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This paper presents the first design and experimental demonstration of an ultrahigh frequency
complete phononic crystal (PnC) bandgap aluminum nitride (AIN)/air structure operating in the
GHz range. A complete phononic bandgap of this design is used to efficiently and simultaneously
confine elastic vibrations in a resonator. The PnC structure is fabricated by etching a square array
of air holes in an AIN slab. The fabricated PnC resonator resonates at 1.117 GHz, which
corresponds to an out-of-plane mode. The measured bandgap and resonance frequencies are in very
good agreement with the eigen-frequency and frequency-domain finite element analyses. As a re-
sult, a quality factor/volume of 7.6 x 10"7/m?> for the confined resonance mode was obtained that is
the largest value reported for this type of PnC resonator to date. These results are an important step
forward in achieving possible applications of PnCs for RF communication and signal processing
with smaller dimensions. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4958671]

INTRODUCTION

During the last decade, the propagation of elastic waves
in periodic or random composite structures has garnered
much attention.!? Phononic crystals (PnCs) are structures
that have mechanical properties that vary periodically.> One
of their unique abilities is to exhibit a wide acoustic bandgap,
which is a range of frequencies for which waves do not prop-
agate through the structure.* Previous studies have shown
the versatility and tunability of frequency band structures in
PnCs by manipulating the geometry and introducing defects.
This great capability allows for confinement, wave guiding,
and focusing of mechanical energy.>® Because of their low
loss and high quality characteristics, these devices have
applications in wireless communications, opto-mechanical
coupling devices, modulators, and related areas.

Recently, numerical and experimental studies on 2D
PnC slabs with finite thicknesses were performed, and large
acoustic bandgaps have been demonstrated in PnCs made of
Si, Si0,, SiN,, and SiC as the matrix material and W or air as
the inclusion.” ' Different types of lattices have been used,
such as square and hexagonal with circular inclusions.'"'* In
addition, to achieve wider bandgaps, recently some other
designs were proposed and tested, including fractal, snow-
flake, inverse acoustic band gap (IABG), and hybrid.'*™"

Applications of PnCs combined with microelectromechan-
ical systems (MEMS) interdigitated transducers (IDT) and
microresonators to engineer different types of filters or acoustic
sensors have attracted much interest recently. Using PnCs, high
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quality factor acoustic cavities or waveguides can be fabricated
with very small volume. For this purpose, the transducers used
to sense and launch the waves are usually made of piezoelectric
materials such as AIN and ZnO. These piezoelectric materials
have recently also been used as the host material'®!” to reduce
the insertion loss from the electrodes to the matrix and attain
better confinement. As a result, using a design of PnCs with
AIN as the host material, MEMS devices operating at the fre-
quencies of 800,"® 586," 660, and 780MHz*' have been
realized.

In this work, ultra-high frequency PnC slabs and micro-
cavities are designed, analyzed, and tested. The PnC used to
create the micro-mechanical resonator is made by etching a
square array of cross-type holes in a thin slab of AIN. The
existence of a bandgap in the PnC slab and high frequency
mode in the resonator is demonstrated at the frequency of
1.117 GHz. The realization of the resonator at GHz frequen-
cies is aligned with previous efforts to prove the performance
of PnCs in a new class of microresonators applicable to RF
communications.

FINITE ELEMENT ANALYSIS

The PnC structure designed is formed by embedding a
simple cubic array of cross-type holes in a thin AIN matrix,
as shown in Fig. 1. This figure shows a unit cell of the PnC
structure in which d is the thickness of the PnC structure, a is
the lattice constant, and w and / are the width and length of
each cross-hole, respectively. For this PnC structure, the geo-
metrical parameters are a =3.4 ym, d=1.5 um, w =800 nm,
and /=2.61 um.

Published by AIP Publishing.


http://dx.doi.org/10.1063/1.4958671
http://dx.doi.org/10.1063/1.4958671
http://dx.doi.org/10.1063/1.4958671
mailto:zleseman@ksu.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4958671&domain=pdf&date_stamp=2016-07-19

034502-2 Ghasemi Baboly et al.
15
14 \
13
¥ \
T 1.2
2141
8
- \
1+ /
ook (;I m ~.
i X/ N/
08 X Wave Vector M r

FIG. 1. The band structure of a simple cubic lattice PnC of cross type holes
in AIN slab with lattice constant @ = 3.41 um, width and length of each rect-
angular hole w=800nm and /=2.6 um, and the slab thickness d = 1.5 um.
A unit cell of the structure is shown in the inset. (inset) Schematic of the
designed cavity that is made in the PnC structure by removing two rows of
holes from the PnC structure.

To determine the frequency range over which the bandgap
occurs, a three-dimensional COMSOL Multiphysics®® model
was used. In the FE model, Bloch periodic boundary condi-
tions on the unit cell were applied to simulate an infinite by
infinite structure in order to calculate the dispersion relation.
The structure was simulated by applying a stress-free bound-
ary condition in the z directions. Then, the eigenfrequencies
of the structure were found by solving the elastic wave equa-
tion that is described by the Bloch—Floquet Theorem.** In
the simulation, all possible modes were considered, i.e., in-
plane, out-of-plane transverse, and longitudinal modes.
Furthermore, the frequency bandgap is determined by
sweeping the eigenfrequency solver over the symmetric
directions of the irreducible Brillouin zone (I'-X-M-I") for
the reciprocal lattice to generate the band diagram shown in
Fig. 1.

It is clear that this geometry provides a bandgap in the
frequency range of 1095 MHz < f < 1170 MHz, which corre-
sponds to 6.6% gap-to-midgap ratio and allows for the de-
sign of other PnC devices to confine mechanical energy.

FABRICATION AND EXPERIMENTATION

Similar to most MEMS devices, the fabrication process
for a PnC consists of a combination of deposition and etch-
ing steps followed by a device release step. The PnCs and
the IDTs were fabricated in a 7-mask CMOS-compatible
process. The entire process is summarized in Fig. 2.

High-resistivity (>10kQ cm) silicon wafers are selected
as the substrate material. A 600 nm-thick oxide deposition is
followed by the deposition of a 2 um undoped polysilicon re-
lease layer. Patterning and subsequent etching of the polysili-
con layer are performed to the level of the deposited silicon
dioxide layer. Next, a 3 um PETEOS (oxide) layer is deposit-
ed, followed by chemical-mechanical polish (CMP) process-
ing, to the level of the polysilicon layer (Fig. 2(c)).

After patterning and etching of 600nm of the oxide,
chemical vapor deposition (CVD) is used to make a 1.2 um
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FIG. 2. A polysilicon layer is deposited on the oxide which was previously
deposited on a silicon substrate. Deposition of a 100 nm bottom layer oxide
is followed by deposition of a 1.5 um-thick AIN layer. Then, the PnC devi-
ces are patterned. Subsequently, top electrodes with 100nm thickness are
sputtered. The entire device is released from the polysilicon substrate by a
XeF, isotropic dry-etch process.

. Polysilicon

tungsten film for the contacts. The W film is laid on the
etched region overlying the poly-Si, and CMP is utilized to
create a uniform surface and remove any excess material.
Next, the bottom electrode layer (Ti/TiN/Al/Cu) is sputter-
deposited and patterned. Then, 1.5 um of AIN is deposited
on top. Etching of the AIN is done through a patterned pho-
toresist layer above it. The PnC-based devices are formed
by pattering the AIN layer. Metal patterning of the contact
is performed by first sputtering 200/50/50 nm of Al/Cu/TiN
followed by etching. This layer will serve as the top elec-
trode for the transducers (Fig. 2(f)). The width of each elec-
trode depends on the targeted center frequency and the
average sound velocity of the electrodes. Next, a 100 nm
PETEOS oxide layer is deposited over the entire device.
Anisotropic etching of this oxide is done to open the elec-
trode pads and to expose the poly-Si layer by selective etch-
ing of oxide to poly-Si. The poly-Si layer is released by
isotropic etching with XeF, (Fig. 2(g)). This results in a sus-
pended air-bridge device configuration, thus reducing loss
to substrate. Several devices with the same PnC structure
but with different electrode widths were fabricated in order
to characterize the entire frequency range from 1.05 GHz to
1.25 GHz. For each PnC device, an identical device with no
inclusions (AIN slab) was also fabricated for normalization
purposes.

A scanning electron microscope (SEM) image of a fabri-
cated AIN PnC is presented in Fig. 3(a). Integrating the ap-
propriate electrode size, acoustic waves are launched toward
the PnC devices. The zoomed-in top view (Fig. 3(b)) of the
unit cell is also shown. The response of the PnC devices was
measured using a direct 2-port network analyzer. All mea-
sured transmission data are then normalized with reference
devices, which consist of full AIN slabs with no pattern (ma-
trix). For the cavity, the ratio of the transmission to that of
the matrix was calculated.
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RESULTS AND DISCUSSION

Transmission spectra along the I'-X direction through the
PnC were measured and normalized with that of the slab. The
results for both the PnC and slab are presented in Fig. 4. Low
transmission coefficients in the frequency range of 1110 < f' <
1175 MHz can be observed. This is in excellent agreement
with the theoretical predictions shown in Fig. 1(a). A bandgap
over this frequency range allows for the creation of other types
of devices necessary for RF communications. In addition to
the PnCs, a microresonator was also simulated and realized ex-
perimentally. The FEM results are in agreement with experi-
mental results; however, FEM shows a deeper bandgap as
expected. This is due to losses in the experiment such as sub-
strate losses,24’25 material losses,5 insertion losses,26 and due to
the Interdigital Transducers (IDTs) only detecting the longitu-
dinal and flexural waves.”” These experimental losses cause a
reduction in the transmission peaks of the devices such that
when the PnC is normalized to the slab, the depth of the
bandgap is shallower than modeled. The difference between
experimental and numerical transmissions (See Fig. 4) is due
to the fact that the FEM simulates a perfectly periodic and infi-
nite PnC while the experiment features only a limited space
with imperfection in the borders. This inevitable imperfection
in the experiment results in its wider and deeper bandgap com-
pared with the simulation.

Moreover, a PnC cavity was designed with the same
geometrical parameters and by removing two periods of unit
cells in the PnC array (W-2 cavity) and leaving three rows
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FIG. 4. Experimental (red) and numerical (black) transmission response of
PnCs that have been normalized to slab (unpatterned) devices.
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FIG. 3. (a) SEM of a fabricated AIN
PnCs with drive and sense Al electro-
des separated from each other by 15
layers of phononic crystals. (b) SEM
figure of PnCs (top view).

on each side of this line defect to support certain vibrational
modes across the PnC. The details of this analysis can be
found elsewhere.”® Simulations also show that by removing
two rows of PnCs and creating a W-2 cavity, there is one
transverse mode at 1119 MHz (out-of-plane displacement)
inside the bandgap. This frequency is within the bandgap of
the PnC and therefore allows for the confinement of energy.
The micro-cavity was also fabricated and tested using
the aforementioned processing and experimental procedure.
An SEM image of the fabricated devices is shown in Fig. 5.
This device comprises a 6.82 um cavity enclosed by 3 pho-
nonic crystal periods on either side. The same design of the
Al couplers and AIN piezoelectric material is used for test-
ing the transmission spectra of the W-2 micro-cavity. The
normalized transmission profile at frequencies around the
resonance of this cavity was tested and is reported in Fig. 6.
As predicted, the peak associated with the flexural resonant
mode of the cavity (see Fig. 6) appears in the transmission
spectrum of the waves passing through the PnC structure.
This peak in the transmission profile is centered at
1117 MHz, which is only 0.3% off from the resonance fre-
quency of 1119 MHz targeted in the simulations. The reso-
nant peak of this micro-cavity corresponds to a quality
factor per volume of about 7.6 x 10'"/m>. For this type of
PnC resonator operating at atmospheric pressure, this is the

FIG. 5. SEM image of fabricated AIN resonators operating at GHz frequen-
cies (top view).
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FIG. 6. Experimental and numerical results of W-2 AIN cavity. (Inset)
Mode shape of the resonant frequency of the cavity structure at 1119 GHz.

highest frequency and largest Q/volume reported to date.
The total displacement field for the confined mode in the
simulations is shown in the inset of Figure 6.

Peak transmission for the W-2 cavity is limited by sub-
strate, material, and insertion losses as previously mentioned.
However, the reported Q/volume of this AIN resonator is still
the highest reported to date. The Q/volume can be further in-
creased by minimizing the losses previously mentioned, oper-
ating the devices in a vacuum to minimize losses to the
surrounding atmosphere, and by surrounding the W-2 cavity
with more periods of the PnC, thereby increasing confinement.

CONCLUSION

Phononic crystals with a square lattice of cross-shaped
air inclusions in a matrix of AIN films were realized. The
devices featured an acoustic bandgap ranging from 1110 to
1175 MHz. A W-2 cavity operating in this range of frequen-
cies was also fabricated and investigated. The cavity utilized
three periods of PnCs in each side, and the experimental
results evidenced a quality factor of 7.6 x 10'7/m® which is
the highest Q/volume reported to date. The realization of
AIN PnCs and microcavities functional at ultra-high frequen-
cies paves the way for developing new technologies to shrink
the devices used in the RF communications. This micro-
resonator is applicable for a new generation of filters for RF
communications with smaller dimensions.
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