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Abstract 

Field experiments were conducted in 2016 and 2017 across nine locations in Kansas to 

develop and evaluate a procedure for variable-rate applications (VRA) of soil-applied herbicides 

in corn and grain sorghum based on soil properties. Soil electrical conductivity (EC) and soil 

organic matter (SOM) data were collected at each location using a Veris MSP3. Soil EC was 

correlated to soil texture and herbicide algorithms were developed for two different tank-mixes 

for corn and for grain sorghum. Three algorithms were evaluated in the field for each tank-mix 

based only on SOM (alg-SOM), SOM and soil texture (alg-SOMtex), or a flat rate based on the 

average soil properties for the entire field. Rates for each tank-mix were based on the maximum 

usage rate (MUR) allowed. When soil variability across a field was adequate, VRA based on 

algorithms were effective at five of the nine locations. Across these five locations, alg-SOM 

resulted in the same or better weed control at 8 weeks after treatment (WAT) compared to the 

flat rate and reduced herbicide use by 12% for both tank-mixes in grain sorghum. Using alg-

SOMtex reduced herbicide use by 24% in grain sorghum, but had less weed control at several 

locations compared to the flat rate. VRA was practical at Morganville, KS in 2017. Both alg-

SOM and alg-SOMtex increased the amount of herbicide applied compared to the flat rate, but 

alg-SOMtex resulted in greater Palmer amaranth control (92%) compared to the flat rate (71%). 

Separate greenhouse and field experiments were conducted in 2017 to evaluate the activity of 

soil-applied herbicides on controlling HPPD-inhibitor resistant Palmer amaranth populations. A 

dose-response greenhouse experiment of soil-applied mesotrione and isoxaflutole was performed 

using resistant (Stafford County) and susceptible (Riley County) Palmer amaranth populations. 

Reduced susceptibility was observed with resistant-to-susceptible ratios being 7.2 for mesotrione 

and 4.1 for isoxaflutole. Field experiments were conducted at two locations in KS with one field 



  

having HPPD-resistant (Barton County) and the other HPPD-susceptible (Reno County) Palmer 

amaranth populations. Treatments were three HPPD-inhibiting herbicides [mesotrione (¼X, ½X, 

and 1X = 210 g ha-1), isoxaflutole (½X and 1X = 105 g ha-1), and bicyclopyrone (1X = 50 g ha-1 

and 2X in formulated tank-mix with bromoxynil at 700 and 1400 g ha-1)] in comparison to other 

soil-applied herbicides commonly used for Palmer amaranth control. HPPD-inhibitor treatments 

were applied alone and tank-mixed with atrazine (2240 g ha-1). Overall, control of Palmer 

amaranth was reduced for HPPD-resistant compared to -susceptible populations. All treatments 

of mesotrione and isoxaflutole at 4 WAT resulted in 81 to 99% control in Reno County, but only 

55 to 89% control in Barton County. For mesotrione and isoxaflutole treatments across both 

sites, Palmer amaranth control at 4 WAT was greater when 1X was applied (89%) compared to 

0.5X (81%). Tank-mixing atrazine with mesotrione and isoxaflutole increased Palmer amaranth 

control from 82 to 88%. Soil-applied HPPD-inhibitors were most effective when applied at field 

usage rate in combination with atrazine for both populations. When using soil-applied HPPD-

inhibitors, management recommendations should be the same regardless of Palmer amaranth 

population. 
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Chapter 1 - Literature Review 

 Impact of Weeds 

To maximize the full potential of a crop and produce enough food to feed an 

exponentially growing population, producers must control pests. One of the most important pests 

that must be controlled are weeds. Weeds have been present since the beginning of time as God 

cursed the ground and promised the first man thorns and thistles (Genesis 3:18, New 

International Version). Weeds virtually exist in almost all fields due to their ability to persist and 

spread rapidly. Weeds compete against crops for light, water, and nutrients making management 

vital to prevent crop quality and yield loss. In Canada and the United States, it is estimated that 

50% of corn and 52% soybean production would be lost to weeds if not controlled, costing 

approximately $43 billion annually (Soltani et al. 2016, 2017). The impact of weeds should not 

be overlooked and the future of sustainable agriculture across all crops relies on effective weed 

management systems (Mortensen et al. 2012).  

Weeds must be managed to minimize the impact on crop yields. Palmer amaranth 

(Amaranthus palmeri S. Wats.), a common weed in Kansas and the most troublesome weed in 

the United States, can greatly reduce yields if not controlled (Van Wychen 2016). In grain 

sorghum, yields were reduced by 69% with dense populations of Palmer amaranth (Graham et al. 

1988). In another study it was estimated that the range of grain sorghum yield loss due to weeds 

is between 30 and 50% but can be greater in extreme cases (Stahlman and Wicks 2000). Corn 

yield losses due to Palmer amaranth range from 11 to 91% when weed density was 0.5 to 8.0 

plants m-2 of crop row (Massinga et al. 2001). Corn yield losses ranged from 11 to 74% due to 

competition of a related pigweed species, common waterhemp (Amaranthus rudis Sauer)  

(Steckel and Sprague 2004). In these studies the weed density was a major factor, but another 
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critical factor was the relative emergence timing. The competitive success of a weed is highly 

dependent on the time of germination in addition to the density and relative growth rate of the 

plant (Radosevich et al. 2007). Massinga et al. (2001) determined that emergence timing had a 

larger impact than the weed density on corn yield when dealing with Palmer amaranth. Weeds 

that emerged at time of planting caused 90% yield loss at high densities compared to 48% when 

the weeds emerged later after the crop was established (Massinga et al. 2001). Regardless of the 

weed species and crop that is being impacted, weeds that emerge with the crop will have the 

largest impact on yield (Hall et al. 1992; Knezevic et al. 1994; Massinga et al. 2001; Steckel and 

Sprague 2004). 

The critical period for weed control is the time during the crops development cycle where 

weeds must be controlled to prevent yield loss (Nieto et al. 1968). In many cases, the critical 

period of weed control starts with early season weed pressure, especially with highly competitive 

weeds, as they can be extremely detrimental to yield loss. Hall et al. (1992) found that the critical 

weed control period in corn starts as soon as the V3 development stage and ended at V14. In a 

similar study, corn yield was reduced by weeds between emergence until the weed reached a 

height of 15 cm (Carey and Kells 1995). Common waterhemp reduced corn yield by 50% before 

the V6 stage in corn and the critical weed-free period was between V4 and V10 (Steckel and 

Sprague 2004). In grain sorghum a similar trend was observed with yield loss beginning two 

weeks after planting. Yield losses were 2, 5, 16, 24, 38, and 55% when weeds were removed 2, 

3, 4, 5, 6, and 8 weeks after planting (Burnside and Wicks 1967). With limited postemergence 

(POST) options for weed control in grain sorghum, early weed control must be achieved with a 

preemergence (PRE) residual herbicide. In addition to causing yield loss, lack of early-season 

weed control can cause future problems such as weed seed production and harvest difficulties. 
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Steckel and Sprague (2004) reported that common waterhemp seed production and biomass were 

greatest for weeds that emerged at the same time as the crop, compared to later. If the early 

emerging weeds were not controlled, they would have the ability to produce a large amount of 

seed and increase the population in future years. When Palmer amaranth emerged with corn, the 

early-season weeds produced between 140,000 and 514,000 seeds m-2 compared to the weed that 

emerged four weeks later that only produced between 1,800 and 91,000 seeds m-2  (Massinga et 

al. 2001). As producers try to control weeds, early season weed control practices such as using a 

soil-applied herbicide must be implemented.  

 Herbicide Weed Control Tactics 

Currently, herbicides are the major pesticide input in agriculture and are an integral part 

of crop production. In 2016, 97% of all land area planted to corn in the U.S. was treated with 

herbicide and this was consistent for many other crops (USDA-NASS 2016). In 2011, 86% of 

land planted to grain sorghum had herbicide applied (USDA-NASS 2011). Herbicide is vital to 

the success of farming, but must be carefully utilized to minimize potential risks. More recently, 

herbicide dependence has led to and will continue to lead to the evolution and spread of 

herbicide-resistant weeds. Globally, there are 487 unique cases of herbicide resistance across 253 

species (Heap 2018). There are 26 unique cases of herbicide resistance spanning across 6 

herbicide sites of action in Kansas alone (Heap 2018).  

With the increase in herbicide-resistant weed species that have extended emergence 

patterns, producers are being encouraged to use soil-applied herbicides with residual activity 

(Norsworthy et al. 2012). According to the 2017 Kansas Corn Management guide, preemergence 

(PRE) herbicide applications are essential to use for controlling resistant weeds before and as 

they emerge (Ciampitti 2017). Thompson (2014) reported that PRE herbicides are the only way 
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to manage grasses and are the most effective control method for broadleaves in grain sorghum. 

Soil-applied herbicides have also been documented to control many herbicide-resistant 

populations of multiple species and in several cases control herbicide-resistant weeds of the same 

site of action. (Hausman et al. 2013, Shoup and Al-Khatib 2004, Thompson 2014).  Producers 

have noticed the benefit of PRE herbicides and the adoption of these herbicides has increased. 

Kohrt and Sprague (2017) reported that 10 different soil-applied herbicides provided 89 to 98% 

control 72 days after planting (DAP) of a multiple herbicide-resistant population of Palmer 

amaranth. In another study, it was reported that soil-applied herbicides were effective at 

controlling herbicide-resistant weed species and reduce the risk of selecting for new herbicide-

resistant weed species (Johnson et al. 2012).  Atrazine, acetochlor, and s-metolachlor and they 

were applied to 78, 26, and 38% of all corn acres, respectively in Kansas in 2016 (USDA-NASS 

2016). The percentage of acres receiving residual herbicides was much greater in grain sorghum 

due to limited POST herbicide options. Atrazine, dimethenamid-P, s-metolachlor, and 

saflufenacil were applied to 81, 20, 50, and 7% of grain sorghum acres in Kansas, respectively 

(USDA-NASS 2011). Regardless of the intended crop, producers will continue to be encouraged 

to use soil-applied herbicides in their management system to manage weed species, but this will 

result in increasing the environmental load of soil-applied herbicides.   

 Soil-Applied HPPD-Inhibitor Herbicides 

More recently, 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors have gained 

popularity and are extensively used for weed control in both PRE and POST applications 

(Bollman et al. 2008, Mitchell et al. 2001). Mesotrione and isoxaflutole are two of the most used 

HPPD-inhibitors due to wide spectrum of weed control, specifically Amaranthus spp. and the 

flexibility in herbicide application timing (Bollman et al. 2008, Luscombe and Pallett 1996, 
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Mitchell et al. 2001). Sutton et al. (2002) reported that HPPD-inhibitor herbicides are highly 

effective at controlling photosystem II inhibitors (PSII) and acetolactate synthase (ALS) resistant 

weeds. HPPD-inhibitor herbicides provided 80 to 100% control of Palmer amaranth when 

applied PRE in Kansas and Missouri (Johnson et al. 2012). Synergism has also been documented 

when mixing HPPD-inhibitor herbicides with PSII inhibitors from both PRE and POST 

applications for controlling herbicide-resistant weeds and specifically controlling HPPD-

inhibitor resistant weeds (Armel et al. 2005, Hugie et al. 2008, Jhala et al. 2014, Thompson 

2014, Walsh et al. 2012). In Stafford County, KS, Palmer amaranth was first documented and 

confirmed to be resistant to foliar-applied HPPD-inhibitors in 2012 (Thompson et al. 2012). This 

population is also resistant to ALS and PSII inhibiting herbicides. An additional HPPD-inhibitor 

resistant Palmer amaranth population was also documented in Nebraska (Sandell et al. 2012). 

Several populations of HPPD-inhibitor resistant waterhemp populations have also been 

documented in Illinois and Iowa (Hausman et al. 2011, McMullan and Green 2011). Foliar 

applications of HPPD-inhibitors were providing poor control of HPPD-inhibitor resistant 

species, but PRE applications were still providing adequate control at high rates (Thompson 

2014). Many growers are using soil-applied HPPD-inhibitor herbicides for resistant weed 

management and with new HPPD-inhibitor tolerant traits in soybeans, the number of acres 

treated with HPPD-inhibitor herbicides will likely increase. 

 Soil and Herbicide Interactions 

The efficacy of soil-applied herbicides is impacted by many factors including herbicide 

properties and formulation, herbicide rate, application technique, climate conditions, and soil 

properties (Leistra and Green 1990). Herbicide formulations and application techniques can be 

adjusted, but the soil properties and climate conditions cannot, thus creating complexity of 
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efficacy dealing with soil-applied herbicides. Regardless, having an understanding of the 

interaction between specific herbicides and these factors is important to predicting herbicide 

effectiveness and avoiding non-target effects on crops and the environment. Duration of control 

is important for overall weed control effectiveness and is based on persistence of the herbicide in 

the soil (Buchanan and Hiltbold 1973). Herbicides that persist too long can have adverse effects 

on sequential crops given a specific field condition, whereas herbicides that degrade quickly are 

not effective for extended weed control (Curran 2016, Fink and Fletchall 1969, Peterson and 

Arnold 1985). For many herbicides, the relationships between specific soil properties and 

herbicide bioavailability are understood and have been utilized for creating herbicide labels to 

help producers develop their weed control strategy.  

The rate of an individual soil-applied herbicide required to achieve adequate control of 

weed species is often related to the capacity of a specific soil to adsorb the herbicide (Peter and 

Weber 1985). Adsorption is the surface process in soil where a dissolved substance (herbicide) is 

accumulated at highly reactive solid interfaces (soil surface) and is the most important physical-

chemical process for retaining substances in the soil environment (Essington 2015). Herbicide 

adsorption can be due to the charge unbalance between herbicide and soil binding sites, 

influencing the environmental fate of a herbicide, activity for plant uptake, persistence in the 

soil, and potential for leaching (Hartlzer 2013, Laabs and Amelung 2005, Zemolin et al. 2014). 

Many nonionic herbicides can also be adsorbed through Van der Waals forces, ligand exchange, 

covalent bonding, and other complexes (Berry and Boyd 1985, Dec and Bollag 1997, Zemolin et 

al. 2014). Researchers have developed analysis techniques and different coefficients to measure 

the amount of herbicide that is adsorbed on a particular soil (Weber et al. 2000). Adsorption is 

measured by soil water-herbicide partitioning coefficient (Kd) as the amount of herbicide sorbed 
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by the soil and can be calculated by taking the difference of the total initial herbicide 

concentration and the herbicide concentration in the soil solution after equilibration. To account 

for the impact of soil organic carbon (SOC), the organic carbon partition coefficient (Koc) is 

calculated by dividing the Kd  by the fraction of organic carbon (foc) to give a more useful value 

to understand herbicide sorption (Weber et al. 2000). The average Koc for several commonly 

applied herbicides are 100, 125, and 200 for atrazine, dimethenamid-P, and s-metolachlor, 

respectively (Shaner 2014). Measuring the soil-sorption coefficients allows for comparisons of 

different herbicides and gives a predictor of how each compound will behave in the soil. As 

herbicides become adsorbed to soil particles they become less available and are less effective for 

weed control, but also are less likely to leach into groundwater. Many studies have been 

established to understand the specific herbicide behavior across diverse soil properties proving 

that herbicide sorption decreases the potential for off target movement (Blumhorst et al. 1990; 

Weber et al. 2004; Westra et al. 2014). 

Once applied to the soil, adsorption strongly influences the amount of herbicide that is 

active in the soil for plant uptake and weed control. Adsorption for a particular herbicide is 

driven by many soil factors including soil organic matter (SOM), soil texture, electrical 

conductivity (EC), soil pH, CEC, and soil water content (Blackshaw et al. 1994, Desutter et al. 

2003, Kerr et al. 2004, Williams et al. 2002).  

SOM is generally considered the most important soil property impacting herbicide 

adsorption. Westra et al. (2014) reported that dimethenamid-P, pyroxasulfone, and s-metolachlor 

adsorption were highly correlated to SOM (R2>0.89). In another study, SOM affected 

saflufenacil adsorption and phytotoxicity of canola (Gannon et al. 2014). Weber et al. (2004) 

discovered that sorption of both weak acid and weak base herbicides were strongly related to 
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SOM and that the sorption of all herbicides tested were correlated with SOM. Across these three 

studies, herbicide bioavailability decreased with increasing SOM. Atrazine and other triazine 

herbicides showed the same inverse relationship between bioavailability and increasing SOM, 

and SOM was directly correlated with atrazine adsorption (R2=0.94) (Rahman and Matthews 

1979). S-metolachlor sorption was strongly correlated to SOM with greater amounts of SOM 

leading to more herbicide in solution (Gannon et al. 2013). An increase in SOM increased 

isoxaflutole sorption and was directly correlated (R2=0.99) (Mitra et al. 1999). As SOM 

increases, higher rates of many soil-applied herbicides are required for acceptable weed control 

(Blackshaw et al. 1998; Blumhorst et al. 1990). 

Soil texture and particle size can also play a role in herbicide adsorption. The sorption 

coefficient for dimethenamid-P, pyroxasulfone, and s-metolachlor all resulted in significant 

correlations to sand and silt percentage (Westra et al. 2015). Clay content was found to have a 

direct correlation with sorption coefficient for four herbicide families (Weber et al. 2004). In a 

similar study, atrazine sorption was directly correlated to clay content and had a large effect on 

herbicide sorption (Desutter et al. 2003). Adsorption of metolachlor in the Ap horizon of a silt 

loam soil proved to have a significant correlation to clay content, but not as highly correlated as 

SOM (Wood et al. 1987).  

For many herbicides, the soil pH has a direct impact on herbicide adsorption. Adsorption 

of atrazine, a weak-base herbicide, increases in soils with low pH as the herbicide becomes 

cationic (McGlamery and Slife 1966). In high pH conditions, atrazine has a neutral charge, 

decreasing the amount of binding to soil particles. Mesotrione, a weak-acid herbicide, becomes 

less adsorbed as pH increases due to chemical dissociation of mesotrione to an anion with a 

lower potential for adsorption (Dyson et al. 2002). However, for several, common soil-applied 
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herbicides such as s-metolachlor and dimethenamid-P, pH had no influence on adsorption 

(Westra et al. 2015). EC and CEC are in many cases highly correlated with other soil properties, 

but have an influence on herbicide adsorption. EC has been correlated with adsorption (R2 = 

0.86), and was a significant soil factor in determining adsorption of diuron (Mustafa and Gamar 

1972). Weber and Peter (1982) reported herbicide adsorption was positively correlated with CEC 

with an R2 = 0.84. The CEC proved to be an important factor in herbicide adsorption in soils with 

low SOM (Mustafa and Gamar 1972).  Herbicide adsorption and activity is influenced by soil 

moisture as efficacy of many soil-applied herbicides decreases as soil becomes dry. Moyer 

(1987) reported decreased herbicide uptake by plants in dry conditions due to increased 

adsorption and decreased mobility of herbicide in the soil. Metribuzin control of downy brome 

was reduced when soil became moderately dry due to increased adsorption (Blackshaw et al. 

1994). The influence of many soil properties on adsorption and activity of many soil-applied 

herbicides have been widely studied, creating an opportunity for site specific management in 

fields with soil variability. 

 Site Specific Weed Management  

Integrated weed management (IWM) is a key approach for effectively controlling weeds, 

while minimizing dependence and other economic losses associated with the use of herbicides 

(Shaw 1982; Swanton et al. 1991). IWM involves many different weed control techniques 

including cultural, mechanical, biological, and chemical methods. In many cases, precision 

agriculture is not considered a management tool to be utilized in an IWM system, but impacts 

multiple tools. The use of precision agriculture is not a new idea and has been utilized since the 

early 1990’s. Until more recently, precision technologies were not directly being used for weed 

control, but rather to increase efficiency of weed control strategies. With the introduction of new 
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variable rate sprayer technologies (VRT), site-specific weed management (SSWM) became an 

IWM component focused on reducing herbicide inputs by targeting herbicide only where weeds 

were present.  

Early SSWM research was predominately based on the fact that weeds are spatially 

distributed in patches and that most farmers and consultants are aware of areas of the field with 

persistent weed problems (Cardina et al. 1995; Dieleman and Mortensen 1999; Johnson et al. 

1996). Based on this principle, it was theorized that herbicide should only be applied where 

weeds were predicted to cause economic loss and that reduced rates could be applied in areas of 

low density populations (Dieleman et al. 1996; Gerhards et al. 1997). The use of reduced 

herbicide rates can be effective, but one study showed that reduced applications of dicamba and 

imazethapyr increased the amount of seed production of surviving plants (Bussan et al. 2001). 

This could be even more detrimental with weeds species like Palmer amaranth that produces a 

greater amount of seed (Bussan et al. 2001). Registered rates of herbicides are set to provide high 

mortality of given weed species across a range of environments. Low rates of postemergence 

herbicides also allow survivors to possess minor resistance traits leading to rapid herbicide 

resistance evolution (Manalil et al. 2011).SSWM applications based on weeds already growing 

in a field or spatial patterns are very difficult to do on a large scale, due to intensive sampling 

required.  

Another approach to SSWM is from a PRE application dealing with maximizing 

herbicide efficacy of soil-applied herbicides. Many soil-applied herbicide labels have various 

application rates based on soil properties, specifically SOM and soil texture (Anonymous 2016; 

2017). As SOM increases and texture becomes finer, higher rates of the herbicide need to be 

applied. In fields with soil variability, the chances of off-labeled applications are likely to 
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happen, increasing the likelihood of crop injury, poor weed control, carryover, and 

environmental impacts. Utilizing SSWM into the soil-applied application system will minimize 

undesired outcomes, but requires fine and accurate datasets of the soil properties within a field. 

 Soil Sensing 

In order for successful implementation of precision agriculture technologies, real-time 

sensing systems are needed to capture useable field data. Understanding within-field variability 

allows producers to make better decisions on a much more detailed basis, potentially reducing 

input costs and maximizing yields (Lund et al. 1999). Traditional soil sampling and grid 

sampling techniques have been limited by cost of implementation and labor increasing the 

usefulness for on-the-go sensors (Bianchini and Mallarino 2002; Lauzon et al. 2005). In addition, 

obtaining more points of data by using a sensor has proven advantageous for spatial accuracy 

even if individual sampling point accuracy is lower (Sudduth et al. 1997). Efficient methods of 

measuring soil properties on-the-go have been developed utilizing sensors that collect dense 

datasets while traveling across a field. In agriculture, the main soil properties that impact 

management discussions include but are not limited to: soil organic matter (SOM), soil electrical 

conductivity (EC), pH, soil texture, cation exchange capacity (CEC), and salinity. 

Soil EC has become a commonly used method to measure soil variability across a field to 

create management zones and assist in many agronomic practices.  The soil profile EC sensor-

based measurements also provide an indirect relationship with many physical and chemical soil 

properties. Some of these properties include: clay content, CEC, soil salinity, soil moisture, clay 

minerology, and SOM (Rhoades et al. 1976; Sudduth et al. 2005). Measuring EC for determining 

soil texture is based on the established principle that smaller soil particles such as clay conduct 

greater current than that of coarse sand particles (Friedman 2005, Lund et al. 1999, Williams and 
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Hoey 1987). Across the United States, EC measurements have been collected from many 

different regions and soil types with the purpose of establishing a relationship between EC and 

soil properties. Across 12 fields in six different states, EC had the strongest correlation with clay 

content and CEC (r2 > 0.55) (Sudduth et al. 2005). In a similar study, shallow EC measurements 

were highly correlated with clay content and soil texture from depths between 0 and 25 cm (r2 = 

0.71) (Doolittle and Indorante 2002). Shallow EC provide useful information in determining clay 

content and extractable calcium content in the U.S. Southern High Plains, particularly when 

additional spatial data about soil types is included (Bronson et al. 2005). The correlations with 

many other soil properties (sand, soil moisture, organic C) were much more variable across 

multiple fields (Sudduth et al. 2005). By having such a strong relationship with clay content, EC 

values can be generalized into soil texture classes for a given field based on calibrated soil 

samples.  

SOM is another important soil property related to crop growth and is necessary for many 

site-specific management practices. SOM impacts many properties in the soil and is a major 

component in soil structure, nutrient availability, water holding capacity, and overall soil health 

(Bot and Benites 2005). In addition, SOM has a positive impact on the productivity of crops 

grown in the Great Plains (Bauer and Black 1994). By having an accurate SOM map, growers 

can be aided in management strategies, including nitrogen applications, seed populations, and 

soil-applied herbicides (Kweon et al. 2013). Soil color is many times an evident way of 

estimating SOM and was able to accurately estimate the SOM content of silt loam soils in 

Indiana (Steinhardt and Franzmeier 1979). In most cases, darker colored soils contain more SOM 

compared to light colored soils. This relationship is based on the fact that the amount of SOM 

affects the quantity of light reflectance (Shonk et al. 1991).  
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While changes can be detected visually, using multispectral sensors using both visible 

and near-infrared (VIS-NIR) bandwidths can provide a much more accurate quantitative value of 

SOM. Initially, spectroscopy was highly correlated to SOM in the laboratory setting specifically 

using the VIS-NIR range (Hummel, J.W. Sudduth; K.A. Hollinger 2001; Stoner and 

Baumgardner 1981). Shonk et al. (1991) found high correlations for soils with SOM ranging 1 to 

6% using red LED (660 nm). Other lab studies utilizing various band combinations to establish 

correlation and calibration techniques, found that wavelengths from 1640 to 2640 nm proved to 

be  effective at estimating SOM (R2 = 0.89) (Sudduth and Hummel 1993). Based on several 

calibration methods and data recorded in the lab, researchers have developed the potential for on-

the-go sensing to predict SOM in the field (Adamchuk et al. 2004; Christy 2008; Shonk et al. 

1991; Sudduth and Hummel 1993). Sudduth and Hummel (1993) reported that a mechanical 

sensor was more effective at predicting CEC compared to highly variable organic carbon data. 

An initial field test across six fields in Indiana using a single wave sensor apparatus, concluded 

that red light was highly effective at predicting SOM (R2 >0.83) (Shonk et al. 1991). A study in 

Kansas, using a sapphire window sensor mounted to the bottom of a shank, provided acceptable 

real-time measurements of predicted SOM (R2 = 0.67). This sensor has been redefined since, 

increasing the accuracy of the device. In several cases, the sensor correlation was extremely 

accurate at predicting SOM based on lab measured calibration cores (R2=0.95) (Kweon 2012). 

On-the-go sensors have more recently become available and have been proven to provide the 

ability to predict SOM.  

Veris technologies have recently developed a commercially available soil optical sensor 

(OpticMapperTM) that collects measurements in the red and near-infrared wavelengths through a 

window that is pressed against the soil (Lund and Maxton 2011). This optical module is mounted 
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between two discs to cut through the soil to allow for consistent pressure and self-cleaning of the 

sensor. Gauge wheels surround the discs to ensure uniform depth of reflectance measurements. 

This multi-sensor system also includes several pairs of coulters to inject current through the soil 

to measure voltage change for EC data. This soil sensor has been tested across many soils, 

including one study on 551 ha on 15 fields in six different states. The SOM calibration results 

were accurate on 12 of the 15 fields with a R2 of 0.80 or higher. For the EC data, there was a 

strong correlation in six of the nine fields with a R2 of 0.86 or higher (Kweon et al. 2013). 

Accurate soil maps are available to many producers, increasing the potential for SSWM.  

Variable-Rate Applications 

Precision agriculture and more specifically variable rate applications (VRA) have been 

utilized for several decades. A common type of VRT system that is available, utilizes pulse 

width modulation (PWM) to change application volume. PMW uses solenoid values to open and 

close for a given time (duty cycle) to automatically adjust flow based on the sprayer controller 

(GopalaPillai et al. 1999). Direct injection sprayers are also available changing the chemical 

concentration based on the intended flow rate for the application (Qiu et al. 1998). From a 

herbicide perspective, VRT research has been predominately focused on the applications before 

the crop has emerged with the idea of only spraying areas of the fields with weeds. These on-the-

go weed detection systems and patch spraying techniques reduced herbicide by approximately 

30-50% (Dammer 2016; Gerhards et al. 1997; Thorp and Tian 2004). Weed-sensing spaying 

systems have worked best in the fallow systems before crop emergence and after crop harvest, 

but have sometimes missed detecting small weeds in high residue areas increasing the chance for 

a follow-up application (Ahrens 1994; Blackshaw et al. 1998). Tank-mixes consisting of both 

contact and systemic herbicides are effective to decrease the selection pressure leading to 
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herbicide resistance, but diminish the ability for variable rate herbicide. The other area of 

variable rate herbicide applications is from the PRE applications timing standpoint, but follows 

the same concept. Currently, VRA can be implemented with many available sprayers on the 

market regardless of application timing. 

 Integrated Approaches 

For VRA applications of soil-applied herbicides to be effective in the field, accurate soil 

sensing, proper herbicide algorithms, and advanced sprayer technology must be integrated 

together. The current combination of automatic tractor guidance and VRT well suits producers 

for site-specific preemergence applications. Weber et al. (1987) developed equations for of soil-

applied herbicides to determine optimal application rate based on the SOM to ensure greater that 

80% weed control. Herbicide labels also included guideline equations directed for precise 

applications directly related to both soil texture and SOM content (Anonymous 2004). Little 

research has been documented for VRA of soil-applied herbicides in regards to feasibility and 

weed control. However, researchers have found herbicide sorption to be spatially variable within 

a field due to the strong correlation with SOM and clay content (Price et al. 2009, Wood et al. 

1987). Other research directed towards environmental quality proved that atrazine sorption is 

spatially variable and allows for the prediction of soils vulnerable to leaching (Novak et al. 

1997). Relationship in the field between atrazine Kd and EC and foc and EC have been strongly 

correlated and can be variable within a field (Jaynes et al. 1995). Based on this information, 

Jaynes et al. (1995) concluded that the leaching potential of atrazine could be predicted by an EC 

map. In a similar study, soil EC was strongly correlated to foc which was correlated to Kd for 

metolachlor and metribuzin (Shaner et al. 2008). Both of these studies highlight the potential of 

using EC maps to predict the sorption and availability of soil-applied herbicides. By having such 
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maps (EC and SOM), there is great potential for developing VRA maps to be more efficient with 

soil-applied herbicides. The implementation of VRA of soil-applied herbicide has proven to be 

effective on 10 ha lettuce fields. Nolte (2011) concluded that VRA of soil-applied herbicide 

increased the number of lettuce heads harvested by 40% all while applying 35% less herbicide 

compared to conventional herbicide applications. In addition, there were no differences in weed 

control. The potential benefits of the integration of site-specific herbicide management into large 

scale farms are vast, including reduced herbicide load on environment, reduced crop injury, 

better weed control, and lower cost (Nordmeyer 2015). 

 Conclusion 

In Kansas alone, there were approximately 2.1 million corn hectares and 1.1 million grain 

sorghum hectares planted in 2017 (NASS, 2017). With significant land area having the potential 

to be impacted by weeds, changes in management can have substantial environment and 

economic effects. In addition, producers have realized the importance of sustainability and 

protecting soils for the future leading to the adoption of no-tillage. Adoption of no-tillage has 

been very rapid increasing from 45 million ha in 1999 to 111 million ha in 2009 (Derpsch et al. 

2010) eliminating tillage control tactics for controlling weeds and increasing the amount of 

herbicide applied. As the use of soil-applied, PRE applications continue to be an effective and 

popular way of controlling weeds in all systems, the herbicide load on the environment will 

continue to increase. Soil-applied herbicide activity is greatly impacted by SOM, soil texture, 

and many other soil properties that can vary greatly within one field. With the advancement of 

new technologies, many growers understand the soil variability for each given field, but most 

herbicides are applied at a uniform rate. The integration of precision agriculture tools with weed 

control strategies will allow herbicides to be applied more efficiently at the right rate in the right 
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place, allowing applicators to closely follow herbicide labels and be more efficient. As a result, a 

procedure that utilizes VRA of soil-applied herbicides based on the underlying soil properties 

should be developed for better SSWM.  

 Research Objective 

The objectives of this research were to 1) Develop and implement a SSWM system to 

evaluate VRA applications of soil-applied herbicides based on SOM and EC for weed control in 

corn and grain sorghum, 2) Evaluate the efficacy of soil-applied HPPD-inhibitor herbicides for 

control of HPPD-inhibitor resistant Palmer amaranth in Kansas.    

 

  



18 

 Literature Cited 

Adamchuk VI, Hummel JW, Morgan MT, Upadhyaya SK (2004) On-the-go soil sensors for 

precision agriculture. Comput. Electron. Agric. 44:71–91 

Ahrens WH (1994) Relative costs of a weed-activated versus conventional sprayer in northern 

great plains fallow. Weed Technol. 8:50–57 

Anonymous (2004) Dual II Magnum® herbicide product label. Publication No. SCP 818A-L1M 

0204. Greensboro, NC: Syngenta Crop Protection, LLC. p10. 

Anonymous (2016) Resicore® herbicide product label. Dow Publication No. D02-415-003. 

Indianapolis, IN: Dow AgroSciences LLC. p5. 

Anonymous (2017) Acuron® herbicide product label. Publication No. SCP 1466A-L1C 0717. 

Greensboro, NC: Syngenta Crop Protection, LLC. p16. 

Armel GR, Hall GJ, Wilson HP, Cullen N (2005) Mesotrione plus atrazine mixtures for control 

of Canada (Cirsium arvense) thistle. Weed Sci. 53:202–211 

Bauer A, Black A (1994) Quantification of the effect of soil organic matter content on soil 

productivity. Soil Sci. Soc. Am. J. 58:185–193 

Berry DF, Boyd SA (1985) Decontamination of soil through enhanced formation of bound 

residues. Environ. Sci. Technol. 19:1132–1133 

Bianchini AA, Mallarino AP (2002) Soil-sampling alternatives and variable-rate liming for a 

soybean-corn rotation. Agron. J. 94:1355–1366 

Blackshaw R, Moyer J, Kozub G (1994) Efficacy of downy brome herbicides as influenced by 

soil properties. Can. J. Plant Sci. 74:177–183 



19 

Blackshaw RE, Molnar LJ, Lindwall CW (1998) Merits of a weed-sensing sprayer to control 

weeds in conservation fallow and cropping systems. Weed Sci. 46:120–126 

Blumhorst MR, Weber JB, Swain LENR (1990) Efficacy of selected herbicides as influenced by 

soil properties. Weed Technol. 4:279–283 

Bollman JD, Boerboom CM, Becker RL, Fritz VA (2008) Efficacy and Tolerance to HPPD-

Inhibiting Herbicides in Sweet Corn. Weed Technol. 22:666–674 

Bot A, Benites J (2005) The importance of soil organic matter: key to drought-resistant soil and 

sustained food production. No. 80. FAO Soils Bull. 80. 

Bronson KF, Booker JD, Officer SJ, Lascano RJ, Maas SJ, Searcy SW, Booker J (2005) 

Apparent electrical conductivity, soil properties and spatial covariance in the U.S. Southern 

High Plains. Precis. Agric. 6:297–311 

Buchanan G, Hiltbold A (1973) Performance and persistence of atrazine. Weed Sci. 21:413–416 

Burnside O, Wicks G (1967) The effect of weed removal treatments on sorghum growth. Weeds 

15:204–207 

Bussan AJ, Boerboom CM, Stoltenberg DE, Bussan AJ, Stoltenberg DE (2001) Response of 

velvetleaf demographic processes to herbicide rate. Weed Sci. 49:22–30 

Cardina J, Sparrow DH., McCoy EL (1995) Analysis of spatial distribution of common 

lambsquarters (Chenopodium album) in no-till soybean (Glycine max) 43:258–268 

Carey JB, Kells JJ (1995) Timing of total postemergence herbicide applications to maximize 

weed control and corn (Zea mays) yield. Weed Technol. 9:356–361 

 



20 

Christy CD (2008) Real-time measurement of soil attributes using on-the-go near infrared 

reflectance spectroscopy. Comput. Electron. Agric. 61:10–19 

Ciampitti IA, Thompson CR, Ruiz Diaz DA, O’Brien DM, Rogers DH, Sharda A, Jardine DJ, 

Zukoff S, McCornack B (2018) Kansas Corn Mangement 2018. Kansas State University, 

December 2017: MF3208. https://www.bookstore.ksre.ksu.edu/pubs/MF3208.pdf 

Curran WS (2016) Persistence of herbicides in soil. Crop. Soils Mag. 49:16–24 

Dammer KH (2016) Real-time variable-rate herbicide application for weed control in carrots. 

Weed Res. 56:237–246 

Dec J, Bollag J-M (1997) Determination of covalent and non-covalent binding interactions 

between xenobiotic chemicals in soil. Soil Sci. 162:858–874 

Derpsch R, Friedrich T, Kassam A, Hongwen L (2010) Current status of adoption of no-till 

farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 3:1–25 

Desutter TM, Clay SA, Clay DE, Desutter TM, Clay SA, Clay DE (2003) Atrazine sorption and 

desorption as affected by aggregate size, particle size, and soil type. Weed Sci. 51:456–462 

Dieleman A, Hamill AS, Fox GC, Swanton CJ (1996) Decision rules for postemergence control 

of pigweed (Amaranthus spp .) in soybean (Glycine max). Weed Sci. 44:126–132 

Dieleman JA, Mortensen DA (1999) Characterizing the spatial pattern of Abutilon theophrasti 

seedling patches. Weed Res. 39:455–467 

Doolittle J, Indorante S (2002) Comparing three geophysical tools for locating sand blows in 

alluvial soils of southeast Missouri. J. soil Water Conserv. 57:175–182 

 



21 

Dyson J, Beulke S, Brown C, Lane M (2002) Adsorption and degradation of the weak acid 

mesotrione in soil and environmental fate implications. J. Environ. Qual. 31:613–618 

Essington ME (2015) Soil and water chemistry: an integrative approach. CRC Press. 311-397 p 

Fink RJ, Fletchall O (1969) Soybean injury from triazine residues in soil. Weed Sci. 17:35–36 

Friedman SP (2005) Soil properties influencing apparent electrical conductivity: A review. 

Comput. Electron. Agric. 46:45–70 

Gannon T, Hixson A, Weber J, Shi W, Yelverton FH, Rufty TW (2013) Sorption of simazine 

and S-metolachlor to soils from a chronosequence of turfgrass systems. Weed Sci. 61:508–

514 

Gannon TW, Hixson AC, Keller KE, Weber JB, Knezevic SZ, Yelverton FH (2014) Soil 

properties influence saflufenacil phytotoxicity. Weed Sci. 62:657–663 

Gerhards R, Wyse-Pester DY, Johnson GA (1997) Characterizing spatial stability of weed 

populations using interpolated maps 45:108–119 

GopalaPillai S, Tian L, Zheng J (1999) Evaluation of a flow control system for site-specific 

herbicide applications. Trans. ASAE 42:863–870 

Graham PL, Steiner JL, Wiese AF (1988) Light absorption and competition in mixed sorghum-

pigweed communities. Agron. J. 80:415–418 

Hall MR, Swanton CJ, Anderson GW (1992) The critical period of weed control in grain corn 

(Zea mays). Weed Sci. 40:441–447 

Hartzler B (2013) Adsorption of soil-applied herbicides. Iowas State University. 

http://www.weeds.iastate.edu/mgmt/2002/soilabsorption.htm. 



22 

Hausman NE, Singh S, Tranel PJ, Riechers DE, Kaundun SS, Polge ND, Thomas DA, Hager AG 

(2011) Resistance to HPPD-inhibiting herbicides in a population of waterhemp 

(Amaranthus tuberculatus) from Illinois, United States. Pest Manag. Sci. 67:258–261 

Hausman NE, Tranel PJ, Riechers DE, Maxwell DJ, Gonzini LC, Hager AG (2013) Responses 

of an HPPD inhibitor-resistant waterhemp (Amaranthus tuberculatus) population to soil-

residual herbicides. Weed Technol. 27:704–711 

Heap I (2018) International survey of herbicide resistant weeds. http://www.weedscience.org/. 

Accessed February 2, 2018 

Hugie JA, Bollero GA, Tranel PJ, Riechers DE (2008) Defining the rate requirements for 

synergism between mesotrione and atrazine in redroot pigweed (Amaranthus retroflexus). 

Weed Sci. 56:265–270 

Hummel, J.W. Sudduth, K.A. Hollinger SE (2001) Soil moisture and organic matter prediction 

of surface and subsurface soils using an NIR soil sensor. Comput. Electron. Agric. 32:149–

165 

Jaynes DB, Novak JM, Moorman TB, Cambardella CA (1995) Estimating herbicide partition 

coefficients from electromagnetic induction measurements. 

Jhala AJ, Sandell LD, Rana N, Kruger GR, Knezevic SZ (2014) Confirmation and control of 

triazine and 4-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide-resistant Palmer 

amaranth (Amaranthus palmeri) in Nebraska. Weed Technol. 28:28–38 

Johnson GA., Mortensen DA, Gotway CA (1996) Spatial and temporal analysis of weed seedling 

populations using geostatistics. Weed Sci. 44:704–710 



23 

Johnson WG, Chahal GS, Regehr DL (2012) Efficacy of various corn herbicides applied preplant 

incorporated and preemergence. Weed Technol. 26:220–229 

Kerr GW, Stahlman PW, Dille JA (2004) Soil pH and cation exchange capacity affects 

sunflower tolerance to sulfentrazone. Weed Technol. 18:243–247 

Knezevic SZ, Weise SF, Swanton CJ (1994) Interference of redroot pigweed (Amaranthus 

retroflexus) in corn (Zea mays). Weed Sci. 42:568–573 

Kohrt JR, Sprague CL (2017) Herbicide management strategies in field corn for a three-way 

herbicide-resistant Palmer amaranth (Amaranthus palmeri) population. Weed Technol. 

31:364–372 

Kweon G (2012) Toward the ultimate soil survey: Sensing multiple soil and landscape properties 

in one pass. Agron. J. 104:1547–1557 

Kweon G, Lund E, Maxton C (2013) Soil organic matter and cation-exchange capacity sensing 

with on-the-go electrical conductivity and optical sensors. Geoderma 199:80–89 

Laabs V, Amelung W (2005) Sorption and aging of corn and soybean pesticides in tropical soils 

of Brazil. J. Agric. Food Chem. 53:7184–7192 

Lauzon JD, O’Halloran IP, Fallow DJ, Von Bertoldi AP, Aspinall D (2005) Spatial variability of 

soil test phosphorus, potassium, and pH of Ontario soils. Agron. J. 97:524–532 

Leistra M, Green RE (1990) Efficacy of soil-applied pesticides. Pages 401-428 in H. H. Chend, 

ed. Pesticides in the Soil Environment. Madison, WI: Soil Science Society of America. 

Lund ED, Christy CD, Drummond PE (1999) Practical applications of soil electrical conductivity 

mapping. 2nd Eur. Conf. Precis. Agric.:1–9 



24 

Lund ED, Maxton C (2011) Proximal sensing of soil organic matter using the Veris 

OpticMapper. Second Glob. Work. Prox. Soil Sens.:76–79 

Luscombe B, Pallett K (1996) Isoxaflutole for weed control in maize. Pestic. Outlook 7:29–32 

Manalil S, Busi R, Renton M, Powles SB (2011) Rapid evolution of herbicide resistance by low 

herbicide dosages. Weed Sci. 59:210–217 

Massinga RA, Currie RS, Horak MJ, Boyer J (2001) Interference of Palmer amaranth in corn. 

Weed Sci. 49:202–208 

McGlamery MD, Slife FW (1966) The adsorption and desorption of atrazine as affected by pH, 

temperature, and concentration. Weeds 14:237–239 

McMullan PM, Green JM (2011) Identification of a tall waterhemp (Amaranthus tuberculatus) 

biotype resistant to HPPD-inhibiting herbicides, atrazine, and thifensulfuron in Iowa. Weed 

Technol. 25:514–518 

Mitchell G, Bartlett DW, Fraser TEM, Hawkes TR, Holt DC, Townson JK, Wichert RA (2001) 

Mesotrione: A new selective herbicide for use in maize. Pest Manag. Sci. 57:120–128 

Mitra S, Bhowmik PC, Xing B (1999) Sorption of isoxaflutole by five different soils varying in 

physical and chemical properties. Pestic. Sci. 55:935–942 

Mortensen DA, Egan JF, Maxwell BD, Ryan MR, Smith RG (2012) Navigating a critical 

juncture for sustainable weed management. Bioscience 62:75–84 

Moyer J (1987) Effect of soil moisture on the efficacy and selectivity of soil-applied herbicides. 

Rev. Weed Sci. 3:19–34 

 



25 

Mustafa MA, Gamar Y (1972) Adsorption and desorption of diuron as a function of soil 

properties. Soil Sci. Soc. Am. J. 36:561–567 

Nieto JH, Bronda MA, Gonzalez JT (1968) Critical periods of the crop growth cycle for 

competition from weeds. PANS Part C 14:159–166 

Nolte KD (2011) The integration of variable rate technologies for a soil-applied herbicide in 

leafy green production. J. Soil Sci. Enviromental Manag. 2:159–166 

Nordmeyer H (2015) Herbicide application in precision farming based on soil organic matter. 

Am. J. Exp. Agric. 8:144–151 

Norsworthy JK, Ward SM, Shaw DR, Llewellyn RS, Nichols RL, Webster TM, Bradley KW, 

Frisvold G, Powles SB, Burgos NR, Witt WW, Barrett M (2012) Reducing the risks of 

herbicide resistance: best management practices and recommendations. Weed Sci. 60:31–62 

Novak JM, Moorman TB, Cambardella CA (1997) Atrazine sorption at the field scale in relation 

to soils and landscape position. J. Environ. Qual. 26:1271–1277 

Peter CJ, Weber JB (1985) Adsorption, mobility, and efficacy of alachlor and metolachlor as 

influenced by soil properties. Weed Sci. 33:874–881 

Peterson MA, Arnold W (1985) Response of rotational crops to soil residues of chlorsulfuron. 

Weed Sci. 34:131–136 

Price OR, Oliver MA, Walker A, Wood M (2009) Estimating the spatial scale of herbicide and 

soil interactions by nested sampling, hierarchical analysis of variance and residual 

maximum likelihood. Environ. Pollut. 157:1689–1696 

 



26 

Qiu W, Watkins GA, Sobolik CJ, Shearer SA (1998) A feasibility study of direct injection for 

variable-rate herbicide application. Trans. ASAE 41:291–299 

Radosevich SR, Holt JS, Ghersa CM (2007) Ecology of weeds and invasive plants: relationship 

to agriculture and natural resource management. Hoboken, New Jersey. John Wiley & Sons. 

183-222 p 

Rahman A., Matthews L. J. (1979) Effect of soil organic matter on the phytotoxicity of thirteen 

s-triazine herbicides. Weed Sci. 27:158–161 

Rhoades JD, Raats PAC, Prather RJ (1976) Effects of liquid-phase electrical conductivity, water 

content, and surface conductivity on bulk soil electrical conductivity. Soil Sci. Soc. Am. J. 

40:651–655 

Sandell LD, Jhala AJ, Kruger GR (2012) Evaluation of a putative HPPD-resistant Palmer 

amaranth (Amaranthus palmeri) population in Nebraska. Proceedings of the 67th Annual 

Meeeting of the North Central Weed Science Society. St. Louis, MO. 67:82 

Shaner DL (2014) Herbicide Handbook 10th Edition, Weed Science Society of America. 40-405 

p 

Shaner DL, Farahani HJ, Buchleiter GW (2008) Predicting and mapping herbicide–soil partition 

coefficients for EPTC, metribuzin, and metolachlor on three Colorado fields. Weed Sci. 

56:133–139 

Shaw W (1982) Integrated weed management systems technology for pest management. Weed 

Sci. 30:30–34 

 



27 

Shonk JL, Gaultney LD, Schulze DG, Van Scoyoc GE (1991) Spectroscopic sensing of soil 

organic matter content. Trans. ASAE 34:1978–1984 

Shoup DE, Al-Khatib K (2004) Control of protoporphyrinogen oxidase inhibitor–resistant 

common waterhemp (Amaranthus rudis) in corn and soybean. Weed Technol. 18:332–340 

Soltani N, Dille JA, Burke IC, Everman WJ, Vangessel MJ, Davis VM, Sikkema PH (2017) 

Perspectives on potential soybean yield losses from weeds in North America. Weed 

Technol. 31:148–154 

Soltani N, Dille JA, Burke IC, Everman WJ, VanGessel MJ, Davis VM, Sikkema PH (2016) 

Potential corn yield losses from weeds in North America. Weed Technol. 30:979–984 

Stahlman PW, Wicks GA (2000) Chapter 3.5 Weeds and their control in grain sorghum. Pages 

535-590 in C. W. Smith and R. A. Fredricksen, eds. Sorghum: Origin, History, Technology, 

and Production. New York: John Wiley & Sons. 

Steckel LE, Sprague CL (2004) Common waterhemp (Amaranthus rudis) interference in corn. 

Weed Sci. 52:359–364 

Steinhardt G, Franzmeier D (1979) Comparison of organic matter content with soil color for silt 

loam soils of Indiana. Commun. Soil Sci. Plant Anaylsis 10:1271–1277 

Stoner ER, Baumgardner MF (1981) Characteristic variations in reflectance of surface soils. Soil 

Sci. Soc. Am. J. 45:1161–1165 

Sudduth KA, Hummel JW (1993) Soil organic matter, cec, and moisture sensing with a portable 

NIR speectrophotometer. Trans. ASABE 36:1571–1582 

 



28 

Sudduth KA, Hummel JW, Birrell SJ (1997) Sensors for site-specific management. Pages 183-

210 in: Pierce, F.J., Sadler, E.J. (Eds.), The State of Site-Specific Management for 

Agriculture. ASA/CSSA/SSSA, Madison, WI. 

Sudduth KA, Kitchen NR, Wiebold WJ, Batchelor WD, Bollero GA, Bullock DG, Clay DE, 

Palm HL, Pierce FJ, Schuler RT, Thelen KD (2005) Relating apparent electrical 

conductivity to soil properties across the north-central USA. Comput. Electron. Agric. 

46:263–283 

Sutton P, Richards C, Buren L, Glasgow L (2002) Activity of mesotrione on resistant weeds in 

maize. Pest Manag. Sci. 58:981–984 

Swanton CJ, Weise SF, Swanton CJ, Weise SF (1991) Integrated weed management : the 

rationale and approach. Weed Technol. 5:657–663 

Thompson CR (2014) Sorghum Weed Management and Update 2014. http://www.agronomy.k-

state.edu/extension/documents/sorghum-schools/2014-sorghum-school/Thompson-

Sorghum-2014.pdf. Accessed: May 10, 2017 

Thompson CR, Peterson DE, Lally NG (2012) Characterization of HPPD-resistant Palmer 

amaranth. Proceeding of the 52nd Annual Conference of Weed Science Society of America. 

Waikoloa, Hawaii. 52:413 

Thorp KR, Tian LF (2004) Performance study of variable-rate herbicide applications based on 

remote sensing imagery. Biosyst. Eng. 88:35–47 

USDA-NASS (2011) United States Department of Agriculture National Agriculture Statistics 

Service Agricultural Chemical Use Survey-Sorghum 



29 

USDA-NASS (2016) United States Department of Agriculture National Agriculture Statistics 

Service Agricultural Chemical Use Survey-Corn. 

https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Chemical_Use/2016_Corn_

Potatoes/ChemUseHighlights_Corn_2016.pdf 

Walsh MJ, Stratford K, Stone K, Powles SB (2012) Synergistic effects of atrazine and 

mesotrione on susceptible and resistant wild radish (Raphanus raphanistrum) populations 

and the potential for overcoming resistance to triazine herbicides. Weed Technol. 26:341–

347 

Weber JB, Peter CJ (1982) Adsorption, bioactivity, and evaluation of soil tests for alachlor, 

acetochlor, and metolachlor. Weed Sci. 30:14–20 

Weber JB, Tucker MR, Isaac RA (1987) Making herbicide rate recommendations based on soil 

tests. Weed Technol. 1:41–45 

Weber JB, Wilkerson GG, Linker HM, Wilcut JW, Leidy RB, Senseman S, Witt WW, Barrett 

M, Vencill WK, Shaw DR, Mueller TC, Miller DK, Brecke BJ, Talbert RE, Peeper TF 

(2000) A proposal to standardize soil/solution herbicide distribution coefficients. Weed Sci. 

48:75–88 

Weber JB, Wilkerson GG, Reinhardt CF (2004) Calculating pesticide sorption coefficients (Kd) 

using selected soil properties. Chemosphere 55:157–166 

Westra EP, Shaner DL, Barbarick KA, Khosla R (2015) Evaluation of sorption coefficients for 

pyroxasulfone, S-metolachlor, and dimethenamid-P. Air, Soil Water Res. 8:9–15 

 



30 

Westra EP, Shaner DL, Westra PH, Chapman PL (2014) Dissipation and leaching of 

pyroxasulfone and S-metolachlor. Weed Technol. 28:72–81 

Williams B, Hoey D (1987) The use of electromagnetic induction to detect the spatial variability 

of the salt and clay content of soils. Soil Res. 25:21–27 

Williams MM, Mortenson DA, Waltman WJ, Martin AR (2002) Spatial inference of herbicide 

bioavailability using a geographic information system. Weed Technol. 16:603–611 

Wood LS, Scott HD, Marx DB, Lavy TL (1987) Variability in sorption coefficients of 

metolachlor on a captina silt loam. J. Environ. Qual. 16:251–256 

Van Wychen L (2016) Baseline survey of the most common and troublesome weeds in the 

United States and Canada. http://wssa.net/2016/04/wssa-survey-ranks-palmer-amaranth-as-

the-most-troublesome-weed-in-the-u-s-galium-as-the-most-troublesome-in-canada/. 

Accessed: January 5, 201 

Zemolin CR, Avila LA, Cassol G V., Massey JH, Camargo ER (2014) Environmental fate of S-

metolachlor, a review. Planta Daninha 32:655–664 

 

 

 

 

 

  



31 

Chapter 2 - Implementation of Variable-Rate Herbicide 

Applications Based on Soil Physical Properties 

 Abstract 

Soil application of herbicides for preemergence (PRE) weed control is vital for corn and 

grain sorghum production. The amount of herbicide bound to the soil, adsorption, strongly 

influences the amount active in the soil for weed control and is often correlated to soil organic 

matter (SOM) and soil texture. These soil factors can vary within one field, making it difficult 

for producers to follow label recommendations and achieve adequate weed control with a 

uniform rate. With precision agriculture technologies, variable rate applications (VRA) can be 

utilized to maximize herbicide effectiveness by applying the right rate in the right place. In 2016 

and 2017, herbicide algorithms were developed for two different tank-mixes to be applied at nine 

locations across Kansas. A Veris MSP3 system was utilized to collect and develop interpolated 

maps of SOM and electrical conductivity (EC). EC values were correlated with soil texture and 

separated into coarse, medium, and fine-textured classification groups. Three algorithms were 

evaluated in the field for each tank-mix based only on SOM (alg-SOM), SOM and soil texture 

(alg-SOMtex), or a flat rate based on the average soil properties for the entire field. Rates for 

each tank-mix were based on the maximum usage rate (MUR) allowed. Morganville was the 

only corn location with adequate soil variability to see large differences in application rates. The 

amount of herbicide applied on average was higher with VRA compared to the flat rate in 

Morganville. Although more herbicide was used, increased weed control was achieved with alg-

SOMtex (92%), compared to the flat rate (71%).  For all grain sorghum locations, VRA reduced 

the average amount of herbicide applied compared to the flat rate. Alg-SOM achieved the same 

amount of weed control at 8WAT as the flat rate, even with a lower rate. Alg-SOMtex reduced 
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the herbicide load compared to alg-SOM at four of the five grain sorghum locations, and 

provided the same amount of weed control at 8WAT, except at Hutch Redd in 2016. VRA of 

soil-applied herbicide was able to reduce herbicide load and cost for many locations, and also 

increase weed control when compared to a flat rate across variable fields. Using alg-SOM would 

require only one soil property to be collected and was able to reduce the herbicide load without 

decreasing weed control across all locations.  

 Introduction 

Corn and grain sorghum are important crops grown in Kansas and across the world. In 

2017, 2.10 and 1.01 million ha of total land area was planted to corn and grain sorghum, 

respectively (USDA-NASS 2017). Weeds need to be controlled to minimize competition with 

the crop and produce a high-yielding crop. According to the Weed Science Society of America, 

uncontrolled weeds cost growers about $43 billion annually and reduce corn yields up to 52% 

(Soltani et al. 2016). PRE applications of soil-applied herbicides are vital in many crops to limit 

early-season weed competition and potential yield loss. In grain sorghum, PRE applications are 

the most effective way of controlling both grass and broadleaf weeds due to limited 

postemergence (POST) herbicide options (Thompson 2014). Herbicide-resistant weeds species 

like Palmer amaranth (Amaranthus palmeri S. Wats) and common waterhemp (Amaranthus rudis 

Sauer) have increased the importance of PRE herbicide applications. Soil-applied herbicides that 

provide residual activity are critical for controlling herbicide-resistant weeds that cause early-

season yield loss due to competition (Ciampitti et al. 2018, Norsworthy et al. 2012). 

Many soil-applied herbicides present their own concerns from an environmental 

standpoint such as carryover into future crops, loss of efficacy due to degradation, or water 

contamination due to leaching and runoff (Helling 2005). Producers must understand the 
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importance of the soil interaction with these herbicides to minimize environmental impacts while 

sustaining weed control (Helling 1971). The activity of soil-applied herbicide is affected by 

many soil factors including SOM, pH, texture, and soil moisture (Blackshaw et al. 1994, Kerr et 

al. 2004, Nordmeyer 2015). These soil properties affect the adsorption of herbicides to the soil 

which determines the bioavailability of the chemical in soil solution to be absorbed for control of 

weeds. For most herbicides, the SOM is the most critical soil property for influencing adsorption 

and herbicide activity (Blumhorst et al. 1990, Mitra et al. 1999, Westra et al. 2015). As SOM 

increases, higher rates of many soil-applied herbicides are required for acceptable weed control 

(Blackshaw et al. 1998; Blumhorst et al. 1990). Weber et al. (1987) developed herbicide 

equations to determine the effective dose based on SOM to provide greater than 80% control to 

account for SOM impact on herbicide bioavailability. Soil texture and particle size also play a 

role in herbicide adsorption. The sorption coefficients for dimethenamid-P, pyroxasulfone, and s-

metolachlor were correlated to percent sand and silt in the soil (Westra et al. 2015). Clay content 

was found to have a direct correlation with sorption coefficient for two herbicide families, 

organophosphorus and amide (Weber et al. 2004). SOM and clay content have been reported to 

be related to sorption of many herbicides in the soil (Peter and Weber 1985, Pusino 1992, Singh 

et al. 2001). Researchers have found that the adsorption of many different herbicides including 

atrazine, alachlor, isoxaflutole, and metolachlor, were correlated to SOM, pH, and clay content 

and that adsorption was spatially variable for a given field (Ghidey et al. 1997, Novak et al. 

1997, Price et al. 2009, Wood et al. 1987). To account for herbicide activity based on soil, many 

soil-applied herbicide labels provide a specific rate based on general soil properties, creating a 

challenge of managing soil-applied herbicides in fields with great amount of variability. 

Variable-rate applications (VRA) of soil-applied herbicides has resulted in reduction of herbicide 
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use and increased weed control when the right rate is applied based on label and effective dose 

needed for weed control. However, these studies of VRA consisted of only one active ingredients 

chosen to control a single weed species (Metcalfe et al. 2017, Qiu et al. 1998, Williams and 

Mortensen 2000).   

To quantify the variability of herbicide adsorption across a field requires an intensive 

sampling plan to effectively determine soil properties. A multi-sensor platform, Veris MSP3 

(Veris Technologies, Salina, KS), has been developed and allows producers to map electrical 

conductivity (EC) and SOM to document soil variability within a field with one efficient pass 

across the field (Lund et al. 1999). This on-the-go implement utilizes coulter electrodes that 

inject a current directly in the soil and measures the change in voltage between two coulters, and 

is taken across a field. Electrical conductivity can be further correlated with soil texture to map 

the soil texture in a given field (Lund et al. 1999). An approximate measure of SOM is based on 

a spectrometer that emits red and near-infrared wavelengths from a window that is pressed 

against the soil surface to measure reflectance. Reflectance has been widely used as a way to 

approximate SOM with high accuracy of correlations ( R2 >0.80) with standard soil tests (Kweon 

2012). By generating EC and SOM maps for individual fields, we can estimate potential for 

herbicides to leach or to be adsorbed across fields that are variable (Jaynes et al., 1995). Shaner 

et al. (2008) found significant correlations between Kd (adsorption coefficient) of metribuzin and 

metolachlor with fraction of organic carbon (foc) that was significantly correlated with EC as 

determined by a Veris sensor. It is clear that adsorption of herbicides is directly correlated to soil 

properties. These soil properties can be quickly measured in producer fields, creating the 

possibility for site specific weed management (SSWM) of soil-applied herbicides.  
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 Precision agriculture (PA) is not a new concept and is utilized in many different ways to 

assist producers and to increase the possibility of VRA of soil-applied herbicides. In Kansas, 

approximately 86% of farmers are using at least one PA tool on their farm, with 25% of farms 

using VRA technology (Miller et al. 2017). In order to make accurate soil-applied herbicide 

prescriptions, the underlying soil variability must be understood. Spatially-dense EC and SOM 

maps can be developed and aid in the development of effective prescription maps for soil-applied 

herbicide applications. Precision agriculture technology is available for VRA of soil-applied 

herbicides, but a procedure needs to be developed for optimizing herbicide rate to minimize cost, 

increase herbicide efficacy, and decrease herbicide load. Research has shown the major impacts 

of soil on the efficacy and activity of soil-applied herbicides, thus emphasizing the need to take 

this VRA idea to the field. The objectives of this study were to 1) develop and evaluate a 

procedure for effective VRA of soil-applied herbicide tank-mixes based on Veris MSP3 soil data 

and 2) compare VRA algorithms based only on SOM and algorithms based on SOM and soil 

texture to a traditional flat rate in corn and grain sorghum fields across Kansas with two different 

soil-applied herbicide tank-mixes.  

 Materials and Methods 

 Soil Data Collection 

Nine different field experiments were established in the spring of 2016 or 2017 across 

Kansas to develop a procedure for VRA of soil-applied herbicides based on underlying soil 

properties. Before planting, a Veris MSP3 soil mapper was pulled across the field on 10 m 

swaths to determine SOM and EC. EC data were collected at a depth of 0 to 30 cm and SOM 

data were collected to a depth of 5 cm. Multiple calibration samples from each location were 

collected to a depth of 7.6 cm on the same day as Veris mapping and samples were processed in 
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the Kansas State University Soil Testing lab for SOM, particle size analysis, pH, and cation 

exchange capacity to calibrate and correlate the Veris data. The raw soil analysis were submitted 

to Veris® FieldFusion™ for cleaning and calibration as a producer would do. Correlations 

between EC values from the Veris and soil texture information from the calibration samples were 

examined and EC ranges were established for each field to determine soil texture. The soil 

textures were divided into three groups (coarse, medium, and fine) to be used in herbicide 

algorithms for each individual plot. Coarse soil texture included sand, loamy sand, and sandy 

loam, while medium soil texture included loam, silt loam, and silt, and fine soil texture included 

sandy clay loam, silty clay loam, clay loam, sandy clay, silty clay, and clay. The plot size at each 

location varied based on extent of soil variability and amount of land area available for the 

project.  

 Herbicide Applications 

Two separate tank-mixes were evaluated in corn: 1) saflufenacil, dimethenamid-P, and 

atrazine and 2) bicyclopyrone, mesotrione, s-metolachlor, and atrazine. Two tank-mixes were 

also evaluated in grain sorghum: 1) saflufenacil, dimethenamid-P, and atrazine and 2) 

mesotrione, s-metolachlor, and atrazine. For each tank-mix there were three algorithms: 1) rate 

based on SOM (alg-SOM), 2) rated based on SOM and texutre (alg-SOMtex), and a flat rate 

(flat) to simulate a traditional recommended herbicide application. In addition to the six 

herbicide treatments, a non-treated check was included for a total of seven treatments. A 

randomized complete block design with nine replications was established at each location for a 

total of 63 plots. All herbicide treatments were applied with a four or six nozzle boom equipped 

with TeeJet (TeeJet Technologies, Springfield, IL) Air Induction Extended Range or Turbo 

TeeJet Air Induction 11002 nozzles. In 2016 a sprayer filled with bulk mixture of each tank-mix 
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was attached to a JD4052r tractor with a calibrated hydrostatic transmission. For each plot, VRA 

was simulated by adjusting the speed to apply the specific rate. In 2017, the spray boom was 

attached to a JD5310 sprayer tractor and calibrated to deliver 140 L ha-1 at 255 kPa. Herbicide 

was precisely measured into individual 2 L bottles depending on rate needed for each plot.  

 Herbicide Algorithms 

For each of the two tank-mixes, four separate second-order polynomial models with one 

quantitative predictor (SOM) were developed and based on the model: 

Y = (
(ax2+bx+c)

d
)   

where Y refers to the percentage of maximum use rate (MUR) of the tank-mix to apply, a, b, and 

c are numerical coefficients to fit the model, d is the maximum total application rate of each 

tank-mix, and x is percentage of SOM. Rate of individual tank-mix partners are determined by 

the equation:  

Rate = (Y ∗ MUR) 

where Y is the percentage of MUR derived from the algorithm and MUR is the maximum use 

rate for each tank-mix active ingredient. For VRA based on alg-SOM, a single model accounted 

only for the SOM to determine application rate. VRA treatments based on both SOM and the soil 

texture, determined by the EC, utilized the specific algorithm developed for each of the soil 

texture classes (coarse, medium, and fine).  All model parameters and MUR of each tank-mix 

active ingredient are summarized in Table 2.1and Table 2.2. The algorithms were developed 

based on herbicide labels for each individual tank-mix partner with MUR being recommended 

for a fine-textured soil with ≥ 3% SOM. SOM was used as the quantitative variable due to being 

the dominant soil property influencing herbicide adsorption and binding across many different 

herbicides (Westra et al. 2015; Gannon et al. 2014; Weber et al. 2000). Increasing SOM within a 

[2.1] 

[2.2] 
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plot increased the herbicide rate to be applied. The higher the EC value, the finer the soil texture 

and a higher rate of herbicide would be applied. By using separate algorithms for both SOM and 

for the combination of SOM and texture, allowed for comparison to determine the more suitable 

soil property or properties for making VRA of soil-applied herbicides.  

 Data Interpolation and Processing  

Calibrated data were imported into ArcMap10.5.1 (Environmental Systems Research 

Institute Inc., Redlands, CA) to finalize maps and create prescription maps for herbicide 

treatments. Interpolated maps of both SOM and EC were created using the kriging tool in the 

spatial analyst toolbox. A spherical semivariogram model was used within the kriging tool to 

provide an accurate spatial correlation. Based on the soil data, a randomized complete block 

design was setup with nine replications using the fishnet tool from the sampling data 

management toolbox in ArcMap10.5.1. Blocks were separated across the entire field area to 

capture needed soil variability for rate differentiation. GPS coordinates from all fishnet corners 

were recorded in the software and established in the field using a handheld Bad Elf GNSS 

Surveyor (Bad Elf, Tariffville, CT) to create a georeferenced plot layout in the field. To 

determine the ranges of EC values for each texture class, the georeferenced calibration samples 

and EC maps were overlaid and examined to match EC to texture. Ranges of EC were then used 

to determine the soil texture within each plot. The fishnet tool in the data management toolbox 

allowed for blocks to be positioned in the field with cell length and cell width being manipulated 

to match plot size. Plot size varied for each location to match soil variability allotted for each 

research field. Herbicide rates were then calculated using the raster calculator in the spatial 

analyst toolbox. Conditional statements were used to input all herbicide algorithms and calculate 

the amount of herbicide to be applied across the field. The mean function in the zonal statistic 
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tool in the spatial analyst toolbox was used t calculate the herbicide rate to be applied in each 

plot designated by the fishnet. To convert the calculated rate to a more practical herbicide rate, 

the integer tool in the spatial analyst toolbox was used to convert each raster cell value to an 

integer. The treatments were randomized across all blocks and a treatment map was created. The 

herbicide rate was selected using the integer calculated based on the particular algorithm for the 

different treatments and the underlying soil properties. 

 Location Descriptions and Data Collection 

A total of nine fields were used in this study including two corn and two grain sorghum 

fields in 2016 and two corn and three grain sorghum fields in 2017 across Kansas. Corn locations 

were in Northeast Kansas (Rossville, Topeka, and Manhattan) and North Central Kansas 

(Morganville). Grain sorghum sites were in Northeast Kansas (Manhattan), South Central 

Kansas (Hutchinson (Hutch)), and central Kansas (Salina). Location, timing of all agronomic 

operations, and data collection dates are summarized in Table 2.3. Field locations were in 

dryland or irrigated environments on both research and producer lands. Corn or grain sorghum 

were planted in 0.38 or 0.76 m rows at each location. Weeds that emerged before planting were 

controlled to ensure all plots were weed free when applying PRE. For locations in no-tillage 

production, single or multiple chemical burndown applications were made before planting. 

Locations that were in conventional tillage production were tilled, or tilled with a combination of 

herbicide before PRE was applied. Fertilizer was applied based on predicted yield goal for each 

location. Visual assessment of weed control was performed two, four, six, and eight weeks after 

treatment (WAT) on a scale of 0 (no control) to 100% (complete control). Crop injury was 

visually assessed 2 and 4 WAT on a scale of 0 (no stunting) to 100% (plant death), but minimal 

injury was observed across all locations, except for Manhattan in 2016. Individual weed species 
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were harvested from a 0.25 m2 quadrat within plots with high weed densities and were harvested 

from the entire plot when weed density was low. Biomass samples were bagged, dried for two 

weeks, and weighed. Weed density values were converted to plants m-2 and biomass was 

converted to g m-2. In 2016, grain was hand harvested from 2 m of the middle two rows from a 

representative area within each plot when a plot combine harvester was not used. In 2017, grain 

was harvested from the middle two rows of the entire plot for all hand harvested locations. Grain 

moisture was adjusted to 15.5% for corn and 13.5% for grain sorghum and yield was converted 

to kg ha-1.   

 Statistical Analysis 

All data were analyzed using the GLIMMIX procedure in SAS University Edition (SAS 

Institute Inc., 100 SAS Campus Drive, Cary, NC) with means separated using Tukey’s HSD test 

(α = 0.05). Interactions of main effects of rate (three levels) and tank-mix (two levels) were not 

significant across all response variables, therefore rate and tank-mix were the only fixed effects 

considered. Significance of fixed effects across all response variables and locations are 

summarized in Table 2.8 and Table 2.9. Comparison of models using Akaike Information 

Criteria (AIC) proved that using X,Y centroid coordinates from each plot as a random effect, 

generated the smallest AIC by dealing with the underlying spatial covariance. AIC is commonly 

used for comparing covariance structures within models and the model with lowest AIC should 

be used (Bozdoganm 1987). Therefore a spherical covariance structure was utilized in the spatial 

model. Model comparison also revealed that replication and block should not be included as 

random effects in the statistical model because the residual from the coordinates accounted for 

the field variability. To better meet assumptions of variance, percent weed control values were 

logit transformed for all observation dates. Weed density and biomass data were subjected to 
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square-root transformations. Back transformed data were used to present means across all data. 

Pearson correlation coefficients were calculated between SOM, EC, herbicide rate applied, 

Palmer amaranth control, Palmer amaranth biomass, and yield using PROC CORR with 

significance at P ≤ 0.05 in SAS.   

 Results and Discussion 

 Tank-Mix Algorithms 

Herbicide algorithms were developed to determine percentage of rate to apply based on 

the MUR for each tank-mix component. To account for SOM being the most dominant factor 

impacting herbicide adsorption and activity, both algorithms determined rate based on SOM. 

Many current herbicide labels recommend the MUR to be applied when soil has greater than 3% 

SOM, therefore rate based on both herbicide algorithms was 100% of the MUR for all soils with 

≥ 3.0% SOM (Anonymous 2016a, 2017). For alg-SOMtex, soil EC data from the Veris were 

correlated to soil texture based on the calibration soil samples. Soil textures were divided into 

three broad texture classes, similar to those on many herbicide labels, to determine rate 

(Anonymous 2014, 2016b). Previous research on VRA of soil-applied herbicides, used several 

different methods of creating algorithms to determine rate based on labelled rate or effective 

dose for given SOM and soil texture (Khakural et al. 1994, Metcalfe et al. 2017, Qiu et al. 1998, 

Williams and Mortensen 2000). Changing rate based on only the label or effective dose for a 

given soil was shown to be effective when using a single active ingredient, but was limited in 

usefulness when tank-mixing multiple herbicides to control multiple weed species. Tank-mixing 

herbicides is vital for herbicide resistance management as using 2.5 sites of action were 83 times 

less likely to produce herbicide-resistant weed seed compared to using 1.5 sites of action (Evans 

et al. 2016, Norsworthy et al. 2012). General regression developed for alg-SOM and alg-SOMtex 
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utilized both the labelled rates of each tank-mix components and facilitated change in herbicide 

effective dose based on SOM. To account for soil texture having a small impact on herbicide 

adsorption, three separate algorithms were developed for alg-SOMtex based on the texture class. 

Recommended rates of formulated tank-mixes available in many cases do not apply the MUR 

used in the algorithms. Producers wanting to use these algorithms on formulated tank-mixes 

would need to adjust accordingly based on the tank-mix components and the MUR labelled for 

their environment. As each tank-mix active ingredient responds differently in the soil, creating 

algorithms for tank-mixes was challenging and needs further research. For each location, a flat 

rate of each tank-mix was applied to simulate traditional application. For tank-mix 1 

(saflufenacil, dimethenamid-P and atrazine), the flat rate was based on the labelled rate of 

saflufenacil for the average soil properties within each location. The flat rate of tank-mix 2 

(bicyclopyrone, mesotrione, s-metolachlor, and atrazine) was determined by the labelled rate of 

mesotrione for the average soil properties within each location. Saflufenacil and mesotrione were 

used to determine tank-mix rate to apply as they were most apt to cause crop injury. The flat rate 

of tank-mix 1 applied in grain sorghum for all locations was 100% of the MUR as label indicated 

a single rate of saflufenacil to be applied regardless of soil properties (Anonymous 2016b). 

Using high rates for the flat rate in grain sorghum had a big impact on overall rate and cost of flat 

rate herbicide applications compared to VRA and may not be realistic rates for the grain 

sorghum locations in this study.  

 VRA in Corn 

VRA of soil-applied herbicides was evaluated at two locations in corn in 2016 and two 

locations in 2017. Low variability of < 1.0% SOM and only small changes in soil texture were 

observed in Rossville, Manhattan, and Topeka, therefore VRA would not be practical (Table 
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2.4). Small differences in SOM and soil texture limited the variation in herbicide rate applied 

based on algorithms compared to the flat rate. In Morganville, greater soil variability was 

observed, with SOM ranging from 0.1 to 3.3% with an average of 2.1%. The EC varied from 0.8 

to 76.0 mS m-1 and consisted of sand, loamy sand, sandy loam, sandy clay loam, and clay loam 

soil textures based on particle size analysis of Veris calibration samples (Table 2.6). Based on 

correlation between soil texture and EC, soil EC values less than 8 mS m-1 were considered 

coarse-textured, 8 to 20 mS m-1 were considered medium-textured, and all values greater than 20 

mS m-1 were considered fine-textured soils (Table 2.7). Across all corn locations, adequate 

precipitation (> 2.5 cm) was received within one WAT for PRE activation (Table 2.10). 

Precipitation totals within one WAT were 3.2, 13.4, 3.3, and 2.5 cm in Rossville, Manhattan, 

Topeka, and Morganville, respectively. In Manhattan in 2016, heavy rainfall (13.4 cm) during 

one day caused severe soil erosion, decreasing the seed depth and in severely eroded areas 

exposing the seed to the soil surface and causing herbicide injury. Seasonal rainfall most likely 

did not impact overall weed control across corn locations. Weed species and weed densities were 

variable across the four corn locations in 2016 and 2017. In Rossville in 2016, populations of 

Palmer amaranth and ivyleaf morningglory (Ipomoea hederacea Jacq.) emerged throughout the 

growing season with average densities of 5 and 9 plants m-2, respectively. In Morganville in 

2017, Palmer amaranth populations in non-treated plots ranged from 2 to 6 plants m-2. No weeds 

emerged in Manhattan in 2016 and in Topeka in 2017, therefore weed data were not collected. 

Corn injury was minimal at all locations except for Manhattan in 2016. At 2 WAT, corn injury 

was severe (52 to 86%), but there were no differences between algorithms (Table 2.14). By 4 

WAT, corn injury decreased to less than 25%, and algorithm had no impact. All algorithms 

resulted in the same corn yield for each location (Table 2.13 and Table 2.16). 
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Significance of fixed effects revealed no interaction between algorithm and tank-mix 

across all response variables for corn locations; therefore fixed effects were analyzed separately 

(Table 2.8). In Rossville in 2016, all algorithms provided the same amount of Palmer amaranth 

control at 4 and 8 WAT with all applications resulting in greater than 97 and 83%, respectively 

(Table 2.13). Average Palmer amaranth density (1.4 plants m-2) and biomass (21.6 g m-2) were 

also the same for all algorithms. Algorithms provided greater than 95% ivyleaf morningglory 

control at 4 WAT. By 8 WAT, overall ivyleaf morningglory control was reduced (≤ 60%), but all 

algorithms provided the same level of control. Variable and poor ivyleaf morningglory control at 

later observation times has been reported with PRE applications of soil-applied herbicides 

(Bhullar et al. 2012, Bollman et al. 2006, Johnson et al. 2012). Ivyleaf morningglory density was 

the same for all algorithms, with an average of 1.6 plants m-2 (Table 2.13). Ivyleaf morningglory 

biomass was greater for alg-SOM (13.4 g m-2) compared to the flat rate (1.5 g m-2). Alg-SOMtex 

had the same biomass (8.2 g m-2) compared to alg-SOM and was not different than the flat rate. 

No differences in Palmer amaranth and ivyleaf morningglory control and density based on 

algorithm in Rossville was most likely due to small variations in herbicide rate applied due to 

lack of soil variability. For tank-mix 1, the average rates applied were 70, 65, and 67% of the 

MUR for alg-SOM, alg-SOMtex, and the flat rate, respectively (Table 2.11). The rates for tank-

mix 2 were 71 and 61% of the maximum for alg-SOM and alg-SOMtex, respectively and 64% 

for the flat rate. Although the same level of weed control was achieved for both algorithms 

compared to the flat rate, VRA at this Rossville location would not be practical due to little soil 

variability.  

In Morganville in 2017, all algorithms provide effective control (≥ 97%) of Palmer 

amaranth at 4 WAT (Table 2.16). Alg-SOMtex provided greater Palmer amaranth control (92%) 
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at 8WAT compared to the flat rate (71%). Alg-SOM provided the same amount of Palmer 

amaranth control (87%) compared to alg-SOMtex (92%), but did not result in increased weed 

control compared to the flat rate (71%). Remaining Palmer amaranth density (1.2 plants m-2) and 

biomass (8.6 g m-2) were the same for all algorithms at 8 WAT. The differences in weed control 

between flat rate and alg-SOM was most likely due to the differences in average herbicide rate 

applied (Table 2.11). The flat rate was 67 and 64% of MUR for tank-mix 1 and 2, respectively, 

and this accounted for the fact that a large part of the field consisted of coarse-texture soil and 

low SOM levels. The average rate applied for tank-mix 1 with alg-SOM (81% of the MUR) and 

alg-SOMtex (76% of the MUR) were both greater than the flat rate applied. For tank-mix 2, 

average rates of 85 and 76% of the MUR were applied with alg-SOM and alg-SOMtex, 

respectively. Although greater herbicide was applied on average with VRA algorithms, large 

variations of herbicide rates were applied with alg-SOM, ranging from 50 to 100% of the MUR, 

and alg-SOMtex ranging from 39 to 100%, accounting for soil variability. The increased amount 

of herbicide applied with VRA based on alg-SOMtex resulted in a greater level of Palmer 

amaranth control at 8 WAT compared to the flat rate.  

Reduction of weed control with flat rate applications was most likely in areas of the field 

with fine-textured soils with > 2.5% SOM where greater amounts of adsorption of herbicides in 

both tank-mixes decreased available herbicide for weed control. Adsorption of many soil-applied 

herbicides increases as SOM increases, requiring more herbicide to be applied to achieve 

effective weed control in these areas of the field, explaining weed control reduction when using 

the lower, flat rate (Bauer and Black 1994, Blumhorst et al. 1990, Nordmeyer 2015, Shaner et al. 

2006, Weber et al. 1987, Westra et al. 2015). VRA using alg-SOM and alg-SOMtex accounted 

for the increased adsorption in the areas by using more herbicide compared to the flat rate. 
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Lower rates of herbicide applied with alg-SOM and alg-SOMtex compared to the flat rate likely 

resulted in the same weed control in areas of low SOM areas and coarse-textured soil as 

herbicide dose required for effective weed control is lower due to less herbicide adsorption. 

Zhang et al. (2009) reported that higher weed control was maintained in coarse-textured soils 

compared to fine-textured soils, suggesting lower rates of herbicide could be used in coarse-

textured soils compared to fine-textured soils. Many tank-mixes that include atrazine are not 

labelled in coarse-textured soils and VRA algorithms developed in this study would allow to 

more closely follow herbicide labels with decreased rates in these areas compared to the flat rate. 

VRA based on alg-SOM and alg-SOMtex provided the same or better weed control compared to 

the flat rate and should be implemented in fields with high amounts of soil variability, similar to 

Morganville, to maximize weed control in areas of high SOM and fine-textured soil, and 

minimize environmental impacts in areas with low SOM and coarse-textured soil.   

 In Rossville, tank-mix 1 (saflufenacil, dimethenamid-P, and atrazine) and tank-mix 2 

(bicyclopyrone, mesotrione, s-metolachlor, and atrazine) resulted in the same amount of Palmer 

amaranth control at 4 (≥ 98%) and 8 WAT (89%), density (1.4 plants m-2), biomass (21.5 g m-2), 

and corn yield (10,180 kg ha-1) (Table 2.13). In Morganville in 2017, both tank-mixes provided 

the same amount of Palmer amaranth control at 4 WAT (> 90%), but tank-mix 2 resulted in a 

greater level of weed control (93%) compared to tank-mix 1 (73%) at 8 WAT (Table 2.16). 

Reduction in weed control most likely decreased the amount of corn yield for tank-mix 1 (8,450 

kg ha-1) compared to tank-mix 2 (10,110 kg ha-1). In Manhattan, the corn injury level was greater 

for tank-mix 1 (74%) compared to tank-mix 2 (34%) (Table 2.14). The early season injury 

impacted the final corn yield, with tank-mix 1 averaging 8,820 kg ha-1 and tank-mix 2 averaging 
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10,020 kg ha-1. PPO-inhibitor herbicide injury has been documented in other research, but differ 

from these results as plots with corn injury did result in yield reduction (Soltani et al. 2009).  

 VRA in Grain Sorghum 

VRA of soil-applied herbicides were evaluated in grain sorghum at two locations in 2016 

(Salina and Hutch Redd) and at three locations in 2017 (Hutch pivot, Hutch Redd, and 

Manhattan). Four out of the five locations (Salina, Hutch Redd in 2016, Hutch Redd in 2017, and 

Hutch pivot) had > 1.5% variation in SOM with all locations consisting of multiple soil texture 

classes, providing adequate locations for implementing and evaluating VRA (Table 2.4). The 

Hutch pivot had the most variability with SOM ranging from 0.4 to 3.0% and consisted of both 

coarse- and medium-textured soils (Table 2.5). In Manhattan, the SOM was >3.0% for most of 

the field, therefore the MUR of each tank-mix should be applied and VRA would not be 

practical. In 2016, Salina received limited precipitation in the early part of the growing season 

with only 1.1 cm of rainfall by one WAT and no rainfall during the second WAT (Table 2.10). 

The herbicide was likely not activated during the time of first weed emergence flushes. Hutch 

Redd in 2016 received a rainfall event of 8.0 cm within one WAT, activating the herbicide. The 

heavy rainfall also resulted in several areas of the field being flooded for several days reducing 

grain sorghum stand. Plots with reduced grain sorghum stands were not included in the data 

analysis. In 2017, all grain sorghum sites received low amounts of rainfall throughout the first 

WAT. Both Hutch locations received 0.7 cm and Manhattan received no rainfall. Through three 

WAT, the Hutch pivot, Hutch Redd, and Manhattan locations received 1.7, 1.7, 0.7 cm of 

rainfall, most likely impacting the amount of herbicide in soil solution (Table 2.10). At the Hutch 

pivot, sprinkler irrigation was utilized to deliver an additional 2.0 cm of water across all plots. 
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Low amounts of rainfall in 2017 may have influenced weed control for PRE applications, but 

erratic precipitation is not uncommon for environments where grain sorghum is planted.  

All grain sorghum locations had populations of weeds to assess herbicide efficacy, except 

for Manhattan in 2017. At Hutch Redd in 2016, populations of Palmer amaranth and large 

crabgrass (Digitaria sanguinalis (L.) Scop.) at densities of 23 and 10 plants m-2 respectively were 

observed in the nontreated plots. At Hutch Redd in 2017, populations of Palmer amaranth and 

large crabgrass were present at densities of 8 and 22 plants m-2, respectively. Reduction in 

Palmer amaranth density in 2017 compared to 2016 was most likely due to limited rainfall to 

promote weed germination, combined with increased large crabgrass pressure due to the earlier 

planting date. At the Salina location in 2016 and Hutch Pivot location in 2017, Palmer amaranth 

was the only weed species that emerged. An average of 10 plants m-2 was observed in Salina, 

and 13 plants m-2 at the Hutch pivot at 8 WAT. 

In Salina in 2016, all algorithms provided the same amount of Palmer amaranth control at 

4 (≥ 97%) and 8 WAT (≥ 92%) (Table 2.15). At Hutch Redd in 2016, alg-SOM resulted in the 

same level of Palmer amaranth control (82%) compared to the flat rate (87%) at 4 WAT. Alg-

SOMtex provided the same amount of Palmer amaranth control (78%) as alg-SOM, but resulted 

in lower weed control compared to the flat rate. At 8WAT, overall Palmer amaranth control was 

greatly reduced (≤ 30%), but alg-SOM provided the same amount of control compared to the flat 

rate. Alg-SOMtex resulted in less Palmer amaranth control (8%) compared to the flat rate (30%). 

All algorithms provided the same level of large crabgrass control at 4 WAT (≥ 87%). By 8 

WAT, alg-SOM resulted in the same level of large crabgrass control (72%) compared to the flat 

rate (80%), while alg-SOMtex provided less large crabgrass control (59%) compared to the flat 

rate. Similar results were observed at the Hutch pivot with alg-SOM and the flat rate resulting in 
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the same level of Palmer amaranth control of ≥ 85% (Table 2.17). Alg-SOMtex resulted in 84% 

control of Palmer amaranth which was not different compared to alg-SOM, but provided less 

control compared to the flat rate. By 8 WAT, all algorithms resulted in ≥ 80% Palmer amaranth 

control. Although there were no differences in weed control at 8 WAT, Palmer amaranth 

densities were highest for both alg-SOM and alg-SOMtex with 1.2 plants m-2 compared to the 

flat rate with 0.4 plants m-2 by 8 WAT. Palmer amaranth biomass was the same for all algorithms 

regardless of differences in density. At Hutch Redd in 2017, greater Palmer amaranth and large 

crabgrass control was observed at 4 and 8 WAT compared to 2016. Increased weed control with 

PRE applications was most likely due to earlier planting date and lack of early season Palmer 

amaranth competition. All algorithms provided > 88% control of Palmer amaranth at 4 WAT and 

> 89% control at 8 WAT. Similarly, density and biomass were the same for all algorithms with 

an average of 0.6 plants m-2 and 3.5 g m-2, respectively. Large crabgrass control at 4WAT, was 

greatest with the flat rate (93%) compared to alg-SOM (80%) and alg-SOMtex (83%). However, 

by 8 WAT all algorithms resulted in ≥ 81% large crabgrass control. For all grain sorghum sites, 

alg-SOM resulted in the same level of weed control compared to the flat rate. By 8 WAT, alg-

SOMtex resulted in the same level of weed control at all sites except for Hutch Redd in 2016.  

Although weed control was the same, VRA decreased the amount of herbicide applied at 

all locations that had soil variability suited for VRA (Table 2.12). Across these four locations 

(Salina, Hutch Redd in 2016 and 2017, and Hutch Pivot), the rate of tank-mix 1 was reduced by 

19% on average when alg-SOM was used compared to the flat rate. For tank-mix 2, herbicide 

was reduced by 10% compared to the flat rate. Alg-SOMtex reduced herbicide rate more than 

alg-SOM at all sites except for Salina in 2016. Reduction in herbicide rate applied for tank-mix 1 

and 2 compared to the flat rate were 30 and 18%, respectively. At the Hutch pivot in 2017, where 
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the greatest soil variability was observed, herbicide reduction was greatest across both tank-

mixes for alg-SOM (24%) and alg-SOMtex (34%). In a similar study, isoxaflutole rate was 

reduced by up to 47% compared to a flat rate when site-specific applications were utilized, with 

rate being determined by effective dose based on soil organic carbon (OC) and soil texture 

(Williams and Mortensen 2000). Across all grain sorghum locations, grain sorghum yield was 

the same for all algorithms. Compared to the corn locations, greater weed populations and 

adequate soil variability allowed VRA of soil-applied herbicides to be evaluated for weed 

control. Locations of Salina, Hutch Redd in 2016 and 2017, and Hutch Pivot had high SOM and 

soil texture variability, and proved VRA can be effective for decreasing amount of herbicide 

while still obtaining the same level of weed control compared to traditional flat rate.  

At Hutch Redd in 2016, tank-mix 2 (mesotrione, S-metolachlor, and atrazine) resulted in 

greater Palmer amaranth control at 4 WAT (87%) compared to tank-mix 1 (saflufenacil, 

dimethenamid-P, and atrazine) (77%) (Table 2.15). Similarly at 8 WAT, tank-mix 2 provided a 

greater level of weed control with 31% compared to 10% with tank-mix 1. In 2017 at Hutch 

Redd, similar results were observed with tank-mix 2 providing 94% control of Palmer amaranth 

compared to 88% control with tank-mix 1 at 4 WAT (Table 2.17). Palmer amaranth densities 

were also lower for tank-mix 2 (9.9 plants m-2 ) compared to tank-mix 1 (15.4 plants m-2) Tank-

mix 2 also provided a greater level of large crabgrass control (90%) compared to tank-mix 1 

(81%) at 4 WAT. Similarity, large crabgrass biomass was greater for tank-mix 1 compared to 

tank-mix 2 with 12.3 and 3.4 g m-2, respectively.  

 Economic Comparison 

Comparison of costs between algorithms was analyzed based on tank-mix price provided 

by average retail prices in Kansas. Cost for soil mapping and other requirements needed for VRA 
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were not included in cost comparison. Average, minimum, and maximum herbicide costs were 

determined based on application rates across plots for each treatment at all locations (Table 2.18 

and Table 2.19). Herbicide cost was greater for VRA compared to flat rate treatments at all corn 

locations, except for Manhattan in 2016. In Morganville, herbicide cost was increased compared 

to the flat rate for both tank-mixes by an average of $24.80 ha-1 for alg-SOM and $14.80 ha-1 for 

alg-SOMtex (Table 2.18). The increased cost was critical to improve Palmer amaranth control 

with alg-SOMtex compared to the flat rate. Although herbicide cost on average for VRA was 

higher than the flat rate, VRA decreased cost by an average of $26.60 ha-1 based on the minimum 

rate applied for both tank-mixes in areas of the field where less herbicide was needed for weed 

control. Across all grain sorghum locations, the average cost ha-1 decreased when using VRA of 

tank-mix 1 compared to the flat rate (Table 2.19). For Salina in 2016, Hutch Redd in 2016 and 

2017, and Hutch pivot in 2017, the average reduction in cost was $20.40 and $31.50 ha-1 for alg-

SOM and alg-SOMtex, respectively. At the Hutch pivot in 2017, where soil variability was the 

greatest, VRA reduced the cost by up to $69.90 ha-1 with alg-SOMtex compared to the flat rate. 

Reduction in cost was similar for tank-mix 2, except for Manhattan in 2017 where cost was 

greater on average for VRA compared to the flat rate. Across the other four locations, alg-SOM 

and alg-SOMtex reduced the average herbicide cost compared to the flat rate by $10.80 and 

$19.40 ha-1, respectively. At the Hutch pivot, herbicide cost compared to the flat rate cost was 

reduced by $25.80 ha-1 on average for both algorithms and reduced herbicide by up to $56.50 ha-

1. By using VRA, cost was reduced in many cases due to reduction in herbicide rate applied. For 

most locations, reduction in cost did not have an impact on weed control or corn or grain 

sorghum yield harvested and similar reductions in herbicide cost would be expected on producer 

fields with variability.  
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 VRA Algorithm Comparison 

Based on SOM and soil texture data, collected and mapped using Veris MSP3, VRA was 

practical at six of the nine locations tested in the study. When comparing both VRA algorithms, 

alg-SOMtex decreased the herbicide load in many locations compared to alg-SOM, but often 

resulted in reduced weed control. Alg-SOMtex would require more data to be collected and 

would be impractical when EC and soil texture were not strongly correlated based on calibration 

samples. Using EC to predict soil texture to make herbicide recommendations could potentially 

be a limitation as EC is influenced by other factors such as soil salinity, CEC, soil moisture, bulk 

density, and SOM in addition to soil texture (Corwin and Lesch 2003, McNeill 1992, Rhoades et 

al. 1999). Additionally, in all locations where weeds were present, SOM was positively 

correlated with EC indicating that only one soil property would be necessary (Table 2.20). 

Across all grain sorghum and corn locations, alg-SOM resulted in the same or better weed 

control at 4 and 8 WAT compared to the flat rate, with the exception of large crabgrass at Hutch 

Redd in 2017. In cases of high soil variation like at the Hutch pivot in 2017, alg-SOM reduced 

the herbicide used by 24% on average for both tank-mixes compared to the flat rate and resulted 

in the same level of Palmer amaranth control. Similar results were observed at the Hutch Redd 

site in 2017, with alg-SOM reducing herbicide applied by 19 and 13% for tank-mix 1 and 2, 

respectively. Reduced herbicide load with alg-SOM would greatly reduce the cost for producers 

and reduce the chance of environmental impact compared to the flat rate. In Morganville in 

2017, application rates on average were higher for alg-SOM (81 % of MUR) compared to the flat 

rate (67% of MUR), but alg-SOM provided greater control of Palmer amaranth compared to the 

flat rate. In locations with adequate variability for VRA, alg-SOM increased weed control in corn 

and decreased herbicide load and cost in grain sorghum compared to the flat rate, highlighting 
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the need for site-specific weed management of soil-applied herbicides. SOM was the main 

influencer of soil-applied herbicide efficacy, and alg-SOM would provide the most practical 

algorithm to determine rates for VRA of soil-applied tank-mixes for producers.  

 Practical Implications and Conclusion 

Traditionally, producers use a flat rate of soil-applied herbicide across an entire field 

based on many different factors, including herbicide cost, weed infestation, and average soil 

properties. As the soil impacts the efficacy of soil-applied herbicides, producers must understand 

the variability within a field. In fields with varying soil properties like SOM and soil texture, the 

Veris MSP3 provided an easy and effective way to map SOM and determine soil texture based 

on EC to make VRA of soil-applied herbicides. Algorithms developed in this study, provided an 

easy way to adjust herbicide rate based on soil properties and more closely follow herbicide 

labels. VRA based on algorithms proved to increase weed control, decrease the herbicide load on 

the environment, and decrease cost across several locations used in this experiment. Alg-SOMtex 

reduced the amount of herbicide applied on average compared to alg-SOM, but many times weed 

control was reduced when compared to a flat rate. Alg-SOM resulted in the same or better weed 

control than alg-SOMtex and provided a more balanced approach between herbicide rates and 

weed control. With potential regulations around many soil-applied herbicides, VRA may provide 

a solution and reduce the risk of environmental problems while maintaining high levels of early-

season weed control. Producers that want to utilize VRA could create SOM maps using Veris 

MSP3 and use alg-SOM to effectively apply tank-mixes of soil-applied herbicides. 
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Figure 2.1. Regression of herbicide algorithms to determine percentage of maximum use rate (Y) of tank-mix 1 

(saflufenacil, dimethenamid-P, and atrazine) based on percentage of soil organic matter (x) in corn. Regression 

determined by equation 2.1 with model parameters in Table 2.1.  
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Figure 2.2. Regression of herbicide algorithms to determine percentage of maximum use rate (Y) of tank-mix 2 

(bicyclopyrone, mesotrione, S-metolachlor, and atrazine) based on percentage of soil organic matter (x) in corn. 

Regression determined by equation 2.1 with all model parameters in Table 2.1. 



62 

 

 

Figure 2.3. Regression of herbicide algorithms to determine percentage of maximum use rate (Y) of tank-mix 1 

(saflufenacil, dimethenamid-P, and atrazine) based on percentage of soil organic matter (x) for grain sorghum. 

Regression determined by equation 2.1 with model parameters in Table 2.2.  
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Figure 2.4. Regression of herbicide algorithms to determine percentage of maximum use rate (Y) of tank-mix 2 (mesotrione, 

S-metolachlor, and atrazine) based on percentage of soil organic matter (x) for grain sorghum. Regression determined by 

equation 2.1 with model parameters in Table 2.2. 
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Table 2.1. Second-order polynomial model parameters for corn algorithms to determine percentage of maximum use rate (MUR) to apply 

based on only soil organic matter (SOM) or SOM and soil texture class (coarse, medium, fine) for both tank-mixes.a 

   Model Parameters  Tank-Mix MUR 

Tank-Mix Algorithm  a b c d  saflufenacil dimethenamid-P atrazine  

            

1 alg-SOM  -5.13 41.53 10.01 88.58  90 1100 2240  

 alg-SOMtex (Coarse)  -4.30 32.57 14.37 88.58  90 1100 2240  

 alg-SOMtex (Medium)  -4.30 32.57 20.00 88.58  90 1100 2240  

 alg-SOMtex (Fine)  -4.30 32.57 29.59 88.58  90 1100 2240  

            

        bicyclopyrone mesotrione atrazine s-metolachlor 

2 alg-SOM  -13.54 90.01 -5.28 144.87  50 270 2240 2260 

 alg-SOMtex (Coarse)  -7.04 58.28 9.08 144.87  50 270 2240 2260 

 alg-SOMtex (Medium)  -7.04 58.28 30.28 144.87  50 270 2240 2260 

 alg-SOMtex (Fine)  -7.04 58.28 48.39 144.87  50 270 2240 2260 
aModel: Y=(ax2+bx+c)/d; where Y is percentage of tank-mix MUR, x is SOM. 

Application Rate = Y * MUR of each tank-mix component 
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Table 2.2. Second-order polynomial model parameters for grain sorghum algorithms to determine percentage of maximum use 

rate (MUR) to apply based on only soil organic matter (SOM) or SOM and soil texture class (coarse, medium, fine) for both 

tank-mixes. Rate to applya 

   Model Parameters 

   Numerical Coefficients  Tank-Mix MUR 

Tank-Mix Algorithm  a b c d  saflufenacil dimethenamid-P atrazine 

           

1 alg-SOM  -7.56 51.59 -0.74 86.97  50 1100 2240 

 alg-SOMtex (Coarse)  -4.22 31.98 7.07 86.97  50 1100 2240 

 alg-SOMtex (Medium)  -4.22 31.98 16.08 86.97  50 1100 2240 

 alg-SOMtex (Fine)  -4.22 31.98 29.05 86.97  50 1100 2240 

           

        mesotrione s-metolachlor atrazine 

2 alg-SOM  -7.56 54.18 3.34 98.55  224 1880 2240 

 alg-SOMtex (Coarse)  -4.79 36.24 10.79 98.55  224 1880 2240 

 alg-SOMtex (Medium)  -4.79 36.24 20.37 98.55  224 1880 2240 

 alg-SOMtex (Fine)  -4.79 36.24 32.92 98.55  224 1880 2240 
aModel: Y=(ax2+bx+c)/d; where Y is percentage of tank-mix MUR, x is SOM. 

Application Rate = Y * MUR of each tank-mix component 
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Table 2.3. Coordinates, agronomic operations, and timing of operation and data collection for locations in 2016 and 2017 in Kansas.  

aAbbreviations: PRE, preemergence; lat, latitude; long, longitude. 

(-) No agronomic operation or data collection. 

 

 

 2016  2017 

Agronomic 

Operationa Rossville Manhattan Salina 

Hutch 

Redd 

 

Topeka Morganville 

Hutch 

Pivot 

Hutch 

Redd Manhattan 

Location (lat, 

long) 

39.1181, 

-95.9237 

39.1264, 

-96.6482 

38.7987, 

-97.4331 

37.9563, 

-98.1154 

 39.0770, 

-95.7696 

39.4531, 

-97.2081 

37.9440, 

-98.1085 

37.9563, 

-98.1164 

39.1266, 

-96.6351 

Moisture Irrigated Dryland Dryland Dryland  Irrigated Irrigated Irrigated Dryland Dryland 

Crop Corn Corn Sorghum Sorghum  Corn Corn Sorghum Sorghum Sorghum 

Hybrid GH-12J11 GH-12J11  P85Y40 P84G62  PR7493 P1257AM SP-7715 SP-7715 SP-7715 

Row spacing (cm) 76 76 38 76  76 38 76 76 76 

Seeding rate 

(seeds ha-1) 

79,200 79,200 123,800 119,000  79,200 79,200 119,000 119,000 119,000 

           

Dates           

Veris mapping Mar 25 Apr 12 Apr 19 Mar 17  Apr 13 Apr 11 May 18 May 18 Nov 17 

Tillage Apr 20 Apr 1 No-till Apr 10  Apr 18 No-till No-till Apr 5 No-till 

Burndown May 10 - Jun 11 Jun 10  - Apr 15 May 26 May 27 Jun 1 

Planting  May 4 May 19 Jun 9 Jun 14  Apr 25 May 9 May 25 May 25 Jun 7 

PRE application May 10 May 22 June 11 Jun 15  Apr 25 May 9 May 27 May 27 Jun 7 

Weed biomass 

harvest  

Sept 1 - Sept 8 Sept 8  - June 19 Jul 7 Jul 24 - 

Grain harvest Sept 21  Sept 25 Oct 13 Oct 13  Sept 21 Oct 12 Oct 25 Oct 25 Oct 26 

Harvest method Combine Hand Hand Hand  Combine Hand Hand Hand Combine 
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Table 2.4. Summary of soil organic matter (SOM) and electrical conductivity (EC) data collected by the Veris MSP3 at nine 

locations across Kansas in 2016 and 2017.a 

   SOM  EC 

Year Location n Mean SD CV Min Med Max  Mean SD CV Min Med Max 

2016 Rossville 2173 1.6 0.1 6.3 1.3 1.6 1.8  7.7 1.6 20.8 3.8 7.7 12.1 

 Manhattan 3397 2.4 0.1 4.2 2.0 2.4 2.6  42.5 0.6 1.4 15.9 43.4 74.0 

 Salina 6414 2.1 0.4 19.0 1.0 2.2 3.9  42.3 11.2 26.5 12.1 50.3 133.2 

 Hutch Redd 2571 2.0 0.4 20.0 0.9 1.9 2.8  24.1 9.6 39.9 5.6 22.7 46.9 

2017 Topeka 2600 1.7 0.1 5.9 1.3 1.7 2.2  29.2 14.1 48.3 6.6 24.4 70.1 

 Morganville 1632 2.1 0.8 38.1 0.1 2.1 3.3  15.4 12.6 81.9 0.8 11.5 76.0 

 Hutch Pivot 2105 1.9 0.6 31.6 0.4 2.1 3.0  46.4 19.4 41.8 10.3 48.5 88.8 

 Hutch Redd 1685 2.1 0.3 14.3 1.0 2.1 2.6  41.9 23.5 38.3 14.2 41.8 81.1 

 Manhattan 1955 3.2 0.1 3.1 2.8 3.2 3.5  60.7 10.9 18.0 26.6 61.2 82.7 
aAbbreviations: n, number of samples; SD, standard deviation; CV, coefficient of variation, Min, minimum; Med, median; Max, 

Maximum.  
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Table 2.5. Soil testing lab information for Veris calibration soil samples collected from depth to 7.6 cm across all locations in 2016.a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

       Soil Texturec  

Crop Location Sample  Latitude Longitude SOMb  Sand Silt Clay Classd pH 

     
   %    

        

Corn Rossville 1 39.1181366 -95.9236884 1.6  76 18 6 sandy loam 6.7 

 2 39.1185016 -95.9238118 1.6  70 24 6 sandy loam 8.0 

 3 39.1184083 -95.9231751 1.9  58 32 10 sandy loam 7.5 

 4 39.1183033 -95.9252984 1.7  66 26 8 sandy loam 7.4 

 5 39.1185383 -95.9227668 1.5  50 42 8 loam 7.2 

 6 39.1184666 -95.9248833 1.3  68 26 6 sandy loam 7.0 
            

 Manhattan 1 39.1263910 -96.6481934 2.5  26 50 24 silt loam 6.0 

 2 39.1267233 -96.6487834 2.3  20 48 32 silty clay loam 5.9 

 3 39.1258350 -96.6488833 2.3  16 48 36 silty clay loam 6.2 

 4 39.1250650 -96.6486633 2.1  10 52 38 silty clay loam 6.1 

 5 39.1254233 -96.6475117 2.6  14 48 38 silty clay loam 6.4 
            

Grain sorghum Hutch Redd 1 37.9567384 -98.1152650 2.3  44 34 22 loam 5.6 

 2 37.9565118 -98.1150333 2.8  46 28 26 loam 5.6 

 3 37.9561001 -98.1153933 2.1  54 28 18 sandy loam 5.4 

 4 37.9561168 -98.1158133 2.3  48 30 22 loam 5.6 

 5 37.9564218 -98.1162750 1.4  66 20 14 sandy loam 5.8 

 6 37.9566668 -98.1166750 1.4  66 20 14 sandy loam 5.3 

 7 37.9567218 -98.1161583 2.0  56 24 20 sandy loam 5.7 

 8 37.9560250 -98.1150600 1.3  66 22 12 sandy loam 5.1 

 9 37.9561401 -98.1164333 2.1  46 28 26 loam 5.8 

 10 37.9565168 -98.1154733 1.9  52 30 18 loam 5.3 

aAbbreviations: SOM, soil organic matter. 
b Loss-on-ignition (Ball 1964) 
c Particle size analysis by Hydrometer Method (Bouyoucos 1962) 
d Based on Soil Texture Calculator (USDA-NRCS 2008) 
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Table 2.6. Soil testing lab information for Veris calibration soil samples collected from a depth to 7.6 cm at locations in 2017.a 

       Soil Texturec  

Crop Location Sample  Latitude Longitude SOMb  Sand Silt Clay Classd pH 
        

% 
   

 
 

      

Corn Topeka 1 39.0771633 -95.7707816 2.0  34 42 24 loam  6.1 

 2 39.0773800 -95.7695950 1.6  52 34 14 loam  7.4 

 3 39.0770033 -95.7698784 1.4  58 32 10 sandy loam 6.7 

 4 39.0763733 -95.7692784 1.9  50 40 10 loam 6.7 

 5 39.0765733 -95.7706550 1.7  54 34 12 sandy loam 7.9 
            

 Morganville 1 39.4534227 -97.2070973 2.4  50 24 26 sandy clay loam 6.9 

 2 39.4537900 -97.2081156 1.5  70 20 10 sandy loam 6.7 

 3 39.4530857 -97.2084858 0.6  90 4 6 sand 7.1 

 4 39.4524440 -97.2089635 1.1  80 14 6 loamy sand 7.1 

 5 39.4523711 -97.2077534 3.6  28 44 28 clay loam 7.0 
            

Grain sorghum Hutch Pivot 1 37.9440800 -98.1075866 1.1  88 6 6 loamy sand 7.3 

 2 37.9439300 -98.1087066 3.0  48 32 20 loam 7.3 

 3 37.9441866 -98.1087133 2.0  70 18 12 sandy loam 7.5 

 4 37.9443749 -98.1086733 1.4  76 14 10 sandy loam 7.6 
            

 Hutch Redd 1 37.9565899 -98.1157750 1.2  74 16 10 sandy loam 6.2 

 2 37.9560218 -98.1157833 2.3  50 30 20 loam 5.2 

 3 37.9561734 -98.1165416 2.4  46 30 24 loam 5.4 

 4 37.9566850 -98.1164650 1.6  68 20 12 sandy loam 5.4 
            

 Manhattan 1 39.1256783 -96.6347685 2.9  14 56 30 silty clay loam 6.7 

 2 39.1265216 -96.6348449 3.3  20 54 26 silt loam 6.8 

 3 39.1269850 -96.6354900 3.1  18 40 42 silty clay 5.9 

 4 39.1261583 -96.6357434 3.6  18 52 30 silty clay loam 5.6 

 5 39.1258916 -96.6351467 3.3  18 54 28 silty clay loam 6.0 

 

 

aAbbreviations: SOM, soil organic matter. 
b Loss-on-ignition (Ball 1964) 
c Particle size analysis by Hydrometer Method (Bouyoucos 1962) 
d Based on Soil Texture Calculator (USDA-NRCS 2008) 



70 

Table 2.7. Values of electrical conductivity (EC) that were used to 

classify field areas as coarse-, medium-, and fine-textured classes. 

  EC Range 

Year Location Coarse Texture Medium Texture Fine Texture 
 

 

    mS m-1     

         

2016 Rossville <7.5 ≥ 7.5 - 

 Manhattan - < 25 ≥ 25 

 Salina < 31 31 - 40 > 40 

 Hutch Redd ≤ 19 > 19 - 

2017 Topeka < 25 ≥ 25 - 

 Morganville < 8 8 - 20 > 20 

 Hutch Pivot ≤ 40 > 40 - 

 Hutch Redd ≤ 40 > 40 - 

 Manhattan - < 50 ≥ 50 

 (-) Soil texture class not at location. 
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Table 2.8. P-values for analysis of fixed effects and interactions of weed control at 4 and 8 weeks after treatment (WAT), weed density and 

biomass at all corn locations in 2016 and 2017. 

   Palmer amaranth  Ivyleaf morningglory  

   Control     Control     

Year Location Fixed Effect 4WAT 8WAT  Density Biomass  4WAT 8WAT  Density Biomass Yield 

               

2016 Rossville Algorithm 0.907 0.405  0.101 0.485  0.310 0.260  0.084 0.012a 0.618 

  Tank-mix 0.516 0.136  0.070 0.263  0.002 0.952  0.046 0.108 0.616 

  Interactionb  0.940 0.291  0.182 0.607  0.618 0.980  0.650 0.563 0.956 
               

 Manhattan Algorithm - -  - -  - -  - - 0.631 

  Tank-mix - -  - -  - -  - - 0.007 

  Interaction - -  - -  - -  - - 0.686 
               

2017 Topeka Algorithm - -  - -  - -  - - 0.713 

  Tank-mix - -  - -  - -  - - 0.873 

  Interaction - -  - -  - -  - - 0.829 
               

 Morganville Algorithm 0.369 0.028  0.342 0.0624  - -  - - 0.378 

  Tank-mix 0.543 0.003  0.154 0.381  - -  - - <.0001 

  Interaction 0.937 0.582  0.132 0.867  - -  - - 0.556 
aNumbers in bold are significant where P-value ≤ 0.05. 
bInteraction of Algorithm and Tank-mix. 

(-) data not collected. 
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Table 2.9. P-values for analysis of fixed effects and interactions of weed control at 4 and 8 weeks after treatment (WAT), weed 

density and biomass at all grain sorghum locations in 2016 and 2017. 

   Palmer amaranth  Large crabgrass  

   Control     Control     

Year Location Fixed Effect 4WAT 8WAT  Density Biomass  4WAT 8WAT  Density Biomass Yield 

               

2016 Hutch Redd Algorithm   0.006a 0.003  0.650 0.276  0.576 0.004  0.812 0.694 0.489 

  Tank-mix <0.0001 0.0003  0.037 0.059  0.006 <0.0001  0.170 0.163 0.331 

  Interactionb  .058 0.270  0.847 0.605  0.876 0.634  0.863 0.683 0.512 
               

 Salina Algorithm 0.274 0.824  0.612 0.651  - -  - - 0.094 

  Tank-mix 0.093 0.091  0.406 0.195  - -  - - 0.025 

  Interaction 0.510 0.798  0.601 0.820  - -  - - 0.298 
               

2017 Hutch Redd Algorithm 0.337 0.501  0.788 0.368  0.008 0.280  0.055 0.181 0.354 

  Tank-mix 0.049 0.161  0.483 0.422  0.021 0.218  0.110 0.009 0.169 

  Interaction 0.308 0.289  0.422 0.877  0.714 0.784  0.420 0.415 0.311 
               

 Hutch Pivot Algorithm 0.024 0.060  0.007 0.0624  - -  - - 0.126 

  Tank-mix 0.139 0.324  0.570 0.381  - -  - - 0.954 

  Interaction 0.250 0.666  0.764 0.867  - -  - - 0.740 
               

 Manhattan Algorithm - -  - -  - -  - - 0.393 

  Tank-mix - -  - -  - -  - - 0.487 

  Interaction - -  - -  - -  - - 0.981 
aNumbers in bold are significant, P-value ≤ 0.05. 
bInteraction of Algorithm by Tank-mix. 

(-) data not collected.  

 

 

 

 

 



73 

 

 

Table 2.10. Weekly rainfall totals recorded across all locations. 

   Rainfall   

   

Application  
Weeks after PREa  

Year Location date 1 2 3 4 5 6 7 8 Total 
        

cm 
      

              

2016 Rossville May 10 3.2 0.8 16.7 0.6 2.0* 6.3* 2.0* 5.2 36.8 

 Manhattan May 22 13.4 2.1 1.2 1.9 12.2 2.4 0.3 0.8 34.3 

 Salina Jun 11 1.1 0.0 1.8 2.7 1.0 0.0 4.7 1.8 13.1 

 Hutch Redd Jun 15 8.0 2.8 5.6 1.1 2.1 1.3 2.7 4.2 27.8 

2017 Topeka Apr 25 3.3 0.6 0.1 10.4 2.1 3.4 2.1* 6.5 28.5 

 Morganville May 9 2.5 8.1 2.0 2.5 2.2* 3.4* 6.9 3.1* 30.7 

 Hutch Pivot May 27 0.7 2.2* 0.8 0.7 1.8 2.3* 0.7 2.0* 11.2 

 Hutch Redd May 27 0.7 0.2 0.8 0.7 1.8 0.3 0.7 0.0 5.2 

 Manhattan Jun 7 0.0 0.3 0.4 6.3 0.0 0.0 1.0 2.4 10.4 

aAbbreviations: PRE, preemergence. 

*2.0 cm of supplemental water provided by irrigation. 
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Table 2.11. Comparison of percentages of maximum use rates applied for algorithms of tank-mix 1(saflufenacil, 

dimethenamid-P, and atrazine) and tank-mix 2 (bicyclopyrone, mesotrione, s-metolachlor, and atrazine) at corn 

locations in 2016 and 2017.a   

    Tank-mix 1  Tank-mix 2 

Year Site Algorithm  Mean CV Min Max  Mean CV Min Max 

 

 

  

     

% 

     

 

     

% 
     

                     

2016 Rossville alg-SOM  70 4.0 64 73  71 5.0 66 74 

 alg-SOMtex  65 2.6 63 69  60 13.0 53 68 

 Flat  67 0.0 67 67  64 0.0 64 64 

             

 Manhattan alg-SOM  89 2.5 87 92  91 1.9 89 93 

 alg-SOMtex  90 3.6 85 94  89 4.4 84 94 

 Flat  97 0.0 97 97  74 0.0 74 74 

             

2017 Topeka alg-SOM  68 7.3 60 73  71 6.3 61 77 

 alg-SOMtex  70 6.8 65 79  52 7.8 46 58 

 Flat  67 0.0 67 67  64 0.0 64 64 

             

 Morganville alg-SOM  81 26.1 46 100  85 19.4 54 99 

 alg-SOMtex  76 28.9 43 100  76 33.2 34 100 

 Flat  67 0.0 67 67  64 0.0 64 64 
aAbbreviations: CV, coefficient of variation, Min, minimum; Max, maximum.  
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Table 2.12. Comparison of percentages of maximum use rates applied for algorithms of tank-mix 1 (saflufenacil, 

dimethenamid-P, and atrazine) and tank-mix 2 (mesotrione, s-metolachlor, and atrazine) at grain sorghum locations 

in 2016 and 2017.a   

    Tank-mix 1  Tank-mix 2 

Year Site Algorithm  Mean CV Min Max  Mean CV Min Max 

 

 

  

     

% 

     

 

     

% 
     

                     

2016 Salina alg-SOM  82 5.9 75 86  82 4.8 74 87 

 alg-SOMtex  86 5.4 78 90  78 10.8 67 92 

 Flat  100 0.00 100 100  84 0.0 84 84 

             

 Hutch Redd alg-SOM  85 6.5 75 91  83 8.3 70 93 

 alg-SOMtex  68 13.3 52 52  71 8.9 56 82 

 Flat  100 0.0 100 100  84 0.0 84 84 

             

2017 Hutch Pivot alg-SOM  75 26.9 43 95  71 26.2 46 90 

 alg-SOMtex  60 29.8 34 79  66 27.7 43 85 

 Flat  100 0.0 100 100  94 0.0 94 94 

             

 Hutch Redd alg-SOM  81 15.4 52 91  81 15.8 60 91 

 alg-SOMtex  67 18.8 44 78  71 16.9 50 80 

 Flat  100 0.0 100 100  94 0.0 94 94 

             

 Manhattan alg-SOM  99 0.61 99 100  100 0.3 99 100 

 alg-SOMtex  97 5.3 86 100  97 4.8 89 100 

 Flat  100 0.0 100 100  94 0.0 94 94 
aAbbreviations: CV, coefficient of variation, Min, minimum; Max, maximum.  
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Table 2.13. Summary and comparison of fixed effects of algorithm and tank-mix on Palmer amaranth and ivyleaf morningglory control 4 

and 8 weeks after treatment (WAT), weed density and biomass, and corn yield for each location in 2016.  

   Palmer amaranth 
 

Ivyleaf morningglory  

Location 
Fixed 

Effect 
Level 4WAT 8WAT Density Biomass 

 
4WAT 8WAT Density Biomass Yield 

    plants m-2 g m-2   plants m-2 g m-2 kg ha-1 

Rossville Algorithm alg-SOM 98 83 2.0 29.8  98 49 2.1 13.4 aa 9970 

 alg-SOMtex 97 93 0.8 12.4  96 47 1.9 8.2 ab 10270 

 Flat 98 93 1.5 22.5  98 60 0.7 1.5 b 10300 
            

Tank-mix 1 97 85 1.8 28.3  99 a 52 2.1 a 9.7 10960 

2 98 93 1.0 14.7  95 b 52 1.0 b 4.2 11100 
             

Manhattan Algorithm alg-SOM - - - -  - - - - 9170 

 alg-SOMtex - - - -  - - - - 9690 

 Flat - - - -  - - - - 9390 
            

Tank-mix 1 - - - -  - - - - 8820 b 

2 - - - -  - - - - 10020 a 
aMeans followed by the same letter within a column for each fixed effect are not statistically different according to Tukey-Kramer’s 

HSD where α ≤ 0.05. Values reported are back-transformed. 

(-) data not collected. 

  

 

 



77 

Table 2.14. Significance and summary of Manhattan crop injury 

ratings 2 and 4 weeks after treatment (WAT) in 2016. 

  2WAT  4WAT 

Fixed Effect Level Crop Injury  Crop Injury 

 
 % 

 
% 

Algorithm alg-SOM 56  24 

 alg-SOMtex 55  20 

 Flat 52  24 

P-value  0.432  0.203 

     

Tank-mix 1 74 aa  40 a 

 2 34 b  6 b 

P-value  <0.0001  <0.0001 
aMeans followed by the same letter within a column for each 

fixed effect are not statistically different according to Tukey-

Kramer’s HSD where α ≤ 0.05. 
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Table 2.15. Summary and comparison of fixed effects of algorithm and tank-mix on Palmer amaranth and large crabgrass control 4 and 8 weeks 

after treatment (WAT), density, biomass, and yield across grain sorghum locations in 2016. 

   Palmer amaranth 
 

Large crabgrass  

Location 
Fixed 

Effect 
Level 4WAT 8WAT Density Biomass 

 
4WAT 8WAT Density Biomass Yield 

   
  

% 

 
 

plants m-2 g m-2  
   

% 
   

plants m-2 g m-2 kg ha-1    
 

      

   
 

      

   
 

      

Hutch Redd Algorithm alg-SOM  82 aba    21 a 13.3 83.4  89 72 ab 1.3 7.4 4720 

 alg-SOMtex  78 b      8 b 13.4 94.5  84 59 b 1.9 14.5 4470 

 Flat  87 a    30 a 10.9 65.2  89 80 a 1.4 10.6 4600 

Tank-mix 1  77 b    10 b 15.4 a 95.8  80 55 b 2.2 15.9 4680 

 2  87 a    31 a 9.9 b 66.7  92 83 a 1.0 6.4 4510 
             

Salina Algorithm alg-SOM  98    92 2.0 39.9  - - - - 9180 

 alg-SOMtex  99    93 1.6 32.4  - - - - 9710 

 Flat  99    94 1.0 20.8  - - - - 9990 

Tank-mix 1  98    90 1.2 20.2  - - - - 9980 a 

 2  99    95 1.9 42.9  - - - - 9310 b 
aMeans followed by the same letter within a column for each fixed effect are not statistically different according to Tukey-Kramer’s HSD test 

on transformed data where α ≤ 0.05. Values reported are back-transformed. 

(-) data not collected. 
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Table 2.16. Summary and comparison of fixed effects of algorithm and tank-mix on Palmer amaranth and control 

4 and 8 weeks after treatment (WAT), density, biomass, and yield across corn locations in 2017. 

 

aMeans followed by the same letter within a column for each fixed effect are not statistically different according 

to Tukey-Kramer’s HSD test on transformed data where α ≤ 0.05. Values reported are back-transformed.  

(-) data not collected. 

 

 

 

 

 

 

   Palmer amaranth 
  

Location Fixed Effect Level 4WAT 8WAT Density Biomass  Yield 

   
  

% 
  

plants m-2 g m-2  kg ha-1      

    

    

Morganville Algorithm alg-SOM 99    87 aba 1.3 11.5  8990 

 alg-SOMtex 99 92 a 0.8 10.6  9540 

 Flat 98 71 b 1.5 3.6  9310 

Tank-mix 1 98 73 b 1.5 6.8  8450 b 

 2 99 93 a 0.9 9.6  10110 a 

         

Topeka Algorithm alg-SOM - - - -  12300 

 alg-SOMtex - - - -  11450 

 Flat - - - -  11250 

Tank-mix 1 - - - -  11930 

 2 - - - -  12080 



80 

Table 2.17. Summary and comparison of fixed effects of algorithm and tank-mix on Palmer amaranth and large crabgrass control 4 and 8 weeks 

after treatment (WAT), density, biomass, and yield across grain sorghum locations in 2017. 

   Palmer amaranth 
 

Large crabgrass  

Location 
Fixed 

Effect 
Level 4WAT 8WAT Density Biomass 

 

4WAT 8WAT Density Biomass Yield 

 
  

  

% 

 
 

plants m-2 g m-2 
   

% 

  

plants m-2 g m-2 kg ha-1 
   

 

    

   
 

    

   
 

    

Hutch Redd Algorithm alg-SOM    90 90 0.6 4.6 
 

80 ba 81     7.4 a   11.5 2840 

 alg-SOMtex    89 93 0.7 4.2 
 

83 b 84     5.0 ab     7.1 2980 

 Flat    94 94 0.4 1.8 
 

93 a 90     1.6 b     4.0 3140 

Tank-mix 1    88 b 90 0.7 1.1 
 

81 b 82     6.1   12.3 a 2630 

 2    94 a 94 0.5 2.7 
 

90 a 88     2.8     3.4 b 2870 
             

Hutch Pivot Algorithm alg-SOM    88 ab 84       1.2 a 11.5 
 

- - - - 4650 

 alg-SOMtex    84 b 80       1.2 a 10.6 
 

- - - - 4700 

 Flat    95 a 93       0.4 b 3.6 
 

- - - - 5080 

Tank-mix 1    93 89       0.8 6.8 
 

- - - - 4820 

 2    87 84       1.0 9.6 
 

- - - - 4810 
       

 

     

Manhattan Algorithm alg-SOM - - - - 
 

- - - - 8270 

 alg-SOMtex - - - - 
 

- - - - 8170 

 Flat - - - - 
 

- - - - 7820 

Tank-mix 1 - - - - 
 

- - - - 8100 

 2 - - - - 
 

- - - - 7900 
aMeans followed by the same letter within a column for each fixed effect are not statistically different according to Tukey-Kramer’s HSD 

test on transformed data where α ≤ 0.05. Values reported are back-transformed. 

(-) data not collected. 
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Table 2.18. Cost comparison of both algorithms based rates and flat rate treatments across both tank-

mixes based on mean, minimum (min) and maximum (max) rates applied to corn plots at all locations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

aHerbicide costs were based on average retail prices in Kansas in 2018. 
 

 

 

 

 

 

    Tank-mix 1  Tank-mix 2 

Year Site Algorithm  Mean Min Max  Mean Min Max 

    
    

$ ha-1   
 

    

$ ha-1  
 

 

            
 

 

2016 Rossville alg-SOM   94.0a 82.1 101.1  106.4 90.9 115.4 

 alg-SOMtex  90.7 73.3   96.0    99.7 67.9 105.7 

 Flat  88.1 88.1   88.1    94.8 94.8   94.8 

           

 Manhattan alg-SOM  118.9 107.6 123.6  135.7 123.3 140.3 

 alg-SOMtex  123.1 100.8 126.4  138.8 111.1 142.5 

 Flat  127.5 127.5 127.5  109.6 109.6 109.6 

           

2017 Topeka alg-SOM  97.6 82.1 113.6  111.1 90.9 130.1 

 alg-SOMtex  93.4 73.4 105.1  102.8 67.9 116.0 

 Flat  88.1 88.1   88.1    94.8 94.8   94.8 

           

 Morganville alg-SOM  106.4 60.5 131.4  125.9 80.0 146.7 

 alg-SOMtex    99.9 56.5 131.4  112.6 50.4 148.1 

 Flat    88.1 88.1   88.1    94.8 94.8   94.8 



82 

Table 2.19. Cost comparison of both algorithms and flat rate treatments across both tank-mixes based 

on mean, minimum (min) and maximum (max) rates applied to grain sorghum plots at locations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

aHerbicide costs were based on average retail prices in Kansas in 2018. 

 

 

    Tank-mix 1  Tank-mix 2 

Year Site Algorithm  Mean Min Max  Mean Min Max 

    
    

$ ha-1        

$ ha-1    

              

2016 Salina alg-SOM  86.9a 79.4 91.1  90.9 82.0 96.4 

 alg-SOMtex  91.1 82.6 95.3  86.5 74.3 102.0 

 Flat  105.9 105.9 105.9  93.1 93.1 93.1 

           

 Hutch Redd alg-SOM  90.0 79.4 96.4  92.0 77.6 103.1 

 alg-SOMtex  72.0 55.1 83.7  78.7 62.1 90.9 

 Flat  105.9 105.9 105.9  93.1 93.1 93.1 

           

2017 Hutch Pivot alg-SOM  79.4 45.5 100.6  78.7 51.0 99.8 

 alg-SOMtex  63.6 36.0 83.7  73.2 47.7 94.2 

 Flat  105.9 105.9 105.9  104.2 104.2 104.2 

           

 Hutch Redd alg-SOM  85.8 55.1 96.4  89.8 66.5 100.9 

 alg-SOMtex  71.0 46.6 82.6  76.7 55.4 88.7 

 Flat  105.9 105.9 105.9  104.2 104.2 104.2 

           

 Manhattan alg-SOM  104.9 104.9 105.9  110.8 107.7 110.8 

  alg-SOMtex  102.7 91.1 105.9  107.5 98.6 110.8 

  Flat  105.9 105.9 105.9  104.2 104.2 104.2 
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Table 2.20. Pearson correlation coefficients between soil organic matter (SOM) and electrical conductivity (EC), Rate, 

Palmer amaranth control at 8 weeks after treatment (WAT) and biomass, and yield at locations where weed control 

efficacy was evaluated.a 

      Palmer amaranth  

Crop Year Location n SOM*EC SOM*Rate SOM*8WAT SOM*Biomass SOM*Yield 

Corn 2016 Rossville 54 0.276b 0.140 -0.300 0.349 0.321 

 2017 Morganville 54 0.960 0.718 0.811 -0.726 0.872 

Grain Sorghum 2016 Salina 54 0.997 0.346 0.472 0.002 0.001 

  Hutch Redd 42 0.666 0.417 -0.114 0.138 0.087 

 2017 Hutch Pivot 54 0.955 0.647 -0.136 0.051 0.332 

  Hutch Redd 54 0.777 0.616 0.287 -0.581 0.314 
aAbbreviations: n, number of plots.  

bNumbers in bold are significant, P-value ≤ 0.05.  
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Chapter 3 - Efficacy of Soil-Applied HPPD-Inhibitor Herbicides on 

Kansas HPPD-Resistant Palmer Amaranth (Amaranthus palmeri) 

 Abstract 

Palmer amaranth is a troublesome weed with widespread herbicide resistance that makes 

it difficult to control for growers. A population of Palmer amaranth was identified in Stafford 

County, KS (SF(R)), as resistant to POST applications of both mesotrione, a 4-

hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicide, and to atrazine, a photosystem 

II (PSII) inhibiting herbicide. Anecdotal evidence from the field has indicated that PRE 

applications of mesotrione provided modest control of HPPD resistant populations. Greenhouse 

studies were conducted to evaluate the PRE efficacy of two HPPD-inhibiting herbicides 

(mesotrione and isoxaflutole) on SF(R) population and an additional susceptible population from 

Riley County, KS (RL(S)). Reduced susceptibility and greater seedling survival were observed in 

the SF(R) population for both herbicides at recommended field use rates. Resistant-to-sensitive 

(R/S) ratios using the LD50 was 7.2 for mesotrione and 4.1 for isoxaflutole. Field experiments 

were conducted in 2017 at a producer’s field in Barton County, KS with a reported HPPD-

inhibitor and atrazine-resistant population and in Reno County, KS with a confirmed HPPD-

inhibitor susceptible and atrazine-resistant population. The experiment was a randomized 

complete block design with 18 treatments applied PRE into a non-crop scenario in Reno County 

and in grain sorghum in Barton County. Three HPPD-inhibiting herbicides: mesotrione, 

isoxaflutole, and bicyclopyrone plus bromoxynil, were applied at multiple rates with and without 

2,240 g ha-1 of atrazine. Palmer amaranth control was visually evaluated 4 weeks after treatment. 

At both sites, mesotrione (89%) provided better control than isoxaflutole (81%) on average 
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across both rates. Bicyclopyrone was the least effective HPPD-inhibiting herbicide across both 

rates providing 55 and 65% control of susceptible and resistant populations, respectively. 

Mesotrione and isoxaflutole applied at 1X performed better (89% control) compared to ½X (81% 

control). For all herbicides, the higher rate provided better control than lower rates. The addition 

of atrazine increased weed control from 82 to 88% when added to all HPPD-inhibiting 

herbicides. For mesotrione treatments across both sites, Palmer amaranth control was reduced to 

less than 90% when rates lower than 1X were applied. When comparing populations, weed 

control efficacy with mesotrione was reduced from 92 to 79% in the resistant population 

compared to the susceptible populations. Overall reduction of weed control on the resistant 

population demonstrated reduced sensitivity to soil applied HPPD-inhibiting herbicides 

compared to the susceptible population, but the same trends were observed. HPPD-inhibiting 

herbicides should be used at maximum labelled use rates and tank-mixed with atrazine for best 

residual control of all Palmer amaranth populations as part of an integrated weed management 

plan. 

 Introduction 

Palmer amaranth (Amaranthus palmeri S. Wats.) is a dioecious, C4, summer annual plant 

species that is native to southwestern United States and northwestern Mexico (Sauer 1957). A 

single female plant can produce up to 600,000 seeds when in a non-competitive environment 

greatly augmenting the soil seedbank (Keeley et al. 1987). Once emerged, high photosynthetic 

rates allow for rapid growth, and provide a competitive advantage over crops at high 

temperatures and in water limiting situations (Ehleringer 1983, Horak and Loughin 2000, Ward 

et al. 2013). Palmer amaranth is a successful invader of disturbed agricultural lands and is a 

concern across many states (Jhala et al. 2014, Sauer 1957). These characteristics contribute to 
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Palmer amaranth persisting as one of the most economically important weeds with the potential 

of causing yield loss up to 79 and 91% in soybeans and corn, respectively (Bensch et al. 2003, 

Massinga et al. 2001). With the innate ability to survive in a wide range of agricultural 

environments, Palmer amaranth will continue to coexist with crops in modern-day fields (Steckel 

2007). 

Producers rely on use of herbicides to face the challenges of managing Palmer amaranth. 

Unfortunately, the evolution of herbicide-resistant Palmer amaranth populations to various 

products has limited the effective options for chemical control across KS (Peterson 1999). Before 

2009, Palmer amaranth evolved resistance to multiple herbicide sites of action including 

acetolactate synthase (ALS) inhibitors, microtubule inhibitors, photosystem II (PSII) inhibitors, 

and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitors with several of cases of 

multiple resistance (Heap 2018). Integrated weed management (IWM) that includes a soil-

applied herbicide or preemergence (PRE) herbicide with residual activity is critical for 

controlling herbicide-resistant Palmer amaranth (Ciampitti et al. 2018, Norsworthy et al. 2012). 

Kohrt and Sprague (2017) reported that 10 soil-applied herbicides provided 89 to 98% control of 

a multiple herbicide-resistant population of Palmer amaranth 72 days after planting. In several 

other studies, it was reported that PRE soil-applied herbicides resulted in  ≥ 95% control of 

glyphosate-resistant Palmer amaranth control at 4 WAT (Meyer et al. 2015). More recently, 4-

hydroxyphenylpyruvate dioxygenase (HPPD)-inhibitors have gained popularity and are 

extensively used for weed control both as foliar- and soil-applied herbicide applications 

(Bollman et al. 2008, Mitchell et al. 2001). Mesotrione and isoxaflutole are two of the most 

utilized HPPD-inhibitors due to a wide-spectrum of weed control, specifically Amaranthus spp, 

and the flexibility in timing of application (Bollman et al. 2008, Luscombe and Pallett 1996, 
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Mitchell et al. 2001). Sutton et al. (2002) reported that HPPD-inhibitors were highly effective on 

controlling PSII- and ALS-resistant weeds. HPPD-inhibitors resulted in 80 to 100% control of 

Palmer amaranth when applied PRE in KS and Missouri (Johnson et al. 2012). Synergism has 

also been documented when mixing HPPD-inhibitors with PSII-inhibitors at both PRE and 

postemergence (POST) application timings for controlling herbicide-resistant weeds and 

furthermore controlling HPPD-inhibitor resistant weeds (Armel et al. 2005, Hugie et al. 2008, 

Jhala et al. 2014, Thompson 2014, Walsh et al. 2012).  

Palmer amaranth was first documented and later confirmed to be resistant to foliar-

applied HPPD-inhibitors in Stafford County, KS in 2012 (Thompson et al. 2012). This 

population was initially found resistant to Huskie® (Bayer CropScience LP), a mixture of 

pyrasulfotole (HPPD-inhibitor) and bromoxynil (PS II-inhibitor). This population was later 

found resistant to several other HPPD-inhibitors including mesotrione, tembotrione, and 

topramezone (Lally et al. 2010, Thompson et al. 2012). Unlike many cases of herbicide 

resistance, this field had no history of applications of HPPD-inhibitors, but did have a long 

history of PSII- and ALS-inhibitor herbicides. Rapid detoxification and increased HPPD gene 

expression were the mechanisms conferring resistance in this Palmer amaranth population 

(Nakka et al. 2017). Another HPPD-inhibitor resistant Palmer amaranth population was also 

documented in Nebraska (Sandell et al. 2012). Several populations of HPPD-inhibitor resistant 

waterhemp (Amaranthus tuberculatus Sauer) have also been documented in Illinois and in Iowa 

(Hausman et al. 2011, McMullan and Green 2011). In areas of HPPD-resistant Palmer amaranth, 

resistance to POST applications at labeled rates were well documented and confirmed (Jhala et 

al. 2014, Nakka et al. 2017, Thompson et al. 2012)  Foliar applications of HPPD-inhibitors were 

not providing control of HPPD-inhibitor resistant species, but PRE applications were still 
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providing adequate control at high rates (Thompson 2014). Many growers are using soil-applied 

HPPD-inhibitors due to limited options in regards to weed resistance management. The number 

of growers using HPPD-inhibitor will likely increase with new HPPD-inhibitor tolerant traits 

being added to soybeans. The response of HPPD-inhibitors applied to the soil for controlling 

HPPD-inhibitor resistant waterhemp has been documented (Hausman et al. 2013), but has not 

been evaluated in Palmer amaranth. Understanding the efficacy of soil-applied herbicides on 

HPPD-inhibitor resistant Palmer amaranth is crucial to developing effective weed management 

recommendations for HPPD-resistant populations. The objectives of this study were to (1) assess 

the dose-response of soil-applied mesotrione and isoxaflutole on HPPD-inhibitor resistant 

Palmer amaranth compared to a known susceptible population in the greenhouse and (2) evaluate 

the activity of soil-applied herbicides on controlling HPPD-inhibitor resistant Palmer amaranth 

populations under field conditions.  

 Materials and Methods 

 Dose-Response under Greenhouse Conditions  

A HPPD-inhibitor resistant Palmer amaranth population from Stafford County, KS and a 

susceptible population from Riley County, KS, denoted as SF(R) and RL(S), respectively, were 

used in this study. HPPD-inhibitor resistant Palmer amaranth seed was initially collected from 

Stafford County in 2011 and a homogenous population of SF(R) was produced by crossing male 

and female plants that survived a mesotrione application at field use rate (105 g ha-1) in the 

greenhouse (Nakka et al. 2017, Thompson et al. 2012). Seed was collected from surviving 

female inflorescences and used for this study. The RL(S) population was harvested from the 

Department of Agronomy Ashland Bottoms Research Farm near Manhattan, KS in the fall of 

2009 and was confirmed to be susceptible to the field use rate of mesotrione in the greenhouse.  
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Plastic plots (8.25 cm by 8.25 cm by 9.0 cm) were filled to the top with silty clay loam 

field soil (pH 6.5; 2.8% organic matter) that was evenly wetted until soil was easily formed into 

a ball. Soil wetting procedures were based on preliminary data, where maximum seed 

germination was achieved when soil was not completely saturated (data not shown). To avoid 

uneven seed distribution, 16 seeds from each population were sown on the soil surface in a 4 by 

4 grid with 1 cm spacing from all pot sides. Seeding population was determined by initial 

germination tests and calculated to represent a dense population in the field. To cover seed, the 

same field soil was passed through a 2 mm soil sieve over the top of each pot and tamped to 

ensure seed to soil contact. Pots were then surface watered using a 0.5 liter per minute (LPM) 

mister nozzle to ensure uniform moisture distribution and adequate water for seed germination.  

Immediately after planting and watering, mesotrione (Callisto, Syngenta Crop Protection 

LLC, Greensboro, NC) and isoxaflutole (Balance Pro, Bayer Crop Science, Triangle Park, NC) 

treatments were applied to the corresponding pots. For the susceptible population, both 

mesotrione and isoxaflutole rates ranged from 1.6 to 210 g ha-1. For the resistant population, 

mesotrione rates ranged from 13 to 1680 g ha-1 and isoxaflutole ranged from 3.3 to 840 g ha-1. 

Herbicide treatments were applied using compressed air, bench-type, research sprayer (DeVries 

Manufacturing, 86956 State Highway 251, Hollandale, MN) equipped with a Teejet 80015LP 

flat-fan nozzle, calibrated to deliver 140 L ha-1 at 255 kPa in a single pass at 6.37 km h-1. After 

all herbicide applications, mefenoxam (Ridomil Gold SL, Syngenta Crop Protection LLC) at a 

rate of 560 g ha-1 was applied using bench sprayer to prevent damping off and other pathogens 

that cause seedling mortality. Approximately 0.8 cm of water was applied to each pot after 

herbicide application using a 0.5 LPM mister nozzle to simulate rainfall to leach herbicide into 

soil solution. Pots were then moved back into the greenhouse and arranged in a randomized 
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complete block design with six replications for each treatment, with two runs separated 

temporally. To ensure moisture was not a factor, pots were lightly watered on the surface three 

times a day using a 0.5 LPM mister nozzle until moist to touch. Watering procedures were 

carefully monitored to provide enough water to keep seeds germinating, but not too much water 

to leach the herbicide down from the surface. More frequent watering events using less water 

each pass was determined to be the most effective irrigation technique (data not shown). 

Greenhouse conditions were maintained at 32/22 C day/night and 16/8 photoperiod, 

supplemented with 250 µmol m-1 s-1 using 400-W sodium lighting.  

At 21 days after treatment (DAT), the surviving seedlings in each pot were counted and 

harvested. Initial analysis using the MIXED procedure in JMP PRO 12 (SAS Institute, 100 SAS 

Campus Drive, Cary, NC) resulted in no significant differences between runs, so data were 

combined. Combined count data were analyzed using the dose-response curve package, drc 

(Knezevic et al. 2007, Seefeldt et al. 1995) in R 3.1.2 software (R Foundation for Statistical 

Computing, Vienna, Austria) using the four parameter log-logistic model shown below: 

 y = c + 
d-c

1+exp{b[log(x)- log(LD50)]}
 

where y is the number of surviving seedlings (plants/pot), b is the slope of the curve, c is the 

lower limit, d is the upper limit, and LD50 is the dose required for 50% reduction in seedling 

count. The LD90 was calculated and is the dose required for 90% reduction in seedling count. 

Estimates of the LD50 and LD90 values for each herbicide were calculated from the seedling 

survival data and used to determine the difference in the level of resistance between SF(R) and 

RL(S) populations by calculating the R:S ratio. 

[3.1] 



91 

 Efficacy under Field Conditions  

Field experiments were conducted in 2017 at two KS locations, with one field having 

HPPD-resistant and the other one HPPD-susceptible Palmer amaranth populations. Both 

populations were resistant to atrazine (PSII inhibitors). Information about both of the sites is 

summarized in Table 3.1. The HPPD-resistant population site was located in Barton County 

(38.316019, -98.812979) approximately 15 km away from the first documented HPPD-resistant 

Palmer amaranth population in KS (Thompson et al. 2012). Previous screening proved this 

population was resistant to POST applications of mesotrione (105 g ha-1) (data not shown). The 

soil at this site was an Attica loamy fine sand (Coarse-loamy, mixed, superactive, mesic Udic 

Haplustalfs) with 0.8% organic matter and a pH of 6.6. A preplant burndown was applied before 

PRE applications to remove all emerged weeds and grain sorghum was planted three days later. 

PRE herbicides were applied the day after planting on May 29, 2017. The HPPD-susceptible site 

was located in Reno County at the Department of Agronomy South Central Kansas Experiment 

Field (37.929270ºN, 98.023207ºW). The soil at this site was an Ost loam (Fine-loamy, mixed 

superactive, mesic Udic Argiustolls) with 2.5% organic matter and a pH of 6.3. Tillage was 

conducted before PRE applications to control emerged weeds and the field was maintained as a 

non-crop site for entire study. PRE herbicides were applied two days after tillage on May 27, 

2017. Soil properties, herbicide application dates, and weekly precipitation totals for both sites 

are presented in Table 3.1.  

A total of 18 herbicide treatments and a non-treated control were evaluated for Palmer 

amaranth control at each site (Table 3.2). A randomized complete block design with four 

replications was used and plots were 3 m by 9 m. Herbicide treatments consisted of three 

different HPPD-inhibiting herbicides (mesotrione, isoxaflutole, and bicyclopyrone) at different 
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rates along with other commonly used herbicides for Palmer amaranth control (Table 3.2). 

Mesotrione treatments were ¼X, ½X, and 1X (210 g ha-1), while isoxaflutole treatments were 

½X and 1X (105 g ha-1) of the recommended field use rates. Bicyclopyrone treatments were 1X 

(50 g ha-1) and 2X rates in formulated combination with bromoxynil (700 and 1400 g ha-1) at the 

recommended use rate for corn. Each of the HPPD-inhibitor-only treatments were also tank-

mixed with atrazine (2,240 g ha-1). Four other soil-applied herbicide treatments included 

atrazine, linuron, s-metolachlor, and a combination of mesotrione + linuron for Palmer amaranth 

control comparison for a total of 18 herbicide treatments (Table 3.2). Treatments were applied 

using a CO2 backpack sprayer calibrated to deliver 187 L ha-1 at 255 kpa with a four nozzle 

boom with TTI11002 nozzles spaced 51 cm apart (TeeJet Technologies, Wheaton, IL). Palmer 

amaranth control ratings were taken 15 and 30 DAT using a scale from 0 (no control) to 100% 

(complete control) and were based on stand reduction compared to the non-treated control. 

Palmer amaranth height, density, and aboveground biomass data were collected 30 DAT from 

the center 0.76 m of each entire plot. Density data were converted to plants m-2 and biomass data 

were converted to mg m-2. To improve normality, density and biomass data were subjected to the 

square-root and log transformations, respectively, and results were back-transformed for 

discussion. 

All field data were analyzed using the MIXED procedure in JMP Pro 12 and means were 

separated using Fisher’s Protected LSD test (α = 0.05). When all 18 treatments were included, 

interactions of the main effects (site and treatment) were significant. Therefore, treatment and 

site were considered fixed effects and replication was considered a random effect. To understand 

the specific interactions of the HPPD-inhibitor herbicide treatments, two separate analyses of 

extracted data subsets were examined: 1) ½X and 1X treatments of mesotrione and isoxaflutole 
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with and without atrazine, and 2) ¼X, ½X, and 1X treatments of mesotrione with and without 

atrazine. Initial analysis of both extracted data subsets revealed site was not significant, therefore 

data were pooled across both sites. Replications were nested within site and considered as a 

random effect. In the analyses of fixed effects of the first extracted data subset, a 2 by 2 by 2 

factorial design was utilized to compare fixed effects of herbicide, rate, with or without atrazine 

as a tank-mix partner, and all interactions. In analysis of the second extraction subset, a 3 by 2 

factorial was utilized with rate (3 levels) and with or without atrazine as the fixed effects.  

 Results and Discussion 

 Dose-Response under Greenhouse Conditions  

The majority of Palmer amaranth uniformly emerged between 3 and 4 days after planting 

in the greenhouse. HPPD-inhibitor injury was observed on all emerged seedlings and included 

bleached cotyledons and stunted growth. Bleaching symptomology of SF(R) persisted for a 

shorter time (data not shown) likely due to its ability to metabolize mesotrione 2.5 times faster 

compared to susceptible populations (Nakka et al. 2017). Based on count data at 21 DAT, the 

lethal dose of mesotrione required to reduce survival by 50% (LD50) was 61.5 g ha-1 for SF(R) 

compared to only 9.2 g ha-1 for RL(S) populations (Table 3.3). For isoxaflutole, LD50 was 21.7 g 

ha-1 for SF(R) and only 5.3 g ha-1 for RL(S) populations. Similar LD50 values of 63.3 g 

mesotrione ha-1 were reported on a HPPD-inhibitor population of waterhemp when herbicide was 

applied to the soil (Hausman et al. 2013). A greater lethal dose of 150 g mesotrione ha-1 was 

required to reduce Palmer amaranth biomass by 50% when applied POST compared to PRE 

application (Nakka et al. 2017).  To achieve 90% reduction in seedling survival, 303 g 

mesotrione ha-1 were required for SF(R) compared to only 27.7 g mesotrione ha-1 for RL(S) 

populations (Table 3.3). Rates of isoxaflutole required for 90% reduction were less at 149.9 g ha-
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1 for SF(R), and only16.6 g ha-1 for RL(S). Rates of both herbicides to control 90% of SF(R) 

were greater than the field use rate. By 21 DAT, complete mortality of the RL(S) population was 

observed with 53 g mesotrione ha-1 and 26 g isoxaflutole ha-1 (FFigure 3.1 and Figure 3.2). For 

SF(R), survivors were seen in several individual replications at rates as high as 420 g mesotrione 

ha-1 and 210 g isoxaflutole ha-1. Although field rates of both HPPD-inhibitors applied PRE 

reduced the seedling survival of SF(R), there were still survivors and a decreased level of weed 

control than expected in the field.  

The R/S ratio calculated based on LD50, demonstrated that SF(R) was more resistant to 

mesotrione compared to isoxaflutole (Table 3.3). SF(R) population was 7.2 times more resistant 

to mesotrione and 4.1 times more resistant to isoxaflutole compared to the susceptible 

populations. In a similar study, HPPD-inhibitor resistant waterhemp populations were 12.7 and 

8.8 times more resistant to soil-applied mesotrione compared to a susceptible population 

(Hausman et al. 2013). The greater level of resistance was most likely due to the LD50 being 

lower in the susceptible population of waterhemp (5.0 g ha-1) compared to susceptible population 

of Palmer amaranth (8.5 g ha-1). The R/S ratio for POST applications of mesotrione on the same 

resistant and susceptible KS populations was much greater as SF(R) was 17.8 times more 

resistant than RL(S) (Nakka et al. 2017).   

Overall, field-labeled rates of both mesotrione and isoxaflutole were not effective for 

controlling the resistant population of Palmer amaranth in KS, opposed to being highly effective 

with 100% control of susceptible plants. By utilizing a controlled greenhouse study, the efficacy 

of soil-applied mesotrione and isoxaflutole were characterized and proved to be less effective on 

controlling HPPD-inhibitor resistant populations compared to susceptible populations. Soil-

applied herbicides have resulted in reduced efficacy on controlling resistant populations in many 
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different studies (Falk et al. 2006, Hausman et al. 2013, Umphres et al. 2018, Wuerffel et al. 

2015). SF(R) was more resistant to mesotrione than isoxaflutole and higher rates of mesotrione 

were required to get effective control under ideal greenhouse conditions (Table 3.3). Both 

herbicides were able to control the resistant population, but required greater than field use rates.  

 Efficacy under Field Conditions.  

 All Treatment Comparison 

Mesotrione applied at ½X and 1X rates were effective at controlling the susceptible 

Palmer amaranth population, resulting in greater than 90% control, while the ¼X only provided 

83% control at 4 WAT (Table 3.4).  All mesotrione rates decreased the susceptible Palmer 

amaranth density and biomass equally, compared to the non-treated check. Palmer amaranth 

density was ≤ 30 plants m-2 for all mesotrione rates, compared to 294 plants m-2 and biomass was 

≤ 280 mg m-2 for all mesotrione rates, compared to 11,230 mg m-2 for the non-treated check. 

Mesotrione applied at ½X and 1X resulted in 76 and 86% control, respectively, of the HPPD-

resistant Palmer amaranth population, while the ¼X rate only provided 58% control. Bollman et 

al. (2006) reported decreased weed control efficacy when using ¼X rate of mesotrione compared 

to 1X rate. Mesotrione applications at 1X resulted in greater weed control of HPPD-inhibitor 

resistant Palmer amaranth (86%) in this study, compared to a HPPD-inhibitor resistant 

waterhemp in a similar field study (53 to 65%) (Hausman et al. 2013). Palmer amaranth density 

was greater with applications of ¼X rate of mesotrione (6 plants m-2), compared to 1X rate (1 

plant m-2), but both rates decreased density compared to the non-treated check (15 plants m-2) 

(Table 3.4). Mesotrione applied at 1X was the only rate of mesotrione that decreased Palmer 

amaranth biomass (440 mg m-2) compared to the non-treated check (17,770 mg m-2). Greater 

amounts of rainfall immediately after emergence at the resistant site in Barton County resulted in 
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greater biomass harvested in each treatment compared to the susceptible site in Reno County 

(Table 3.1). Palmer amaranth control was reduced with applications of mesotrione when 

comparing susceptible and resistant populations, but reduced level of weed control was only 

observed when the ¼X rate was applied (Table 3.4). Mesotrione + atrazine treatments provided 

the greatest amount of  weed control across both populations, regardless of the mesotrione rate, 

resulting in ≥ 90% control of the susceptible population and ≥ 80% control of the resistant 

population. Palmer amaranth density was ≤ 9 plants m-2 for all mesotrione rates + atrazine for the 

susceptible populations, and ≤ 2 plants m-2 for the resistant population. This is due to the 

synergism between HPPD-inhibitor herbicides and PS II-inhibitors (Abendroth et al. 2006, 

Armel et al. 2005, Hugie et al. 2008, Jhala et al. 2014). Mesotrione tank-mixed with atrazine 

resulted in 91% control compared to 66% control with mesotrione alone when applied POST on 

a similar HPPD-inhibitor resistant Palmer amaranth population in Nebraska (Jhala et al. 2014). 

Mesotrione + linuron also provided the same level of weed control as mesotrione + atrazine on 

the susceptible (94%) and resistant populations (66%). Mesotrione + linuron treatments resulted 

in Palmer amaranth densities of 6 and 4 plants m-2 for the susceptible and resistant populations, 

respectively.  

Isoxaflutole applied at ½X and 1X rates resulted in 81% and 89% weed control of the 

susceptible population, respectively, but only the 1X rate of isoxaflutole provided the same 

amount of control as 1X of mesotrione (94%) (Table 3.4). Isoxaflutole and mesotrione 

applications at the 1X rate resulted in the same Palmer amaranth control, density and biomass at 

each individual site. In a similar study, isoxaflutole applied at 1X rate, provided greater than 87% 

control of Palmer amaranth by 8 WAT across multiple sites (Johnson et al. 2012). Susceptible 

Palmer amaranth density was greater for the ½X rate of isoxaflutole (55 plants m-2) compared to 
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the 1X rate (14 plants m-2) (Table 3.4). In comparison to the resistant Palmer amaranth 

population, isoxaflutole applied at 1X resulted in 83% control, but control was reduced to 55% 

when using the ½X rate. Similarly, Palmer amaranth density was lower for isoxaflutole applied 

at 1X rate (2 plants m-2) compared to ½X rate (7 plants m-2) for the resistant population. 

Applications of ½X of isoxaflutole on the resistant population also resulted in greater amount 

Palmer amaranth biomass (7,450 mg m-2) compared to 1X (1,260 mg m-2). All isoxaflutole + 

atrazine treatments provided the same amount of weed control as all mesotrione + atrazine 

treatments across both sites (Table 3.4). For the susceptible population, both rates of isoxaflutole 

+ atrazine resulted in ≥ 91% control and ≥ 71% control of the resistant populations. In another 

study, isoxaflutole + atrazine provided greater than 98% control of Palmer amaranth across 

multiple locations when applied PRE (Johnson et al. 2012).  

Several other commonly applied PRE herbicides were evaluated in the field experiment. 

Palmer amaranth control was less than 66% for treatments of atrazine, linuron, and 

bicyclopyrone + bromoxynil across both sites (Table 3.4). Atrazine only provided 43 and 63% 

control of the HPPD-inhibitor resistant and susceptible populations as they were both resistant to 

PSII-inhibitors. Kohrt and Sprague (2017) reported similar poor levels of control with atrazine 

on a different multiple-resistant Palmer amaranth population. Linuron provided ≤ 44% control 

across both sites (Table 3.4). S-metolachlor provided 89% control of the susceptible population, 

but was not effective by only providing 64 % control of the resistant population. In a similar 

study, S-metolachlor or atrazine resulted in less than adequate control of HPPD-inhibitor 

resistant waterhemp (Hausman et al. 2013). All treatments of bicyclopyrone + bromoxynil 

resulted in ≤ 66% control of Palmer amaranth and were the least effective compared to the other 

HPPD-inhibitors applied at field rates across both resistant and susceptible populations. Tank-
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mixing bicyclopyrone + bromoxynil with atrazine increased the level of weed control for the 

susceptible population resulting in 76 and 85% control at 1X and 2X rates, respectively. For the 

resistant population, tank-mixing atrazine with bicyclopyrone + bromoxynil had little impact on 

weed control with both treatments providing ≤ 54% control regardless of the rate. For the 

resistant Palmer amaranth population, treatments of linuron, bicyclopyrone + bromoxynil with or 

without atrazine, ¼X and ½X of mesotrione, and ½X of isoxaflutole did not reduce the amount 

of Palmer amaranth biomass (≥ 5,700 mg m-2) compared to the non-treated control (17,770 mg 

m-2). Bicyclopyrone + bromoxynil should not be applied alone to control Palmer amaranth 

regardless of the population.  

Palmer amaranth density in non-treated plots averaged 294 and 15 plants m-2 in Reno and 

Barton County, respectively (Table 3.4). For the susceptible populations, all herbicides reduced 

Palmer amaranth density by ≥ 154 plants m-2 compared to the non-treated control. Palmer 

amaranth density was 118 plants m-2 for linuron treatments, 63 plants m-2  for atrazine, and 12 

plants m-2 for s-metolachlor. The Palmer amaranth density was highest for bicyclopyrone + 

bromoxynil at 1X (140 plants m-2) and 2X (87 plants m-2) compared to all other herbicide 

treatments. Application of 1X of mesotrione and isoxaflutole resulted in the same Palmer 

amaranth density, but higher densities were observed with ½X of isoxaflutole. For the resistant 

population, all treatments excluding bicyclopyrone at 2X and both bicyclopyrone + atrazine 

treatments, reduced the Palmer amaranth density at 4 WAT. The ½X rate of isoxaflutole resulted 

in a higher density of Palmer amaranth with 7 plants m-2 compared to the 1X field use rate with 2 

plants m-2. All mesotrione + atrazine and isoxaflutole + atrazine treatments resulted in the same 

Palmer amaranth density, regardless of population.  
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 Comparison of Mesotrione and Isoxaflutole with or without Atrazine 

Analysis of fixed effects of herbicide, rate, and addition of atrazine for visual control and 

density revealed no interactions, but all main effects were significant (Table 3.5). Mesotrione 

provided greater levels of weed control when compared to isoxaflutole for visual control and 

across sites (Table 3.6). Visual control of Palmer amaranth at 4 WAT was greater for mesotrione 

with 89% control compared to 81% control for isoxaflutole. Palmer amaranth density was lower 

with mesotrione treatments compared to isoxaflutole, with 2.4 and 5.6 plants m-2, respectively. 

Greater Palmer amaranth control with mesotrione compared to isoxaflutole was consistent with 

other reports (Kohrt and Sprague 2017), although these two herbicides provided the same 

amount of HPPD-inhibitor resistant waterhemp control when applied PRE at field use rates 

(Hausman et al. 2013). Across both herbicides, increasing the rate from ½X to1X rate provided 

greater weed control of 81 and 89% control, respectively and Palmer amaranth density decreased 

from 5.7 plants m-2 to 2.4 plants m-2 (Table 3.6). Adding atrazine to HPPD-inhibitor herbicides 

increased weed control from 82 to 88% and decreased Palmer amaranth density from 6.4 to 2.1 

plants m-2. The greatest amount of weed control was achieved when mixing atrazine and 1X rates 

of mesotrione or isoxaflutole. Several studies have reported synergistic effect of mixing HPPD-

inhibitor and PSII-inhibitor herbicides on controlling both HPPD-inhibitor susceptible and 

resistant populations (Abendroth et al. 2006, Hugie et al. 2008, Jhala et al. 2014, Kohrt and 

Sprague 2017).  

For the Palmer amaranth biomass data, an interaction between fixed effects of rate and 

addition of atrazine was observed (Table 3.5). Palmer amaranth biomass was the same for ½X of 

mesotrione or isoxaflutole + atrazine (260 mg m-2), 1X of mesotrione or isoxaflutole (240 mg m-

2), and 1X mesotrione or isoxaflutole + atrazine (200 mg m-2) (Table 3.7). Treatments of 
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mesotrione at ½X without atrazine resulted in the greatest amount of Palmer amaranth biomass 

of 1210 mg m-2. Mesotrione resulted in greater weed control compared to isoxaflutole across 

both sites, but regardless of HPPD-inhibitor used, the highest field use rate should be applied. 

Atrazine should be tank-mixed with mesotrione and isoxaflutole to increase weed control of both 

HPPD-inhibitor susceptible and resistant populations. 

 Comparison of Mesotrione with or without Atrazine 

Visual control of Palmer amaranth was affected by the interaction of mesotrione rate and 

addition of atrazine, while no interaction was observed for density and biomass and only the 

main effects were significant (Table 3.8). The greatest Palmer amaranth control was observed 

with 1X of mesotrione tank-mixed with atrazine, ½X tank-mixed with atrazine, and 1X of 

mesotrione, all resulting in ≥ 90% control (Table 3.9). Vyn et al. (2006) reported similar control 

of waterhemp with mesotrione applied at 1X. Applying ½X of mesotrione resulted in inadequate 

control of 83%. Mesotrione at ¼X in combination with atrazine resulted in 86% control, but 

mesotrione alone resulted in the least control of only 70% (Table 3.9).  

The lowest amount of Palmer amaranth density was observed with applications of 1X of 

mesotrione compared to the ½X and ¼X rate with 1.5, 3.8, and 6.8 plants m-2, respectively 

(Table 3.10). Mesotrione applied at ½X and 1X resulted in the less Palmer amaranth biomass 

with 160 and 240 mg m-2, respectively, compared to ¼X with 710 mg m-2. Soil-applied 

mesotrione applications of less than 1X resulted in poor weed control of similar pigweed species 

on a sandy loam soil with low organic matter in Virginia (Armel et al. 2003). Atrazine, tank-

mixed with mesotrione, decreased the density of Palmer amaranth from 6.4 to 1.8 plants m-2 

compared to when mesotrione was applied alone. Palmer amaranth biomass decreased from 620 

to 190 mg m-2 when atrazine and mesotrione where tank mixed compared to mesotrione alone 
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(Table 3.10). Armel et al. (2005) observed similar reductions in weed biomass when tank-mixing 

mesotrione and atrazine compared to mesotrione alone. Mesotrione should be applied at 1X in 

combination with atrazine to maximize both HPPD susceptible and resistant populations of 

Palmer amaranth. 

 Conclusion 

Results from the dose-response experiment confirmed that SF(R) was less susceptible to 

soil-applied HPPD-inhibitor herbicides compared to RL(S) at rates much lower than 

recommended in the field. Additionally, experiments in the field demonstrated similar reduced 

efficacy of soil-applied HPPD-inhibitor herbicides in controlling HPPD-inhibitor resistant 

Palmer amaranth in Barton County. However, overall trends of increasing control using higher 

HPPD-inhibitor herbicide rates and tank-mixing HPPD-inhibitors with atrazine were consistent 

across both susceptible and resistant populations. Overall weed control was reduced in on the 

resistant population, but management recommendations should not differ regardless of the 

Palmer amaranth population when using soil-applied HPPD-inhibitor herbicides. The greatest 

levels of Palmer amaranth control, reduction in density, and reduction in biomass were achieved 

with 1X rates of mesotrione or isoxaflutole, in combination with atrazine. No PRE treatment 

provided complete Palmer amaranth control by 4 WAT, thus an integrated management 

approach including multiple sites of action, tillage, crop rotation, and POST herbicides should be 

utilized (Kohrt and Sprague 2017, Norsworthy et al. 2012, Ward et al. 2013). HPPD-inhibitor 

herbicides are still an effective herbicide site of action when combined with atrazine for 

controlling HPPD-resistant Palmer amaranth populations when applied to the soil at 

recommended use rates.  
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Figure 3.1. Non-linear dose response analysis of seedling emergence of susceptible (RL(S)) 

and resistant (SF(R)) Palmer amaranth populations in response to soil-applied mesotrione. 

(Non-linear regression model: Y = C + (D-C) / (1 + exp[b(log(x) – log (LD50))])) 
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Isoxaflutole dose (g ha-1) 

Figure 3.2. Non-linear dose response analysis of seedling emergence of susceptible (RL(S)) 

and resistant (SF(R)) Palmer amaranth populations in response to soil-applied isoxaflutole. 

(Non-linear regression model: Y = C + (D-C) / (1 + exp[b(log(x) – log (LD50))])) 
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Table 3.1. Soil characteristics, preemergence (PRE) herbicide application dates, and weekly rainfall totals for field experiments in 

2017.a 

aCoarse-loamy, mixed, superactive, mesic Udic Haplustalfs 
bFine-loamy, mixed superactive, mesic Udic Argiustolls 

 

 

 

 

  

 

      Rainfall 

      Weeks after PRE application 

Location Population Soil Type Soil pH Organic Matter 

Date of 

PRE 1 2 3 4 
    

% 
    mm 

  
          

Barton County Resistant Atticaa loamy fine sand 6.6 0.8 May 29 9 5 22 13 

Reno County Susceptible Ostb loam 6.3 2.5 May 27 3 1 19 6 
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Table 3.2. Herbicide active ingredients and trade names, application rates, and manufacturer 

information for Palmer amaranth control in field experiments. Herbicides were applied 

preemergence (PRE). 

Active Ingredient Trade Name Rates Manufacturera 

  g ai ha-1  

Mesotrione Callisto 53, 105, 210 (1X) Syngenta Crop Protection LLC 

Isoxaflutole Balance Flexx 53, 105 (1X) Bayer CropScience LP 

Bicyclopyrone 

+bromoxynil 

Talinor 50 +700 (1X), 

100 + 1400 

Syngenta Crop Protection LLC 

Atrazine AAtrex 2240 Syngenta Crop Protection LLC 

S-metolachlor Dual II Magnum 2140 Syngenta Crop Protection LLC 

Linuron Lorox 700 NovaSource INC. 
a Manufacturer information: Syngenta Crop Protection, LLC, Greensboro, NC, 

www.syngenta.com;  Bayer CropScience, Research Triangle Park, NC, 

www.cropscience.bayer.com; NovaSource INC.,  

Phoenix, AZ, www.novasource.com 
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Table 3.3. Response summary of susceptible (RL(S)) and resistant (SF(R)) Palmer amaranth 

population emergence to mesotrione and isoxaflutole treatments 4 weeks after treatment 

(WAT).a 

 

 

 

 

 

 

 

 

aAbbreviations: LD50, rate causing 50% reduction in seedling survival; LD90, rate causing 90% 

reduction in seedling survival; R/S, resistance index [ratio of LD50 or LD90 of susceptible 

(RL(S)) and resistant (SF(R)) populations].  
bValues in parenthesis are ± 1 standard error. 

*R and S values are significantly different at P<0.001.  

 

 

 

 

 

 Mesotrione  Isoxaflutole 

Population LD50 LD90  LD50 LD90 

 
 

g ai ha-1 
  

   

RL(S) 8.5 (0.7) 27.7 (3.4)  5.3 (0.5) 16.6 (2.5) 

SF(R) 61.6 (7.4) 303.4 (33.4)  21.7 (3.6) 149.9 (26.1) 

R/S 7.2* 10.9*  4.1* 9.0* 
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Table 3.4. Mean Palmer amaranth control, density and biomass at 4 weeks after treatment for the HPPD-inhibitor susceptible (Reno 

County) and resistant (Barton County) field sites in 2017. 

aMeans followed by the same letter within a column are not statistically different according to Fisher’s protected LSD (α = 0.05). 

 

  Control Density Biomass 

Herbicide Rate Susceptible Resistant Susceptible Resistant Susceptible Resistant 
        

 g ai ha-1 
  

% 
       

plants m-2  
      

mg m-2 
   

                    

                    

                    

        

Mesotrione 53    83 c-ea    58 c-e      30 d-f      6 c-e      280 e-h    5800 a-c 

Mesotrione 105   90 a-d    76 a-d      24 e-g      4 c-g      160 e-h    5700 a-c 

Mesotrione  210  94 ab   86 ab        9 f-i      1 g        90 g-i      440 e 

Isoxaflutole 53  81 cd   55 de      55 c-e      7 b-d      330 d-g    7450 ab 

Isoxaflutole 105   89 a-c   83 ab      14 f-h      2 e-g        60 hi    1260 de 

Bicyclopyrone + bromoxynil 50 + 240 33 g    64 b-e    140 b      6 c-e    3800 ab    7480 ab 

Bicyclopyrone + bromoxynil 100 + 240  66 ef   55 de      87 bc      9 a-c    1400 b-d    6780 a-c 

Atrazine 2240 63 f 43 e      63 cd      5 c-f      910 b-e    4180 b-d 

S-metolachlor 2140   89 a-c    64 b-e      12 f-i      6 b-d      130 f-i    3520 b-d 

Linuron 700 44 g 43 e    118 b      8 b-e    1800 bc    6640 a-c 

Mesotrione + atrazine 53 + 2240   90 a-c   81 ab        9 f-i      2 e-g        90 g-i    1850 b-d 

Mesotrione + atrazine 105 + 2240 97 a   84 ab        2 hi      2 e-g        10 j    1770 c-e 

Mesotrione + atrazine 210 + 2240 99 a 89 a        1 i      1 fg        10 j    1140 de 

Isoxaflutole + atrazine 53 + 2240   91 a-c    71 a-d        9 f-i      4 c-g        80 g-i    3440 b-d 

Isoxaflutole + atrazine 105 + 2240  96 ab    79 a-c        5 g-i      3 d-g        30 i-j    3020 b-d 

Bicyclopyrone + bromoxynil 

+ atrazine 

50 + 700 + 

2240 

76 de 43 e      50 c-e    13 ab      510 c-f    7710 ab 

Bicyclopyrone + bromoxynil 

+ atrazine 

100 + 1400 

+ 2240 

85 b-d 54 de      15 f-h      9 a-c      110 g-i    7430 a-c 

Mesotrione + linuron 105 + 700   94 ab    66 a-d        6 g-i      4 c-g        90 g-i    1950 b-d 

Nontreated - - -    294 a    15 a    11230 a   17770 a 
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Table 3.5. P values as a result of the analyses of variance combined across sites of fixed effects 

and interactions for mesotrione and isoxaflutole treatments with or without atrazine for Palmer 

amaranth control, density, and biomass. Bold P-values indicate were P ≤ 0.05.  

Fixed Effect Control Density Biomass 
  

P-Value  

   

Herbicide .0003 .0035 .0143 

Rate  .0004 .0025 .0034 

Herbicide by Rate .1393 .9577 .6160 

Atrazinea .0078 .0002 .0086 

Herbicide by Atrazinea .6779 .5230 .2376 

Rate by Atrazine .0909 .1077 .0369 

Herbicide by Rate by Atrazinea .3922 .5321 .8052 

aWith or without tank-mix of atrazine 
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Table 3.6. Palmer amaranth control, density, and biomass at 4 weeks after treatment, 

of data subset including mesotrione and isoxaflutole treatments combined across 

sites.  

 

 

 

 

 

 

 

 

 

aMeans followed by the same letter within a column for each fixed effect are not  

statistically different according to Fisher’s protected LSD (α = 0.05). 
bWith or without tank-mixing atrazine 

 

 

 

Fixed Effect Level Control Density Biomass 
  % plants m-2 mg m-2 

Herbicide Mesotrione  89 aa 2.4 b    240 b 
 Isoxaflutole 81 b 5.6 a    520 a 

Rate 1/2X 81 b 5.7 a 570  

 1X 89 a 2.4 b 220  

Atrazineb  With 88 a 2.1 b 230  

 Without 82 b 6.4 a 540  
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Table 3.7. Palmer amaranth biomass of extracted subset of treatments with mesotrione and 

isoxaflutole treatments with rate by atrazine interaction combined across sites.  

 

 

 

 

 

aMeans followed by the same letter within entire table are not statistically different 

according to Fisher’s protected LSD (α = 0.05). 

 

 

 

  

 Biomass 

Rate 
No 

Atrazine 
Atrazine 

 
  

mg m-2
 

  

    

1/2X  1210 aa 260 b 

1X   240 b 200 b 
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Table 3.8. Combined site analysis of significance of fixed effects and interactions for mesotrione 

treatments with or without atrazine across Palmer amaranth control, density and biomass.  

Fixed Effect Control Density Biomass 
  

P-Value 
 

   

Rate  <0.0001 0.0002 0.0024 

Atrazinea <0.0001 <0.0001 0.0007 

Rate by Atrazinea 0.0264 0.6717 0.1859 

aWith or without tank-mix of atrazine 
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Table 3.9. Palmer amaranth control at 4 weeks after treatment of the subset of mesotrione 

treatments rates and addition of atrazine interaction combined across sites. 

 Control 

Rate 
No 

Atrazine 
Atrazine 

g mesotrione ha-1 
  

% 

  

    

53  70 da   86 bc 

105 83 c   90 ab 

210   90 ab 94 a 
aMeans followed by the same letter within entire table are not statistically different according 

to Fisher’s protected LSD (α = 0.05). 
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Table 3.10. Palmer amaranth density and biomass across mesotrione rates (averaged across 

addition of atrazine) and across tank-mix with atrazine (averaged across mesotrione rates) when 

combined across field experiments in 2017. 

 

 

 

 

 

 

 

 
 

aWith or without tank-mixing atrazine 
bMeans followed by the same letter within a column for each fixed effect are not statistically 

different according to Fisher’s protected LSD (α = 0.05). 

 

 

 

 

 

 

 

Fixed Effect Level Density Biomass 

  
plants m-2 mg m-2 

Rate 

1/4X  6.8 ab 710 a 

1/2X 3.8 a   350 ab 

1X 1.5 b 160 b 
    

Atrazinea  
With 1.8 b 190 b 

Without 6.4 a 620 a 
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Appendix A - Site Maps 

Interpolated SOM, EC, and texture class maps, plot layout, and locations of soil calibration 

samples across all nine sites. 
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Figure A.1. Rossville SOM (top), EC (middle), and texture class (bottom) interpolated maps based on Veris data in 2016. Boxes indicate 

individual plots and numbers represent location of soil calibration samples.  
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Figure A.2. Manhattan SOM (top), EC (middle), and texture class (bottom) interpolated maps 

based on Veris data in 2016. Boxes indicate individual plots and numbers represent location of 

soil calibration samples. 
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Figure A.3. Salina SOM (top), EC (middle), and texture class (bottom) interpolated maps based on 

Veris data in 2016. Boxes indicate individual plots and numbers represent location of soil 

calibration samples. 
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Figure A.4. Hutchinson North Redd SOM (top), EC (middle), and texture class (bottom) interpolated maps based on Veris data in 

2016. Boxes indicate individual plots and numbers represent location of soil calibration samples. 
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Figure A.5. Topeka SOM (top), EC (middle), and texture class (bottom) interpolated maps based on Veris 

data in 2017. Boxes indicate individual plots and numbers represent location of soil calibration samples. 
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10 

 

 

 

 

 

Figure A.6. Morganville SOM (top), EC (middle), and texture class (bottom) interpolated maps based on 

Veris data in 2017. Boxes indicate individual plots and numbers represent location of soil calibration 

samples. 



126 

 

 

 

 

 

Figure A.7. Hutch Pivot SOM (top), EC (middle), and texture class (bottom) interpolated maps based on 

Veris data in 2017. Boxes indicate individual plots and numbers represent location of soil calibration 

samples. 
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Figure A.8. Hutch Redd SOM (top), EC (middle), and texture class (bottom) interpolated maps based 

on Veris data in 2017. Boxes indicate individual plots and numbers represent location of soil calibration 

samples. 
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Figure A.9. Manhattan SOM (top), EC (middle), and texture class (bottom) interpolated maps 

based on Veris data in 2017. Boxes indicate individual plots and numbers represent location of 

soil calibration samples. 
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Appendix B - Individual Location Descriptions 

2016 – Rossville 

At the Kansas River Valley Experiment Field two km southeast of Rossville (39°07'06.2"N and 

95°55'24.2"W), a field cultivator was used to control emerged weeds two weeks before planting. Corn 

was planted under irrigation in 0.76-m rows on May 4. Plot size was 4.6 m wide by 30.5 m long and 

PRE applications were made on May 10. Grain was harvested with plot combine from the center four 

rows of each plot, weighed, and yield was determined at 15.5% moisture. 

2016 – Manhattan 

This site was at the Kansas State University, Ashland Bottoms Research Farm eight km 

southwest of Manhattan (39°07'31.7"N and 96°38'55.7"W). The field was conventionally tilled and field 

cultivated to control emerged weeds one week before planting. On May 19, corn was planted in 0.76-m 

rows with plots established at 4.6 m wide by 45.7 m long. PRE treatments were applied May 22 and 

there were no weeds emerged at the time of application. Throughout the season there were no weeds to 

access herbicide efficacy. Corn ears were hand harvested at maturity and later shelled to determine grain 

yield for each plot. Yield was calculated at a moisture of 15.5%.  

2016 – Salina 

On a producer’s no-tillage farm southeast of Salina (38°47'54.9"N and 97°25'59.2"W), grain 

sorghum was drilled in 0.38-m rows on June 9. To control emerged Palmer amaranth, a burndown was 

applied immediately before PRE treatments on June 11. Plots were 4.6 m wide by 45.7 m long. At 

maturity, grain heads were clipped from 4 m of row in representative area of individual plots and placed 

in a dryer at 140º C for one week. Grain was weighed and tested for moisture content and yield was 

determined at 13.5% moisture.  

2016- Hutch Redd 

At the KSU South Central Kansas Experiment Redd Foundation field (37°57'22.7"N and 

98°06'55.1"W) early field cultivation was used to control winter annual weeds two months before 
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planting. Grain sorghum was planted in 0.76-m rows on June 14 and a PRE applications were applied 

the following day immediately after herbicide burndown was applied to control emerged weeds. Grain 

heads were clipped from 4 m of row in representative area within the center two rows of each individual 

plot and placed in a dryer at 140º C for one week. Grain was weighed and tested for moisture and yield 

was determined at 13.5% moisture.   

2017 – Topeka  

At the Kansas River Valley irrigated Experiment Field 10 km west of Topeka (39°04'37.7"N and 

95°46'12.4"W), field cultivation was used to provide control of emerged weeds two weeks before 

planting. Corn was later planted in 0.76-m rows on April 25 and plot size was 3.05 m wide by 6.1 m 

long. PRE herbicide treatments were applied immediately after planting on April 25. Throughout the 

season there were no weeds to access herbicide efficacy. Grain was harvested with plot combine from 

the center four rows of each plot, weighed, and yield was determined at 15.5% moisture. 

2017 – Morganville 

A producer’s no-tillage field south of Morganville (39°27'15.3"N and 97°12'23.6"W) received a 

burndown one month before planting to control winter annual weeds that were emerged. On May 9, corn 

was planted in 0.38-m rows and PRE treatments were applied the same day. Plot size was 3.05 m wide 

by 6.1 m long with 3.05 m alleyways in between each plot. Corn ears were hand harvested from the 

center two rows for length of entire plot and placed in burlap sacks to be shelled. Shelled grain was 

weighed and tested for moisture and yield was calculated at 15.5% moisture.  

2017 – Hutch Pivot 

Two separate burndowns were applied at the irrigated KSU South Central Kansas Experiment 

Pivot (37°56'39.4"N and 98°06'28.8"W) two weeks before and the day of planting to control all weeds 

that had emerged prior to planting. Grain sorghum was planted in 0.76-m rows on May 25 and plot size 

was 3.05 m wide by 6.1 m long with 3.05m alleyways in between each plot. PRE treatments were 

applied May 27. Grain sorghum heads were hand harvested from the center two rows for length of entire 
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plot and shelled. Shelled grain was weighed and tested for moisture and yield was calculated at 13.5% 

moisture. 

2017 – Hutch North Redd 

In 2017, the site at the KSU South Central Kansas Experiment Redd Foundation field 

(37°57'22.7"N and 98°06'58.1"W) was 50 m west relative to the 2016 field site to avoid flooding in 

lower elevation areas. This field was cultivated one month before planting to control early-season weeds 

and received a burndown two weeks before planting. Grain sorghum was planted in 0.76 cm rows on 

May 25. A second burndown and PRE applications were applied on May 27. Grain sorghum heads were 

hand harvested from the center two rows for length of entire plot and shelled. Shelled grain was weighed 

and tested for moisture and yield was calculated at 13.5% moisture. 

2017 – Manhattan 

In June of 2017, grain sorghum was no-till planted in 0.76 cm rows at the K-State Agronomy 

Department’s Ashland Bottoms Research Farm approximately 10 km southwest of Manhattan 

(39°07'36.0"N and 96°38'05.9"W). Plot size was 4.6 m wide by 45.7 m long. A burndown was applied 

one week prior to PRE treatments that were applied May 22. Throughout the season there were no 

weeds to access herbicide efficacy, therefore grain yield, harvested by combine, was the only data 

collected for this location. 


