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SYNOPSIS

The stress distribution in end-blocks of post-tensioned prestressed
concrete beams has become important due to extensive use of prestressed
concrete beams. An attempt has been made to present the research work of
some predominant authorities on this topic in this writing.

The following three approaches have been identified in this report:

1) the two-dimensional analysis by Y. Guyon, 2) the two-dimensional analysis
by Sundra Raja Iyengar, and 3) the physical analog method by R. J. Lenschow
and M. A, Sozen.

Finally, comparison of these methods has been made by solving numerical
examples. The methods are also compared with photoelastic investigation by

S, P. Christodoulides.



INTRODUCTION

The development of the technique of prestressed concrete in modern
construction is becoming more and more important due to its multifold
advantages, such as 1) high durability due to the use of high strength
concrete, and the absence of cracking, 2) long span beams, with economical
cross section, which greatly help when bridges are located over soils
unsuited for foundation support by eliminating the need for intermediate
piers, 3) quickness in erection and reduction of falsework. With the
increase in transport facilities and lifting devices capable of handling
them, prestressed beams and slabs are used extensively in the modern world.

In very long prestressed beams and slabs, heavy prestressing forces are
transferred at the ends. Hence investigation of the stresses at the ends of
beams becomes very important. This problem is of general character and is
not confined solely to prestressed beams, but with these it attains consider-
able importance owing to the magnitude of the forces involved.

Lack of complete knowledge of this problem does not prevent our designing
such beams and slabs but this uncertainty results in increased cost as we
apply higher factors of safety in our designs. To find an exact solution,
and then to provide the exact amount of reinforcement, becomes too laborious
and will not be of practical use. Hence the better solution is to use some
approximation which will be quicker to solve and will lead to a change in the
result on the safe side by an acceptable percentage. This has been attempted
by Y. Guyon, G. Magnel, Lenschow and Sozen and other authors, Each one has

used his own approach to satisfactorily approximate exact sclutions.



The writer of this report has made an attempt to present and compare the
approaches of Y. Guyon, R. J. Lenschow and M. A. Sozen, and exact two-
dimensional analysis by K. T. Sundra Raja Iyengar. The data are collected

from current literature on the subject.



APPROACH OF Y. GUYON(I)

The end-block is the portion of the beam surrounding the anchorage.
Within this portion, whose length is approximately equal to the depth of the
beam, linear distribution of stress i8 first attained.

The principle of St. Venant and its experimental verification from
photoelasticity indicates that the concentrated load applied on the surface
of the beam becomes linearly distributed beyond a certain distance from the
end, approximately equal to the depth of the beam.

The assumption made by Guyon is that the external forces, other than the
prestress force are negligible, that is to say the beam support is not too
close to its end.

The stresses at the surface are concentrated and discontinuous while
stresses at the end of the end-blocks are distributed and continuous. This
can be done only by giving rise to transverse stresses and shear stresses
along the longitudinal plane, which causes tension in certain parts of the
block. If the strength of the concrete in tension is not sufficient to take
this tension then it becomes necessary to provide reinforcement parallel to
the bearing face.

Figure 1 shows the forces on the faces AB and CD of end-block ABCD,
under which forces the block is in equilibrium. Block ABCD may be visualized
as a deep beam with a linearly distributed load on CD, and supported by P

1

and P2 as reactions on AB.

Consider any horizontal plane EF. In order to keep BEFC in equilibrium

there must exist a normal stress (transverse stress) fy’ and a tangential or
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Normal loading of end-block.
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Figure 2. Inclined loading of end-block.

shear stress t on the plane EF.

Consider Fig. 1 with forces normal to AB, The equilibrium will be

maintained under the following conditions:

1) The resultant of stresses f
must be zero.

That means the existence along EF of a zone of tension and a
zone of compression;

2) The sum of the moment of the stress f_ about a point

in EF must equal the sum of the moments of the forces acting on EB and FC,



i. e., in the case of Fig. 1, must equal the difference between the moment
of P2 and the moment of the forces acting on FC; 3) The resultant of the
stress t must equal the resultant of horizontal forces applied to BEFC;

i. e., in our case the difference between P., and the force acting on FC.

2
If the force on AB is oblique then in addition to normal components Pl’
PZ’ there exist tangential components Ql’ Q2, as shown in Fig. 2.

The above mentioned are the conditions which fy and t must satisfy.
Unfortunately, these conditions are not sufficient for the determination of
the stress distribution. It is not possible to apply our usual beam theory
(a plane section remains plane) to such a short beam. Figures 3 and 4 show
general shapes of distribution of stresses fy and t. The position of zero
transverse stress and maximum transverse stress depends on the distribution
of load.

To simplify the analysis it is assumed that the load is uniformly
distributed along the width of the beam. This reduces the problem from
three-dimensional to two—dimensional, and the stress distribution becomes
independent of the position of the point considered in the breadth of the

beam. Guyon restricts himself to the analysis of the few most unfavorable

planes which may be identified in advance by the rules given below.

Case of Single Axial Force

Consider a block of height 2a and unit breadth. As shown in Fig. 5,
the single force P is acting over the height 2a' and is symmetrical about the
axis of the beam. The end-block is carrying a uniformly distributed load fx
on CD and is supported by the central support P.

The force is considered to pass from AB to CD along isostatic lines as

shown in Fig. 5. These isostatic lines have to be normal to AB and CD if fy
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is assumed to be zero at these two faces. Between planes AB and CD they
adopt an "S" shape. If we divide ab and CD into "n" equal parts, then each
isostatic is supposed to carry a force of P/n from the center of ome division
in ab to the center of one division of CD. These isostatics are curved
fibers which will not carry compression without exerting a transverse force
normal to the fibers caused by their curvature; this force acts inwards or
outwards according to the direction of convexity of the curve. fy is maximum
on the axis as fy goes on increasing from BC and CD to OX. On OX, t

becomes zero due to symmetry. Therefore, on the axis O0X the only stress is
fy normal to the axis; its value varies from AB to CD at which peint it
becomes zero or negligible.

An idea of the variation of fy along OX may be gained by replacing

isostatics on each side of OX by an "average" isostatic carrying 2 to the

2
center of the upper or lower half of CD (Fig. 6).
4 Za N
r
. c e
- F
b'-/_ 2
d4 2T . Lx_ s
P/2—a
a-
I
\*‘_E
2
A D =

Figure 6. Mean isostatics of end-block.

R is the radius of curvature at any point M. The transverse force per

unit length of QX is A There is a point on the curve called I at this

2R °



point, R is infinite and hence fy is zero. From ab to I the R is negative
and hence fy is compressive while between I and CD f_ 1is tensile. Figures 3
and 4 show the general form of the stress diagram. The area of compression
zone and tension zone in the diagram give the resultant compressive and
resultant tensile stresses and are equal. They form a couple whose moment

should be equal to the moment of the couple formed by P/2 acting on AB, and

wwi b
P/2 acting on CD, i. e., %-x EEE— 5

As mentioned above, the value and position of fy depends on the distri-
bution of force. Figure 7a shows maximum fY and its position from the face
for different ratios of El-. Thus if the force is concentrated the stress £
is purely tensile. This contradicts the earlier statement that the positive

area under the curve is equal to the negative area. However, the force being

ideally concentrated, the compressive stress fy is of infinite magnitude
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& . q = 0.75
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Figure 7a. Distribution of transverse tensile stress along load axis.
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acting on an infinitesimal area, leading to the indeterminant form =xo which
must give a concentrated force equal to the total resultant tension (about
0.3p).

Figure 7 shows distribution of fy on the OX axis; similarly the value
of fy has been obtained for other horizontal planes. The stresses thus
obtained can be represented by curves joining points of equal stress value,

1

i. e., by the isobars of fy, isobars for different values of-g— are plotted

by Guyon, two of which are shown in Fig. 8.

2a
- -

—_e

b
'm
L.

//Compressive
zZone
8:211: Lo.34p
0.3p pee=s3p
.1p
Single concentrated force. Single distributed force.

Figure 8. Isobars of end-blocks.

From this graph it can be found that there are two tensile zones, one in
the center of the block along the axis of the load called the "Bursting
Zone,'" the other on the side of the load close toc the end surface called the
"Spalling Zone." They are separated by a compressive zone. The tensile

stress of the spalling zone is high but it acts on a very small area and
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hence the total tensile force is small.

Principle of Partitioning. Case of an Axial Prestress Produced by Multiple

Symmetrical Forces

The value of the work done in plotting the graph of Fig. 7 will be
justified 1f it can be used more generally with different position of loads.

Consider two axially symmetrical loads %, displaced a distance of a/2
as shown in Fig. 9. On the axis of the beam introduce a cut "ed" and we

will have two beams with a load of P/2 acting on each beam axis. Now the

end-block will be of length "a."

B C
-
.P_ /
P e B
_\ ﬂ.‘le
o i============= d =
o~

[
P __,/zfz”” @
saal
. . -

r—
—t ”

Figure 9. Axially symmetrical loading on end-block.

1
In this case the ratio of i—-remains the same as previously but the load

becomes one-half as great. The isostatics are similar to those of Fig. 6 but
the radius of the curvature will be halved. The stress remains the same, but
the length over which this stress is applied is also halved. This indicates

that we now need half of the reinforcement.

This can be generalized for number of forces. Thus it can be concluded
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that by distributing the force we are shortening the length of the end block.
This will help us to place our support nearer to the end. Also, the amount of
reinforcement is reduced by %-times (Fig. 10).

This method of compartmenting and shortening of the end-block is called
the principle of partition. This method gives an approximate result, but the

approximation is always on the side of safety.

5 - 5 ¢ |

™ ﬁ’ mfey
r—u\\\\“h“ ooy

Steei
reinforcement| ®l™
Steel ___l:/___
reinforcement i
- L
A D A D

* 2a +_ 4% a __* a +

Figure 10. Distribution of f, of end-block: (a) for single load
(b) for two Symmetrical load.

|

2a

Mo

Case of Single Eccentyic Force: the Symmetrical Prism Method

. i . P a .
Figure 11 shows a force P acting with some eccentricity e = Z—and dis-

tributed over a height 2a'. The stress diagram at the outer end CD will be

trapzoidal. Here Guyon assumes an imaginary symmetrical prism ABlClDl with

a height and length 2a1 where a; is the distance of force P from the nearest

horizontal face of the beam. This will reduce our case to that of a single

L]
axial force with some modification in the ratio of %i; 5



13

B S
I
—
] I
| 2]
o - —_— T 2
S _P..[_.__._-_,_.
, 1
) \
o 1
1
T ' T
A D
1
| Zal )
L )

Figure 11. Eccentric loading of end-block.

Then a; = a- %-= %'a and 2a, = g-a

P17 2a, "3/22 "3
I _4
erefore P, =3P

The term Py is the average compression caused by P on imaginary prism
ABlchl. P is the average compression caused by P on the real prism ABCD.

From Fig. 7 the maximum value of fy = 0.5P1 = 0.5 x %-P = 0.66 P at a dis-

a
tance of §;-='% on the line of action of the force.

Comparison with the real value from the table for fy = 0.54P at a dis-
tance %-indicates that the method errs in excess of 22% on the large side.
Figure 12 shows the comparison between the approximate and real values. The
resultant bursting force calculated by the approximate method is 0.3P, an

excess of 7%.
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v SRR Symmetrical prism method
' S\ Y Real value

aa
Z 3 2a X
Distance from loaded face

Figure 12. Comparison curve of fy'

Extension of the Method of Partitioning as well as the Symmetrical Prism

Method
Example:
Consider an end-block of depth 20" and width 10" shown in Fig. 13 which

we want to prestress to 500 psi on the upper edge and 1000 psi on the lower

edge.
B c_+_
T
'
1) —]] :
]
cl=l:d-l_-..____- :b
- D
(2) -___*[ id 5
c2=l'-g-___..----.
(3) -———b{ i
A p O

Figure 13. Three eccentric forces on the end-block.
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The total pre-stressing force = 10 x 20 x EQQ_%_lQQQ = 150 kips. The forces
at the end of the beam are so arranged that each lies opposite to the cen-
troid of the corresponding area of the force per unit depth diagram (stress
x breadth) beyond the end-block.

Here we will divide 150 k into three forces each of 50 k so that areas
of stress trapizids I, II and III are equal. We will introduce imaginary
cuts cldl and c2d2 without affecting the state of equilibrium. Now we will
apply our symmetrical prism method to find the imaginary prism as we now have
to deal with eccentric loads.

Let us suppose 2a' = 3". Then we will end up with the following result

as given in Table 1.

TABLE 1. Design of end-blocks.

1 2 3 4 5 6 7 8
Distance Magf, Com—
of forces Height e SRR Max imum Distance Resultant
from lower '2a' of P 2a' value of of max. £, Bursting
Force stress P —— y
face of Symm. on s 2a £, from from AB tension
I, II, III  prism ymm. Yig. 7 Fig. 7 Fig. 7
gt prism
1 3.7" 7.4" 675 psi  0.405 176 psi 2.92" 6500 1b
2 3.06" 6.12" 816 psi  0.49 180 psi 2.5 5000 1b
3 2.63" 5.26" 950 psi  0.57 181 psi 2.3" 4500 1b
50 x 1000
Column 4 - 1) 20 x 7.4 - 675 psi

The stress fy is maximum on the line of action of each force.

Reinforcement

After determining the maximum fy and its position we will determine the
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reinforcement required. Note that a high degree of precision in the calcula-
tions would be misleading as the calculations are based on theoretical condi-
tions which are not realized in practice.
Example:

Consider a Freyssinet cone anchorage exerting a force of 3 tons at the
center of the compartment of 12" height and 8" breadth and let us investigate
the quantity of transverse reinforcement required. Consider the square base

of 4" x 4" on which the force is acting uniformly.

2a' _ 4
2a 12

The average compression in the compartment is:

Concentration ratio = 0.3

- 30 x 2240

a5 = 700 psi

From Fig. 7c the maximum tensile stress fy = 0.31 p
= 0.31 x 700
= 217 psi

12 "
Max. fy occurs at 0.72a = 0.72 x = 4.3
R 12 "
And zero fy is at 1) 0.32a = 0.32 x === 1.92

2) 2a = 12"

Then an approximate distribution of the stress fy may be drawn as in
Fig. 14. It is triangular with an apex at 4.3" from the bearing surface and
points of zero stress at 1.92" and 12", with the maximum value of fy increased
by 10% = 217 x 1.1 = 237 psi.

The area of the triangle %-x (12-1.92) x 237 = 1200 1b gives the tensile
force per unit breadth, therefore the total force for the 8" breadth = 1200
x 8 = 9600 1b. Now if we consider the allowable tensile stress of concrete

as 200 psi then we have to provide steel for the hatched area only.
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distance from loaded face

| 4.3" 1
12" 4

T §
Figure 14. Approximate triangular distribution of fy'

Let S be the area of the total diagram then the area of the unhatched por-

f
tion is Sx(fgiz and the remaining area = § [% - (%59%]
¥ ) Y 200, 2
In our case the force carried by the steel is = 9600 | 1 - (237)

= 2782 lbs. Steel bars of %ﬂ diameter (A = .049 sq inch) are fitted in the

vertical plane parallel to the bearing surface at the point of maximum

_ 2782 _
stress. Therefore, the number of bars required = 30000 = 0.049 - 2,84,

say 3 bars.

If a Freyssinet cone anchorage is used then we will need reinforcement
around the cone for spalling tension in addition to the above reinforcement.
Tension of 0.04p may be adopted which will require %” diameter bars placed as

shown in Fig. 15.
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Figure 15. Reinforcement in end-block.
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APPROACH OF K. T. SUNDRA RAJA IYENGAR(Z)(E) ON

TWO-DIMENSIONAL ANALYSIS OF END-BLOCKS

K. T. Iyengar found that the two-dimensional analysis given by Magnel,
Guyon, Morch and others is not exact and that there is a wide divergence
among two-dimensional theories. He undertook to examine critically the
many approximate solutions and finally derived the necessary theoretical
expressions for two-dimensional problems and also for some specific three-
dimensional problems(g). He used multiple Fourier method to analyze the
stress distribution in end-block. His main object was to compare the result=
of existing approximate methods to a more exact method derived by him.

The assumptions made by him were: 1) the problem permits two-dimen-
sional analysis; 2) the effect of the cable ducts is ignored.

He considered a semi-infinite strip with loads on narrow ends. Unlike
other authors he did not assume that the stress induced by the cables would
become normal, i. e., the stresses are almost entirely longitudinal, in a
distance equal to the beam depth, gSinece. he did not assume that St. Venant's
principle applied.

Since there are normal as well as oblique forces acting at the end of
the beam, he considered four general cases(z):

(1) Normal loading, symmetrical about x axis.
(2) Normal loading, antisymmetrical about x axis.
(3) Tangential loading, symmetrical about x axis.

(4) Tangential loading, antisymmetrical about x axis.

Note: All the equations given below are taken from reference (2).



Case I. Normal symmetrical force.

+

—

Fb
0
-b

|

—

Figure 16. End-block subjected to normal symmetrical forces.

When x = 0 fX = - fl(y).
= T i
at x = = fx = 75

Hence fl(y) can be expanded in fourier series as follows:

P @ mTX
fl(Y) =55 + m2= 1,2,3 Im cos ==

1 b mux
=% . fl(y) cos —= dy (3)

The stress components are given by

where

B mTx mry, —(mmx/b) _ e

™" "nf=1,2,3% l}"s B ¥ e mi-1) Fm:l
_ mny . ory, —(mrx/b) _ . .\m

fy m2= 1,2,3 Am [cos 5 (-1 + b ) e m(-1) Hm

_ mry mrx -—(mwx/b) _ . ..m
mE= 1,2,3 Am [%in 5 b ° m(-1) Sm

b (4)

20



P o= 4b3/ [ay 31;11 oy +2(12— ab coth aob) zgsh av] ou2 cos oxda .
0 [(ab)” + (mm )] E:osh ab + m]

Hm - 4b3 [ay sigh ay -2(12+ _ab coth ab) :Ic;sh ay] 0‘2 cos oxda .
0 [(ab)” + (mm™)] I-ccsh ob + STk ah

Sm "’ 4b3/ [ay ;osh ayz— gb coth ab sinhagy] u2 sin axda .
0 [(ab)™ + (mm )] [cosh ab + m]
(5)
And "Am" are given by the set of simultaneous equations
_ 2
Am = I + 1611 m Z_l 2, 3( 1) r Ar k(r,m) (6)
with
® x3 tanh X
E(r,m) = 3 5 5.3 dx .
0 l-_l+sz.nh2x](x +r11') (x= + n"17)
Equation (6) can be put in the form
Am (L~ Pmm) = Im * §=1,2,3...Pmr A1:' (7
where m # r
and p_ _ = l6'rr2m2r (—l)m K(r,m)
mr
The equation (7) can be written as
A =73 M I (8)

m r=1,2,3... mr ¢

where Mmr is the inverse matrix of the coefficients of Am in Eq. (7), so

21
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knowing "Am" the stresses can be calculated from Eq. (4). The stress compo-
nents in Eq. 4 satisfy all the equations of elasticity, that is, equilibrium,

compatibility and boundary conditioms.

Case 2. Normal antisymmetrical forces (see Fig. 17).

ro g
1

Figure 17. End-block subjected to normal antisymmetrical forces.

In this case

at x =0 fx = —fz(y)
at x = o fx = :EE%
2b
where
+b
m fu//’ £,(y) v dy .
-b
The stress components are
_ _ 3my _ nmy nmx, —(mmx/2b) =n, . (n-1)/2 J
™73 E1,3,5...5 [Si“ 26 Lt ) e 7 (-1 &n
_ . DTy nmx, -—(nmx/2b) _n, ., (n-1)/2
£y = Ee1,3,5...Bafstn gy L0 e (-1 Rn



_ nry nmx -(nmx/2b) _ n, ..(n-1)/2
t=L1,3,5.5 % 2 ° + gt Ta
(9

Where

c_ = 4b3 [ay cosh uyn: 512- ab tanh ab) ztnh ay] 2 cos axda .

0 [+ EDY [inh ab - Tsh_EE]
R = 4b3‘-///"°°[ay co;h uyh; élz+ ab tanh ab) z;nh ov] az cos axda .
[(ab)” + (T) ] sinh ob - oiE Wb
T - 4b3~///- [ay sinh qy - ub tanh ab cos:qul_ az cin axda .
[(Ctb) ) ] sinh ob - m
(10)
and "Bn" are given by
’ 2 2 1y (stn=2) /2

Bn = In + 167 (1/2n) §=l,3 5§-}) 1/2s BS L{s,n)

n=1,3,5... (11)
In Eq. (11)

1 +b
In=~:5/ f.(y) - 351n—ty
-b 2b
and
3
LG5 m) d//f x2 coth xzdz -
[ -—][ + %% " + EDY
sinh 2x

The solution of Eq. (11) can be written as

Ba = §=1,2,3. . Mag Is : (12)

23
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Where "an" is the inverse matrix of the coefficient of "Bn" in the linear

Eq. (11).

Case III. Tangential symmetrical forces (see Fig. 18).

+b

ro | Hd
O-‘—-

ST

Figure 18. End-block subjected to tangential symmetrical forces.

In this case
t = gl(y) at x =0

and according to St. Venant's principle
2
=3B _ X = o
t = 4b(l 2) at x

where

+b
P = g8, (y) dy
-b

The stress components are

g =X _ g A Vgl | BIE ONE SETR/B) 0 158 g ']
X 2b3 m=1,2,3... m b b m

= ' mTy mTX - (mmx/b) . R
y T #=1,2,3...% I:Si“ p Cp 2 tatL" R,
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2
.. ¥ Ty mrx, —(mmx/b) _ . .m .,
= w4 bz) 2-1,2,3...%" |:°°5 (L= e m(-1) Sm‘l

(13)

Where

F ' o= 4b3y///‘ [ay cosh ay + (2 - ab coth ab) sinh ay] a2 cin axde .
0

2 2.2 ob
[(eb)” + (mm) "] [cosh ob - Sink ob

H ' = 4b3 =[ay cosh ay = ab coth ab sinh ay] 32 sin oxdo .
o [(ab)2 + (m‘n)z]2 [%osh ab - o
sinh ob
g 4b3 [ay sinh ay + (1 - ab coth ab) cosh ay] u2 cos axda .
n 0 [(ab)2 + (mnr)z]2 cosh ab S -
sinh ab
(14)
Am' are given by
t = —Im' + 16ﬂ2m2 §=1 2 3(_l)r+m T Ar' K'(r,m)
m=1,2,3... pEaTE e
(15)
In Eq. (15)
+b 2
N 3R, _ Y mry
-b b
and
' _ x tanh x dx
LR -/é/’ ~ (x + rzﬁz)2 (x2 + mz'n?')2
sinh sinh 2x
The solution of Eq. (15) is given by
A' = M' 1! (16)

m §=1,2,3... mr r
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Where M‘mr is the coefficient matrix of the coefficients of Am' in Eq. (15).

Case IV. Tangential antisymmetrical force (see Fig. 19).

¥
+b
2
2
" ,
P | X
2

-b
Figure 19. End~block subjected to tangential antisymmetrical forces.

Here

"
1]
(=]
t
I

g, (¥)

x== t=20

_ ; nnx
8 =&1,3,5.. % singg
The stress components are
- . nmy arx _-(amx/2b) _n, ,,(n-1)/2 ;
T ™ = £=1,3,5...0n [}°S 2b 2b © 2 (~1) 85
- . B OTX nmy -(omx/2b) _n, ., (n-1)/2 J
fo=Z1,3,5..5% |93 Gy ~2 e 2 (1) By
= 1
- g nnmx . _ omy, ~-{(omx/2b) _n, . (n-1)/2 i
£ =Za1,3,5... B |slngp (L-%5) e 2D Ta
B (17)
where
Gn' - 4b3 Jay sinh ay + (2 - ob tanh ab) cosh oy] a2 cin oxdo .

2 amn, 2] 2 . ab
0 [}ub) + (5—0 J [31nh ab + osh ab
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Rm, = 4b ‘///- _[ay sinh zz 5 ;b tanh ab coshazy] uz sin axda .
[?b) + ( J [%inh ab + s
Tm, - 4b3~///” [ay co;h ayn: ;12— ob tanh ab) :inh ay] aZ cos axda .
0 [(Gb) + ('2—') ] [s:.nh ab + m]
(18)

Bn' are given by

By' = I+ 16n2(1/2m) -1 D2 1155 3 1L (s ,m)

Il 3,5. s=1,3,5. 8

(19)
where
1 i nry
1 — = 2

1 b.lﬁ:_ gz(y) sin 5 dy

and
® th x dx
L'(S’n) =/ X cO
2 sn 272 2 nr, 272
. [l+81nh2x][ +( ] [ +( )_]

The solution of Eq. (19) is

B'=2Z N '1°"7 (20)

n s=1,3,5... ns s

Where N'ns is inverse matrix of the coefficient of Bn' in Eq. (19).

The author of the reference has prepared tables containing values of the
inverse matrices Mmr’ M'mr’ an, N.ns in Eqs. (8), (12), (16), and (20), and
values of coefficients for calculating fx’ fy’ and t stress components for

the first two cases in his Ph.D. thesis, but due to nonavailability of that

book it cannot be reproduced here.
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The graphs of distribution of transverse stress along the axis, and

positions of maximum and zero fY

@)

are shown in Fig. 20

These graphs will

be used to solve the numerical example, and are drawn for single axial load

with different sizes of bearing plates.

f
—
P

0.5

0.4

0.3}

0.2

0.1

Figure 20a.

P +b

P=%

2a’
1
=)

_L,‘H\T‘,_\_d

-b
at
g =~ g=0
b q=0.1
q=0.2
q=0.3
q=0.4
—q=0.5
'\‘\ —q=0-6
w8 o
“\ - q—0.7
“:‘\\ 9348
SRS q=0.9
SCSS
R
IR
SR
L
AN

0

-T

0.25p 0.5b 0.75p b 1.25b 1.5b 1.75b 2b

Distance from loaded face

y = 0, for different values of q.

Distribution of tramnsverse tensile stress along load axis



Distance from loaded face

al
e
bl Position of maximum fy
0.75bt
0.5b } Position of fy =0
0.25bf

|- 2 " 1

0.2 0.4 0.6 0.8 1.0

Ratio g

Figure 20b. Position of maximum fy and fy = 0.

i i 3 L

0 0.2 0.4 0.6 0.8 1.0
Ratio g

Figure 20c. Maximum value of fy'

29



30

APPROACH OF R. J. LENSCHOW AND M. A. SOZEN(4)

PHYSICAL ANALOG METHOD

The authors, R. J. Lenschow and M. A. Sozen, have tried to develop a new
method to find out stresses in end-blocks. Their main object was to find a
method which can be used in design to investigate many different conditions
without the necessity of laborious solutioms.

The term bursting stress (referred to as bursting zone by Guyon) is the
tensile stress across the axis of the applied load, e. g., section BB in
Fig. 21. Spalling stress (spalling zone) is the tensile stress across any

other longitudinal section, e. g., section AA in Fig. 21.

Reference plane

J/r— Plane of maximum bursting

P T U

B B

Figure 21. Position of plane of maximum bursting stress and reference
plane in end-block.
The authors assume cuts across section AA and BB, and fictitious springs
have been introduced as shown in Fig. 22 to simulate the distribution of
bursting and spalling stresses.

Section AA is considered as a reference plane. The beam in Fig. 21 is
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represented by two beams in Fig. 22. The loading in Fig. 22a is symmetrical
about the beam centroid as are the cuts introduced, one of these being at the
reference plane. Fictitious springs, representing the concrete, resist the
deflection of the outer part of the beam. The loading in Fig. 22b is
adjusted so that the two parts of the cut beam have the same curvature; the
fictitious springs are not required.

Loading in Fig. 22 must be equal to loading in Fig. 21. For this

By —Bg= 10 (21)
P0 + Pl = P (22)
vo Y, =¥ (23)

where V is the shear force that would exist along the reference plane.

The bending moment can be written as MO = -Poel - V0e2 (24)

To make the bottom portion of the analog in Fig. 22b conform to the

\

Fictitious springs
2 /!{_5.2 i mm— — — — . e — ——

Reference plane

| e

Figure 22a. The physical analog.



— —

Reference plane

Figure 22b. The physical analog.

curvature of the whole beam

Plel + Vle2 Pe

E_ L  ET (25)

Where

Ib = Moment of inertia of the portion below the reference plane

I = Moment of inertia of the whole beam

Ec = Modulus of elasticity of concrete
From Eq. 25

Iy
Plel + Vlez = Pe T (25b)

From Eq. 21 to 23

32
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Poel + Voe2 Pel - Plel + Ve2 - Vle2

Pe. + Ve, - (Pel + Vle2

ik 2
Substitute in (25b)

I
= Pe1 + Ve2 - Pe T (26)
Ib
From (24) MO = Mp + Mv - Mt T (27}

where MP and Mv refer to the moments acting on the portion of the analog
below the reference plane and Mt is the moment on the whole beam.

The authors of the reference now consider the portion of the beam below
the reference plane as a beam on an elastic foundation. The stresses in the
fictitious spring should indicate the transverse stresses.

Then the spring force F per unit length of the beam is

F = ky (28)
where

k = spring constant

y = deflection of the spring

The deflection of a beam on elastic foundation, corresponding to the

lower portion of the physical analog can be expressed as

- *
y=e ax(C3 cos gx + C4 sin gx) (29)
_E_k -ax .
and fy b At £ (C3 cos gx + C4 sin gx) (30)

where

x is the distance from the beam end,

*
Detailed explanation is given in reference (8), pages 141-145.
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and values of g are constant and related to the stiffness of the beam
and springs.
C3 and C4 are constant and determined by the boundary conditions.

b is the width of the beam at the reference plamne.

Maximum Spalling and Bursting Stresses in Uncracked Beam

The authors of the reference here give the expressions for maximum
spalling and bursting stresses. The maximum spalling stress along the refer-

ence plane, i. e., section AA in Fig. 21 at x = 0 is

=

__ o
e ™ %%

(31)
¥s Eclb

The general solution for maximum bursting stress becomes too complex
and hence the authors have given a close approximation for maximum bursting

stress caused by a concentrated load.

M
1 [s] k
£ = —— _._1/ 32
ybe 5/ P E.L 2
fybc = bursting stress due to concentrated load.
The spring constant k is given by
k = bquc/C (33)

where C is the distance from the reference plane to the centroid of the lower
portion of physical analog; beq is the imaginary width, equivalent to the
real geometric form with respect to the spring constant. (The term beq may
be taken as the average effective thickness over distance C.)

For rectangular sections beq =band ¢ = 1/2 hb where hb is the height

of the section below the reference plane.
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On substituting for beq and C the expression for maximum spalling stress

simplifies to

2 Ve C3%)

P (35)

It is necessary to find out the reference plane on which the spalling

stress is maximum. The authors have given simple approximate expression

1
Vo = 3 (7e = 2h) (36)
where
s ™ the distance of reference plane from the mid-height of the
beam
e = the eccentricity of load

The load is mostly applied through the bearing plate and hence it does
not remain concentrated but becomes distributed. The authors have studied
the effect of distribution with the use of analogs and have plotted a graph,
Fig. 23, for the case in which the centroid of the load coincides with the
centroid of the section. For comparison Guyon's result is also plotted.

The expressions for the case where the centroid of the load does not

coincide with the centroid of the beam is given by

f

- -2t 3 - 4 2 (37)
A 7y

ybe



0.757

Guyon -

Physical analog

0.25%

0.25 0.5 0.75 1.0

Figure 23. Influence of the distribution of the load on bursting stress.

where

area of the section below the reference plane

%

b
]

area of the whole cross section.

For the rectangular section

be _t oS M
A h %™ T Th
£
s El’-‘?-—=1-§(3—4hi) (37a)

ybe
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Reinforcement to Restrain Spalling Cracks

The force in the reinforcement is related to the crack opening through
its bond-slip characteristics. The authors of the reference have given a
simple expression to determine the force in the reinforcement after neglect-

ing the tensile strength of concrete as

F =M 1 (38)
© © 9y _ 3W
Ech c M
e My
where
W = the width of spalling crack at the reinforcement location
Y = the shape factor usually used for determination of shear
deflection
E
c
G = shear modulus = 7 (1+a)
u = the possion's ratio.

If the tensile strength of concrete is considered then FO will be

modified to F., as

2
F. = F 1-E°Ib——bft
1 o k Mo

(39)

where

ft is the tensile strength of concrete.

Reinforcement to Prevent Bursting Cracks

The expression for the force in the reinforcement is given by

by b

where fYb is calculated from Eq. (37).
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The position of the transverse reinforcement is very important. The
stirrups very close to and very far from the loaded face have little effect.
To provide a large number of light stirrups at close intervals is a good
solution according to the authors. The stress in the transverse reinforce-

ment should be limited to that attained at the time of cracking of the con-

crete.

Finally, the authors compare their results with those of Guyon by graphs

as shown in Figs. 24 and 25.

4
§ 2.0
B
W
8 < - o
B L5 X
mjoo
p 1.0 -+
A
0.5 Guyon

1

i Physical analog
8 ol b 1 1 1
o i = = =
A , =l = > h
a -0-5 ]
H '
o,
§ _1.0 ! Distance from loaded face

'

Figure 24. Comparison of bursting stresses under an eccentric load.
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—

lae
1. h/2 L h/2 L

Guyon

Physical analog

Distance from loaded face

Comparison of bursting stress under a symmetrical load.

el
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EXAMPLES

Numerical examples are solved here with the view of comparing the

results obtained by the three foregoing authors.

Example 1

To find the maximum bursting stress and spalling stress and their posi-

tions (wherever possible) with the following data.

1) height of block 20" = h = Za

2) width of block 9"

3) single tendon with prestressing force of 100 kips

The stresses are to be calculated with load eccentricity of 0, %3 %3 %—h
for the case; a) for concentrated force, b) with bearing plate of 3" x 3"

TR

size.

h=20"
&)
_,|EJ._
|
I
|
e

e

Figure 26. End-block.



a'

Case I. For concentrated load e 0.
A) By Guyon's method.

a) e = 0.

Average compression p = }aniglggg = 556 psi,
using the graph of Fig. 7, for gl-= 0.

Maximum bursting tensile stress = 0.5p

0.5 x 556

278 psi

n
o

at a distance from loading face is 32 %
= 0.32 x 10 = 3.2"
Maximum spalling stress E:wf reference (1)] from Table I = 0.65 p = 362 psi at

+ %-h from the centroid of beam 0X.

ool

— = n_ a
b) e, = 2.5 A
Using the symmetrical prism method the height of the symmetrical prism

= By 3 3 gen
h1 = 2(a - 4) =3 a = Z h =15

100 x 1000

the average compression Pi=""95x8 =~ 740 psi
Maximum bursting stress = 0.5pl
= 0.5 x 740
= 370 psi
By
at a distance from the loaded face = 0.32 7 = 0.32 x 7.5

= 2.4"



Maximum spalling stress = 0.865 p
= 865 x 556
= 482 psi at %-h from OX.
_h_a_
of ey =gF=3=?5
height of the symmetrical prism
h, =2(a -2) =a=2=10" and the
2 2 2
average compression Py = lgg—i—%%gg = 1110 psi.
Maximum bursting stress = 0.5 x P

at a distance from loaded face

Maximum spalling stress from Table I

2
= 0.5 x 1110 = 555 psi

h
0.32 x Eg

1.6"

1.258 p

1.258 x 556 = 700 psi

at %-h from OX.

d)

Maximum bursting stress

Maximum spalling stress

from OX.

= 34,23
eq3 =3 h = ;@
height of symmetrical prism h2 = 2(a - %-a) = 5"

_ 100 x 1000 _ :
P3 = 5,9 - 2220 psi

0.5 x 2220 = 1110 psi at a distance

h
_-__3_ 2_ "
3 0.32 x e 0.8

]
n

0.32

2.176 p 2.176 x 556 = 1210 psi at

1
A h

42
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B) By using the graph of K. T. Iyengar.

Since the solution of Iyengar's equations required a computer program
the writer has made use of Iyengar's graph shown in Fig. 20 and Guyon's
symmetrical prism method. As there are no graphs or tables available for

computing the spalling stress it remains unknown in this case.

a) e=20
100 x 1000 _ :
e aw 556 psi
1
g—-= 0 and using graph in Fig. 20c¢ we get a maximum bursting stress
= 0.475 p = 0.475 x 556 = 270 psi at a distance from loaded face = 0.25 & =
2.5,
=£l-=§~— "
b) e 3 = 2.5

height of symmetrical prism = 2(a - %p = 15"

_ 100 x 1000

P =T 15x09

= 740 psi

Maximum bursting stress = 0.475 x 740 = 351 at a distance from the

loaded face of 0.25a1 = 0.25 x l% = 1.88"

height of symmetrical prism = 2(a - %0 = 10"

100 x 1000

P = "10x09

= 1110 psi

Maximum bursting stress = 0.475 x 1110 = 528 psi at a distance =

0.25 x lg-= 1.25"

3. _
d) e-= §-h = a

=
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height of symmetrical prism = 2(a - %—a) = 5"

P, = 100 x 1000

3 = % O = 2220 psi

Maximum bursting stress = 0.475 x 2220 = 1050 psi at a distance from
loaded face = 0.25 x g-= 0.625",

C) By Physical Analog Method.

B
Reference plane
— /) — — —f =
__ el AR of
~ _— -
o
| — >
P ———_EAF_ ?F b
o
Figure 27. Elevation of end-block.
a) e=0

To find the maximum bursting stress.
The reference plane coincides with the load axis. The shear acting
along the plane is

Tm)

Ym be
P (0.5 + h )y 1 - h (0.5 - o

v

100000 (0.5 + %) (L)

<
]

100000 (0.5) = 50,000 1bs.

Mp = pe; = 100000 x 0.5 x 10 = 500000 1b - in



Mv = Ve, = =-50,000 x 0.5 x 10 = =250000 1b - in

2
MtI—-=0
From Eq. (27),
Mo = Mp + Mv - Mt ;h
= 500000 - 250000 = 250000 1b - in
1 1 .
From Eq. (35) f be = Mo 5 = 250,000 x 5 = 278 psi
ybe bh, 9 x 10

To find the maximum spalling stress.

Position of the critical plane by Eq. (36)

T %-h - 13.33"

W=

Ym =

Here the expression fails to give the position of the critical plane

and hence the spalling stress.
b) e= % = 2.,5"

To find the maximum bursting stress.

Reference plane coincides with the load axis.

_ n, | _6e o _Im
V=p(0.5+ 1) 1-22(0.5- D
= 100000 (0.5 + %9 1-0.75 (0.5 - 0.125)
= 45000 1b.
Mp = Pe, = 100000 x 0.5 x (10 - 2.5)
= 375,000 1b - in
Mv = Vxe2 = -45000 x 0.5 x (10 - 2.5)

-169000 1b - in
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b 7.5.3
Mt T -100000 x 2.5 x (20 )

-13300 1b - in.
Using Eq. (27),
Mo = 375000 - 169000 + 13300 = 219300 1b - in.

From Eq. (35), £ = Mo —— = 219300 x —=—— = 432 psi

yoe bh, 9 x (7.5)

To find the spalling stress,

Ym = %—(72 - 2h)

= %—(17.5 - B0} = —BE" (L. e. dbows e venbroid of bhe beamn. )

(=7.5)
20

(7.5)

1~ 0:75 (0.5 -

= 43000 1b.
Mp = -100000 x (0.5 x 17.5 - 7.5)
= -125000 1lb - in

Mwv -43000 x 0.5 x 17.5

-376000 1b.

=

3
b
Mt T

175
-100000 x 2.5 (-56—

-167000 1b - in

Ib
Mo =Mp + Mv - M +-T—

-125000 - 376000 + 167000 = -334000 1b - im.

]

Maximum spalling stress is obtained by using Eq. (34).

£ o= Mo 2 g 334000 x —— L

ys bh, 9 x (17.5)2

594 psi



9 e=Bas

Proceeding similarly as above we find maximum bursting stress

fybc = 626 psi

Maximum spalling stress

f = 1150 psi
ys

d e-= %—h

Maximum bursting stress

fybc = 850 psi

and maximum spalling stress

£ = 1510 psi.
¥s

Case II.
Using a plate of 3" x 3",
i. e., 2a' = 3"

A) By Guyon's method.

a) e=0
_ 100 x 1000 _
P-—ZOXQ = 556 psi
2a' 3 _
2a - 20 - 0.15

By using the graphs of Fig. 7c and 7b we get the maximum bursting

stress = 0.4 P = 0.4 x 556 - 222 psi at a distance

from the loaded face.

b) e=+%5=2,5"

oo

Using the symmetrical prism method as in Case I,

47

0.58a = 0.58 x 10 = 5.8"
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_ 100 x 1000 _ .
Pl =~ 15=9 740 psi
2a' 3
B8 " 13 e

Maximum bursting stress = 0.36 x 740 = 266 psi at a distance = 0.6231 =

0.62 x 7.5 = 4,65" from the loaded face.
c) e= %-= 5"
P, =—12(115?-‘———-xlg°-9= 1110 psi
%=Ig—=o.3

Maximum bursting stress = 0.31 P, = 0.31 x 110 = 344 psi at a distance =

2
0.72 a, = 3.6" from the loaded face.

_é - "
d) e= 3 h=7.5

_ 100 x 1000 _

P3 S5 =0 - 2220 psi

2a' _ 3 _ i

2a 5 e
Maximum bursting stress = 0.17 P3 = 0.17 x 2220 = 376 psi at a distance =
0.88 a; = 0.88 x §-= 2.2" from the loaded face.
B) By using Iyengar's graphs

a) e=20
100 x 1000 _

Average compression p = 556

20 x 9

2a' 3 _
zal =30 " 0.15

Using graphs of Figs. 20c and 20b we get a maximum bursting stress = 0.39 P =

0.39 x 556 = 217 psi at a distance = 0.59 a; = 5.9" from the loaded face.



B) - %-= 2.5"
~ 100 x 1000 _ ,
Pl =~ %0zx9 - 740 psi
]
%3— = 0.2
i |

Maximum bursting stress = 0.355 Pl = 263 psi at a distance

from the loaded face.

_bh_
c) e= I 5
_ 100 x 1000 _ y
P2 =" T0=x9 - 1110 psi
2a' _ 3 _
2a, =g = 03

49

= 0.65 a, = 4.87"

1

Maximum bursting stress = 0.3 P2 = 0.3 x 1110 = 333 psi at a distance =

0.73 a; = 3.65" from the loaded face.

=34 =7.5"
d) e=gh=17.5

_ 100 x 1000 _ s
P3 =~ s5x9 - 2220 psi
228" _ 3 _ 46
2al 5 '

Maximum bursting stress = 0.165 P3 = 366 psi at a distance 0.88 a, = 2.2"

from the loaded face.

C) By physical analog method.
a) e=20
In case 1 we have found

fpe = 278 psi

using Eq. (37a) t = 2a' = 3" size of plate.

1



b)

c)

d)

fyb B fybc : "h
- 3
=278 1 - 30
= 236 psi

e=1
8

fybc = 432 psi
w -3

fyb 432 1 30
= 327 psi

e=1
4

fybc = 626 psi
- =

fyb 626 1 70

e = %—h

fybc = 850 psi

3

f b = 850 1 - 30

)

10

20

(3-42
(3 - 4
(3-4
(3-4

(3 - 4

5 .
EEO = 438 psi

50
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Results of Example 1.

TABLE II. Maximum bursting stress along the axis of the concentrated load as

found by three methods.
Guyon K. T. Iyengar Physical analog
No. e Stress in Position Stress in Position Stress in Position
1b/sq in. zfo£7§§ 1b/sq in. ;ioiykg 1b/sq in. ;ioiygg
1 0 278 32" 270 245" 298 ~—
2 %- 370 2.5" 351 1.88" 432 -
3 2 555 1.6" 528 1.25" 626 =
4 %-h 1110 0.8" 1050 0.625" 850 -
TABLE III. Maximum bursting stress along the axis of the distributed load
found by three methods.
Guyon K. T. Iyengar Physical analog
No. e B s Position B, b Position Beps. de Position
1b/sq in. 250573§ 1b/sq in. ;ioiYRE 1b/sq in. gioiygﬁ
1 0 222 5.8" 217 5.9" 236 s
2 2 266 4.65" 263 4.87" 327 -
3 2 344 3.6" 333 3.65" 438 —
4 3n 376 2.2" 366 2.2" 531 -
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TABLE IV. Maximum spalling stress.

No. e Guyon Physical analog
1 0 362 psi e
2 X 482
3 psi 594 psi
h ;
3 % 700 psi 1150 psi
4 Zh 1210 psi 1510 psi
Example 2

The amount of reinforcement required in Example 1 for e = 0 and with a
bearing plate is computed as shown below. Assume the tensile strength of

concrete, ft = 240 psi and the tensile strength of stirrups to be 20,000 psi.

1) By Guyon's method.

From Example 1 the maximum bursting stress = 278 psi at 3.2" from AB
(loaded face). The positions of zero stresses are at zero and at 20". The
approximate distribution of fy may be drawn as shown in Fig. 28. The apex
of the triangle is at a point 10% higher than the maximum bursting stress =
278 x 1.1 = 306 psi to form approximate triangle. The tensile force per unit
width = 1/2 x 20 x 306 = 3060 1b. Therefore for 9" width = 3060 x 9 = 27,600
1b.

Since we are allowing 240 psi tension in concrete, the reinforcement
should be provided for the tensile force under the hatched area of Fig. 28
alone.

The hatched area is given by
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N 306 psi
—— 278 psi

£ si i
y P AR

[ y =240 pei

:

]

1

]
! ~

3 zll l X
J 20"
r ‘
Figure 28. Approximate triangular distribution of f

f 2
t
511 -5 nax |
y
therefore the force to be carried by reinforcement
- _ (240
= 27600 [} (306 -]

= 10700 1b.
10700 _ 0.535 sq. inch using No. 3 bars

and the area of the steel needed = 20000

(A = 0.11 sq. inch).

. _ 0.535 _
No. of bars required = 0.11 - 5 bars.
Therefore one must provide No. 3 bars at IZ” centers placed vertically paral-
Also No. 3 bars

lel to the bearing surface at the point of maximum stress.

at 4" centers are placed in a horizontal position as shown in Fig. 29.

Guyon assumes the maximum spalling force to be .04P = .04 x 100000 =

2090 = 0.2 sq. inch. Therefore one must

so the area of steel = 20000

4000 1b.
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provide 2 No. 3 bars at the top and bottom of the block as shown in Fig. 29.

2 No 3 bars
7 T
< > Ij + M
o
No 3 at 8" c/c
7 :
L J/ Fol3 at 1 ¥ c/c - 2
4 //T/’ ’
c Ve > " o
=
2! Zi—- No 3 stirups
4 g L
T T

Figure 29. Position of reinforcement in end-block for example 2.

2) By the physical analog method.

Eq. (40) gives the force in the reinforcement to prevent bursting crack

as

£

fo = EEE {1, = §E_g
by, yb

_ 250000 .. _ 240

fo = =55 (1 - 379

350 1b. per inch.
Here the authors R. J. Lenschow and M. A. Sozen do not specify the exact

position and length of the end-block for which reinforcement should be pro-

vided.
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CONCLUSTIONS

After studying these methods and solving numerical examples by these
three methods we are in a position to make the following conclusions.

1) The work of Guyon very nearly tallies with the more exact analysis
given by K. T. Iyengar; alsc from the graph in Fig. 33, it can be seen that
it errs on the side of safety.

2) Guyon has given importance to the transverse stress only and he used
it to calculate the reinforcement in end blocks, while the stress which
actually causes failure is that dﬁe to the principal tensile stress which can
be calculated from known transverse, longitudinal and shear stress, but it is
found that the principal tensile stress is very nearly and, in some cases,
exactly equal to the transverse stress. Hence Guyon's consideration of
transverse stress is justified. Again it saves laborious calculation of
longitudinal and shear stress which are very important in practical applica-
tions.

3) From the work of K. T. Iyengar and the graph in Fig. 20 given by him
we can see that the transverse stresses become almost zero at a distance equal
to the depth of the beam. Hence the assumption made by Guyon and some of the
other workers that stress becomes purely longitudinal at a distance equal to
the depth of the beam is justified.

4) Consider the results of the examples solved in this report. From
Table Il we see that, for the first three cases, the physical analog gives a
higher stress than Guyon's method, but suddenly and at a higher eccentricity, e.

g., at e = %-h it gives a stress about 23% lower than Guyon's method. Hence this
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shows that the equation given by physical analog should be verified before it
is used for practical analysis. On comparing the result of Example 1 for

e = % h with that of the graph in Fig. 30 it can be verified that the physi-
cal analog method gives lower stresses than Guyon's method. The same graph
shows that Iyengar's stresses are higher than Guyon's which does not tally

with the result of Example 1, probably due to unavailability of the proper

table; the symmetrical prism method may not be applicable in his case.

ol
b
=
1.5 . B ~
=
o e - ———
S 1.0 .
1]
8
H 0.5 d
I WA "
A h L
i =h
ﬁ_0-5- L3 2
3 ': Distance from loaded face
s ‘
o s
ﬁ—l.o-;- G'L'I.YOI'I.
g :r B K. T. Iyengar
© -=— - = — Physical analog

Figure 30. Comparison of transverse stress distribution along axis of load.

5) Equation (40) gives maximum bursting stress but does not give its
exact position as in the case of Guyon or K. T. Iyengar; also we do not know
the correct distribution of stress. If we assume the maximum stress through-
out the block it will result in a very conservative design.

6) On comparing the position of the plane of maximum spalling stress
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given by Guyon and physical analog, with different eccentricities as given in
Table V below, we find that they do not agree; also in the case of e = 0 the
physical analog method does not give the spalling stress.

TABLE V. Position of the plane of maximum spalling stress from mid-height of
end-block.

1 2 3
No. e Guyon Physical analog
1 0 £3n -
z ) :
: i an -4 "
4 2n Zh =2 h

Column 2 obtained from Reference 1, Appendix I, Table I.

Column 3 obtained from Eq. (36).

7) 1t can be seen from the solved problem that both the bursting and
the spalling stresses increase as the eccentricity increases.

8) TFor small eccentricities the maximum tensile stress is in the burst-
ing zone while for large eccentricities it shifts into the spalling zone.
The spalling stresses always act on a smaller area and hence the correspond-
ing forces remain small.

9) From graphs in Figs. 7 and 20 it can be seen that according to Guyon
as well as K. T. Iyengar that the transverse stresses are decreasing as the
size of the loading plate increases.

10) From Table II it can be seen that the position of the maximum
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bursting stress comes nearer to the loaded end with increasing eccentricity
and with distributed load. This can also be noticed by examining the isobars
of Fig. 8.

(11) The tensile stresses are close to the end face in the spalling
zone while they are at a distance from the edge in the bursting zone. This
can be verified from the general transverse stress diagram Fig. 3la,b as

shown below.

+n Tension
ow " Tension

A

Distance from loaded face Distance from loaded face

Compression
Compression

Figure 31la. Distribution of trans- Figure 31b. Distribution of trans-
verse stress for bursting zome. verse stress for spalling zone.

12) It can be seen that Guyon as well as Iyengar made a two-dimensional
analysis and that the third dimension was not considered. Also, the effects

of the cable ducts are not accounted for; but on studying the two- and three-

(6)(7)

dimensional photoelastic experiment carried out by S. P. Christodoulides

(2)

and plotting the graphs in Figs. 32 and 33(2) we observe that the trans-

verse stresses given by Guyon and Iyengar are very low. According to K. T.



59

Iyengar the higher value of photoelasticity can be due to approximation in
the numerical work done after photoelastic experiments, which gives only a
difference of principal stresses.

13) As far as reinforcement in the block is concerned, it should be
provided in two directions normal to the axis of the load. In case of
inclined forces it is not practicable to provide reinforcement normal to the
axis of the load, but in such a case it is normal to the axis of the beam.

Helical reinforcement can be a better solution.

- ﬂ

-
-1 )

———— .,
1.5b 2b

loaded face

According to Iyengar

— +- — . = According to Guyon

-~ = == According to photoelastic
experiment

Figure 32. Distribution of transverse stress along y = o for two
symmetrical forces.
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- £ b

g
o I

0.4
0.3 1 S,
‘ LY
|ﬂ \\
r — According to Iyengar
0.2 | ; .
‘. . =—+=. —According to Guyon
!
0.1 k " L. (TR P, According to photoelastic
) P! experiment
P
| X . \
b 1.5b 2b

Figure 33.

0.5b
Distance from loaded face
= tb/2 for

Distribution of transverse stress f_ along y
two symmetrical forces.
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The stress distribution in end-blocks of post-tensioned prestressed
concrete beams has become important due to extensive use of prestressed
concrete beams. An attempt has been made to present the research work of
some predominant authorities on this topic in this writing.

The following three approaches have been identified in this report:

1) the two-dimensional analysis by Y. Guyon, 2) the two-dimensional analysis
by Sundra Raja Iyengar, and 3) the physical analog method by R. J. Lenschow
and M. A. Sozen.

Finally, comparison of these methods has been made by solving numerical
examples. The methods are also compared with a photoelastic investigation by

5. P. Christodoulides.



