
Automatic Detection of Hazards

in

Digital Logic Circuits/

by

Neil C. Erdwien

BSEE. Kansas State University, 1984

A THESIS

submitted in partial fulfillment of the

the requirements for the degree

MASTER OF SCIENCE

Electrical Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1989

Approved by:

Major Professor

Lb

Til

EECE

E ~)3 ABSTRACT

c 2

A1120A b01Sfl5

This thesis describes SYMSIM, a symbolic simulator for digital logic circuits that is

capable of detecting all static and dynamic hazards in combinational circuits.

SYMSIM is based on a conventional simulator with a realistic propagation delay

model that provides distinct propagation delays for different gate types as well as

separate rise and fall times. An exhaustive search algorithm drives the simulator to

examine all hazard possibilities. Time values are maintained as symbolic values dur-

ing simulation, hence the name SYMSIM. Hazards are propagated through the

network, allowing hazard detections to be suppressed if the hazard never reaches an

output. These methods could be extended to sequential circuits although the execu-

tion time would suffer.

ACKNOWLEDGMENTS

I must first acknowledge Dr. Don Lenhert for his guiding hand in getting this

project done and his patience in getting it written down.

Secondly, I would like to thank the management of KSU's Computing and Tele-

communications Activities for providing an environment that encourages academic

excellence.

Finally and most importantly, I am in debt to my wife Tiffany, whose sacrifices for

this project are greater than my own.

CONTENTS

Abstract jj

Acknowledgments iii

Chapter I: Introduction I

Definitions 2

Hazard Examples 4

Chapter II: Background 7

Hazard Detection through Simulation 7

Circuit Models 8

Algebraic Detection oC Hazards 10
Related Tools 1

1

Chapter III: SYMSIM Overview 12

Design Goals 13
Circuit Model 13
Search Strategy 14

Chapter IV: The SYMSIM Circuit Model 18

Example oT5-lcvel Simulation 19
Timing Complications 21

Input Signal Alignment 21
Output Signal Alignment 22
Ptopagation Delay 23

Truth Table Construction 23

Chapter V: Exhaustive Search Strategy 32

Overview 32
Examples 33

Example with No Secondary Assumptions 34

Example with Secondary Assumptions 37

Example with Symbolic Time Information 40
General Description 42

Data Structures 42
SIMI 44
FORWARD 45
ASSUME 46
MAIN 49

Chapter VI: Results 50

Timing Analysis .52

Memory Analysis 52

Chapter VII: Recommendations for Future Work 53

Chapter VIII: Summary and Conclusions 55

Appendix A: SYMSIM Programmer's Guide 57

Operating Environment) 57
Creation of 9- Level Simulation Tables 58
MS-DOS Compilation 59
Unix Compilation 59
Expansion of Limitations 60

Appendix B: SYMSIM User's Guide 62

Command Format and Options 62
Propagation Delay File Format 64

F.xample 64
Additional Files 65

The Trivial Circuit Format 66
F.xample 67

Appendix C: Source Code for SYMSIM 69

SYMSIM.C 69
SYMSIM. II 71
ADDINPUT.C 7.S,

ASSUMF.C 76
BITSTRIN.II 79
I
TATAL.C 80

FORWARD.C 82
FUNC2STR.C 83
GETCIRC.C 85

GETOPT.C 90
LONGSIM1.C 92
READTIME.C 101

SEQ2STR.C 104
SNAP.C 105
STUBS.C 107
TABI.E.C 114
TABLB.H 116
TIMB2STR.C 117

TOKEN.C 118
TSIMI.C 121

TTABI.E.C 126
VAE2STR.C 131

SYMS1M Makefile 133
TTAB1.F. Makefile 134
Unix Makefile 135

Appendix D: Sample Trivial Circuit Format Files 136

I1AZARD1.TCF |36
TWOWAY.TCF 136
HAZBLOCK.TCF 137
AND.TCF 137
OR.TCF 137
XOR.TCF H8

Appendix E: Sample Time Information Files 139

TIMEINFO.ALS 139
TIMEINFO.AS 139
T1MEINFO.FS 140
TIMEINFO.O 140

Bihlingraphy 142

FIGURES

1. Hazard taxonomy 3

2. Circuit with a static O-hazard 4

i. Circuit with a dynamic I -hazard 6

4. Example of algebraic method limitation 10

5. Circuit with N inputs and M outputs 14

6. The full search tree 16

7. Hxample of 5-lcvcl calculation 20

8. Six possible time alignments 22

9. Hazard blocked by an AND gate 37

10. Symbolic time alignment example 40

1 1

.

The circuit web 43

12. An element of the circuit web 43

13. Recursive calling tree of SYMS1M 47

14. Stack used to record assumptions and consequences 49

15. 74181 Arithmetic Logic Unit 50

16. Syntax diagram for the Trivial Circuit Format 67

17. XOR gate built from AND, OR, and Inverter primitives 68

TABLES

1. Correspondence between Fantauzzi's 9 levels and SYMSIM's 5

levels 9

2. Propagation delay time adjustment 23

3. Truth table for an Inverter 24

4. Truth table Tor an AND gate 25

I

.

Truth table for an OR gate 27

6. Truth table for an XOR gate 29

7. SYMSIM output for the circuit in Figure 2 36

8. SYMSIM output for the circuit in Figure 9 39

9. Abbreviated SYMSIM output Tor a 74181 51

10. SYMSIM Development Environments 57

II. Commands for 9-lcvel table creation 58

12. Propagation delay Tile for 74AFS logic family 65

13. Trivial Circuit Format representation of Figure 17 68

Chapter I

INTRODUCTION

Since the early days of digital logic circuitry, computers have been used to analyze

and evaluate new designs. This thesis describes a computer program capable or

analyzing a digital logic circuit for a class of design errors.

The program, named SYMSIM for Symbolic Simulator, is capable of detecting all

static and dynamic hazards in a combinational circuit. If this algorithm finds no

faults, the designer is guaranteed that no errors of this class exist in the circuit.

Alternative methods of detecting hazards require test vectors and do not guarantee

complete coverage.

The ability to mechanically detect hazards will both speed up the design process and

result in more robust designs. As in any situation where automatic techniques dis-

place manual methods, the designer's attention can be focused on other aspects,

leading to more creative and complex designs.

This thesis consists of a series of increasingly detailed descriptions of the algorithms

used by SYMSIM. This section explains only the most basic capabilities. "Back-

ground" on page 7 adds additional information by comparing and contrasting to

alternative methods. "SYMSIM Overview" on page 12 is a short overview of SYM-

SIM's methods. "The SYMSIM Circuit Model" on page 18 and "Exhaustive

'•

Search Strategy" on page 32 describe in detail the two unique algorithms used by

SYMSIM. "SYMSIM Programmer's Guide" on page 57 describes some internal

features of SYMSIM while "SYMSIM User's Guide" on page 62 describes

SYMSIM from a user's viewpoint. Finally, the ultimate description is the SYMSIM

source code which is listed in "Source Code for SYMSIM" on page 69.

1.1 Definitions

A hazard is a transient glitch created when a circuit's steady-state behavior differs

from its transient behavior[4,6]. SYMSIM only deals with hazards caused by either

a single signal or the combination of two signals.

Hazards can be classified into static and dynamic hazards. A signal that should

remain static, but in fact has a period of uncertainty, has a static hazard. Static

hazards are caused by the combination of two signals which always have comple-

mentary steady-state values but may have the same value during a transition period

[6).

A signal that should undergo a single transition, but in fact may "bounce" during

the transition has a dynamic hazard. Dynamic hazards are caused by the combina-

tion of a static hazard and two signals which always have the same steady-state val-

ues but may have the same complementary values during a transition period [6].

The static/dynamic classification is further divided by the ending state of the signal.

The resulting taxonomy divides hazards into four types, static 0, static I, dynamic 0,

and dynamic I. This division is depicted in Figure I.

Figure I: Hazard taxonomy.

_^ Sialic 0-tiazard

Sialic l-haznid

nyi.ai.ic 0-liazard

nynaailc t-hazard

The term circuit clement is used synonymously with gate. Both refer to a primitive,

atomic element of the circuit, i.e., the smallest unit of simulation.

Transitions and hazards are known by several names. Typically, transitions are said

to be either 0-1 or 1-0 transitions. However, because neither "0-1" nor "1-0" are

valid identifiers in conventional programming languages, the terms 'up' and 'down'

are used for program input and output. The terms rising mi falling are also used to

refer to 0-1 and 1-0 transitions.

The terms leading and trailing are used to refer to the first and last edge of a tran-

sition, regardless of whether the transition is rising or falling.

-3-

Also, SYMSIM uses stO', stl', 'dyO', and 'dyl' as shorthand for "static

0-hazard" through "dynamic 1 -hazard", respectively.

Conventional notation is used to refer to propagation delay values, i.e., T
rll!

refers

to the time needed for a I.ow-to-IIigh or rising transition, while T
rill

corresponds to

a Iligh-to-Low or falling transition.

1.2 Hazard Examples

Consider the circuit shown in Figure 2, which is the simplest circuit with a static

O-hazard.

AND1
I \ 0111

\

)INV1

Figure 2: Circi it with a static 0-hazard.

The output of this circuit will always be under steady-state conditions. In other

words, because the input signal and its complement are fed to the AND gate, one of

the two will always be 0, and hence the output of (he gate will always be 0.

The situation is different in a transient analysis. Assume that the input has been at

a level long enough for transients to die out, then switches to a 1. The AND gate

will momentarily produce a I output because the top input line will switch to a 1

before the bottom input line switches to a 0. The cause of the timing difference is

the propagation delay of the inverter. The result is a static 0-hazard.

The root cause of this hazard is that the minimum delay for a 0-1 transition along

the top path is less than the maximum delay for a 1-0 transition along the bottom

path. Including the possible delay caused by the transition time of the input signal,

the hazard exists because

.(")

For the opposite transition, a 1-0 transition, no hazard is present in the circuit

shown. Because the top line is assumed to have zero propagation delay, the value

will always reach the AND gate before the inverter can produce a I. However, if

the maximum propagation delay for a 1-0 transition on the top line is greater than

the minimum delay along the bottom path, a hazard results for a 1-0 transition also.

In other words, a hazard exists if

Tn„mJioP) * I'm— C*> > 7Vui.*.<b°"°m >

It is possible to meet both conditions and have a hazard for both transitions,

("hanging the top line in figure 2 to contain two inverters and assuming propaga-

tion delay values for the 74ALS logic family results in both hazards.

Figure 3 shows a circuit with a dynamic I -hazard.

A similar analysis shows the problem in this circuit. When the input is stable at 0,

INVI will produce a 1, NANDI will produce a I, and AND1 will stabilize at 0.

When the input switches to a I, the output of AND1 will switch to a 1 after only

11

Figure

INVl .

NAND1

rv-i
i^°

ANDl

.?: Circuit with a dynamic 1 -hazard.

the propagation delay of ANDl itself. INVl and NAND1 combine to create a stat-

ic 1-hazard, meaning that the output of NANDI will momentarily drop to before

stabilizing at I. This drop will cause ANDl to drop also, then return to I. The net

result is the sequence 0, 1,0, 1 on the output of ANDl, which is a dynamic

I -hazard.

Chapter II

BACKGROUND

2.1 Hazard Detection through Simulation

The conventional approach to rinding hazards is to use a simulator. A human pre-

pares an input sequence, i.e., a sequence of K /V-tuples to provide input to an

/V-input circuit. These values are used to drive a simulator, which determines the

circuit's output values versus time. Typically the designer would have to check the

output sequences for anomalies.

This approach has two major disadvantages. First, a human must determine the

input sequence to be used. In practice, this means that the human must have a

knowledge of where hazards exist in the circuit and what input sequence will trigger

the problem.

Second, like using sample input data to test software, this approach can never prove

the absence of hazards - just the existence of hazards.

SYMSIM can do better. The circuit description itself contains all the information

required to analytically determine the presence or absence of hazards. A human,

given enough patience and accuracy, can fully analyze a circuit. Digital computers,

known for their patience and accuracy, should be able to fully analyze a circuit also.

To do this analysis, a computer program must he able to "think" ahout a digital

logic circuit at a higher level than a simulator.

Nonetheless, the basis for SYMSIM is a detailed simulator with a realistic timing

model. One can view SYMSIM as a simulator with a director that automatically

generates the input test vectors that exercise the entire circuit.

2.2 Circuit Models

The earliest and simplest simulators used two-level logic, i.e., every signal was either

a or a I. Often there was an implicit third state called "unknown". However in

the early simulators this wasn't a state in its own right, it was simply the absence of

any known state.

r;ichelhcrgcr[l] and Yoeli and Rinon[2| developed true three-valued systems,

although this concept dates back to Muller[3]. In such a system the "unknown"

state is a state in its own right, i.e., it propagates through circuit elements just like

O's and 1 's. This system is capable of detecting static hazards under the worst-case

assumption that any gate may have any propagation delay from to infinity.

Fantauza[5] included both static and dynamic hazards as true states, thus generat-

ing the 9-leveI system shown in the left column of Table I . The truth tables for

every circuit element must be elaborated to a 9 by 9 matrix. This system is capable

of detecting both static and dynamic hazards under the same assumptions about

propagation delay as in Hichelberger's system.

Table 1: Correspondence bet

levels.

A'cen Fanta uzzi's 9 levels and SYMSIM's S

9-level sta te Equivalent

n

1 1

0-1 0-1 1

1-0 1 1-0
unk unk
static unk
static 1 1 unk 1

dynamic 1 unk
dynamic 1 unk 1

Both these systems rely on the user to create a sequence of input values used to

exercise the circuit.

SYMSIM uses a combination of the 9-ievcl system and a restricted 5-lcvel system

where each signal is represented by a sequence of three or more values. Both the

first and the last must be either unknown, 0, or 1. The middle state(s) can be either

unknown, 0, 1, 0-1, or 1-0.

The semantics carried in the 9-level can be duplicated using this 5-level sequence.

Table 1 shows the correspondence between SYMSIM's 5-level system and Fantauz-

7.i's 9-levcl system.

The advantage of this 5-level sequence rather than a simpler 9-lcvcl system is that

the 5-levcl sequence allows time information to be added. Two time values are kept

for each sequence - the earliest time that the first transition can occur and the lat-

est time that the second transition can occur. This is discussed in detail in "The

SYMSIM Circuit Model" on page 18.

-9-

2.3 Algebraic Detection of Hazards

There are algebraic tests that can be used to detect hazards with no simulation^].

Like the simulation methods mentioned earlier, these methods assume that any cir-

cuit element may have any time delay from to infinity. They also must take a

worst-case view of network connectivity. In other words, if there is a propagation

path from point A to point 15, the analytic methods will assume that path is ener-

gized, even if intermediate gates block the path in crucial circumstances. Figure 4

shows an example of a circuit that has a hazard according to algebraic methods, but

in fact has no hazard.

11 ANDl.
i X

1
INVl 0-

AND3

12 INV2

i^°

Figure i: Example of algebraic method limitation.

The problems associated with current algebraic methods lead McCluskey to con-

clude that "Algebraic methods are of very little value in analyzing production net-

works."^!

- 10-

2.4 Related Tools

The concepts used in SYMSIM are closely related to those used in test vector gen-

eration and timing verification. Test vector generation is the creation or a suite of

input values that are used to verify the correct fabrication of a circuit. SYMSIM

tests for design errors, while test vectors check for manufacturing errors. However,

both have the characteristic of being limited to using input values to test for errors

within the circuit.

Timing verifiers perform an analysis of the timing of a circuit in order to locate slow

paths. Two varieties of timing verifiers are in common use -- dynamic and static.

Dynamic verifiers are essentially simulators with their attendant need for test vec-

tors. Static verifiers are analogous to the methods described in "Algebraic Detec-

tion of Hazards" on page 10 in that no test vectors are needed but false positive

indications occur. Hybrid verifiers are now appearing that combine characteristics

ofhoth.|9|

II -

Chapter III

SYMSIM OVERVIEW

This chapter presents an overview of the process SYMSIM uses to detect hazards.

Two techniques used by SYMSIM are distinctive and require explanation - the cir-

cuit model used by the simulator and the search strategy used to check for hazards.

The simulator is the foundation of the process and the search strategy generates the

simulator inputs needed to make a complete exploration of potential trouble spots.

To test a preliminary design with SYMSIM, a gate-level description of the circuit

must be created in SYMSIM's input language, called the Trivial Circuit Format (see

"The Trivial Circuit Format" on page 66). The primitive circuit elements in this

description are limited to Inverters, AND, OR, NAND, NOR, and XOR gates,

although each gate can have any number of inputs. Other gate types could be add-

ed, although the program is limited to N input, single output gates. Using the

assumption that each input gate type is associative, the simulator evaluates each

gate by combining the inputs pairwise.

The TCF Tile is used by SYMSIM to create an internal representation of the circuit.

The simulator portion of SYMSIM can accurately model the behavior of the circuit

in response to inputs. The search strategy described below drives the simulator to

test every possible hazard-generating situation.

12

3.1 Design Goals

1. Prove the concept of the use of symbolic time information in the analysis of

circuits.

2. Minimize the input required from the designer, i.e., require no test vectors.

3. Minimize the false-positive information sent to the designer. This involves

reporting neither hazards that are theoretically possible hut do not occur with

actual time values nor hazards that do not propagate to an output of the cir-

cuit.

4. Use an accurate propagation delay model, i.e., one that provides for different

delays for different gate types as well as separate rise and fall times.

3.2 Circuit Model

The simulator is based on the 9-level logic system developed by Fantauzzi[5], Truth

tables for the primitive gate types in the 9-level system are calculated by a separate

program using a 5-level sequence method, which is needed to incorporate time infor-

mation into the simulation. The method and the resulting tables are described in

the next chapter.

The truth tables give the 9-!cvel result of an operation on a pair or 9-level inputs.

Since gates simulated by SYMSIM can have N inputs, the inputs are simulated in

pairs and combined for the overall result.

Propagation delay information is included from an external file to allow the user to

easily change values. The format of the file is described in "Propagation Delay File

Format" on page 64

- 13 -

3.3 Search Strategy

Consider the task of analyzing the circuit in Figure 5 for the presence of hazards.

SYMSIM accomplishes this task by testing all possible transitions and all possible

time alignments on relevant pairs of inputs.

Before the simulation starts, a scan is made of the circuit to determine the static

connectivity. By using fan-out information, rV recursive depth-first traversal! of the

circuit are done, starting with each input in turn. During the traversal for a given

input, each gate visited is on a path from that input. In other words, the given

input partially determines the gate's output, p.ach gate contains a bit string used to

store the connectivity information. As each gate is visited, the bit corresponding to

the input that started this traversal is set. The end result, is that each gate has a

record of which inputs can affect the gate's output. This information is used to

determine which input will be dealt with next during the simulation.

- 14-

After the preliminary travcrsals, the simulation for Figure 5 proceeds as follows.

SYMSIM first assumes that input 1 has a 0-1 transition at time 0. The consequenc-

es of this assumption are determined. In other words, every gate whose value can

lie determined with just this information is simulated.

If gates remain whose output cannot be determined, a second assumption is needed.

The static connectivity information and the results of the simulation so far are used

to determine which input to make an assumption about. In the simulation so far, a

record is kept of "dead ends" or gates whose output could not be determined. This

list is used to determine which input will affect the most dead ends.

An integer counter is kept for each input and initialized to zero, fiach dead end is

examined, and the counter corresponding to every input that can affect the dead end

is incremented. The next assumption is made about the input that is still unknown

and has the highest count. Using this heuristic causes SYMSIM to rapidly make

progress through the circuit.

The gate selected by this heuristic, chosen to be input 2 for this example, it is

assumed to be a 0. I,ike the previous assumption, the consequences of this assump-

tion are explored. A third, fourth, or more assumptions may be needed and are per-

formed by a recursive subroutine. Eventually the process returns to the assumption

that the second input is f). This assumption is changed to a value of I, and the pro-

cess repeats.

When the second recursive exploration ends, the second input is assumed to have a

0-1 transition at a symbolic time 7'. Like the previous assumptions, the conscquenc-

15

es of this are explored, possibly with the aid of additional assumptions. Finally, a

1-0 transition at time 7* is assumed and explored.

The entire search process is a recursive traversal of the search tree shown in Figure

6. Note that there can only be one symbolic time transition active at a time, i.e., in

a path from the root to a leaf node in Figure 6.

Also, the heuristic described above may result in entire subtrees bypassed because

the corresponding input didn't affect the portion of the circuit being examined.

When an assumption is a transition, i.e., either a 0-1 or a 1-0 at time T, simulation

will determine whether any value of T can possibly yield a hazard. A range or pos-

sible T values is kept that is narrowed down to produce specific cases.

16-

A comprehensive test involves assuming both a 0-1 and a 1-0 transition for each

input in turn. This first transition is always assumed to happen at time = with no

loss of generality. All secondary assumptions are handled in a recursive manner

that guarantees complete coverage of the possibilities.

17-

Chapter IV

THE SYMSIM CIRCUIT MODEL

This chapter describes the techniques used by SYMSIM for straight simulation. As

has already been mentioned ("Circuit Models" on page 8), SYMSIM uses a hybrid

of Fantauzzi's 9-level system and a sequence of three values taken from a 5-Icvcl

universe. The 9-lcvel system allows for a concise representation of values while the

5-lcvel division into a sequence of values allows easy calculation and visualization of

simulation results.

SYMSIM uses the best features ofcach system by representing logic values with the

9-lcvel system. The 5-level system is used to calculate the truth tables for the 9-level

system and as a means of visualizing the overall process.

fable 1 showed the mapping from a 9-level value into a 5-level sequence. The

reverse mapping is not as simple, because calculation of a gate's output may result

in a sequence not listed in Table I. There will always be corresponding 9-level val-

ue, however.

The state of every node in the circuit is represented by a 9-level output value and

two time variables, 7', and 7
2 , that specify the earliest and latest times of uncertain-

ty. For the three constant values, 0, 1, and unknown, the time values are irrelevant.

For the other six values, the first time represents the earliest possible first transition

IS

time and the second time represents the latest possible last transition time. For

example, the value 0-1 is guaranteed to he for all time prior to 7",. Likewise, after

T
2
the value is I . For 7, £ / £ 7

2
the value is 0- 1

.

The time values arise Prom propagation delays values that are read from a file. The

time units used in this file determine the units used throughout SYMSIM. Time

values arc kept with one digit of precision after the decimal point. Since time values

arc typically measured in nanoseconds, this results in a precision of 0.1 of a nanose-

cond. However, any units may be used.

4.1 Example of S-level Simulation

Consider the determination of the output of the gate shown in Figure 7(a) in the

absence of any timing delays.

The output of an AND gate with a static 0-hazard and a dynamic I -hazard as

inputs is not intuitively obvious. To clarify the situation, a timing diagram similar

to Figure 7(b) is created. Fach 9-level value on an input is converted to the corre-

sponding 5-level sequence and aligned according to the 7', and 7", values. The cir-

cuit element is evaluated independently for each vertical time slice. For each slice,

the output of the gate is easy to determine because each input is always either a 0,

I, 0-I, l-O, or unknown -- the hazard states have been eliminated by placing the

same information into a sequence of states.

Once the output sequence has been determined, the pattern is analyzed and turned

back into an equivalent 9-level value. In this example, the pattern O-O-Unk-0-0 is

19

Static O-linzm-d _

Dynuric L-taxn-d

(») (b)

Figure 7: Example of."i-level calculation.

translated to a static 0-hazard. This is an example of a 5-level sequence that does

not appear in Table I but nonetheless has an equivalent 9-Ievel value.

In summary, converting 9-level values into 5-level sequences has two advantages.

1. The results of a simulation can be easily calculated and visualized, and

2. Information about the timing of the transitions and hazards can be incorpo-
rated into the simulation.

However, the result calculated with a 5-lcvcl approach can be converted back into a

9-levcl value.

20-

4.2 Timing Complications

There are three complications caused by including time information that were

glossed over in the above example. The input signal alignment, output signal align-

ment, and propagation delay complications are discussed in the following three sec-

tions.

4.2.1 Input Signal Alignment

There are six different alignments possible with two 5-level sequences as shown in

Figure 8. Tor the purposes of illustration in the previous example, an arbitrary

alignment was chosen. Chosing the proper alignment during the actual simulation

is easy because the time values are known. The time alignment of the input signals

is as important as the actual signal values for determining the gate's output.

When symbolic time values are involved, the range or permissible TA values is

restricted to fit the signals into each of Figure 8's six cases in turn. The simulation

proceeds with the more restrictive range.

When an edge of one signal exactly coincides with an edge of the other, the signals

are not considered to overlap. In other words, no zero-width pulse results from

coincident edges.

21 -

1 n 4

I

n2 5

1 1 1 cJ b

Figure 8: Six possible time alignments.

4.2.2 Output Signal Alignment

The second timing complication glossed over is that the output sequence transition

times may come Prom cither input sequence. In the example, the beginning time for

the output sequence comes from the second input (the dynamic 1 -hazard), while the

ending time comes from the first input (the static 0-hazard). In other words, the

output's T
t

comes from the second input's 7',, while the output's 7'
2
comes from the

first input's 7'
2

. The timing of the output sequence is as important to the simulation

as the actual output value.

22-

4.2.3 Propagation Delay

The final timing complication arises from the propagation delay of the circuit ele-

ment being simulated. The real output 7", and 7'
2
would not exactly match any of

the input transitions. Instead, the time of the leading edge of the output signal, 7',,

would be increased by the minimum rise or fall time of the gate being simulated.

Similarly, 7
2
would be increased by the maximum rise or fall time.

Table 2 lists which delay value is added for each of the 9 possible simulation results.

Table 2: Propagation delay time adjustment.

9-level state Added to T. Added to 7"

2

1

0-1 min rise time max rise time
1-0 min fall time max fall time
unknown
static min rise time max fall time
static 1 min fall time max rise time
dynamic min fall time max fall time
dynamic 1 min rise time max rise time

4.3 Truth Table Construction

Although the 5-level sequence is good for understanding the simulation process, the

calculation is time-consuming. Therefore, SYMSIM calculates the result of simulat-

ing a gate with a table lookup using the 9-level values of the inputs. There is no

reason other than speed to use the tables - SYMSIM could use the long process.

-23 -

An auxiliary program, TTABLB, runs through all combinations of input values and

time alignments and creates tables of dimensions 9 by 9 by 6 for 2-input AND, OR,

and XOR gates. These tables specify the output of the given gate for all combina-

tions of the 2 inputs.

Inverters are handled by the much simpler table shown in Table 3. NAND and

NOR gates are handled with the AND and OR tables followed by an inversion.

Table .?:

Input

zero
one
up
down
unk
stO
stl
dyO
dyl

Truth table for an Inverter.

Output

one
zero
down
up
unk
stl
stO
dyl
dyO

The tables created by TTABLE are used to initialize the tables used by SYMS1M at

compile time. In other words, TTABLE'l output is C source code that is incorpo-

rated into SYMSIM. This procedure is described under "Creation or9-I.evcl Simu-

lation Tables" on page 58.

The tables for AND, OR, and XOR gates are shown in Tabic 4 through Table 6,

respectively.

24-

Table 4: Truth table for an AND gate.

/*
YY

1
XXX

/*
/*

/*

/*zero,zero*/ zero, 0,0,
/"zero, one**/ zero, 0,0,
/*zero, up*/ zero, 0,0,
/"zero, down*/ zero , 0,0,
/*zero, unk*/ zero, 0,0,
/*zero, stO*/ zero, 0,0,
/*zero, stl*/ zero, 0,0,
/*zero, dyO*/ zero, 0,0,
/*zero, dyl*/ zero,0,0,
/* one, zero*/ zero, 0,0,
/* one, one*/ one, 0,0,
/* one, up*/ up, 0,0,
/* one, down*/ down, 0,0,
/* one, unk*/ unk, 0,0,
/* one, stO*/ st0,0,0,
/* one, stl*/ stl, 0,0,
/* one, dyO*/ dyO,0,0,
/* one, dyl*/ dyl,0,0,
/* up, zero*/ zero, 0,0,

one*/ up, 1,1,
up*/ up ,1,1,

up, down*/ zero, 0,0,
- unk*/ unk, 0,0,

stO*/ zero, 0,0,
stl*/ up, 1,1,
dyO*/ zero, 0,0,

. . dyl*/ up, 1,1,
/*down,zero*/ zero, 0,0,
/*down, one*/ down, 1,1,
/*down , up*/ stO , ,1

,

/*down,down*/ down,0,0,
/*down, unk*/ unk, 0,0,
/*down, stO*/ st0,0,0,
/*down, stl*/ dyO,0,l,
/*down, dyO*/ dy0,0,0,
/*down, dyl*/ s*0,0,l,
/* unk, zero*/ zero, 0,0,
/* unk, one*/ unk, 0,0,
/* unk, up*/ unk, 0,0,
/* unk, down*/ unk, 0,0,
/* unk, unk*/ unk, 0,0,
/* unk, s*0*/ stO,0,0,
/* unk, s*l*/ unk, 0,0,
/* unk, dyO*/ unk, 0,0,
/* unk, dyl*/ unk, 0,0,
/* s*0,zero*/ zero, 0,0,
/* stO, one*/ st0,l,l,
/* s*0, up*/ s*0,l,l,
/* s*0,down*/ zero, 0,0,
/* stO, unk*/ s*0,l,l,
/* stO, stO*/ zero, 0,0,
/* stO, s*l*/ s*0,l,l,
/* stO, dyO*/ zero, 0,0,
/* s*0, dyl*/ s*0,l,l,
/* stl, zero*/ zero, 0,0,
/* stl, one*/ stl, 1,1,
/* stl, up*/ dyl, 0,1,
/* stl, down*/ down, 0,0,
/* stl, unk*/ unk, 0,0,
/* stl, stO*/ st0,0,0,
/* stl, stl*/ stl, 0,1,
/* stl, dyO*/ dy0,0,0,
/* stl, dyl*/ dyl, 0,1,
/* dy0,zero*/ zero, 0,0,
/* dyO, one*/ dy0,l,l,
/* dyO, up*/ stO, 0,1,
/* dy0,down*/ down, 0,0,
/* dyO, unk*/ unk, 0,0,
/* dyO, stO*/ st0,0,0,
/* dyO, stl*/ dy0,0,l r
/* dyO, dyO*/ dy0,0,0,
/* dyO, dyl*/ st0,0,l,
/* dyl, zero*/ zero, 0,0,
/* dyl, one*/ dyl, 1,1,
/* dyl, up*/ dyl, 1,1,
/* dyl, down*/ zero, 0,0,
/* dyl, unk*/ unk, 0,0,

2
XXX

YY
zero, 0,0,
zero, 0,0,
zero, 0,0,
zero, 0,0,
zero, 0,0,
zero,0 ,0,
zero, 0,0,
zero ,0,0,
zero, 0,0,
zero ,0,0,
one ,0,0,
up , , ,

down ,0,0,
unk ,0,0,
st0,0,0,
stl, 0,0,
dy0,0,0,
dyl, 0,0,

zero, 0,0,
up, 1,1,
up, 1,1,
•10,1,0,
unk ,0,0,
st0,l,0,
dyl, 1,1,
5*0,1,0,
dyl, 1,1,

zero ,0,0,
down, 1,1,
st0,0,l,

down ,0,0,
unk ,0,0,
st0,0,0,
dy0,0,l,
dyO,0,0,
stO, 0,1,

zero, 0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
st0,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,

zero, 0,0,
st0,l,l,
•|«,1,1,
st0,l,0,
st0,l,l,
st0,l,0,
st0,l,l,
st0,l,0,
•to,1,1,

zero, 0,0,
stl, 1,1,
dyl, 0,1,
dy0,0,0,
unk ,0,0,
st0,0,0,
stl, 0,1,
dy0,0,0,
dyl, 0,1,

zero, 0,0,
dy0,l,l,
s*0,0,l,
dy0,0,0,
unk ,0,0,
st0,0,0,
dy0,0,l,
dy0,0,0,
stO, 0,1,

zero, 0,0,
dyl, 1,1,
dyl, 1,1,
•to, i,o,
unk ,0,0,

3
XXX
Y

zero, 0,0

,

zero, 0,0,
zero ,0,0,
zero, 0,0,
zero, 0,0,
zero, 0,0,
zero i 0,0,
zero,0 , 0,
zero, 0,0,
zero, 0,0,
one ,0,0,
up , , ,

down ,0,0,
unk ,0,0,
3*0,0,0,
stl, 0,0,
dy0,0,0,
dyl, 0,0,

zero, 0,0,
up, 1,1,
up , , 1

,

3*0,1,0,
unk ,0,0,
s*0,0,0,
dyl, 1,1,
s*0,l,0,
dyl, 0,1,

zero, 0,0,
down ,1,1,
st0,0,l,

down, 1,0,
unk ,0,0,
s*0,0,0,
dy0,l,l,
dy0,l,0,
s*0, 0,1,

zero, 0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
s*0,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
zero ,0,0,
s*0,l,l,
s*0,0,l,
s*0,l,0,
s*0,l,l,
s*0,0,0,
st0,l,l,
3*0,1,0,
s*0,0,l,

zero, 0,0,
stl, 1,1,
dyl, 0,1,
dy0,l,o,
unk ,0,0,
st0,0,0,
stl, 1,1,
dy0,l,0,
dyl, 0,1,

zero,0 ,0,
dy0,1,1,
3*0,0,1,
dy0,l,0,
unk ,0,0,
s*0,0,0,
dy0,l,l,
dy0,l,0,
3*0,0,1,

zero, 0,0,
dyl, 1,1,
dyl, 0,1,
s*0,l,o,
unk ,0,0,

4
XXX
YY

zero, 0,0,
zero,0,0,
zero, 0,0,
zero, 0,0,
zero, 0,0,
zero, 0,0,
zero, 0,0,
zero, 0,0,
zero, 0,0,
zero, 0,0,
one ,0,0,
up , , ,

down, 0,0,
unk ,0,0,
s*0,0,0,
s*l,0,0,
dy0,0,0,
dyl, 0,0,

zero, 0,0,
up, 1,1,
up , , ,

3*0,1,0,
unk, 0,0,
s*0,0,0,
dyl, 1,0,
s*0,l,0,
dyl, 0,0,

zero, 0,0,
down, 1,1,
s*0,0,l,

down ,1,1,
unk ,0,0,
3*0,0,1,
dy0,l,l,
dyO,1,1,
3*0,0,1,

zero, 0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
s*0,0,0,
unk ,0,0,
unk, 0,0,
unk ,0,0,

zero, 0,0,
3*0,1,1,
5*0,0,1,
3*0,1,1,
s*0,l,l,
3*0,0,1,
«*0,1,1,
3*0,1,1,
st0,0,l,

zero, 0,0,
stl, 1,1,
dyl, 0,0,
dy0,l,0,
unk ,0,0,
s*0,0,0,
3*1,1,0,
dy0,l,0,
dyl, 0,0,

zero ,0,0,
dyo,l,i,
3*0,0,1,
dy0,l,l,
unk ,0,0,
3*0,0,1,
dy0,l,l,
dy0,l,l,
3*0,0,1,

zero, 0,0,
dyl, 1,1,
dyl, 0,0,
5*0,1,0,
unk ,0,0,

XXX
6 *

XXX *
YYYYY *

zero, 0,0, zero, 0,0,
zero ,0,0, zero ,0,0,
zero, 0,0, zero, 0,0,
zero, 0,0, zero, 0,0,
zero, 0,0, zero, 0,0,
zero, 0,0, zero, 0,0,
zero ,0,0, zero ,0,0,
zero, 0,0, zero,0,0,
zero ,0,0, zero ,0,0,
zero ,0,0, zero, , ,

one ,0,0, one ,0,0,
up,0,0,

down ,0,0,
unk ,0,0,
s*0,0,0,
8*1,0,0,
dy0,0,0,
dyl, 0,0,

up, 0,0,
down, 0,0,
unk ,0,0,
s*0,0,0,
s*l,0,0,
dy0,0,0,
dyl, 0,0,

zero ,0,0, zero ,0,6,
up, 1,1,
up ,

3*0,1,0,
unk ,0,0,
8*0,0,0,
dyl, 1,0,
s*0,l,0,
dyl, 0,0,

zero ,0,0, zero ,0,0
down, 1,1, down, 1,1
zero, 0,0,

up, 1,1,
up , 1 , ,

s*0,l,0,
unk ,0,0,
3*0,1,0,
dyl, 1,0,
8*0,1,0,
dyl,l,

down, 1,1
unk ,0,0,

zero,0,0,
down ,1,1,
down ,1,1,
zero, 0,0,
zero, 0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
s*0,0,0,
unk ,0,0,
unk ,0,0
unk ,0,0

s*0,0,l,
down ,0,1,
unk ,0,0,
s*0,0,l,
dy0,0,l,
dy0,0,l,
s*0,0,l,

zero, 0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
stO,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,

zero, 0,0, zero, 6,0,
8*0,1,1, 3*0,1,1,

3*0,1,_,
3*0,1,1,
3*0,1,1,
s*0,l,l,
3*0,1,1,
3*0,1,1,
3*0,1,1,

zero ,0,0, zero ,0,0,
s*l,l,l, s*l,l,l,

zero ,0,0,
3*0,1,1,
3*0,1,1,

zero, 0,0,
3*0,1,1,
3*0,1,1,

zero, j

"

,0,
dyl,1,0,
unk ,0,0,
s*0,0,0,
3*1,1,0,
dy0,l,0,
dyl, 0,0,

dyl,
dy 0,0,0,
unk ,0,0,
3*0,0,0,
stl, 0,0,
dy0,0,0,
dyl, 0,0,

zero ,0,0, zero ,0,0,
dy0,l,l, dy"

'

zero, 0,0
dy0,l,l,
unk ,0,0,

zero, 0,0,
dy0,l,l,
dy0,l,l,

zero, 0,0,
zero, 0,0, zerojo
dyl, 1,1, '

up , , ,

3*0,1,0,
unk ,0,0,

dyl,1,1,
5*0,0,1,
dy0,0,l,
unk ,0,0,
3*1,1,1,
dy0,0,l,
dyO,0,l,
to, 0,1,

dyl, 1,1,
dyl, 1,0,
sto,i,o,
unk ,0,0,

- 25.

/* dyl, stO*/ zero, 0,0,
/« dyl, stl»/ dyl, 1,1,
/* dyl, dyO*/ zero, 0,0,
/* dyl, dyl*/ dyl, 1,1,

•40,1,0,
dyl, 1,1,
•10,1,0,
dyl, 1,1,

510,0.0.
dyl, 1,1,
•10,1,0,

ilO.0.0.
dyl, 1,0,
st0,l,0,
dyl, 0,0,

•{0,0,0, st0,l,0,
dyl, 1,0, dyl, 1,0,
•10,1,0, sl0,],0,
dyl, 0,0, dyl, 1,0

26-

TaWe 7: Truth tabic for an OR gate.

/* i 2 3 4 5 6 */
/* XXX XXX XXX XXX XXX XXX n/
/* X Y YY YY Y YY YY YYYYY */
/*zero zero*/ zero, 0,0 zero, 0,0 zero, 0,0 zero, 0,0 zero, 0,0, zero, 0,0,
/*zero one*/ one ,0,0 one ,0,0 one ,0,0 one ,0,0 one ,0,0, one ,0,0,
/"zero up*/ up , , up , , up , , up , , up , , , up , , ,

/*zero down*/ down ,0,0 down, 0,0 down, 0,0 down ,0,0 down ,0,0, down, 0,0,
/*zero unk*/ unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0, unk ,0,0,
/*zero stO*/ st0,0,0 st0,0,0 st0,0,0 st0,0,0 st0,0,0, st0,0,0,
/Kzaro stl*/ stl, 0,0 stl, 0,0 stl, 0,0 stl, 0,0 stl, 0,0, stl, 0,0,
/"zero dyO*/ dy0,0,0 dy0,0,0 dy0,0,0 dyO f 0,O dy0,0,0, dyO ,0,0,
/*zero dyl*/ dyl, 0,0 dyl, 0,0 dyl, 0,0 dyl, 0,0 dyl, 0,0, dyl, 0,0,
/* one zero*/ one ,0,0 one, 0,0 one ,0,0 one ,0,0 one ,0,0, one ,0,0,
/* one one*/ one ,0,0 one ,0,0 one ,0,0 one ,0,0 one ,0,0, one ,0,0,
/* one up*/ one, 0,0 one, 0,0 one ,0,0 one ,0,0 one ,0,0, one, 0,0,
/* one down*/ one, 0,0 one ,0,0 one, 0,0 one ,0,0 one, 0,0, one ,0,0,
/* one unk*/ one ,0,0 one ,0,0 one, 0,0 one, 0,0 one ,0,0, one ,0,0,
/* one stO*/ one ,0,0 one ,0,0 one ,0,0 one, 0,0 one ,0,0, one ,0,0,
/* one stl*/ one ,0,0 one ,0,0 one, 0,0 one, 0,0 one, 0,0, one ,0,0,
/* one dyO*/ one ,0,0 one ,0,0 one ,0,0 one ,0,0 one ,0,0, one, 0,0,
/* one dyl*/ one ,0,0 one ,0,0 one ,0,0 one ,0,0 one ,0,0, one ,0,0,
/* up zero*/ up, 1,1 up, 1,1 up, 1,1 up, 1,1 up, 1,1, up, 1,1,
/* Up one*/ one, 0,0 one ,0,0 one ,0,0 one ,0,0 one ,0,0, one ,0,0,
/* up up*/ up , , up , , up, 1,0 up, 1,1 up, 1,1, up, 0,1,
/* up down*/ stl, 0,1 stl, 0,1 stl, 0,1 stl, 0,1 one ,0,0, stl, 0,1,
/w up unk*/ unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0, unk ,0,0,
/K up stO*/ dyl, 0,1

stl, 0,0
dyl, 0,1
stl, 0,0

dyl, 1,1
stl, 0,0

dyl, 1,1
stl, 0,1

up, 1,1, dyl, 0,1,
stl, 0,1,/* up stl*/ one ,0,0,

/* Up dyO*/ stl, 0,1 stl, 0,1 stl, 0,1 stl, 0,1 one, 0,0, stl, 0,1,
/* up dyl*/ dyl , , dyl , , dyl, 1,0 dyl, 1,1 up, 1,1, dyl, 0,1,
/*down zero*/ down ,1,1 down ,1,1 down ,1,1 down, 1,1 down ,1 ,1

,

down, 1,1/
/"down one*/ one ,0,0 one, 0,0 one, 0,0 one, 0,0 one ,0,0, one ,0,0,
/*down up*/ one ,0,0 stl, 1,0 stl, 1,0 stl, 1,0 stl, 1,0, stl, 1,0,
/*down down*/ down ,1,1 down,l ,1 down, 0,1 down ,0,0 down, 0,0, down, 1,0,
/*down unk*/ unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0, unk ,0,0,
/*down stO*/ down ,1,1 dy0,l,l

stl, 1,0
dy0,l,l
stl, 0,0

dy0,l,0
stl, 0,0

dy0,l,0,
stl, 0,0,

dyO,l,0,
stl, 1,0,/"down stl*/ one ,0,0

/*down dyO*/ down ,1,1 dy0,l,l
stl, 1,0

dy0,0,l
stl, 1,0

dy0,0,0
stl, 1,0

dy0,0,0,
stl, 1,0,

dy0,l,0,
stl, 1,0,/xdown dyl*/ one ,0,0

/* unk zero*/ unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0, unk ,0,0,
/* unk one*/ one, 0,0 one ,0,0 one ,0,0 one ,0,0 one, 0,0, one ,0,0,
/* unk up*/ unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0, unk ,0,0,
/* unk down*/ unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0, unk ,0,0,
/* unk unk*/ unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0, unk ,0,0,
/* unk stO*/ unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0, unk ,0,0,
/* unk stl*/ stl, 0,0 stl, 0,0 stl, 0,0 stl, 0,0 stl, 0,0, stl, 0,0,
/* unk dyO*/ unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0, unk ,0,0,
/* unk dyl*/ unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0, unk ,0,0,
/* stO zero*/ st0,l,l st0,l,l st0,l,l st0,l,l st0,l,l, st0,l,l,
/* stO one*/ one ,0,0 one ,0,0 one ,0,0 one ,0,0 one, 0,0, one ,0,0,
/* stO up*/ up, 0,0 dyl, 0,0 dyl, 1,0 dyl, 1,0 dyl, 1,0, dyl, 0,0,
/* stO down*/ dy0,0,l lvii.il . 1 dy0,0,l dy0,0,0 down, 0,0, dy0,0,0.
/* stO unk*/ unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0, unk ,0,0,
/* stO stO*/ st0,0,l st0,0,l st0,l,l st0,l,0 st0,l,0, st0,0,0.
/* stO stl*/ stl, 0,0 stl, 0,0 stl, 0,0 stl, 0,0 stl, 0,0, stl, 0,0,
/* stO dyO*/ dyO,0,l dyO , ,

1

dy0,0,l dy0,0,0 dy0,0,0, dy0,0,0,
/* stO dyl*/ dyl, 0,0

stl, 1,1
dyl, 0,0
stl, 1,1

dyl, 1,0
stl, 1,1

dyl, 1,0
stl, 1,1

dyl, 1,0,
stl, 1,1,

dyl, 0,0,
stl, 1,1,/* stl zero*/

/* stl one*/ one, 0,0 one ,0,0 one ,0,0 one ,0,0 one ,0,0, one, 0,0,
/* stl up*/ one, 0,0 stl, 1,0 stl, 1,0 stl, 1,1 stl, 1,1, stl, 1,1,
/* stl down*/ stl, 1,1 stl, 1,1 stl, 0,1 stl, 0,1 one, 0,0, stl ,1,1,
/* stl unk*/ stl, 1,1 stl, 1,1 stl, 1,1 stl, 1,1 stl, 1,1, stl, 1,1,
/* stl stO*/ stl, 1,1 stl, 1,1 stl, 1,1 stl, 1,1 stl, 1,1, stl, 1,1,
/* stl stl*/ one, 0,0 stl, 1,0 stl, 0,0 stl, 0,1 one ,0,0, stl, 1,1,
/* Stl dyO*/ stl, 1,1 stl, 1,1 stl, 0,1 stl, 0,1 one ,0,0, stl, 1,1,
/* stl, dyl*/ one ,0,0 stl, 1,0 stl, 1,0 stl, 1,1 stl, 1,1, stl, 1,1,
/* dyO zero*/ dy0,l,l dy0,l,l dy0,l,l dy0,l,l dy0,l,l, dy0,l,l.
/* dyO one*/ one ,0,0 one ,0,0 one ,0,0 one ,0,0 one ,0,0, one, 0,0,
/* dyO, up*/ one ,0,0 stl, 1,0 stl, 1,0 stl, 1,0 stl, 1,0, stl, 1,0,
/* dyO down*/ dy0,l,l dy0,l,l dyO,0,l dy0,0,0 down, 0,0, dy0,l,0.
/* dyO unk*/ unk ,0,0 unk ,0,0 unk ,0,0 unk, 0,0 unk ,0,0, unk ,0,0,
/* dyO, stO*/ dy0,l,l dy0,l,l

stl, 1,0
dy0,l,l
stl, 0,0

dy0,l,0
stl, 0,0

dy0,l,0,
stl, 0,0,

dy0,l,0,
stl, 1,0,/* dyO, stl*/ one ,0,0

/* dyO, dyO*/ dy0,l,l dy0,l,l
stl, 1,0

dy0,0,l
stl, 1,0

dyQ,0,0
stl, 1,0

dy0,0,0,
stl, 1,0,

dy0,l,0,
stl, 1,0,/* dyO dyl*/ one ,0,0

/* dyl zero*/ dyl, 1,1 dyl, 1,1 dyl, 1,1 dyl, 1,1 dyl, 1,1, dyl, 1,1,
/* dyl, one*/ one ,0,0 one ,0,0 one, 0,0 one ,0,0 one, 0,0, one ,0,0,
/* dyl, up*/ up , , dyl, 0,0

stl, 0,1
dyl, 1,0
stl, 0,1

dyl, 1,1
stl, 0,1

dyl, 1,1, dyl, 0,1,
stl, 0,1,/* dyl, down*/ stl, 0,1 one ,0,0,

/* dyl, unk*/ unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0 unk ,0,0, unk ,0,0,

27-

/» dyl,
/» dyl,
/» dyl,
/» dyl,

stO«/
stl»/
dyO»/
dyl»/

dyl, 0,1,
stl,0,0,
stl,0,l,
dyl, 0,0,

dyl, 0,1,
sU,0,l,
sU,o,i,
dyl, 0,0,

dyl, 1,1,
stl,0,0,
sU,o,i,
dyl, 1,0,

dyl, 1,1,
sll,0,l,
sil,0,l,
dyl, 1,1,

dyl, 1,1,
one ,0,0,
one , , ,

dyl, 1,1,

dyl, 0,1,
sll,0,l,
stl,0,l,
dyl, 0,1

28

Table 6: Truth table for an XOR gate.

/«
/*
/» x
/"zero
/"zero
/"zero
/"zero
/"zero
/"zero
/"zero
/"zero
/"zero
/* one
/* one
/* one
/* one.
/* one
/" one
/» one
/* one
/* one
/* up.

/«
/*
/* up
/* tip

/*down
/*down
/"down
/"down
/"down
/*down
/"down
/"down
/"down
/* unk
/* unk
/* unk
/* unk
/» unk
/* unk
/* unk
/* unk
/" unk
/« stO
/* stO
/» stO
/« stO
/» stO
/« stO
/» stO
/» stO
/« stO

stl
stl

... stl
/» stl
/» stl,
/» stl,
/« stl,
/» stl,
/* stl-
/« dyO
/* dyO
/* dyO
/» dyO
/* dyO
/* dyO
/* dyO
/« dyO
/* dyO
/* dyl
/» dyl
/» dyl
/» dyl,
/» dyl,

/«

zero*/
. ones*/
. up*/
.down"/
, unk"/
. stO"/
. stl"/
, dyOx/
. dyl"/
zero"/

. one"/
up"/

down"/
unk"/
stO"/
stl"/
dyO"/
dyl"/
zero"/

, one"/
, up*/
,down"/
, unk"/
, stO"/
. stl"/
dyO*/
dyl"/
zero"/
one"/

, up"/
i,down*/
, unk"/
, stO"/
, stl"/
, dyO"/
. dyl"/
-zero"/
. one"/
r UP*/
-down"/
. unk*/
. stO"/
, stl*/
i
dyO*/

. dyl*/
iZero*/
. one*/
, up"/
down"/

. unk"/

. stO*/
stl"/
dyO"/
dyl"/

zero*/
one*/
up*/

down*/
unk"/
stO"/
stl*/
dyO*/

, dyl"/
,zero"/
, one"/
i up"/
.down*/
, unk*/
, stO*/
, stl"/
dyO"/
dyl*/

zero*/
. one*/

up*/
down*/
unk*/

1
XXX

VY
zero, 0,0,
one , , ,

up , , ,

down ,0,0,
unk , , ,

st0,0,0,
stl, 0,0,
dy0,0,0,
dyl, 0,0,
one, 0,0,

zero, 0,0,
down , , ,

up , , ,

unk ,0,0,
stl, 0,0,
st0,0,0,
dyl, 0,0,
dy0,0,0,
up, 1,1,

down , 1 , 1

,

st0,0,l,
stl, 0,1,
unk , , ,

dyl, 0,1,
dy0,o,l,
stl, 0,1,
st0,0,l,

down ,1,1,
up, 1,1,
stl, 0,1,
st0,0,l,
unk ,0,0,
dy0,0,l,
dyl, 0,1,
sl0,0,l,
stl, 0,1,
unk ,0,0,
unk ,0,0,
unk , , ,

unk , , ,

unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
st0,l,l,
stl, 1,1,
dyl, 0,1,
dy0,0,l,
unk , , ,

•to, 0,1,
stl, 0,1,
dy0,0,l,
dyl, 0,1,
stl, 1,1,
stO, 1,1,
dyO, 0,1,
dyl, 0,1,
unk ,0,0,
stl, 0,1,
stO, 0,1,
dyl, 0,1,
dy0,0,l,
dy0,l,l,
dyl, 1,1,
stl, 0,1,
•to, 0,1,
unk , , ,

dyO.0,1,
dyl, 0,1,
•to, 0,1,
stl, 0,1,
dyl, 1,1,
dy0,l,l,
>tO, 0,1,
stl, 0,1,
unk ,0,0,

YY
zero, 0,0

,

one , , ,

up, 0,0,
down ,0,0,
unk , , ,

st0,0,0,
stl, 0,0,
dy0,0,0,
dyl, 0,0,
one , , ,

zero, 0,0,
down ,0,0,

up , , ,

unk ,0,0,
stl, 0,0,
st0,0,0,
dyl, 0,0,
dy0,0,0,
up, 1,1,

down ,1,1,
t0,0,1,
stl, 0,1,
unk ,0,0,
dyl, 0,1,
dy0,o,l,
stl, 0,1,
stO, 0,1,

down ,1,1,
up, 1,1,
stl, 0,1,
st0,0,l,
unk ,0,0,
dy0,0,l,
dyl, 0,1,
stO, 0,1,
stl, 0,1,
unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
»t0, 1,1,
stl, 1,1,
dyl, 0,1,
dy0,0,l,
unk ,0,0,
st0,0,l,
stl, 0,1,
dyO.0,1

,

dyl, 0,1,
stl, 1,1,
st0,l,l,
dy0,0,l,
dyl, 0,1,
unk ,0,0,
stl, 0,1,
st0,0,l,
dyl, 0,1,
dy0,0,l,
dy0,l,l,
dyl, 1,1,
stl, 0,1,
•tO, 0,1,
unk ,0,0,
dy0,0,l,
dyl , , 1

,

stO, 0,1,
stl, 0,1,
dyl, 1,1,
dy0,l,l,
•10,0,1,
stl, 0,1,
unk ,0,0,

3
XXX
Y

zero, 0,0,
one , , ,

up , , ,

down, 0,0,
unk ,0,0,
st0,0,0,
stl, 0,0,
dy0,0,0,
dyl, 0,0,
one , , ,

zero, 0,0,
down ,0,0,

up , , ,

unk ,0,0,
stl, 0,0,
•to, 0.0.
dyl, 0,0,
dy0,0,0,
up, 1,1,

down, 1,1,
•to, 1,1,
stl, 1,1,
unk ,0,0,
dyl, 1,1,
dy0,l,l,
stl, 1,1,
•to, 1,1,

down, 1,1,
up, 1,1,

stl, 1,1,
•to, 1,1,
unk , , ,

dy0,l,l,
dyl, 1,1,
•to, 1,1,
stl, 1,1,
unk , , ,

unk , , ,

unk , , ,

unk , , ,

unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
unk , , ,

•to, 1,1,
stl, 1,1,
dyl, 1,1,
dy0,l,l,
unk ,0,0,
stO, 1,1,
stl, 1,1,
dy0,l,l,
dyl, 1,1,
•11,1,1,
stO, 1,1,
dy0,l,l,
dyl, 1,1,
unk ,0,0,
stl, 1,1,
•to, 1,1,
dyl, 1,1,
dy0,l,l,
dy0,l,l,
dyl, 1,1,
stl, 1,1,
stO, 1,1,
unk ,0,0,
dy0,l,l,
dyl, 1,1,
•10,1,1,
stl, 1,1,
dyl, 1,1,
dy0,l,l,
•10,1,1,
stl, 1,1,
unk , , ,

XXX
YY

zero, 0,0,
one , , ,

up , , ,

down, 0,0

,

unk ,0,0,
5*0.0.0,
stl, 0,0,
JvO.0.0,
dyl, 0,0,
one , , ,

zero, 0,0,
down, 0,0,

up, 0,0,
unk ,0,0,
stl, 0,0,
st0,0,0,
dyl, 0,0,
dvO ,0.1),

up, 1,1,
down, 1,1,
•to, 1,0,
stl, 1,0,
unk ,0,0,
dyl, 1,0,
dy0,l,0,
stl, 1,0,
st0,l,0,

down, 1,1,
up, 1,1,

stl, 1,0,
st0,l,0,
unk ,0,0,
dy0,l,0,
dyl, 1,0,
st0,l,0,
stl, 1,0,
unk ,0,0,
unk ,0,0,
unk , , ,

unk, 0,0,
unk ,0,0,
unk , , ,

unk , , ,

unk ,0,0,
unk ,0,0,
stO, 1,1,
stl, 1,1,
dyl, 1,0,
dy0,l,0,
unk ,0,0,
st0,l,0,
stl, 1,0,
dy0,l,0,
dyl, 1,0,
stl, 1,1,
•to, 1,1,
dytl.1,0,
dyl, 1,0,
unk ,0,0,
stl, 1,0,
•to, 1,0,
dyl, 1,0,
dy0,l,0,
dy0,l,l,
dyl, 1,1,
stl, 1,0,
st0,l,0,
unk ,0,0,
dvO.l ,0,
dyl, 1,0,
st0,l,0,
stl, 1,0,
dyl, 1,1,
dy0,l,l,
•to, 1,0,
stl, 1,0,
unk, 0,0,

5
XXX

YY
zero, 0,0,
one ,0,0,
up , , ,

down , , ,

unk, 0,0,
'.1.0,0,0.

stl, 0,0,
dy0,0,0,
dyl, 0,0,
one , , ,

zero, 0,0,
down , , ,

up , , ,

unk ,0,0,
stl, 0,0,
'.'.0,0.0,

dyl, 0,0,
dy0,0,0,
up, 1,1,

down ,1,1,
stO, 1,0,
stl, 1,0,
unk ,0,0,
dyl, 1,0,
dy0,l,0,
stl, 1,0,
•to, 1,0,

down, 1,1,
up, 1,1,

stl, 1,0,
st0,l,0,
unk ,0,0,
flvll.l .0,
dyl, 1,0,
•to, 1,0,
stl, 1,0,
unk ,0,0,
unk ,0,0,
unk , , ,

unk ,0,0,
unk ,0,0,
unk , , ,

unk ,0,0,
unk ,0,0,
unk ,0,0,
st0,l,l,
stl, 1,1,
dyl, 1,0,
dy0,l,0,
unk ,0,0,
stO, 1,0,
stl, 1,0,
dy0,l,0,
dyl, 1,0,
stl, 1,1,
•tO, 1,1,
dy0,l,0,
dyl, 1,0,
unk ,0,0,
stl, 1,0,
•to, 1,0,
dyl, 1,0,
dy0,l,0,
dy0,l,l,
dyl, 1,1,
stl, 1,0,
•to, 1,0,
unk ,0,0,
dvO.J .0,
dyl, 1,0,
st0,l,0,
stl, 1,0,
dyl, 1,1,
dyO,l,l,
st0,l,0,
stl, 1,0,
unk ,0,0,

6 */
XXX */
YYYYY */

zero, 0,0,
one, 0,0,
up , , ,

down ,0,0,
unk ,0,0,
st0,0,0,
'.tl.O.O,
dy0,0,0,
dyl, 0,0,
one ,0,0,

zero, 0,0,
down , , ,

up , , ,

unk , , ,

stl, 0,0,
st0,0,0,
dyl, 0,0,
dy0,0,0,
up, 1,1,

down ,1,1,
st0,0,0,
stl, 0,0,
unk ,0,0,
dyl ,0,0,
dy0,0,0,
stl, 0,0,
st0,0,0,

down, 1,1,
up, 1,1,

stl, 0,0,
stO, 0,0,
unk ,0,0,
dy0,0,0,
dyl, 0,0,
stO, 0,0,
stl, 0,0,
unk , , ,

unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
unk ,0,0,
st0,l,l,
stl, 1,1,
dyl, 0,0,
dy0,0,0,
unk , , ,

st0,0,0,
stl, 0,0,
dy0,0,0,
dyl, 0,0,
stl, 1,1,
•tO, 1,1,
dy0,0,0,
dyl, 0,0,
unk , , ,

stl, 0,0,
•to, 0,0,
dyl, 0,0,
dy0,0,0,
dy0,l,l,
dyl, 1,1,
stl, 0,0,
st0,0,0,
unk ,0,0,
dy0,0,o,
dyl, 0,0,
•to, 0,0,
stl, 0,0,
dyl, 1,1,
dyO.l ,1

,

st0,0,0,
stl, 0,0,
unk ,0,0,

29-

/* dyl,
/« dyl,
/« dyl,
/» dyl,

stOK/
sU»/
dyO«/
dyl»/

dyl, 0,1,
dyO,0,l,
stl,0,l,
st0,O,l,

dyl, 0,1,
dyO,0,l,
stl,0,l,
stO,0,l,

dyl, 1,1,
dyO,l,l,
sll,l,l,
s*0,l,l,

dyl, 1,0,
dyO,l,0,
sll,l,0,
-in, l ,n.

dyl, 1,0,
dyO,l,0,
stl,l,0,
5(0.1 ,0.

dyl, 0,0,
dyO,0,0,
sU,0,0,
stO.0.0

liacli table is indexed hy:

1. The 9-level value on input I, which is the first value listed on each line of the
tables.

2. The 9-level value on input 2, which is the second value listed on each line of
the tables.

3. The time alignment value, which is depicted graphically in the heading of each
tabic. The numbers above each result column correspond to the alignment
numbers listed in Figure 8.

Each element of the array consists of three variables:

1. A 9-level result of the simulation.

2. A logical variable that indicates whether the leading edge of the result is taken
from the first or second input. A 1 indicates the resulting time derives from
the first, or X, input.

3. A logical variable that indicates whether the trailing edge of the result is taken
from the first or second input. A 1 indicates the resulting time derives from
the first, or X, input.

Tabic 4 can be used to determine the output or the example given in Figure 7. Both

the example and the table apply to an AND gate. The inputs to the AND gate are

a static 0-hazard and a dynamic I -hazard; therefore the row that starts with '/*

sto , dyl*/' is the proper row, and the fourth entry on that row corresponds to

the time alignment assumed for the example. The entry 'st 0,0,1' indicates that

the result is a static 0-hazard, where the leading edge comes from the second input

and the trailing edge comes from the first input. This matches the result derived

earlier.

- 30-

I
;antauzzi|5] gives a table for the AND gate which matches the third result column

of Table 4.

The primitive circuit elements of SYMSIM are AMnput gates, and the tables are for

2-input gates. The assumption is made that the operations arc associative, and that

the result of a simulation can be calculated by treating the inputs in pairs.

31

Chapter V

EXHAUSTIVE SEARCH STRATEGY

5.1 Overview

Simply stated, SYMSIM detect hazards by evaluating all relevant combinations of

input values. Each input in turn is assumed to have every potentially troublesome

value. The consequences of this assumption are propagated through the network as

far as possible. Eventually, cither the entire circuit has been evaluated or additional

assumptions are needed to make further progress.

In addition to the steady-state values of and 1, SYMSIM tries combinations of

both rising and falling transitions on the inputs. However, hazards supplied on the

circuit's inputs are not considered because such hazards are considered problems in

the driving circuit.

Secondary assumptions are made with an arbitrary starting time value. In other

words, the time alignment of the second assumption is not fixed with respect to the

first signal. Instead, a variable, TA , is added to both numeric time values, 7", and Tr

The numeric value of TA is not determined until the signal interacts with the first

assumption. The value of T
A

is then restricted to narrow down the simulation to

possible hazard-causing situations.

- 32

This arbitrary time value is the essence orSYMSIM - the "symbolic" of "symbolic

simulator" derives from it.

There are a two important limitations of this method.

First, the execution time of this algorithm may be large, depending on how intercon-

nected the circuit is. This is discussed later under "Timing Analysis" on page 52.

Second, only one arbitrary time value is allowed. In other words, one "fixed" time

and one "floating" time are simulated, but two arbitrary and independent "floating"

values are not. It is perfectly acceptable for the arbitrary time signal to exist in sev-

eral parts of the circuit due to fan-out. However, all the signals depend on the same

value of TA .

The consequence of this restriction is that the algorithm will only detect hazards

caused by a coordinated change on two inputs. If a pattern of changes on three

inputs triggers a hazard, SYMSIM will not detect it. However, such hazards are

considered to be sufficiently obscure to be of little interest.

5.2 Examples

As an introduction to SYMSlM's search strategy, this section presents a series of

three examples that are increasingly complex. The steps SYMSIM takes to discover

the hazards in each circuit are described.

33

5.2.1 Example with No Secondary Assumptions

Consider the simple circuit shown in Figure 2, which has a static 0-hazard when a

falling edge is used as input. This circuit is relatively easy to analyze because it has

only one input.

SYMSIM will detect this potential hazard by trying both potential problem inputs,

i.e., both a 0-1 and a 1-0 transition. There are four nodes in the circuit, II, INV1,

AND1, and Ol; all are initially set to unknown.

The value 0-1 at 7", =0 and f
s
= 1 is assumed for 1 1. The 1 used as the value or 7

2
is

an arbitrary choice or a rise time for the input. The first gate in 1 1 's Tan-out list,

ANDI, is simulated. Unfortunately, it is not possible to determine ANDl's output,

because the output or an AND gate with inputs or 0-1 and unknown is unknown,

irthe output or ANOl had been determined, the simulation would proceed forward

in the circuit to ANDl's Tan-out list. Because oTthis block, nothing forther can be

done on this branch.

The other element attached to II, INV1, is considered next. Fortunately, the out-

put oTINVl can be calculated - an inverter with a 0-1 transition for input has a 1-0

transition for output.

The propagation delay oTINVl must be included also. The input 0-1 transition has

r,-0 and r
2
=l. According to Table 2, the output 1-0 transition must have the

minimum and maximum Tall times added to 7', and 7'
2 , respectively. Assuming pro-

pagation delay values Tor the 74ALS logic family, the time values are modified to

r
>

"°+ 7 ™/.m,„
= <)+ 2= 2 and 7'

2
= I + Trilrm^ 1 + 8 = 9.

-34-

The simulation then proceeds forward to INVl's fan-out, which leads back to

AND!. This time AND1 has a 0-1 and a 1-0 transition as inputs. The time values

are such that the first input's uncertainty zone is completely before the second

input's, which corresponds to the fifth column of the truth table for AND gates.

Table 4.

The table entry on the row labeled '/* up, down*/' in the fifth result column is

'st 0,1,0'. The output of AND 1 is therefore a static 0-hazard, where the output

'/', comes from the first input and T
2
comes from the second input. Remembering to

add in ANDl's propagation delay, the example's times are 7', = 0+ Trulmill = + 4 = 4

and 7
,

2
= 9+r,,

//, m„ = 9+10=I9.

Finally, Ol, the only gate in ANDl's fan-out, is simulated. The result of simulating

an output node is always exactly the node's input, hence the circuit has a static

0-hazard for 4^7^ 19.

The relevant portion ofSYMSIM's output when run on the circuit in Figure 2 is

shown in Table 7. SYMSIM's steps can be traced by comparing to the above

explanation.

Table 7 and those that follow were generated by running SYMSIM with a msglevcl

value of 8, which generates more verbose output than normal. See "Command For-

mat and Options" on page 62 for information on msglevel values.

Logic values output by SYMSIM consist of two parts.

1. A name for the appropriate 9-level state, e.g., 'zero', one', up', 'down',
'st 0', etc., and

2. The 7', and 7'
2
values in square brackets.

-35-

Table 7: SYMSIM output To ' the circuit in Tigurc 2.

Assumpt ion 1

:

Input ga te 11 is set to up [0.0,1 0]
simulating AND gate AND1
. . . result

:

unk
simulating Inverter gate INV1
. . .result : down [2

.

),9.0]
simulating AND gate AND1

*** Error : stO [4.0,19 0] on the output Df gate AND1
Caused by
-- assumption 1: 11 set to up [0.0,1 .0]

. . . result : stO [4.0 19.0]
simulating Output gate 01

*** Error: stO [4.0,19 0] on outpu t line 01
Caused by
-- assumption 1: 11 set to up [0.0,1 0]

. . . result : stO [4.0 19.0]
Done with assumption 1

Assumption 1: Input gate 11 is set to down [0.0 1.0]
simulating AND gate AND1
. . . result

!

unk
simulating Inverter gate INV1
. . . result

:

up [3.0,12.0]
simulating AND gate AND1
. . .result

:

zero
simulating Output ge te 01
. . . result

:

zero
Done with assumption 1

After finishing with the first assumption, SYMSIM proceeds to tost the circuit with

the assumption that II is set to 1-0. Going through the above process determines

that the output of AND I is for all time, so there is no hazard indication.

36-

5.2.2 Example with Secondary Assumptions

Consider the circuit in Figure 9, which consists of the same circuit as in Figure 2

with the output "blocked" by an AND gate.

II
AND1 inv2

INV1

12
•-

AND2

Figure 9: Hazard blocked by an AND gate.

Analysis of this circuit starts the same way as the previous circuit. In other words,

the assumption that II is 0-1 yields a static 0-hazard on the output or ANDI. The

second inverter, INV2, turns this into a static 1 -hazard, which is an input to AND2.

However, simulation of AND2 yields an unknown. The first assumption has been

taken as Tar as possible; another assumption is needed to make further progress.

(Interestingly, INV2 is needed because the output or an AND gate with a static

0-hazard and an unknown as inputs is a static 0-hazard. However, a static 1 -hazard

and an unknown yield an unknown.)

The next assumption is made about the second input, 12. There are four possible

assumed values for 12: 0, 1, 0-1, and 1-0.

37-

The Hist assumption, 0, causes AND2 to always yield a 0, hence is quickly eliminat-

ed.

The second assumption, that 12 is a 1, allows the static 1-hazard through AND2 to

the output Ol. The result is a detected static 1-hazard on the output line Tor

9^7's44. Table 8 shows SYMSIM's output for this analysis.

-38

Table 8: SYMSIM output for the circuit in Figure 9.

Assumption 1: Input gate II is set to up [0.0,1.0]
simulating AND gate AND1
. .

.

result : unk
simulating Inverter gate INV1
...result: down [2.0,9.0]
simulating AND gate AND1

*** Error: stO [4.0,19.0] on the output of gate AND1
Caused by:
-- assumption 1: II set to up [0.0,1.0]

. .

.

result : stO [4.0,19.0]
simulating Inverter gate INV2

*** Error: stl [6.0,30.0] on the output of gate INV2
Caused by:
-- assumption 1: II set to up [0.0,1.0]

. .

.

result : stl [6. ,30 . 0]
simulating AND gate AND2
. .

.

result : unk
Assumption 2: Input gate 12 is set to zero

simulating AND gate AND2
. . . result : zero
simulating Output gate 01
. .

.

result : zero
Done with assumption 2

Assumption 2: Input gate 12 is set to one
simulating AND gate AND2

*** Error: stl [9.0,44.0] on the output of gate AND2
Caused by:
-- assumption 1: II set to up [0.0,1
-- assumption 2: 12 set to one

. .

.

result : stl [9 . ,44 .]

simulating Output gate 01
*** Error: stl [9.0,44.0] on output line

Caused by:
-- assumption 1: II set to up [0.0,1
-- assumption 2: 12 set to one
...result: stl [9.0,44.0]

Done with assumption 2

0]

01

.0]

39-

5.2.3 Example with Symbolic Time Information

This final example incorporates symbolic time information. Although the previous

example, Figure 9, could be used to illustrate the same points, the circuit in Figure

10 illustrates the same points in more general terms.

11

12

Unknown Network

Unknown Network

Figure 10: Symbolic time alignment example.

AND1
01—

•

In the top portion of Figure 10, II, possibly in combination with other inputs, has

created a 0-1 transition for 55*7**71 As part of the analysis, 12 is assumed to

have a 0-1 transition at time T
A . This value has propagated through the network at

the bottom or Figure 10 and becomes 1-0 transition for 7^ + 23 s: 7'^ TA + 33.

These two values are combined in the AND gate, however TA has no value current-

ly. Based on the /', and 7", values of the two signals, one or more of the six time

alignments listed in Figure 8 arc chosen. Next, minimum and maximum values for

TA are chosen such that the output of the AND gate has a hazard, if possible.

-40-

In this example, the width of the first pulse is 72-.55- 17 and the second is

33-23= 10. Because the width of the first input is larger than the second, any of

the first five time alignments are possible. Referring to the '/* up , down*/' line

of Table 4, the first time alignment has a result of 0, while alignments 2-5 have a

result of stO ,1,0'.

For each possible time alignment, a restriction is made on TA and the simulation

proceeds. In this case, the first time alignment has the first input's leading edge

after the second input's trailing edge, which gives a time restriction of 7^ + 33^55 or

7'^ £22. With this restriction, the output or the AND gate is 0, and no hazard is

generated.

The next time alignment has the second input's transition times straddling the first

input's leading edge. This boils down to 7^+23*55 or TA*32 (this keeps the sec-

ond input's leading edge before the first input's leading edge). Also, 7^+33 2 55 or

7"^ :>22 (this keeps the second input's trailing edge after the first input's leading

edge). The net result is the restriction 22<:7^s32 With this restriction, SYMSIM

proceeds to generate the static 0-hazard on the output and moves forward to the

output node.

The third time alignment results in the conditions 7^+23*55 and 7' + 33s 72. The

overall result is that 32 £ TA £ 39.

Because the result in both cases is the same, i.e., a static 0-hazard, these restrictions

can be collapsed into the single condition 22zT
A
<.39. The other time alignments

arc handled similarly and can also be collapsed into the single condition 22<-TA .

-41 -

5.3 General Description

Describing SYMSIM's search strategy in specific cases, as was done in the previous

examples, never shows the complete picture. However, the examples should help

provide a frame work Tor the current section, which describes the procedure in gen-

eral terms.

First, the data structures used in SYMS1M are described. The following four sec-

tions describe four functions or subroutines within SYMSIM that interact and are

important to understanding the search procedure.

5.3.1 Data Structures

When SYMSIM reads the Trivial Circuit Format file that describes the circuit to

test, a network of control blocks referred to as the circuit web is built. Fiach node

of the circuit web represents a single gate or circuit element. The result is a set of

intertwined trees as shown in Figure II. Fach input to the circuit is the root of a

tree that grows from left to right. The nodes on the right edge arc the circuit out-

puts. The intermediate nodes are the Inverter, AND, OR, NAND, NOR, and XOR

gates that comprise the circuit. The links in the web represent the connections

between gates.

The trees rooted at each input arc not disjoint. A gate that is part of the trees cor-

responding to two inputs is affected by both inputs.

42-

Figure 12 shows the data structures needed for a single circuit element. When the

term "pointer to a gate" is used, the pointer actually points to the center box in Fig-

ure 12.

Circuit Element

Name Example: AUDI
Type and

Value ste

Figure 12: An clement of the circuit web.

43

Each node has two types of links associated with it -- an input list and an output

list. The input list is used to find the inputs of a gate from a pointer to the gate.

Each element of the input list contains a pointer to one of the inputs of the gate.

The output list records where the gate's output goes. Each element on the output

list points to a gate on this gate's fan-out.

Note that the input list has an entry for each of N inputs, but the output list repre-

sents a single output with M gates attached to it.

Each linked list contains a variable number if items - a NULL pointer is used to

mark the end of the list.

All of the search procedures follow the output list to traverse the circuit. The input

list could be used to go backwards through the circuit, but this is done only to find

a gate's inputs Tor the purpose of evaluating that gate. In other words, no traversal

is done using the input list.

Because input and output elements are "circuit elements" just like AND and OR

gates, they each have a data structure like Figure 12. For an input node, the input

list has no elements; for an output node, the output list has no elements.

5.3.2 SIM1

The SIMl function is the simplest of the three - it simulates a single gate. SIMl is

passed a pointer to the gate to be simulated. The gate's inputs are retrieved, and

the 9-level tables like Table 4 are consulted to determine the gate's output.

SIMl never calls itself or the other two procedures listed here.

-44-

5.3.3 FORWARD

Like the SI Ml function, FORWARD is passed a pointer to a single gate.

FORWARD calls the SIM1 function to evaluate the indicated gate, and calls itself

to evaluate the gate's children.

In other words, FORWARD performs a recursive depth-first traversal of the circuit

web. FORWARD'S traversal ends when it reaches an output node (which has no

children) or SI Ml fails to determine the output of a gate.

When FORWARD returns from simulating gate G, the consequences of the output

of gate G have been fully explored.

Logic values arc thus propagated forward through the circuit.

In pseudocode, FORWARD is implemented as follows.

Forward(gate) {

result = siml(gate);

push this gate onto the stack

if (result <> unknown) {

for each element attached to gate's output
Forward (attached gate);

}

-45-

5.3.4 ASSUME

The most complex of these three functions is ASSUME, which is passed both a

pointer to a gate and an assumed value. ASSUME is first called from the MAIN

routine. Secondary assumptions are made when ASSUME calls itself.

ASSUME makes the assumption that the indicated gate has the indicated value, and

then fully explores the consequences of the assumption.

After an assumption, the FORWARD procedure is called to find the other gates

that can be determined as a result of the assumption.

When the single assumption is exhausted, ASSUME calls itself recursively to make

secondary assumptions, if needed. The result is a mixture or two recursive depth-

first traversals, one implemented by FORWARD and one by ASSUME.

FORWARD traverses the circuit web shown in Figure 11, and ASSUME traverses

the search tree shown in Figure 6, This structure is depicted in Figure 13.

In pseudocode, ASSUME is implemented as follows.

46-

MAIN

ASSUME

FORWARD

SIM1

Figure 13: Recursive calling tree ofSYMSIM.

47-

Assume (gate , value) {

gate->value = value;
push this gate onto the stack

for each element attached to gate's output
Forward(attached gate);

If (more remains to explore) {

/* determine which input to assume next */
zero the input counter array
for each unknown dead end {

increment the count for each input
that affects this gate

)

Find the unknown input that has the
largest count

Assume(next input, 0);
AssumeCnext input, 1);
if (no symbolic time assumption in effect) {

AssumeCnext input, 0-1);
AssumeCnext input, 1-0);

}

Pop the stack to remove the effects
of this assumption

}

Both ASSUME and FORWARD must keep a record or what assumptions have

been made and the resulting consequences. This is needed in order to remove the

effects of an assumption. To accomplish this, a stack is used as shown in Figure 14.

Both FORWARD and ASSUME push items onto this stack. To remove the conse-

quences or an assumption, items are removed from the top of the stack until the

corresponding ASSUMI: entry is found. The gate corresponding to each stack item

is reset to unknown.

48-

Consequence

Consequence —
Consequence

Consequence
/

Assumption
—

Assumption

Consequence

Consequence
—~—~~

Assumption —* >

Figure 14; Stack used to record assumptions and consequences.

5.3.5 MAIN

The top-most piece of pseudocode hasn't been presented yet. This is the main pro-

gram that calls ASSUME to start the recursive traversal.

In pseudocode:

Main!) {

process options
read the circuit file

for each input {

Assume (input , 0-1);
Assume

(

input , 1-0);
}

49-

Chapter VI

RESULTS

The largest circuit that SYMSIM has been tested on is the 74181 4-bit Arithmetic

Logic Unit shown in Figure 15 obtained from [12].

50

The analysis or this circuit yields a large number of trivial problems caused by join-

ing of two input signals in a single gate. Consider the top gate or the first column

orAND gates in Figure IS, which I have denoted as B3-AND1 in the following dis-

cussion. When S3 is, for example, a rising edge, B3 a 1, and A3 a falling edge, the

result ofB3-ANDl is a static O-hazard. An excerpt orSYMSIMs output for this

case is shown in Tabic 9

Table 9: Abbreviated SYMSIM output for a 74181.

Assumption 1: Input gate S3 is set to up [0.0,1.0]
simulating AND gate BO-andl
. . .result : unk
simulating AND gate Bl-andl
. .

.

result : unk
simulating AND gate B2-andl
. .

.

result : unk
simulating AND gate B3-andl
. .

.

result : unk

Assumption 2: Input gate B3 is set to one

Assumption 3! Input gate A3 is set to up tA+[0. 0,1.0]
simulating AND gate B3-andl
. .

.

result : stO [4.0,11.0]

Such an indication in this case is unavoidable and is not an indication or a real

error. It is, however, an example or a false-positive indication.

51 -

6.1 Timing Analysis

SYMSIM was designed to perform a complete analysis at the expense of execution

time. As such, SYMSlM's execution time can be terrible. For a pathological cir-

cuit with N inputs and P gates, the execution time may be as bad as 0(N2
P)

This is based on the assumption that N initial assumptions may be needed, each of

which causes N~\ secondary assumptions, and the results propagated through P

gates.

However, the realistic time should not be as bad because in a realistic circuit every

gate's output does not depend on every input. As such, it is possible to bypass

assumptions about a given input if that input doesn't affect any of the places that

have unknown values.

6.2 Memory Analysis

SYMSlM's memory use is more tightly bounded. A control block is needed Tor

each circuit element - approximately .12 bytes per gate plus 8 for each input and

output.

Memory is also needed for the stack of remembered assumptions and consequences,

but that is also limited by the number of circuit elements. Each stack element con-

tains a pointer to a gate.

- 52-

Chapter VII

RECOMMENDATIONS FOR FUTURE WORK

The SYMSIM approach to simulation offers hope Tor more highly automated haz-

ard detection. However, much remains to be done before SYMSIM or a program

like it is a standard part of a designer's tools.

The most important and obvious extension is to allow sequential circuits. This

could most easily be done by using the Huffman model to separate the combina-

tional section of the circuit from the memory elements[ll|. The output of each

memory element is treated as an input to the combinational circuit. This should be

a fairly straight-forward extension, although the simulation execution time will suf-

fer because the circuit effectively has more inputs.

A firmer theoretical basis for SYMSIM would give greater confidence in SYMSIM's

results. In other words, being able to prove that SYMSIM's algorithms will detect

all hazards would be a significant addition.

Additional heuristic methods used to speed up SYMSIM would be most welcome.

Using an algebraic method to determine where potential trouble spots are and then

using the full SYMSIM method on only a fraction of the circuit would help consid-

erably. Also, the procedure used to determine whether a hazard can propagate to

an output could be improved by using the D-algorithm from test vector genera-

tion!^.

-53-

SYMSIM's symbolic time concepts could also be applied to the task of timing veri-

fication, a subject that suffers from many of the same problems as hazard detec-

tion^].

Finally, there are several extensions that would be needed Tor a production system,

but are not needed to prove the concept of using symbolic time information.

1. Expansion of the logic value system to include states such as the high impe-

dance state of tri-state logic elements.

2. Provision for switch-level simulation in addition to, or as a replacement for,

the current gate-level simulation.

3. Provision for a mechanism to allow the designer to limit the simulation and its

output. In other words, a way for a designer to specify "fine B will not

change until at least 3 nanoseconds after line A changes", and "Hazards creat-

ed on line C are irrelevant."

4. Provision for input circuits in an industry-standard format. Most likely this

would be implemented by a translator from the standard format into SYM-

SIM's TCF.

5. Addition of the ability to use different propagation delay values for gates with

dilferent numbers of inputs. For example, a real-world S-input AND gate has

different delays than a 2-input AND gate, although SYMSIM's current circuit

model treats them as identical.

54-

Chapter VIII

SUMMARY AND CONCLUSIONS

SYMSIM has met its design goals listed in "Design Goals" on page 13, although a

couple ofunforseen complications arose.

The first goal was to prove the concept of symbolic time calculations during simula-

tion. SYMSIM uses this idea to its advantage and, as a result, can detect all haz-

ards in a circuit.

The second goal was to minimize the required input from the designer. In other

words, require no test vectors, unlike conventional simulation techniques. SYMSIM

doesn't require any input other than the circuit description itself.

The third goal was to minimize unwanted false-positive output. The anticipated

cause of unwanted output, hazards that do not propagate to an output, are handled

by SYMSIM. However, two phenomenon remain to cause unwanted output. First,

most hazards do propagate to an output. In other words, even though SYMSIM

won't report a hazard that doesn't appear on an output, almost all hazards do pro-

pagate to an output. Second, trivial hazards are possible whenever two inputs are

connected to the same gate by simply aligning the input transitions to cause a haz-

ard.

-55-

In summary, the symbolic techniques used in SYMSIM are powerful tools that can

be used to provide the circuit designer with feedback about the design. Additional

work is needed to make SYMSIM both general enough and fast enough for produc-

tion use, although the potential benefits are large.

56-

Appendix A

SYMS1M Programmer's Guide

This section describes some ofSYMSIM's features and details that arc of interest

only to a programmer interested in porting SYMSIM to a new computer or extend-

ing SYMSIM's capabilities.

A.1 Operating Environments

SYMSIM is written entirely in C and was developed using the ANSI standard C

compatible Microsoft C compiler on an MS-DOS machine. However, SYMSIM

was designed to be portable across a wide spectrum of machines, operating systems,

and C compilers. Table 10 shows the environments on which SYMSIM has been

operated.

Tabic 10: SYMSIM Development Environments.

Machine Operating System C Compiler

IBM AT
Sun 3/60
AT&T 3B15

MS-DOS 3.21
SUNOS 4.0.

1

AT&T System V

Microsoft 5 . 1

Standard CC
Standard CC

57-

Although SYMSIM is written in ANSI standard C, two concessions were made to

promote portability.

First, the variable argument list facilities provided by ANSI C are not available in

all the environments listed in Table 10, but the equivalent facilities from ATC Unix

System V arc available. The only function that uses a variable argument list is the

FATAL function that issues terminal error messages.

Second, the symbol 'ANSI' is defined to the C preprocessor and is used in a few

places to generate ANSI-specific code.

A. 2 Creation of 9-Level Simulation Tables

A separate program named TTABLE uses the 5-lcvel sequence logic system to cre-

ate the 9-lcvcl tables used by SYMSIM during simulation. Three tables are used -

one each for the AND, OR, and XOR gates. Each table is created by a separate

invokation of TTABLE and is stored in a separate file. The commands shown in

fable 1 1 create the necessary files, named AND. TBL', OR.TBL', and 'XOR.TBL'.

Tahle II: Commands for 9-lcvel table creation.

TTABLE AND.TCF >AND.TBL
TTABLE OR.TCF >0R.TBL
TTABLE XOR.TCF >X0R.TBL

-58

These tables are included by the C language preprocessor's 'tinclude' mechanism

in the subroutine TSIMI, hence the above commands must be issued before TSIM1

is compiled.

A.3 MS-DOS Compilation

Two makefiles, one for TTABLB and one for SYMSIM, are supplied for use with

the Microsoft MAKE command. The following steps are needed to generate the

executable under MS-DOS.

1. Move all the files to an MS-DOS computer that has the Microsoft C compiler

installed.

2. Create TTABLB with the command MAKE TTABLE'.

3. Issue the commands in Table 11 to generate the 9-level truth tables.

4. Create SYMSIM with the command MAKE SYMSIM'.

Compilers other than the Microsoft Optimizing C compiler may be suitable, how-

ever none have been tested.

A. 4 Unix Compilation

A single makefile is used to create both TTABLE and SYMSIM under Unix. The

following steps are needed to generate the executable under Unix.

I. Move all the files to a Unix computer. Table 10 lists the tested Unix systems,

although others would be suitable.

59

Modify the makefile to indicate either a Berkeley Unix implementation or an

AT&T System V implementation. This involves defining the C preprocessor

symbol BSD' or SYSV" as directed by the comments at the top of the make-

file. If an ANSI compiler is being used, the 'ANSI' symbol must also be

defined.

Create TTABT.Ii, the truth tables, and SYMSIM with the command 'make'.

A.5 Expansion of Limitations

Like any computer program, SYMSIM has some arbitrary limitations that can be

expanded if desired. Primary among these is the limitation on the allowed circuit

elements. If the selection of Inverter, AND, OR, NAND, NOR, and XOR is limit-

ing, it can be expanded. This would be necessary if it is desired to allow different

propagation delays for devices with a different number of inputs, because then a

2-input AND gate must have a different type than a 3-input AND gate.

To make this change, the following pieces of the program must be altered.

1. FUNC2STR must be changed to convert the new device types into strings.

2. STR2FUNC must be changed to convert strings into the new device types.

3. The GTYPE enumerated type must include the new devices.

4. The MAXGTYPnS manifest constant must be increased to allow for more

devices.

5. Time information files and the function that reads them must be altered.

Nothing in the simulation procedures needs to be changed.

60-

There arc other limitations that can be changed by simply altering the correspond-

ing declaration and recompiling.

1. The maximum number of inputs is set to 64 by the manifest constant

MAXINPUTS.

2. The maximum number of outputs is set to 64 by the manifest constant

MAXOUTPUTS.

3. The maximum stack size is set to 1024 by the manifest constant STACKSIZB.

-61 -

Appendix B

SYMSIM User's Guide

B.1 Command Format and Options

SYMSIM has only two options - and they would normally be allowed to default.

The options must precede the circuit file name and must be introduced with a minus

sign ('-'), even in MS-DOS where the normal option-indicating character is a slash

('/'). Blanks can optionally he used to separate the option introducer and the actu-

al value.

The format of the SYMSIM command is:

SYMSIM l-m msglevel] [-t timefile] file

where

-m The '-m' option is followed by an integer that determines how much detail

is output. The default level, 3, causes normal error messages and hazard

detections that reach primary outputs to be printed. Larger numbers cause

more detail to be printed while smaller numbers cause more terse output.

Numbers larger than 6 are only useful when debugging SYMSIM itself.

-62

The following chart lists msglevel' values and the corresponding levels

of output.

Level produces only the title, copyright, and (possibly) error mes-
sages. Oven ha/ard detections are not reported.

3 Level 3 is the default. I lazard detections that reach primary outputs
are displayed.

4 Level 4 lists hazards discovered anywhere in the circuit regardless of
whether they propagate to an output.

6 Level 6 produces a listing of assumptions.

7 Level 7 dumps a description of the input file that can be used to veri-

fy the accuracy of the description of the input circuit. The propaga-
tion delay values are also echoed out.

8 Level 8 produces information about the simulation of each circuit cle-

ment. Each simulation is preceded with the gate type and name and
followed by the result.

9 Level 9 causes information regarding the 5-level sequence used to cal-

culate simulation rcsponscd to be printed. (This is effective for

TTABLE only.)

-t The '-t' option is followed by the name of the file to be used for propaga-

tion delay information. The default is timeinfo', a file that contains

information for the 74ALS series of digital logic. The format of this file is

described in "Propagation Delay File Pormat" on page 64.

file The last parameter on the command line is the file containing the circuit

description. The file must be in Trivial Circuit Format - see "The Trivial

Circuit Format" on page 66.

63

B.2 Propagation Delay File Format

SYMSIM obtains propagation delay information from an external file which can be

customized by the user.

The format of the time information file is very simple. The first line of the file is a

title line, which is printed when the file is read.

On the following lines arc the actual time values separated by white space i.e.,

blanks, tabs, and carriage returns. Like the Trivial Circuit Format, comments can

be included by using a pound sign ('#'), which causes the rest of the line to be

ignored.

There are six circuit element types used by SYMSIM, and each has four time values

associated with it — minimum and maximum times for both falling and rising tran-

sitions. Therefore. 24 time values arc required.

The four time values for each gate must be grouped together in the order TP!liml„,

Tpi.Hmox' Tn<i.mto< anc'

'

^'puijma % ' ne c'ata ^or tnc inverter must be first, followed by

the data Tor the AND, OR, NAND, NOR, and XOR gates in order.

B.2.1 Example

Table 1 2 is the default propagation delay file, which contains data for the 74ALS

logic family obtained from |8|.

64-

Table 12: Propagation delay file for 74ALS logic family.

74AIS TTL prop, delays. Logic Databook , vol. II, Nat. Semi. 1984

ft The firs* line of this file is a title line which is printed
ft when the file is read.

Characters (like these) following a pound sign (#) are ignored.

Six sets of data follow, one for each type of gate used by
SYMSIM. The data must be listed in the order below, i.e.,
Inverter, AND, OR, NAND, NOR, and finally XOR

.

TPLHmin TPLHmax TPHLmin TPHLmax Function IC Number
3.0 11.0 2.0 8.0 # Inverter DM74ALS04
1.0 11.0 3.0 10.0 * AND DM74ALS08
3.0 lt.O 3.0 12.0 * OR DM74ALS32
3.0 11.0 2.0 8.0 # NAND DM71ALS00
3.0 12.0 3.0 10.0 # NOR DM74ALS02

This nex* one is worst-case for the two cases of whether
the other input is high or low.

3.0 17.0 3.0 12.0 * XOR DM74ALS32

The above numbers are for VCC=<i . 5V-5 . 5V , RL = 500 ohms, CL=50 pF

B.2.2 Additional Files

Additional propagation delay information files arc available. The following files are

listed in "Sample Time Information Files" on page 139.

timeinfo.als This file is a duplicate of the default timeinf o' file.

limeinfo.as This file provides information for the Advanced Schottky (AS) family.

timeinfn.ls This file provides information for the l.ow-power Schottky (I.S) fami-

iy-

timeinfo.D The 'timeinf o. 0' file contains all zero propagation times - this is

useful for tracing SYMSIM's actions.

65.

B.3 The Trivial Circuit Format

The Trivial Circuit Format (TCP) is the language used to describe the circuit-to-be-

analyzed to SYMSIM. As its name implies, TCF is a simple format that is not suit-

able for generic circuit description, but is well suited to SYMSIM's needs.

A TCF file consists of a sequence of entries, one per circuit clement. Hach entry

consists of a series of tokens delimited by white space, i.e., blanks, tabs, and carriage

returns. Comments can be included in the file by using a pound sign ('#') - this

makes the rest of the line into a comment. Nothing in TCF is case-sensitive.

The tokens that make up an entry are:

1. The keyword ELEMENT'.

2. A user-specified name for the element. This name is used to specify which ele-

ments connect to which. Names can consist of any number of non-blank
characters.

3. A keyword that indicates the type of clement. The valid choices arc: 'In-

put', Output', Inverter', AND', OR', NAND', NOR , and XOR'.

4. A list of zero or more names that the output of this element is connected to.

Figure 16 gives the syntax diagram for a TCF file.

This simple format has several limitations:

1. The choice of circuit elements is limited, although the selection allows any cir-

cuit to be described.

2. Although each gate type may have any number of inputs, all the inputs are

interchangeable.

3. F.ach circuit element may have only one output, although it may be tied to as

many other devices as desired.

An 'Output' node cannot be used to drive other nodes; similarly, no gate's output

may drive an 'Input' node.

66

~\ /—
-T ELEMENT"W name

y "/H"- J

< name j

—

I'rivial Circuit Format.

B.3.1 Example

The circviit in Figure I7 shows the schematic of an XOR gate built from AND, OR,

and Inverter gates. The corresponding TCF file is shown in Table 13.

67-

Table 13: Trivial Circuit Format representation of Figure 17.

An XOR gate built from ANDs , ORs, and INVERTERS

element 1 1 input
INV2 AND1

element 12 input
INV1 AND2

element INV1
AND1

inverter

element INV2
AND?

inverter

element AND1
OR

and

element AND2
OR

and

element OR or
01

element 01 output

68

Appendix C

Source Code for SYMSIM

C.I SYMSIM.

C

/||ninmi<lta>«.udniM>innnHui>JnnniHnanumni4/
ft */
ft SYMSIM -- check for hazards using symbolic simulation */
/* */
/* This is -the main program for SYMSIM, a symbolic simulator. */
/* SYMSIM reads a gate-level description of a circuit in the */
/* Trivial Circuit Format. A complete hazard check is done by */
/* simulating the circuit for all possible pairs of transitions */
/* on the inputs. Symbolic time calculations are used to test */
ft all possible alignments of the input transitions. */
/* */
/* */
/* Copyright (c) 1988, 1989 K/
ft Neil Erdwien and Kansas State University */
ft All rights reserved. */
/* */

/*==================
(tifdef ANSI
((include <stddef.h>
((include <stdlib.h>
#endif
((include <stdio.h>
((include <math.h>
((include <malloc.h>
((include <string.h>

Standard C include files */

/*==================
((include "symsim.h"

Program-specific include files */

/»====
int
GBI.0K
GBLOK
char
char
int

msglevel

;

*Iptr[MAXINPUTS];
*Optr[MAXINPUTS];
*TimeInf oFilename;
^CircuitFilename;
Acount = 1

;

Global external variables */

-69

int Amax;
int VisitedValue 0;

/*===========— =================== External function declarations */
ftifdef ANSI
extern int getopt(int argc, char **argv, char ^options);
ftendif

/X = ======================= Private function prototypes */
ttifdef ANSI
void ProcessArgs(int argc , char **argv)

;

#endif

void
ProcessArgsCargc , argv)

int argc;
char **argvj

int c;
extern char Xoptarg;
extern int optind, opterr;
int errf lg ;

TimelnfoFilename " "timeinfo";
Amax 999;
msglevel = 3;

while ((c getoptCargc, argv, "m:t:")) != -1)
switch (c) {

case 'm'

:

msglevel = atoi(optarg)

;

break

;

case 't'l
TimelnfoFilename op targ

;

break;
case f ? f

:

errf lg++

;

}

if Cerrflg | | optind >= argc) {

fprintf (stderr

,

"Usage: SYMSIM [-m msglevel] [-t timefilel file\n");
exit(2);

}

CircuitFilename argvToptind]

;

if (optind+1 < argc)
printf ("Extra parameters ignored\n");

70-

mainCargc, argv)

int argc;
char **argv;

int i;

int re;
SEQUENCE seq;

puts("SYMSIM version 1.0");
putsC

"(c) Copyright 1989 Neil Erdwien, Kansas State University\n"

ProcessArgsCargc, argv)

;

ReadTimelnfoCTimelnfoFilename)

;

re = GetCircuitC CircuitFilename, Iptr , Optr);
if Crc != 0)

fatal(" Error reading circuit t Y.s ,n , CircuitFilename) ;

AddlnputlnfoUptr);

if (msg level >= 7

)

Snap(Iptr)

;

seq .tl = 0;

seq .tz = 10
seq tA = 0;

for (i = 0; Iptrli] !=NULL; i++) {

seq.val = up;
AssumeC Iptrt i] , seq);

seq.val = down;
Assume(Iptrt i] , seq);

exit(O);

C.2 SYMSIM.

H

/*-
/*

; = = = = = = = = = !! =„ = !! ,=„ = = 3„ =„„ = = = = = =„ =^ =„„„ = = = = = =„ = = = =)(/

*/
/* SVMSIM -- header file for all SYMSIH programs */
/* */
/* This header file delcares many constants, data types, global */
/* variables, and functions used in SYMSIM. */
/* */
/* This file must be included in every source program for SYMSIM. */
/* */
/* */

-71 -

/* Copyright (c) 1988, 1989 */
'* Neil Erdwien and Kansas State University x/
/* All rights reserved,
/x

*/
*/
*/

CV*..
"""" = " •» Manifest constant definitions */

•define MAXINPUTS 6<i

•define MAXOUTPUTS 6<i

/H
=
ttuc

=
-"Il""

="" =""""" ="" Data Structure Declarations */
/* TIME as the type associated with all time variables X/
•define TIME long
•define INITIAL -1

•define MAXTIME 99999999

/* The VALUE type holds a 9-level logic value. x/
/x Several routines depend on the order of these values. x/
typedef enum {

zero,
one

,

up,
down,
unk

,

stO,
stl,
dyO,
dyl,

} VALUE)

/x A 5-level sequence is held in the SEQUENCE type. x/
typedef struct {

VALUE val;
TIME tl;
TIME t2i
int tA;

} SEQUENCE;

/x The basic circuit elements are determined by the GTYPE type x/
•define MAXGTYPES 9
typedef enum {

input,
output,
inverter

,

and,
or

,

nand,
nor,
xor

,

invalid
} GTYPE;

/x The type BITSTRING is used for the bit string holding static x/
/* connectivity information. 9/
typedef unsigned short BITSTRINGCMAXINPUTS/16

]

;

-72-

/* This is the main data structure used to represent each gate. */

typedef struct gblok {

GTYPE function; /* Type of this circuit element */

char Xname; /* Name of this circuit element */
SEQUENCE seq; /* Current value of this output */

int visited; /* Visited flag for global traversals */
BITSTRING causes; /* Bit mask of input effects */

struct glue {

struct glue *next;
struct gblok *gate;

}

xilist,
Xolist;

> GBLOK;

/x The linked lists used to record input and output information x/
/* are of type GLUE. */

typedef struct glue GLUE;

/*= ========="==========="===="=="== Global external variables x/

extern int Acount;
extern int Amax

;

extern int VisitedValue;
extern GBLOK *Iptr[MAXINPUTS]

;

extern int msglevel;
extern int HaveTAassumption;
extern TIME TAmin, TAmax;

/X The stack is used to record assumptions and the consequences x/
/x resulting. x/
•define STACKSIZE 10Z<S

extern GBLOK XStackl STACKSIZE]

;

extern int StackPtr;
•define push(gate) { Stack t StackPtr++] = gate; \

assert(StackPtr < STACKSIZE); }

tdefine pop (StackPtr > ? Stack [--StackPtr] : NULL)

/*================================ External function declarations x/

(char ^filename, GBLOK XIptrt], GBLOK XOptrtl);
(FILE Xfp);
(GBLOK XIptrU);
(char X);
(VALUE value);
(SEQUENCE sequence);
(VALUE value);
(SEQUENCE sequence);
(GTYPE);

#ifdef ANSI

int GetCircuit
char *GetToken
void Snap
void ReadTimelnf

o

SEQUENCE ValZSeq
VALUE SeqZVal
char *Val2Str
char *Seq2Str
char *Func2Str

73

char
GTYPE
void
GBLOK
void
void
void
void
void

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

*Time2Str (TIME);
Str2Func (char *string);
Addlnputlnfo (GBLOK *Iptrt]);
*AllocGblok (GTYPE function, char *name);
Siml (GBLOK *gate);
Forward (GBLOK *gate);
Assume (GBLOK *gate, SEQUENCE seq);
AssmPrt (void);
fatal (char *, . . .)

;

stublNP
stublNV
stubAND
stubOR
stubNAND
stubNOR
stubXOR

(VALUE inputs[],
(VALUE inputs!],
(VALUE inputs!],
(VALUE inputs!],
(VALUE inputs!],
(VALUE inputs!],
(VALUE inputs!],

int numinputs);
int numinputs);
int numinputs);
int numinputs);
int numinputs)

;

int numinputs)

;

int numinputs)

;

ttelse

int GetCircuitO;
char *GetToken();
void Snap()

;

void ReadTimeInfo(

)

SEQUENCE Val2Seq();
VALUE Seq2Val();
char *Val2Str();
char *Seq2Str();
char *Func2Str();
char *Time2Str();
GTYPE Str2Func();
void AddlnputlnfoO
GBLOK *AllocGblok();
void SimlO;
void Forward() ;

void Assume()

;

void AssmPrt ()

;

void fatalO;

VALUE stublNPO;
VALUE stublNVO;
VALUE stubANDO;
VALUE stubORO;
VALUE stubNANDO;
VALUE stubNORO;
VALUE stubXORO;

ttendif

74-

C.3 ADDINPUT.C

/**===*/
/* */
/* Add Input Info -- determine the static connectivity information */
/* */
/* The Addlnputlnfo procedure is used to determine the static */
/* connectivity information. It performs a recursive depth-first */
/* traversal of the circuit web data struture for each input . */
/* Gates that are visited during the traversal for input I are */
/* dependent on input I . A bit string kept for each gate is used */
/* to record which inputs that gate depends on. */
/* */
/* */
/* Copyright (c) 1988, 1989 */
/* Neil Erdwien and Kansas State University */
/* All rights reserved. */
/x */
/*==*/

/*== ===^=s=:==5:=:=== = = =========s:======== = = Standard C include files */
tifdef ANSI
tinclude <stddef .h>
tinclude <stdlib.h>
tendif
tinclude <stdio . h>
tinclude <malloc .h>
tinclude <string.h>

/x= ====================== ========= program-specific include files */
tinclude "symsim.h"
tinclude "bi tstrin .h"

/*=================================== p rjvate function prototypes */
tifdef ANSI
static void InputTraverse< int bitnum, GBLOK *gate);
tendif

static
void
InputTraverseC bitnum, gate)

int bitnum;
GBLOK *gate;

GLUE *FanoutPtr;

/* The portion of the circuit web rooted at a given input is */
/* not a tree because it may have cycles. The VISITED field */
/* and the global VisitedValue are used to detect and truncate */
/* loops. */
if Cgate->visited != VisitedValue) {

- 75 -

/* This node hasn't been visited yet... */
gate->visited = VisitedValue;

BitSetCgate->causes, bitnum)

;

/* Follow the fan-out information to recurs© down the tree. */
for (FanoutPtr = gate->olist;

FanoutPtr != NULL;
FanoutPtr = FanoutPtr->next) {

InputTraverse(bitnum, FanoutPtr->gate)

;

)

void
Addlnputlnf o(Iptr)

GBLOK KIptrlJj

{

int i

;

/* Perform a recursive depth-first traversal for each input,
for Ci = 0; IptrEi] != NULL; i++) {

VisitedValue++;
InputTraverse(i , IptrliJ);

}

C.4 ASSUME.C

/*==«......=,===„.«„„„„„,„=«„„„„«,„„,,„„,„„ =====»/
/* */
/* assume -- record an assumption about a node value */
/* */
/* This function is called to make an assumption about the output */
/* value of a node. The assumption is recorded and the */
/* simulation proceeds forward with the new information. */
/* */
/* The assumption is recorded so that it can be removed later. */
/* */
/* Assume is called with two arguments -- a pointer to a gate in */
/* the circuit web and a sequence value. The value of the output */
/* of the indicated gate is set to the sequence value. */
/* */
/* Assume implements a recursive depth-first traversal of the */
/* search tree. The initial call to assume is from the main */
/* routine; the subsequent calls are recursive calls from assume */
/* itself. „/
/*
/*

*/
*/

/* Copyright (c) 1988, 1989 */

-76-

/* Neil Erdwien and Kansas State University */
/* All rights reserved. */
/* */

/*====================================== standard C include files */
#ifdef ANSI
ft include <stddef .h>
^include <stdlib.h>
iendif
include <stdio .h>
include < maHoc .h>
ft include < assert .h>

/*=============== ====== =========== program- specific include files */
ftinclude "symsim.h"
ftinclude "bitstrin.h"

/K===================================== Global external variables </
int HaveTAassumption j

TIME TAmin , TAmax

;

void
Assume(gate, seq)

GBLOK *gate;
SEQUENCE seq;

GLUE *FanoutPtr;
int
int
int

Imax , IcountMax

;

IcounttMAXINPUTSl;
SEQUENCE tempseq;

if (msglevel >= 6) {

printf ("Assumption V.ti: 'As gate 'As is set to ^s\n", Acount,
Func2Str(gate- >function) , gate->name, Seq2Str(seq))

;

>

push(gate)

;

Acount++ j

/* Set the gate to the assumed value and move forward

.

gate- > seq = seq

;

if C gate- > seq . val != unk) {

for (FanoutPtr = gate->olist;
FanoutPtr != NULL; FanoutPtr = FanoutPtr->next) {

Forward(FanoutPtr->gate)

;

)

}

77-

/* If we haven't reached the maximum assumption count, we
/* look for an node to make an assumption about. As a
/* heuristic, we go through all the dead-ends that are
/* still unknown, and make a tally of which inputs can
/* affect each dead-end. The assumption is made about the
/* input that affects the most dead-ends.

if (Acount <= Amax) {

*/
»/
*/
*/
*/
*/

for (i = 0; i < MAXINPUTS; i++)
Icount[il = 0;

for (i StackPtr-1; i >= 0; i--) {

gate = StackCi]

;

assert(gate != NULL);
if (gate->seq.val == unk) {

for (j = 0; Iptrtj] != NULL; ;>++) {

if (BitTestCgate->causes, j))
IcountI j]++;

}

}

if (gate->function == input)
break;

/* Find the input that is 'unknown 1 with the largest count. */
I max = -1;
IcountMax = -1;
for (i = 0; Iptr[i] != NULL; i++) {

if CIcountti] > IcountMax S8 Iptr [i] ->seq . val == unk) {
IcountMax = IcounttiJ;
Imax = i;

}

}

if (IcountMax > 0) {

tempseq.tl = 0;
tempseq . t2 = 10;
tempseq.tA = 0;
tempseq. val = zero;
AssumeCIptrtlmax] , tempseq);
tempseq. val = one;
Assumedptrtlmax] , tempseq);
if (HaveTAassumption == 0) {

HaveTAassumption = 1

;

TAmin = 0;
TAmax = MAXTIME;
tempseq. val = up;
tempseq.tA " 1;
AssumeCIptrtlmax], tempseq);
tempseq. val = down;
Assume(Iptr[Imax] , tempseq);
HaveTAassumption 0;

>

78-

)

/* Pop the stack until the previous assumption is found. */
/* Each gate stacked is set back to 'unknown'. »/
while(l) {

gate = pop;
assert(gate != NULL);
gate->seq.val = unk

;

gate->seq.tA = 0;
if (gate->function input)

break

;

}

Acount-- ;

if (msglevel >= 6) {

printfC'Done with assumption Xd\n\n", Acount);

C.5 BITSTRIN.H

/*= =

/*
*/

/* BITSTRING -- set and test bits in a bit string *//X
*/

/* I*i"
l

?
eader file defines macros to aid in the manipulation of */

/* bit strings. A bit string is implemented as an array of */
/* short integers. The macros below can set, reset, and test any */
/* bit in the string. »/

/* *'

/* Copyright (c) 1988, 1989 3/
/* Neil Erdwien and Kansas State University */
/* All rights reserved. »/
'*

*,

define BitsPerShort 16
Manifest constant definitions */

define BitWord(N) ((N) / BitsPerShort)define BitMaskCN) (1 « ((N) % BitsPerShort))define BitSettstring, N) ((string) [BitWord(N)] |= BitHask(N))define Bi tResetCstring
, N) ((string) [BitWord(N)] S= -BitMask(N))define BitTest (string

, N) ((string) [BitWord(N)] S BitMask(N))

79-

C.6 FATALC

/* X/
/* fatal -- issue a fatal error message and abort */
'* */
/x This function is called when a non-recoverable error occurs. */
/x A message is issued to stderr, and the program is aborted. x/
/x

x/
/* This function uses the variable argument facilities available */
/* in AT8T System V's C compiler rather than ANSI C. This was */
/* done bacause the System V facilities are more universal. This x/
/» method has been tested and works on the following platforms: x/
'* x/
/* MS-DOS Mircosoft C version 5 1 */
/* AT8T Unix System V «,
/* SUNOS version <S . „/
'* X/
'*

*/
/X Calling sequence: M /
f *

*//X fataKformat [, argument]...) ; */
/x

x/
/x fatal is called just like printf, i.e., with a format string x/
/» and a vanable arguement list of values to be substituted into x/
/* the message. All of the message editing facilities of printf */
/X are available.
/X

X/
x/

/x The message should be as domain-specific as possible. If a */
/» system run-time error has also occurred, the message from x/
/X perror will be printed after the message passed to fatal. *//x This message usually indicates XWHVX an error ocurred -- your x/
/x message should describe the error in application terminology. x/
/x Your message should not end in a newline. x/
/x

x/
/x For example, to use fatal in a file-opening context: x/

JL */
/* fp - fopen(TimeName, "r"); «/
/x if (fp == NULL) x,
/* fatalO'Error opening time file 'Xs'", TimeName); */

x/
t* If an error does occur, the message printed will be: x/"*

*//X Error opening time file 'whatever': No such file or directory X/
x/

^ \} l
5^er

Y.
Bood style to inc l"de information such as the fact x//x that the "time" file was the one having trouble, as well as x/

/* the actual file name,
/x
/x
/X Copyright Cc) 1988, 1989

Neil Erdwien and Kansas State University x/

*/
x/
x/
«/

/* All rights reserved,
/x x/

x/
=x/

*""««—» Standard C include files x/

-80-

ttifdef ANSI
include <stddef . h>
include <stdlib.h>
#endif
^include <stdio .h>
tin elude <varargs .h>

/* The Unix systems have ERRNO in a separate header file.
ttifndef MSDOS
* include <errno . h>
ttendif

/* = == mm ==;;_=_===-==== program - specific inc i ucie files */
•include "symsim.h"

void
fatal(va_alist)

va_dcl

{

char
va_list
char

*fmt;
arg ptr;
buffer[128]j

fputcCW, stderr);

va_start(arg_ptr)

;

/* The first argument is a character string used as a format x/
/* list like printf's. */
fmt va_arg(arg_ptr, char *)

;

/* Arg_ptr now points at the second (and following) parameters */
/* in a format that can be passed to vsprintf directly. */
vsprintf (buffer, fmt, arg_ptr);
va_end(arg_ptr)

;

// Buffer is now filled with our error message -- print it.
/* If a run-time system error has also occurred, the perror */
/* function is used to print both messages. Otherwise, the */
/* messages is printed directly. */
if (errno)

perror(buffer)

;

else {

fputs(buffer, stderr);
fputcOW, stderr);

}

/* Stop the program rather than return to the caller
exit(l)

;

-81

C.7 FORWARD.C

/x
/x Forward -

/*
/X Forward i

/x is passed
/* is simulated, and if the result of the simulation is any value x/
/* except unknown. Forward is called recursively for every gate x/

»/

propagate logic values forward through the circuit

the basic simulation mechanism of SYMSIM. Forward
pointer to a gate in the circuit web. That gate

*/

/* in the simulated gate's fanout
/x
/x Forward thus performs a recursive depth-first traversal of the x/
/x circuit web. When Forward returns from a call, the result of x/
/x simulating the indicated gate are propagated as fa
/x possible.

whether unknown or not, are pushed
consequences of an assumption can

/x
/x The results of simulation,
/x onto the stack so that the
/x be removed.
/x
/x
/x Copyright (c) 1988, 1989
/* Neil Erdwien and Kansas State University
/* All rights reserved.
/x
/x= = ============= = ==== ==„====== ======= =„ =====

*/
*/
*/
*/
*/
*/
*/
*/
»/
x/
x/
x/

"=X/

/x==================
#ifdef ANSI
•include <stddef.h>
•include <stdlib.h>
ftendif
•include <stdio.h>
•include <math.h>
•include <assert.h>
•include <malloc.h>
•include <string.h>

Standard C include files x/

•include "symsim.h"
•• Program-specific include files x/

/X= = = = ==== = = = ==== = = = = = = = =: = = =

GBLOK XStacktSTACKSIZEl;
int StackPtr Oj

Global external variables x/

void
Forward(gate)

GBLDK Xgate;

{

GLUE XFanoutPtri

82-

if (msglevel >= 8) {

printf (" simulating V.s gate Xs\n", Func2Str(gate->function)

,

gate->name)

;

}

Siml (gate)

;

push(gate)

J

if (msglevel >= 8) {

printf(" ...result: Xs\n" , Seq2Str(gate->seq))

;

/* The results of the simulation are known. Either the output x/
/x is now known (and we can move forward) or the output is x/
/* unknown (and we have encountered a dead end. x/
if (gate->seq.val != unk) {

for (FanoutPtr = gate->olist;
FanoutPtr != NULL;
FanoutPtr FanoutPtr >next) {

/* Check to see if the output of this gate is known. x/
/* If so, this gate has already been simulated and we x/
/* can trim this part of the tree. Otherwise, infinite */
/* loops could result from cyclic circuit webs. x/
if (FanoutPtr->gate->seq. val == unk)

Forward(FanoutPtr->gate)

;

C.8 FUNC2STR.C

/»= =^......^

/* Func2Str — convert a function type into a character string */
/* Str2Func -- convert a character string into a function type */

x/
/x These functions convert between variables of type GTYPE and x/
/* printable character strings meant for human reading. */
'* */
/* For Func2Str, if an invalid GTYPE value is sent in, the string */
/* "[invalid]" is returned. For Str2Func, an unrecognized string */
/* results in the "invalid" GTYPE value being returned. */
/)f

*/
/* Func2Str returns a pointer to the character string */
/* representation and Str2Func returns the actual GTYPE value. */
^* */
/* Func2Str returns the address of an internal static buffer and */
/* hence the value returned must be used before the next call. */
/* This causes problems when printing two values in a single */
/* printf call -- printf calls this function twice and then X/
/x prints the result. The solution is to use separate printf x/

83-

/* calls. v/
/*

% *'
*/

/* Copyright (c) 1988, 1989 */
'* Neil Erdwien and Kansas State University x/
/* All rights reserved. */
/*
/*-_ = = ___-____=____--_-____-___________ *'

^"*"*"*""""*"**",,""""""»»*»""« Standard C include files */
•lfdef ANSI
•include <stddef.h>
•include <stdlib.h>
•endif
•include <stdio.h>
•include <string.h>

/*— = = = --------______-___--_------ p rog -am - Specific inc i U(j- fiies */
•include "symsim.h"

/*"""**»"•' "==«===« === = = -----_-- Private static variables */
static char *names[MAXGTYPES] {

"Input",
"Output",
"Inverter"

,

"AND",
"OR",
"NAND",
"NOR",
"XOR",
"[invalid]"

};

char X

Func2StrCfunction)

GTYPE function;

{

int i

;

i - (int) function; /* Convert the value to a subscript.
/* ...ensure that it is in range...

if d < || i >= MAXGTYPES)
i = MAXGTYPES-1;

*/

return namesti]; /* ...and return the corresponding entry. */

GTYPE
Str2FuncCname)

char Xname;

84-

I

int i

;

for (1 • Oj 1 < MAXGTYPES-1; i++) {

if (stricmp(name , names[i]) == 0) C

return (GTYPE) i;
}

)

return invalid;
)

C.9 GETCIRC.C

/*== = = = = = = = = = = = = * =„„ = = = = = = =„,(/
/* X/
/x GetCircuit -- read a Trivial-Circuit-Format file */
/* */
/x This function reads an input file in Trivial Circuit Format x/
/x and creates a circuit web data structure. x/
/* x/
/x A two pass method is used for convenience. This allows gate x/
/x names to be used before they are defined. x/
/* */
/* The first pass creates a node for each circuit element but x/
/* ignores connection information because a connection may be x/
/X requested to a not-yet-defined gate. X/
/* */
/* The second pass makes the connections between the nodes x/
/* created in pass 1. This is easy because all gates have been */
/x defined. x/
/* */
/x The gate names are managed with a separate table package to x/
/X perform the character-string-name to pointer-to-data-structure X/
/* mapping. x/
/* */
/* Error situations are diagnosed, but the error messages could x/
/* be improved to aid in the analysis of the error. */
/* K/
/* */
/* Copyright (c) 1988, 1989 */
/* Neil Erdwien and Kansas State University */
/* All rights reserved. x/
/* */
/X= = = = * =„ = = = = = = = = = = = = =„ = = = = = = = = =)(/

/x== ="==== = ========== === ===== ========== Standard C include files x/
#ifdef ANSI
^include <stddef.h>
^include <stdlib.h>
#endif
(include <stdio.h>
ttinclude <malloc.h>
iinclude <string.h>

- 8.5-

/*- -- :~" ===— = ==== = = Program-specific include files */
•include "symsim.h"
•include "table. h"

{*" ="7";" ="-=======:"===="====== Private function prototypes */
ffifdef ANSI
static long GetTPassl (FILE Kfp, TABLE xtptr,

GBLOK *Iptr[], GBLOK *0ptr[]);
static long GetTPassZCFILE *fp, TABLE *tptr);
ttendif

static
long
GetTPassKfp, tptr, Iptr, Optr)

FILE *fp;
TABLE Ktptr;
GBLOK *Iptr[];
GBLOK *Optr[J

;

(

long count 0;
char *token;
GBLOK *gate;
int result;
int InputCounter = 0;
int OutputCounter = 0;

token = GetToken(fp);
while (stricmp("ELEMENT", token) 0) {

token GetToken(fp); /* Read the name »/
if (feof(fp))

break

;

gate (GBLOK *) malloc(sizeof (GBLOK))

;

if (gate==NULL)
fatalCEr-ror allocating a GBLOK for element •Xs'", token);

gate->seq. val = unk

;

gate->seq.tl = 0;
gate->seq.tZ 0;
gate->seq.tA • 0;
gate->visited 0;
gate->causes[0] = 0x0000;
gate->causestll = 0x0000;
gate->causes[2] 0x0000;
gate->causes[3] 0x0000;
gate->olist NULL;
gate->ilist NULL;

gate->name = strdup(token)

;

result TableAdd(tptr, gate->name, gate);
if (result)

fatalC'Duplicate name ''/.s' in circuit file", gate->name);

86-

token GetToken(fp)

;

/* Read the element type */
if (feof(fp))

break

;

gate->function = Str2Func(token)

;

if (gate->function == invalid)
fatalO'Unknown function type '/is 1 ", token);

if (gate->function input) {

Iptr[InputCounter++] = gate;
}

if (gate->function output) £

Optr[OutputCounter++] gate;
)

count++

;

/* Skip all the connection information */
while (1) {

token = GetToken(fp)

;

if (feof(fp) || stricmpC'ELEMENT", token)"0)
break

;

)

if Ufeof(fp)) {

fatal("Syntax error");
)

return count;

static
long
GetTPassZ(fp, tptr)

FILE *fp;
TABLE xtptr;

long count = 0;
char *token;
GBLOK Xgate;
GBLOK *gZ;
GLUE *glueptr;

token GetToken(fp)

;

while (stricmpC'ELEMENT", token) •« 0) {

token GetToken(fp)

;

/K Read the name »/
gate (GBLOK *) TableLookup(tptr , token);
if (gate == NULL)

fatalC'Circuit element "As' is not defined", token);
token GetToken(fp); /* Read the element type */

while (1) {

token GetToken(fp);

87-

if (feof(fp) II stricmpCELEMENT", token)==0)
break

;

gZ (GBLOK *) TableLookup(tptr , token);
if (gZ • NULL)

fatal("Circuit element Xs* is not defined", token);

/* Tie the output of 'gate' to the input of 'gZ'. */
glueptr = (GLUE *) malloctsizeof (GLUE))

;

if (glueptr •• NULL)
fatalC'Error allocating GLUE");

glueptr->next = gate->olist;
gate->olist = glueptr;
glueptr->gate = gZ;

/* Tie the input of 'gZ' to the output of 'gate'. */
glueptr (GLUE *) malloc(sizeof (GLUE))

;

if (glueptr NULL)
fatal("Error allocating GLUE");

glueptr->next = gZ->ilist;
gZ->ilist i glueptr;
glueptr->gate = gate;

count++

;

}

if (!feof(fp)> {

fatalC'Syntax error");
)

return count;

int
GetCircuit(f ilename, Iptr, Optr)

char Rfilename;
GBLOK *Iptr[J;
GBLOK XOptrtl;

{

FILE xfp;
TABLE Ktptr;
long count;
int i

;

fp = fopen(filename , "r");
if (fp == NULL) {

fatalC'Error opening file ,%»,B , filename);
}

tptr TableCreateO;

88-

for (i = 0; i < MAXINPUTS; i++) {

Iptrli] NULL;
}

for (i 0; i < MAXOUTPUTS; i++) {

Optrti] NULL;
}

count • GetTPassKfp, tptr, Iptr, Optr);
if (msglevel >= 2)

printfC y.\d circuit elements createdW, count);

rewindCfp) ;

count GetTPass2(fp, tptr);
if (msglevel > 2)

printfC '/.Id connections created\n\n" , count);

TableFreeC tptr)

;

fclose(fp);

return 0;

/* AT8T's Unix System V doesn't include a case-insignificant */
/* string compare function. The following code implements one. */

ttifdef SYSV

ftinclude <ctype.h>

int stricmpCa, b)

char *a, *b;

{

while (*a 88 *b) {

if Ctolower(sca) > tolower(*b)

)

return 1

;

if (tolower(*a) < tolower(*b))
return -1

;

a++;
b++;

}

if (*a)
return 1

;

if (xb)
return -1

;

return 0;

89-

ttendif

C.10 GETOPT.C

===_=_=*/
x/

/* getopt -- standard Unix System V command line option parsing */
x/

/x This function is my version of the getopt function that is */
/* standard on many Unix systems, particularly ATST's System V. */'*

x/
/x See the Unix documentation for details on how to use this *//X function. „.
'*

*/
/* Th IS function is designed for MS-DOS use. This function is */
/* not needed on most Unix systems because they supply a version X/
/* of getopt. „.
'* »/
/* This version of getopt is based on the version placed in the */
/* public domain by AT8T at the 1985 UNIFORUM conference. The *//x original is available in volume 3 of the comp . sources. Unix *//x newsgroup. -,.

'*
*/

/* The following changes have been made: */
'" x/
ft 1. The use of a literal 2 for stderr in the write call */
ft has been replaced by the use of fputs and fputc . *//* 2. Tests for string comparisons returning NULL now test for */

/* 3. The getopt function itself is now declared with x/
/* an ANSI C prototype. K/
ft 'i General clean-up and commenting. */

/* *'
*/

/* Copyright (c) 1988, 1989 x//¥ Neil Erdwien and Kansas State University *//M All rights reserved. *./
'*

*//X- =---=_- -___________---------_______________________

»*~~T
=
_!~

="7j7 = =""" = =~" ="-"- ="- = = Standard C include files x/•include <stdio.h>
•include <strings.h>

/3f_ = — = =
. ,

*"
.

~~ _•_:______ Global external variables x/
int opterr =1; /* If set to no messages will be printed */
int optind lj /* Index to the string being processed x/int optopt; /* Option character being processed x/char Xoptarg; /* Pointer to the option argument X/

-define ERR(s, c) if(opterr){\
fputs(argv[0] , stderr);\
fputsCs , stderr) ;\

90-

fputcCc , stderr);\
fputc('\n* , stderr);}

int
getopttint argc, char **argv, char *opts)

static int sp = 1 ; /* Index into the string being processed */
register int cj /* Option character being processed */
register char *cp; /* Pointer to the match within Xopts */

if (sp 1) {

/* This is the start of a new option string */
/* If we've done all the strings. . . */

if (optind >« argc I I

/* ...or it doesn't start with '-'...*/
argv[optindj[0] != '-'

|

|

/* ...or it is only 1 char long... x/
argv[optind][l] == '\0')

/* then return end-of -options value. */
return EOF;

/* Check for an explicit "--" to indicate end-of -options. */
if (strcmp(argvtoptind] ,

"--") «• ()) {

/* Yes, "--" was found. */
/* Skip this option and return end-of-opt */
optind++;
return EOF;

}

/* Get the next option letter jt/
optopt • c = argvloptindllsp]

;

if (c ** '' II /* If the character is an ','... */
/* ...or isn't in the option str. */

(cp=strchr(opts, c)) == 0) {

/* ...then report an error. */
ERR(": illegal option -- ", c);
if (argvloptind] [++sp] == '\0') {

optind++;
sp 1;

}

return ' ?
'

;

}

/* Check to see if this option needs an argument */
if (*++cp "':'){

/* Yes, an argument is needed */

/* If there is something left in this string, assume it is */
/* the argument for this option. */
if CargvCoptind] [sp+11 1= '\0')

optarg = Sargv[optind++l [sp+1]

;

else if (++optind >= argc) {

91

/* Otherwise use the next string. */
ERR(": option requires an argument -- ", c);
sp • lj
return ' ?

f
;

} else
optarg - argv[optind++] ;

sp 1;

} else {

/* No argument is needed for this option */

/* If there is nothing left, skip to the next string. */
if (argv[optindJt++sp] == '\0") {

sp • 1;

optind++;
}

optarg = NULL; /* Emphasize there is no arg */

return c;

C.11 LONGSIM1.C

/*=

. */
/* Siml - simulate a single logic element »/

/* This function takes a single argument, a pointer to the GBLOK */
/* representing the gate to be simulated. The input values to */
/* the gate are found by traversing the circuit web. x/
/*

*/
/* If any outputs of the circuit element can be determined, the */
/* values in the circuit web are updated */
'*

*/
/* There are two files that both contain functions named Siml. */
/* This file, L0NGSIM1, uses the 5-level sequence to calculate */
/* the result. This version of Siml is used by TTABLE to */
« Ca

i
c
"i

ate the tables. SYMSIM uses the tables thus created and */
/* a different version of Siml. „,
'*

*/
f* At one time, L0NGSIM1 and TSIM1 were interchangeable by simply */
/* linking one or the other. TSIM1 has since been enhanced and */
/* must be used by SYMSIM. Conversely, TTABLE must use L0NGSIM1. */

/* *'

/* Copyright (c) 1988, 1989 x/
Neil Erdwien and Kansas State University *//* All rights reserved

/* */
*/

=*/

'•""—"- Standard C include files */

92-

#ifdef ANSI
((include <stddef.h>
((include <stdlib.h>
•endif
•include <stdio.h>
•include <math.h>
((include <assert.h>
((include <malloc.h>
•include <string.h>

/* Unix doesn't define size_1
•ifndef MSDOS
typedef unsigned int size_t;
((endif

«/

•include "symsim.h"
Program-specific include files */

«"u«ve«=uTe"r"°r^""""^
•»» Manifest constant definitions */

/* MAXfcVENTS is the maximum number of events per gate. It should */
/* be set to at least <i*(number of inputs). Because this is one */
f* of the most-often executed parts, no out-of-bounds checking is */
/* performed. The number used as the number of inputs is large */
/* to compensate. x ,

•define MAXEVENTS (<i*MAXINPUTS)

Global external variables */
/*»...«»....».,..„:,„,..,,,.„.„..
extern TIME tPLHmin[MAXGTYPES]
extern TIME tPLHmaxIMAXGTYPES]
extern TIME tPHLmin[MAXGTYPES]
extern TIME tPHLmax[MAXGTYPES]

•ifdef ANSI
VALUE (*stubs[]) (VALUE inputs!], int numinputs);
•else
VALUE <*stubstl) t);
•endif

/*=

typedef struct event {

int gate;
TIME time;
VALUE val;

) EVENT;

Private static variables x/

EVENT
int

eventtMAXEVENTS];
numevents

;

VALUE inputsIMAXINPUTSl

;

int numinputs;
SEQUENCE OeventstMAXEVENTS];
int numout;

93-

Private function prototypes x/
Kifdef ANSI
static void CollectInputEvents(GBLOK Xgate);
static int timecompareCEVENT Xa , EVENT Xb);
static SEQUENCE CollapseSequenceCSEQUENCE Oeventst

] , int numout);
static SEQUENCE AdjustTimeC SEQUENCE seq , GTYPE function);
ftendif

/*
/x CollectlnputEvents
/*
/* This function examines each input to the indicated gate. Each
/* 9-level value is turned into a sequence of "events" or 5-level
/* values tagged with a time value.
/x
/»= = = = = =: = = =„ = =" = =« = = = = = = = = = = = = = = =: = = = = = = = = = =„=,-„„-„„„„__

static
void
Col lee tlnputEventst gate)

create events based on a gate f s inputs
*/
*/
*/
*/
*/
*/
*/
*/

GBLOK Xgate;

{

GLUE Xpi

;

numevents 0;
numinputs = 0;
for (pi = gate->ilist; pi != NULL; pi = pi->next) {

numinputstt;

switch(pi->gate->seq.val) {

case zero:
case one

:

eventlnumevents] .gate numinputs;
eventlnumevents] . time = INITIAL;
event[numevents] .val • pi->gate~>seq . val

;

numevents+t;
break

;

case up:
eventlnumevents] .gate = numinputs;
eventlnumevents] .time = INITIAL;
eventlnumevents] .val = zero;
numevents++

;

eventlnumevents] .gate = numinputs;
eventlnumevents] .time = pi->gate->seq . tl

;

eventlnumevents] .val = up;
numevents++;
eventlnumevents] .gate = numinputs;
eventlnumevents]

. time = pi->gate->seq . t2;
eventlnumevents] .val = one;
numevents++

;

break

;

-94-

case down:
eventlnumevents] . time
eventlnumevents] .gate
eventlnumevents] .val
numevents++;
eventlnumevents] .time
eventlnumevents] .gate
eventlnumevents] .val
numeventsHj
eventlnumevents] . time
eventlnumevents] .gate
eventlnumevents] . val
numevents++

;

break

;

INITIAL;
numinputs;
one;

pi->gate->seq. tl

;

numinputs;
down

;

pi->gate->seq. t2;
numinputs;
zero;

case stO

:

eventlnumevents! .time
eventlnumevents] .gate
event [numevents] .val
numevents++;
eventlnumevents] .time
eventlnumevents] .gate
eventlnumevents] .val
numevents++

;

eventlnumevents]
. time

eventlnumevents] .gate
eventlnumevents] .val
numevents++

;

break

;

= INITIAL;
numinputs;

= zero;

= pi->gate->seq. tl

;

numinputs;
= unk ;

= pi->gate->seq. t2;
numinputs;
zero;

case stl

:

eventlnumevents] . time
eventlnumevents] .gate
eventlnumevents] .val
numevents*+;
eventlnumevents] .time
eventlnumevents] .gate
eventlnumevents] .val
numevents++

;

eventlnumevents] .time
eventlnumevents] .gate
eventlnumevents] .val
numevents++;
break

;

= INITIAL;
numinputs;

= one

;

= pi->gate->seq. tl

;

numinputs

;

= unk;

pi->gate->seq. t2;
numinputs

;

= one;

case dyl

:

eventlnumevents] .time
eventlnumevents] .gate
eventlnumevents] .val
numevents++

;

eventlnumevents] .time
eventlnumevents] .gate
eventlnumevents] .val
numevents++;
eventlnumevents]

. time
eventlnumevents] .gate
eventlnumevents] .val
numevents++;

= INITIAL;
numinputs;

= zero;

= pi->gate->seq.tl;
numinputs;
unk

;

= pi->gate->seq. t2;
numinputs;

= one

;

•95-

break;

case dyO

:

event [numevents] .time
eventtnumeventsl .gate
eventtnumeventsl .val
numevents++;
eventtnumeventsl .time
event [numevents] .gate
eventtnumeventsl .val
numevents++;
event [numevents] .time
eventtnumeventsl .gate
eventtnumeventsl .val
numevents+t;
break

;

= INITIAL;
: numinputs;
= one

;

pi->gate->seq. tl

;

: numinputs;
= unk ;

= pi->gate->seq. t2;
numinputs;

= zero;

case unk

:

eventtnumeventsl .time INITIAL;
eventtnumeventsl .gate numinputs;
eventtnumeventsl .val = unk;
numevents++;
break

;

} /* switch(pi->gate~>seq.val) */

/*
/* timecompare -- compare two time values
/*
/* The following function is needed to compare two time value
/* It is passed to the C library's qsort routine to sort the
/* input events into ascending order.
/*

static
int
timecompare(a, b)

= = */
*/
*/
*/
*/
*/
*/
*/

EVENT *a;
EVENT *b;

return a->time - b->tim

/*
/H CollapseSequence
/*
/*

convert a 5-level sequence into a 9-level
value

=*/
*/
*/
*/
*/

=*/

-96

static
SEQUENCE
Col lapseSequence(Oevents, numout)

SEQUENCE Oeventst J

;

int numout

j

int i

;

VALUE pre, post;
int first, last;
SEQUENCE result;

if (msglevel >= 9) {

printf ("\nAf ter simulation, collapsing '/.A events:\n", numout);
for Ci = 0; Knumout; i++) £

printf(" y.s", Seq2Str(0events[i]))

;

)

printf ("\n");
}

/* K/
/* The sequence of output values is collected into the Oevents */
/* array. x/

assert(numout>0)

;

for (i=0; i<numout; it+)
assert(Oevents[i] .val >» zero 88 Oevents[i] . val <= unk);

/* */
/* Skip over any equal values at the start of the sequence */
/* */

pre = Oevents! 0] .val

;

for (first=0; pre"Oevents[firstl . val 88 f irst<numout ; first+t)

if (first == numout) { /* The whole sequence is one value */
result. val pre;
result. tl OeventsIO] .tl;
result. t2 = Oeventstnumout-1] . tl

;

return result;
)

/* FIRST points at the first different value in the array... */
first--; /X ...make it the last equal value */

if (pre • unk) { /* The first value is unk... */
result. val = unk; /* ...the whole sequence must be */
result. tl = OeventsIO) .tl;
result. t2 Oevents[numout-1] . tl

;

return result;
}

,* K/
/* Now do the same for the end of the sequence */

-97-

n u/

post Oevents[numout-1] .val;
for (last=numout-l; post==Oevents[last]. val gg last>0; last--)

assert(last>=first); /* Should never go over the whole seq . */

/* LAST points at the last different value in the array... x/
last++; /x ...make it the first equal value x/

if (post » unk) { /* The first value is unk... */
result, val = unk; /x ...the whole sequence must be x/
result. tl OeventsIO] .tl;
result. t2 " Oevents[numout-1] . tl

;

return result;
}

/X
/x Th
/*

*/
The interesting part of the sequence is bracketed by x/
[FIRST, LAST] inclusive. The first value is in PRE, x/

/* the last value in POST. */
/X x/
/x AAAAXXXBBBB x/
/!<

I I X/
/x FIRST / \ LAST x/

result. tl = Oeventst first+1].tl;
result. tZ = Oeventst last].tl;

if (pre==post R8 (pre==zero
I I pre==one)) {

if (pre==zero)
result. val = stO;

else
result. val stl;

return result;
1

if (pre == zero RH post == one) {

result. val = up; /x Assume this is just a 0-1 transition x/

/x Loop over the intermediate states looking for x/
/* non UP values. ~r
for (i first+1; i<last; i++) {

if (Oevents[i] .val != up) {
/x Found one -- must be a dynamic hazard x/
result .val = dyl

;

break

;

}

)

} else {

result. val « down; /x Assume this is just a 1-0 transition x/

/x Loop over the intermediate states looking for x/

• 98 -

/* non DOWN values,
for (i first+1; i<last; i++) {

if (Oevents[i] .val != down) {

/* Found one -- must be a dynamic hazard x/
result. val = dyO;
break

)

}

}

X/

return result;

^* x/
/* AdjustTime -- adjust time values for the delay of this element */
^* x/
/* The AdjustTime function alters the time values of a sequence */
/* to include the propagation delay of the element being */
/* simulated. ~/
/x

X/
/* = = = =— = = = =——— -___.______.______. = -.__

static
SEQUENCE
AdjustTime(seq, function)

SEQUENCE seq;
GTYPE function;

switch (seq. val) {

case zero:
case one

:

case unk

:

break

;

case up:
case dyO

:

if (seq.tl " -1)
seq.tl = 0;
seq.tl = seq.tl + tPLHmintfunction]

j

seq.t2 = seq.tZ + tPLHmaxtfunction]

j

break

;

case down:
case dyl

:

if Cseq.tl == -1)
seq.tl = 0;
seq.tl seq.tl + tPHLminlfunction]

;

seq.t2 seq.tZ + tPHLmaxtfunction]

j

break

;

case stO:
if (seq.tl " -1)

seq.tl = 0;
seq.tl « seq.tl + tPLHmin[function]

;

seq.tZ seq.tZ + tPHLmaxtfunction]

;

break

;

99

case stl

:

if (seq.tl == -1)
seq.tl 0;
seq.tl seq.tl + tPHLmintfunction];

seq.t2 » seq.t2 + tPLHmaxIfunction)

;

break

;

default:
fatalO'Unknown logic value in AdjustTime")

;

return seq;

void
Siml(gate)

GBLOK *gate;

{

int i

;

#ifdef ANSI
VALUE (*stubKVALUE inputs!], int numinputs);

#else
VALUE (*stub)();

ttendif

SEQUENCE seq;
TIME prevtime;

if Cgate->function == input) {

return;
}

/» ^
/* First, collect the gate "events" from the various inputs K/
/* x/

CollectlnputEvents(gate)

;

/* Sort the events into chronological order */
qsort(event, Csize_t) numevents, sizeof (EVENT) , timecompare)

;

if (msglevel >« 9) {

printf("\nData collected from Xd inputs -- Xd eventsW,
numinputs, numevents);

for (i=0; i<numevents; i++)
printfC input Y.6 time V.s value Xs\n", event! i]. gate,

Time2Str(event[i] .time)

,

Val2Str(event[i] .val));

assert(gate->function >= input 88 gate->function <= xor);
stub - stubs[gate->function]

;

100-

i = 0;
numout = ;

while (i < numevents) {

/* Loop invarients: K/
f* i ** next "input" event to handle */
'* numout »»> place for the next "output" event */
** eventti] is at a diffent time than event[i-l] */
prevtime = event [i J. time;
while (i < numevents SS prevtime -- event ti]. time) {

inputs! eventti] .gate-1 I = eventt i] . val

;

i++;
)

Oeventstnumout] . tl prevtime;
Oeventstnumout] .val • (*stub) C inputs, numinputs);
numout++;

}

*/

seq CollapseSequence(Oevents, numout);
seq = AdjustTimeCseq, gate->function)

;

gate->seq = seq;

/* Check for any hazard generation */
if (seq. val >= stO) {

/* A hazard has been detected -- whether to output it */
/* depends on the msglevel and whether the hazard is on */
/* an output line.
if (gate->function •» output 88 msglevel >= 1) {

printf ("5!** Error: ?.s on output line Xs\n",
Seq2Str(seq)

, gate->name);

else if (msglevel >« <i) {

printf("**x Error: '/.s on the output of gate Zs\n",
SeqZStr(seq) , gate->name);

}

}

C.12 READTIME.C

/*= = =

'* x/
f* READTIME -- read a file of propagation delay information. */
/S(

*/
/* This function is used to read the TIMEINFO file that contains */
/* propagation delay information. */
/*

*/
/* See the SYMSIM User's Guide for information about the format */
/* of this file.
/*

*/
*/
*/
*//x Neil Erdwien and Kansas State University */

f* All rights reserved. %/

/*
/* Copyright (c) 1988, 1989

/*
*/

101

/*" =*/

•ifdef ANSI
•include <stddef.h>
•include <stdlib.h>
#endif
•include <stdio.h>
•include <ctype.h>

= = Standard C include files */

•include "symsim.h"
» Program-specific include files */

/* = = = = = = = = = = = =: = = = = = = = =„
TIME tPLHmintMAXGTYPES]
TIME tPLHmaxtMAXGTYPES]
TIME tPHLminlMAXGTYPES]
TIME tPHLmaxtMAXGTYPES]

Global external variables */

•ifdef ANSI
static TIME readKFILE *fp);
•endif

Private function prototypes */

/*
/* readl -- read a single time value
/*
/* This function reads one time value from the input file. The
/* value is scaled into an integer format and returned to the
/* caller.
/*
/* If an invalid number is found, zero is returned
/*

static
TIME
readl(fp)

FILE *fp;

{

float tempfloat;
char ^string;

string = GetTokenCfp)

;

/* Assign a default in case the GetToken failed.
tempfloat = 0.0;
sscanf (string, "Xf", Stempfloat);

return 10.0 * tempfloat + 0.5;

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

- 102

void
ReadTimelnf o(filename)

char ^filename;

{

FILE *fp;
GTYPE function;
int c;

fp = fopenCfilename, "r");
if (fp NULL)

fatalCError opening time information file 'Xs'", filename);

for (function input; function <= output; function++) {

tPLHmintfunction] = 0;
tPLHmaxE function] =

tPHLminlfunction]
tPHLmax[function] =

}

II c «- EOF)

/* Echo the first line of the file to stdout. This line
/* contains the "title" of the time information file,
while (1) {

c » getc(fp);
if (c == »W

break

;

if (msglevel >=
putchar(c)

;

}

if (msglevel >= 4)
putchar(' \n')

;

*/
*/

for (function = inverter; function
tPLHmintfunction] = readl(fp);
tPLHmaxtfunction] = readl(fp);
tPHLminlfunction] readl(fp);
tPHLmaxCfunction] readl(fp);

xor; function++) {

fclose(fp)

;

if (msglevel
puts(
"\n Function

7) {

tPLHmin tPLHmax tPHLmin

for (function
printfC
printfC
printfC
printfC
printfC

}

PUtsC");

tPHLmax");

inverter; function <= xor; function++) {

Func2Str(function))

;

Time2Str(tPLHmin[(int) function]));
Time2Str(tPLHmax[(int) function]));
Time2Str(tPHLmint (int)function]

)

) ;

Time2Str(tPHLmax[(int)function]));

X8s
y.8s

X8s"

,

•/.8s",

X8s\n"

103 -

C.13 SEQ2STR.C

/*
/* Seq2Str
/*
/* This function takes a single argument, a value of type
/* SEQUENCE, and converts it into a printable character string
/* meant for human reading.
/*
/* If an invalid value is sent in, the string "[invalid]" is
/* returned.
/*
/* Seq2Name returns a pointer to the character string
/* representation.
/*
/* Seq2Name returns the address of an internal static buffer and
/* hence the value returned must be used before the next call.
/* This causes problems when printing two values in a single
/* printf call -- printf calls this function twice and then
/* prints the result. The solution is to use separate printf
/* calls.
/*
/*
/* Copyright Cc) 1988, 1989
/* Neil Erdwien and Kansas State University
/* All rights reserved.
/*

convert a SEQUENCE into a character string

=*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

ifdef ANSI
include <stddef.h>
include <stdlib.h>
endif
include <string.h>
include <stdio.h>

Standard C include files */

include "symsim.h"
Program-specific include files */

char *
Seq2Str(seq)

SEQUENCE seq;

(

static char buffert6"i];
char *p

;

104-

P strcpyC buffer, Val2Str(seq . val)) ;

if Cseq.val > one 88 seq.vsl != unk) {

/* There is time information for this sequence,
if (seq.tA)

P strcat(p, " tA+[");
else

P " strcat(p, " [•)
;

P strcat(p, TimeZStr(seq.tl))
;

p strcat(p, ","))
P - strcat(p, TimeZStrCseq. t2)) ;

p = strcat(p, "]");

*/

return buffer;

C.14 SNAP.C

/*
/* Snap -- display the contents of the circuit web
/*
/* The Snap function is a debugging tool. It can be called at
/* any time and it displays the status of the circuit being
/* analyzed. The circuit itself and the status of the analysis
/* are unchanged by this procedure.
/*
/*
/* Copyright (c) 1988, 1989
t* Neil Erdwien and Kansas State University
/* All rights reserved.
/*

=*/
*/
*/
*/
*/
*/
*/
*/

3
%
*/
*/

=*/

ifdef ANSI
include <stddef.h>
include <stdlib.h>
endif
include <stdio.h>
include <assert.h>

Standard C include files */

/*«
include "symsim.h"

ifdef ANSI
static void SnapRecursiveCGBLOK *gate, int indent);
endif

Program-specific include files */

== Private function prototypes */

105

/* */
/* SnapRecursive -- perform a recursive depth-first traversal */
f* */
/* This recursive function actually performs the traversal. */
/* Information about each gate visited is listed. Because the */
/* circuit web may contain loops, the VISITED field of each gate x/
/* and the VisitedValue global variable are used to prevent */
/* repetition. */

//

= ==*/

static
void
SnapRecursive(gate, indent)

GBLOK *gate;
int indent;

int i

;

GLUE Koutptr;

assert(gate != NULL);

indent = indent '/. 40;

for (i = 0; i<indent; i++) /* Indent to the indicated level */
putcharC *)

;

printf ("function = Xs , name V.s , causes Xx\n",
Func2Str(gate->function), gate->name, gate->causes[01)

;

for (i=0; i<indent; i++) /* Indent to the indicated level */
putcharC ');

if (gate->visited != VisitedValue) {

/* This node hasn't been visited yet... */
gate->visited • VisitedValue;
printfC'Output (Xs) is connected to:\n",

Seq2Strtgate->seq));
for (outptr = gate->olist;

outptr != NULL;
outptr = outptr->next) {

SnapRecursiveCoutptr->gate, indent + 3);
}

} else {

printf (". . .previously listed. . An"):
}

void
SnapCIptr)

GBLOK *Iptr[J;

106-

int i

;

VisitedValue++;
putst"");

for (i = 0; Iptrti] != NULL; i++)
SnapRecursivedptrli) , 0);

putsO'");

C.15 STUBS.C

/*•

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

n
/*
/*
/*
/*
/*
/*-

STUBS — stubs to perform simple logic functions

This file contains a series of functions that implement the
basic logic functions used by SYMSIM. These stubs are only
needed for truth table creation.

These stubs are used on operands from the 5- level sequence
system, hence they do not have to evaluate the effect of
hazards on the inputs.

Copyright (c) 1988, 1989
Neil Erdwien and Kansas State University
All rights reserved.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

•ifdef ANSI
•include <stddef.h>
•include <stdlib.h>
•endif
•include <stdio.h>
•include <math.h>
•include <assert.h>
•include <malloc.h>
•include <string.h>

•include "symsim.h"

Standard C include files */

Program-specific include files */

/*= = = = = = = = = = = = =„ = = =

VALUE (*stubs[J)
•ifdef ANSI

== Global external variables */

107-

ttelse

C)
ftendif

= {

stublNP, /* input */
stublNP, /* output */
stublNV,
stubAND,
stubOR,
stubNAND,
stubNOR,
stubXOR}

;

VALUE invert [I
=' {

one,
zero.
down

,

up,
unk

,

stl,
stO,
dyl.
dyO

,1
*'

/* stublNP -- simulate an input (or an output) line */

/K This simulation simply returns the input value. */

/*

VALUE
stublNPCinputs, numinputs)

VALUE inputsU;
int numinputs;

if (numinputs \~ 1)
fatalC'A multiple-input input has been found");

assert(inputs[0] >" zero 88 inputstO] <= unk);

/* Always just return the input value
return inputstO];

/*
/*
/* stublNV -- simulate a single input inverter

108

*/
»/

*/

-*/
*/
ft/

*/

VALUE
stubINV(inputs, numinputs)

VALUE inputs!];
int numinputs;

if (numinputs != 1)
fatalCA multiple-input inverter has been found");

assert(inputs[0] >= zero 88 inputstOJ < unk);

/* Use a table lookup to invert the logic level x/
return invert tinputst]]

;

/*
'*

*/
/* stubAND -- simulate a single multiple input AND gate */

VALUE
stubAND(inputs, numinputs)

VALUE inputs!];
int numinputs;

{

int i;
int rising, falling;

for (i = 0; i<numinputs; i++)
assertCinputsti] > zero 88 inputs[i] <= unk);

/* If any of the inputs is 0, the output is */
for (i = 0; Knuminputs; i++)

if (inputsti) = = zero)
return zero;

/* If any of the inputs is unk, the output is unk */
for (i = 0; Knuminputs; i-t-f)

if (inputsti] « unk)
return unk;

/* If both a rasing and a falling edge are found,
/* a dynamic hazard exists
rising 0;
falling » 0;
for (i=0; Knuminputs; i++) {

if (inputsti] » up) rising = 1;
if (inputsti] »« down) falling » 1;

- 109 -

*/

if (rising == 1 88 falling == 1)
return unk

;

/* If one or more of a single type of edge is found, */
/* the output matches */
if (rising ==1)

return up;

if (falling == 1)
return down;

/* If all else falls through, all the inputs must have been 1 */
return one;

/*

/* stubOR -- simulate a single multiple input OR gate */

/*
*/

VALUE
stubORdnputs, numinputs)

VALUE inputsM;
int numinputs;

{

int i;
int rising, falling;

for (i = 0; i<numinputs; i++)
assertCinputsti] >= zero RR inputsti] <« unk);

/* If any of the inputs is 1, the output is 1 */
for (i=0; i<numinputs; i++)

if Cinputs[i] •" one)
return one;

/* If any of the inputs is unk, the output is unk
for (i = 0; Knuminputs; i++)

if (inputsti) == unk)
return unk

;

*/

/* If both a rising and a falling edge are found, a static 1 */
/* hazard exists ^z
rising = 0;
falling = 0;
for (i = 0; i<numinputs; i++) {

if (inputs[i] == up) rising = 1;
if (inputsti] « down) falling » 1;

if (rising 1 88 falling • 1)
return unk;

- 110-

/* If one or more of a single type of edge is found, */
/* the output matches */
if (rising " 1)

return up;

if (falling == 1)

return down;

/* If all else falls through, all the inputs must have been */
return zero;

/* */
/* */
/* stubNAND -- simulate a single multiple input NAND gate */
/* */
/K */

VALUE
stubNAND (inputs, numinputs)

VALUE inputsU;
int numinputs;

int i

;

int rising, falling;

for (i=0; i<numinputs; i+*)
assert (inputs! i] >= zero 88 inputs[i] <= unk)

;

/* If any of the inputs is , the outputisl */
for (i = ; i<numinputs; i++)

if (inputs [i] zero)
return one;

/* If any of the inputs is unk, the output is unk */
for (i = ; i<numinputs; i++)

if (inputsti] = = unk

)

return unk;

/* If both a rising and a falling edge are found, a dynamic 1 */
/* hazard exists */
rising = 0;
falling 0;
for (i=0; i<numinputs; i++) {

if (inputs! i] == up) rising = 1

;

if (inputsti] == down) falling = 1

;

>

if (rising == 1 88 falling == 1)
return unk;

/* If one or more of a single type of edge is found , the */
/* output is inverted */
if (rising -= 1

)

111 -

return down;

if (falling == 1)
return up;

/* If all else falls through, all the inputs must have been 1 */
return zero;

/* stubNOR -- simulate a single multiple input NOR gate x/
*/

VALUE
stubNOR(inputs, numinputs)

VALUE inputs!];
int numinputs;

int i

;

int rising, falling;

for (i=0; i<numinputs; i++)
assert(inputs[i] >« zero gg inputsti] < unk);

/x If any of the inputs is 1, the output is
for (i=0; i<numinputs; i++)

if (inputsti] • one)
return zero;

/* If any of the inputs is unk, the output is unk
for (i = 0; i<numinputs; i++)

if (inputsti] » unk)
return unk;

*/

«/

/* If both a rising and a falling edge are found, a static *//* hazard exists '

rising =0;
falling 0;
for (i = 0; i<numinputs; i++) {

if (inputsti) up) rising 1;
if (inputsti] == down) falling = 1;

if (rising • 1 gg falling == 1)
return unk;

/* If one or more of a single type of edge is found, the X//x output is inverted Z.,
if (rising ==1) '

return down;

if (falling == 1)

112

return up;

/* If all else falls through, all the inputs must have been 1 */
return zero;

/* stubXOR -- simulate a single multiple input XOR gate x/

/*

VALUE
stubXOR(inputs, numinputs)

VALUE inputs!];
int numinputs;

{

int i

;

int rising, falling;
int parity;

for (i = 0; i<numinputs; i++)
assert(inputs[i] >« zero 88 inputsli] <= unk)

;

/* If any of the inputs is unk, the output is unk »/for (i = 0; Knuminputs; it+)
if (inputsli] == unk)

return unk;

/* If both a rising and a falling edge are found, a static *//* hazard exists _,
rising =0;
falling = 0;
parity = 0;
for (i = 0; Knuminputs; i++) {

if (inputsli] == one) parity (++parity) 8 1;
if (inputsli) == up) rising++;
if (inputsli] » down) falling++;

if (rising 88 falling)
return unk

;

if (rising == 1)
if (parity)

return down;
else

return up;

if (falling « 1)
if (parity)

return up;
else

return down;

113

/* If all else falls through, all -the inputs must have been */
/* either or 1 . In this case, the parity count is the right */
/* value. */
return parity;

C.16 TABLE.C

/*=====:===»=*/
/* */
/* TABLE -- simple symbol table handling functions */
/* */
/* This file contains several functions that together manage */
/* symbol tables. This is used within SYMSIM to keep track of */
/* the names given to the nodes in the Trivial Circuit Format. */
/* */
/X Currently, simple sequential search is used to search the X/
/X table. If tables of more than 100 nodes are expected, this x/
/x should be changed to use a hash table . Such changes could x/
/X be done within this file and not be visible to the caller. X/
/* */
/* To use these functions, the table.h include file must be X/
/x included in the calling function. X/
/* */
/X The TableCreate function is used to create a table .If X/
/x successful , a pointer to the table is returned . The caller x/
/x should treat this pointer like a file handle, i.e., it is x/
/x passed to other table functions but is not meaningful X/
/x otherwise. x/
/x */
/x The TableAdd function adds a new entry to the table. X/
/x Associated with each entry is a variable length key and a x/
/x user -supplied pointer . When the table entry is subsequently X/
/x used, the cal ler supp] ies the key and the table retrieves the X/
/x pointer. x/
/* */
/x The TableLookup function searches the table for an entry with x/
/X the given key. If found, the pointer stored when the entry X/
/X was added is returned. x/
/* X/
/x Final ly , the TableFree function can be used to release the x/
/Jl memory associated with a table. X/
/* */
/* */
/X Copyright (c) 1988, 1989 X/
/X Neil Erdwien and Kansas State University x/
/X All rights reserved. X/
/x X/
/}(= = = = = = = = = = = = = = = = = = = ,= = = = = = = = = = = -- = - = = = = = = = = = ,:=: = = = = = = - = = = = =-- == = = =*/

/XmiinimMMnintiaunsiiHiMaui Standard C include files */
iifdef ANSI

il 1

^include <stddef.h>
(•include <stdlib.h>
#endif
^include <stdio.h>
include <malloc.h>
•include <string.h>

'*"*"*""***"»"•««»"»»»*«» Program-specific include files */
Wlnclude "symsim.h"
include "table. h"

TABLE *
TableCreateO

TABLE *tptr;

tptr = (TABLE *) malloc(sizeof (TABLE))

;

if (tptr == NULL)
fatalC'Error allocating a TABLE");

tptr->anchor = NULL;

return tptr;

int
TableAdd(tptr, key, infoptr)

TABLE *tptr;
char xkey;
void xinfoptr;

(

TABLELINK *p

;

P = (TABLELINK *) malloc(sizeof (TABLELINK))

:

if (p == NULL)
fatalC'Error allocating a TABLELINK");

p->next = tptr->anchor;
tptr->anchor p;

p->key • strdup(key);
p->data = infoptr;

return 0;

void
*TableLookup(tptr, key)

TABLE *tptr;
char *key;

115

TABLELINK *p;

for (p tptr->anchor; p != NULL; p p~>next) {
if (stricmp(p->key , key) == 0)

return p->data;
)

return NULL;

void
TableFree(tptr)

TABLE xtptr;

{

TABLELINK Xp, Xp2

;

for (p tptr->anchor; p != NULL;) {

free(p->key)

;

p2 = p->next;
freeCp)

;

p = p2;
}

free(tptr)

;

C17 TABLE.H

fn
*/
*/

/* TABLE -- simple symbol table handling functions x/
f *

*/
/* This header file declares several functions that are used to x/
/* handle a symbol table. */
/x

/* See the implementation in TABLE. C for details »/
/x
/x
/* Copyright (c) 1988, 1989
/* Neil Erdwien and Kansas State University
f* All rights reserved.
/*
/x=

*/
*/
*/
*/
*/
*/

typedef struct tablelink {

struct tablelink Xnext;
char Xkey;

Data Structure Declarations */

116-

void *data;
) TABLELINK;

typedef struct {

TABLELINK Xanchor;
} TABLE;

'*"*=*"""*"*»**"*'*"»»""«»"-»«» External function declarations */

#ifdef ANSI

TABLE *TableCreate(void);
int TableAddtTABLE *tptr, char *key, void *infoptr);
void *TableLookup(TABLE stptr, char *key);
void TableFreeCTABLE *tptr);

#else

TABLE *TableCreateO;
int TableAddOj
void *TableLookup()

;

void TableFreeO;

ttendif

C.18 TIME2STR.C

/*===

/* TimeZStr -- convert a time value to a string */
'*

*/
/* This function formats an internal time variable into a */
/* printable form. Currently, time values are stored as integers */
/* in units of tenths of the units used in the TIMEINFO file -- */
/* typically nanoseconds. This function divides by 10 to */
/* compensate.
/*

*/

/* Any units may be used. *,
/*

. */
/* Time2Str is passed a single argument -- the time value to be */
/* formatted -- and returns a pointer to the character string */
/* representation. _,
/* '

/* Time2Str returns the address of an internal static buffer and */
/* hence the value returned must be used before the next call. */
/* This causes problems when printing two values in a single */
/* printf call -- printf calls this function twice and then */
/* prints the result. The solution is to use separate printf */
/* calls.
/*
/*
/* Copyright (c) 1988, 1989
'* Neil Erdwien and Kansas State University
'" All rights reserved.

*/
*/
*/
*/
*/
*/

117-

/* */

/*====================================== Standard C include files */
tifdef ANSI
include <stddef .h>
include <stdlib .h>
tendif
t include <stdio .h>

/9f= = = = === ============ ====== = = ===== Program- specific include files */
include "symsim.h"

char *

Time2StrCt)

TIME t;

«

static char buffer[32];

if Ct » INITIAL) /* If it is the special "initial" value... */
return "I"; /* ...return "I" */

if (t > MAXTIME) /* If it is the special "maximum" value... */
return "MAXTIME";/* ...return "MAXTIME". */

sprintf (buffer, "X.lf", t/10.0); /* format the time value */

return buffer;

C.19 TOKEN.C

/ft....».•.»....;...:».»..».*=..«»..»..........O.....................K/
/* */
/* GetToken -- read the next token from a file */
/* */
/* This function takes a single argument, a file pointer of type */
/* (EILE *), and reads the next token from the file. The file is */
/* assumed to be open for input. */
/* */
/* A token is defined as a series of non-whitespace characters, */
/* delimited by whitespace. Whitespace is defined by the C */
/* library's isspace function, i.e., 0x09-0x0d or 0x20 on ASCII */
/* machines. */
/* */
/* Tokens longer than MAXTOKENSIZE are truncated with no error */
/* indication. The string returned is ALWAYS terminated by a */
/* , \0', even when truncation occurrs. */
/* */
/* The file being read can contain comments which are skipped */

- H8

/* by GetToken. Comments start with a COMMENTCHAR, currently
/* a '#, and continue to the end of the line. Comments are
/* syntactically a blank.
/*
/* At EOF, a null string is returned.
/*
/*
/* Copyright (c) 1988, 1989
/* Neil Erdwien and Kansas State University
/* All rights reserved.
/*

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
=*/

/*= = = = = = = = = = = =„ = = = =

•ifdef ANSI
•include <stddef.h>
•include <stdlib.h>
•endif
•include <stdio.h>
•include <ctype.h>

Standard C include files */

/* = »»•— == ==_ ======== ==- Program-specific include files */
•include "symsim.h"

/*==== = = =:===,=== = -==--- = -_ = -== .___-_ Manifest constant definitions */
•define MAXTOKENSIZE 128
•define COMMENTCHAR •«'

'*" ="""=="==--=="=====:"=="=" Private function prototypes */
ftifdef ANSI
static void SkipComments(FILE *fp) ;

•endif

f*
.

«——«*..-— */

/* SkipComments -- skip comments and white space */
'*

*/
/* This private function finds the beginning of the next token by */
/* skipping any number of blanks, other wite space characters, */
/* and comments. ~,
'*

*/
/* On exit, the next character to be read will be the first non- */
/* blank character of the next token -- or the file will be at */

/*
*^

static
void
SkipComments(fp)

FILE *fp;

119

int c;

while (1) {

c getc(fp)

;

if (isspaceC c)

)

/* Skip the character */;

else if (c COMMENTCHAR)
/* We've started a comment -- skip to the end of the line */
while (1) {

c = getc(fp)

;

if (c == '\n' II c == EOF)
break

;

}

else
/* Found an interesting character -- exit */
/* Note that EOF is treated like any other character. */
break

;

)

ungetcC c , fp)

;

char *

GetToken(fp)

FILE *fpj

{

int c

;

static char bufferWAXTOKENSIZE+l];
char *bufptr

;

SkipComments(fp)

;

bufptr = buffer

;

while (1) {

c = getc(fp);
if (feof(fp) || isspace(c) II c == COMMENTCHAR)

break

;

if (bufptr < 8buffer[MAXT0KENSIZE])
*(bufptr++) = c;

}

/* There will always be room in the buffer for an ending 'NO* K/
/* because of the '+1* in the declaration of the buffer. */
*bufptr = 'NO 1

;

return buffer;

120-

C.20 TSIM1.C

/*
/*
/*
/*
/*
/*
/*
/*
/*
/x
/x
/*
/x
/*
/x
/*
/x
/«
/*
/*
/*
/X
/*
/*
/* =

Siml -- simulate a single logic element

This function takes a single argument, a pointer to the GBLOK
representing the gate to be simulated. The input values to
the gate are found by traversing the circuit web.

There are two files that both contain functions named Siml.
This file, TSIM1 , contains the table-driven version that
combines inputs in pairs to calculate the result.
L0NGSIM1 contains a version that goes through the raw 5- level
sequence calculation to obtain the result. L0NGSIM1 is used
by TTABLE to calculate the tables used by TSIM1

.

At one time, L0NGSIM1 and TSIM1 were interchangeable by simply
linking one or the other. TSIM1 has since been enhanced and
must be used by SYMSIM. Conversely, TTABLE must use L0NGSIM1

.

Copyright (c) 1988, 1989
Neil Erdwien and Kansas State University
All rights reserved.

=*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

(tifdef ANSI
•include <stddef.h>
•include <stdlib.h>
ttendif
•include <stdio.h>
•include <math.h>
•include <assert.h>
•include <malloc.h>
•include <string.h>

Standard C include files */

/X=
•include "symsim.h"

Program-specific include files */

/X= = =: = = = = = = =„ = = = =„ = = =.. = := = = . = = _

extern TIME tPLHminCMAXGTYPES]
extern TIME tPLHmaxtMAXGTYPES]
extern TIME tPHLmin[MAXGTYPES]
extern TIME tPHLmaxtMAXGTYPES]

==- Global external variables */

/X=
typedef struct {

VALUE result;
short LeadOpl ;

short TrailOpl;
} SIMENTRY;

»»* Private static variables */

121

typedef SIMENTRY SIHTABLE[9] t9] [6] ;

/* These are the truth tables calculated by TTABLE.
static
SIMTABLE TblAND • {

•include "and.tbl"
};

static
SIMTABLE TblOR = {

include "or.tbl"
};

static
SIMTABLE TblXOR = {

•include "xor.tbl"
)!

static
VALUE invertt

I

one,
zero,
down,
up,
unk

,

stl,
stO,
dyl,
dyO

{*...
""""""•*s"""""«»«"=",»»—==-=== Private function prototypes */

flifdef ANSI
static SEQUENCE AdjustTimeCSEQUENCE seq, GTYPE function);
ttendif

*/
/* AdjustTime -- adjust time values for the delay of this element */

*/
/* The AdjustTime function alters the time values of a sequence */
/* to include the propagation delay of the element being */
/* simulated. v/
/3f

static
SEQUENCE
AdjustTimeCseq, function)

SEQUENCE seq;
GTYPE function;

{

switch (seq.val) {

- 122-

case zero:
case one:
case unk

:

break;
case up:
case dyO:

seq.tl seq.tl + tPLHmintfunction];
seq.t2 seq.t2 + tPLHmax! function]

;

break

;

case down:
case dyl

:

seq.tl = seq.tl + tPHLmintfunction];
seq.tZ = seq.tZ + tPHLmax[function]

;

break

;

case stO:
seq.tl = seq.tl + tPLHmin [function]

;

seq.t2 « seq.t2 + tPHLmaxtfunction]

;

break

;

case stl

:

seq.tl seq.tl + tPHLmintfunction]

;

seq.t2 » seq.t2 + tPLHmax [function J

;

break

;

default:
fataK "Unknown logic value in Ad justTime")

;

return seq;

void
Siml(gate)

GBLOK *gate;

{

GLUE *pi;
SEQUENCE result;
SEQUENCE operandi;
SEQUENCE operand2;
int InvertResult;
int alignment;
SIMTABLE XTablePtr;
SIMENTRY XTableEntry;

InvertResult = 0;

switch (gate->function) {

case input:
/* There isn't much work in simulating an input' */
return;

case output:
/* An output is simulated only to trigger the error */
/* message at the end. */

- 123 -

pi =gate->ilist;
operandi pi~>gate->seq;
result = operandi

;

break

;

case inverter

:

/* An inverter is necessarily a single-input gate, */
/* hence handled separately here. */
pi =gate->ilist;
operandi = pi~>gate->seq;
result = operandi;
InvertResult = 1

;

break ;

case nand:
InvertResult 1

;

case and:
/* Microsoft C issues a warning message on the following */
/* assignment statment -- it is OK. */
TablePtr STblANDt 01 [] []

;

break

;

case nor:
InvertResult = 1

;

case or:
/* Microsoft C issues a warning message on the following */
/* assignment statment - - it is OK

.

*/
TablePtr = STblORE J [OH 0] ;

break

;

case xors
/X Microsoft C issues a warning message on the following X/
/X assignment statment -- it is OK. */
TablePtr STblXORt 0] [01 [01

;

break

;

if (gate->function > inverter) {

/* This section handles the multiple- input gates, i.e., X/
/X AND, OR, NAND, NOR, and XOR gates. */
/X These are simulated two inputs at a time. Initially, X/
/X the loop is primed by pretending that the first input x/
/x value is the result of a previous iteration. The */
/x following loop executes once for a 2 input gate , twice */
/* for a 3 input gate, etc. x/
pi = gate->ilist;
result pi->gate >seq

;

pi = pi->next

;

while Cpi != NULL) {

/x Loop invariant : RESULT contains the result so far of */
/X the simulation. PI points at the next GLUE block */
/* for the next input

.

X/
operandi = result;
operandZ = pi->gate->seq

;

124

pi pi->next

;

/* Brute-force code to turn the time values into a 0-5 */
/* alignment value. */
if (operand2 . tl < operandi . tl) {

/* Must be cases 0, 1, or 5.

if (operand2.t2 <= operandi .tl)
alignment = ;

else if Coperand2.t2 <= operandi. t2)
alignment 1

else
alignment 5

) els {

/* Must be cases 2, 3, or 4 .

if (operand2 . t2 <= operandi . t2)
alignment 2;

else if (operand2.tl < operandi. t2)
alignment = 3

else
al ignment = <4

TableEntry = 8((XTablePtr) [operandi . val]
[operand2 .val] [alignment]

)

;

result. val = TableEntry->resul t

;

if (TableEntry->LeadOpl)
result . tl operandi . tl

;

else
result, tl = operand2. tl

;

if (TableEntry->TrailOpl)
result. t2 = operandi. t2;

else
result. t2 = operand2.t2;

assertCresult . val >= zero SS result. val <= dyl);

if (InvertResult)
result. val = invert [result . val]

;

result AdjustTimeCresult , gate->function)

;

gate->seq = result;

/* Check for any hazard generation */
if (result. val >= stO) {

/* A hazard has been detected -- whether to output it */
/* depends on the msglevel and whether the hazard is on an */

- 125

/x output line.
if (gate->f unction *• output 88 msglevel > 1) {

printfC'xxx Error: /is on output line Xs\n",
Seq2Str(result) , gate->name);

puts(" Caused by:");
AssmPrtC)

;

}

else if (msglevel >= 4) {

printfC'xxx Error: '/.s on the output of gate Xs\n"

,

Seq2Str(result) , gate->name)

;

putsC" Caused by:");
AssmPrtC);

}

C.21 TTABLE.C

/X" = := =: = = = =X/
/X X/
/* TTABLE -- build a truth table based on 9-value logic x/
/* */
/x This program performs a detailed simulation for a two-input x/
/x logic element. Each 9- level input value is separated into a x/
/x series of up to three 5-level values. The resulting sequence */
/* (including time values) is simulated. The resulting output x/
/x sequence is turned into a 9- level value. x/
/* */
/x The output of this program is a table in a form suitable for x/
/x inclusion in a C program. In a sense, this program is just x/
/x a bootstrap. Once this program creates the needed tables, x/
/X further simulation uses the tables rather than the long method */
/x used here. x/
/* x/
/x The tables produced by this program match those given by x/
/x Fantauzzi in "An Algebraic Model for the Analysis of Logical X/
/x Circuits", IEEE Transactions on Computers, Vol. C-23, No. 6, X/
/x June 1974, pp. 576-581. x/
/X »/
/X This program is not a general-purpose simulator; it exists x/
/x only to produce tables for the general-purpose simulator. x/
/x As such, the circuit input to this program is restricted to x/
/x circuits with exactly two inputs and one output and no x/
/x internal memory. */
/x x/
/x */
/x Copyright (c) 1988, 1989 x/
/X Neil Erdwien and Kansas State University x/
/x All rights reserved. x/
/x x/
/««....«.«»..«.....«..». = = = = = = = == = = = =„ = =: = = =„„ = =„„„„„„„«„„

/K»»»s»««»»*.>aaa...»»*»..,«.«e... Standard C include files */

- 126-

ftifdef ANSI
•include <stddef .h>
•include <stdlib.h>
#endif
•include <stdio.h>
•include <math.h>
•include <assert .h>
•include <malloc.h>
•include <string . h>

/jf = = = = = ============ =

•include "symsim.h"
Program-specific include files */

/*=========================
int msglevel

;

GBLOK *Iptr[MAXINPUTS]

;

GBLOK *OptrtMAXINPUTSl

;

char XTimelnfoFilename;
char *CircuitFilename;
int Acount = 0;
int Amax;
int VisitedValue = 0;

Global external variables */

== External function declarations */
•ifdef ANSI
extern int getopt(int argc, char **argv, char ^options);
•endif

7*=======================^===
•ifdef ANSI
static void ProcessOptsCint argc, char **argv);
static void DoKSEOUENCE vl, SEQUENCE v2)j
•endif

=== = Private function prototypes */

/*
/* ProcessOpts -- handle the options passed to the
/*

/* The getopt function is used to parse the option string
/* Global variables are used to pass the results back.
/* Default values for every option are set here
/*

static
void
ProcessOpts(argc, argv)

int argc

;

char **argv;

main program

= */
*/
*/
*/
*/
*/
*/
*/

=*/

- 127-

int c;
extern char *optarg;
extern int optind, opterr.
int errflg = 0;

/* Set default values for all options. */
TimelnfoFilename = "timeinfo . 0";
CircuitFilename = "and.tcf";
msglevel 0;

while (Cc « getopt(argc, argv, "m:t:")) != -1)
switch (c) {

case 'm*

:

msglevel = atoi(optarg)

;

break

;

case '
t

:

TimelnfoFilename optarg;
break

;

case ' ?•:

errf lg++;
}

if Cerrflg) {

fprintf (stderr ,

"Usage: TTABLE [-m msglevel] [-t timefile] file\n");
exit(2);

}

if (optind < argc)
CircuitFilename = argvtoptindj ;

if (optind+1 < argc)
printf ("Extra parameters ignored\n");

x
..~~~.......~-_-._™_„__..«.,._.._M«,

/* Dol -- simulate and single input combination */
'*

*/
/* The Dol subroutine simulates the circuit for a single setting x/
/* of the input variables. The results of the simulation are */
/* written to stdout . «/
/*
/*==_-=-_ --__________-_ __-__-_--__--

static
void
DoHvl, v2)

SEQUENCE vl;
SEQUENCE v2;

SEQUENCE result;
GBLOK *gZ;

128

GBLOK *gate;

Iptr[OJ->seq vl;
Iptr[l]->seq v2;

Forward

C

IptrEO])

;

Forward(Iptr[l]);

g2 OptrtO]; /* Point G2 at the first output */
result " g2->ilist->gate->seq;
printf ("X5s,", Val2Str(result . val))

;

if (result. val •» zero II result. val = = one II

result. val == unk

)

printf ("0,0,")

j

else (

J

if (result. tl == vl.tl)
printf ("1,");

else if (result. tl « v2.tl)
printf ("0,");

else {

printf ("\nError in simulation -- time Xs\n",
Time2Str(result . tl)) ;

printf ("\nXd, Xd\n", vl.tl, v2.tl);
exit(l);

}

if (result. t2 == vl .t2)
printf ("1");

else if (result. t2 " v2.t2)
printf ("0")

j

else {

printf ("\nError in simulation -- time = Xs\n",
Time2Str(result.t2));

exit(l);
)

if (vl.val != dyl I

|

v2.val != dyl I I

v2.t2-v2.tl < vl.t2-vl.tl)
printf (",");

/* Pop the stack until the previous assumption is found. */
/* Each gate stacked is set back to 'unknown'. */
while(l) {

gate = pop;
if (gate " NULL)

break

;

gate->seq. val = unk;
gate->seq.tfl = 0;

}

- 129.

void
mainCargc, argv)

int argc

;

char x*argv;

int re;
SEQUENCE vl, v2;

ProcessOptsCargc, argv);

ReadTimelnfoCTimelnfoFilename)

;

re - GetCircuitCCircuitFilename, Iptr, Optr);
if Crc != 0)

fatalCError reading circuit 'Xs'", CircuitFilename)

;

if ClptrtO] = = NULL
I I Iptrtl] == NULL I I IptrIZ] != NULL)

fatalCCircuit must have exactly two inputs");

if (msgleve 1 > = 9)
SnapC Ipt r)j

vl.tA 0;
v2.tA = 0;

printfCV* "))
printf

C

1 2 3

printf ("/* "):
printf

(

XXX XXX XXX

printfOV* X Y ")
1

printf

(

YY YY V

XXX XXX

YY

*/\n");

XXX */\n");

YYYYY X/W);

/* Loop over all possible combinations of the input variables. */
for Cvl.val zero; vl.val < dyl ; vl.val++) {

for (v2.val = zero; vZ.val <= dyl; v2.val++) {
printf("/*X4s,X«isX/", Val2Str(vl.val), Val2Str(v2 . val)) ;

/* The VALUES of the input signals are set, but their */
/* relative timing is not. There are six possible */
/* cases -- each is tried in turn. The actual values */
/* used here must match those tested inside Dol

.

*/

vl.tl = 100
vl.t2 = 200
v2.tl • 50
v2.t2 = 70
DoKvl, v2)

vl.tl = 100;

- no-

vl.tZ = 200
vZ.tl 90
vZ.tZ 110
DoKvl, vZ)

vl.tl = 100
vl.tZ = 201
vZ.tl Jin
vZ.tZ = 130
DoKvl, vZ)

vl.tl = 100
Vl.tZ = 200
vZ.tl = 190
v2.t2 Z10
DoKvl, vZ)

vl.tl = 100
vl.tZ = zoo
vZ.tl = Z10
vZ.tZ 230
DoKvl, v2>

vl.tl = 100
vl.tZ = 200
vZ.tl = 50
vZ.tZ = 250
DoKvl, v2)

printf("\n">;

exit(O);

C.22 VAL2STR.C

/*
fit

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/x
/*
/»

=»/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Val2Str -- convert a VALUE into a character string name

This function takes a single argument, a value of type VALUE,
and converts it into a printable character string meant for
human reading.

If an invalid value is sent in, the string "[invalid]" is
returned

.

Val2Name returns a pointer to the character string
representation

.

Val2Name returns the address of an internal static buffer and
hence the value returned must be used before the next call.
This causes problems when printing two values in a single

- 131

/* printf call -- printf calls this function twice and then */
/* prints the result. The solution is to use separate printf */
/* calls. */
/* »/
/* */
/* Copyright (c) 1988, 1989 */
/* Neil Erdwien and Kansas State University */
/* All rights reserved. x/
/* »/

/*====================================== Standard C include files */
#ifdef ANSI
•include <stddef.h>
•include <stdlib.h>
•endif
•include <stdio.h>

/x= = = =================== Program-specific include files */
•include "symsim.h"

/*-================================ Manifest constant definitions */
•define HAXENTRIES 10

/*=-========= ====================== Private static variables */
static char XnamestMAXENTRIES] = {

"zero",
"one",
"up",
"down"

,

"unk",
"stO",
"stl",
"dyO",
"dyl",
"[invalid]"

};

char X

ValZStr(value)

VALUE value;

{

int i

;

i (int) value; /* Convert the value to a subscript... */
/* ...ensure that it is in range... */

if (i < || i >= MAXENTRIES)
i = MAXENTRIES-1;

return names[i]; /* ...and return the corresponding entry. */

132 -

C.23 SYMSIM Makefile

MS-DOS makefile for SYMSIM

This makefile is used with the Microsoft MAKE command.
SYMSIM will be build by simply entering 'MAKE SYMSIM'.

. c . ob j

:

CL /c /AS /DANSI S*.c

symsim.obj: symsim.c

getcirc.obj: getcirc.c

token. obj: token.

c

table. obj: table.

c

getopt.obj: getopt.c

snap. obj: snap .

c

func2str.obj: funcZstr.c

valZstr.obj: valZstr.c

seq2str.obj: seqZstr.c

time2str.obj: time2str.c

fatal. obj: fatal.

c

tsiml.obj: tsiml.c

forward. obj: forward.

c

assume. obj: assume.

c

readtime.obj: readtime.c

addinput.obj: addinput .

c

AssmPrt.obj: AssmPrt.c

symsim.exe: symsim.obj symsim.lnk \
getcirc.obj getopt.obj snap. obj funcZstr.obj val2str obj \seq2str.obj time2str.obj forward . ob j fatal. obj tsiml.obj \readtime.obj assume. obj token. obj table. obj addinput.obj \
AssmPrt.obj
LINK Ssymsim.lnk

133

C.24 TTABLE Makefile

MS-DOS makefile for TTABLE

This makefile is used with the Microsoft MAKE command.
TTABLE will be build by simply entering 'MAKE TTABLE*.

. c .obj

:

CL /c /AS /DANSI $*.e

t table. obi

i

ttable.c

get opt .obj

i

getopt .c

getcirc . obj

:

getcirc.c

token .obj

:

token.

c

snap . obj

:

snap .

c

table . obj

:

table.c

val2str.obj: val2str .c

func2str . obj

:

funcZstr .

c

seq2str . obj

:

seq2str .

c

time2str . obj

i

time2str .

c

stubs. obj

:

stubs.

c

fatal . obj

:

fatal .c

longsiml . obj: longsiml -c

forward . obj

:

forward .

c

readtime .obj

:

readtime.c

ttable.exe: ttable.obj ttable.lnk \
getopt.obj table. obj token. obj getcirc.obj val2str.obj \
func2str.obj seq2str.obj time2str.obj stubs. obj fatal. obj \
longsiml. obj forward. obj readtime.obj snap. obj
LINK attable.lnk

134

C.25 Unix Makefile

This makefile is used for UnXx systems.
tt The CFLAGS macro should contain any options to the compiler needed
tt for the various systems.
The symbol BSD must be defined for systems derived from Berkeley
Unix. SYSV must be defined for System V systems.

This makefile has been tested on SUNOS 4 . on a Sun 3/60,
and AT8T System V on an AT8T 3B15.

#Uncomment the following CFLAGS definition for the Sun.
CFLAGS -0 -DBSD

(tUncomment the following CFLAGS definition for the 3B15.
tCFLAGS = -DSYSV

all: ttable symsim

ttable: ttable. o table. o token. o \
getcirc.o func2str.o val2str.o seq2str.o time2str.o \
stubs. o fatal. o longsiml.o forward. o readtime.o snap .

o

cc S(CFLAGS) -o S3 ttable. o table. o token. o \
getcirc.o func2str.o val2str.o seq2str.o time2str.o \
stubs. o fatal. o longsiml.o f onward. o readtime.o snap .

o

symsim: and.tbl or.tbl xor.tbl \

symsim. o getcirc.o snap . o func2str.o val2str.o seq2str.o \
time2str.o forward. o fatal. o tsiml.o readtime.o assume. o \
bitops.o token. o table. o addinput.o assmprt.o
cc *(CFLAGS) -o S3 \
symsim. o getcirc.o snap . o func2str.o val2str.o seq2str.o \
time2str.o forward. o fatal. o tsiml.o readtime.o assume . o \
bitops.o token. o table. o addinput.o assmprt.o

and.tbl: ttable
ttable mO and.tcf >and.tbl

or.tbl: ttable
ttable -mO or . tcf >or.tbl

xor.tbl: ttable
ttable -mO xor.tcf >xor.tbl

135

Appendix D

Sample Trivial Circuit Format Files

D.1 HAZARD1.TCF

* This circuit is the simple static 0-hazard generator.

element II input
INV1 AND1

element INV1 inverter
AND1

element AND1 and
01

element 01 output

D.2 TWOWAY.TCF

This circuit is the simple static 0-hazard generator
with two inverters in the top path. This demonstrates
ft a hazard for both transitions.

element II input
INV1 INV2

element INV1 inverter
AND1

element INVZ inverter
INV3

element INV3 inverter
AND1

element AND1 and
01

element 01 output

- 136-

D.3 HAZBLOCK.TCF

This circuit is the standard static 0-hazard generator with
its output "blocked" by an AND gate.

element II input
INV1 AND1

element AND1 and
INV2

element INV1 inverter
AND1

element INV2 inverter
AND2

element 12 input
AND2

element AND2 and
01

element 01 output

D.4 AND.TCF

9 A single AND gate
This circuit is used by TTABLE to generate tables used by SYMSIM.

element 01 output
element GATE and

01
element II input

GATE
element 12 input

GATE

D.5 OR.TCF

A single OR gate
t This circuit is used by TTABLE to generate tables used by SYMSIM.

element 01 output
element GATE OR

01
element II input

GATE
element 12 input

GATE

137

D.6 XOR.TCF

t A single XOR gate
t This circuit is used by TTABLE to generate tables used by SYMSIM.

element 01 output
element GATE XOR

01
element II input

GATE
element 12 input

GATE

138

Appendix E

Sample Time Information Files

E.1 TIMEINFO.ALS

7<iALS TTL prop, delays. Logic Databook, vol. II, Nat. Semi. 1984

!
T
u
S f

iC
St line of this file is a title line wh i<:h is printed

when the file is read.

Characters (like these) following a pound sign (#) are ignored.

It cJMc?M
tS

?!
data follow

' one f <"~ each type of gate used by
SYMSIM. The data must be listed in the order below, i e
Inverter, AND, OR, NAND, NOR, and finally XOR.

TPLHmin TPLHmax TPHLmin TPHLmax Function IC Number
»•' J!" 20 8.0 * Inverter DM74ALS04

••J "-J 3.0 10.0 # AND DM74ALS08

5-J IJ.O 3.0 12.0 tl OR DM74ALS3Z
•" "• zo 8.0 « NAND DM74ALS00

, T .

30
.

12 °. 3 -<> 1C0 # NOR DM74ALS02
This next one is worst-case for the two cases of whether

the other input is high or low.
30 17 ° 3.0 1Z.0 # XOR DM74ALS3Z

The above numbers are for VC04.5V-5.5V, RL=500 ohms, CL = 50 pF

E.2 TIMEINFO.AS

74AS TTL prop, delays, Logic Databook, vol. II, Nat. Semi. 1984

I The first line of this file is a title line which is printed
when the file as read.

Characters (like these) following a pound sign (#) are ignored.

SYMS?M
tS

?K "?i
foll

?
w

'
°ne J" each type of gate used by

SYMSIM. The data must be listed in the order below, i.e ,# Inverter, AND, OR, NAND, NOR, and finally XOR.

TPLHmin TPLHmax TPHLmin TPHLmax Function IC Number10 50 1 ° <*0 # Inverter DM74AS04

- 139-

1-0 5.5 1.0 5.5 # AND DM74AS08
10 5.8 1.0 5.8 # OR DM74AS32
10 4.5 1.0 4.0 ft NAND DM71AS00
10 4.5 1.0 4.5 #NOR DM74AS02

ft This next one is a total guess -- it is missing in the book'
10 5.8 1.0 5.8 ft XOR DM74AS32

The above numbers are for VCC=4 . 5V-5 . 5V , RL = 500 ohms, CL = 50 pF

E.3 TIMEINFO.LS

74LS TTL prop, delays. Logic Databook , vol. II, Nat. Semi. 1984

* The first line of this file is a title line which is printed
ft when the file is read.

ft Characters (like these) following a pound sign (#) are ignored.

ft Six sets of data follow, one for each type of gate used by
ft SYMSIM. The data must be listed in the order below, i.e.,
* Inverter, AND, OR, NAND, NOR, and finally XOR

.

ft TPLHmin TPLHmax TPHLmin TPHLmax Function IC Number
*•" 150 4.0 15.0 ft Inverter DM74LS04
•• 18.0 5.0 18.0 ft AND DM74LS08
*-0 15.0 4.0 15.0 ft OR DM74LS32
*.0 15.0 4.0 15.0 ft NAND DM74LS00
4-0 18.0 <i.O 15.0 ft NOR DM74LS02

ft This next one is worst-case for the two cases of
ft whether the other input is high or low.
ft Furthermore, the mins are guesses -- they aren't in the book.

40 23.0 <i.O 21.0 ft XOR DM74LS32

* The above numbers are for VCC 5.0V, RL = 2K ohms, CL • 50 pF

E.4 TIMEINFO.O

Zero propagation delay model

ft The first line of this file is a title line which is printed
ft when the file is read.

ft Characters (like these) following a pound sign (ft) are ignored.

ft Six sets of data follow, one for each type of gate used by
ft SYMSIM. The data must be listed in the order below, i.e.,
ft Inverter, AND, OR, NAND, NOR, and finally XOR.

ft This is mythical zero-delay information.

ft TPLHmin TPLHmax TPHLmin TPHLmax Function IC Number00 0.0 0.0 0.0 ft Inverter
00 0.0 0.0 0.0 ft AND

- 140-

0.0 0.0 0.0 0.0 S OR
0.0 0.0 0.0 0.0 11 NAND
0.0 0.0 0.0 0.0 * NOR
0.0 0.0 0.0 0.0 # XOR

- 141 -

BIBLIOGRAPHY

1. E. I). Eichelberger, "Hazard detection in combinational and sequential

switching circuits", IBM Journal, Vol. 9, No. 3, March 1965, pp. 90-99.

2. M. Yocli and S. Rinon, "Application of ternary algebra to the study of static

hazards", Journal of the Association of Computing Machinery, Vol. II, Janu-

ary 1964, pp. 84-87.

3. D. E. Muller, "Treatment or transition signals in electronic switching circuits

by algebraic methods", IRE Trans. Electron. Comput., Vol. EC-8, September

1959, p. 401.

4. M, A. Brcuer and A. D, Friedman, Diagnosis and Reliable Design of Digital

Systems, Rockville, Maryland: Computer Science Press, 1976.

5. G. Fantauzzi, "An algebraic model for the analysis of logical circuits", IEEE

Transactions on Computers, Vol. C-23, No. 6, June 1974, pp. 576-581.

6. E. J. McCluskey, Logic Design Principles, Englewood Cliffs, New Jersey:

Prentice-Hall. 1986.

7. N. P. Jouppi, "Timing analysis and performance improvement of MOS VLSI

designs", IEEE Transactions of Computer-Aided Design, Vol. CAD-6, No. 4,

July 1987, pp. 650-665.

8. National Semiconductor Corporation, Logic Dalabook, Volume II, Santa

Clara, CA: 1984.

142

10

B. Harding, "Timing verifiers branch out to overcome analysis constraints",

Computer Design, May I, 1989, pp. 53-56.

R. W. Hon, "Dynamic analysis tools", Computer Aidsfor VLSI Design,

Addison-Wesley Publishing Company, 1987.

11. Huffman D. A., "The synthesis of sequential circuits", ./. Franklin Inst., Vol.

257, 1954, pp. 161-191 and 275-303.

12. Texas Instruments Incorporated, The TTL Data Book for Design Engineers,

Dallas, TX: 1981.

- 141

Automatic Detection of Hazards

in

Digital Logic Circuits

by

Neil C. Erdwien

BSEE, Kansas State University, 1984

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the

the requirements for the degree

MASTER OF SCIENCE

Electrical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

ABSTRACT

This thesis describes SYMSIM, a symbolic simulator for digital logic circuits that is

capable of detecting all static and dynamic hazards in combinational circuits.

SYMSIM is based on a conventional simulator with a realistic propagation delay

model that provides distinct propagation delays for different gate types as well as

separate rise and fall times. An exhaustive search algorithm drives the simulator to

examine all hazard possibilities. Time values are maintained as symbolic values

during simulation, hence the name SYMSIM. Hazards are propagated through the

network, allowing hazard detections to be suppressed if the hazard never reaches an

output. These methods could be extended to sequential circuits although the

execution time would suffer.

•

