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1. Introduction

Most of the computers in use today utilize instruction sets which are

based on the sequential processing techniques developed for early electronic

digital computers. The rapid improvement of computer hardware has

increased the speed of computation and the limits of accessible memory.

However, these improvements have been based on the sequential processing

techniques which have changed little, in comparison to changes in computer

hardware, since UNIVAC I was a state-of-the-art computer.

Programming languages have evolved in a similar manner to computer

hardware. Programming in low-level programming languages such as

machine language or assembler has given way to programming in an easy-

to-understand high-level programming language. The predominant high-

level programming languages in use today are designed to be implemented

on these sequential processing systems. Statements in a sequential program

are executed one after another in a linear fashion. The computer program-

mer must take the responsibility to process the program's statements in the

proper order so the results of the program will be correct and be in a form

the user can understand.

Sequential processing does not take into account that some statements

could be processed without regard of other statements. Statements must be

processed sequentially in these systems because of primary memory access

restrictions, as noted by von Neumann, and because there exists only one

central processing unit (CPU) to handle statement execution [Killmon

1985]. This results in slower processing time if the CPU is required to

share its resources with other processes as in a time-sharing system.
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Redundant memory accesses may also slow down the processing of a

sequential program. Most sequential languages force the system to do one

calculation, store the result, do the next calculation, retrieve the first calcu-

lation, do some calculation with the first and second results, then store the

result of this calculation and so on. This same process may be repeated

over and over in a sequential program on a computer of standard architec-

ture.

The desirability of the concurrent processing of programs can be noted

in the development of virtual CPU or multiprogramming computers [Haber-

man 1976]. Attempts have been made to make a sequential processing com-

puter with one CPU appear to be a computer with several CPUs. Each user

may be given a time-slice of an overall CPU cycle in which that user's pro-

gram has access to the real CPU. The response time may be so quick, that it

may appear that the user has has his own personal CPU. A system which

supports this type of concurrency is still based on the same sequential pro-

cessing techniques discussed previously. The response time in such a system

can be slowed immensely if a large number of users are trying to access the

CPU. As response time slows the appearance of a virtual CPU will decrease

with a longer wait between acceptance of statements to be executed.

The modern "concurrent" programming language is usually based on

some sequential programming language which is modified to give the

appearance of concurrent processing. These modifications tend to make the

language more complex than its sequential predecessor. The user must now

be careful to ensure mutual exclusion in memory accesses during processing.

These languages are still processed on sequential processing computers with

virtual CPUs assigned to various "concurrent" processes. Each process must
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wait for its time-slice before it gains access to the CPU and can be executed.

More and more tasks in today's society require quick processing of large

and difficult operations. The need for methods and machines which allow

true concurrent processing is great. Parallel processing would speed up pro-

cessing operations allowing tasks to be completed more quickly. Concurrent

processing could free the user from maintaining mutual exclusion in

memory accesses and from specifying the sequence in which statements are

to be executed. Many computer architectures and models have been put

forth in an attempt to gain the advantages of concurrent processing and

processing in distributed systems. Some of these architectures and models

are discussed in Chapter 2. One of these models is A Concurrency Method

(ACM) [Unger 1978].

Chapter 3 deals with the underlying concepts of ACM: data-driven

processing, single-assignment of variables and data flow principles. Also

discussed are the component parts of ACM: requests, actions and

stimulating/terminating conditions.

Kansas State University does not have a computer designed for the type

of concurrent processing needed for a desirable implementation of ACM.

Such a computer would contain within one unit, multiple CPU's. Several

machines of this type have been proposed but none is available yet commer-

cially [Killmon 1985], [Kleinrock 1985], [Chang 1985], [Hindin 1985]. The

AT&T 3B2-300 network of microcomputers networked together with an

Ethernet interface provides the type of concurrent processing needed for

this implementation. In addition, it is the environment in which an office

information system might reside, thus providing a test environment to sup-

port other related work at the University. The physical characteristics of
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this hardware-software environment will be discussed in Chapter 4.

Chapter 5 deals with the architecture of ACM, the modules imple-

mented and the structure of the request representation.

Finally, some results and conclusions from this effort are presented in

Chapter 6.

-4-



2. Machine Architectures and Models for Concurrency

Research in computer architecture and design has led to several diver-

gent paths of internal structures for the fast, efficient processing of data.

Current studies in the area have developed such technologies as Reduced

Instruction Set Computers (RISC) [Hindin 1985], Single Instruction stream

- Multiple Data stream (SIMD) computers and Multiple Instruction stream

- Multiple Data stream (MIMD) computers [Chang 1985] [Kleinrock 1985].

These designs are very different from the original computer architecture

designed by von Neumann in the early days of computer development.

As stated earlier, most of the computers in use today are based on von

Neumann's original concept of computer architecture. He proposed a single

processing unit which accesses a single, one dimensional, sequentially

addressed memory [Figure 1].

Figure 1. Single Instruction - Single Data (SISD) System

A program counter controls the flow of execution in a sequential program

written in a sequential programming language. The processor accesses the

memory by means of a simple bus which usually transfers data one word
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at a time. This type of computer architecture is sometimes called a Single

Instruction stream - Single Data stream (SISD) system. The users of such a

system utilize programming languages such as FORTRAN, Pascal, BASIC

and C which are best suited to the sequential operation of these machines.

The user must be sure to enter the instructions in the correct order so the

instructions will be executed in the proper order. When the processor is

shared among several users, as in a time-sharing system, or among several

processes, as in a "concurrent" programming language operating on an SISD

system, a bottle-neck can occur if multiple users or processes attempt to

access the same memory locations during their processing.

The ability to run processes concurrently would greatly speed execution

of certain types of programs [Chang 1985]. A more recent architecture util-

izes multiple processors with private memory resources which may access a

shared global memory by means of a global bus [Figure 2].

Figure 2. Multiple Processors "With Global Bus

Brinch-Hansen [1978] and Hoare [1978] both proposed concurrent languages

which would operate on a system which allows for parallel processing.
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Both Brinch-Hansen's "Distributed Processes" (DP) and Hoare's "Communi-

cating Sequential Processes" (CSP) chose the process as the fundamental unit

of their proposed languages. In CSP a process P sends a message to process

Q by executing a statement in the form

Q I action(x) { send the message to process Q }

Process Q receives the message by including in the process body a command

like

P ? action(y) { get the message from process P }

Both process Q and process P may execute their respective process state-

ments in parallel until one of the processes tries to execute either the send

or get statements in their process bodies. One process must wait for another

process to be ready to receive or send a message. This means that one pro-

cess may have to wait for the second process to reach its corresponding

communication command. After the communication has been sent/received

CSP allows both processes to continue execution of their respective process

body statements. Ackerman (1982) and Chang (1985) point out that this

type of computer architecture is not efficient if there is much interprocess

communication required in execution of the jobstream since the global

memory is available to only one processor at a time. Bottle-necks occur

when several processes compete for access to the global memory. A

hardware or software arbitrator must determine the priorities of the pend-

ing access requests, queue them and serve them sequentially, one request at

a time. In this way, multiple processor systems with the global bus archi-

tecture become no different, functionally, than the single processor SISD

system.
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In implementations of "concurrent" languages on such systems the user

must provide mutual exclusion of the global memory by use of semaphore

operations or some other language construct which effectively locks out all

other processes from accessing global memory. The creators of these "con-

current" languages have added concurrent constructs to essentially sequen-

tial programming languages. These additions must deal with the mutual

exclusion problem and so add more constraints to the language which the

user must deal with. This leads to increased complexity in the program-

ming language. Clearly, this solution does not solve the need for an easily

understood concurrent programming language.

Elimination of the global bus bottle-neck would minimize competition

for memory and would reduce the amount of user-provided mutual exclu-

sion. One way to solve the contention problem is to employ a channel tech-

nique. Many pieces of data are simultaneously processed by one operation

command as in a vector processing system. Data is channeled from one pro-

cessor to the next which sets up a serial chain of processing elements. Most

super-computers and vector computers operate on the principle of a single

instruction stream which operates on a multiple data stream (SIMD). They

perform the same operation synchronously on different data. Vector pro-

cessors operate on multiple-element vectors to speed completion of the task

[Figure 3] [Chang 1985] [Killmon 1985] [Lackey 1985].

Using vector techniques, multiplication of two 100-element arrays

requires only a single operation, not 100 sequential operations as in a scalar

processor. Vector processors separate problems into scalar and vector por-

tions. The vector portion of a problem is the "inner loop" of a problem. It

defines the parts of the problem which are inherently parallel and may be
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processed simultaneously. The scalar portion must be processed sequen-

tially and this slows processing down [Killmon, 1985].

OPERANDS A a

OPERATION
MULTIPLY

RESULTS C

SUBTRACT

ri N

LOGICAL

Figure 3. Single Instruction - Multiple Data (SIMD) System

Another way to resolve the problem is to surround the processing ele-

ments with additional register files. These buffers would allow operations

to be pulled from memory and stored while operations are performed on

them. The ability to have multiple processors with access to multiple

resources naturally follows the SIMD architecture. An MIMD computer

combines the benefits of the SIMD but also adds the power of multiple pro-

cessors to the architecture [Figure 4] [Kleinrock. 1985].

One MIMD machine is the IP - 1 developed by International Parallel

Machine. Each processor has its own local memory, as well as parallel and

serial I/O ports. The system utilizes multi-access memory (MAM) which

allows all the processors to access memory at exactly the same time

without arbitration. In this way, problems with a global bus bottle-neck,

are averted [Chang 1985].
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Figure 4. Multiple Instruction - Multiple Data (MIMD) System

Another parallel architecture computer is Intel Corporation's hyper-

cube. The hypercube achieves concurrency through a collection of loosely

coupled, independent processors which execute portions of a larger compu-

tational problem simultaneously [Figure 5] [Asbury 1985]. This large prob-

lem is broken down into partitions that can run independently on more

than one processor.

The hypercube computer uses message passing rather than shared

memory for communication among nodes of the networks. The process is

the basic unit of cube computation which is performed by the message pass-

ing. A process is a sequential program (including system calls) which

causes messages to be sent and received [Asbury, 1985]. Proponents of the

hypercube architecture claim increased overhead efficiency compared to

shared-memory schemes.
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Figure 5. Hypercube Structure

A single node in the hypercube may contain multiple processes that

perform computations. These computations can be distributed throughout

the computer and executed concurrently. Each node is an autonomous com-

puter system which has the capability of executing programs in a local

mode if the user wishes to disengage from the system. The overall control

of the hypercube is achieved by the "cube controller" which oversees the dis-

tribution of processes on the hypercube computer [Asbury 1985].

One process communicates with another process simply by opening up

the channel and initiating send and receive requests. Message passing

between nodes is asynchronous so there is no guarantee that a process has

made a receive request before the node receives the message. To ensure mes-

sage reception of messages, the node's operating system is used to buffer

messages that are received prior to a receive request.

The hypercube computer makes use of a hybrid architecture in which

some of the nodes are used as vector processors and some nodes are used as

scalar processors. In this way partitions of the problem may be executed
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extremely quickly with interprocess message passing between the vector

and scalar nodes [Figure 6].
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Figure 6. Performance of Various Architecture Schemes

The SIMD and MIMD architectures require a more sophisticated model

for concurrency than the earlier SISD systems. CSP has had some impact on

current theory but the languages built around the CSP concept slow compu-

tation on MIMD systems with its forced waiting during interprocess com-

munication. This decrease in speed is not conducive to present needs for

faster processing of data. Better models for concurrent programs and paral-

lel processes needed to be developed.

One such model which was developed long before current MIMD archi-

tectures were developed is the Petri net [Peterson 1977]. A Petri net is a

directed graph with two types of nodes - places and transitions. Places are

drawn as circles and transitions are drawn as bars. These nodes are con-

nected by directed arcs with the two types of nodes alternating. An input

place is a place which leads to a transition and the output places are the
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places immediately following the transition. A transition is enabled only if

all of its input places contain a token or marker. The Petri net allows

parallelism through the use of multiple tokens and by permitting more than

one transition at a time to be enabled to fire [Figure 7].

PETRI NET CONCURRENCY

Figure 7. Examples of Petri Net Parallelism

An extension of the Petri net model was proposed by Drs. McBride and

Unger of Kansas State University [McBride 1983]. They proposed a model

for distributed systems based on Keller's work of Petri net models for a

parallel program [Keller 1976] [McBride 1983].

The token is used to represent information concerning the execution of

the job. A control net is developed in association with a token which

describes the processing requirements of the job. The control net has the

responsibility of directing the token's path through the distributed system.

Information is shared among a subset of the processes in the system

through the use of files that are explicitly shown in the procedure's Petri

net.
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Another method used for modeling concurrency on parallel processing

systems is the control flow graph or the data flow graph. The data flow

graph differs from the Petri net in the respect that the transitions are invisi-

ble to the user and are not represented on the graph. The nodes (places) are

represented as circles and these nodes are connected by directed arcs. Pro-

cess sequencing is determined by the placement of the node in the graph.

High levels of concurrency are modeled in this way [Figure 8]. Each node

might be considered as a "macro-graph" or a high level view of another flow

graph. In this way, highly concurrent problems could be modeled in a top

down method with more and more detailed refinement of each node.

Figure 8. Concurrency Modeled By Flow Graph

Argument may be made that Petri nets and data flow graphs could be

used to model concurrency on an SISD or global bus/shared memory sys-

tem. However, since these systems do not permit concurrency or parallel-

ism to the extent that SIMD and MIMD systems do, the Petri net based

models can be used to exploit more modeled concurrency on the SIMD and
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MIMD systems. The data flow graph can be used to model concurrency to a

low level detail that coding a problem for execution on a parallel or con-

current processing machine is made very easy.

With the models and architectures becoming more readily available,

algorithms and languages for these architectures are receiving more atten-

tion than when such technology was limited to individual research labora-

tories. The introduction of super-computer techniques for concurrent pro-

cessing into cheaper super-minicomputers has allowed more people to be

able to afford the speed and flexibility of the super-computer. The next

chapter will describe a concurrent programming method which could be

used on these data flow machines to provide an easy method for concurrent

processing of complex problems.
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3. "A Concurrency Method" Concepts

The architecture of "A Concurrency Method" (ACM) is based on two

primary principles of data flow design, the single-assignment of variables

and data-driven processes.

The concept of single-assignment of variables has its roots in

mathematics. An example of a common programming practice is the state-

ment X - X + 1. This expression has no meaning in a mathematical con-

text since it implies that = 1 and other equally absurd statements. The

name of the variable on the left hand side of the equal sign (=) stands for

the memory location to which the result of the calculation on the right

hand side of the expression is to be stored. In a case such as this the vari-

able on the right hand side stands for the value which is presently at that

memory location. The value at the present location is to be incremented

and then stored in the same memory location. The left hand variable is

usually changed to some unused variable name to distinguish between it

and the operand variable. The expression could be written as XX = X + 1.

This is the principle of single-assignment. Each time a new result is com-

puted, that result is given a new name. When the material value associated

with that variable name is no longer needed it is deleted from the system.

The concept of data-drive also comes from the field of mathematics.

When a mathematical expression, such as (A * B) + (C / D), is evaluated,

only the portions of the equation whose values are known can be computed.

In an example such as this either the expression (A * B) or (C / D) can be

processed if the values of their respective operands is known. Only after

both sides of the plus sign (+) are evaluated can the addition take place.
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Further, it makes no difference which of the addends is evaluated first. The

sequencing of the computations is inherent in the problem. The concept of

ordering instruction execution on the availability of required materials is

known as data-driven processing.

The data flow graph is a directed graph which incorporates the concepts

of data-drive and single-assignment. As discussed earlier, the data flow

graph can be used to model a program of execution. Two types of nodes

(places) are used to represent either operands or operators. The operands

are often called tokens or data items, and are represented by circles. These

tokens are the materials needed for inputs by operators or results obtained

by operations on the input tokens. Operators are represented by boxes.

Operators may be primitives which are embedded in the hardware or they

may be more complex primitives built from combinations of the embedded

primitives. The nodes are connected by means of directed arcs. The sample

equation X = (A * B) + (C / D) could be graphed as in Figure 9.

9$

x

Figure 9. A Data Flow Program Graph
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The results produced by the operations on the operands may be final or

they may be passed on as operands to other operators which may then pro-

duce operands which are final results or be passed on to yet other opera-

tions. It should be noted that another concept of data flow processing is

that of meaning associated with values in memory locations. In standard

programming languages, no distinction is made as to whether this piece of

data is an instruction or data to be used by the instruction. A characteristic

of a programming language which uses multi-dimensional data structure is

the need to break the concept of one variable being "next" to another in

memory. This concept makes the understanding of SIMD and MIMD com-

puters less arduous.

"A Concurrency Method" [Unger 1978] is the basis for this implementa-

tion. This language is naturally concurrent in that it incorporates the prin-

ciples of data flow and single assignment, and using data-drive as a means

of scheduling program execution. ACM allows data-drive to schedule

processes which may run concurrently while blocking execution of those

processes which rely on results of other processes as operands.

A user may make a "request" of ACM. The request is a statement that

asks for an action to be performed. If the action is immediately executable

it is said to be primitive. Otherwise the request is a set of requests which

ask for more detailed actions to be performed. A simple action and a simple

request are both represented by a three-tuple (m, a, r): m is the material

(operand) needed for execution, a is the action to be performed and r is the

result of the action. Both m and r may be lists consisting of one or more

data objects. A request in ACM must have all the required parts of the

three-tuple. An example of such a request might be SUBTRACT(Z;X,Y)
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where X and Y are the materials needed for execution (m), SUBTRACT is

the name of the action to be performed (a), and Z is the result obtained

from the action (r). ACM's data-driven scheduler would allow this action

to execute only if the values of X and Y were available.

If the request is a list of requests or the action is a complex primitive,

ACM allows the capability of refining or "detailing" an action or request

into specific sets of requests until the requests at the lowest level are able to

be executed by the host device's primitives. The process of detailing resem-

bles the structured programming method of top-down design. This detail-

ing process should be invoked automatically if an action is not immediately

executable. The requests which are refinements of the parent request should

be subjected to further refinement themselves if they are not primitives.

Carter [1985] presents an example program to solve the quadratic equation

for real roots. The action request is QUADROOT(Rl,R2;A,B,C). After this

request is made the refinement process would produce the detailing of Fig-

ure 10.

QUADROOT(Rl ,R2;A,B,C)

DIVIDE(R1;R11, A2)
DIVIDE(R2; R21, A2)
SUBTRACT(R11; NEGB, RAD)
ADD(R21; NEGB, RAD)
MULTIPLY(AC4; 4, AC)
SUBTRACTCRADSR; BB, AC4)
ROOT(RAD; RADSR)
SQUARE(BB; B)
MULTIPLYCAC; A, C)
MULTIPLYCA2; 2, A)
NEGATIVECNEGB; B)

Figure 10. An ACM Program
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ACM is strengthened by the addition of conditional statements which

further control the sequencing of request execution. Stimulation and Ter-

mination conditions are Boolean conditions which allow the user or the sys-

tem to determine if a request is valid and available for execution. Stimula-

tion and Termination conditions are optional, but each request or action

may have at most one stimulation and one termination condition. The con-

ditions may also appear individually. The data-drive principle is aug-

mented since the truth of the condition is a requirement for the request or

action to be executed. If the stimulation condition is not met then the

request or action will remain blocked. The termination condition controls

the termination of a request or action. If the termination condition is true

then the request is purged from the system, it is not eligible for execution.

An example of a request with stimulation and termination is the statement

[ Y <> ] DIVIDE(Z;X,Y) [ Y = ]

To divide the value X by the value Y the stimulating condition of Y not

being equal to must be met. If Y is equal to then the action would

result in an error as division by is undefined. Should this be the case, the

request would be removed from consideration as an executable statement.

Conditionals may be entered as part of the request by the programmer

when the program is created. This type of condition is called "external" as

the programmer brought the condition from outside the program. If the

programmer uses primitives which have been previously defined, these

primitives may need to have conditions met of which the programmer may

not be aware. In this situation the system will add the conditions to the

primitives for the correct execution of the action. These conditions are said
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to be "internal" in that the programmer does not need to know about them

prior to program entry.

The concepts of ACM readily lend themselves to possible implementa-

tion on a SIMD or MIMD architecture. ACM provides an easy programming

language in which the programmer does not need to worry about the order

of execution unless he or she wishes. The automatic refinement process

would allow a programmer to enter in a very high level program and have

ACM do the top-down refinement which is sometimes tedious in program-

ming languages such as Pascal and FORTRAN.
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4. System Environment

After the decision to work on this project was made, one of the first

questions which needed to be answered was "which network of computers

available at Kansas State University offers the best system environment on

which to do this implementation?" Further, this implementation would

attempt to duplicate Carter's [1985] work at the University of Kansas.

This final requirement suggested that the implementation be accomplished

on a network of microcomputers.

The networks available at Kansas State included the PC Net of Zenith

Z-150's with Ethernet as the network system, the Apple network of Macin-

tosh personal computers using the Appletalk local area network communi-

cations software and hardware, and the newly acquired AT&T 3B2/300

super-microcomputers networked with AT&T's 3BNet network system.

The PC Net was quickly ruled out because the full Ethernet network-

ing package was not implemented in the networks here. The ACM imple-

mentation would require the full Ethernet package being installed to allow

user controllable message passing among all the nodes of the network. The

current Z-150 network uses a Z-150 with a hard disk drive as a very lim-

ited "fileserver" from which nodes may access files. The files requested are

then copied down to the node which requests them. Read only access for

files on the fileserver is given to the nodes of the system. Message passing is

limited to requests for file access from the nodes to the fileserver and the

passing of those files from the fileserver to the nodes. This system would

not allow the type of concurrency needed for the implementation of a

naturally concurrent, data flow language.
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The Kansas State University Department of Computer Science recently-

purchased several Apple Macintosh personal computers with Apple's net-

work Appletalk. This network of personal computers was judged to be

preferable to the Z-150 network in that the entire network package was

installed. This allows message passing among all the nodes of the network.

The user interface is also very user friendly with the use of icons, pull-

down menus, multiple windowing, and a mouse for easy cursor control.

All of these features would make the use of the Macintosh network for this

implementation very nice. The only aspects of which were not favorable

toward this network were: (1) the very large amount of application inter-

face required for using the Macintosh features; (2) the slow speed of the

Macintosh; and (3) that this network is not interfaced with the "switch" by

which the computer department's distributed terminals could be used to

access the Macintosh network. For these reasons, the Macintosh network

was ruled out as the base "parallel processor system" for this implementa-

tion.

The AT&T 3B2/300 super-microcomputers seemed the best choice of all

the microcomputer networks available. The system is new to Kansas State

and is relatively unused, at this time, by courses offered by the computer

science department. 3BNet was advertised to offer the type of message

passing capabilities required for this implementation. The specific charac-

teristics of 3BNet are presented later in this chapter. It was decided that

the implementation of "A Concurrency Method" would be designed

specifically for two or more AT&T 3B2/300 super-microcomputers con-

nected with the 3BNet local area network, also from AT&T. The 3B2 net-

work is accessible from any of the terminals on campus which are
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connected to the "switch", a multiplexor which allows access to the

department's various computing facilities. The user need not log on to the

3B2 consoles in Nichols hall in order to access the ACM implementation.

All that is required is an account on the 3B2/300's.

The 3B2/300 super-microcomputer is a multiuser, desktop, 32-bit

super-microcomputer that uses the AT&T WE-32000 microprocessor with a

Random Access Memory (RAM) of 512 Kilobytes (user-expandable to 2

Megabytes). Increasing RAM memory greatly improves processor efficiency

by providing a larger number of available buffers.

The terminal for the 3B2/30O system at Kansas State is the 4425

Dataspeed terminal from AT&T. This terminal is an asynchronous, serial,

video display terminal (VDT). The terminal features a user-selectable 80-

or 132-column screen. Five different character sets, full screen windowing,

and a fully buffered auxiliary printer port are also standard features of the

VDT. The keyboard is based on a standard QWERTY layout with several

additional keys and features. It includes a 16-key numeric keypad, 38

downloadable function keys, and 8 cursor control keys. The function keys

are dynamically labeled at the bottom of the display and can be used in

applications programs designed for use with this terminal. Terminal emula-

tion is also an important feature in this system as the Viewpoint terminals

on the switch may also be used to access the 3B2 network. For this reason,

this implementation of ACM will not utilize the function keys as the

Viewpoint terminals do not have the function keys.

The actual 3B2/30O base unit contains the power supply, a cooling fan,

and the WE-32000 microprocessor with its 512 Kilobytes to 2 Megabytes

of Random Access Memory. The computer features two standard RS-232-C
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serial ports with the capability to expand the Input/Output (I/O) ports so

that peripherals may be added to the system. The system allows the user

to install up to four feature cards with 4 serial ports and 1 parallel port per

card. The total capacity is 18 serial and 4 parallel ports. The base unit also

allows for the addition of the 3BNet feature card which is needed for con-

nection to a 3BNet local area network.

The computer also features a 5.25 inch "floppy" disk drive, a battery

powered, nonvolatile, time-of-day clock that retains time even when the

power is turned off, and a nonvolatile RAM for saving essential information

that is normally lost when power is removed or the user logs off of the sys-

tem. The nonvolatile RAM feature also saves information which would be

of great value to a system representative in the event of a system failure. A
10- or 30-Megabyte hard disk drive may also be added internally to the

computer unit.

All of these components are tied together with AT&T's multiuser

operating system, UNIX System V, Release 2.0. The concept behind the

UNIX system is conducive to a multiuser system. The workbench concept

is implemented through the users' ability to move from their home direc-

tories to other directories on the system, accessing files needed for software

development, data sharing, and other needs. In this way, copies of infre-

quently used files do not need to be in each user's home directory, but may

be kept in one accessible location, thereby saving storage space on the sys-

tem. The user or "owner" of the file has control over the accessibility of

his/her home directories and files. The access rights to a file or directory

may be changed by the owner or by the super-user. This allows some

measure of privacy for personal work while allowing access to files which
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may be needed by other members of a programming team.

The UNIX operating system is written in the language, C. The user

interface is the Bourne shell command line interpreter. The system also

features several utilities packages which are useful in designing applications

for the computer. These include: directory and file management command

utilities, three different text editors, on-line help for UNIX commands and

terms, data encryption capabilities, system administration utilities, screen

handling routines, and utilities to enhance the user interface with the UNIX

system. The 3B2 system at Kansas State currently supports the C and Pas-

cal programming languages as well as the shell language used by the UNIX

system. The implementation of Pascal on the 3B2 allows for calls to C pro-

grams, UNIX system commands, and FORTRAN routines. DEMON, DEbug

MONitor, is also included. This utility allows the programmer to examine

the monitor registers of the system.

Some optional programs and features available for the system are the

BASIC and FORTRAN programming languages, Documenter's Workbench,

Instructional Workbench, Writer's Workbench, Basic Networking, Graphics,

Line Printer Spooling, Spell, and Terminal Filters.

The entire system of 3B2 computers and peripheral devices at KSU are

tied together with the 3BNet local area network. The network claims to

offer communication among nodes of the network without the delay of mail

or relaying messages. This network can be used to tie together a combina-

tion of 3B2 computers and/or other machines equipped with Ethernet com-

patible hardware and software. The 3BNet package includes the feature

card which is inserted in the 3B2 base unit. The feature card contains the

hardware and firmware required for the 3BNet feature to interface with
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other nodes on the local area network. These components include integrated

circuits (IC's), memory IC's, resistors, and discrete units which are mounted

to the card.

The package also includes a transceiver which provides the connection

to the local networking cable. This is the connection to the common bus

used for communication among the nodes of the network. A "drop" cable is

included to connect the feature card in the computer base unit to the tran-

sceiver. A disk containing the software necessary for the network interface

commands and programs is also included in the package.

The installation of 3BNet allows the user to transfer files and share

information with those machines on the network. The user may also have

the capability to execute commands among the nodes on the network using

the UNIX system. 3BNet nodes are machines which use the UNIX operating

system. They can be controlled by the user as long as the UNIX system is

being used. The 3BNet hardware communicates with similar hardware

attached to other computers on the network. The user enters a command

and the software routine associated with that command manipulates the

hardware to perform the operation. Through the connection to the net-

work, the operation can be carried out on a remote machine. This feature is

specifically what this implementation of ACM needed to allow the con-

current processing of requests among the various nodes of the network. In

this way, the entire network of 3B2/300 super-microcomputers may be

thought of as one large, multiple processor computer.

The application interface to 3BNet is provided by the open, close, read,

write, and ioctl (i/o control) system calls of the UNIX operating system.

Options specific to 3BNet are set with ioctl commands.
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Access to the network is achieved through "virtual ports". Any process

can open more than one virtual port. The number of ports that any one

process can have open concurrently is limited by the number of NI (Net-

work. Interface) driver ports available and by the number number of files

that a process can open. Ports opened by a process are inherited by any

child process created by that process.

Packets transmitted from the 3B2 computer must be a multiple of 4

bytes. The NI driver will pad any packets which are not a multiple of 4

bytes long. The application interface must include a 14 byte header for

each of its packets. This header is not from the packet by the NI driver.

When a packet sent to a virtual port arrives from another node, the

packet is copied into the receive buffers for that part. Therefore the number

and size of the receive buffers are set by the application. The NI driver will

maintain a virtual port status table that may be obtained and modified by

the application. Further technical information on the actual commands

used to initiate this interface can be found in AT&T 3BNet Manual [AT&T

1984].
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5. ACM Architecture and Implementation

This implementation of "A Concurrency Method" is based on the work,

of Catherine Carter [1985] at the University of Kansas. The implementa-

tion was undertaken for three principle reasons: (l) to provide a working

data flow simulation based on ACM concepts; (2) to allow a better under-

standing of concurrent processing, as related to distributed systems and

parallel processing computers; and (3) to provide a central kernel of a

data-flow processing operating system which could be used in other research

at Kansas State University.

As has been discussed earlier, ACM is based on the principles that are

the basis for a data flow computer. A data flow computer requires the same

basic software components for operational control and user-machine inter-

face as a computer of standard von Neumann architecture. The main con-

troller of any computer system is the operating system. Since data-driven

processing is an integral concept of ACM, the operating system must have a

request scheduler which would determine if a request was ready for execu-

tion.

The single assignment aspect of ACM specifies that after the materials

of a request are no longer required, the resources are deallocated and the

request is removed from the system. For this reason the scheduler must

also remove the request from the eligible request queue.

Another aspect of a data flow computer is the matter of concurrent exe-

cution. The operating system must determine if the concurrent execution is

necessary and/or possible for waiting requests. It must also control and

monitor the execution of these requests over the distributed system and
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then return the results of the actions to the proper parent action. 3BNet

was believed to be a possible means of implementing a data flow model.

The literature on 3BNet suggested that the network, allowed the sharing of

data and the sending of messages from one node to other nodes of the net-

work. If such claims proved true, the network could be controlled by the

application program and effectively link all the WE-32000 microprocessors

of the network into one parallel/multiprocessing machine. In this way

3BNet would be visualized as the interconnection bus between processors.

Execution speed would also depend on the speed of the processors polling

their message queues and the speed of transmission of the packets to other

nodes. This implementation does not include any message passing capabili-

ties. Other researchers may use this implementation as a core for various

message passing schemes on the 3B2 Network.

A feature of data flow processing which was determined to be desirable

was that of the even distribution of work among all the processors in the

system. The operating system would need to determine the work load of

all the processors in the system to ensure that some processors do not sit

idle while other processors are overloaded past their capacity to accomplish

the tasks requested of them. The system's load balancer would provide

complete modularity to the system. Each processor would be autonomous

and able to execute its requests without regard of the status of the other

processors in the system. If only one processor of the system was working,

the system would still function properly as a machine of standard von

Neumann architecture. However, with only one processor, any attempt at

concurrent execution is blocked.
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Another aspect of this load balancing is that it occur automatically,

without any user intervention, at periodic intervals. Once execution begins,

the load balancer would determine which processor would execute which

parts of the program. The scheduler, then, would determine which actions

are executable and which requests would be blocked, waiting for the results

of their refined requests. A dispatcher would then send the requests to the

processors indicated by the load balancer.

An editor for program entry would also be needed for the user of the

system to enter requests of the computer. Carter determined that a prop-

erly constructed editor would help speed up the translation process since

her implementation translates each line of a program as it is entered. She

also allowed the user to store and combine previously stored programs with

programs being edited [Carter 1985, p. 27]. Such an editor could be used to

limit the gap between the physical machine and program entry.

The user interface should be easy to understand and display messages

in a way that will be "pleasing" to the user. Screen design, in this case, is a

very important part of the user interface, since all messages about execution

status of the requests from the user are displayed on the screen. The screen

displays all the work currently on its associated microprocessor's request

execution queue, as well as the current status of its user's program of

requests.

Carter used the editor to work also as an interpreter. It was decided

not to implement an interactive editor for this implementation so it was

necessary to implement an interpreter which would parse the user's pro-

gram requests to ensure the rules of proper ACM syntax are followed for

each request. If a request was judged invalid the user would be notified, the
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invalid request would be placed in a file for invalid requests, and the next

request would be processed. The interpreter would also build the user's

request tree as each successfully parsed request is processed.

The overall structure of some data flow machine implementations can

be abstracted as being a tree of processors integrated with the software,

thereby comprising the entire system. In this type of system there is no

"root processor" to act as a master system controller so, in this sense, there

is no real root to the tree structure. Each node of the system is equal to

every other node of the system as far as the distribution of requests is con-

cerned. The node on which the user is logged into the system becomes the

"home node" for that user. This node name is used as the root of the

request tree which is built in the home node environment of the user. Each

valid user request is entered into the tree on a branch of the root. Each tree

node in the first level of the tree represents a single request from the user's

input file program. Each of these nodes then become the "root" of the tree to

which the refinements of the request are added. As the refinements of the

requests are further refined, if more refinement is needed, the second level

of the tree also takes on the characteristics of the "root" of their tree of

refinements. In this way the tree structure may begin to resemble a heap

structure. The concept that each of these nodes represents a request leads to

the treatment of each of these nodes of the tree structure as a single execut-

able packet. Each packet, then, can move around the system as necessary

for load balancing while maintaining the relationship of requests and their

"parent" program within the user's home processor.

Operand values are be stored as tokens in this implementation. This

scheme keeps the values of the operands as part of the request structure
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instead of putting them in some other type of data structure and then

matching requests for access to those values. Bottlenecks are avoided since

there is no need to access shared memory to determine the value of an

operand from this data structure. More memory is required for the request

structure in this method but a separate process for matching operands and

values is not needed.

As stated previously, it is be the interpreter's job to build and maintain

the request tree for the user. After interpretation, the user's request tree is

easily added the the execution tree of the home processor. As the request

tree is built, the interpreter will refine each user request into its immedi-

ately executable primitive statements, adding these refinements into the

"tree" of the parent request, then interpret the next request in a like manner,

until the end of the input file is reached.

A major portion of the system which determines the "friendliness" of

the user interface is the display of the various functions of the program on

the screen. The display indicates the request currently being executed, the

requests which are stimulated (ready) for execution, and the requests which

are not yet ready for execution but are only requested. A label for each

request moving through the distributed system is needed to be sure the

results from the actions performed are returned to the correct home node.

This also allows other users on the system to observe the requests being

executed at their nodes and see the interaction of the distributed processing

of the requests. It was also seen that some way to determine where a par-

ticular request fit into the tree hierarchy was also needed. It was decided

that the user's login "account" name would be used for identification of the

home node along with the letter of the terminal being used as the home
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node. Since the 3B2/300 is a multiuser system it did not seem prudent to

use just the name of the computer being used as the home node. It is possi-

ble that several users of the ACM system could be logged in to the same

home node. Therefore, the combination of login name and home node name

seemed to be an adequate label. The representation of the request's place-

ment in the tree hierarchy was seen to be a simple matter of designating

which level of the tree the request came from and the side of the "root"

node. Each request from a specific user would contain a header of the user's

name and the request's level in the tree. A program could then be recon-

structed by putting all the user's requests in order according to their level

designations. A typical request might be represented as

JOHNB211 MULTIPLY(Z;X,Y),

where JOHN is the user's login name, B is the home node terminal

(ksu3b2b), and 211 is the path of this request from the root of the execu-

tion tree. For this implementation the size of the user tree was limited to 9

descendents, numbered 1 through 9, from each node so that the displayed

path would clearly identify the actual path of the node. A graphical

representation of this example can be seen in Figure 11. With the above

specifications taken into account and Carter's implementation as a guide,

this implementation of "A Concurrency Method" was begun. C was chosen

as the primary language. The UNIX operating system is written in C and

offers many libraries of routines which would make programming this

implementation much easier. In addition, it was determined that a C pro-

gram will execute faster than another language on the UNIX system. The C

language provides for the use of modular design, much like Pascal, and
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allows for library programs as well as user defined programs to be

"included" as part of the definition of the program unit.

JOHNB

1

1

JOHNB 1 JOHNB 2

1

1

JOHNB 21 JOHNB 22

1

Figure 11. A Portion of an Execution Tree

It can be seen that there should be at least four modules to the ACM

system: the scheduler, the tree manager, the network interface, and the

display handler. Another module, decs.c, was created to centralize all of

the global variables and data types required by the program. Also, it was

decided to remove all the math functions from the RUN routine. All of

these functions are in the file funcs.c. This allows for easier expansion of

the available ACM language constructs in future work.

Following Carter's concept of the three types of execution tree nodes,

each with the same structure, design of the C structure was begun. The

user node specifies the current user's name and the work load required by

this program tree. Interior nodes are used to hold requests which must be

refined further and are used to pass the results from other actions to the

proper consumers up and down the branch. The leaf nodes contain the exe-
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cutable primitive operations which cannot be refined further.

Each structure can be seen as a record representing a separate, execut-

able request. The state of each request, that is, whether or not the request

has been stimulated and whether or not the request has been moved to the

ready queue, is kept as a field within the structure itself. The path level of

the node, whether the request is primitive or interior, the user's name, the

home node address, and the name of the request (a combination of the user

and home node names) are also kept within the request's structure to allow

the operating system to move the request around on the system.

A model of the request node is seen in Figure 12.
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TIME HOME PARENT
NAME NODE TYPE

PATH
ORIGINAL PATH

MATERIALS COMPLETE USERNAME
RESULTS ON READY LIST NEXT READY NODE

PARENT NAME COMMENTS
NEXT

STIMULATION TERMINATION

Field

TIME
HOME
PARENT
NAME
NODE TYPE
PATH
ORIGINAL PATH
MATERIALS
RESULTS
COMPLETE
ON READY LIST
PARENT NAME
COMMENTS
NEXT
STIMULATION
TERMINATION

Purpose

Execution time required for this request
Address of this home node
Pointer to the parent node (request)
Name of this Action or Request
Interior or leaf node indicator
Path from the root to this node
Path in the home node
Pointers to the materials nodes
Pointers to the results of this action
TRUE if all materials are received
TRUE if request is stimulated
Name of the parent action or request
Used for program (request) clarification

Array of pointers' descendents
Pointer to the stimulation node
Pointer to the termination node

Figure 12. The Request Node Field Definitions

Because the primary structure is a tree, the program will be maintained

in a tree format. Each request of the user's input program file is entered in

the request tree. Refinement of each request is made immediately upon the

determination of a valid ACM request. This refinement is displayed on the

screen as indicated previously. When the end of the input file is reached

and all refinement has been accomplished, the refined program is written to

an output file in the tree format by use of a pre-order traversal of the tree.
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The user is then prompted for the decision to execute the program or to exit

the system.

The interpreter's operating system is required to manage the user's exe-

cution tree and the request tree. All nodes in the execution tree remain in

the tree until the particular node is executed and/or its termination condi-

tion is met. In this implementation, the request tree is interleaved with the

execution tree. As soon as a node from the request tree is ready to be exe-

cuted, the state tag for that node is changed from "not ready" to "ready".

The CHKLOAD routine has the task of deciding how busy a particular

node of the system is. To accomplish this task, the time required for execu-

tion of the primitives must be known. Carter [1985, pp. 39] assigned rela-

tive values to the times she discovered so that an overflow condition did not

develop when computing the total workload of the processors.

There are several different communications schemes to be considered by

future researchers using this implementation. Carter used a shared memory

space among all the processors to ascertain the workload of each processor.

The shared (global) memory is accessed by the load balancer in determining

the loads of all the processors on the system. The load balancer first deter-

mines the current workload assigned to its processor and then requests

access to the shared file which contains the workloads of the other proces-

sors. When access is granted by the shared memory semaphore, the

balancer updates its entry to the current workload and then compares its

load to the loads of the other processors in the system. If its load is greater

than the average load at that point, it broadcasts a message to the other

nodes requesting assistance with its load.
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A processor may indicate its ability to accept more tasks to the system

in general. In this case, the message handler searches the stimulated list of

the processor(s) requesting assistance. The message handler selects requests

from the overloaded processor's execution tree and sends them to the pro-

cessor granting help.

Requests travel throughout the system and are stored in a node's mes-

sage queue. It is important that incoming messages are received as soon as

possible. For this reason, the routine which checks the message queue for

new messages is called between all the other routines in the "shell" program.

The shell program is the main program which calls all of the routines asso-

ciated with ACM program execution. This method can cause a bottleneck

by the use of the global memory. In large systems the possibility of more

than one processor requesting access to the shared memory for updating its

workload is increased.

Another method for communication between nodes would be to cen-

tralize the request distribution for the entire system into one node of the

system. A predefined workload limit would be established for each node.

After a node has reached its peak workload, further requests to that node

would be sent to the message node for distribution to other nodes of the

system. This message node would periodically poll the other nodes for

their current workloads. This would allow the message node to decide

which node would have the best chance of accepting the request. The path,

station, and user name information in the request packet would allow the

message node to send the results of the request to the proper user.

Again, this method could cause a bottleneck because all requests must

pass through the central message node. If this node is busy, it is possible
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that some requests may be lost by message buffer overflow. For this reason,

it would be beneficial to have a timer of some sort which would reactivate a

request from the send queue in the home processor. If the results are not

received before the timer expires, the burden of processing the request

would return to the home processor.

A general broadcast of the need for help in processing is yet another

method of communication which could be used. When a processor meets

the predefined workload limit a message is broadcast for help across the

entire system along with the time needed for the next request. Other nodes

would check their workloads and either grant or ignore the request for help.

The request would then be sent to the node granting the call for help.

All three methods require the inclusion of some type of timeout device

for handling the communication errors that might appear in the network.

For this reason, requests are maintained in the home processor's tree until

the results are returned. If the results are not returned within a certain

time period, the home processor must take responsibility for executing the

request.

An ACM program file must be created with one of the editors included

as part of the 3B2 UNIX system with the file extension of acm.

The function which asks the user for the name of the program file looks

for this extension. It is not necessary to type this extension in response to

the prompt. If a "." is not found in the file name supplied by the user, the

".acm" extension is appended to the file name. If the file exists the program

is then loaded into the parsed and, if a valid ACM request, loaded into the

execution tree.
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Each request in the ACM program file must be preceded by its path

number from the root. The path number is separated from the request by a

".". An example of some ACM program files is given in Appendix A. User

refinement of predefined requests, such as QUADROOT, is not mandatory in

the program file. If the request has a predefined refinement within the

operating system, the refinement will be added to the tree with the program

request as its parent. This relieves the programmer from the responsibility

of refining some complex actions in the original program file. The com-

pletely parsed and refined ACM execution tree is then written to an output

file in the form of fn. out, where fn is the file name supplied by the user in

the sign on process.

Another file which is created by the system is fn. res, where, again, fn

is the file name supplied by the user. This file contains all the results of the

processing of the ACM program. Each line of the original file is written to

the result file along with any messages about that request from the parser.

Each screen displayed during the execution of the program is also written to

the result file so that a comprehensive listing of all requests executed on

that terminal are recorded in the order of execution. This provides the user

with a complete record of his program's execution. However, a request

which is processed on another node of the system will not appear in the

output record of the user. It would be desirable to write any requests being

sent to other nodes to the result file so the user can see where the requests

from his program are being processed. This should be included in future

implementations which utilize this system as a core kernel.
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6. Results and Conclusions

This implementation of "A Concurrency Method" consists of several

files which are included in the compilation of the main program, AMC.c.

These files include: DECS.c, FUNCS.c, INIT.c, SCHEDULER.c,

SCREENMGR.c, and TREEMGR.c.

DECS.c contains all of the constant definitions, structure definitions,

and global variable declarations. The number of global variables is large

due to the fact that C functions can only return one value. It was deter-

mined that several of the functions written for this implementation needed

more than one value returned. This called for the use of "extern" or global

variables.

FUNCS.C contains all of the ACM mathematical function definitions

which are called by the EXECUTE function from SCHEDULER.c. It seemed

that, by creating a separate file for the functions which are executable by

this implementation, integration of more of the ACM language constructs

would be made easier.

All of the routines which were seen as necessary to initialize the tree

structure and all of the list structures are included in INIT.c. The SIGNON

function initializes the user id for that particular terminal and sets the root

of the execution tree.

SCREENMGR.c includes the functions which control most of the screen

and file output for this implementation. These functions utilize the C

library of "curses.h", which gives greater control over screen manipulation

than the standard printf function. Curses.h was used primarily because the

use of system call for such things as clearing the screen caused a bus error
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and core dump.

The TREEMGR.c file contains the functions which initialize, build, and

maintain the execution tree at the initial loading of an ACM program file.

These functions determine which file is to be loaded into the tree and

creates the result and output files. The result file contains all of the screens

created during execution as well as a copy of the original input program

with all of the messages appended by the parser. The final execution tree of

the parsed ACM program is written to the output file. It should be possible

to load and execute this file as an ACM program file.

C was an interesting language to learn. It appears that the implementa-

tion of C on the AT&T 3B2-300 computer does not support user defined

types as well as some other implementations of C. Many type definitions

were originally used to make the program easier to read. This allowed the

C program to appear more like a Pascal program. Problems arose in the

comparison of some of the user defined types. For this reason, all of the

original type definitions were removed and all structures and variables were

declared in the standard C style. The program is a little more difficult to

read but there are no type conflicts during compilation.

This implementation has a bug in the PARSE routine. The first strcpy

function encountered causes a bus error and core dump. Attempts to

remedy this error were unsuccessful. The error has not been corrected due

to lack of time to complete this report.

The implementation of this system has not been utilized in other

research as of this date, so any results from the actual use of the system are

based on research into the world of data flow processing and preconceived
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ideas about this implementation in particular. It is believed that the use of

ACM in an operating system course, a computer architecture course, or a

programming language course would allow students to gain a better under-

standing of the characteristics and concepts of data flow processing and the

architectures associated with these machines. It is further believed the the

implementation of a message passing scheme which utilizes the system

implemented in this research as a core would, on some level of granularity,

provide a viable alternative to present concurrent programming languages.

It is expected that this implementation, when used with some sort of

scheme to allow concurrent processing on other nodes within the 3B2 net-

work, would execute slower than a comparable program written in some

other high level language such as Pascal. There are two reasons for this

belief. The first is, the Pascal language is written in such a way as to take

advantage of the computer system's von Neumann architecture while ACM
is designed to be used on a totally different type of architecture. Data

transfer throughout the interior of a standard computer will be faster than

data transfer throughout a network of computers which must observe cer-

tain communication protocols. The second reason is that the current imple-

mentation of the request structure requires much overhead as it is imple-

mented with pointers. If the request structure could be implemented in a

firmware or hardware memory structure then overhead would be reduced.

It is believed, however, that at some level of granularity, even in this

implementation, there would be some improvement in the speed of execu-

tion of the ACM language as opposed to a standard programming language

such as Pascal.
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Some improvements could be made through hardware and firmware

implementations of various parts of the operating system. A separate pro-

cessor could be used to implement the command interpreter which would

increase the speed of command interpretation and also free other processors

to do the work of executing requests. Firmware and hardware solutions

could be used in implementing the request scheduler and tree handler, the

load balancer, and message handler. Korosh Parazideh, graduate student at

Kansas State University, is currently working on a possible hardware solu-

tion to a stimulation/termination processor.

Each processor in the system should have access to its own local

memory. This would help to eliminate the bottleneck when multiple pro-

cessors attempt to access shared memory. Multiple main memories are also

needed, with the recommendation that all processors have access to all of

the main memories. This could be accomplished by the implementation of

channels from the processors to the memories.

It is believed that many of the constructs used in this implementation

could be transferred from a software solution to a firmware/hardware

implementation. This architecture design reduces hardware complexity

while boosting performance in the parallel and concurrent execution of user

requests. The optimization of the ACM operating system would also

improve the speed of execution.

Even though the implementation is not finished, some tools and perfor-

mance improvements can be seen at this time. One useful tool for the user's

input of ACM programs would be an ACM syntax-sensitive editor. If this

editor was constructed with a prescanner which flags all syntax errors, the

interpreter would not have to be concerned with determining the validity of
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the statements as far as ACM syntax is concerned.

A better interconnection network method is also needed. It appears

that 3BNet is not as flexible as originally presumed. The 3BNet applications

programmer is faced with a complex EtherNet applications interface for

sending messages among nodes on the system. It might be possible to utilize

the "nisend" commands for distributing requests among the nodes.

New algorithms for concurrent processing problems will need to be stu-

died and tested. The introduction of data flow languages will also require a

shift in the current concepts of computing. Students need to be exposed to

the requirements of data flow processing and the new architectures to

broaden their understanding of the concepts of data flow. This will prepare

them for the time when data flow processing, and programming, will leave

the research laboratory and enter the business and scientific computing

world.

"A Concurrency Method" is an elegant language that is easy to under-

stand once the basic concepts behind its design are learned. This language

frees the programmer from the tedium of refining a high level algorithm

into the proper primitive statements while trying to maintain the proper

sequencing of the statements for proper execution.

"A Concurrency Method" will become an important tool as data flow

computers become available to the world outside the research laboratory. It

holds with the concepts of data driven processing with its adherence to the

principles of data drive and single assignment. It will also be a valuable tool

in the further study of data flow architecture and language design.
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Appendix A

Sample Programs

Sample Program 1 51

Sample Program 2 52
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Sample Program 1

This program shows the detailing of the QUADROOT function
as it would appear after being parsed by the ACM program or
as denned by the user before executing the ACM program.

1 .QUADROOT(Rl ,R2;A,B,C)
1 l.Ql(AC,A2,NEGB,BB;A,B,C,2.0)
112.MULT(AC;A,C)
113.MULT(A2;A,2.0)
114.SUB(NEGB;0.0,B)
115.SQUARE(BB;B)
12.Q2(AC4;AC,4.0)
1 2 1.MULT(AC4;AC.4.0)
13.Q3(RADSR;BB,AC4)
1 3 1 .SUB(RADSR;BB,AC4)
14.Q4(RAD;RADSR)
14 1.SQRT(RAD;RADSR)
15.Q5CR1 1,R12;NEGB,RAD)
1 5 1 .SUB(R 1 1 ;NEGB,RAD)
1 52.ADD(R 1 2;NEGB,RAD)
16.Q6(R1,R2:R11,R12,A2)
161.DIVIDE(R1;R11,A2)
1 62.DIVIDE(R2;R 1 2,A2)
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Sample Program 2

This program shows the use of Stimulation and Termination conditions,
the comment feature and the use of mixed case. The CONDENSE function
is called before a program is parsed to eliminate blanks and change
all characters to upper case.

l.[ x <> ] DIVTDE(z; 4,2) [x = 0]
2.add (C; 2,3)!These 3 statements have no connection
3.QuadRoOt(rl,r2;2.0,3.0,1.0)!Note, no detailing with this one.
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A CONCURRENCY METHOD (ACM)

This section contains the main program, macro definitions, and
include files. Also included are the functions FILERR and
CONTROL.

/* C Library files to be included in the program */

#include <stdio.h>
#include <curses.h>
#include <string.h>
#include <math.h>
#include <ctype.h>

/* Library files to be included which were written by John Morrell 1986 */

#include "decs.c"

#include "init.c"

#include "screenmgr.c"
#include "treemgr.c"
#include "funcs.c"

#include "schedulers"

int FILERRO
{

char ch;

NEWSCREENO;
noechoO;
mvprintw(10,l,"Do you wish to try again? (y/n)");
refreshO;
ch =- tolower(getchO);
addch(ch);
refreshO;
while (ch != 'y* && ch != 'n')

mvprintw(l8,l,"You must respond with a 'y' or an 'n'.");

move(lO.l);
clrtoeoK);
mvprintw(10,l,"Do you wish to try again? (y/n)");
refreshO;
ch = tolower(getchO);
addch(ch);
refreshO;

if (ch— y)
return(TRUE);

else
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return(FALSE);
} /* FILERR V

CONTROLO

do
{

CHKLOADO;
CHKQUITO;
CHKBLOCKEDTREEO;
DISPATCHC);
CHKLOADO;
MOVE():
REFINEO;

while Oeop);
} /* CONTROL V

/* Begin main program of A Concurrency Method */

main ()

INTROO;
SIGNONO;
INITIALIZEO;
CHKQUITO;
if (infile)

SHOWJOBSO;
CONTROLO;

else

if (FILERRO)

SHOWJOBSO;
CONTROLO;

QUITSCREENO;
/* MAIN V
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GLOBAL DECLARATIONS

This section contains all of the constant definitions, structure
definitions and global declarations.

/* CONSTANTS */

#define MINREQ 1

#deflne MAXREQ 9
#define MAXLENGTH 80
#deflneS15 15
#define S30 30
#deflne S80 80
#deflne MAXNAME 25
#denne MAXPATH 10
#define XCOORD
#deflne MINSTATION 1

#define MAXSTATION 2

/* STRUCTURE DEFINITIONS */

/* Conditional Structure */

struct en
{ char c_name[MAXNAME];
char c_cond[2];
float c_value;
float c_val;
int c revd:

};

/* Materials Structure */

struct ms
{ char m_name[MAXNAME];

float m_value;
struct ms *m_next;
int m_rcvd;

/* Tree Structure V
struct tt

{ long t_time;
int t_origpath[MAXPATH];
int t_station;
int t_path[MAXPATH];
struct tt *t_parent;
char t_name[MAXNAME];
struct ms *t_materials;
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struct ms *t_results;
int t_leaf;
int t_complete;
char t_uname[S 15];

int t_onreadylist;
struct tt *t_nextl;
struct tt *t_next[MAXREQ];
char t_prntname[MAXNAME];
char t_comments[S30];
struct en *t_stim;
struct en *t_term;
int t_done;
struct tt *t_psend;
char t_what;
int t where:

};

/* List Structure for Ready, Hold, and Sendlist */

struct lr

{ struct tt *front;

struct tt "rear;

/* GLOBAL VARIABLES */

int eop;
int ok;
int toomuch;
FILE *inflle;

FILE •tempfile;
FILE •resultflle;

FILE *outfile;

int ycoord;
int level;

int load;

int station;

int screennum;
int stimd;
int termd;
struct lr ready;
struct lr hold;
struct lr sendlist;

int path[MAXPATH];
usertS15];char

char fname[S15];
char res[S15];

out[S15J;char
struct tt "tree;

struct tt *t;
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struct tt "blocked;
struct tt *now;
WINDOW *curwin;
WINDOW *readywin;
WINDOW *blkwin;
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INITIALIZE

This section contains the initialization routines necessary for the
proper execution of the program.

TIMER(x)
int x;

int y;

x = x * 80000;
for ( y - 0; y != x; -t-t-y);

} I* TIMER */

NEWSCREENO

clearO;
refreshO;

} /* NEWSCREEN */

SETROOTO

int i;

tree = (struct tt *)malloc(sizeof(struct tt));

strcpy(tree-> t_name,"ROOT");
for (i = MINREQ; i <= MAXREQ; ++i)

tree-> t_next[i] = NULL;
level = 0;

tree->t_leaf = FALSE;
} /* SETROUTE V

SIGNONO

char ch;

int found, ready;

NEWSCREENO;
ready = FALSE;
cuserid(user);

mvprintw(5,5,"Enter the letter of your 3b2 terminal (a,b,c,d,e) ");

refreshO;
ch = tolower(getchO);
addch(ch);
refreshO;
while (ch < 'a' II ch > 'e')
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mvprintw(7,5,"%c is not a valid 3b2 terminal", ch);

mvprintw(9,5,"Enter either a, b, c, d, or e");

move(5,5);
clrtoeolO;
mvprintw(5,5,"Enter the letter of your 3b2 terminal ");

refreshO;
ch - tolower(getchO);
addch(ch);
refreshO;

strncat(user, &ch, 1);

mvprintw(15,5,"Your user name is %s", user);

refreshO;
SETROOTO;
TIMER(5);

} /* SIGNON */

RUNWINDOWSO

curwin = newwin(3,COLS,2,0);
readywin = newwin(10,COLS,5,0);
blkwin = newwin(9,COLS,15,0);

} /* RUNWINDOWS V

INITIAUZEO

int i;

NEWSCREENO;
mvprintw(lO,0, I N I T I A L I Z I N G ");

refreshO;
RUNWINDOWSO;
screennum = 1;

eop = FALSE;
ready.front = (struct tt *) malloc (sizeof(struct tt));

ready.rear = (struct tt *) malloc (sizeof(struct tt));

hold.front = (struct tt *) malloc (sizeof(struct tt));

hold.rear = (struct tt *) malloc (sizeof(struct tt));

blocked = (struct tt *) malloc (sizeof(struct tt));

for (i = MINREQ; i <= MAXREQ; ++i)

blocked-> t_next[i] = (struct tt *)malloc(sizeof(struct tt));

bloclt.ed->t_next[i] = NULL;

strcpy(blocked->t_name,"BLOCKED'');
blocked->t_leaf = FALSE;
blocked-> t_parent = (struct tt *)malloc(sizeof(struct tt));
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blocked-> t_time = 0;
sendlist.front = (struct tt *) malloc (sizeof(struct tt));

sendlist.rear = (struct tt *) malloc (sizeof(struct tt));

now = (struct tt *) malloc (sizeof(struct tt));

TIMER(3);
} /* INITIALIZE */
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ACM MATH FUNCTIONS DEFINITIONS

This section contains all of the predefined math functions included
in this implementation.

int ODD(x)

int i;

int b;

b- 1;

for (i- 1; i <= x; ++i)
b *- -1:

return(b);

} /* ODD */

ADD()

struct ms *m;
struct ms *n;

m = now-> t_results;

m->m_rcvd - TRUE;
m-> m_value - 0;
n = now->t_materials;
while (n != NULL)

m-> m_value += n-> m_value;
n = n-> m next;

}

n = now-> t_results-> m_next;
while (n != NULL)

n-> m_value = now-> t_results-> m_value;
n-> m_rcvd = TRUE;
n - n->m next;

}

/* ADD */

SUBO

struct ms *m;
struct ms *n;

m = now-> t_results;
m-> m_rcvd = TRUE;
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n - now->t_materials;
m->m_value = n->m_value;
n = n-> m_next;
while (n != NULL)

I

m-> m_value -= n-> m_value;
n = n-> m next;

I

n - m-> m_next;
while (n != NULL)

n-> m_value = m-> m_value;
n-> m_rcvd = TRUE;
n - n-> m_next;

} /* SUB V

ADDMATSO

struct ms *m;
struct ms *n;

m = now-> t_materials;
n = now->t_results;
while (m != NULL)

n-> m_value = m-> m_value;
n-> m_rcvd = TRUE;
m = m-> m_next;
n - n->m next;

} /* ADDMATS */

MULTIPLYO

struct ms *m;
struct ms *n;

m = now-> t_results;
m->m_rcvd = TRUE;
m->m_value = 1;

n = now->t_materials;
while (n != NULL)

m-> m_value *= n-> m_value;
n = n-> m_next;
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n = m-> m_next;
while (n != NULL)

n-> m_value = m-> m_value;
n-> m_rcvd = TRUE;
n - n-> m_next;

} /* MULTIPLY */

DIVIDEO

struct ms *m;

now-> t_results-> m_rcvd = TRUE;
if (now-> t_materials-> m_next-> m_value != 0)
now-> t_results-> m_value =
now->t_materials->m_value / now->t_materials->m_next->m_val&

else

now-> t_results-> m_value = 0;
m = now-> t_results-> m_next;
while (m != NULL)

m-> m_value = now-> t_results-> m_value;
m-> m_rcvd - TRUE;
m- m->m_next;

} /* DIVIDE */

POWERO

struct ms *m;
int neg;

int i;

float a;

float b;

double c;

neg = FALSE;
a = now-> t_materials-> m_value;
b = now-> t_materials-> m_next-> m value;
if (a < 0)

a = abs(a);
if (ODD(b) < 0)
neg = TRUE;

c = exp(b * log(a));
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now-> t_results-> m_rcvd = TRUE;
if (neg)
now-> t_results-> m_value = -c;

else

now-> t_results-> m_value = c;

m = now-> t_results-> m_next;
while (m != NULL)

m-> m_value - now-> t_results-> m_value;
m-> m_rcvd = TRUE;
m - m->m next;

I

/* POWER */

sqrtO

struct ms *m;
struct ms *n;

m = now-> t_materials;
n = now->t_results;
if (m-> m_value <= 0)
n-> m_value = 0;

else

n-> m_value = sqrt(m-> m_value);

n-> m_rcvd = TRUE;

SQUAREO

struct ms *m;

now-> t_results-> m_value =
now-> t_materials-> m_value *= now-> t_materials-> m_value;

now-> t_results-> m_rcvd = TRUE;
m = now-> t_results-> m_next;
while (m != NULL)

m-> m_value = now-> t_results-> m_value;
m-> m_rcvd = TRUE;
m - m-> m_next;

} /* SQUARE •/

SINEO
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struct ms *m;
struct ms *n;

m = now-> t_materials;
n = now->t_results;
n-> m_value - sin(m-> m_value);
n-> m_rcvd = TRUE;
m = n-> m_next;
while (m !- NULL)

I

m-> m_value = n-> m_value;
m-> m_rcvd = TRUE;
m = m->m next;

}

/* SINE */

cos()

struct ms *m;
struct ms *n;

m - now-> t_materials;
n = now->t_results;
n-> m_value = cos(m-> m_value);
n-> m_rcvd - TRUE;
m = n-> m_next;
while (m != NULL)

{

m-> m_value = n-> m_value;
m-> m_rcvd = TRUE;
m-m->m next;

,
)

} /* COS V

TANO

struct ms *m;
struct ms *n;

m - now-> t_materials;
n = now->t_results;
n-> m_value - tan(m-> m_value);
n-> m_rcvd = TRUE;
m - n-> m_next;
while (m != NULL)

m-> m_value = n-> m_value;
m->m_rcvd-TRUE;
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m = m->m next;

}

/* TAN */

NLO

struct ms *m;
struct ms *n;

m = now-> t_materials;
n = now-> t_results;
n-> m_value - log(m-> m_value);
n-> m_rcvd = TRUE;
m = n-> m_next;
while (m != NULL)

m-> m_value = n-> m_value;
m-> m_rcvd = TRUE;
m = m->m_next;

} /* NL V

EXPO

struct ms *m;
struct ms *n;

m = now-> t_materials;
n = now->t_results;
n->m_value = exp(m->m_value);
n-> m_rcvd - TRUE;
m = n-> m_next;
while (m != NULL)

m-> m_value = n-> m_value;
m->m_rcvd = TRUE;
m = m->m_next;

} /* EXP */

IROOTO

struct ms *m;
struct ms *n;

m = now-> t_materials;
n = now->t_results;

67



if (m-> m_value < 0)

n-> m_value = 0;

n-> m_rcvd = TRUE;
n-> m_next-> m_value = SQRT(abs(m-> m_value));
n->m next->m rcvd = TRUE;

}

else

f

n-> m_value = SQRT(m-> m_value);
n-> m_rcvd = TRUE;
n-> m_next-> m_value = 0;

n->m_next->m_rcvd = TRUE;

I
/* IROOT */
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SCHEDULING ROUTINES

This section contains all of the routines needed for determining
when a request may be serviced.

DOSENDLISTO

if (sendlist.front = NULL)

sendlist.front = p;
p-> t_psend = NULL;
sendlist.rear - p;

}

else

{

sendlist.rear-> t_psend =
sendlist.rear = p;
p->t_psend = NULL;

} /* DOSENDLIST */

REDOO

if (hold.front =- p)

hold.front - p-> t_nextl;
if (hold.front = NULL)
hold.rear = NULL;

q = hold.front;

}

else

{

q = hold.front;

while (q->t_nextl != p)
q = q->t_nextl;

q->t_nextl = p->t_nextl;
if (q->t_nextl — NULL)
ready.rear = q;

p->t_nextl - NULL;
} /* REDO */

MOVEO

struct tt *p, *q;

int i, j;
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int done;

p = hold.front;
while (p != NULL)

if (p->t_path[l] = 0)

i - MINREQ;
done = FALSE;
while (Idone)
if (i > MAXREQ)
done - TRUE;

else

if (block.ed->t_next[i] = NULL)
done = TRUE;

else

-H-i;

if (i <= MAXREQ)

p->t_path[l] = i;

PUTINTREE(p, blocked);
REDOO;
p = q->t_nextl;

else

p = NULL;
}

else

p = p->t_nextl;

SHOWJOBSO;
TIMER(3);

!
/* MOVE */

REFINEO

struct tt *p, *q;

int i, j;

struct ms *1, *m;
struct en *c;

p = hold.front;
while (p != NULL)

j-0;
for (i - 0; i <= MAXPATH; ++i)
if (p->t_path[i]!=0)

if Cj > D
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if (p->t_leaf)

q = NODEG-2, blocked, p->t_path);
if (q != NULL)

PUTINTREE(p, blocked);

REDOO;

else

p = p->t nextl;

}

else

[

p-> t_complete - TRUE;
m = p-> t_materials;
while (m != NULL)
if (!m-> m_rcvd)

p->t_complete - FALSE;
m = NULL;

}

else

m m m-> m_next:
if (p-> t_complete)

if (p->t_stim != NULL)

c - p-> t_stim;
m = p-> t_materials;
-while (m != NULL)
if (c->c_name = m-> m_name)

c->c_val = m-> m_value;
c->c_rcvd = TRUE;
m = NULL;

}

else

m = m->m_next;

if (p->t_term != NULL)

c = p->t_term;
m = p-> t_materials;
while (m != NULL)
if (c-> c_name — m-> m_name)

c-> c_val = m-> m_value;
c->c_rcvd = TRUE;
m = NULL;

}

else
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m = m->m next;

}

PUTINTREE(p, blocked);
REDOO;

}P = q;

else

p = p->t nextl;

}

}

SHOWJOBSO;
TIMER(3);

!

/* REFINE */

SENDON(p)
struct tt *p;

struct ms *m;
struct ms *n;

int i;

if (p != NULL)

m = q-> t_results;

while (ra != NULL)

n = p-> t_materials;
while (n != NULL)
if (m-> m_name — n-> m_name)
if (!n->m_rcvd)

n-> m_value -= m-> m_value;
n-> m_rcvd = TRUE;
n = n-> m next;

}

else

n = n-> m_next;
else

n = n-> m_next;
m - m-> m_next;

if (p->t_stim !- NULL)

m = q-> t_results;

while (m != NULL)
if (m-> m_name — p-> t_stim-> c_name)

p-> t_stim-> c_val = m->m_value;
p-> t_stim-> c_rcvd = TRUE;
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m = NULL;
I

else

m = m->m next;

}

if (q-> t_term != NULL)

m =- p-> t_results;
while (m != NULL)
if (m->m_name == q->t_term->c_name)

q->t_term->c_val = m-> m_value;
q->t_term->c_rcvd = TRUE;
m = NULL;

}

else

m - m-> m_next;

if (!p->t_leaf)
for (i - MINREQ; i <= MAXREQ; ++i)
SENDON(p-> t_next[i]);

} /* SENDON */

PASSDOWN(q)
struct tt *q;

struct tt *p;

struct ms *m;
struct ms *n;

p = blocked-> t_next[q-> t_path[0]];
SENDON(p);
p = hold.front;
while (p != NULL)

m = q-> t_results;
while (m != NULL)

n = p-> t_materials;
while (n != NULL)
if (m-> m_name = n-> m_name)
if (!n-> m_rcvd)

n-> m_value = m-> m_value;
n-> m_rcvd = TRUE;
n = n-> m next;

}

else
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n - n-> m_next;
else

n » n-> m_next;
m -» m-> m_next;

if (p-> t_stim != NULL)

m = q-> t_results;
while (m != NULL)

if (m-> m_name= p-> t_stim-> c_name)

p->t_stim->c_val = m->m_yalue;
p-> t_stim-> c_rcvd = TRUE;
m = NULL;

}

else

m - m->m_next;

if (p->t_term != NULL)

m - q-> t_results;
while (m != NULL)
if (m-> m_name = p-> t_term-> c_name)

p->t_term->c_val = m->m_value;
p->t_term->c_rcvd = TRUE;
m = NULL;

}

else

m = m->m next;

}

p=-p->t nextl;

I

/* PASSDOWN */

PASSUPO

struct ms *m;
struct ms *n;

struct en *c;

if (now-> t_parent-> t_name = "BLOCKED")
SHOWJOBSC);

else

{

m - now-> t_results;
while (m != NULL)

n = now->t_parent->t_results;
while (n != NULL)
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if (m-> m_name = n-> m_name)

n-> m_value = m-> m_value;
n-> m_rcvd = TRUE;
n-NULL;

}

else

n - n-> m_next;
m = m-> m next;

}

m = now-> t_results;
while (m != NULL)

n - now-> t_parent-> t_materials;
while (n != NULL)

if (m->m_name= n->m_name)

n-> m_value = m-> m_value;
n-> m_rcvd = TRUE;
n = NULL;

}

else

n = n-> m_next;
m = m-> m_next;

if (now-> t_parent-> t_stim != NULL)

c - now-> t_jparent-> t_stim;
m - now-> t_results;

while (m != NULL)
if (m->m_name = c->c_name)

c->c_val = m->m_value;
c->c_rcvd = TRUE;
m - NULL;

}

else

m - m-> m_next;

if (now-> t_parent-> t_term != NULL)

c - now-> t_parent-> t_term;
m - now-> t_results;
while (m != NULL)
if (m->m_name — c->c_name)

c->c_val = m->m_value;
c->c_rcvd = TRUE;
m = NULL;

}

else
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m = m->m next;

} /* PASSUP V

EXECUTEO

struct ms *1;

struct ms *m;
struct ms *n;

int i;

int j;

int done;
struct tt *p;

SHOWJOBSO;
TIMER(3);
if (now->t_leaf)

if (now->t_name= "ADD")
ADD;

else if (now-> t_name = "SUB")
SUB;

else if (now-> t_name= "ADDMATS")
ADDMATS;

else if (now->t_name = "MULTIPLY")
MULTIPLY;

else if (now->t_name — "DIVIDE")
DIVIDE;

else if (now->t_name = "POWER")
POWER;

else if (now-> t_name = "SORT")
SQRT;

else if (now-> t_name = "SQUARE")
SQUARE;

else if (now-> t_name = "SINE")
SINE;

else if (now-> t_name = "COS")
COS;

else if (now-> t_name — "TAN")
TAN;

else if (now-> t_name = "NL")
NL;

else if (now-> t_name — "EXP")
EXP;

else if (now-> t_name = "IROOT")
IROOT;

SHOWJOBSO;
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TIMER(3);
PASSUPO;
if (now-> t_done)

i - MINREQ;
while (now-> t_parent-> t_next[i] != now)
++i;

now-> t_parent-> t_next[i] = NULL;
free(now);

else

{

now-> t_onreadylist = FALSE;
m = now-> t_results;
while (m != NULL)
m-> m_rcvd = FALSE;

}

now - NULL;
SHOWJOBSO;
TIMER(3);

} /* end IF LEAF */

else

{

PASSUPO;
PASSDOWN(now);
if (now-> t_done)

i - MINREQ;
while (now->t_parent->t_next[i] != now)
++i;

now-> t_parent-> t_next[i] = NULL;
for (i = MINREQ; i <= MAXREQ; ++i)

if (now->t_next[i] != NULL)

j = MINREQ;
done = FALSE;
while (Idone)
if (j > MAXREQ)
done = TRUE;

else

if (now->t_parent->t_next[j] = NULL)
done - TRUE;

else

if (j < MAXREQ)
now-> t_parent-> t_next[j] = now-> t_next[i],

else

WAIT(now-> t_next[i]);
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free(now);
} /* end IF DONE */

else

{

now-> t_onreadylist = FALSE;
m - now-> t_results;

while (m != NULL)
m-> m_rcvd « FALSE;

}

now = NULL;
SHOWJOBSO;

/* EXECUTE •/

DISPATCHO

if (ready.front != NULL)

now = ready.front;
ready.front = ready.front->t_nextl;
if (ready.front => NULL)
ready.rear = NULL;

now-> t_nextl = NULL;
EXECUTEO;

} /* DISPATCH V

PUTON(q)
struct tt *q;

{ ,
if (q-> t_complete)
if (!q-> t_onreadylist)

if (ready.front — NULL)

q-> t_onreadylist = TRUE;
ready.front = q;
ready.rear = q;

else

{

q-> t_onreadylist - TRUE;
ready.rear->t_nextl = q;
ready.rear = q;

} /* PUTON V
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SEARCH(p)
struct tt *p;

(

int i;

for Ci = MINREQ; i <= MAXREQ; ++i)
if Cp-> t_next[i] != NULL)

PUTON(p-> t_next[il);

SEARCH(p-> t_next[ij);

} /* SEARCH V

BLOCKTOREADYO

SEARCH(block.ed);
} /* BLOCKTOREADY */

DELETEBRANCH(p)
struct tt *p;

{

struct tt *q;

int i;

q - p-> t parent;
i - MINREQ;
while (q-> t_next[i] != p)
++i;

p-> t_parent = NULL;
q-> t next[i] = NULL;
returnCp);

} I* DELETEBRANCH •/

int SETCOND(c)
struct en *c;

{

int state;

if (!c-> c_rcvd)
state = FALSE;

else

{

state = FALSE;
if (c->c_cond — "<")

if (c->c_val < c->c_value)
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state - TRUE;
else if (c->c_cond = "<=")

if (c->c_val <= c->c_value)
state - TRUE;

else if (c->c_cond — "=")

if (c->c_val = c->c_value)
state = TRUE;

else if (c-> c_cond — ">
")

if (c->c_val > c->c_value)
state - TRUE;

else if (c->c_cond = ">=")

if (c->c_val >= c->c_value)
state = TRUE;

else if (c-> c_cond = "!=")

if (c->c_val != c->c_value)
state = TRUE;

}

return(state);

} /* SETCOND */

CHECKCONDO
struct tt *p;

f

int ready;
int over;

if (p-> t_stim = NULL && p-> t_term == NULL)

stimd - TRUE;
termd - FALSE;
p->t_done = TRUE;

if (p-> t_stim !- NULL && p-> t_term — NULL)

ready = SETCOND(p-> t_stim);
if (ready)

stimd - TRUE;
termd = FALSE;
p-> t_done = TRUE;

}

else

{

stimd - FALSE;
termd - FALSE;
p->t_done = FALSE;

.,'
if (p->t_stim — NULL && p->t_term != NULL)
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over = SETCOND(p-> t_term);
if (over)

stimd - TRUE;
termd - TRUE;
p-> t_done = TRUE;

else

stimd = TRUE;
termd = FALSE;
p->t_done = FALSE;

if (p-> t_stim != NULL && p-> t_term != NULL)

ready - SETCOND(p-> t_stim);
over = SETCOND(p-> t_term);
if (ready && over;

stimd = TRUE;
termd = TRUE;
p->t done = TRUE;

»

-

else if (ready && lover)

stimd = TRUE;
termd - FALSE;
p-> t_done = TRUE;

}

else if (Iready && over)

stimd = FALSE;
termd - TRUE;
p-> t done = TRUE;

else if (Iready && lover)

stimd - FALSE;
termd = FALSE;
p->t_done = FALSE;

} /* CHECKCOND V

CHECKLIST(m)
struct ms *m;
struct tt *p;

p-> t_complete = TRUE;



while (m != NULL)

if (!m-> m_rcvd)
p->t_complete = FALSE;
m = m->m next;

,
)

} /* CHECKLIST */

CHECK(p)
struct tt *p;

{

int i;

int j;

struct ms *1;

struct ms *m;
struct tt *q;

if (p !- NULL)

if (p-> t_name != "BLOCKED")

CHECKCONDO;
if (stimd)

if (!p-> t_complete)
CHECKLISTCp-> t_materials);

if (p-> t_complete)
if Op->t_leaf)
CHECKLIST(p-> t_results);

I

1

if (!p->t_leaf)
for (i - MINREQ; i <= MAXREQ; ++i)
CHECK(p-> t_next[i]);

retum(p);
} /* CHECK */

CHKBLOCKEDTREEO

CHECK(blocked);
BLCCKTOREADYO;
SHOWJOBSO;
TIMER(3);

} /* CHKBLOCKEDTREE */

CHKTREE(p)
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struct tt *p;

{

int i;

if (p != NULL)
for (i = MINREQ; i <= MAXREQ; ++i)

CHKTREE(p-> t_next[i]);
if (p->t_parent != NULL)
p-> t_parent-> t_time += p-> t_time;

} /* CHKTREE */

CHKWAIT(p)
struct tt *p;

{

while (p !- NULL)

if (p-> t_leaf

)

load += p-> t_time;
p-p->t_nextl;

} /* CHKWAIT */

INITTREE(p)
struct tt *p;

{

int i;

if (p !=- NULL)
if (!p->t_leaf)

p-> t_time = 0;

for (i - MINREQ; i <= MAXREQ; ++i)
INITTREE(p-> t_next[i]);

return(p);

} /* INITTREE */

CHKLOADO

INITTREE(blocked);
CHKTREE(block.ed);
load = blocked-> t_time;
CHKWAIT(hold.front);

} /* CHECKLOAD */
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RUNG

LOADFILEO;
SHOWJOBSO;
TIMER(3);

} /* RUN •/

CHKQUITO

char ch;

echo();

eop = FALSE;
if (tree->t_next[0] — NULL)
{

NEWSCREENQ;
mvprintw(5,5, Do you have an ACM program you want to execute?");
printw("(y/n) ");

refreshO;
ch = tolower(getchO);
refresh();

while (ch != 'y' && ch != 'n')

mvprintw(lO,5,"You must respond with a 'y' or and 'n'");

mvprintwf 5,5,"Do vou have an ACM program you want to execute?");
mvprintw("(y/n) ");

refreshO;
ch = tolower(getchO);
refreshO;

if (ch= V)
RUN();

else

eop =- TRUE;
} /* CHKQUIT */
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SCREEN MANAGING ROUTINES

This section contains all the routines needed to display,
handle and manage the screen and windows.

INTROO

initscrO;

nonl();

cbreakQ;
noechoQ;
refreshO;
mvprintw(2,29,"A CONCURRENCY METHOD:");
mvprintw(4,23,"An Implementation On A 3B2 Network");
mvprintw(6,40,"by");
mvprintw(8,34,"JOHN E. MORRELL");
mvprintwril,25,"Based On The Model Created By");
mvprintwt 14,29,"DR. ELIZABETH A. UNGER");
mvprintw(15,28,"Kansas State University");
mvprintw(22,23,"(C) Copyright 1986 John E. Morrell");
mvprintw(23,26,"and Kansas State University");
refreshO;
flashO;
TIMER(3);

} /* INTRO V

QUITSCREENO
/Called by MAIN. Screen is displayed after user logs out of ACM */

NEWSCREENO;

endwinO;

' /* QUIT SCREEN V

SHOWREQ(scr.t)
/* Called by SHOWJOBS to display a single request from any of the */
/* lists - Current Request, Ready List */

WINDOW *scr;

struct tt *t;

{

struct ms *m;

if (t !- NULL)
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if (t-> t_stim != NULL)

fprintf(resultfile,"[ %s %s %d ]", t->t_stim->c name,
t-> t stim-> c_cond. t-> t_stim-> c_value);

wprintw(scr,"[ %s %s %d ]", t-> t_stim-> c_name, t-> t_stim-> c_cond
t-> t_stim-> c_value);

fprintf(resultflle,"%s(", t-> t_name);
wprintw(scr,"%s(",t-> t_name);
m = t-> t_results;
while (m != NULL)

if (m->m_rcvd)

fprintf(resultfile,"%d", m-> m_value);
wprint-w(scr,

B
%d", m-> m_value);

else

fprintf(resultfile, "%s", m->m_name);
wprintw(scr,"%s', m-> m_name);

m = m-> m_next;
if (m — NULL)

fprintf(resultfile, ";");

wprintwCscr,";");

else

{

fprintf(resultflle, ",");

wprintw(scr,",");

m = t-> t_materials;
while (m != NULL)

if (m-> m_rcvd)

fprintf(resultfile, "%d", m->m_value);
wprintw(scr,"%d", m->m_value);

else

fprintf(resultfile, "%s", m-> m_name);
wprintw(scr,"%s , m-> m_name);

m = m-> m_next;
if (m = NULL)

fprintf(resultfile, ")");
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wprintw(scr,T);

else

fprintfOesultfile, ",");

wprintwCscr,",");

if (t->t_term !- NULL)

fprintf(resultflle, "[ %s %s %d ]", t->t_term->c_name,
t-> t_term-> c_cond, t-> t_term-> c_value);

wprintw(scr,"[ %s %s %d ]', t->t_term->c_name, t->t_term->c_cod
t->t_term->c value);

,'
fprintf(resultfile,"0);

} /* SHOWREQ */

TRAVERSE(p, lines)
/* Called by SHOWJOBS to display jobs on the Blocked List. V

struct tt *p;

{

int i,j;

for (i - MINREQ; i <= MAXREQ; ++i)
if (p-> t_next[i] != NULL)

if (lines < 9 && p->t_next[i]->t_onreadylist = FALSE)

j-0;
mvwprintw(blkwin,j+l ,0,"%s", p-> t_next[i]-> t_uname);
do
{

waddch(blkwin,p-> t_next[i]-> t_path[j]);

rj:

while (p->t_next[i]->t_path[j] != 0);
waddstr(blkwin, " ");

SHOWREQ(blkwin, p-> t_next[i]);
++lines;

}

else

if (lines > 8)
retum(TRUE);

TRAVERSE(p->t_next[i], lines);

} /* TRAVERSE V
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SHOWJOBSO

struct tt *r;

int lines;

int j;

int more;

/* Display Current Request in Execution at this terminal */

wmove(curwin, 1 ,0);

wclrtobot(curwin);
fprintf(resultfile, SCREEN NUMBER: %d0, screennum);
if (now != NULL)

j = 0;

mvwprintw(curwin,l,0
("%s",now->t_uname);

do
{

waddch(curwin,now-> t_path[j]);

}++*

while (now->tpath[j] != 0);
waddstr(curwin, ");

SHOWREQ(curwin, now);

else

mvprintw(curwin,l,0,"NO JOB IS CURRENTLY IN EXECUTION");
wrefresh(curwin)

;

/* Display Requests in Ready List */

wmove(readywin, 1 ,0);

wclrtobot(readywin);
if (ready.front != NULL)

r = ready.front;
lines = 0;

while (r != NULL && lines < 9)

j = 0;

mvwprintw(readywin,j+l,0,"%s",r->t_uname);
do
I

waddch(readywin,r-> t_path[j]);

r*
while (r->t_path[il != 0);
waddstr(readywin, ");

SHOWREQ(readywin,r);
-H-lines;

r = r->t_nextl;

if (r !- NULL)
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mvwprintw(readywin,9 ,5
,

'

wrefresh(readywin)

;

/* Display Requests in Blocked List */

wmove(blkwin,l,0);
wclrtobot(blkwin);
if (blocked != NULL)

lines = 0;

more - FALSE;
more - TRAVERSE(blocked);
if (more)
mvwprintw(blkwin,9,5,"

wrefresh(blkwin);

-H-screennum;
/* SHOWJOBS */
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TREE MANAGER ROUTINES

This section contains all the routines needed to build, parse,
and maintain the request-tree structure.

struct tt *NODE(level, p, path)
int level;

struct tt *p;

int path[MAXPATH];

int i;

struct tt *q;

for (i - 0; i < = level; ++i)
if (q != NULL)
q - q-> t_next[path[i]];

return(q);

¥\} I* NODE */

WAITO

if (hold.front = NULL)

hold.front = t;

hold.rear = t;

t-> t nextl = NULL;
}

else

{

hold .rear->t_nextl = t;

hold.rear = t;

t->t nextl -NULL;

} /* WAIT */

WHATFILE(fname)
char fname[S15];

char ch;

int i;

NEWSCREENO;
noecho();
mvprintw(5,5,"Enter the PROGRAM file name: ");
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refreshO;
i = 0;

ch = getch();

while (ch 1-015)

addch(ch);
fnameli] = ch;

i++;

refreshO;
ch = getchO;

} /* WHATFILE */

CONDENSECinfile, tempflle)

int ch;

ch = fgetc(inflle);

whiletch!=EOF)

if (ch != 040)
fputc(toupper(ch),tempfile);

ch - fgetc(inflle);

} /* CONDENSE V

int ISITNUM(m)
struct ms *m;
{

char temp[S80];
int i;

int start;

int finished;

start - 0;

finished = FALSE;
if (m-> m_name[0] >= '0' && m->m_name[0] <= '9')

i- 1;

else

if (m-> m_name[0] — '-' && m-> m_name[0] > = '0' &&
m->m_name[l] <= '9')

i = 2;

start = strlen(m-> m_name);

else

i-0;
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if (i= 0)
m-> m_rcvd = FALSE;

else

I

m-> m_value = (float)strtod(m-> m_name);
if (m->m_value != -1)

m->m_rcvd = TRUE:
strcpy(m-> m_name,' * ");

if (i= 2)
m-> m_value = -(m-> m_value);

else

finished = TRUE;
}

return(finished);

} /* ISITNUM V

ADDQUAD(t)

/* Add the statements needed for execution of the Ouadroot function */
/* 1. Q1(AC,A2,NEGB,BB;A,B,C,2.0) */
/* 1 1.MULTIPLYCAC;A,C) */

/* 12.MULTIPLY(A2;A,2.0) V
/* 13.SUB(NEGB;0.0,B) */

/* 14.SQUARE(BB;B) */

I* 2. Q2(AC4;AC,4.0) */

/* 21.MULTIPLY(AC4;AC,4.0) */

/* 3. Q3(RADSR;BBAC4) V
/* 31.SUB(RADSR;BB.AC4) V
/* 4. Q4(RAD;RADSR) */

/* 41.SQRT(RAD;RADSR) V
/* 5. Q5CR1 1,R12;NEGB,RAD) */

/*51.SUB(R11;NEGB,RAD) V
/* 52.ADD(R12;NEGB,RAD) V
/*6. Q6(R1,R2;R11,R12A2) V
/*61.DIV1DE(R1;R11,A2) V
/* 62.DIVIDE(R2;R12,A2) */

} /* ADDQUAD */

int PARSE(data, start)

char *data;
int start;

{

int ok.;

int finished;

int i,j;

int size;
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char input[80];
char ch;

struct ms *m;
char temp[S80];

size =- strlen(data);

I* The following line causes a bus error and core dump */

/* The program works fine to here. */

strcpy(&t-> t uname, user);

t-> t_nextl ="Xstruct tt *)malloc(sizeof(struct tt));

t-> t_complete = FALSE;
t-> t_onreadylist = FALSE;
ctermid(t-> t_station);
t->t_done = FALSE;
ok = TRUE;

/* Copy the data into the input array */

i=0;
while(!isspace(*data))
input[i++] = *data++;

/* Check for STIMULATION condition V
if (inputfstart] = '[')

start - 1;

t-> t_stim =- (struct en *) malloc (sizeof(struct en));
i - start;

while (input[i] != *>'
II inputfi] != '<'

II

input[i] !=- '-')

++i;

strcpy(t->t_stim->c_name, input, i-start-l);
start i-1;

i - start;

while ((input[i] = '> *
II inputfi] = '<*

II

inputLi]— '=') && i <- 2)
++i;

strcpy(t->t_stim->c_cond, input, i-start-l);
start = i-1;

i - start;

while (input[i] != ']')

++i;

strcpy(temp, input, i-1);

t->t_stim->c_value = (float)strtod(temp);
start = i;
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t-> t_stim-> c_val = 0.0;

t->t_stim->c rcvd = FALSE;

/* Check, for the NAME of the request */

while (input[i] != '(')

4-fi;

if (i > start)

strcpy(t-> t_name, input, i-start-1);
start - i;

)

else

ok. - FALSE;

t->t leaf - TRUE;
if (ok7

if (t-> t_name= "ADD")
t->t_time= 1;

else if (t-> t_name = "SUB")
t->t_time- 1;

else if (t-> t_name = "ADDMATS")
t->t time= 1;

else if Ct-> t_name = "MULTIPLY")
t-> t time = 2;

else if Ct->t_name = "DIVIDE")
t-> t time = 2;

else if (t->t_name = "POWER")
t-> t time = 2;

else if Ct-> t_name = "SQRT")
t->t time = 2;

else if [t-> t_name = "SQUARE")
t->t time = 2;

else if (t-> t_name = "SINE")
t->t time= 5;

else if (t-> t_name — "COS")
t-> t time = 5;

else if Ct-> t_name — "TAN")
t-> t time = 5;

else if [t-> t_name = "NL")
t-> t time = 5;

else if (t-> t_name — "EXP")
t-> t time = 5;

else if (t-> t_name = "IROOT")
t-> t time = 5;

else if [t-> t_name = "QUADROOT")

t-> t_time = 5;

t-> t_leaf = FALSE;
/« ADDQUAD(t); */
/* The above routine will be added later */
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else

t-> t_leaf = FALSE;
t-> t_time - 0;

/* Check the struct ms for the request */

if (ok)

finished = FALSE;
t->t_results = (struct ms *) malloc (sizeof(struct ms));
m = t-> t_results;
while (Ifinished)

i =- start;

j =- start;

while (inputfi] != ',') ++i;
while (inputljj != ';') ++j;

if (i != start)

if (j != start)

if

{

(i<j)

strcpy(m-> m_name, input, i-start-l);
finished = ISITNUM(m);
ok = finished;

start = i;

m-> m_next = (struct ms *)malloc(sizeof(struct ms ));m = m->m next;

}

else

i

finished = TRUE;
strcpy(m-> m_name, input, j-start-1);
finished = ISITNUM(m);
ok = finished;

start = j;

m->m next = NULL;
}

else

{

ok = FALSE;
finished = TRUE;

}

else

if (j = 0)

ok = FALSE;
finished = TRUE;

)

else

{
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finished - TRUE;
strcpy(m-> m_name, input, j-start-l);

start - j;

finished = ISITNUM(m);
ok. - finished;

m-> m_next = NULL;

}/* while V

if (ok.)

finished = FALSE;
t-> t_materials = (struct ms *) malloc (sizeof(struct ms));
m = t->t_materials;
while (Ifinished)

i = start;

j = start;

while (inputfil != ',') ++i;

while (input[j] != ';') ++j;

if (i !- start)

strcpy(m->m_name, input, i-start-l);

finished = ISITNUM(m);
ok = finished;

start = i;

m->m_next (struct ms *) malloc (sizeof(struct ms));
m m-> m next;

}

else

if (j != start)

finished = TRUE;
strcpy(m-> m_name, input, j-start-l);

finished - ISITNUM(m);
ok = finished;

if (m-> m_name = NULL)
m-> m_rcvd = TRUE;

start = j;

m->m next = NULL;
}

else

(

ok = FALSE;
finished - TRUE;

, 1

} /* while not finished */

} /* if ok */
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if (input[start] = '[*)

-H-start;

t-> t_term - (struct en *) malloc (sizeof(struct en));
i = start;

while (inputfi] != '>'
II inputfi] != '<'

II

inputfi] != '-')

++i;

strcpy(t-> t_term-> c_name, input, i-start-l);
start -i-1;
i - start;

while ((input[i] = '>
' II input[i]= '<*

II

inputfi] == '=') && i <= 2)
++i;

strcpy(t-> t_term-> c_cond, input, i-start-l);
start - i-1;

i = start;

while (inputfi] != ']')

++i;

strcpy(temp, input, i-start-l);

t-> t_term-> c_value = (float)strtod(temp);
start - i;

t->t_term->c_val = 0.0;

t->t_term->c_rcvd = FALSE;

if (ok)

i start;

while (!isspace(input[i])) ++i;

if (i !- start)

strcpy(t-> t_comments, input, strlen(input));
else

strqjy(t-> t_comments," ");

if (ok)
for (i - MINREQ; i = MAXREQ; ++i)
t->t_next[i] = NULL;

if (ok)
return(TRUE);

return(FALSE);
} /* PARSE */
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PUTINTREE(p)
struct tt *p;

{

int i,j;

struct tt *q;

j = 0;

do
{

q = p;

p = p-> t_next[t-> t_path[j]];

}++J;

while (j <- MAXREQ && t-> t_path[j] != 0);
q->t_next[t->t_path[j-l]] = t;

t-> t_parent = q;
} /* PUTINTREE */

ADD_TO_TREE()

int i, j;

struct tt *q;

struct ms *m;

j-0;
for (i = 0; i <= MAXPATH; ++i)
if (t-> t_path[i] != 0)

if(j=D
PUTINTREE(block.ed);

else

if (t-> t_leaf

)

q = NODEQ-2, blocked, t->t oath);
if (q != NULL)
PUTINTREE(blocked);

else

WAITO;

else

{

m = t-> t_materials;
t->t_complete = TRUE;
while (m != NULL)

if (!m-> m_rcvd)
t-> t_complete = FALSE;
m = m-> m_next;
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if (t-> t_complete)
PUTINTREE(blocked);

else

WATTO;

/*ADD TO TREE*/

BUILDTREE(infile,outfile,resultfile)

char "input;
struct tt *t;

int i, j, k, start;

int done, notfull;
i-MINREQ;
done - FALSE;
while (Idone)
if (i <= MAXREQ)
if (blocked->t_next[i] = NULL)

done = TRUE;
notfull - TRUE;

}

else

++i;

else

{

notfull = FALSE;
done = TRUE;

}

level = 0;

if (i<= MAXREQ)
path[level] - i;

else

path[level] - 0;

fprintf(resultfile,"ORIGINAL STATEMENTS FROM INPUT FILEO);
TIMER(3);
while (fgets(input,80,inflle) != NULL)

j-0;
start - 0;

t - (struct tt *) malloc (sizeof(struct tt));

fprintf(resultfile
)
input);

TIMER(3);
for (i - 0; i <= MAXPATH; ++i)
t->t_path[i] = 0;

for (i - 0; i < = level; ++i)
t->t_path[i] = path[i];

while (toupper(input[j]) != '.')
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k = 1;

while (k < i + j- 1)

t-> t_path[k] = atol(input[start]);

++k;
-H-start;

}

-H-start;

PARSE(input,start);
if (ok. && notfull)
ADD_TO_TREE();

else

WAITO;

} /* BUILDTREE */

LOADFILEO

char ch;

WHATFILE(fname);
strcpyfres.fname);
strcpy(out,fname);

strcat(fname, ".acm");
inflle - fopen(fname, "r");

if (inflle — NULL)

mvprintw( 10,1 ."Cannot open %s for reading.", fname);
mvprintw(ll,l,"%s does not exist.",fname);
mvprintw( 13,1,"Make sure the file has the extension '.acm'.");

refreshO;

else

{

outflle = fopen(strcat(out, ".ofl"), "w");
tempfile = fopen("temp.acm". V");
resultflle = fopen(strcat(res, '.res ), "w");

CONDENSE(infile, tempfile);

fclose(inflle);
fclose(tempfile);

tempfile = fopen("temp.acm", V);

BUILDTREE(tempfile, outfile, resultfile);
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fprintf(resultflle, "Oinished loading %s into the tree.", fname);
fclose(tempflle);

} /* LOADFILE */
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Abstract

More and more tasks in today's society require quick processing of large

and difficult operations. Most of the computers in use today are based on

the sequential processing techniques used by early electronic computers.

The need for methods and machines which allow true concurrent processing

is great. Computing machines developed for the concurrency required in

future applications should have the capability to execute concurrent pro-

grams. Data flow computers are believed to be one way of achieving a high

level of concurrency in a sensible, easily programmed manner.

This thesis describes an implementation for "A Concurrency Method", a

model based on the principles of data-driven sequencing and the single

assignment of data items. The system is designed for and implemented on a

network of AT&T 3B2 super-microcomputers, which are based on the

AT&T WE-32000 32-bit microprocessor. This implementation provides a

central kernel of the operating system which can be made to take on the

characteristics of a data flow computer by utilizing the message passing

capabilities of AT&T's local area network, 3BNet, to link all of the proces-

sors on the network. A specialized operating system incorporating 3BNet

and the processing power of the 3B2/300 super-microcomputers is needed to

provide a simulation of a naturally concurrent processing system.

This implementation of ACM includes an operating system with a com-

piler for executing ACM statements, screen management routines for the

display of of program execution, and a tree-structure management system.

The system includes the basic arithmetic and trigonometric primitive opera-

tions for mathematical computations. No editor was implemented for this



system since the UNIX operating system, on which the implementation

runs, provides three editing packages.

The system was designed with three goals in mind: (1) to provide a

working simulation of a data flow computer based on the concepts of ACM;

(2) to allow a better understanding of concurrent processing, as related to

distributed systems and parallel processing computers; and (3) to help in

the visualization of other research areas involving the need of concurrent

computation by allowing other students to implement various communica-

tion schemes around this central kernel.


