hist » ' '

do queued()-q

pull lline

parse var lline Ifn 1ft Ifm Iformat llrecl Irecs Iblks
if length(lft) O 3 then iterate

say lline

end

return

PARSEFNXY: procedure
arg func fn chanx chany

if length(fn) = then do

say 'Missing filename specifier for' func 'function'
return 24

end

if length(chanx) = then do

say 'Missing first channel number for' func 'function'

return 24

end

if length(chany) » then do

say 'Missing second channel number for' func 'function'
return 24

end

return

STATECHXY: procedure expose infidl infid2
arg fn chanx chany

infidl « fn 'D'chanx| |chanx '*'

'CMDCALL ESTATE' infidl

if re <> then do

say 'Missing first channel data 1

return 28

end

infid2 fn 'D'chany
|
|chany '*'

'CMDCALL ESTATE' infid2

PROGRAM: VAS EXEC

if re <> then do

say 'Missing second channel data'
return 28

end

return

PROGRAM: SPBEAU EXEC

* *

* Vibration Analysis System (VAS) *

* *

* (c) Copyright 1986 by Brick A. Verser *

* *

*

* MODULE NAME:

*

* SPBEAU

*

* FUNCTION:

*

* To compute a spectral estimate from two input channels
* using the traditional method as outline by Beauchamp.
* This routine is called from the VAS command.
*

* EXTERNAL ROUTINES REQUIRED:

* SPBEAU - Fortran program to do the actual work.

* If the MODULE file is found on an accessed
* CMS disk, it will be run. Otherwise a

* TEXT file will be loaded and run.
*

* REVISION HISTORY:

*

* 1.0 ORIGINAL CODE
*

* REVISION DATE PROGRAMMER

* 1.0 JUNE 26, 1986 BRICK VERSER
*

*/

address command
arg inargs

parse upper var inargs inlfn inlft inlfm in2fn in2ft in2fm
outfn outft outfm parms

if length(outfm) * then signal help
infidl « inlfn inlft inlfm

infid2 - in2fn in2ft in2fm
outfid outfn outft outfm
parse var parms p1 parms

seqlen 256

window =

overlap

do while length(pl) >

select

when abbrev('SEQLEN' ,p1) then do

215

PROGRAM: SPBEAU EXEC

parse var parms p2 parms

if datatype(p2) <> 'NUM' then do

say 'BEAU: Invalid SEQLEN '"p2""

return 24

end

if seqlen > 2048 then seqlen = 2048
seqlen = p2

end

when abbrev('WINDOW ,p1) then do

parse var parms p2 parms

window selectwindow(p2)

if window < then return 24

end

when abbrevC 'OVERLAP' ,p1) then do

overlap = 1

end

otherwise do

say 'BEAU: Invalid parameter f"p1""
return 24

end

end

parse var parms pi parms
end

/* See if input data exists */
'CMDCALL ESTATE' infidl

if re O then return re

'CMDCALL ESTATE' infid2
if re <> then return re

/* Set up FILEDEFs */
'FILEDEF 10 DISK' infidl

'FILEDEF 11 DISK* infid2
'FILEDEF 30 DISK 1 outfid '(LRECL 80 RECFM V
'FILEDEF 4 TERM (LRECL 80 RECFM F'

'FILEDEF 7 TERM 1 /* Error output */
'FILEDEF 8 TERM* /* Informational/Warning output */
'FILEDEF 9 TERM' /* Standard output */
seqlen = right ('0000'

|
| seqlen, 5)

zplen - right ('0000'
|
|2*seqlen,5)

pushline = seqlen
|

| zplen
|
|window|

| overlap
push pushline

'ESTATE SPBEAU MODULE *'

if re - then 'SPBEAU'

else 'LOAD SPBEAU SPDISKI0(N0MAP CLEAR START'
if re <> then return re

queue '* BEAUC lef t (windname, 1 2) right (seqlen , 5)
return

SELECTWINDOW: procedure expose windname
arg p2

216

PROGRAM: SPBEAU EXEC

select

when abbrev('RECTANGULAR' ,p2) then windval =

when abbrev('TRIANGULAR' ,p2) |abbrev('BARTLETT' ,p2) then windval

when abbrev('HAMMING' ,p2) then windval = 2

when abbrevCVONHANN' ,p2) |abbrev('HANNING' ,p2) then windval = 3

when abbrev('KAISER' ,p2) then windval 4

when abbrev('BLACKMAN' ,p2) then windval - 5

when abbrev('PARZEN' ,p2) then windval = 6

otherwise do

say 'BEAU: Invalid window choice, "
'
p2 ""

return -1

end

end

windname = word (' Rectangular Bartlett Hamming Hanning Kaiser '
| j ,

'Blackman Parzen ' ,windval+1

)

return windval

return

LISTFILE: procedure

arg fid

•MAKEBUF'

q - queued!)

•LISTFILE' fid '{LIFO ALLOC
if queued()-q O 1 then do

say 'BEAU: Confusion over number of stacked LISTFILE lines'

'DROPBUF'

return -1

end

pull lline

parse var lline Ifn 1ft Ifm Irecfm llrecl Iblks Irecs

'DROPBUF'

return Irecs

HELP:

say 'SPBEAU: Invalid parameter list' •

return 24

PROGRAM: SPBEAU FORTRAN

*.

* *

* Vibration Analysis System (VAS) *

* *

* (c) Copyright 1986 by Brick A, Verser *

» *

*

* MODULE NAME:

*

* SPBEAU
*

* FUNCTION:

*

* TO COMPUTE A CROSS POWER SPECTRAL DENSITY ESTIMATE

* USING THE TRADITIONAL AVERAGED SEGMENTS METHOD.

*

* INPUT UNITS:

*

* 04 PARAMETERS AND OPTIONS.

* 10 CHANNEL 1 INPUT DATA IN REAL A4 FORMAT.

* 11 CHANNEL 2 INPUT DATA IN REAL A4 FORMAT.
*

* OUTPUT UNITS:

*

* 07 ERROR MESSAGES.

* 08 INFORMATIONAL AND WARNING MESSAGES.

* 30 POWER SPECTRAL DENSITY ESTIMATE IN COMPLEX 2A4 FORMAT.

* INPUT PARAMETERS:

INTEGER, NUMBER OF DATA VALUES TO INCLUDE
IN EACH SEGMENT.

INTEGER, ZERO PAD LENGTH. EACH SEGMENT WILL
BE ZERO PADDED TO THIS LENGTH. THIS FIELD
ALSO DETERMINES THE NUMBER OF VALUES IN THE
OUTPUT DATA SET.

INTEGER. WINDOW NUMBER. DEFINED IN WWINDO
EXTERNAL SUBROUTINE.

INTEGER, OVERLAP FLAG. SET TO ONE IF SEGMENTS
ARE TO BE OVERLAPPED BY 50X, ZERO IF SEGMENTS
ARE TO NOT BE OVERLAPPED. OVERLAPPING IS NOT
PARTICULARLY USEFUL AND SHOULD NOT BE USED.

* OPERATION:

INPUT PARAMETERS ARE PARSED TO DETERMINE THE SEGMENT

PROGRAM: SPBEAU FORTRAN

* SIZE, ZERO PAD LENGTH. WINDOW, AND OVERLAP.
* 2. SUBROUTINE BEAU IS CALLED TO COMPUTE THE PSD ESTIMATE.
* 3. THE OUTPUT IS WRITTEN TO UNIT 30.
*

* EXTERNAL ROUTINES REQUIRED:
*

* DISKIR - TO READ REAL*4 FORMAT VALUES FROM DISK.
* DISKOR - TO WRITE REAL*4 FORMAT VALUES TO DISK.
* FFA - TO COMPUTE A FORWARD DISCRETE FOURIER TRANSFORM.
* FFS - TO COMPUTE A REVERSE DISCRETE FOURIER TRANSFORM.
* WWINDO - TO PROVIDE WINDOWING FUNCTIONS.
*

* REVISION HISTORY:
*

* 1.0 ORIGINAL CODE

JUNE 26, 1986 BRICK VERSER

PARAMETER (IWRKLN=16)

PARAMETER (MAXZPD=4096)

COMPLEX SXY(MAXZPD/2+1)

DIMENSION W0RK3D(IWRKLN)
DIMENSION XW0RK(MAXZPD+2)

. YWORKfMAXZPD-f 2)
DIMENSION SXW0RK(MAXZPD/2),SYWORK(MAXZPD/2)
DIMENSION WWORK(MAXZPD), SXYWRK(MAXZPD+2)
EXTERNAL GETX.GETY
CHARACTER*80 INPARM
NPTS - 512

NPAD - 1024

IWINDO -

IOVER - 1

C

C READ PARAMETER LINE. INPUT IS FIXED FORMAT
C

READ(4, '(A80)',END-90) INPARM
READ(UNIT=INPARM(1 :10) ,FMT«' (215)

• .ERR-55) NPTS, NPAD
READ(UNIT=INPARM(11:12),FMT>'(2I1)\ERR=55) IWINDO, IOVER
IF (NPTS.GT.MAXZPD) NPTS - MAXZPD
IF (NPAD. GT. MAXZPD) NPAD - MAXZPD
WRITE (8,*)' NPTS, NPAD, IWINDO. IOVER-', NPTS, NPAD, IWINDO, IOVER
GOTO 90

55 CONTINUE

WRITE(7,*)' ERROR READING INPUT PARAMETERS'
GOTO 90

90 CONTINUE
C

PROGRAM: SPBEAU FORTRAN

C CALL A SUBROUTINE TO DO THE ACTUAL COMPUTATIONS, PASSING
C IT THE APPROPRIATE ARRAYS AND THE ADDRESS OF THE TWO

C SUBROUTINES USED TO READ VALUES FOR EACH OF THE CHANNELS.
C

CALL BEAUCH (SXY , NPAD . NPTS , XWORK , YWORK , SXWORK . SYWORK

.

X IWINDO.WWORK.SXYWRK.GETX.GETY.IOVER.IERR)
C

C WRITE THE RESULTS TO DISK

C

CALL DISKOR(30.0.,1 , IWRKLN, WORK30, IWK30)

DO 100 1-1 .NPAD/2+1

C WRITEOO. '<2A4)')REAL(SXY(I)),AIMAG(SXY(I))
CALL DISKOROO , REAL(SXY(I)) , 2 , IWRKLN .WORK30. IWK30)

CALL DISK0R(30,AIMAG(SXY(I)),2.IWRKLN.W0RK30.IWK30)
100 CONTINUE

CALL DI SKOR (30 , . , 3 , IWRKLN , WORK30 , IWK30

)

STOP

END

SUBROUTINE GETX(RDATA, IN, IOUT)

C

C THIS ROUTINE IS CALLED TO READ A DISK FILE.

C 'RDATA' IS A REAL ARRAY WHICH IS FILLED WITH 'IN' VALUES
C READ FROM UNIT 10. 'IOUT' IS SET TO THE NUMBER OF VALUES
C ACTUALLY READ.

. C

PARAMETER (IWRKLN=16)

DIMENSION WORK10UWRKLN)
DIMENSION RDATA(*)

DATA IWK110/0/

I 1

IF (IWK110.EQ.-1) GOTO 995
DO 100 1-1 ,IN

C READ(10,9900,END-990)RDATA(I)
CALL DISKIR(10,RDATA(I),IERR,IWRKLN,WORK10.IWK110,IWK210)
IF (IERR.NE.O) GOTO 990

9900 F0RMAT(A4)

100 CONTINUE

I - IN+1

GOTO 995

990 CONTINUE

IWK110 - -1

995 CONTINUE

IOUT - 1-1

RETURN

END

SUBROUTINE GETYIRDATA. IN, IOUT)
C

C THIS ROUTINE IS CALLED TO READ A DISK FILE.
C 'RDATA' IS A REAL ARRAY WHICH IS FILLED WITH 'IN' VALUES

PROGRAM: SP8EAU FORTRAN

C READ FROM UNIT 10. 'IOUT' IS SET TO THE NUMBER OF VALUES
C ACTUALLY READ.

C

PARAMETER (IWRKLN-16)

DIMENSION W0RK11 (IWRKLN)

DIMENSION RDATA(*)

DATA IWK111/0/

I 1

IF (IWK111 .EQ.-1) GOTO 995

DO 100 1-1 ,IN

C READ(11.9900,END-990)RDATA(I)

CALL DISKIR(11.RDATA< I).IERR. IWRKLN, WORM 1 .IWK1 1 1 , IWK21 1

)

IF (IERR.NE.O) GOTO 990

9900 F0RMAT(A4)

100 CONTINUE

I - IN-H

GOTO 995

990 CONTINUE

IWK111 = -1

995 CONTINUE

IOUT - 1-1

RETURN

END

SUBROUTINE BEAUCH (SXY , ZPADLN , N . XWORK , YWORK , SXWORK , SYWORK

,

X WINDOW , WWORK , SXYWRK , GETXR , GETYR , IOVER , I ERR

)

EXTERNAL GETXR, GETYR
INTEGER ZPADLN, WINDOW, WLEN
COMPLEX SXY(«)

REAL XWORK (*) .SXWORKU) , YWORK<») .SYWORK)*)

REAL WWORK (*) , SXYWRK (*)

C

C RESULT IS PUT IN 'SXY' WHICH IS OF LENGTH ZPADLN/2 + 1 .

C 'SXWORK' AND 'SYWORK' SHOULD BE N/2 LONG.

C 'XWORK' AND 'YWORK' SHOULD BE OF LENGTH ZPADLN+2.
C

C THE FOLLOWING ARRAYS ARE NEEDED ONLY IF WINDOWING:
C 'WWORK' SHOULD BE OF LENGTH MIN(ZPADLN, N*2)

.

C 'SXYWRK' SHOULD BE OF LENGTH ZPADLN+2.
C

C THIS ROUTINE CALCULATES A PSD ESTIMATE BY AVERAGING THE
C SPECTRUMS OF SEGMENTED PIECES OF THE INPUT DATA. THE
C INPUT IS SEGMENTED INTO PIECES OF LENGTH 'N', AND ARE
C ZERO PADDED TO LENGTH 'ZPADLN'. (ZPADLN MUST BE AT LEAST
C TWICE 'N' IN ORDER TO COMPUTE A TRUE CORRELATION SEQUENCE:
C NECESSARY IF WE ARE TO WINDOW THE DATA IN THE TIME DOMAIN.)
C EACH SEGMENT IS FORWARD FOURIER TRANSFORMED. AND THE SPECTRUM
C ESTIMATES (CONJ(X)*Y) ARE SUMMED OVER ALL THE SEGMENTS.
C AFTER THE LAST SEGMENT HAS BEEN PROCESSED, THIS UNWINDOWED
C SPECTRAL ESTIMATE IS INVERSE TRANSFORMED TO FORM A

221

PROGRAM: SPBEAU FORTRAN

C CORRELATION ESTIMATE WHICH IS THEN WINDOWED AND
C TRANSFORMED BACK RESULTING IN THE DESIRED
C SPECTRAL ESTIMATE WHICH IS RETURNED TO THE USER.
C

PI - 4*ATAN (1 .

)

IERR -

SHIFT 0.

IPASCT =

DO 110 1-1 .ZPADLN/2+1

SXY(I) - 0.

110 CONTINUE

C WE CAN ONLY COMPUTE A CORRELATION IF WE CAN ZERO PAD THE ARRAY
C TO N*2 ELEMENTS. TRYING TO COMPUTE THE CORRELATION WITH UNPADDED
C DATA RESULTS IN A CIRCULAR CORRELATION. WITHOUT THE CORRELATION
C WE CAN'T CORRECTLY WINDOW THE SPECTRUM.

IF (ZPADLN.LE.N) WINDOW -

WLEN - MIN(ZPADLN,N*2)
IF (WINDOW. NE.O) CALL WWINDO(WWORK, WLEN, WINDOW. WPOWER. 6. 2832)

C

C FILL WORK WITH 'N' REAL NUMBERS—ACTUAL COUNT PUT IN 'NRET'
C

CALL GETXR(XWORK.N.NRET)
IF (NRET.EQ.O) GOTO 9100

C IF (NRET.LT.N) GOTO 9100
CALL GETYR(YWORK.N.NYRET)
IF (NYRET.LT.NRET! NRET - NYRET
IF (NRET.EQ.O) GOTO 9100

C IF (NRET.LT.N) GOTO 9100
NRET1 - NRET

DO 120 I-NRET+1.ZPADLN
XWORK(I) - 0.

YWORK(I) - 0.

1 20 CONTINUE

C

200 CONTINUE

IPASCT - IPASCT + 1

C

C SAVE SECOND HALF OF DATA VALUES FOR OVERLAP ON NEXT PASS
C

IF (IOVER.NE.0) THEN
DO 202 1-1 ,N/2

SXWORK(I) - XW0RK(I+N/2)
SYWORK(I) - YWORKd+N/2)

202 CONTINUE

ENDIF

C

C REMOVE MEAN FROM EACH SEGMENT OF DATA
C

PROGRAM: SPBEAU FORTRAN

XMEAN •

YMEAN -

DO 203 1-1,

N

XMEAN - XMEAN+XWORK (I

)

YMEAN • YMEAN+YWORK (I

)

203 CONTINUE

XMEAN » XMEAN/N
YMEAN - YMEAN/N

DO 204 1-1 ,N

XWORK(I) - XWORK(I)-XMEAN
YWORK(I) = YWORK(I)-YMEAN

204 CONTINUE

CALL FFA(XWORK.ZPADLN)

CALL FFA(YWORK.ZPADLN)

DO 210 I-O.ZPADLN/2

SXYCI+1) = SXYU+1) +

X CMPLX(XWORK< 1*2+1),-XWORK(1*2+2)) *
X CMPLX(YWORK(I*2+1

) , YWORK(1*2+2)

)

210 CONTINUE

IF (IOVER.NE.O) THEN
C COPY LAST HALF OF CURRENT DATA TO FIRST HALF OF ARRAY

DO 220 1-1 ,N/2

XWORK(I) = SXWORK(I)

YWORK(I) - SYWORK(I)
220 CONTINUE
C FETCH A NEW SEGMENT OF DATA

CALL GETXR(XW0RK(N/2+1), N/2, NRET)
C WE'RE DONE IF WE GET AN INCOMPLETE LAST SEGMENT

IF (NRET.LT.N/2) GOTO 1000
CALL GETYR(YW0RK(N/2+1),N/2.NYRET)
IF (NYRET.LT.NRET) NRET - NYRET
IF (NRET.LT.N/2) GOTO 1000
NRET - N/2+NRET

ELSE

C GET A NEW SEGMENT OF DATA, NOT OVERLAPPING SEGMENTS
CALL GETXR(XWORK(1),N,NRET)
IF (NRET.LT.N) GOTO 1000
CALL GETYR(YWORK(1),N. NYRET)
IF (NYRET.LT.NRET) NRET - NYRET
IF (NRET.LT.N) GOTO 1000

ENDIF

C ZERO PAD DATA TO SPECIFIED LENGTH
DO 230 I-NRET+1 .ZPADLN

XWORK(I) - 0.

YWORK(I) = 0.

230 CONTINUE
C RETURN TO PROCESS THE NEW SEGMENT

GOTO 200

PROGRAM: SPBEAU FORTRAN

1000 CONTINUE

C

C IF NOT WINDOWING WE ARE DONE. IF WE ARE WINDOWING, WE MUST
C FIRST CONVERT THE PRELIMINARY (NON-WINDOWED) SXY ESTIMATE
C TO THE TIME DOMAIN IN THE FORM OF A CORRELATION ESTIMATE
C TO APPLY THE WINDOW—THEN WE CAN TRANSFORM IT BACK TO
C THE FREOUENCY DOMAIN.

C

IF (WINDOW. NE.O) THEN

DO 310 I-O.ZPADLN/2

SXYWRK(2*I+1) - REAL(SXY(I+1))

SXYWRK(2*I+2) - AIMAG(SXY(I+1))
310 CONTINUE

C INVERSE FFT CREATES CORRELATION ESTIMATE
CALL FFS(SXYWRK.ZPADLN)

C MULTIPLY POINT BY POINT WITH WINDOW FUNCTION. NOTE THAT
C THE CORRELATION IN SXYWRK IS FOLDED SUCH THAT ELEMENT 1

C CORRESPONDS TO WINDOW ELEMENT 65. 2->66, 3->S7, ... 64->1 28
C AND THEN SXYWRK (128) ->WINDO(64), 127->63 65->1 (ALL
C OBVIOUSLY ASSUMING AN ARRAY LENGTH OF 128). ALSO, THE
C CORRELATION IS VALID ONLY IF THE ARRAY HAS BEEN ZERO PADDED
C TO A LENGTH OF 2*N OR MORE.

DO 320 I-1.N

SXYWRK(I) - SXYWRK(I)*WWORK(N+I>
320 CONTINUE

DO 322 1-1 ,N

SXYWRK (ZPADLN-N+I) - SXYWRK(ZPADLN-N+I)*WWORK(I)
322 CONTINUE
C TRANSFORM BACK TO FREOUENCY DOMAIN

CALL FFA(SXYWRK.ZPADLN)

DO 330 I-O.ZPADLN/2

SXY(I-H) - CMPLX(SXYWRK(I*2+1),SXYWRK(I*2*2))
330 CONTINUE

ENDIF

C

C CONVERT SUMMED DATA TO AVERAGED DATA AND ACCOUNT FOR
C 1/N FACTOR IN FORWARD FOURIER TRANSFORM ROUTINE.

AN - N

IF (IPASCT.EQ.1) AN - NRET1
DO 1110 1-1 .ZPADLN/2+1

SXY(I) - SXY(I)/(IPASCT*AN*AN)
CONTINUE

GOTO 9999

CONTINUE

WRITE(7.*)' ERROR—GETXR RETURNED INSUFFICIENT DATA'
IERR - 1

GOTO 9999

CONTINUE

224

PROGRAM: SPBEAU FORTRAN

RETURN

END

PROGRAM: SPWELCH EXEC

* *
* Vibration Analysis System (VAS) *

* (c) Copyright 1986 by Brick A. Verser *

* *

*

* MODULE NAME:

*

* SPWELCH
*

* FUNCTION:

*

* To compute a spectral estimate from two input channels
* using the traditional method as outline by Welch.
* This routine is called from the VAS command.
*

* EXTERNAL ROUTINES REQUIRED:
*

* SPWELCH - Fortran program to do the actual work.
* If the MODULE file is found on an accessed
* CMS disk, it will be run. Otherwise a
* TEXT file will be loaded and run.
*

* REVISION HISTORY:

* 1.0 ORIGINAL CODE
*

* REVISION DATE PROGRAMMER
*

* 1 -° JUNE 26, 1986 BRICK VERSER
*

*/

address command

arg inargs

parse upper var inargs inlfn inlft inlfm in2fn in2ft in2fm ,

outfn outft outfm parms
if length{outfm) « then signal help
infidl = inlfn inlft inlfm
infid2 - in2fn in2ft in2fm
outfid - outfn outft outfm
parse var parms pi parms
seqlen = 256

window =

overlap =

do while length(pl) >

select

when abbrev('SEQLEN' ,p1) then do

PROGRAM: SPWELCH EXEC

parse van parms p2 parms

if datatype(p2) <> 'NUM' then do
say 'WELCH: Invalid SEQLEN '"

p
2""

return 24

end

if seqlen > 2048 then seqlen - 2048
seqlen p2

end

when abbrevt 'WINDOW' ,p1) then do
parse var parms p2 parms
window = selectwindow(p2)

if window < then return 24
end

when abbrev('OVERLAP' ,p1) then do
overlap « 1

end

otherwise do

say 'WELCH: Invalid parameter '"pi""
return 24

end

end

parse var parms p1 parms
end

/* See if input data exists */
'CMDCALL ESTATE' infid!

if re O then return re

'CMDCALL ESTATE* infid2
if re <> then return re

/* Set up FILEDEFs */

'FILEDEF 10 DISK' infidl

'FILEDEF 11 DISK 1 infid2
•FILEDEF 30 DISK' outfid ' (LRECL 80 RECFM V
'FILEDEF 4 TERM (LRECL 80 RECFM F'

'FILEDEF 7 TERM' /* Error output */
'FILEDEF 8 TERM* /* Informational/Warning output */
'FILEDEF 9 TERM' /* Standard output */
seqlen = right ('0000'

|
| seqlen, 5)

zplen = right{ '0000'
|
|2*seqlen,5)

pushline = seqlen
|

| zplen
|
|window| |overlap

push pushline

'ESTATE SPWELCH MODULE *'

if re then 'SPWELCH'
else 'LOAD SPWELCH SPDISKI0(N0MAP CLEAR START'
if re <> then return re

queue '* WELCH' lef t (windname, 1 2) right (seqlen, 5)
return

SELECTWIND0W: procedure expose windname
arg p2

PROGRAM: SPWELCH EXEC

select

when abbrevf 'RECTANGULAR' ,p2) then windval =

when abbrevt 'TRIANGULAR' ,p2) |abbrev(' BARTLETT ' ,p2) then windval
when abbrevC 'HAMMING' ,p2) then windval = 2

when abbrev('VONHANN' ,p2) |abbrev('MANNING' ,p2) then windval » 3

when abbrevt 'KAISER' ,p2) then windval = 4

when abbrev('BLACKMAN' ,p2) then windval 5

when abbrev('PARZEN' ,p2) than windval = 6

otherwise do

say 'WELCH: Invalid window choice, •"p2 IM '

return -1

end

end

windname word(' Rectangular Bartlett Hamming Hanning Kaiser '

||,

'Blackman Parzan' ,windval+1

)

return windval

LISTFILE: procedure
arg fid

'MAKEBUF'

q queued ()

'LISTFILE' fid '(LIFO ALLOC
if queued()-q O 1 then do

say 'WELCH: Confusion over number of stacked LISTFILE lines 1

'DROPBUF'

return -1

end

pull lline

parse var lline Ifn 1ft Ifm Irecfm llrecl Iblks Irecs
'DROPBUF'

return Irecs

HELP:

say 'SPWELCH: Invalid parameter list'
return 24

PROGRAM: SPWELCH FORTRAN

*.

* *

* Vibration Analysis System (VAS) *

* *

* (c) Copyright 1986 by Brick A. Verser *
* *

*

* MODULE NAME:

*

* SPWELCH
*

* FUNCTION:

*

* TO COMPUTE A CROSS POWER SPECTRAL DENSITY ESTIMATE
* USING THE METHOD OF WEIGHTED OVERLAPPING-SEGMENT
* AVERAGING (WOSA) AS PROPOSED BY PETER D. WELCH.
*

* INPUT UNITS:

*

* 04 PARAMETERS AND OPTIONS.

* 10 CHANNEL 1 INPUT DATA IN REAL A4 FORMAT.
* 11 CHANNEL 2 INPUT DATA IN REAL A4 FORMAT.
*

* OUTPUT UNITS:
*

* 07 ERROR MESSAGES.

* 08 INFORMATIONAL AND WARNING MESSAGES.
* 30 POWER SPECTRAL DENSITY ESTIMATE IN COMPLEX 2A4 FORMAT.
*

* INPUT PARAMETERS:
*

* RECORD 1

:

* 1..5 INTEGER, NUMBER OF DATA VALUES TO INCLUDE
* IN EACH SEGMENT.

* 6.. 10 INTEGER, ZERO PAD LENGTH. EACH SEGMENT WILL
* BE ZERO PADDED TO THIS LENGTH. THIS FIELD
* ALSO DETERMINES THE NUMBER OF VALUES IN THE
* OUTPUT DATA SET.

* 11.. 11 INTEGER, WINDOW NUMBER. DEFINED IN WWINDO
* EXTERNAL SUBROUTINE.
* 12.. 12 INTEGER, OVERLAP FLAG. SET TO ONE IF SEGMENTS
* ARE TO BE OVERLAPPED BY 50%, ZERO IF SEGMENTS
» ARE TO NOT BE OVERLAPPED.
*

* OPERATION:

*

* 1
.

INPUT PARAMETERS ARE PARSED TO DETERMINE THE SEGMENT

PROGRAM: SPWELCH FORTRAN

* SIZE, ZERO PAD LENGTH, WINDOW, AND OVERLAP.

* 2. SUBROUTINE WELCH IS CALLED TO COMPUTE THE PSD ESTIMATE.
* 3. THE OUTPUT IS WRITTEN TO UNIT 30.

*

* EXTERNAL ROUTINES REQUIRED:
*

* DISKIR - TO READ REAL*4 FORMAT VALUES FROM DISK.
* DISKOR - TO WRITE REAL*4 FORMAT VALUES TO DISK.
* FFA - TO COMPUTE A FORWARD DISCRETE FOURIER TRANSFORM.
* WWINDO - TO PROVIDE WINDOWING FUNCTIONS.
*

* REVISION HISTORY:

*

* 1.0 ORIGINAL CODE
*

* REVISION DATE PROGRAMMER
*

JUNE 26, 1986 BRICK VERSER

PARAMETER (IWRKLN-16)

PARAMETER (MAXZPD-4096)

COMPLEX SXY(MAXZPD/2+1

)

DIMENSION WORK30UWRKLN)
DIMENSION XW0RK(MAXZPD+2) ,YW0RK(MAXZPD+2)
DIMENSION SXW0RK(MAXZPD/2) ,SYW0RK(MAXZPD/2)
DIMENSION WWORK(MAXZPD), SXYWRK<MAXZPD+2)
EXTERNAL GETX.GETY
CHARACTER*80 INPARM

NPTS - 512

NPAD = 1024

IWINDO -

IOVER - 1

C

C READ PARAMETER LINE. INPUT IS FIXED FORMAT.
C

READ14, '(A80)' ,END=90) INPARM
READ(UNIT=INPARM(1 : 1 0) , FMT» ' (215)

' , ERR-55) NPTS, NPAD
READ(UNIT-INPARM(11 : 1 2) ,FMT=' (211)

' ,ERR=55) IWINDO. IOVER
IF (NPTS.GT.MAXZPD) NPTS - MAXZPD
IF (NPAD. GT. MAXZPD) NPAD - MAXZPD

C WRITEfS,*) 'NPTS, NPAD, IWINDO. IOVER- '.NPTS, NPAD, IWINDO, IOVER
GOTO 90

55 CONTINUE

WRITE17.*)' ERROR READING INPUT PARAMETERS'
GOTO 90

90 CONTINUE
C

C CALL A SUBROUTINE TO DO THE ACTUAL COMPUTATIONS, PASSING

PROGRAM: SPWELCH FORTRAN

C IT THE APPROPRIATE ARRAYS AND THE ADDRESS OF THE TWO
C SUBROUTINES USED TO READ VALUES FOR EACH OF THE CHANNELS.
C

CALL WELCH (SXY . NPAD , NPTS . XWORK , YWORK , SXWORK . SYWORK

,

X IWINDO,WWORK.SXYWRK,GETX,GETY,IOVER,IERR)
C

C WRITE THE RESULT TO DISK.
C

CALL DISKOR(30,0.,1,IWRKLN,WORK30.IWK3O)
DO 100 1-1 .NPAD/2+1

CALL DISKOR(30,REAL(SXY(I)).2.IWRKLN.WORK30,IWK30)
CALL DISKOR(30.AIMAG(SXY(I)).2.IWRKLN.WORK30,IWK30)

100 CONTINUE

CALL DISKOR(30,0.,3,IWRKLN,WORK30,IWK30>
STOP

END

SUBROUTINE GETX(RDATA. IN. IOUT)
C

C THIS ROUTINE IS CALLED TO READ A DISK FILE.
'RDATA' IS A REAL ARRAY WHICH IS FILLED WITH 'IN' VALUES

C READ FROM UNIT 10. 'IOUT' IS SET TO THE NUMBER OF VALUES
C ACTUALLY READ.

C

PARAMETER (IWRKLN-16)

DIMENSION W0RK10IIWRKLN)
DIMENSION RDATA(»)

DATA IWK1 10/0/

I - 1

IF (IWK110.EQ.-1) GOTO 995
DO 100 1-1. IN

CALL DISKIR(10,RDATA(I),IERR,IWRKLN.WORK10.IWK110.IWK210)
IF (IERR.NE.O) GOTO 990

9900 FORMAT (A4)

100 CONTINUE

I - IN+1

GOTO 995

990 CONTINUE

IWK110 = -1

995 CONTINUE

IOUT - 1-1

RETURN

END

SUBROUTINE GETY(RDATA. IN, IOUT)
C

C THIS ROUTINE IS CALLED TO READ A DISK FILE.
C 'RDATA' IS A REAL ARRAY WHICH IS FILLED WITH 'IN' VALUES
C READ FROM UNIT 10. 'IOUT' IS SET TO THE NUMBER OF VALUES
C ACTUALLY READ.

C

PROGRAM: SPWELCH FORTRAN

PARAMETER (IWRKLN=16)

DIMENSION WORK11 (IWRKLN)

DIMENSION RDATA(«)

DATA IWK111/0/

I - 1

IF (IWK111 .EQ.-1) GOTO 995

DO 100 1-1 ,IN

CALL DISKIR(11.RDATA(I l.IERR, IWRKLN, W0RK11 , IWK111 .IWK211)
IF (IERR.NE.O) GOTO 990

100 CONTINUE

I = IN+1

GOTO 995

990 CONTINUE

IWK111 = -1

995 CONTINUE

IOUT = 1-1

RETURN

END

SUBROUTINE WELCH (SXY, 2PADLN , N , XWORK , YWORK . SXWORK , SYWORK

.

X WINDOW, WWORK. SXYWRK,GETXR,GETYR,IOVER,IERR)
EXTERNAL GETXR.GETYR

INTEGER ZPADLN, WINDOW, WLEN
COMPLEX SXY(*)

REAL XWORK(*),SXWORK(*), YWORK (*) .SYWORK (*)

REAL WWORKt*), SXYWRKf*)
C

C RESULT IS PUT IN 'SXY' WHICH IS OF LENGTH 2PADLN/2+1

.

C 'SXWORK' AND 'SYWORK' SHOULD BE N/2 LONG.
C 'XWORK' AND 'YWORK' SHOULD BE OF LENGTH ZPADLN+2.
C

C THE FOLLOWING ARRAYS ARE NEEDED ONLY IF WINDOWING:
C 'WWORK' SHOULD BE OF LENGTH N.

C 'SXYWRK' SHOULD BE OF LENGTH ZPADLNt2.
C

PI - 4*ATAN(1.)

IERR -

SHIFT - 0.

IPASCT -

DO 110 1=1 .ZPADLN/2+1

SXY(I) - 0.

110 CONTINUE
C

C IF WINDOWING IS REQUESTED, CALL 'WWINDO' TO FILL ARRAY
C 'WWORK' WITH THE REAL-VALUED WINDOW FUNCTION. 'WPOWER'
C IS SET TO THE POWER CONTAINED IN THE WINDOW FUNCTION
C AND IS USED TO SCALE THE RESULTING PSD ESTIMATE.
C

WPOWER - 1

.

IF (WINDOW. NE.O) THEN

PROGRAM: SPWELCH FORTRAN

CALL WWINDO(WWORK,N, WINDOW, WPOWER, 6. 2832)
WPOWER = N/WPOWER

END IF

C

C FILL WORK WITH 'N' REAL NUMBERS—ACTUAL COUNT PUT IN 'NRET'
C

CALL GETXR(XWORK.N.NRET)
IF (NRET.EQ.O) GOTO 9100

C ALLOW FIRST SET OF VALUES TO BE INCOMPLETE
C IF (NRET.LT.N) GOTO 9100

NRET1 = NRET

CALL GETYR(YWORK,N,NYRET)
IF (NYRET.LT.NRET) NRET - NYRET
IF (NRET.EQ.O) GOTO 9100

C IF (NRET.LT.N) GOTO 9100
DO 120 I-NRET+1.ZPADLN

XWORK(I) - 0.

YWORK(I) - 0.

1 20 CONTINUE
C

200 CONTINUE

IPASCT - IPASCT * 1

C

C SAVE SECOND HALF OF DATA VALUES FOR OVERLAP ON NEXT PASS
C

IF (IOVER.NE.0) THEN

DO 205 1=1 ,N/2

SXWORK(I) - XW0RK(I+N/2)
SYWORK(I) = YWORKU+N/2)

205 CONTINUE

ENDIF

C

C REMOVE MEAN FROM EACH SEGMENT OF DATA
C

XMEAN -

YMEAN -

DO 210 1=1 ,N

XMEAN • XMEAN+XWORKU)
YMEAN - YMEAN+YWORK (I

)

210 CONTINUE

XMEAN - XMEAN/N
YMEAN = YMEAN/N
DO 215 1=1 ,N

XWORK(I) - XWORK(I)-XMEAN
YWORK(I) = YWORK(I)-YMEAN

215 CONTINUE
C

C WINDOW THE DATA SEGMENT
C

PROGRAM: SPWELCH FORTRAN

IF (WINDOW. NE.O) THEN

DO 225 I«1 ,N

XWORK(I) - XWORK(I)»WWORK(I)
YWORK(I) = YWORK(I)*WWORK(I)

225 CONTINUE

ENDIF

C

C REMOVE MEAN FROM EACH WINDOWED SEGMENT OF DATA
C

XMEAN =

YMEAN =

DO 230 1-1 ,N

XMEAN = XMEAN+XWORKU)
YMEAN • YMEAN+YWORK (I

)

230 CONTINUE

XMEAN • XMEAN/N
YMEAN - YMEAN/N
DO 235 I»1 ,N

XWORK(I) = XWORKUJ-XMEAN
YWORK(I) • YWORK(I)-YMEAN

235 CONTINUE
C

C TRANSFORM THE TWO VECTORS
C

CALL FFA(XWORK.ZPADLN)
CALL FFA(YWORK.ZPADLN)

C

C COMPUTE THE POWER SPECTRAL DENSITY ESTIMATE AS
C SXY - CONJ(X)*Y
C

DO 240 I=0,ZPADLN/2

SXYU+1) SXY(I+1) +

X CMPLX!XWORK(I*2+1),-XWORK(I*2+2)) *
X CMPLX(YW0RK(I*2+1), YW0RK(I*2+2)

)

240 CONTINUE
C

C WE'RE DONE IF WE DIDN'T GET FULL LOAD OF DATA
C

IF (IPASCT.EQ.1 .AND. NRET.LT.N) THEN
GOTO 1000

ELSE IF (IOVER.NE.O .AND. NRET.LT.N/2) THEN
GOTO 1000

ELSE IF (IOVER.EQ.O .AND. NRET.LT.N) THEN
GOTO 1000

ENDIF

C

C HERE WE GO FOR THE NEXT CHUNK OF DATA. THERE ARE
C TWO PATHS BASED ON WHETHER OR NOT WE ARE OVERLAPPING
C ADJACENT SEGMENTS.

234

PROGRAM: SPWELCH FORTRAN

IF (IOVER.NE.O) THEN
C COPY LAST HALF OF CURRENT DATA TO FIRST HALF OF ARRAY.

DO 250 1=1 ,N/2

XWORK(I) - SXWORK(I)

YWORK(I) » SYWORK(I)
250 CONTINUE

FETCH A NEW CHUNK OF DATA
CALL GETXR(XW0RK(N/2-H), N/2, NRET)

C DON'T PROCESS LAST SET OF DATA IF INCOMPLETE—THIS
C PREVENTS A SHORT SEGMENT OF DATA FROM GETTING UNDUE
C EMPHASIS IN THE AVERAGING.

IF (NRET.LT.N/2) GOTO 1000

CALL GETYR(YW0RK(N/2+1),N/2,NYRET)
IF (NYRET.LT.NRET) NRET - NYRET
IF (NRET.LT.N/2) GOTO 1000

NRET - N/2+NRET
ELSE

C GET A FULL-LENGTH PIECE IF NOT OVERLAPPING SEGMENTS
CALL GETXR(XWORK(1),N,NRET)
IF (NRET.LT.N) GOTO 1000
CALL GETYR(YW0RK(1),N, NYRET)
IF (NYRET.LT.NRET) NRET - NYRET
IF (NRET.LT.N) GOTO 1000

ENDIF

C

C ZERO PAD DATA TO SPECIFIED LENGTH
C

DO 260 I-NRET+1 .ZPADLN

XWORKU) - 0.

YWORK(I) - 0.

260 CONTINUE

GOTO 200

C

C

1000 CONTINUE

C

C IF WE WINDOWED THE DATA, WE NEED TO ADJUST THE SPECTRAL
C ESTIMATE SO AS TO CONSERVE POWER. WE ALSO HAVE TO SCALE
C IT BY THE NUMBER OF SEGMENTS ADDED TOGETHER AND ADJUST
C FOR THE DFT 1 /N FACTOR.
C

AN = N

IF (IPASCT.EQ.1) AN - NRET1
DO 1110 1-1 .ZPADLN/2-H

SXY(I) - SXY(I)*WPOWER/(IPASCT*AN*AN)
1110 CONTINUE

GOTO 9999

9100 CONTINUE

PROGRAM: SPWELCH FORTRAN

WRITE(7,*)' ERROR—NO DATA IN FILE 1

IERR 1

GOTO 9999

9999 CONTINUE

RETURN

END

PROGRAM: SPCORRFT EXEC

* *
* Vibration Analysis System (VAS) *

* *

* (c) Copyright 1986 by Brick A. Verser *

* *

*

* MODULE NAME:

*

* SPCORRFT

To compute a correlation estimate from two input channels
This routine is called from the VAS command.

* EXTERNAL ROUTINES REQUIRED:

Fortran program to do the actual work.
If the MODULE file is found on an accessed
CMS disk, it will be run. Otherwise a

TEXT file will be loaded and run.

* REVISION HISTORY:

*

* 1.0 ORIGINAL CODE

* REVISION DATE

1986

PROGRAMMER

* 1.0 JUNE 26, BRICK VERSER

*/

address command

arg inargs

parse upper van inargs lags infnl inftl infml infn2 inft2 infm2
outfn outft outfm rest

if length(rest) o then signal help
if length(outfm) - then signal help
infidl infnl inftl infml
infid2 = infn2 inft2 infm2
outfid » outfn outft outfm
optline = rightdags.S)
'FILEDEF 10 DISK' infidl

'FILEDEF 11 DISK' infid2
'FILEDEF 30 DISK' outfid '(LRECL 80 RECFM V
'FILEDEF 4 TERM (LRECL 80 RECFM F'

'FILEDEF 7 TERM 1

'FILEDEF 8 TERM'

PROGRAM: SPCORRFT EXEC

'FILEDEF 9 TERM'

push optline

'ESTATE SPCORRFT MODULE *'

if re - then 'SPCORRFT'

else 'LOAD SPCORRFT SPDISKIO(NOMAP CLEAR START'
return re

HELP:

say 'SPCORRFT: Invalid parameter list'
return 24

238

PROGRAM: SPCORRFT FORTRAN

* *
* Vibration Analysis System (VAS) *

* *
* (c) Copyright 1986 by Brick A. Verser *

* *

*

* MODULE NAME:

*

* SPCORRFT

*

* FUNCTION:

*

* TO COMPUTE A CROSS CORRELATION ESTIMATE.

* INPUT UNITS:

*

* 04 PARAMETERS AND OPTIONS.
* 10 CHANNEL 1 INPUT DATA IN REAL A4 FORMAT.
* 11 CHANNEL 2 INPUT DATA IN REAL A4 FORMAT.

* OUTPUT UNITS:

*

* 07 ERROR MESSAGES.
* 08 INFORMATIONAL AND WARNING MESSAGES.
* 30 CORRELATION ESTIMATE IN REAL A4 FORMAT.
*

* INPUT PARAMETERS:

* RECORD 1

:

* 1..5 INTEGER, NUMBER OF CORRELATION LAGS TO COMPUTE.
*

* OPERATION:

*

* 1
. THE NUMBER OF LAGS TO COMPUTE IS READ.

* 2. AN INITIAL PASS OVER THE DATA IS MADE TO COMPUTE
* THE MEAN OF THE INPUT DATA.
* 3. SUBROUTINE CORREL IS CALLED TO READ THE DATA
* A SECOND TIME, COMPUTING THE CORRELATION USING
* A FAST CORRELATION ALGORITHM (REF: RABINER & GOLD,
* THEORY AND APPLICATION OF DIGITAL SIGNAL PROCESSING,
* PRENTICE-HALL, INC., ENGLEWOOD CLIFFS, NJ , 1975, PG402)
* 4. THE OUTPUT IS WRITTEN TO UNIT 30.
*

* EXTERNAL ROUTINES REQUIRED:

* DISKIR - TO READ REAL*4 FORMAT VALUES FROM DISK.

PROGRAM: SPCORRFT FORTRAN

* DISKOR - TO WRITE REAL*4 FORMAT VALUES TO DISK.
* FFA - TO COMPUTE A FORWARD DISCRETE FOURIER TRANSFORM.
* FFS - TO COMPUTE A INVERSE DISCRETE FOURIER TRANSFORM.
*

* REVISION HISTORY:

*

* 1.0 ORIGINAL CODE

JUNE 26, 1986 BRICK VERSER

PARAMETER (IWRKLN=16)

PARAMETER (MAXLAG=40S6)

DIMENSION W0RK1 (IWRKLN) , W0RK1 1 (IWRKLN) . WORK30 (IWRKLN

)

DIMENSION CXY(MAXLAG+2) ,XW0RK(MAXLAG+2) , YW0RK(MAXLAG+2)
DIMENSION XWORK2(MAXLAG/2)
EXTERNAL GETX.GETY
CHARACTER*80 INPARM

C

C READ PARAMETER LINE. INPUT IS FIXED FORMAT.
C

READ (4,
' (A80) '.END-90) INPARM

READ(UNIT=INPARM(1:5),FMT-'(I5)',ERR-55) LAGCNT
LAGCNT - LAGCNT*2

IF (LAGCNT. GT.MAXLAG) LAGCNT - MAXLAG
GOTO 90

55 CONTINUE

WRITE(7,*)' ERROR READING INPUT PARAMETERS'
90 CONTINUE

IWK110 >

ICNT -

AM10 - 0.

AM11 - 0.

C FIRST PASS COMPUTES MEAN AND NUMBER OF ELEMENTS
100 CONTINUE

CALL DISKIR(10,X,IERR, IWRKLN. W0RK1 0, IWK1 1 0, IWK21 0)
IF (IERR.NE.O) GOTO 190

CALL DISKIR(1 1 , Y. IERR, IWRKLN, W0RK1 1 , IWK1 1 1 , IWK21 1

)

IF (IERR.NE.O) GOTO 190

ICNT - ICNT+1

AM10 - AM10 + X
AM11 = AM11 + Y

GOTO 100

190 CONTINUE

IF (ICNT.EQ.O) THEN
WRITE(7,*)' NO INPUT DATA'
GOTO 990

PROGRAM: SPCORRFT FORTRAN

END IF

REWIND 10

REWIND 1

1

AM10 = AM1D/ICNT
AM11 = AM11/ICNT

CALL CORREL (CXY. LAGCNT . XWORK , YWORK , XW0RK2

,

X GETX.AM10,GETY,AM11,IERR)
CALL DISKOR(30.0.,1,IWRKLN,WORK30,IWK30)
DO 210 1-1 , LAGCNT/2

CXY(I) - CXY(I)/ICNT
CALL DISKOR(30,CXY(I).2,IWRKLN,WORK30,IWK30)

210 CONTINUE

CALL DISKOR(30,0. , 3, IWRKLN.W0RK30, IWK30)
990 CONTINUE

STOP

END

SUBROUTINE GETX(RDATA, IN, IOUT)
PARAMETER (IWRKLN-16)

DIMENSION WORKIO(IWRKLN)
DIMENSION RDATA(*)

DATA IWK 110/0/

I - 1

IF (IWK110.EQ.-1) GOTO 995
DO 100 1-1, IN

C READ(10,9900.END=990)RDATA(I)
CALL DISKIR(10.RDATA(I).IERR,IWRKLN,WORK!0,IWK110.IWK210)
IF (IERR.NE.O) GOTO 990

9900 F0RMAT(A4)
100 CONTINUE

I = IN+1

GOTO 995
990 CONTINUE

IWK110 = -1

995 CONTINUE

IOUT - 1-1

RETURN

END

SUBROUTINE GETY(RDATA, IN, IOUT)
PARAMETER (IWRKLN-16)

DIMENSION WORKH(IWRKLN)
DIMENSION RDATA(*)

DATA IWK111/0/

I - 1

IF (IWK111 .EQ.-1) GOTO 995
DO 100 1-1 ,IN

C READd 1 ,9900,END=990)RDATA(I)
CALL DISKIRO 1 ,RDATA(I) , IERR, IWRKLN.W0RK1 1 , IWK1 1 1 , IWK21 1

)

IF (IERR.NE.O) GOTO 990
9900 F0RMAT(A4)

c

PROGRAM: SPCORRFT FORTRAN

CONTINUE

I » IN+1

GOTO 995

CONTINUE

IWK1 1 1 - -1

CONTINUE

IOUT - 1-1

RETURN

ENO

SUBROUTINE CORREL (CXY , LAGCNT . XWORK , YWORK , XWORK2

,

X GETXR.XMEAN.GETYR.YMEAN.IERR)
EXTERNAL GETXR.GETYR
REAL CXY(*),XWORK(*), YWORK(*). XWORK2(*)
COMPLEX C

C LAGCNT POINTS ARE PUT IN 'CXY' WHICH IS OF LENGTH LAGCNT+2.
C 'XWORK 1 AND 'YWORK' SHOULD BE OF LENGTH LAGCNT+2.
C 'XWORK2' SHOULD BE OF LENGTH LAGCNT/2.
C

PI = 4*ATAN(1 .)

IERR -

SHIFT 0.

IPASCT

DO 110 1-1, LAGCNT+2

CXY(I) - 0.

XWORK(I) » 0.

110 CONTINUE

C

C FILL WORK WITH 'N' REAL NUMBERS—ACTUAL COUNT PUT IN 'NRET'
C

CALL GETXRfXWORK, LAGCNT, NRET)
IF (NRET.EO.O) GOTO 9100
CALL GETYR(YW0RK, LAGCNT/2. NYRET)
IF (NYRET*2.LT.NRET) NRET * NYRET*2
IF (NRET.EO.O) GOTO 9100

C

200 CONTINUE

IPASCT - IPASCT + 1

C SAVE LAST HALF OF XWORK FOR NEXT PASS
DO 205 1=1 , LAGCNT/2

XW0RK2U) - XWORKU+LAGCNT/2)
205 CONTINUE
C REMOVE MEAN FROM EACH SEQUENCE

DO 210 1-1, NRET

XWORK(I) - XWORK(I)-XMEAN
210 CONTINUE

DO 211 1-1 .NYRET

YWORK(I) - YWORK(I)-YMEAN
211 CONTINUE

242

PROGRAM: SPCORRFT FORTRAN

C IF WE GOT LESS THAN A FULL XWORK, ZERO PAD IT
DO 202 I-LAGCNT/2+NRET+1 . LAGCNT

XWORK(I) • 0.

202 CONTINUE

C ZERO PAD YWORK TO 'LAGCNT' VALUES
DO 203 I-NYRET+1 .LAGCNT

YWORK(I) = 0.

203 CONTINUE

CALL FFA(XWORK. LAGCNT)

CALL FFA(YWORK, LAGCNT)

DO 240 1-1 , LAGCNT+2-1 ,2

C = CMPLX(XWORKU), XWORKU+1)) *
X CMPLX(YWORKU),-YWORK(I+U)

CXY(I) - CXY(I) + REAL(C)
CXY(I+1) - CXY(I+1) + AIMAG(C)

240 CONTINUE

CALL GETXR (XWORK (1 +LAGCNT/2) , LAGCNT/2 , NRET)
CALL GETYR (YWORK (1) , LAGCNT/2 , NYRET

)

IF (NYRET. LT. NRET) NRET - NYRET
IF (NYRET. LE.O) GOTO 1000

C MOVE SAVED LAST HALF OF X DATA TO FRONT OF XWORK
DO 260 1-1 , LAGCNT/2

XWORK(I) - XW0RK2U)
260 CONTINUE

GOTO 200

C

1000 CONTINUE
C CONVERT SUMMED DATA TO AVERAGED DATA
C DO 1110 1-1 .LAGCNT+2
C CXY(I) - CXY(I)/IPASCT
C110 CONTINUE
C INVERSE FFT CREATES CORRELATION ESTIMATE

CALL FFS(CXY, LAGCNT)
GOTO 9999

9100 CONTINUE

WRITEI7.*)' ERROR—GETXR RETURNED INSUFFICIENT DATA'
IERR - 1

GOTO 9999
9999 CONTINUE

RETURN

END

PROGRAM: SPCOHER EXEC

* *
* Vibration Analysis System (VAS) *
*

* (c) Copyright 1986 by Brick A. Verser *
* *

* MODULE NAME:

* SPCOHER

* FUNCTION:

*

* To compute a coherence function estimate from two
* auto-spectrum estimates and their cross-spectrum.
* This routine is called from the VAS command.
*

* EXTERNAL ROUTINES REQUIRED:
*

* SPCOHER - Fortran program to do the actual work.
*

* REVISION HISTORY:

* 1.0 ORIGINAL CODE

* '- JUNE 26, 1986 BRICK VERSER
*

*/

address command

arg inargs

parse upper var inargs infnl inftl infml infn2 inft2 infm2 ,

infn12 inft12 infm12 outfn outft outfm rest
if length(outfm) - then signal help
if length(rest) O then signal help
infidl - infnl inftl infml
infid2 - infn2 inft2 infm2
infid12 - infn12 inft12 infm12
outfid - outfn outft outfm
'FILEDEF 10 DISK' infidl
'FILEDEF 11 DISK' infid2
'FILEDEF 12 DISK' infid12
'FILEDEF 30 DISK' outfid '(LRECL 80 RECFM V
'FILEDEF 4 TERM (LRECL 80 RECFM r"

'FILEDEF 7 TERM'

'FILEDEF 8 TERM'

'FILEDEF 9 TERM'

PROGRAM: SPCOHER EXEC

'SPCOHER'

return re

HELP:

say 'SPCOHER: Invalid parameter Ust'
return 24

245

PROGRAM: SPCOHER FORTRAN

* *
* Vibration Analysis System (VAS) *

* *
« (c) Copyright 1986 by Brick A. Verser *
* #

*

* MODULE NAME:

*

* SPWELCH
*

* FUNCTION:

*

* COMPUTE A COHERENCE FUNCTION FROM TWO AUTO-SPECTRUM
* ESTIMATES AND ONE CROSS-SPECTRUM ESTIMATE.
* THE COHERENCE FUNCTION COMPUTED IS:
*

* ABS(S12(F))
* K12(F) •

* S1(F)*S2(F)
*

* INPUT UNITS:

*

* 10 CHANNEL 1 AUTO-SPECTRUM ESTIMATE IN CMPLX 2A4 FORMAT.
* 11 CHANNEL 2 AUTO-SPECTRUM ESTIMATE IN CMPLX 2A4 FORMAT.
* 12 CHAN 1:2 CROSS-SPECTRUM ESTIMATE IN CMPLX 2A4 FORMAT.
*

* OUTPUT UNITS:

*

* 07 ERROR MESSAGES.

« 08 INFORMATIONAL AND WARNING MESSAGES.
* 30 COHERENCE FUNCTION IN REAL A4 FORMAT.

* OPERATION:

*

* 1
.

THE DATA IS READ FROM EACH OF THE THREE INPUTS
* AND THE COHERENCE FUNCTION IS COMPUTED
* POINT-BY-POINT, WRITING THE RESULT AS THE
* COMPUTATION PROCEEDS.
*

* EXTERNAL ROUTINES REQUIRED:
*

* DISKIR - TO READ REAL*4 FORMAT VALUES FROM DISK.
* DISKOR - TO WRITE REAL*4 FORMAT VALUES TO DISK.
*

* REVISION HISTORY:

PROGRAM: SPCOHER FORTRAN

ORIGINAL CODE

JUNE 26, 1986 BRICK VERSER

PARAMETER (IWRKLN=16)

DIMENSION WORK1 (IWRKLN) , W0RK1 1 (IWRKLN) , WORK1 2 (IWRKLN)
DIMENSION WORK30(IWRKLN)

COMPLEX C12

CALL DISKOR(30,0..1 , IWRKLN, WORK30. IWK30)

IWK110 =

IWK111 =

IWK112 =

CONTINUE

CALL DISKIROO.C1 , IERR, IWRKLN, WORK10, IWK110, IWK210)
IF (IERR.NE.O) GOTO 250
CALL DISKIRI 10, XI, IERR, IWRKLN, W0RK10, IWK1 10, IWK210)
IF (IERR.NE.O) GOTO 260
CALL DISKIR(11,C2. IERR, IWRKLN, W0RK11 .IWK111 ,IWK211)
IF (IERR.NE.O) GOTO 250
CALL DISKIR(11, XI, IERR, IWRKLN. W0RK11 ,IWK111 , IWK211)
IF (IERR.NE.O) GOTO 250
CALL DISKIR(12,XR,IERR,IWRKLN,W0RK12,IWK112,IWK212)
IF (IERR.NE.O) GOTO 250
CALL DISKIR(1 2 , XI , IERR, IWRKLN, W0RK1 2 , IWK1 1 2 , IWK21 2)
IF (IERR.NE.O) GOTO 250
CI 2 - CMPLX(XR.XI)

COH - ABS(C12)**2 / (C1*C2)

CALL DISKOR(30 , COH , 2 , IWRKLN , WORK30 , IWK30

)

GOTO 210

CONTINUE

CALL DISK0R(30,0. ,3, IWRKLN, WORK30. IWK30)
STOP

END

PROGRAM: SPPPL0T4 EXEC

* *
* Vibration Analysis System (VAS) *

* *
* (c) Copyright 1986 by Brick A. Verser *
* *

*

* MODULE NAME:

*

* SPPPL0T4

To drive the SPPL0T4 Fortran program to produce
plotted output. This routine is called by
the VAS command.

* EXTERNAL ROUTINES REQUIRED:

To separate a complex format spectrum
into magnitude and phase components.
Fortran program to plot data.

* REVISION HISTORY:

1 -0 ORIGINAL CODE

* 1 -0 JUNE 26, 1986
*

*/

address command

arg oparms

parse upper var oparms parms
diskmode *= 'A'

/* Set defaults for global options */

PROGRAMMER

BRICK VERSER

gscalefact « 1 .0

gtekcal 'TEKTRONIX'

glinelogx - 'LINE'

glinelogy = 'LINE'

gdegrad - 'DEGREES'

glinesdots 'LINES'

gmagphase = 'MP'

gfrompt - 1

gforpts « 999993
gpowamp - 'FOUR'

/* Don't enlarge or reduce plot */
/* Assume interactive plotting */
/* Default to linear X-axis */
/* linear Y-axis */
/* Plot phase in degrees #/

/* Connect values with lines */
/* Plot both mag and phase of cross spectrum */
/* Plot beginning with first point */
/* Plot all points */

/* Assume we want Fourier amplitude spectrum */

PROGRAM: SPPPLOT4 EXEC

parse var parms fdesc '(' opts ')' parms2
if words(fdesc) = then do /* We are beginning with global options */

do while words(opts) >

parse var opts opt opts

if abbrev('LOGX' ,opt,4) then glinelogx « 'LOG'

else if abbrev('LINEX',opt,5) then glinelogx 'LINE'

else if abbrevC'LOGY' ,opt,4) then glinelogy » 'LOG'
else if abbrevC'LINEY' .opt, 5) then glinelogy = 'LINE'
else if abbrevt'RADIANS' ,opt,3) then gdegrad 'RADIANS'
else if abbrev('DEGREES' ,opt,3) then gdegrad 'DEGREES'
else if abbrev('DOTS' .opt, 3) then glinesdots = 'DOTS'
else if abbrevC LINES' ,opt,3) then glinesdots » 'LINES'
else if abbrevCMAGNITUDE' ,opt,3) then gmagphase » 'MAGNITUDE'
else if abbrev{ 'PHASE' ,opt ,3) then gmagphase 'PHASE 1

else if abbrev('MP' ,opt,2) then gmagphase =• 'MP'

else if abbrev('PM' ,opt,2) then gmagphase = 'MP'

else if abbrev('CALC0MP'.opt,3) then gtekcal - 'CALCOMP'
else if abbrev('TEKTRONIX', opt, 3) then gtekcal » 'TEKTRONIX'
else if abbrev('POWER' ,opt ,3) then gpowamp = 'POWER'
else if abbrev{ 'PSD' ,opt,3) then gpowamp = 'POWER'
else if abbrev('F0URIER*,opt,4) then gpowamp - 'FOUR'
else if abbrev< 'FROM' ,opt,2) then do

parse var opts gfrompt opts /* FROM option followed by number */
if datatype(gfrompt) <> 'NUM' then do

say 'Invalid FROM option '"gfrompt""
return 24

end

end

else if abbrev('FOR' ,opt,2) then do
parse var opts gforpts opts /* FOR option followed by number */
if datatype(gforpts) <> 'NUM' then do

say 'Invalid FOR option '"gforpts""
return 24

end

end

else if abbrev('SCALE',opt,3) then do
parse var opts gscalefact opts /* SCALE option followed by number */
if datatype(gscalefact) O 'NUM* then do

say 'Invalid scale factor '"gscalefact""
return 24

end

end

else do /* That was our last hope for a valid option */
say 'Invalid option '"opt""
return 24

end

end

parse var parms2 fdesc '(' opts ')' parms2
end

SPPPL0T4 EXEC

fidcnt =

do while words(fdesc) >

fidcnt fidcnt+1

parse var fdesc fn type chanx chany fdesc2
if words(chany) = then do /* Gotta have complete file spec */

say 'Incomplete fileid '"fn fttype chanx'" specified'
return 24

end

if abbrev('DATA' , type) then dt - 'D'

else if abbrev('SPECTRUM' ,type) then dt - 'S 1

else if abbrev{ 'CORRELATION' .type, 3) then dt * 'C
else if abbrev('TRANSFER* .type) then dt - 'T'

else if abbrev('COHERENCE' .type, 3) then dt = 'K'

else if type - '.' then dt » '.*

else do

say 'Invalid datatype parameter '"type""
return 24

end

if dt » '
.

' then do

fid. fidcnt - '
. .

.

'

end

else do

ft — dt
|

| chanx
|

| chany
fid. fidcnt - fn ft '*'

'CMDCALL ESTATE' fid. fidcnt
if re <> then return re

end

linelogx. fidcnt glinelogx
linelogy. fidcnt glinelogy
degrad. fidcnt » gdegrad
linesdots. fidcnt glinesdots
magphase. fidcnt = gmagphase
f rompt . fidcnt « gfrompt
forpts. fidcnt gforpts
powamp. fidcnt = gpowamp
if words(fdesc2)=0 & words(opts>>0 then do while words(opts)>0
parse var opts opt opts
if abbrevCLOGX' ,opt,4) then linelogx. fidcnt - 'LOG'
else if abbrev('LINEX',opt,5) then linelogx. fidcnt - 'LINE'
else if abbrev(*L0GY',opt,4) then linelogy. fidcnt - 'LOG'
else if abbrevCLINEY' .opt, 5) then linelogy .fidcnt - 'LINE'
else if abbrevC RADIANS', opt. 3) then degrad . fidcnt = 'RADIANS'
else if abbrev('DEGREES\opt,3) then degrad . fidcnt = 'DEGREES'
else if abbrev('D0TS\opt,3) then linesdots. fidcnt 'DOTS'
else if abbrev{'LINES',opt.3) then linesdots. fidcnt - 'LINES'
else if abbrev('MAGNITUDE*. opt, 3) then magphase. fidcnt = 'MAGNITUDE'
else if abbrev('PHASE', opt,3) then magphase . fidcnt = 'PHASE'
else if abbrev('MP'.opt,2) then magphase. fidcnt = 'MP'

PROGRAM: SPPPL0T4 EXEC

else if abbrevf 'PM' .opt ,2) then magphase. f idcnt = 'MP'

else if abbrev('POWER' ,opt,3) then powamp. f idcnt 'POWER'
else if abbrev('PSD' ,opt,3) then powamp. f idcnt - 'POWER'
else if abbrev('F0URIER',opt,4) then powamp . f idcnt = 'FOUR'
else if abbrev('FROM' ,opt ,2) then do

parse var opts frompt.f idcnt opts /* FROM option followed by number */
if datatype(frompt.fidcnt) <> 'NUM' then do

say 'Invalid FROM option "'f rompt . fidcnt ""

return 24

end

end

else if abbrev(' FOR' .opt, 2) then do
parse var opts forpts.f idcnt opts /* FOR option followed by number */
if datatype(forpts.f idcnt) <> 'NUM' then do

say 'Invalid FOR option "' forpts.f idcnt ""
return 24

end

end

else do

say 'Invalid option '"opt""
return 24

end

end

if words(fdesc2) - then parse var parms2 fdesc '(' opts ')' parms2
else fdesc - fdesc2

end

/* Plist has been parsed, so now we can plot */
maxfidcnt - fidcnt

say 'Plotting 1 maxfidcnt 'files'
if maxfidcnt = then do

say 'No files specified'
return 24

end

workfids "; utcnt - 0; inunit 12

'MAKEBUF'

if gtekcal - 'TEKTRONIX' then qline - *T'

else qline - 'C f

qline - qline| | rightfgscalefact, 1 5)
queue qline /* Set output device and scaling */
do fidcnt = 1 to maxfidcnt

fid - fid. fidcnt

fn - word(fid,1); ft - word(fid,2>; fm - word(fid,3)
if fid = *.

. .' then do /* No plot in this position */
'FILEDEF' inunit+40 'TERM (LRECL 80 RECFM F'

queue '*SKIPIT'

inunit inunit+1

iterate

end

PROGRAM: SPPPL0T4 EXEC

'MAKEBUF' /* Create a stack just for the EXECIO */

q - queued (

)

'EXECIO 10 DISKR' fn '100' fm '(FINIS 1

q = queued()-q;

sps =« 1 ; infoline - '* UNKNOWN UNKNOWN UNKNOWN'

if q > 1 then do

pull sps ddate dtime .

sps sps/1

q - q-1

end

if q >= 8 then do i»1 to 8

pull Ipf.i loccode.i

loccode.i stripdoccode. i)

if datatypedpf .i, 'N') then Ipf.i - lpf.i/1

q - q-1

end

if q >« 1 then pull infoline

'DROPBUF' /* Drop EXECIO stack */

method word (infoline, 2)

windname * word (infoline , 3)

seqlen word (infoline, 4)

if seqlen <> 'UNKNOWN' then seqlen - seqlen/1

f ttype-=substr(f t .1 , 1) ; chanx-substrt'f t ,2, 1) ; chany=substr<f t ,3, 1)

if linesdots. f idcnt 'LINES' then linesdots 'L'

else linesdots » 'P'

if linelogx. f idcnt •= 'LINE' then linelogx - 'N'

else linelogx 'L'

if linelogy. f idcnt = 'LINE' then linelagy 'N'

else linelogy » r

L'

if degrad.f idcnt - 'DEGREES' then degrad « 'D'

else degrad = 'R'

frompt f rompt .f idcnt

forpts = forpts. f idcnt

select

when fttype='T'
| fttype-'S' then do /* Complex data */

utcnt - utcnt+1; workft! 'CMSUT'utcnt

workfidl 'SPEC workftl diskmode

utcnt » utcnt+1; workft2 = 'CMSUT'utcnt

workfid2 - 'SPEC workft2 diskmode
workfids workfids workfidl workfid2

/* Turn into magnitude and phase, converting a PSD into a */

/* simple FAS if required */

if powamp. f idcnt 'FOUR' then spmpopt = 'SORT'; else spmpopt * ''

'EXEC SPMAGPHA' fn ft fm workfidl workfid2 spmpopt
/# Handle magnitude plot */

if magphase.fidcnt <> 'PHASE' then do /* Option may prevent plot */
'FILEDEF' inunit 'DISK' workfidl

'FILEDEF' inunit+40 'TERM (LRECL 80 RECFM F'

inunit inunit+1

PROGRAM: SPPPL0T4 EXEC

queue 'FREQUENCY IN HZ'

if fttype o 'S 1 then qline * 'AMPLITUDE'
else if spmpopt = 'SQRT' then qline - 'MAGNITUDE IN CM/SEC

else qline 'MAGNITUDE IN (CM/SEC)**2'
queue qline

qline - 'TEST:' lef t (f n,8) |

|
' '

|
|ddate dtime

if fttype <> 'S' then qline - qline ' TRANSFER FUNCTION'
else if spmpopt 'SQRT' then qline = qline ' FAS ESTIMATE'

else qline = qline ' PSD ESTIMATE'
if method <> 'WELCH' then qline = qline ' (T) '

queue qline

if chanx » chany then do

qline - 'CHANNEL:' chanx '
('loccode. chanx')

'

qline = qline ' LPF FREQ:' Ipf. chanx
end

else qline - 'CHANNELS:' chanx' : 'chany
queue qline

qline - 'WINDOW:' windname ' PTS/SEGMENT: ' seqlen
qline » qline ' SAMPLE RATE:' sps
queue qline

xval = 0: xinc 1

if seqlen <> 'UNKNOWN' then xinc - sps/2/seqlen
pline - right(xval,15)

| I right (xinc. 1 5) |
I right (f rompt ,6)

pline - plinel
I
right (forpts,6)

|
|Unesdots| |

' '

pline - plinel
| linelogxl [linelogy

queue pline

end

/* Handle phase plot (if needed) */
if fttype='S' & chanxochany & magphase. f idcnt <> 'MAGNITUDE'

,

then do /* Spectrum plot may need phase */
'FILEDEF' inunit 'DISK' workfid2
'FILEDEF' inunit+40 'TERM (LRECL 80 RECFM F'

inunit » inunit+1

if degrad - 'R' then temp - 'RADIANS'; else temp - 'DEGREES'
queue 'FREQUENCY IN HZ'; queue 'PHASE IN' temp
qline > 'TEST:' lef t (f n.8)

|
|

• '
|
|ddate dtime

if spmpopt - 'SQRT 1 than qline qline ' FAS ESTIMATE'
else qline «= qline ' PSD ESTIMATE'

if method <> 'WELCH' then qline - qline ' (T)

'

queue qline

if chanx = chany then do

qline - 'CHANNEL:' chanx '(' loccode. chanx')

'

qline = qline ' LPF FREQ:' Ipf. chanx
end

else qline - 'CHANNELS:' chanx' : 'chany
queue qline

qline - 'WINDOW:' windname ' PTS/SEGMENT:' seqlen
qline - qline ' SAMPLE RATE:' sps
queue qline

PROGRAM: SPPPL0T4 EXEC

xval » 0; xinc * 1

if seqlen <> 'UNKNOWN' then xinc - sps/2/seqlen
pline - right(xval,15)

| I
right (xinc, 1 5)

| I
right (f r-ompt ,6)

pline - pline|
|
right <forpts,6)

|
|linesdots| Idegrad

pline pline] [linelogxl | linelogy
queue pline /* Same X scaling, but Y-axis is from -PI to PI */

end

end

otherwise do

'FILEDEF' inunit 'DISK' fn ft fm

'FILEDEF' inunit+40 'TERM (LRECL 80 RECFM F'

inunit inunit+1

if fttype-'C
| fttype-'D' then queue 'TIME IN SECONDS'

else queue 'FREQUENCY IN HZ'
if fttype - 'D' then queue 'AMPLITUDE IN CM/SEC/SEC

else queue 'AMPLITUDE'
qline- 'TEST:' lef t (f n,8)

|

|

' '
]
Iddate dtime

if fttype-'K' then qline - qline ' COHERENCE'
else if fttype-'C then qline « qline ' CORRELATION'
else if fttype-'D' then qline - qline ' DATA'
if method <> 'WELCH' & fttype-'K' then qline - qline ' (T)

'

queue qline

if fttype-'K' then do /* Coherence */
qline - 'CHANNELS:' chanx' : 'chany
queue qline

queue ' '

xval - 0: xinc = 1

if seqlen o 'UNKNOWN' then xinc - sps/2/seqlen
end

else do /* Correlation or Data */
if chanx = chany then do

qline - 'CHANNEL:' chanx '
(

' loccode. chanx')

'

qline » qline ' LPF FREQ:' Ipf. chanx
end

else qline - 'CHANNELS:' chanx'

:

'chany
queue qline

queue 'SAMPLE RATE:' sps
xval - 0; xinc 1

if sps <> 'UNKNOWN' then xinc - 1/sps
end

pline - right(xval,15)||right(xinc,15)||rlght(frompt,6)
pline = pline|

I
right (forpts,6)

|
|linesdots| |

'
'

pline - pline| |linelogx| llinelogy
queue pline

end

end /* SELECT */
end /* Once for each file */
'FILEDEF' inunit+40 'DUMMY'
'FILEDEF 4 TERM (LRECL 80 RECFM F'

PROGRAM: SPPPL0T4 EXEC

•ESTATE SPPL0T4 MODULE *'

if re <> then 'LOAD SPPL0T4 SPDISKIO(N0MAP CLEAR START'
else 'SPPL0T4'

'DROPBUF'

do while words{workf ids)>0
parse var workfids fn ft fm workfids
'ERASE' fn ft fm

end

return

PROGRAM: SPPL0T4 FORTRAN

*.

* *

* Vibration Analysis System (VAS) *
* *

* (c) Copyright 1986 by Brick A. Verser *
* *

* MODULE NAME:

*

* SPPLOT
*

* FUNCTION:

*

* TO PLOT REAL*4 DATA ON TEKTRONIX OR CALCOMP DEVICES.
*

* INPUT UNITS:

*

* 12.. 29 INPUT DATA TO BE PRINTED IN REAL A4 FORMAT.
* S2..69 PARAMETERS AND OPTIONS FOR EACH DATA FILE PRINTED.
*

* OUTPUT UNITS:

* 95 THE PRINTED PAGES.
*

* INPUT PARAMETERS (UNIT 4)

:

*

* RECORD 1

:

* 1..1 'T* TO PLOT ON TEKTRONIX, 'C FOR CALCOMP.
» 2.. 16 F15.0 FORMAT PLOT SCALE FACTOR.
*

* INPUT PARAMETERS (UNITS S2..69):
*

* RECORD 1

:

* 1.-13 LABEL FOR INDEPENDENT DATA AXIS.
* RECORD 2:

* 1..13 LABEL FOR DEPENDENT DATA AXIS.
» RECORDS 3, 4 AND 5:

* 1..72 GRAPH TITLE LINES.
* RECORD 6:

* 1..15 F15.0 FORMAT INITIAL INDEPENDENT VARIABLE VALUE.
* 16.. 30 F15.0 FMT INDEPENDENT VARIABLE INCREMENT.
* 31.. 36 16 FMT NUMBER OF THE FIRST POINT TO PRINT.
* 37.. 42 16 FMT NUMBER OF POINTS TO PRINT.
* 43.. 43 ' ' TO PLOT LINES BETWEEN VALUES,
* 'B' TO PLOT LINES AND POINTS BETWEEN VALUES,
* 'P' TO PLOT POINTS ONLY AT VALUES.
* 44.. 44 'D' TO PLOT PHASE IN DEGREES (FROM -200 TO +200).

256

PROGRAM: SPPL0T4 FORTRAN

* 'R' TO SCALE PLOT FOR PHASE FROM -PI TO PI.
* 45.. 45 'L' TO PLOT LOGARITHMIC X-AXIS, 'N' FOR LINEAR.
* 46.. 46 'L' TO PLOT LOGARITHMIC Y-AXIS, 'N' FOR LINEAR.
*

* OPERATION:

*

* 1. READ AND PARSE GLOBAL PARAMETER LINE.
* 2. INITIALIZE THE PLOTTING SYSTEM.

* 3. FOR EACH INPUT FILE, THE PARAMETERS ARE READ.
* IF END-OF-FILE ENCOUNTERED, EXIT.
* 4. THE DATA IS READ, SCALED, AND PLOTTED.
* 5. GOTO STEP 3.

*

* EXTERNAL ROUTINES REQUIRED:
*

* DISKIR - TO READ REAL*4 FORMAT VALUES FROM DISK.
*

* THE KSU CALCOMP GRAPHICS LIBRARY IS ALSO USED.
*

* REVISION HISTORY:

* 1.0 ORIGINAL CODE
*

* REVISION DATE PROGRAMMER
*

* 1-0 JUNE 26, 1986 BRICK VERSER

PARAMETER (MAXDIM=4098)

PARAMETER (IWRKLN=16)

DIMENSION X(MAXDIM),Y(MAXDIM)
DIMENSION DSKWRK(IWRKLN)

CHARACTERS INCHAR, LPFLG, YPIFLG.XLNLOG.YLNLOG
CHARACTER*SO INLINE, TITL1 ,TITL2,TITL3
CHARACTER*64 XAXLB.YAXLB
LOGICAL TOPFLG.CALFLG.CMPLFL

C

C INITIALIZE COMMON BLOCK FOR SAXIS, AND DAXIS
C

COMMON/AXIC0M/MDEL,STIC,ALTIC,HNUM,HIBCD,DIS1,DIS2,CYMIN1,CYMIN2
*HNUM1 .HNUM2

MDEL « 2

STIC - 0.05

ALTIC - 0.07

NEGATIVE HNUM CAUSES AXIS LABELS TO SHIFT RIGHT, NOT CENTER
HNUM - -0.10

HIBCD - 0.14

DIS1 - 0.03

DIS2 - 0.05

PROGRAM: SPPL0T4 FORTRAN

CYMIN1 - 2.0

CYMIN2 - 2.5

HNUM1 =0.12
HNUM2 - 0. 10

C

PI - 4*ATAN (1 .

)

TOPFLG > .FALSE.

C

C PARM LINE IS 'T' (EKTRONIX) OR 'C'(ALCOMP) AND SCALE FACTOR
C

READ(4, ' (A80) ' ,END-30) INLINE
INCHAR - INLINEO :1)

READ(UNIT=INLINE(2:16),FMT-'(F15.0)') SCAFAC
30 CONTINUE

C

C INITIALIZE KSU PLOTTING PACKAGE.
C 'SYMSEL E' SELECTS THE SOFTWARE SYMBOL ROUTINE.
C 'DEVICE ...' SELECTS THE APPROPRIATE HARDWARE DRIVER PACKAGE.
C

IF (INCHAR.EQ.'C) THEN
CALFLG = .TRUE.

CALL PLTOPTC SYMSEL E DEVICE CALCOMPK')
ELSE

SCAFAC - SCAFAC*. 95

CALFLG - .FALSE.

CALL PLTOPTC SYMSEL E DEVICE TEK TEKDEV 4010S')
ENDIF

C

C INITIALIZE THE PLOTTER AND ESTABLISH AN ORIGIN LEAVING ROOM
C FOR THE X-AXIS LABELS.
C

CALL PLOTS

CALL FACTOR (SCAFAC)

XORIG - 2.0

IF (CALFLG .AND. SCAFAC. EQ. .5) XORIG - 4.0
YORIG - .5

IF (CALFLG .AND. SCAFAC. EO. .5) YORIG = 4.5
CALL PLOT(XORIG, YORIG, 23)

C

C SET LENGTHS OF PLOTS. AND VARIOUS AXIS PARAMETERS
C

IF (CALFLG) THEN
AXLENX - 10

TINCX - .2

LTICX - -10

XLENI - AXLENX + 2

IF (SCAFAC. EQ. .5) XLENI = XLENI+6
AXLENY 4

TINCY - .4

253

PROGRAM: SPPL0T4 FORTRAN

LTICY - 5

YLENI - AXLENY+1 .5

IF (SCAFAC.EQ. .5) YLENI - YLENI+2
ELSE

AXLENX - S

TINCX « .1

LTICX - -10

XLENI -

AXLENY - 2

TINCY - .2

LTICY = 5

YLENI - AXLENY+.95
ENDIF

NUNIT 11

c

c PROCESS DATA FOR THE NEXT PLOT
c

50 CONTINUE

NUNIT - NUNIT+1

NUNIT2 - NUNIT+40
C FIRST PARM LINE IS X-AXIS LABEL

READ(UNIT=NUNIT2.FMT-'<A80)\ END-999) INLINE
XAXLB - INLINE

IF (XAXLB(1:7) .EQ. '*SKIPIT') THEN
CL0SE(UNIT=NUNIT2)
GOTO 180

ENDIF

C 2ND PARM IS Y-AXIS LABEL

READ(UNIT-NUNIT2.FMT='(A80) , ,END-999) INLINE
YAXLB - INLINE

C 3RD, 4TH, AND 5TH PARMS ARE GRAPH TITLE LINES
READ(UNIT=NUNIT2

, FMT- ' (A80) '
. END-999) INLINE

TITL1 - INLINE

READ (UNIT-NUNIT2 , FMT- ' (A80)
' . END-999) INLINE

TITL2 " INLINE

READ(UNIT-NUNIT2.FMT-' (A80) ', END-999) INLINE
TITL3 = INLINE

C 6TH PARM IS A LINE CONTAINING XVAL1 , XINC, FROMPT,
C FORPTS, AND FOUR FLAGS DETERMINING WHETHER LINES
C CONNECT POINTS, WHETHER Y-AXIS SHOULD BE SCALED
C FOR A PHASE PLOT. WHETHER THE X-AXIS SHOULD BE LINEAR
C OR LOGARITHMIC, WHETHER THE Y-AXIS SHOULD BE LINEAR/LOG
C AND WHETHER A PHASE PLOT SHOULD BE IN DEGREES OR RADIANS.

READ(UNIT-NUNIT2, FMT-' (A80) ' , END-999) INLINE
READ(UNIT-INLINE(1 :30) .FMT-' (2F15.0)

')XVAL1 ,XINC
READ(UNIT-INLINE(31 :42) .FMT-' (BN.2I6)

' JIFRMPT, IFRPTS
LPFLG - INLINE(43:43)

YPIFLG - INLINE(44:44)
XLNLOG - INLINE(45;4S)

PROGRAM: SPPL0T4 FORTRAN

YLNLOG = INLINE(46:46)

CLOSE(UNIT=NUNIT2)

AMINY = 9.9E40

AMAXY - -AMINY

IYCNT »

IWK110 -

XMIN " XVAL1+(IFRMPT-1)*XINC
C

C READ THE WHOLE FILE, OR THE NUMBER OF POINTS IN IFRPTS,
C BEGINNING WITH POINT NUMBER 'IFRMPT'.
C

DO 100 I - 1 ,999999

IF (IYCNT. GE. IFRPTS) GOTO 110
IF (IYCNT. GE.MAXDIM-2) GOTO 110
CALL DISKIR(NUNIT,A,IERR,IWRKLN,DSKWRK,IWK110,IWK210)
IF (IERR.NE.O) GOTO 110

IF (I. LT. IFRMPT) GOTO 100

IYCNT - IYCNT + 1

X(IYCNT) - XVAL1+(I-1)*XINC
C IF THIS IS A PHASE PLOT THAT IS TO BE IN DEGREES, PLOT
C FROM -200 TO +200 DEGREES AND ADJUST THE PHASE SO AS
C TO TAKE ADVANTAGE OF THE EXTRA 40 DEGREES TO MINIMIZE
C LARGE CROSSINGS.

IF (YPIFLG.EQ.'D') THEN
Y(IYCNT) - A*180/PI

IF <Y(IYCNT).GT.160.01) THEN
IF (Y(IYCNT-1).LT.-90) Y(IYCNT) = Y(IYCNT)-360

ELSE IF (Y(IYCNT).LT.-160.01) THEN
IF (Y(IYCNT-1).GT.90) Y(IYCNT) - Y(IYCNT)+360

END IF

ELSE

Y(IYCNT) - A

ENDIF

IF (A. LT. AMINY) AMINY - A
IF (A. GT. AMAXY) AMAXY = A

100 CONTINUE

110 CONTINUE

CLOSE(UNIT=NUNIT)

IF (IYCNT. EQ.O) GOTO 999
IF (IYCNT.EQ.1) GOTO SO

C

C SET LAST TWO VALUES OF ARRAYS SO LINE KNOWS HOW TO SCALE PLOT
C

C HANDLE PHASE PLOTS SPECIALLY
IF (YPIFLG.EQ.'R') THEN

IF (AMAXY .LE. PI) AMAXY - PI

IF (AMINY .GE. -PI) AMINY = -PI
ELSE IF (YPIFLG.EQ.'D') THEN

IF (AMAXY .LE. 200) AMAXY - 200

260

PROGRAM: SPPL0T4 FORTRAN

IF (AMINY .GE. -200) AMINY - -200

ENDIF

IF (AMINY. NE.AMAXY) THEN
YUYCNT+1) = AMINY
Y(IYCNT+2) - (AMAXY-AMINY1/AXLENY

ELSE

C HANDLE CASE WHERE INDEPENDENT VARIABLE IS A CONSTANT
IF (AMINY. EQ.O) THEN

YUYCNT+1) - -.01

YUYCNT+2) = .02/AXLENY

ELSE

YUYCNT+1) = AMINY-AMINY/10

YUYCNT+2) « (AMAXY+AMAXY/10-Y(IYCNT+1))/AXLENY
ENDIF

ENDIF

XUYCNT+1) - XMIN

XUYCNT+2) = (IYCNT-1)*XINC/AXLENX
C ALL OF THE ABOVE MUST BE REDONE IF WE ARE MAKING LOG PLOTS.
C FIRST CHECK THAT THE X-AXIS HAS NO NON-POSITIVE VALUES.
C IF WE PASS, LET THE CALCOMP ROUTINE SCALE THE X-AXIS.

IF (XLNLOG.EQ.'L') THEN
IF (XMIN.LE.O) THEN

XLNLOG - 'N'

ELSE

CALL SCALOG(X.AXLENX.IYCNT.I)
ENDIF

ENDIF

C THE Y-AXIS IS HANDLED SIMILARLY. BUT WE FUDGE THE DATA SLIGHTLY
C TO MAKE IT NICER BY TRUNCATING VERY SMALL VALUES TO 7 ORDERS OF
C MAGNITUDE LESS THAN THE LARGEST VALUE.

IF (YLNLOG.EQ.'L'j THEN
IF (AMINY. LT.O) THEN

YLNLOG - 'N 1

ELSE

AMAXLY • INT(ALOG10(AMAXY>+1)
AMINLY - INT(AL0G10(AMINY)-1)
IF (AMAXLY-AMINLY .GT. 7) THEN

AMINY » 10**(AMAXLY-6. 99999)
DO 130 1=1 .IYCNT

IF (Y(I).LT. AMINY) Y(I) - AMINY
130 CONTINUE

ENDIF

CALL SCALOG(Y,AXLENY, IYCNT, 1)

ENDIF

ENDIF

C

C LET THE CALCOMP ROUTINE DO THE LINEAR SCALING. THIS UNDOES
C THE MINIMUM TO MAXIMUM SCALING WE DID EARLIER
C

PROGRAM: SPPL0T4 FORTRAN

IF (XLNLOG.EO. 'N') CALL SCALE(X, AXLENX. IYCNT, 1

)

IF (YLNLOG.EQ. 'N' .AND. YPIFLG.NE. 'D'

)

1 CALL SCALE(Y,AXLENY, IYCNT, 1)

C

C PLOT THE AXES.

C

IF (XLNLOG.EO. 'N') THEN

C HANDLE A LINEAR X-AXIS.

CALL DAXIS(0. .0. .AXLENX. 0. .TINCX. LTICX)

CALL SAXIS(X(IYCNT+1),X(IYCNT+2)*TINCX*IABS(LTICX), 2,1 .LTICX,
X XAXLB.-LEN(XAXLB))

CALL DAXIS(0.,AXLENY, AXLENX. 0., TINCX. -LTICX)
ELSE

C HANDLE A LOG X-AXIS.

CALL DLOGAX(0. ,0. .AXLENX, XUYCNT+2) .0. .1)

CALL SLOGAX(X(IYCNT+1),1 ,-1 .XAXLB, -LEN(XAXLB)

)

CALL DLOGAX(0.,AXLENY, AXLENX. XUYCNT+2) ,0. ,-1)

ENDIF

IF (YLNLOG.EQ. 'N') THEN
C HANDLE A LINEAR Y-AXIS.

CALL DAXIS(0. ,0. .AXLENY.90. ,TINCY, LTICY)
CALL SAXIS(Y(IYCNT+1),Y(IYCNT+2)*TINCY*IABS(LTICY),3.2,LTICY,

X YAXLB,-LEN(YAXLB))

CALL DAXIS(AXLENX,0. .AXLENY.90. .TINCY, -LTICY)
ELSE

C HANDLE A LOG Y-AXIS.

CALL DLOGAX(0. .0. ,AXLENY,Y(IYCNT+2) .90. .1)

CALL SL0GAX(Y(IYCNT+1),2,1.YAXLB,-LEN(YAXLB))
CALL DL0GAX(AXLENX,0.,AXLENY.Y(IYCNT-f2),90.,-1

)

ENDIF

C

C PLOT THE DATA.

C

LINTYP -

IF (LPFLG.EQ. 'P') LINTYP - -1

IF (LPFLG.EQ. 'B') LINTYP - 1

IF (XLNLOG.EQ.'N' .AND. YLNLOG.EQ. 'N') THEN
CALL LINEIX.Y, IYCNT. 1, LINTYP, 4)

ELSE IF (XLNLOG.EO. 'L' .AND. YLNLOG. EQ. L') THEN
CALL LGLINE(X,Y, IYCNT, 1 .LINTYP. 4,0)

ELSE IF (XLNLOG.EQ.'N' .AND. YLNLOG.EQ. '
L') THEN

CALL LGLINEIX.Y, IYCNT. 1. LINTYP. 4,1)
ELSE IF (XLNLOG.EQ. 'L' .AND. YLNLOG. EQ. ' N') THEN

CALL LGLINE(X.Y, IYCNT, 1 , LINTYP, 4,-1

)

ENDIF

C

C LABEL THE GRAPH.

C

CALL SYMBOL(0.,AXLENY+.07, .12.TITL3.0. .80)

262

PROGRAM: SPPL0T4 FORTRAN

CALL SYMBOLfO. . AXLENY+ . 23 , . 1 2.TITL2, . ,80)

CALL SYMBOLIO. .AXLENY+.39.

.

12.TITL1 ,0.,80)

180 CONTINUE

C

C REORIGIN THE PLOTTER FOR THE NEXT GRAPH. IF THIS IS

C THE FIRST PLOT ON THE PAGE, SIMPLY MOVE UP THE PAGE.

C OTHERWISE. IF ON HARDOOPY MOVE TO A NEW PAPER POSITION.
C IF INTERACTIVE, PAUSE AND LET THE USER SEE WHAT WE'VE DONE.
C

IF (TOPFLG) THEN

IF (CALFLG) THEN

CALL PLOT(XLENI,-YLENI,23)
ELSE

CALL PL0T(-X0RIG,-YLENI-Y0RIG,-3)
CALL PL0T(X0RIG,Y0RIG,23)

ENDIF

ELSE

CALL PLOT{0. .YLENI.23)

ENDIF

TOPFLG - .NOT. TOPFLG
GOTO 50

C

C MAKE THE FINAL CALL TO PLOT TO CLOSE THE OUTPUT FILE.
C

999 CONTINUE

CALL PLOT(0. .0. .999)

1000 F0RMAT(A4)

STOP

END

PROGRAM: SPPRINT EXEC

* *

* Vibration Analysis System (VAS) *

* *

* (c) Copyright 1986 by Brick A. Verser *

* *

*

* MODULE NAME:

* To drive the SPPRINT Fortran program to produce
* printed output. This routine is called by
* the VAS command.

*

* EXTERNAL ROUTINES REQUIRED:
*

* SPMAGPHA - To separate a complex format spectrum
* into magnitude and phase components.
* SPPRINT - Fortran program to format and print data.

REVISION HISTORY:

1 .0 ORIGINAL CODE

REVISION

1.0

DATE

JUNE 26, 1986

PROGRAMMER

BRICK VERSER
*

*/

address command

signal on novalue

arg oparms

parse upper var oparms parms
diskmode = 'A'

/* Set defaults for global options */
gdegrad = 'DEGREES'

gmagphase = 'MP'

gfrompt 1

gforpts - 999999

gpowamp = 'FOUR'

/* Print phase in degrees */

/* Print both mag and phase of cross spectrum */
/* Print beginning with first point */
/* Print all points */

/* Assume we want Fourier amplitude spectrum */

parse var parms fdesc '(' opts ')' parms2
if words(fdesc) - then do /* We are beginning with global options */

do while words(opts) >

parse var opts opt opts

264

PROGRAM: SPPRINT EXEC

if abbrev('LOGX' ,opt,4) then glinelogx = 'LOG'

else if abbrevt 'LINEX' , opt, 5) then glinelogx - 'LINE'

else if abbrev(' LOGY' ,opt,4) then glinelogy » 'LOG'

else if abbrevt'LINEY' ,opt,5) then glinelogy 'LINE'

else if abbrevt 'RADIANS' ,opt,3) then gdegrad = 'RADIANS'

else if abbrev('DEGREES' , opt, 3) then gdegrad = 'DEGREES'
else if abbrevt 'MAGNITUDE', opt, 3) then gmagphase - 'MAGNITUDE'
else if abbrevt 'PHASE' ,opt,3) then gmagphase = 'PHASE'

else if abbrev('MP' ,opt ,2) then gmagphase = 'MP'

else if abbrevt 'PM' .opt, 2) then gmagphase = 'MP'

else if abbrevt 'POWER* .opt, 3) then gpowamp - 'POWER'
else if abbrev('PSD' ,opt,3) then gpowamp = 'POWER'

else if abbrevt 'FOURIER' ,opt,4> then gpowamp - 'FOUR'
else if abbrevt 'FROM' , opt ,2) then do

parse var opts gfrompt opts /* FROM option followed by number */
if datatype(gfrompt) <> 'NUM' then do

say 'Invalid FROM option "'gfrompt'"'
return 24

end

end

else if abbrevt 'FOR' , opt, 2) then do

parse var opts gforpts opts /* FOR option followed by number */
if datatype(gforpts) <> 'NUM' then do

say 'Invalid FOR option '"gforpts""
return 24

end

end

else do /* That was our last hope for a valid option */
say 'Invalid option '"opt""
return 24

end

end

parse var parms2 fdesc '(' opts ')' parms2
end

fidcnt =

do while words(fdesc) >

fidcnt - fidcnt+1

parse var fdesc fn type chanx chany fdesc2
if words(chany) = then do /* Gotta have complete file spec */

say 'Incomplete fileid *"fn fttype chanx"* specified 1

return 24

end

if abbrevt 'DATA' , type) then dt - 'D'

else if abbrevt 'SPECTRUM' .type) then dt - *S'
else if abbrevt 'CORRELATION' .type. 3) then dt - 'C
else if abbrevt 'TRANSFER' , type) then dt - 'T'

else if abbrevt 'COHERENCE' .type, 3) then dt = 'K'
else if type = '.' then dt = '.'

265

PROGRAM: SPPRINT EXEC

else do

say 'Invalid datatype parameter '"type""
return 24

end

ft dt
|

| chanx| |chany

fid.fidcnt - fn ft '*'

'CMDCALL ESTATE' fid.fidcnt

if re O then return re

degrad. f ident = gdegrad

magphase. f ident = gmagphase

f rompt -f ident = gfrompt

forpts.f ident = gfonpts

powamp. f ident = gpowamp

if words(fdesc2)=0 & words(opts)>0 then do while words(opts)>0
parse var opts opt opts

if abbrev('RADIANS' , opt, 3) then degrad . f ident - 'RADIANS'
else if abbrev('DEGREES', opt,3) then degrad. f ident = 'DEGREES'
else if abbrev(-'MAGNITUDE' ,opt,3) then magphase. f ident * 'MAGNITUDE'
else if abbrev('PHASE',opt,3) then magphase. f ident - 'PHASE 1

else if abbrev('MP' ,opt ,2) then magphase . f ident = 'MP'

else if abbrev('PM' ,opt,2) then magphase. f ident - 'MP'

else if abbrev('POWER' ,opt ,3) then powamp. f ident 'POWER'
else if abbrevC 'PSD' ,opt,3) then powamp. f ident = 'POWER'
else if abbrev('FOURIER' , opt, 4) then powamp . f ident - 'FOUR'
else if abbrevC ' FROM' ,opt ,2) then do

parse var opts f rompt .f ident opts /* FROM option followed by number */
if datatype(f rompt ,f ident) <> 'NUM' then do

say 'Invalid FROM option "' f rompt . f ident ""

return 24

end

end

else if abbrevt 'FOR' ,opt,2) then do

parse var opts forpts.f ident opts /* FOR option followed by number */
if datatypetforpts.f ident) <> 'NUM' then do

say 'Invalid FOR option '" forpts. f ident ""

return 24

end

end

else do

say 'Invalid option "'opt""
return 24

end

end

if words{fdesc2) - then parse var parms2 fdesc '(' opts ')' parms2
else fdesc = fdesc2

end

/* Plist has been parsed, so now we can print */
maxfident fident

PROGRAM: SPPRINT EXEC

if maxfidcnt » then do

say 'No files specified 1

return 24

end

workfids = ''; utcnt 0; inunit 12

'MAKEBUF'

queue ' ' /* Queue a blank line as first parm */

do fidcnt 1 to maxfidcnt

fid - fid. fidcnt

fn - word(fid,1); ft - word(fid,2); fm - word(fid,3)

'MAKEBUF' /* Create a stack just for the EXECIO */

q queued ()

'EXECIO 10 DISKR' fn '100' fm '(FINIS'

q queued() -q

;

sps = 1 ; infoline - ** UNKNOWN UNKNOWN UNKNOWN'

if q > 1 then do

pull sps ddate dtime .

sps sps/1

q - q-i

er.d

if q > 8 then do i«1 to 8

pull Ipf.i loccode.i

loccode.i * stripdoccode. i)

if datatypedpf .i, 'N') then Ipf.i - lpf.i/1

q - q-1

end

if q > 1 then pull infoline

'DROPBUF' /* Drop EXECIO stack */
method word (infoline , 2)

windname word(infoline,3)
seqlen =• word (infoline, 4)

if seqlen O 'UNKNOWN* then seqlen = seqlen+0
fttype=substr(ft,1 ,1); chanx-substr (f t , 2, 1); chany=substr(f t , 3, 1)

if degrad . fidcnt 'DEGREES' then degrad 'D'

else degrad = 'R'

frompt = frompt .fidcnt

forpts - forpts. fidcnt

select

when fttype=-'T'
| fttype-'S' then do /* Complex data */

utcnt - utcnt+1; workftl - 'CMSUT'utcnt

workfidl - 'SPEC workftl diskmode
utcnt - utcnt+1; workft2 - 'CMSUT'utcnt
workfid2 - 'SPEC workft2 diskmode
workfids workfids workfidl workfid2
/* Turn into magnitude and phase, converting a PSD into a */
/* simple FAS if required */

if powamp. fidcnt - 'FOUR' then spmpopt 'SORT'; else spmpopt
'EXEC SPMAGPHA' fn ft fm workfidl workfid2 spmpopt
/* Handle magnitude print */

267

PROGRAM: SPPRINT EXEC

if magphase. f idcnt <> 'PHASE' then do /* Option may prevent print */

'FILEDEF* inunit 'DISK' workfid!

'FILEDEF* inunit+40 'TERM (LRECL 80 RECFM F'

inunit - inunit+1

queue 'FREQUENCY*; queue 'MAGNITUDE'

qline - 'TEST:' left(fn,8)||' ' ||ddate dtime

if fttype <> *S' then qline - qline ' TRANSFER FUNCTION'

else if spmpopt - 'SQRT' then qline a qline ' FAS ESTIMATE'

else qline - qline ' PSD ESTIMATE'

if method <> 'WELCH' then qline = qline (T)

'

queue qline

if chanx chany then do

qline - 'CHANNEL:' chanx '('loccode. chanx 1)

'

qline qline ' LPF FREQ: ' Ipf. chanx

end

else qline 'CHANNELS:' chanx' : 'chany

queue qline

qlino - 'WINDOW:' windname ' PTS/SEGMENT: ' seqlen

qline qline ' SAMPLE RATE:' sps

queue qline

xval = 0; xinc 1

if seqlen <> 'UNKNOWN' then xinc - sps/2/seqlen

pline - right(xval,15)
|

| right (xinc, 1 5) |
| right (f rompt ,6)

pline - pline| | right (forpts,6) || ' 'M' '

pline - pline| |

' '
]

|

'
'

queue pline

end

/* Handle phase print (if needed) */

if fttype«'S' & chanxochany & magphase . f idcnt <> 'MAGNITUDE'
,

then do /* Spectrum print may need phase */

'FILEDEF' inunit 'DISK* workfid2

'FILEDEF' inunit+40 'TERM (LRECL 80 RECFM F'

inunit inunit+1

if degrad 'R' then temp='RAD'; else temp='DEG*

queue 'FREQUENCY*; queue *PHASE(' temp')

'

qline - 'TEST:' left<fn,8)
|

|
' '|]ddate dtime

if spmpopt - 'SQRT' then qline - qline ' FAS ESTIMATE'

else qline - qline ' PSD ESTIMATE'
if method O 'WELCH' then qline * qline ' (T)

'

queue qline

if chanx chany then do

qline 'CHANNEL:' chanx '(' loccode . chanx ')

'

qline - qline ' LPF FREQ:' Ipf. chanx
end

else qline - 'CHANNELS:' chanx'

:

'chany

queue qline

qline = 'WINDOW:' windname ' PTS/SEGMENT:' seqlen
qline - qline ' SAMPLE RATE:' sps

queue qline

268

PROGRAM: SPPRINT EXEC

xval - 0; xinc 1

if seqlen O 'UNKNOWN' then xinc - sps/2/seqlen

pline right (xval, 1 5) |
| rightfxinc, 1 5) [

| right(f rompt ,6)

pline - pline] | right (forpts.6)
|

|
' '||degrad

pline pline) |

' '
|

|

'

'

queue pline

end

end

otherwise do

'FILEDEF' inunit 'DISK' fn ft fm

•FILEDEF' inunit+40 'TERM { LRECL 80 RECFM F'

inunit - inunit+1

if fttype»'C |
fttype-'D' then queue 'TIME(SECS)'

else queue 'FREQUENCY'

queue 'AMPLITUDE'

qline - 'TEST:* lef t (f n , 8) |

|
* *

|
| ddate dtime

if fttype-'K* then qline - qline ' COHERENCE'

else if fttype-'C then qline - qline ' CORRELATION'

else if fttype='D' then qline - qline ' DATA'

if method <> 'WELCH' & fttype-'K' then qline » qline ' (T)

'

queue qline

if fttype-'K' then do /* Coherence */

qline - 'CHANNELS: 1 chanx '

:

' chany

queue qline

queue '
'

xval - 0; xinc - 1

if seqlen <> 'UNKNOWN' then xinc = sps/2/seqlen

end

else do /* Correlation or Data */

if chanx = chany then do

qline - 'CHANNEL: ' chanx '
('loccode. chanx')

'

qline - qline ' LPF FREQ: ' Ipf. chanx

end

else qline - 'CHANNELS: ' chanx' : 'chany

queue qline

queue 'SAMPLE RATE:' sps

xval = 0; xinc 1

if sps <> 'UNKNOWN' then xinc - 1 /sps

end

pline - right(xval,15)
|

| right (xinc, 15) |
! right (f rompt ,6)

pline - pline| | right (f orpts,6)
|

[
' '||' '

pline - pline| |

' '
|

| '

queue pline
end

end /* SELECT */

end /* Once for each file */

'FILEDEF' inunit+40 'DUMMY'

•FILEDEF 4 TERM (LRECL 80 RECFM F'

'FILEDEF 95 PRINT (LRECL 133 RECFM FA*

269

PROGRAM: SPPRINT EXEC

'ESTATE SPPRINT MODULE *'

if t-c <> then 'LOAD SPPRINT SPDISKIO(NOMAP CLEAR START'

else 'SPPRINT'

'DR0P8UF'

do white words(workf ids)>0

parse var workfids fn ft fm workfids

'ERASE' fn ft fm

end

return

PROGRAM: SPPRINT FORTRAN

*.

* *

* Vibration Analysis System (VAS) *

* *

* (c) Copyright 1986 by Brick A. Verser *

* *

* MODULE NAME:

* TO FORMAT AND PRINT REAL*4 DATA.

* INPUT UNITS:

*

* 12.. 29 INPUT DATA TO BE PRINTED IN REAL A4 FORMAT.

* 52.. 69 PARAMETERS AND OPTIONS FOR EACH DATA FILE PRINTED.

*

* OUTPUT UNITS:

* 95 THE PRINTED PAGES.

*

* INPUT PARAMETERS (UNIT 4)

:

*

* IGNORED, BUT MUST BE PRESENT

*

* INPUT PARAMETERS (UNITS 52.. 69):

*

* RECORD 1

:

* 1..13 LABEL FOR INDEPENDENT DATA COLUMNS.

* RECORD 2:

» 1..13 LABEL FOR DEPENDENT DATA COLUMNS.

* RECORDS 3. 4 AND 5:

* 1 . .72 PAGE TITLE LINES.

* RECORD 6:

* 1..15 F15.0 FORMAT INITIAL INDEPENDENT VARIABLE VALUE.

* 16. .30 F15.0 FMT INDEPENDENT VARIABLE INCREMENT.

* 31.. 38 16 FMT NUMBER OF THE FIRST POINT TO PRINT.

» 37.. 42 16 FMT NUMBER OF POINTS TO PRINT.

* 44.. 44 'D' TO PLOT PHASE IN DEGREES.

* OPERATION:

1. FOR EACH INPUT FILE, THE PARAMETERS ARE READ.

IF END-OF-FILE ENCOUNTERED. EXIT.

*

PROGRAM: SPPRINT FORTRAN

* 2. THE DATA IS READ AND ACCUMULATED UNTIL AN ENTIRE

* PAGE WORTH HAS BEEN READ OR UNTIL END-OF-FILE.

* 3. THE ACCUMULATED DATA PAGE IS PRINTED.

* IF END-OF-FILE WAS NOT ENCOUNTERED, GOTO STEP 2.

* 4. THE INPUT DATA FILE IS CLOSED. GOTO STEP 1.

*

* EXTERNAL ROUTINES REQUIRED:

* DISKIR - TO READ REAL*4 FORMAT VALUES FROM DISK.

*

* REVISION HISTORY:

1 .0 ORIGINAL CODE

REVISION DATE PROGRAMMER

1.0 JUNE 26, 1986 BRICK VERSER

PARAMETER (IWRKLN-16)

PARAMETER (LENPAG-50)

DIMENSION X(LENPAG*3) ,Y(LENPAG*3)

DIMENSION DSKWRK(IWRKLN)

CHARACTERS INCHAR.YPIFLG

CHARACTER*72 TITL1 .TITL2.TITL3

CHARACTER*80 INLINE

CHARACTERS 3 XAXLB.YAXLB

LOGICAL CMPLFL.EOFFLG

PI - 4*ATAN (1 .

)

C

C FIRST PARM LINE IS THROWN AWAY

C

READ(4, ' (A80) ') INLINE

NUNIT « 1

1

C

C PROCESS DATA FOR THE NEXT FILE

C

50 CONTINUE

NUNIT - NUNIT+1

NUNIT2 - NUNIT+40

C FIRST PARM LINE IS X-AXIS LABEL (THE INDEPENDENT VARIABLE AXIS)

READ(UNIT»NUNIT2,FMT^' (A80) • ,END=999) INLINE

XAXLB - INLINE

C 2ND PARM IS Y-AXIS LABEL (THE DEPENDENT VARIABLE AXIS)

READ(UNIT=NUNIT2,FMT«' (A80) ' ,END=999) INLINE

YAXLB = INLINE

C 3RD, 4TH AND 5TH PARMS ARE TITLE LINES

READ(UNIT-NUNIT2,FMT-' (A80)
'
.END-999) INLINE

TITL1 - INLINE

PROGRAM: SPPRINT FORTRAN

READ(UNIT=NUNIT2,FMT-'<A80>',END=999) INLINE

TITL2 - INLINE

READ(UNIT=NUNIT2,FMT-' (A80) ' ,END=999) INLINE

TITL3 - INLINE

C 6TH PARM IS A LINE CONTAINING XVAL1 , XINC, FROMPT. FORPTS,

C AND FLAGS, MOST UNUSED BUT ONE DETERMINING WHETHER

C A PHASE PRINT SHOULD BE SCALED IN DEGREES OR RADIANS.

READ(UNIT»NUNIT2.FMT-' (A80) ' .END-999) INLINE

READ(UNIT»INLINE<1 : 30) , FMT- (2F1 5 .
0)

' JXVAL1 ,XINC

READ(UNIT»INLINE(31:42),FMT- , (BN.2I6)')IFRMPT. IFRPTS

YPIFLG = INLINE(44:44)

CLOSE (UNIT-NUNIT2)

EOFFLG - .FALSE.

I PAGE -

IWK110 -

c

C SKIP TO FIRST POINT WE'RE SUPPOSED TO PRINT.

C

ICNTTT -

ICNTPR >

DO 80 I - 1 , IFRMPT-1

CALL DISKIR(NUNIT,A,IERR.IWRKLN.DSKWRK,IWK110,IWK210)

IF (IERR.NE.O) GOTO 999

ICNTTT ICNTTT+1

80 CONTINUE

C

C READ A PAGE WORTH OF DATA INTO ARRAY 'X'.

C

101 CONTINUE

IYCNT -

I PAGE - IPAGE-H

DO 105 I - 1 ,LENPAG*3

IF (ICNTPR. GE. IFRPTS) GOTO 110

CALL DISKIR(NUNIT.A.IERR.IWRKLN.DSKWRK,IWK110.IWK210)

IF (IERR.NE.O) GOTO 110

ICNTTT - ICNTTT+1

IYCNT IYCNT + 1

ICNTPR = ICNTPR + 1

X(I) » XVAL1+(ICNTTT-1)*XINC

C CONVERT PHASE TO DEGREES IF REQUESTED

IF (YPIFLG. EQ. 'D') THEN

Y(I) - A*180/PI

ELSE

Y(I) > A

ENDIF

105 CONTINUE

GOTO 1 1

1

C HERE ON END-OF-FILE.

110 CONTINUE

SET FLAG TO REMEMBER WE FINISHED A FILE.

PROGRAM: SPPRINT FORTRAN

CLOSE(UNIT=NUNIT)

EOFFLG - .TRUE.

111 CONTINUE

IF (IYCNT.EQ.O) GOTO 999

C

C PRINT A PAGE OF DATA WITH 3 COLUMNS AND 50 ROWS OF DATA.

C

WRITE(95.1010)TITL1 ,IPAGE

1010 FORMATC1 ' ,A72. ' PAGE ',12)

WRITE(9B,1011)TITL2

1011 FORMATOX.A72)
WRITE(95.1011)TITL3

WRITEO5.1050)
1050 FORMAT! IX)

WRITE (95 ,1015) XAXLB , YAXLB . XAXLB , YAXLB , XAXLB . YAXLB

1015 FORMATCO 1 ,6A13)

WRITE(95,1050)

DO 140 I»1 .LENPAG

IF (IYCNT.GE.2*LENPAG+I) THEN

WRITE (95,1 020)X(I) ,Y(I) ,X(I+LENPAG) ,Y(I+LENPAG)

,

X X(I+2*LENPAG) ,Y(I+2*LENPAG)

ELSE IF (IYCNT.GE.LENPAG+I) THEN

WRITE(95,1020)X(I),Y(I),X(I+LENPAG),Y(I+LENPAG)

ELSE IF (IYCNT.GE.I) THEN

WRITE(95,1020)X(I),Y(I)

C020 FORMAT(1X,6(E11 .1,2X1)

1020 FORMAT(1X,3(F11.5,2X,E11.4,2X))

ENDIF

140 CONTINUE

IF (EOFFLG) GOTO 180

GOTO 101

C

C HERE AFTER LAST PAGE OF DATA FILE HAS BEEN PRINTED
C

180 CONTINUE

GOTO 50

C

999 CONTINUE

STOP

END

PROGRAM: SPBINOP EXEC

* *

* Vibration Analysis System (VAS) *

* *

* (c) Copyright 1986 by Brick A. Verser *

* *

*

* MODULE NAME:

*

* SPBINOP

*

* FUNCTION:

*

* To perform a binary operation on two input files

* to produce a third file.

* This routine is called from the VAS command.

*

* EXTERNAL ROUTINES REQUIRED:

*

* SPBINOP - Fortran program to do the actual work.

* REVISION HISTORY:

*

* 1.0 ORIGINAL CODE

*

* REVISION DATE PROGRAMMER
*

* 1.0 JUNE 26, 1986 BRICK VERSER
*

*/

address command

arg inargs

parse upper var inargs fmt infnl inftl infml infn2 inft2 infm2 ,

outfn outft outfm func
if length(func) = then signal help

if abbrev(fmt, 'REAL') then fmt

else if abbrevC fmt, 'COMPLEX') then fmt - 1

else do

say 'SPBINOP: Invalid data format "'fmt' 1"

return 24

end

infidl = infnl inft! infml

infid2 - infn2 inft2 infm2

outfid = outfn outft outfm

select

when abbrev('ADD' , func) then funcnum -

when abbrev('SUBTRACT' , func) then funcnum = 1

when abbrevC 'MULTIPLY* .func) then funcnum 2

275

PROGRAM: SPBINOP EXEC

when abbrev('DIVIDE' , func) then funcnum » 3

otherwise do

say 'SPBINOP: Invalid function '"func""
return 24

end

end

optline = fmt
|

| right (funcnum, 2)

say optline

'FILEDEF 10 DISK' infid!

•FILEDEF 11 DISK' infid2

•FILEDEF 30 DISK* outfid ' (LRECL 80 RECFM V
'FILEDEF 4 TERM (LRECL 80 RECFM F'

'FILEDEF 7 TERM'

'FILEDEF 8 TERM 1

•FILEDEF 9 TERM 1

push optline

'SPBINOP'

return re

HELP:

say 'SPBINOP: Invalid parameter list 1

return 24

PROGRAM: SPBINOP FORTRAN

*.

* *

* Vibration Analysis System (VAS) *

* *

* (c) Copyright 1986 by Brick A. Verser *

* *

*

* MODULE NAME:

*

* SPWELCH
*

* FUNCTION:

*

* PERFORM A BINARY OPERATION ON TWO DATA FILES.

*

* INPUT UNITS:

*

* 04 PARAMETERS AND OPTIONS.

* 10 CHANNEL 1 INPUT DATA IN REAL A4 FORMAT.

* 11 CHANNEL 2 INPUT DATA IN REAL A4 FORMAT.

*

* OUTPUT UNITS:

*

* 07 ERROR MESSAGES.

* 08 INFORMATIONAL AND WARNING MESSAGES.

* 30 RESULT IN REAL A4 FORMAT.

* INPUT PARAMETERS:

RECORD 1

:

1..1 INTEGER. SPECIFYING THE FORMAT OF THE INPUT.

0: INPUT CHANNELS ARE IN REAL A4 FORMAT.

1: INPUT CHANNELS ARE IN CMPLX 2A4 FORMAT.

2.. 3 INTEGER, SPECIFYING THE OPERATION TO BE

PERFORMED ON THE DATA.

ADDITION

SUBTRACTION

* 2: MULTIPLICATION

* 3: DIVISION
*

* EXTERNAL ROUTINES REQUIRED:

*

* DISKIR - TO READ REAL*4 FORMAT VALUES FROM DISK.

* DISKOR - TO WRITE REAL*4 FORMAT VALUES TO DISK.

* REVISION HISTORY:

PROGRAM: SPBINOP FORTRAN

ORIGINAL CODE

ION DATE PROGRAMMER

JUNE 26, 1986 BRICK VERSER

PARAMETER (IWRKLN-16)

DIMENSION WORK10UWRKLN) .WORK11 (IWRKLN) , WORK30(IWRKLN)

COMPLEX CX, CY.CZ, COP

IOP -

I FORM -

READ(4, ' (11 ,12)
'
,END=190)IFORM,IOP

CONTINUE

CALL DISKOROO.O. .1 . IWRKLN, WORK30. IWK30)

IWK110 =

IWK111 -

IF (IFORM .EO. 0) THEN

CONTINUE

CALL DISKIR(1 , X , IERR , IWRKLN , WORK1 , IWK1 1 , IWK21)

IF (IERR.NE.O) GOTO 250

CALL DISKIR01 ,Y, IERR, IWRKLN, W0RK1 1 , IWK1 1 1 , IWK21 1)

IF (IERR.NE.O) GOTO 250

Z - OP(X,Y.IOP)

CALL DISKOR(30 , Z , 2 , IWRKLN , W0RK30 , IWK30

)

GOTO 200

ELSE

CONTINUE

CALL DISKIR (1 , XR , IERR , IWRKLN , W0RK1 , IWK1 1 , IWK21 Q

)

IF (IERR.NE.O) GOTO 250

CALL DISKIRI 10, XI, IERR, IWRKLN, WORK10, IWK1 10, IWK21)
IF (IERR.NE.O) GOTO 250

CX - CMPLX(XR.XI)

CALL DISKIR01 , XR. IERR, IWRKLN. W0RK1 1 .IWK111 .IWK211)

IF (IERR.NE.O) GOTO 250

CALL DISKIROI , XI, IERR, IWRKLN, W0RK1 1 .IWK111 .IWK211)

IF (IERR.NE.O) GOTO 250

CY = CMPLX(XR.XI)

CZ = C0P(CX,CY,I0P)

CALL DISKOR(30,REAL(CZ),2,IWRKLN,WORK30,IWK30)

CALL DISKOR(30,AIMAG(CZ),2,IWRKLN,WORK30,IWK30)
GOTO 220

ENDIF

CONTINUE

CALL DISKOROO.O. ,3, IWRKLN, W0RK30, IWK30)

STOP

END

FUNCTION 0P(X,Y,I0P)

278

PROGRAM: SPBINOP FORTRAN

IF (IOP.EQ.O) THEN

OP X+Y

ELSE IF (IOP.EQ.1) THEN

OP = X-Y

ELSE IF (IOP.EQ.2) THEN
OP - X*Y

ELSE IF (IOP.EQ.3) THEN
OP = X/Y

ENDIF

RETURN

END

FUNCTION COP(X,Y,IOP)

COMPLEX COP.X.Y

IF (IOP.EQ.O) THEN

COP - X+Y
ELSE IF (IOP.EQ.1) THEN

COP - X-Y

ELSE IF (IOP.EQ.2) THEN
COP - X*Y

ELSE IF (IOP.EQ.3) THEN
COP - X/Y

ENDIF

RETURN

END

PROGRAM: SPC0NV2 EXEC

/**

* *

* Vibration Analysis System (VAS) *

* *

* (c) Copyright 1986 by Brick A. Verser *

* *

*

* MODULE NAME:

*

* SPMAGPHA
*

* FUNCTION:

*

* Convert from raw input data (reversed-byte integers

* with interleaved channels) to ready-to-process real

* format data with one channel per file and with
* an associated information file. This routine is

* called by the VAS command.

*

* EXTERNAL ROUTINES REQUIRED:

*

* SPC0NV2 - Fortran program to do the actual work.

* REVISION HISTORY:

*

* 1 .0 ORIGINAL CODE
*

* REVISION DATE PROGRAMMER
*

* 1.0 JUNE 26, 1986 BRICK VERSER
*

*/

address command

arg inargs

parse upper var inargs infn inft infm outfids

if length(outf ids)=0 then signal help

infid - infn inft infm

do i=1 to 9 while length(outf ids)>0

parse var outfids outfn outft outfm outfids
if length(outfm) = then signal help

outfid = outfn outft outfm
unit = 29+i

if unit>30 then 'FILEDEF' unit 'DISK' outfid '(LRECL 80 RECFM V
else 'FILEDEF' unit 'DISK' outfid '(LRECL 80 RECFM F'

end

'FILEDEF 10 DISK' infid

'FILEDEF 7 TERM'

'FILEDEF 8 TERM'

PROGRAM: SPCONV2 EXEC

'FILEDEF 9 TERM'

'SPCONV2'

return re

HELP:

say 'SPCONV2: Invalid parameter list'

return 24

PROGRAM: SPCONV2 FORTRAN

*.

*

* Vibration Analysis System CVAS) *
* *
* <c) Copyright 1986 by Brick A. Verser *
* *

*

* MODULE NAME:

* FUNCTION:

TO CONVERT FROM RAW REVERESED-BYTE INTEGER*2 DATA WITH
HEADER AND INTERLEAVED CHANNELS TO SIMPLE A4 FORMAT REAL
FILES WITH ONE CHANNEL PER FILE.

* INPUT UNITS:

RAW INPUT DATA INCLUDING VERSION 2 HEADER.

* OUTPUT UNITS:

07 ERROR MESSAGES.
08 INFORMATIONAL AND WARNING MESSAGES.
30 INFORMATIONAL OUTPUT. THE SAMPLING RATE AND

THE DATE&TIME THE DATA WAS COLLECTED ARE WRITTEN
TO THE FIRST LINE. THE NEXT EIGHT LINES CONTAIN
THE LOW-PASS FILTER SETTING AND LOCATION CODE FOR
EACH OF THE POSSIBLE INPUT CHANNELS.

31.. 38 REAL FORMAT OUTPUT DATA, ONE CHANNEL PER UNIT.

* INPUT PARAMETERS:

* OPERATION:

* 1
.

THE INPUT HEADER IS READ AND PARSED TO DETERMINE
* VALUES SUCH AS THE SAMPLING RATE, NUMBER OF DATA
* CHANNELS. ETC.
* 2. THE INFORMATIONAL FILE IS WRITTEN.
* 3. THE DATA IS READ AND CONVERTED FROM REVERSED BYTE
* INTEGER*2 FORMAT TO REAL*4 FORMAT AND EACH CHANNEL
* OF DATA IS WRITTEN TO A DIFFERENT UNIT.
*

* EXTERNAL ROUTINES REQUIRED:

PROGRAM: SPCONV2 FORTRAN

DISKIH - TO READ INTEGER*2 FORMAT VALUES FROM DISK.

DISKOR - TO WRITE REAL*4 FORMAT VALUES TO DISK.

* REVISION HISTORY:

*

* 1.0 ORIGINAL CODE

JUNE 26, 1986 BRICK VERSER

C

C THE FOLLOWING PARAMETER STATEMENTS DEFINE THE OFFSETS

C TO THE FIELDS OF INTEREST IN THE RAW DATA HEADER.

C REFER THE TO MICROCOMPUTER DATA ACQUISITION PROGRAM

C FOR A COMPLETE DESCRIPTION OF EACH OF THESE FIELDS.

C

INTEGER OBV . ODS . OVERS , OCOMPV. OHDRSZ, OCSFLG

INTEGER ODVFLG , ODTYY . ODTMO . ODTDD , ODTHH , ODTMI , ODTSS

INTEGER CSASC.CSEBCOCHNCT.OOFFVL

INTEGER 0SPS.0SPSM1 ,0SPSD1 ,OSPSM2,OSPSD2

INTEGER 0UPI.0UPIM1 ,0UPID1 .0UPIM2.0UPID2

INTEGER OLOCAT.OLPF

PARAMETER (OBV-0 , ODS-2 , OVERS-4 , 0C0MPV-6 , OHDRSZ-8

)

PARAMETER (0CSFLG-16.0DVFLG-1 7.0DTYY-1 8,ODTMO=20)

PARAMETER (ODTDD-22 , 0DTHH-24 , 0DTMI-26 , ODTSS-28

)

PARAMETER (CSASC=1 28.CSEBC-64)

PARAMETER (0CHNCT=1 28,OOFFVL=1 32

)

PARAMETER (0SPS=1 44 , 0SPSM1 -1 48 . 0SPSD1 I 52 , 0SPSM2 = 1 56 , 0SPSD2-1 58

)

PARAMETER (0UPI=1 60 ,OUPIM1 -1 92 , 0UPID1 -224, OUPIM2=256,OUPID2=272)

PARAMETER <0L0CAT-288,0LPF-41 6)

INTEGER*2 BVCONS , DTCONS

INTEGER*2 HEADER(0:2S5) , ITEMP

INTEGER HEAD4(0:127)

EQUIVALENCE (HEADER(O) ,HEAD4(0)

)

DIMENSION UPI(8),LPF(8),ASCLPF(8) ,L0CC0D(8) ,ASCL0C<8)

CHARACTER*! 6 LOCCOD, ASCLOC

CHARACTER*6 LPF.ASCLPF

EQUIVALENCE (HEADER(OLOCAT/2) .ASCLOCd))

EQUIVALENCE (HEADER (OLPF/2) ,ASCLPF(1)

)

PARAMETER (I2BSIZ-40)

INTEGER*2 I2BUFFU2BSIZ)
PARAMETER (IWRKLN-16)

DIMENSION DSKWRK (IWRKLN , 8) . IDSKWK (8

)

CHARACTER*3 STRMON. STRDAY, STRYR, STRHR.STRMIN

DATA BVCONS/1 6982/, DSCONS/1 7491/

DATA IUNINI/31/

283

PROGRAM: SPCONV2 FORTRAN

C

C READ HEADER

C

IWK110 -

DO 110 1-0.255

CALL DISKIHOO.HEADER(I) , IERR, I2BSIZ, I2BUFF. IWK1 10.IWK210)

IF (IERR.NE.O) THEN

WRITE(7,*)' INCOMPLETE OR MISSING HEADER ON RAW INPUT'

GOTO 999

ENDIF

110 CONTINUE

IF (HEADER(0BV/2) .NE.BVCONS .OR. HEADER (ODS/2) .NE.DSCONS) THEN

WRITE(7,*)' NO HEADER ON RAW INPUT DATA FILE'

GOTO 999

ENDIF

C

C DECODE THE FIELDS OF INTEREST IN THE HEADER

C

ICHANS - HEADER(0CHNCT/2)

IOFF - HEADER(00FFVL/2)

SPS - FL0AT(HEAD4(0SPS/4))*HEAD4(0SPSM1/4)/HEAD4(0SPSD1/4)*

1 HEADER(0SPSM2/2)/HEADER(0SPSD2/2)

DO 130 1-1 .ICHANS

UPI(I) - FL0AT(HEAD4(0UPI/4+I-1))*HEAD4(0UPIM1 /4+I-1)/

1 HEAD4(0UPID1/4+I-1)*HEADER(OUPIM2/2+I-1)/

2 HEADER(OUPID2/2+I-1)

CALL CVTSTR(ASCLPF(I).LPF(D)

CALL CVTSTR (ASC LOC (I) , LOCCOD (I)

)

130 CONTINUE

C

C WRITE THE INFORMATIONAL FILE.

C

C FIRST LINE OF INFO FILE IS SAMPLE RATE, DATE, AND TIME.

C BE SURE MM/DD/YY HH:MM ALL HAVE LEADING ZEROS.

WRITE(UNIT=STRMON.FMT-' (13)
') HEADER(0DTM0/2) +1 00

WRITE (UNIT-STRDAY.FMT-' (13)') HEADER(0DTDD/2)+100

WRITE (UNIT=STRYR,FMT-'(13)') HEADER(0DTYY/2)-1 900+1 00

WRITE(UNIT-STRHR.FMT-' (13)
') HEADER(0DTHH/2)+1 00

WRITE(UNIT-STRMIN,FMT-'(I3)') HEADER (ODTMI/2) +100

WRITE(30,1000) SPS, STRM0N(2:3). STRDAY(2:3),

1 STRYR(2:3), STRHR(2:3), STRMIN(2:3)

1000 FORMAT(E15.7,' '
. A2 ,

'

/
' ,A2

.

'

/
' . A2 ,

' ',A2,':'.A2)

C LOW PASS FILTER SETTING AND LOCATION CODE FOR EACH CHANNEL
DO 150 1-1 .ICHANS

WRITEUO, ' (A6.10X.A16) '
) LPFU) . LOCCOD (I

)

150 CONTINUE

C BE SURE EXACTLY 8 RECORDS ARE WRITTEN

DO 1S1 I-ICHANS+1 ,8

WRITE(30. 'OX)')

PROGRAM: SPCONV2 FORTRAN

151 CONTINUE

ITOT

C

C READ DATA, CONVERT TO REAL FORMAT, AND WRITE TO FILES
C

C OPEN OUTPUT UNITS

DO 210 I=1,ICHANS

CALL DISKOR(I+IUNINI-1 , . , 1 , IWRKLN , DSKWRK (1,1), IDSKWK (I)

)

210 CONTINUE

C

C READ A DATA VALUE, SWAP THE BYTES, AND WRITE IT
C

220 CONTINUE

CALL DISKIHd 0, ITEMP, IERR, I2BSIZ, I2BUFF, IWK1 10, IWK210)
IF (IERR.NE.O) GOTO 270
IUNIT - MOD(ITOT,ICHANS)+IUNINI
X - (ISWAP2(ITEMP) - IOFF) * UPI (IUNIT-IUNINI + 1

)

CALL DISKORUUNIT.X, 2, IWRKLN, DSKWRKO , IUNIT-(IUNINI-1))

,

X IDSKWK (IUNIT- (IUNINI-1)))
ITOT - ITOT+1

GOTO 220

270 CONTINUE
C

C CLOSE OUTPUT FILES
C

DO 310 1-1 .ICHANS

CALL DISKORd+IUNINI-1 ,0. , 3, IWRKLN, DSKWRK (1 , 1) , IDSKWK(I)

)

310 CONTINUE

999 CONTINUE

STOP

END

FUNCTION ISWAP2(I)

INTEGER*2 I

C

C THIS FUNCTION SWAPS THE BYTES OF AN INTEGER*2 VALUE
C

C ISWAP2 - ISHFT(I,-8)+ISHFT(IAND(JJ,255),8)
J - I

IF (J.LT.O) J « J+65536
ISWAP2 - J/256 + (J-J/256*256)*256
RETURN

END

FUNCTION ISWAP4(LSW,MSW)
INTEGER*2 LSW.HSW

C

C THIS FUNCTION SWAPS THE BYTES OF AN INTEGER*4 VALUE
C

ISWAP4 = ISWAP2(LSW)+ISWAP2(MSW)*65536
RETURN

PROGRAM: SPCONV2 FORTRAN

END

SUBROUTINE CVTSTRf INS. OUTS)

CHARACTER***) INS, OUTS

CHARACTERS ASC2EB

CONVERT STRING 'INS' FROM ASCII TO EBCDIC AND PLACE IN 'OUTS'

DO 110 I=1,MIN(LENUNS),LEN(0UTS))
OUTS(I:I) = ASC2EB(INS(I:D)

CONTINUE

RETURN

END

CHARACTER*! FUNCTION ASC2EBUNC)
CHARACTERS INC

CONVERT THE SINGLE CHARACTER 'INC FROM ASCII TO EBCDIC

DIMENSION TABLE(0:127)

CHARACTER*! TABLE

DATA TABLE/32*' '
,

' '
,

)'. '*'.

3', '4',

1

2

3

4

5

6

7

3

9

ASC2EB

RETURN

END

""

.

'*' '$' '%'
. S' .

"
'.

1 + '

,
'

,

'

,

'-' '/'. 0'
,

1
'

,

'5', '6', '7' '8' '9',
:

'

, ;
'

p

'?

'

'8', 'A' 'B' 'C , D', E'.

'I'. 'J'. 'K' 'L' 'M\ N', 0'
,

•s 1

. 'T', U' 'V 'W , X'. Y' ,

']', 'V. '_' 'a' , b' , c' , '

'g'. 'h'. 'i

'

' J' 'k' , V, m' ,
'

'q'. 1 r '

,

's' 't' 'u' ,

'/

v'

,

w\ '

TABLEdCHAR(INC))

PROGRAM: WWINDO FORTRAN

*.

* *
* Vibration Analysis System (VAS) *

* *

* (c) Copyright 1986 by Brick A. Verser *

* *

^^^A***
*

* MODULE NAME:

* WWINDO
*

* FUNCTION:

*

* TO CREATE ONE OF SIX POSSIBLE WINDOW FUNCTIONS AND
* PLACE THEM IN AN ARRAY.
*

* THE FOLLOWING CODE IS BORROWED FROM "RALPH", THE
* VAX/VMS SIGNAL PROCESSING PROGRAM OF THE KANSAS STATE
* UNIVERSITY DEPARTMENT OF ELECTRICAL ENGINEERING.
*

* CALLING PARAMETERS:
*

* CALL WWINDO(ARRAY, LENGTH, WINTYP, POWER. THETA)
*

* INPUT PARAMETERS:
*

* LENGTH - AN INTEGER SPECIFYING THE NUMBER OF WINDOW
* COMPONENTS TO BE GENERATED AND PLACED IN 'ARRAY'.
* WINTYP - AN INTEGER SPECIFYING WHICH WINDOW TO GENERATE.
* 1

:

TRIANGLE (ALSO CALLED BARTLETT)
* 2: HAMMING (ALSO CALLED RAISED-COSINE)
* 3: HANNING (ALSO CALLED COSINE)
* 4: KAISER (WITH INPUT PARAMETER-' THETA '

)

* 6: BLACKMAN-HARRIS
» 6: PARZEN

* THETA - PARAMETER SPECIFYING THE SHAPE OF THE KAISER WINDOW.
*

* OUTPUT PARAMETERS:
*

* ARRAY - THE GENERATED WINDOW FUNCTION OF LENGTH 'LENGTH'.
* POWER - THE VARIANCE OF THE GENERATED WINDOW.

* REVISION HISTORY:

0.0 ORIGINAL RALPH CODE.

1.0 UPDATES TO CREATE WINDOW FUNCTION IN A VECTOR
RATHER THAN TO ACTUALLY WINDOW A VECTOR.

287

PROGRAM: WWINDO FORTRAN

0.0 ? ?

1.0 JUNE 26, 1986 BRICK VERSER

SUBROUTINE WWINDO (ARRAY , LENGTH .WINTYP , POWER , THETA)
INTEGER COLUMN, LENGTH, WINTYP
REAL POWER, ARRAY(*)

POWER = 0.

DO 1 I - 1 , LENGTH

IF (WINTYP. E0.1) CALL TRIGENt I, LENGTH, VAL)
IF (WINTYP. EQ. 2) CALL HAMGEN(I. LENGTH, VAL)
IF (WINTYP. EQ. 3) CALL VANGENi I , LENGTH, VAL)
IF (WINTYP. EQ. 4) CALL KAIGENd. LENGTH, VAL, THETA)
IF (WINTYP. EO. 5) CALL BLKGEN(I. LENGTH, VAL)
IF (WINTYP. EQ. 6) CALL PARGENf I, LENGTH, VAL)
ARRAY! I) - ARRAY(I)*VAL
ARRAY(I) VAL

POWER = POWER + VAL**2
CONTINUE

RETURN

END

SUBROUTINE WINGEN
PARAMETER (PI - 3.141593)

ENTRY TRIGEN< I, LENGTH, VAL)

IF ((1-1) .LE. (LENGTH/2)) THEN
VAL = (1-1) /(LENGTH/2.)

ELSE

VAL (LENGTH-(I-1))/(LENGTH/2.)
ENDIF

RETURN

ENTRY HAMGENt I, LENGTH. VAL)

VAL = 0.54 - 0.46*C0S(2*PI*(I-1 J/LENGTH)
RETURN

ENTRY VANGENU. LENGTH, VAL)

VAL = 0.5 - 0.5*COS(2*PI*(I-1 J/LENGTH)
RETURN

ENTRY KAIGENd, LENGTH, VAL, THETA)
AUGUM1 - (I - (LENGTH/2. + 1)) / (LENGTH/ 2.)
AUGUM2 • 1.0 - AUGUM1**2
VAL - BESSIO(THETA*SQRT(AUGUM2))/BESSI0(THETA)
RETURN

PROGRAM: WWINDO FORTRAN

ENTRY BLKGEN(I. LENGTH, VAL)

TERM1 = 0.35875

TERM2 = 0.48829 * C0S(2*PI*1 *(1-1) /LENGTH)
TERM3 = 0.14128 * C0S(2*PI*2*(I-1 (/LENGTH)
TERM4 - 0.01168 * COS(2*PI*3*(1-1 (/LENGTH)

VAL - TERM1 - TERM2 + TERM3 - TERM4
RETURN

ENTRY PARQEN(I, LENGTH. VAL)

ALPHA = ABS((I-1)-(LENGTH/2.)) / (LENGTH/2.)
IF ((1-1). GE. (LENGTH/4) .AND. (1-1) . LE. (3*LENGTH/4)) THEN
VAL - 1.0 - 6*ALPHA**2*(1 .O-ALPHA)

ELSE

VAL = 2 * (1.0 - ALPHA)**3
ENDIF

RETURN

END

FUNCTION BESSIO(X)

INTEGER FACTRL

BESSIO = 1 .

DO 10 I = 1,10

BESSIO - BESSI0+(1 ./FACTRL(I)*(X/2)**I)**2
CONTINUE

RETURN

END

FUNCTION FACTRL(K)

INTEGER FACTRL

FACTRL = 1

DO 10 I = 1 ,

K

FACTRL FACTRL*I

CONTINUE

RETURN

END

PROGRAM: SPOISKIO FORTRAN

*.

* *

* Vibration Analysis System (VAS) *

* *

* (c) Copyright 1986 by Brick A. Vepser *

* *

*

* MODULE NAME:

*

* SPDISKIO
*

* FUNCTION:

*

* TO EFFICIENTLY HANDLE DISK INPUT/OUTPUT FUNCTIONS
* FOR THE VIBRATION ANALYSIS SYSTEM.
*

* ROUTINES ARE PROVIDED TO READ HALF-WORD INTEGERS,
* FULL-WORD INTEGERS, AND FOUR-BYTE REAL FORMAT BINARY
* DATA. A ROUTINE TO WRITE FOUR-BYTE REAL FORMAT
* BINARY DATA IS ALSO PROVIDED.
*

* THE SUBROUTINES CONTAINED IN THIS FILE ARE:
*

* DISKIR - READ REAL*4 FORMAT DATA.
* DISKII - READ INTEGER*4 FORMAT DATA.
* DISKIH - READ INTEGER*2 FORMAT DATA.
* DISKOR - WRITE REAL*4 FORMAT DATA.
*

* OPERATION:

*

* A NON-STANDARD OPTION OF THE READ AND WRITE
* STATEMENTS IS USED TO EFFICIENTLY ALLOW
* PACKING MULTIPLE VALUES IN A SINGLE LINE.
* USING THE NUM- OPERAND OF READ AND WRITE
* A VARIABLE LENGTH CMS FILE IS READ OR WRITTEN
* WHERE THE LAST LINE OF THE FILE NEED NOT BE
* FULL AS IS REQUIRED BY STANDARD FORTRAN 77.
*

* REVISION HISTORY:

*

* 1.0 ORIGINAL CODE
*

* REVISION DATE PROGRAMMER
*

* t.O JUNE 26, 1986 BRICK VERSER

PROGRAM: SPDISKIO FORTRAN

*.

*

* SUBROUTINE NAME:

*

* DISKIR
*

* FUNCTION:

*

* TO READ BINARY REAL*4 FORMAT DATA FROM DISK.
*

* CALLING FORMAT:

*

* CALL DISKIRUUNIT, VALUE, IERR, IXWLEN.XWORK.IWORK, IWORK2)
*

* INPUT PARAMETERS:
*

* IUNIT - AN INTEGER UNIT NUMBER FROM WHICH THE DATA
* IS TO BE READ.

* IXWLEN - AN INTEGER SPECIFYING THE LENGTH OF THE
* WORK VECTOR SPECIFIED BY XWORK.
* XWORK - A REAL*4 VECTOR OF LENGTH IXWLEN USED TO
* STORE INPUT DATA BETWEEN CALLS TO DISKIR.
* THE DATA IN THIS VECTOR MUST NOT BE ALTERED
* BETWEEN SUCCESSIVE CALLS TO THE ROUTINE.
* IWORK - AN INTEGER PARAMETER AND WORK VARIABLE WHICH
* SHOULD BE SET TO ZERO ON THE INITIAL CALL.
* THIS VALUE MUST NOT BE ALTERED BETWEEN
* CALLS TO THIS ROUTINE.

* IWORK2 - AN INTEGER WORK VARIABLE WHICH SHOULD NOT
* BE ALTERED BETWEEN CALLS TO THIS ROUTINE.
*

* OUTPUT PARAMETERS:

*

* VALUE - THE NEXT REAL*4 VALUE READ FROM THE INPUT UNIT.
* IERR - AN INTEGER INDICATOR SET TO NEGATIVE ONE ON
* END-OF-FILE.

SUBROUTINE DISKIRt IUNIT, VALUE, IERR. IXWLEN, XWORK, IWORK. IWORK2)
DIMENSION XWORK (IXWLEN)

IF (IWORK. EQ.O .OR. IWORK . GT. IW0RK2) THEN
READ(UNIT=IUNIT,END-200,NUM=IWORK2) XWORK
IWORK2 = IW0RK2/4

IWORK = 1

ENDIF

IF (IWORK. GT.IWORK2) GOTO 200
VALUE = XWORK (IWORK)

IERR -

PROGRAM: SPDISKIO FORTRAN

IWORK IWORK+1

GOTO 999

200 CONTINUE

VALUE »

IERR - -1

999 CONTINUE

RETURN

END

*.

*

* SUBROUTINE NAME:

* TO READ BINARY INTEGER*4 FORMAT DATA FROM DISK.
*

* CALLING FORMAT:

*

* CALL DISKIKIUNIT.IVALUE. IERR, IXWLEN, IXWORK, IWORK, IWORK2)
*

* INPUT PARAMETERS:
*

* IUNIT - AN INTEGER UNIT NUMBER FROM WHICH THE DATA
* IS TO BE READ.

* IXWLEN - AN INTEGER SPECIFYING THE LENGTH OF THE
* WORK VECTOR SPECIFIED BY XWORK.
* IXWORK - AN INTEGER*4 VECTOR OF LENGTH IXWLEN USED TO
* STORE INPUT DATA BETWEEN CALLS TO DISKIR.
* THE DATA IN THIS VECTOR MUST NOT BE ALTERED
* BETWEEN SUCCESSIVE CALLS TO THE ROUTINE.
* IWORK - AN INTEGER PARAMETER AND WORK VARIABLE WHICH
* SHOULD BE SET TO ZERO ON THE INITIAL CALL.
* THIS VALUE MUST NOT BE ALTERED BETWEEN
* CALLS TO THIS ROUTINE.
* IW0RK2 - AN INTEGER WORK VARIABLE WHICH SHOULD NOT
* BE ALTERED BETWEEN CALLS TO THIS ROUTINE.

* OUTPUT PARAMETERS:

IVALUE - THE NEXT INTEGER*4 VALUE READ FROM THE INPUT UNIT.
IERR - AN INTEGER INDICATOR SET TO NEGATIVE ONE ON

END-OF-FILE.

SUBROUTINE DISKI I (IUNIT , IVALUE , IERR , IXWLEN , IXWORK , IWORK , IW0RK2)

DIMENSION IXWORK(IXWLEN)

PROGRAM: SPDISKIO FORTRAN

IF (IWORK.EQ.O .OR. IWORK.GT.IWORK2) THEN

READ(UNIT=IUNIT,END«20O,NUM=IWORK2) IXWORK

IW0RK2=IW0RK2/4

IWORK - 1

END IF

IF (IWORK. GT.IWORK2) GOTO 200

IVALUE = IXWORK (IWORK)

IERR »

IWORK - IWORK+1

GOTO 999

CONTINUE

IVALUE =

IERR = -1

CONTINUE

RETURN

END

***************#****##*****#************)«###*#****#********,(;

* SUBROUTINE NAME:

TO READ BINARY REAL*4 FORMAT DATA FROM DISK.

CALLING FORMAT:

CALL DISKORdUNIT, VALUE. IPRM.IXWLEN.XWORK, IWORK)

INPUT PARAMETERS:

IUNIT

VALUE

IPRM

- AN INTEGER UNIT NUMBER FROM WHICH THE DATA
IS TO BE READ.

- THE REAL*4 VARIABLE TO BE WRITTEN.
- AN INTEGER SPECIFYING WHICH OF THREE

POSSIBLE CALLS THIS IS.

INIT: IPRM • 0. THIS CALL IS USED TO
INITIALIZE THE I/O SYSTEM.

NO DATA IS WRITTEN BY THIS CALL.
WRITE: IPRM - 2. THIS CALL IS USED TO

WRITE 'VALUE'.

FLUSH: IPRM - 3. THIS CALL IS USED TO

FLUSH THE REMAINING OUTPUT BUFFER
TO DISK. A FORTRAN CLOSE STATEMENT
IS NOT ACTUALLY ISSUED.

- AN INTEGER SPECIFYING THE LENGTH OF THE
WORK VECTOR SPECIFIED BY XWORK

.

293

PROGRAM: SPDISKIO FORTRAN

A REAL*4 VECTOR OF LENGTH IXWLEN USED TO

STORE INPUT DATA BETWEEN CALLS TO DISKIR.

THE DATA IN THIS VECTOR MUST NOT BE ALTERED

BETWEEN SUCCESSIVE CALLS TO THE ROUTINE.

AN INTEGER WORK VARIABLE WHICH SHOULD NOT

BE ALTERED BETWEEN CALLS TO THIS ROUTINE.

SUBROUTINE DISKOR (IUNIT. VALUE, IPRM, IXWLEN, XWORK, IWORK)

DIMENSION XWORK(IXWLEN)

IF (IPRM.EQ.3) THEN

IF (IWORK. GT.1) WRITE(UNIT=IUNIT) (XWORK(I) , 1=1 , IWORK-1

)

GOTO 999

ENDIF

IF (IPRM.EQ.1) THEN

IWORK = 1

GOTO 999

ENDIF

XWORK (IWORK) = VALUE

IF (IWORK. GE. IXWLEN) THEN

WRITE(UNIT=IUNIT) XWORK

IWORK -

ENDIF

IWORK . IWORK + 1

999 CONTINUE

RETURN

END

*.

*

* SUBROUTINE NAME:

* FUNCTION:

* TO READ BINARY INTEGER*2 FORMAT DATA FROM DISK.

* CALLING FORMAT:

* CALL DISKIHdUNIT.IVALUE.IERR, IXWLEN. IXWORK, IWORK, IWORK2)
*

* INPUT PARAMETERS:
*

* IUNIT - AN INTEGER UNIT NUMBER FROM WHICH THE DATA
* IS TO BE READ.

* IXWLEN - AN INTEGER SPECIFYING THE LENGTH OF THE
* WORK VECTOR SPECIFIED BY XWORK.
* IXWORK - AN INTEGER*2 VECTOR OF LENGTH IXWLEN USED TO

294

PROGRAM: SPDISKIO FORTRAN

STORE INPUT DATA BETWEEN CALLS TO DISKIR.

THE DATA IN THIS VECTOR MUST NOT BE ALTERED

BETWEEN SUCCESSIVE CALLS TO THE ROUTINE.

AN INTEGER PARAMETER AND WORK VARIABLE WHICH

SHOULD BE SET TO ZERO ON THE INITIAL CALL.

THIS VALUE MUST NOT BE ALTERED BETWEEN

CALLS TO THIS ROUTINE.

AN INTEGER WORK VARIABLE WHICH SHOULD NOT

BE ALTERED BETWEEN CALLS TO THIS ROUTINE.

* OUTPUT PARAMETERS:

IVALUE - THE NEXT INTEGER*2 VALUE READ FROM THE INPUT UNIT.

IERR - AN INTEGER INDICATOR SET TO NEGATIVE ONE ON

END-OF-FILE.

SUBROUTINE DISKIHf IUNIT, IVAL, IERR, ISLEN, ISAVE , IWORK, IWORK2)
INTEGER*2 ISAVE(ISLEN) , IVAL
IF (IWORK.EQ.O .OR. IWORK.GT. IWORK2) THEN

READ(UNIT-IUNIT,END=200.NUM-IWORK2) ISAVE
IWORK2 - IWORK2/2

IWORK = 1

ENDIF

IF (IWORK. GT.IW0RK2) GOTO 200

IVAL = ISAVE(IWORK)

IERR -

IWORK - IWORK+1

GOTO 999

CONTINUE

VALUE -

IERR = -1

CONTINUE

RETURN

END

A Vibration Analysis System Using Spectral
Estimation Techniques

by

Brick Andrew Verser

B.S., Kansas State University, 1982

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

Kansas State University
Manhattan, Kansas

1986

The use of spectral analysis can provide useful

insights into the behaviour of a structure under dynamic

loading. Unfortunately, the commercial equipment often

used in these studies is somewhat expensive and

cumbersome. This paper describes a microcomputer-based

data acquisition system and a mainframe-based data

analysis system, together referred to as the Vibration

Analysis System (VAS), which were created to provide many

of the signal collection and analysis facilities needed in

the analysis of structures. The VAS data acquisition

system can sample up to eight channels of data at up to

7500 samples per second, and can continuously collect

millions of samples. The VAS data analysis system

calculates auto and cross-spectrum estimates, auto and

cross-correlation estimates, coherence function estimates,

and transfer functions estimates, allowing the results to

be plotted or printed.

