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Abstract 

The Ogallala Aquifer is a large underground water source located under the High Plains 

and is used as the primary irrigation source for producers in the region.  Hyper-extraction of the 

Ogallala is causing a reduction in irrigation capacity for a large part of the region.  Confined 

animal feeding operations in western Kansas rely upon irrigated crops, mainly corn [Zea mays 

(L.)] as a source of feed.  Research has shown that forage sorghum [Sorghum bicolor (L.) 

Monech] could meet the demands of the confined animal feeding operations while using less 

water than corn.  An experiment was designed to evaluate corn and forage sorghum in Western 

Kansas.  The objective of this research was to evaluate the water use and growth characteristics 

of irrigated and dryland corn and forage sorghum.  Field experiments were conducted at two 

locations (Tribune Experiment Station, Tribune and a cooperator’s field near Hoxie, Sheridan 

County Kansas) in 2011-2013.  The experimental design at Tribune was a randomized complete 

block with four replications.  A traditional replicated design was not possible at Hoxie. Multiple 

subsamples per plot were obtained and data are reported as means with standard errors.  Corn 

and forage sorghum were grown under both dryland and fully irrigated conditions at both 

locations. Neutron access tubes were installed to monitor soil water.  Aboveground biomass, 

intercepted solar radiation and volumetric soil water content were recorded at 5 sampling dates 

each growing season.  Water use was similar between irrigated corn and forage sorghum.  There 

were differences in biomass from year to year between the irrigated crops.  Dryland water use 

was similar between the two crops and also had differences in biomass from year to year.  Yields 

were significantly lower than average for all crops in 2012 due to drought conditions.  Solar 

radiation interception correlated with aboveground biomass measurements.  Aboveground 

biomass from the forage sorghum and corn was ensiled both years and analyzed for nutrient 



  

composition.  This research suggests that forage sorghum silage may be an acceptable 

replacement for corn silage in areas with reduced irrigation capacities. 
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Chapter 1 - Introduction 

 Ogallala Aquifer 

With the world population increasing every year it is essential to be able to meet the food 

and fiber needs for a rapidly expanding population.  Irrigation plays a vital role in sustainably 

intensifying agricultural lands for food production.  Irrigation water sources are topics of debate 

in many regions around the world.  In the High Plains Region of the United States lies the largest 

underground aquifer in the country.  The Ogallala Aquifer is a regional system of freshwater that 

underlies eight states.  The aquifer underlies an area approximately 450,000 km
2
 ranging from 

Texas to South Dakota.  The aquifer has a thickness ranging from less than 0.3 m to 396 m, with 

an average depth of 61 m (Peterson and Bernardo, 2003; High Plains Study Council, 1982).  

Gutentag et al. (1984) reported that due to over pumping, the Ogallala Aquifer has experienced 

reductions in water storage volumes and decreases in water table levels to as much as 150 feet.  

Approximately 30% of the groundwater used for irrigation in the U.S. comes from the Ogallala 

Aquifer and approximately 20% of the irrigated acres in the U.S. is in the High Plains region 

(Sophocleous, 2005; Gutentag et al., 1984).  Over 90% of the water extracted from the aquifer is 

for irrigation (Ogallala Aquifer Management Advisory Committee, 2001).  As advances in 

irrigation technology occurred through time such as the transition from flood irrigation to center 

pivot sprinklers and pumping technology advances, this allowed for continual exploration of 

possible irrigated acres of the aquifer (Green, 1990).  Between 1959 and 1987, the irrigated 

acreage in all the High Plains states (including Texas, South Dakota, Nebraska, New Mexico, 

Wyoming, Oklahoma, Colorado and Kansas) increased by approximately 50% and in Kansas 

specifically it almost tripled (Lilienfeld and Asmild, 2007; Kromm and White, 1992).   
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 There have been numerous efforts for water supplementation to the region such as 

increasing recharge through increasing filtration in basins (Aronovici et al., 1972) to interstate 

transfers and cloud seeding to increase precipitation (High Plains Associates, 1982; Lilienfeld 

and Asmild, 2007).  These attempts have caused researchers to consider water use efficiency of 

crops to reduce water demand to increase the life of the aquifer (Kansas Water Office, 2001).  

Water use efficiency can be as easily calculated by unit of product per unit of water use (Tolk 

and Howell, 2003).  Water use is the water consumed by the crop also called evapotranspiration 

(ET).  ET can vary by crop and those values should be taken into consideration when evaluating 

management practices.  In a study done by Hattendorf et al. (1988), water use was evaluated 

between corn, grain sorghum, pinto bean, sunflower, pearl millet and soybean and sunflower was 

shown to have a greater daily ET rate than the other five crops studied. 

 

 Issues arise when discussing irrigation and cropping systems.  Water application 

efficiency is a topic of debate.  Rogers et al. (1997) describes water application efficiency as the 

water delivered to the field per the water available to the crop.  This is important to consider as 

flood irrigation systems can expect 50-90% efficiency, center pivot can expect 70-90% 

efficiency and drip systems can expect 75-95% water application efficiencies (Rogers et al., 

1997).  The location and topography of the area being irrigated also has to be considered.  Plant 

available water capacity of the soil can be defined by the amount of water held in the soil 

between field capacity and permanent wilting point (Unger and Howell, 1999).  When evaluating 

a particular location, available water content may depend on soil texture, soil profile depth and 

horizon characteristics (Unger and Howell, 1999; Tolk and Evett, 2012).  Tolk and Evett (2012) 

found differences among different crops grown in different soil textures due to changes in 
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available water capacity.  This brings up the point of unused water when discussing irrigation.  

Lilienfeld and Asmild (2007) found that while irrigation systems may not strongly influence 

water use efficiency/water excess, but management techniques at the farm level play just as big 

of a role.   

 

 Research has been done to explore some of the ways to extend the life of the Ogallala 

Aquifer.  Timing of irrigations can play a role in efficient water use.  Stone et al. (1987) found 

that irrigating in the fall for the next year’s summer crop may result in drainage losses and that 

irrigation water may be used more efficiently by applying in season.  By understanding crop ET 

growers are better able to provide water to the crop when it is needed (Piccinni et al., 2009).  

Nielsen et al. (2005) found that transitioning from a conventional tillage system to a no tillage 

system, improving rotation schemes, cultivar selection and improving timing of crop production 

practices could cause an increase in available soil water and an increase in yield.  Steward et al. 

(2013) note that irrigated corn follows ground water use and cattle production is focused around 

irrigated corn production for feed use.  Steward et al. (2013) also noted that corn-fed cattle 

revenues far overshadow those from other agricultural sectors.  With the importance of the 

Ogallala Aquifer and declining water levels on irrigated corn which is then important to cattle 

revenues, other avenues of feed production need to be explored to maintain economic stability in 

the region. 
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 Corn 

Corn (Zea Mays L.) is a C4 pathway crop and is adapted for summer growing conditions 

in the U.S.  Corn is a member of the grass family Poaceae.  Corn growth stages are driven by 

accumulated heat units.  Corn is grown in most states with the bulk of the production in the 

Midwest.  There were 90.5 million acres of corn in the U.S. in 2014 with an average yield of 

171.0 bushels per acre and 20.1 tons per acre of corn silage (NASS, 2014).  In 2014, Kansas 

harvested 3,950,000 acres of corn that averaged 149 bushels per acre and 14.0 tons of sorghum 

silage per acre (NASS, 2014).   

 

Corn is responsible for around 50% of irrigated acres and most of the ground water 

pumped from the Ogallala Aquifer is used for irrigation (Schlegel et al., 2012; KSDA 1997).   

The High Plains have a high evaporative demand environment, with limited rainfall (Howell et 

al. 1997).  Corn production systems that are successful in one location may not be successful in 

another due to a number of variables (Tolk et al., 1998).  Researchers reported a maximum full 

season corn grain yield for the Pullman soil of 975 g m
-2

, which was produced with 400 mm of 

irrigation, 230 mm of precipitation, and 667 mm ET (Tolk et al., 1998; Musick and Dusek, 

1980). The same researchers in the same experiment noted the treatment that received 80 mm of 

irrigation produced no yield with 391 mm ET.  At the same location, another researcher achieved 

1550 g m
2
 corn grain yield with 644 mm of irrigation, 227 mm of precipitation, and 973 mm of 

ET in a different cropping year (Tolk et al., 1998; Howell et al., 1995).  The researchers had 

described the climate as near normal, with grain water use efficiencies that were similar.  In a 

study done by Tolk et al. (1998) it was found that ET varied in corn based on soil type 

differences.  Olsen (1971) notes that final yield does not necessarily depend on the total amount 
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of water used, because yield is a function of not only the amount of water used during the 

growing season but also rainfall distribution, temperature and other factors.   

 

Stress can be a major limiting factor in corn yields.  Researchers found that stress at 

vegetative stages could reduce yields by 25%, stress at silking could reduce yields by 50% and 

stress after silking could reduce yields by 21% (Norwood, 2000; Denmead and Shaw, 1960). 

Corn appears to be the most susceptible to drought stress during pollination which can reduce 

seed number (Herrero and Johnson, 1981).  Drought after pollination may limit the growth phase 

of kernel development and reduce kernel weight by reducing assimilation or duration (Lorens et 

al., 1987; Tollenaar and Daynard, 1978; Jurgens et al., 1978; Jones and Simmonds, 1983).  

Irrigation can help to mitigate drought stress imposed upon corn.  Corn has been shown to 

respond to irrigation by many researchers.  Corn yield was shown to increase with responses up 

to 0.05 Mg/ha-mm (Lamm et al., 2007).  Schlegel et al. (2012) found that grain yield increased 

28% by increasing the irrigation capacity from 2.5 to 5.0 mm d
-1

.  Howell et al. (2008) did a two 

year study to evaluate the ET of corn and found in 2006 the ET was 418 mm, the yield was 1,519 

g m
-2

 and a water use efficiency (WUE) of 3.63 kg m
-3

, and in 2007 the ET was 671 mm, the 

yield was 2, 444 g m
-2

 and the WUE was 3.64 kg m
-3

. 

 

Photosynthetically active radiation (PAR) is also a key ingredient in yield.  Researchers 

found that under well-watered conditions and ample nutrition, in the absence of pests and 

diseases, corn yield has been shown to be closely related to the amount of radiation intercepted 

by the crop (Muchow et al., 1990; Loomis and Williams, 1963; Tollenaar and Bruulsema, 1988; 

Muchow 1989).  Muchow et al. (1990) found that under favorable growing conditions, biomass 
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accumulation is directly proportional to the amount of radiation intercepted.  Researchers have 

found that there can be variations on the efficiency of the plant to be able to convert solar 

radiation into plant biomass which can be related to crop variety and crop development 

(Tollenaar and Bruulsema, 1988).  Williams et al. (1968) noted corn approached physiological 

maturity when interception of PAR started to decline as grain fill is finishing.  Solar radiation use 

as a determinate of yield becomes difficult as you move into a stressful environment with more 

limiting factors.  

 

 A study done by Miron et al. (2007), illustrated the difference between corn silage and 

sorghum silage. The research showed corn silage yielded better than the selected sorghum 

varieties and the corn also had more crude protein but an equal digestion rate as a brown midrib 

sorghum variety in the study.  The study concluded that the higher yielding corn with similar 

digestibility was recommended versus the selected forage sorghums.   

 

 Forage sorghum 

Forage sorghum (Sorghum bicolor (L.) Monech) is a C4 pathway crop grown as a 

summer annual in the U.S.  Forage sorghum is a member of the grass family Poaceae.  Sorghum 

is well suited to semi-arid conditions given its high water use efficiency (Rooney et al., 2007).  

Sorghum can be placed into multiple classes with forage being the one of focus (Dahlberg, 2000) 

for my research.  Forage sorghums tend to be taller, leafier and have less grain than grain 

sorghums (Bean et al., 2013).  Photoperiod sensitive sorghums (PSS) varieties of forage types 

initiate flowering when day length decreases below a given level and some varieties have been 

shown to initiate flowering 100-120 days later than their normal flowering counterpart, and 
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typically flower when the day length is around 12 hours and 20 minutes (Rooney and Aydin, 

1999).  PSS have been evaluated as a bioenergy crop due their concentrations of cellulose and 

hemicellulose that can be used for biofuel conversion (Sivakumar et al., 2010).  Another unique 

characteristic about PSS is that they are efficient at producing biomass due to their ability to 

remain in vegetative growth late into the growing season (Hao et al., 2014; Perlack and Stokes, 

2011; Marsalis and Bean 2010).   

  

Howell et al. (2008) performed a study that compared forage sorghum versus corn for 

silage and found that forage sorghum achieved nearly equal water productivity as corn.  Howell 

et al. (2008) also found that lower ET was the contributing factor to the water productivity, while 

growing less biomass than corn, the forage sorghum was able to do it with less water use.  In 

contrast, Hao et al. (2014) found an increase in WUE was due to higher biomass production and 

not lower ET.  In a study done by Enciso et al. (2015), it was found in a forage sorghum study 

with 4 irrigation treatments, the dryland forage sorghum had the highest water use efficiency.  

Enciso et al. (2015) reported dryland forage sorghum biomass yields range from 5.8 to 8.7 Mg 

ha
-1

 and irrigated forage sorghum biomass yields to range from 14.6 to 16.6 Mg ha 
-1

.  In an 

irrigated study done by Bean et al. (2013) to evaluate the growth of brown mid rib forage 

sorghum (BMR), sorghum-sudan forage sorghum, photoperiod sensitive BMR, photoperiod 

sensitive sorghum sudan, and a standard forage sorghum, found that the photoperiod sensitive 

sorghum sudan was the highest yielding at 19.0 Mg ha
-1

.  Researchers in Texas have found that 

PSS yields more biomass with less water use than other forage sorghums and corn (McCollum et 

al., 2005).  Lodging can become an issue with high yielding tall forage sorghums grown in a 

region with high wind speed (Bean et al., 2013; Baumhardt et al., 2002). 
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 Forage sorghum has characteristics such as high yield potential, biomass composition, 

high water use efficiency, established production system and potential for genetic improvement 

that make it a good candidate to add to a cropping system needing biomass production (Enciso et 

al., 2015; Rooney et al., 2007).  Sorghum is growing in popularity as a silage crop, due to its low 

water requirement, specifically lower than corn (Bean et al., 2013; Howell et al., 2008; Marsalis 

et al., 2009.).  Feeding trials have indicated dairy cattle milk yields and feeder cattle weight gain 

from being fed selected sorghum cultivars have had similar results as being fed corn (Aydin et 

al., 1999; Grant et al., 1995; McCuistion et al., 2004; Oliver et al., 2004).  

 

A challenge of forage sorghum silage harvesting is the high moisture contents and its 

production of effluent in the silage pile (Castle and Watson, 1973).  It is recommended that 

moisture level at harvest for silage crops be between 65-70% moisture (Schroeder, 2004).  

Storing PSS varieties are more difficult than other sorghums because of their constant vegetative 

stage and high moisture content; there is an increased risk of silage spoiling or a large loss of dry 

matter (Savoie and Jofriet, 2003).  Typical grain sorghums would be harvested at dough stage for 

ensiling.  Forage sorghum containing grain is at a disadvantage when it comes to ensiling 

because of the indigestibility of the sorghum kernel but this can be remediated by rolling to get 

digestion levels similar to corn silage (Havilah and Kaiser, 1992). 

 

Neutral detergent fiber (NDF) represents the hemi cellulose in the plant while acid 

detergent fiber (ADF)  represents the cellulose and lignin fractions (Bean et al., 2013; NRC 

2001).  NDF and ADF are values that help predict the digestibility of the forage.  BMR forages 
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are typically more digestible due to lower lignin content than other forage sorghums (Casler et 

al., (2003).    
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Chapter 2 - Evaluation of Corn and Forage Sorghum Production 

Tribune, Kansas. 

 Introduction 

Underneath the U.S Great Plains lies the Ogallala Aquifer which supplies water for 

approximately 30% of all U.S. irrigation (Dennehy, 2000).  The saturated thickness of the 

Ogallala Aquifer has been declining primarily due to irrigation in Kansas and Texas. (McGuire, 

2004).  Irrigated corn as feed and cattle production follows groundwater use patterns (Steward 

2013). In past years, corn has been the main crop used for silage and roughage sources, but corn 

is considered a high water use crop that contributes to the extraction of Ogallala Aquifer water 

(McCuistion et al., 2009). McCuistion et al. (2009) found that in even reduced irrigation 

schemes, forage sorghum may be an alternative roughage crop.  Poor irrigation management 

strategies are a major contributor to water shortages (Al-Kasi, 1997). With declining water levels 

producers should make efforts on improving water use efficiency of their cropping system (Stone 

2006).  Corn can be very responsive to irrigation and can yield up to 0.05 Mg/ha-mm or higher in 

the High Plains (Lamm, 2007). The definition of yield potential is described by the yield of a 

crop cultivar when grown in an adapted environment with all stresses controlled and water and 

nutrients being non-limiting (Evans, 1993).  With more fields being subjected to a restricted 

amount of water instead of non-limiting as it was in the past, it is important to evaluate the water 

use efficiency of a crop and that may be a viable approach to increase water productivity 

(Condon et al., 2004). 

 

Managers can manage declining pumping capacities by (1) growing crops that match the 

water supply, (2) reducing the irrigated acres and substituting fallow periods and dryland crops 



18 

(Martin et al., 1989; Klocke et al., 2006).  Crop yield response has been measured for many years 

and researchers continue to study the effect because of the continued change in genetics and 

cropping systems (Klocke, 2011).  On average, 85% of water use in Kansas is for irrigation 

(KWO, 2011).  Final yield of both corn and sorghums is not solely dependent on the total water 

used because yield is a complex function of multiple factors such as rainfall amount and 

distribution, temperature and management decisions (Olson, 1971). 

 

Sorghum is gaining attention as a key forage crop because of its drought tolerance and 

high productivity (Sanchez et al., 2002). Forage sorghums, unlike grain sorghums, have been 

developed for vegetative growth and maximum biomass production where grain sorghums have 

been selected for less vegetative growth and more grain yield (Bean et al., 2013). Sorghum 

cultivars can be separated in several types with two of those types being grown for grain and 

those grown for forage (Dahlberg, 2000) Photoperiod sensitive sorghum has been shown to be 

very efficient at producing vegetative biomass throughout the growing season (Marsalis et al., 

2010).  Forage sorghum has been found to have higher water use efficiency for producing 

biomass than corn (Olson, 1971, Rooney et al., 2007).  Water use efficiency at the simplest level 

can be described as the crop yield per unit of water use (Sinclair, 1984).  

 

Photoperiod sensitive sorghum in particular has been found to have higher biomass yields 

than headed forage sorghum with less water required (McCollum et al., 2005).  When grown at 

different irrigation levels, it was found that photoperiod sensitive sorghum biomass yield, ET, 

water use efficiency, and irrigation water use efficiency were affected by irrigation (Hao et al., 

2014).  Howell et al. (2008) found that forage sorghum has 27% lower evapotranspiration than 
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corn.  At similar evapotranspiration rates, corn uses more water than sorghum because of earlier 

planting dates and a longer growing season (Howell et al., 1997). McCuistion et al. (2010) found 

that forage sorghum nutritional characteristics are similar to corn though quality decreased as 

yield and irrigation level increased.   

 

There are other nutritional issues that exist with forage sorghum.  Aydin et al. (1999) 

found that lignin concentrations in conventional forage sorghum limit dry matter intake and milk 

production.  Forage sorghum was found to have lower in vitro dry matter digestibility than corn 

(Miron et al., 2007). In a study done by Marsalis et al. (2010) corn and forage sorghum may 

produce similar dry matter when harvested at optimum stage under restricted irrigation, corn will 

retain better nutritive value; and corn’s ability to yield similar to forage sorghum under restricted 

irrigation is dependent upon in-season irrigation and that the high yields of corn in the study 

were due to above average precipitation.  Corn silage harvest has a wide window of opportunity 

and research suggests that a harvest from blister to physiological maturity has no effect on intake 

by cattle of the silage (Johnson et al., 1968). 

 

Environmental conditions control growth of the plant.  Solar radiation is crucial for 

providing energy for evapotranspiration and the photosynthesis processes, including 

carbohydrates partitioning and biomass growth where air temperature regulates developmental 

rates of the plant (Boote and Loomis, 1991).  Water deficits can cause significant growth and 

development issues.  Decreasing soil water levels can reduce stomatal conductance, 

photosynthetic rates, transpiration and dry matter accumulation (Turner, 1974).  Decreasing soil 

water was also found to negatively affect sorghum stem height, cumulative leaf area, leaf area 
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indices and biomass production (Rosenthal, 1987).  Arkin et al. (1987) found that decreasing soil 

water causes reduced leaf numbers, rate of individual leaf emergence from the whorl, leaf 

extension, and the senescence of sorghum. 

 

 Objective 

It is understood that forage sorghum can be competitive with corn for forage use in 

western Kansas.  Biomass production, water use efficiency and feed value of both crops have 

been considered as decision making factors for producers interested in forage production. An 

evaluation of corn alongside photoperiod sensitive forage sorghum may give some insight on 

forage production that is most efficient for western Kansas.  The purpose of this study was to 

agronomically evaluate biomass production, water use and also understand basic feed values that 

can be used for further decision making. 

 

 Materials and Methods 

 Site data 

A field study was conducted at the Kansas State University Southwest Research-

Extension Center near Tribune, Kansas in 2011, 2012 and 2013.  The soil is a deep silt loam soil 

(Ulysses silt loam; fine-silty, mixed, superactive, mesic Aridic Haplustolls).  The average 

summer precipitation for the region is 353 mm.  The study was a randomized complete block 

design with 4 replications.  Plots were approximately 20 m long and 6 m wide (eight 76 cm 

rows).  An irrigated treatment and dryland treatment were applied to corn and photoperiod 

sensitive forage sorghum (PSS).  The corn was planted on 5 May 2011, 3 May 2012 and 6 May 

2013. The corn variety was Pioneer 35F48 (Du Pont) and was planted at a density of 45,000 
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plants ha
-1

 for dryland plots and 79,000 plants ha
-1

 for irrigated plots.  The forage sorghum was 

planted 3 June 2011, 30 May 2012 and 24 May 2013 and the variety was 1990 (Sorghum 

Partners) and was planted at a density of 99,000 plants ha
-1

 for dryland plots and 173,000 plants 

ha
-1

 for irrigated plots. Pre-emergence herbicides were applied to all treatments for weed control.  

Plots were irrigated with a linear-move sprinkler irrigation system with the capability to 

accommodate randomization of plots.  Growing degree days (GDD) were calculated with an 

upper temperature threshold of 30°C for corn and 38°C for forage sorghum using a base 

temperature of 10°C (McMaster and Wilhelm, 1997).   The initial position of the GDD line on 

Figure 2-2, 2-3 and 2-4 is the initial accumulation of GDD after planting. 

 Harvest and material handling 

One meter of row (0.762 m
2
) above ground biomass harvests were taken five times over 

the growing season (Table 2-1). Plants in a randomly selected linear meter of row were harvested 

3-6 cm above the soil surface. Biomass was then dried at 60
o
C for 10 days and weighed.  On the 

last day of harvest corn ears were separated from the stalk, mechanically shelled, dried at 60
o
C 

for a minimum of 72 hours and weighed.  Grain yield was adjusted to 0.155 g g
-1

 moisture (wet 

basis). Total biomass was reported as sum of the stover, cob and grain on a dry matter basis.  

Harvest index was calculated by dividing dry grain yield by total dry above ground biomass.  A 

fresh sample was taken to a laboratory (Servi-Tech Labs, Dodge City, KS) the day of harvest for 

nutrient analysis.  Samples at the lab were dried and then ground.  Crude protein content was 

taken using methodology found in AOAC (2012).  Acid detergent fiber was evaluated according 

to Ankom (2006).  Neutral detergent fiber was evaluated according to Ankom (2006). Nitrate 

content was taken using methods described by Cataldo et al. (1975).  Prussic acid was taken 

using methods described by Gillingham et al. (1969). 
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 Soil water 

Soil volumetric water content was measured to a depth of 1.83 m using neutron probe 

(Model 503 DR, CPN International., Martinez, CA).  Measurements were taken from 15 through 

183 cm with probe activity centered on 0.3 m depths.  Probe access tubes were installed in the 

center of each plot and attention was given to height of tube above the soil surface so that all 

measurements were taken at the same depth.  Raw neutron counts were converted to neutron 

count ratio which is calculated by dividing raw neutron counts by a standard count given by the 

probe each time neutron probe readings are taken.  Neutron probe count ratio was then converted 

to soil water content by an existing calibration.  Existing neutron probe calibration and 

unavailable water contents for the field location were previously attained (Schlegel, personal 

communication).  Neutron probe count duration was 16 seconds.  The supplied equation 

developed for probe calibration is as follows 

Equation 1:  Y=2.3803X – 0.07161 

 

where the independent variable (X) is neutron probe count ratio and (Y) the dependent variable 

is soil water.  The equation was developed to inches per foot, soil water content was then 

converted to mm per 30.5 cm.  Neutron probe readings were taken at each biomass harvest.  To 

attain a sampling depth of 183 cm, neutron access tubes were installed in the center of each plot 

and inserted to a depth of 300 cm so that there was no opportunity for the neutron probe to come 

into contact with soil in the bottom of the access tube. 

 

 The soil profile was previously shown to have 277 mm of unavailable water (Schlegel, 

personal communication).  Available profile water content was calculated as summing soil water 

contents at each depth minus unavailable soil water.  Unavailable soil water is calculated as 
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water that is unavailable below -1.5MPa.  Seasonal water use was calculated by adding the soil 

water near planting less soil water at harvest plus total in season irrigation and precipitation 

minus drainage.  Water use efficiency of biomass (WUEb) was calculated as above ground 

biomass (kg ha-1) divided by seasonal water use (mm).  Water use efficiency of corn grains 

(WUEg) was calculated as dry corn grain (kg ha
-1

) divided by seasonal water use (mm) 

 

 Drainage was calculated using a Wilcox-type drainage equation developed from Stone et 

al., (2001).  The drainage equation was used to evaluate drainage at the 183 cm depth.  Drainage 

was found in 2011.  The range for total season drainage for irrigated corn plots was 0 to 48 mm 

and 0 to 50 mm for irrigated forage sorghum plots.   

 Light interception 

 Light interception data were collected with a LAI-2000 (LI-COR, Inc., Lincoln, NE) 

which recorded measurements from a 1 m line quantum sensor (Model LI-191SB, LI-COR, Inc., 

Lincoln, NE).  Photosynthetically active radiation (PAR) was measured by placing the sensor 

perpendicular to the row, centered on the row, at the soil surface under the plant canopy.  A 

measurement of incident PAR was taken immediately outside of the canopy.  An inside the 

canopy and outside the canopy measurement was taken for each plot.  Intercepted 

photosynthetically active radiation (IPAR) could then be calculated by dividing the below 

canopy measurement by the outside of the canopy measurement. 

  Data analysis 

 The experiment was a randomized complete block design with 4 replications.  Data were 

analyzed using PROC MIXED in SAS (version 9.1, SAS Institute Inc., Cary, NC).  Means and 
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and standard errors for corn grain were computed for all samples taken for each treatment and 

the respective LSDs were calculated.  PROC GLM in SAS (version 9.1, SAS Institute Inc., Cary, 

NC) was used for linear regression. 
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 Results  

  Weather 

 Long term precipitation and reference ET 

Growing season precipitation for 2011, 2012 and 2013 is presented in Table 2-2.  In 

2012, monthly rainfall amounts were less than 2011 and 2013.  In 2013, precipitation was higher 

than the long term mean while the 2012 precipitation was less than the long term average.  The 

reference evapotranspiration (ET) is presented in Table 2-2 as a mean daily value during each 

month.  Daily mean ET was greater in June, July and August during 2012 than 2011 and 2013.  

Temperature and precipitation were measured with an on site weather station.  Long term 

weather data were extracted from the High Plains Regional Climate Centers web site (HPRCC).  

The daily ET values used for mean calculation were extracted from the Kansas State University 

Research and Extension Weather Data Library (KSUREWDL).  

 Average daily temperature 

Average daily temperatures are presented in Figure 2-1.  The highest average daily 

temperatures occurred in 2012 in July and August while 2013 saw cooler temperatures during the 

growing season. Daily maximum and minimum daily temperatures are presented in Appendix A-

1, A-2 and A-3. 

 Growing degree days 2011 

 The figure for growing degree days (GDD) for 2011 in Tribune, Kansas, is presented in 

Figure 2-2.  In 2011, corn showed accumulation of GDD earlier in the season than sorghum due 

to an earlier planting date.  As the season progressed, sorghum quickly caught up with corn due 
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to a higher maximum GDD equation growth temperature than corn.  Corn silking initiated in late 

July into early August and physiological maturity happened around the middle of September.  

 

 Growing degree days 2012 

The figure for GDD for 2012 in Tribune, Kansas, is presented in Figure 2-4.  In 2012, 

corn accumulated GDD faster than sorghum due to an earlier planting date.  Forage sorghum 

caught up and met or exceeded the corn GDD in the middle of September.  Corn silking initiated 

in the middle of July and corn physiological maturity in the middle to late August.   

 

 Growing degree days 2013 

 The figure for GDD for 2013 is presented in Figure 2-5.  In 2013, similar to the first two 

years, the corn accumulated GDD earlier in the growing season due to an earlier planting date.  

Sorghum accumulated GDD quickly due to higher maximum GDD equation growth temperature.  

Sorghum met and exceeded corn in GDD in early September.  Corn silking initiated in the 

middle of July and physiological maturity in early September. 

 

 Irrigation 

Irrigation was applied on several dates before and throughout the growing season.  

Monthly totals are presented in Table 2-3.  Irrigation was applied early in the season to activate 

herbicide and help with germination and emergence in both irrigated and dryland plots.   

 

  Biomass and grain production 

 Biomass yields are presented in Table 2-4.  Irrigated forage sorghum and irrigated corn 

were analyzed separately from dryland forage sorghum and dryland corn.  In 2011, irrigated 

forage sorghum had higher biomass yields with 21.1 Mg ha
-1

 versus irrigated corn with 16 Mg 
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ha
-1

 total biomass.  The dryland forage sorghum yielded similar to dryland corn with 11.1 and 11 

Mg ha
-1

 respectively.  Irrigated forage sorghum yielded 10 Mg ha
-1

, 14.7 Mg ha
-1

 and 4.5 Mg ha
-

1
 which was higher than dryland forage sorghum in 2011, 2012 and 2013 respectively.  The year 

2012 showed the only statistical difference in biomass yields in both irrigated and dryland 

treatments.  Irrigated forage sorghum yields were greater with 20.8 Mg ha
-1

 of biomass versus 

irrigated corn with 9.8 Mg ha
-1

 (P=.002).  The lower yields in 2012 in irrigated corn and both 

dryland treatments may be attributed to lower than average precipitation.  The dryland forage 

sorghum yields were higher with 6.1 Mg ha
-1

 with dryland corn yields of 3.9 Mg ha
-1

 (P=.028).  

Yields in 2013 were similar to 2011 yields. The irrigated forage sorghum yield was 20.6 Mg ha
-1

 

and irrigated corn produced 17.6 Mg ha
-1

.  The 2013 dryland forage sorghum yielded 16.1 Mg 

ha
-1

 and dryland corn yielded 11.6 Mg ha
-1

.   

 

 Corn grain yields and corn harvest index are presented in Table 2-5.  Corn grain yields in 

2012 were lower than 2011 and 2013 and this was attributed to weather patterns.  The large 

standard error suggests a larger sampling error than in 2012 and 2013. The highest grain yields 

were in the irrigated corn in 2013; this year had cooler temperatures than 2011 and 2012 and also 

had adequate rainfall and irrigation.  The lowest observed grain yields were in the dryland corn 

plots in 2012.  Harvest index represents the amount of grain as a part of the whole plant biomass. 

 

 Biomass accumulation for irrigated corn, irrigated forage sorghum, dryland corn and 

dryland forage sorghum in 2011 is presented in Figure 2-5.  Irrigated corn accumulated biomass 

faster than any of the other treatments.  This could be due to earlier planting than the forage 

sorghum and the advantage of irrigation.  Irrigated forage sorghum, dryland corn and dryland 
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forage sorghum accumulated biomass similarly until September when the corn started to mature 

and lose biomass and the irrigated and dryland forage sorghums continued to grow. 

 

 Biomass accumulation for irrigated corn, irrigated forage sorghum, dryland corn and 

dryland forage sorghum in 2012 is presented in Figure 2-6.  In 2012, dryland corn and irrigated 

corn both accumulated biomass earlier than irrigated and dryland sorghum.  Irrigated sorghum 

biomass accumulation rose above irrigated corn biomass accumulation in early August with 

dryland sorghum surpassing dryland corn biomass accumulation in the middle of August. 

 

 Biomass accumulation for irrigated corn, irrigated forage sorghum, dryland corn and 

dryland forage sorghum in 2013 is presented in Figure 2-7. In 2013, only irrigated corn and 

dryland corn were able to be harvested at each sampling period during the growing season due to 

poor irrigated and dryland sorghum stands.  Irrigated and dryland forage sorghum were only able 

to be harvested at the last sampling date.  Irrigated sorghum yielded higher than any of the other 

treatments and dryland forage sorghum yielded higher than any other year.  The irrigated corn 

showed a dramatic increase in biomass accumulation versus dryland corn. 

 

  Soil water and water use efficiency 

 Available soil water by depth for 2011 is presented in Table 2-6.  Irrigated forage 

sorghum and irrigated corn were analyzed separately from dryland forage sorghum and dryland 

corn.  Statistically significant differences in available soil water occurred at each sampling date 

for the irrigated treatments; no statistically significant differences occurred in the dryland 

treatments.  At the 1 July sampling date, significant differences occurred at the 30 and 61 cm 

sampling depths with irrigated forage sorghum having more available water at the 30 and 61 cm 
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sampling depth than the irrigated corn.  This can be attributed to earlier season growth of the 

corn.  The 20 July sampling date showed significant differences at the 61 and 91 cm sampling 

depths with irrigated forage sorghum showing more available water than irrigated corn.  The 3 

August sampling date showed a significant difference at lower depths of 152 and 183 cm depths 

with irrigated sorghum having more available water than irrigated corn.  The 23 August date 

again showed a significant difference at the 183 cm sampling depth.  The 20 October sampling 

date showed a significant difference at the 30 cm depth, this coincided with the late season 

growth of photoperiod sensitive forage sorghum. 

 

 Available soil water by depth for irrigated forage sorghum, irrigated corn, dryland forage 

sorghum and dryland corn for 2012 are presented in Table 2-7.  Irrigated forage sorghum and 

irrigated corn were analyzed separately from dryland forage sorghum and dryland corn.  Two 

statistical differences were observed in 2012.  The 25 June sampling date showed a significant 

difference at the 30 cm depth with forage sorghum having slightly more available water at the 30 

cm depth than irrigated corn.  This could be attributed to the early season growth of the irrigated 

corn.  There was also an observed difference at the 15 July sampling date with dryland forage 

sorghum having slightly more available water at the 122 cm depth than dryland corn.   

 

 Available soil water by depth for irrigated forage sorghum, irrigated corn, dryland forage 

sorghum and dryland corn for 2013 is presented in Table 2-8.  Irrigated forage sorghum and 

irrigated corn were analyzed separately from dryland forage sorghum and dryland corn.  There 

were 3 sampling dates that showed statistical significance in 2013.  The 10 July sampling date 

showed significance at the 30 cm depth with irrigated forage sorghum having more available 

water than irrigated corn.  The 22 August sampling date showed significance at the 30 cm 
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sampling depth with irrigated corn showing slightly more water than the irrigated forage 

sorghum.  This date also showed a difference at the 122 cm sampling date with dryland forage 

sorghum having more water than dryland corn.  The 26 September sampling depth showed 

significance with irrigated corn showing more water at the 30 and 61 cm sampling depth than 

irrigated forage sorghum.  On the same sampling date dryland corn showed more available water 

than dryland forage sorghum.  

 

 Available soil water for the 183 cm profile for 2011 is presented in Table 2-9.  Irrigated 

forage sorghum and irrigated corn were analyzed separately from dryland forage sorghum and 

dryland corn.  Available soil water on 20 July for irrigated forage sorghum was significantly 

different than irrigated corn. There was also a significant difference on 3 August between 

irrigated forage sorghum and corn.  Dryland corn ended the year with the most available water 

and irrigated forage sorghum had the least available water at the end of the year.   

 

 Available soil water for the 183 cm profile for 2012 is presented in Table 2-10.  Irrigated 

forage sorghum and irrigated corn were analyzed separately from dryland forage sorghum and 

dryland corn.  Though no significant differences were found for 2012, numerical differences did 

exist.  The available soil water showed a dramatic decrease as the season progressed.  The lowest 

available soil water amounts for any year existed on the 15 September sampling date. 

 

 Available soil water for the 183 cm profile for 2013 is presented in Table 2-11.  Irrigated 

forage sorghum and irrigated corn were analyzed separately from dryland forage sorghum and 

dryland corn.  Similar to 2012, no significant differences were found but numerical differences 

did exist.  The soil profile was able to increase its water content from the last sampling date in 
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2012.  Irrigated corn ended the season with the most available soil water and dryland forage 

sorghum had the least available soil water. 

 

 Total water use of irrigated forage sorghum, irrigated corn, dryland forage sorghum and 

dryland corn are presented in Table 2-12.  Irrigated forage sorghum and irrigated corn were 

analyzed separately from dryland forage sorghum and dryland corn.  In 2011, a significant 

difference was observed with irrigated forage sorghum having greater water use than irrigated 

corn.  The opposite was observed in 2013, with irrigated corn using more water than irrigated 

forage sorghum.  No statistically significant differences were observed in the dryland treatments. 

 

 Water use efficiency WUE of the biomass (WUEb) of irrigated forage sorghum, irrigated 

corn, dryland forage sorghum and dryland corn is presented in Table 2-13.  Irrigated forage 

sorghum and irrigated corn were analyzed separately from dryland forage sorghum and dryland 

corn.  In 2012, significant differences exist between irrigated forage sorghum and irrigated corn 

with irrigated forage sorghum having a higher WUEb than irrigated corn.  Dryland forage 

sorghum also showed significantly higher water use efficiency than dryland corn in 2012.  No 

statistically significant differences were found in 2011 and 2013.   

  

 The WUEc of irrigated corn and dryland corn is presented on Table 2-14.  Standard error 

was reported for each treatment by year.  Irrigated corn grain water use efficiency (WUEg) was 

highest in 2013 at 18 kg ha
-1

 mm
-1

 and lowest in 2012 with 9.44 kg ha
-1

 mm
-1

.  A large standard 

error exists in 2011 which can be attributed to sampling error.  Dryland corn WUEg was the 

highest of any corn treatment in 2013 at 20.01 kg ha
-1

 mm
-1

 and lowest in 2012 at 7.76 kg ha
-1
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mm
-1

.  A large standard error also existed for the dryland corn treatment in 2013, due to 

sampling error.   

 

Tribune biomass versus water use for 2011, 2012 and 2013 is presented in Figure 2-8.   A 

linear regression was developed for this data.  A liner regression equation was developed by 

using PROC GLM of SAS (version 9.1, SAS Institute Inc., Cary, N.C.) with water use 

(millimeters) the independent (X) variable and the biomass (kilograms per hectare) the 

dependent variable (Y).  The biomass versus water use equation for forage sorghum is: 

 

Equation 2  Y=3.32+0.025x, r
2
=0.361 

 

where sample size (n)=24, and coefficient of simple determination (r
2
) = 0.361.  The same 

equation was developed for corn and it is given as follows: 

 

Equation 3  Y=3.22+0.017x, r
2
=0.355 

 

where sample size (n)=24, and coefficient of simple determination (r
2
) = 0.355.  The forage 

sorghum biomass accumulation slope shows a greater increase per unit of water than corn. 

 

  Light interception 

 Fraction of intercepted photosynthetically active radiation (IPAR) for irrigated forage 

sorghum, irrigated corn, dryland forage sorghum and irrigated corn for 2011 is presented in 

Table 2-15.  Irrigated forage sorghum and irrigated corn were analyzed separately from dryland 

forage sorghum and dryland corn.  A statistical difference was found in the irrigated treatment 

for the 1 July, 20 July, 23 August and 20 October sampling dates.  The overall trend of the data 
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for the irrigated treatment showed the intercepted solar radiation peaked sooner in the season for 

the irrigated corn than the irrigated forage sorghum.  Irrigated forage sorghum showed the most 

IPAR during the 23 August sampling date.  A statistical difference was found in the dryland 

treatments for the 23 August and 20 October sampling dates.  In contrast to the irrigated 

treatments, the dryland treatment suggested an increased IPAR for dryland forage sorghum 

sooner in the season than dryland corn.  Dryland forage sorghum also sustained higher IPAR 

through the end of the season versus a decrease through the end of the season for dryland corn. 

 

 Fraction of intercepted photosynthetically active radiation (IPAR) for irrigated forage 

sorghum, irrigated corn, dryland forage sorghum and dryland corn for 2012 are presented in 

Table 2-16.  Irrigated forage sorghum and irrigated corn were analyzed separately from dryland 

forage sorghum and dryland corn.  All sampling dates except the 15 July sampling date in the 

irrigated treatments showed a significant difference.  Irrigated corn increased in IPAR faster than 

irrigated forage sorghum while irrigated forage sorghum continued to maintain IPAR through the 

end of the season where corn decreased on the last sampling date.  Dryland corn showed a 

similar trend in 2012, as the 2012 irrigated treatment, with dryland corn increasing earlier in the 

season and decreasing on the last sampling date versus the dryland sorghum that increased IPAR 

through the end of the season. 

 

 Fraction of intercepted photosynthetically active radiation (IPAR) for irrigated forage 

sorghum, irrigated corn, dryland forage sorghum and dryland corn for 2013 are presented in 

Table 2-17.  Irrigated forage sorghum and irrigated corn were analyzed separately from dryland 

forage sorghum and dryland corn.  A significant difference was found in all but the 22 July 

sampling date for the irrigated treatments.  Irrigated corn increased IPAR sooner in the season 
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and then slowly decreased after 22 July.  Irrigated forage sorghum increased IPAR later in the 

season and maintained IPAR through the end of the season.  The dryland treatments followed a 

similar trend as the irrigated treatments and showed a significant difference for all sampling 

dates except 23 July.  Both dryland forage sorghum and corn increased IPAR through the end of 

the season in 2013.   

 

 Nutrient values 

 Fraction of crude protein for forage sorghum and corn stover for 2012 and 2013 are 

presented in Table 2-18.  Forage sorghum was analyzed separately from corn treatments.  

Irrigated forage sorghum has lower crude protein than dryland forage sorghum for both years of 

the study.  Irrigated corn and dryland corn stover contains a similar amount of crude protein for 

both years of the study. 

 

 Fraction of acid detergent fiber (ADF) for irrigated forage sorghum and irrigated corn 

stover for 2012 and 2013 are presented in Table 2-19.  Forage sorghum was analyzed separately 

than corn.  In 2012,  irrigated forage sorghum has a higher ADF value than dryland sorghum.  

Irrigated corn and dryland corn ADF values are similar in 2012 and irrigated corn has a higher 

ADF value in 2013. 

 

 Fraction of neutral detergent fiber (NDF) for irrigated forage sorghum and irrigated corn 

stover for 2012 and 2013 are presented in Table 2-20.  Forage sorghum was analyzed separately 

than corn.  Irrigated forage sorghum has a higher NDF value than dryland forage sorghum in 

both years of the study although the difference is small in 2013.  Irrigated corn has a smaller 
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NDF value in 2012 than dryland corn.  The opposite occurs in 2013, when irrigated corn had a 

higher NDF value than dryland corn. 

 

 Nitrates for irrigated forage sorghum, irrigated corn, dryland forage sorghum and dryland 

corn for 2012 and 2013 are presented in Table 2-21.  Forage sorghum was analyzed separately 

from corn.  Irrigated forage sorghum had a higher nitrate concentration in 2012 and 2013 than 

dryland forage sorghum.  Irrigated corn had a lower nitrate concentration in 2012 than dryland 

corn while irrigated corn had a greater nitrate accumulation in 2013 than dryland corn. 

 

 Prussic acid for irrigated forage sorghum, irrigated corn, dryland forage sorghum and 

dryland corn for 2012 and 2013 are presented in Table 2-22.  Forage sorghum was analyzed 

separately from corn.  In 2012, dryland forage sorghum had more prussic acid than irrigated 

forage sorghum.  In 2013, the opposite occurs when irrigated forage sorghum had more prussic 

acid than dryland forage sorghum.  Though differences exist between irrigated corn and dryland 

corn, the values are small and not expected to cause issues with livestock. 

 

 

 

 Discussion 

 Biomass production 

Evaluating above ground biomass was the initial goal of the research.  Corn biomass 

accumulation started earlier in the spring due to an earlier planting date than forage sorghum, 

usually with a month difference.  In 2011, irrigated forage sorghum biomass did not exceed 

irrigated corn biomass until after 1 October.  In contrast, in 2012, irrigated forage sorghum 
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exceeded irrigated corn biomass around the end of July.  This difference was due to the stressful 

growing conditions in 2012, where rainfall was well below average and corn silking happened in 

a period of high temperatures.  Researchers have found that stress at vegetation reduced yields by 

25% and stress after silking reduced yields by 21% and reduction as high as 50% when stress 

occurs at silking (Denmead and Shaw, 1960).  Dryland corn yields also suffered from stressful 

conditions in 2012.  Irrigated forage sorghum had the highest yield of the 3 year study in 2011, 

which was also the year with the highest water availability which agrees with Yimam (2015) 

who in a three year study found the year with the greatest forage sorghum production was also 

the year with the highest rainfall.  Dryland corn biomass yields were similar in 2011 and 2013.  

The dryland corn experienced good growing conditions in those years and biomass and yields 

agreed well with similar work done by Frank et al. (2013).  In 2012, dryland corn and dryland 

forage sorghum yielded similar over time which was related to poor growing conditions.  

Irrigated forage sorghum yielded higher than dryland forage sorghum.  Irrigated sorghum 

yielding higher than dryland sorghum was expected and observed by other researchers 

(Weichenthal et al., 2003; McCuistion et al., 2009).  Irrigated forage sorghum yielded well in 

stressful conditions in 2012.  This particular forage sorghum was a photoperiod sensitive plant 

that did not undergo reproductive heat and drought stress like corn and was more likely to not be 

affected as badly by stressful conditions.  Corn grain yield mean for three study years was 

slightly lower at 9.5 Mg ha
-1

, than a 10 year mean of fully irrigated corn reported by Schlegel 

and Havlin (1995) which was 11.1 Mg ha
-1

.  Corn grain yield was affected by the stressful 

conditions with a dramatically lower yield in 2012 than in 2011 and 2013.  Harvest index 

numbers were higher than those reported by others (Olson, 1971).  The harvest index values 
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were high due to a longer period of time between physiological maturity and harvest.  The plants 

were exposed to natural degradation and weathering. 

 

 

 Water use and water use efficiency (WUE) of biomass and grain production 

Growing season water use ranged from 773 mm to 284 mm for forage sorghum, and 744 

mm to 291 mm in corn.  Water use values agreed with other researchers (Howell et al., 2008; 

Hao et al., 2014).  Water use has varying effects on biomass production. Grain sorghum was 

found to achieve similar yields with varying levels of water use (Tolk and Howell, 2003).  This 

could be the case with forage sorghum.  This was shown possible by evaluating biomass 

production and water use for irrigated forage sorghum that showed consistent yields with water 

use ranging from 773 mm to 544 mm.  Dryland forage sorghum had similar yields in 2011 and 

2013, and two water use levels of 400 mm and 342 mm respectively.  In 2011 and 2013, biomass 

yields were similar for irrigated corn with water use in 2011 being 744 mm and water use in 

2013 being 581 mm.  The highest water use of any treatment of any year was irrigated forage 

sorghum in 2011.  Hao et al. (2014) found WUEb values for forage sorghum ranging from 30 to 

47 kg ha
-1 

mm
-1

, which agrees with the study data.  Corn WUEb and WUEg were in agreement 

with previous work done at Tribune (Hattendorf et al., 1988).  Corn WUEb values ranged from 

34 kg ha
-1

 mm
-1

 to 13.4 kg ha
-1

 mm
-1

 which both occurred in the dryland treatment.  A similar 

thing happened with WUEg where the highest and lowest values for the study years were in the 

dryland treatments.  The highest WUEb and WUEg yield occurred in the year with the least 

amount of water use.  This data is in agreement with Tolk and Howell (2003) who said that on 

average, corn shows higher WUE and lower water use in mild weather conditions which is what 

was observed.  Howell et al. (1995) also suggested in a separate study that WUE is generally 
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maximized as water use declines.  Dryland corn yields agreed with those of Norwood (2000). 

Dryland corn yields in 2011 and 2013 were similar with a difference in those years in water use, 

2013 had a lower water use value which is what contributed to a higher WUEb and WUEg value 

than 2011.  This also occurred with irrigated corn where higher biomass yields with less water 

use in 2013 gave a greater WUEb for 2013 than 2011.  In 2012, biomass production was low with 

a high water use value giving a lower WUEb value for 2012 than 2011 and 2013.  Dryland corn 

showed the highest WUEg value in 2013, which could be attributed to mild growing conditions 

with the lowest WUEg in 2012 which can be attributed to stressful growing conditions.  The high 

standard error in irrigated corn in 2011 and dryland corn in 2013 came from sampling error.  A 

common source of error of this experiment came from the low number of plant samples taken to 

represent a hectare.  Figure 2-8 shows the forage sorghum and corn biomass versus water use 

plotted across 2011, 2012 and 2013.  The slope shows forage sorghum accumulating more 

biomass per mm of water than corn.  Forage sorghum accumulated 2.5 Mg ha
-1

 per 100 mm of 

water where corn accumulated 1.7 Mg ha
-1

 per 100 mm of water.  Other researchers have found 

photoperiod sensitive sorghum to accumulate as high as 4.4 Mg ha
-1

 per 100 mm in Texas 

(McCuistion et al., 2009).  The r
2
 value for both crops are lower than those reported by 

McCuistion et al. (2009).  This is largely explained by error in sampling and stressful growing 

conditions in 2012 severely reducing yield.  When only sampling 0.762 m
2
 of plot per harvest 

timing, it may not be sufficient to capture the real yield of plot. 
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 Soil water 

Available soil water content was not equal in quantity and timing but trends appeared.  

Differences appeared in 2011 early in the season in the irrigated corn and forage sorghum while 

dryland values were remained similar.  The dryland soil profile had dropped in available soil 

water content between 1 July to 20 July due to increased growth during that time.  Available soil 

water showed an increase in profile water at the 3 August sampling date due to rainfall.  

Available soil water for the 183 cm profile showed two significant differences at 7 July and 3 

August which irrigated corn had less available water than irrigated forage sorghum which can be 

attributed to rapid growth rate (Figure 2-6) and initiation of silking for the irrigated corn (Figure 

2-3).  All treatments decreased in water from 1 July to 20 October due to more water use than 

what could be replenished as rainfall or irrigation.   

 

In 2012, numerical differences did occur with depth, treatment and timing.  Very little 

statistical significance appeared in 2011.  There was a significant difference at 25 June with 

irrigated corn having slightly more available soil water than irrigated corn and this can be 

attributed to earlier growth of the irrigated corn.  A trend that occurred in both the dryland and 

irrigated treatments was the drying down of the soil profile over time.  This was due to below 

average rainfall and high water use by the irrigated corn and irrigated sorghum specifically.  

Table 2-10, shows a drastic reduction in plant available water from 12 June to 15 September.  

The largest decrease in available soil water was in the dryland treatments due to lower than 

average rainfall not being able to replenish soil water.  The irrigated treatments showed 

considerable drying even with irrigation, water use demands were higher and the irrigated corn 

and irrigated forage sorghum were able to produce 9.8 and 20.8 Mg ha
-1

 of biomass respectively. 
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In 2013, similar to years prior, there were numerical differences between available soil 

water contents by depth, treatment and across sampling dates.  There were four statistically 

significant differences to note. The irrigated corn on 10 July had slightly less water than irrigated 

forage sorghum with the cause being earlier growth of the irrigated corn versus the irrigated 

forage sorghum.  This scenario changes later on in the season on 22 August and 26 September 

where irrigated forage sorghum had less available soil water than irrigated corn.  This was due to 

irrigated corn approaching maturity and irrigated forage sorghum still in a growing vegetative 

stage.  Available soil water for the 183 cm profile showed a decrease on profile available water 

from 25 June to 26 September designating crop water use and growing biomass.   

 

 Light interception 

Light interception for 2011, 2012 and 2013 all show a trend for significant differences.  

In all years for irrigated treatments there is a significant difference in the first two sampling dates 

and the last two sampling dates.  The non-significant date for each year was when forage 

sorghum had rapidly accumulated biomass and expanding leaf area and has similar leaf area as 

the corn.  This sharply rising growth curve is most obvious in 2012.  The significance of the first 

two sampling dates of every year relate to the fact that irrigated corn was planted earlier and was 

increasing in biomass and leaf area earlier than irrigated forage sorghum.  The other interesting 

note about the significant differences was that the significant differences at the last date are due 

to the maturation and loss of leaves in the irrigated corn and forage sorghum was still increasing 

in biomass and still intercepting more than 90% of PAR.  Dryland treatments also showed 

differences at the end of the growing season where dryland forage sorghum is still growing and 



41 

intercepting over 88% of the PAR and corn has begun physiological maturation and due to 

senescence had started to decrease interception of PAR.  The data tends to agree with Muchow et 

al. (1990) who found that under favorable growing conditions, biomass accumulation is directly 

proportional to the amount of radiation intercepted. 

 

Nutritional values 

 Nutritional values were collected at the end of the season to get an idea of the nutritional 

quality of the plant material. Crude protein was evaluated because it is a common parameter in 

animal feed.  Crude protein of the corn stover and forage sorghum was tested to determine what 

the differences where in just the vegetative material.  There was a significant difference in 2012 

between irrigated forage sorghum and dryland forage sorghum with dryland sorghum having a 

greater amount of crude protein.  Dryland and irrigated corn crude values were similar in 2012 

and 2013.  The values for crude protein for forage sorghum tend to agree with McCuistion et al. 

(2010).  Corn stover values are similar to that of Lauer et al. (2001). 

 

 Acid detergent fiber (ADF) was evaluated to determine the amount of cellulose and 

lignin that are difficult for digestion and have been shown to limit digestion (NRC, 2001).  There 

was a significant difference in 2012 where the fraction of ADF in dryland forage sorghum was 

lower than irrigated forage sorghum.  This difference could be attributed to stressful growing 

conditions.  The difference in 2013 was much smaller.  This implies that in 2012 irrigated forage 

sorghum had more cellulose and lignin fiber components than dryland forage sorghum.  In 2012, 

dryland corn and irrigated corn were similar.  Forage sorghum ADF values were in agreement 

with Cummings (1981) while corn ADF values agreed with Crasta et al. (1997). 
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 Neutral detergent fiber (NDF) was evaluated to determine the amount hemi 

cellulose and other neutral detergent soluble components.  Irrigated forage sorghum had 

significantly more NDF than dryland forage sorghum in 2012 that could be related to stressful 

conditions.  The difference between irrigated forage sorghum and dryland forage sorghum in 

2013 was small.  A significant difference existed in 2013, where irrigated corn had significantly 

more NDF than dryland corn.  Forage sorghum NDF values were similar to those found by 

McCuistion et al. (2010).  Corn NDF values tended to agree with NDF values found by Cox et 

al. (1994) 

 

 

Nitrates were evaluated to determine if toxic levels existed in the plant material.  

Numerical differences existed amongst all treatments.  These levels are important to determine if 

livestock can be fed the plant material.  Nitrates have been found to be toxic and fatal to 

livestock at high levels (Harms and Tucker, 1973).  Animals have varying levels of sensitivity to 

nitrate levels in plant material.  It is important to note the levels in the plant matter for feeding. 

 

Prussic acid which is also known as hydrocyanic acid, was evaluated to determine if toxic 

levels of the compound existed.  Though there were numerical differences an important 

significant difference was dryland forage sorghum had 690.5 mg/kg of prussic acid.  This 

amount of prussic acid could be fatal to livestock (Egekeze and Oehme, 1980). Prussic acid has 

been shown to increase in stressful conditions (Wheeler et al., 1990). 
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Due to the nature of the research, corn was not able to be sampled on a representative 

date that it would be taken for corn silage.  The corn samples taken represent a stover harvest.  

Samples taken to represent silage must also undergo an ensiling process to get a correct 

representation of the nutrients.  The difference in nutritive values will change based on harvest 

date.  Corn has an earlier maturity date than the photoperiod sensitive forage sorghum.  Harvest 

date must be taken into consideration when evaluating nutritional values. 
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 Conclusions 

In Tribune, irrigated forage sorghum was able to produce more biomass than irrigated 

corn.  Dryland forage sorghum was able to yield the same or higher as dryland corn.  Final yield 

does not necessarily depend on the total amount of water used, because yield is a function of not 

only the amount of water used during the growing season, but also of rainfall distribution, 

temperature and other factors (Olsen, 1971).  Though there were numerical differences, total 

water use between the irrigated forage sorghum and the irrigated corn were similar.  This also 

happened with dryland plots; dryland forage sorghum used a similar amount of water as the 

dryland corn.  Though the forage sorghum used more water it was able to produce more biomass 

with that water giving it higher water use efficiency than corn except in 2011, when the dryland 

corn had slightly higher water use efficiency than dryland forage sorghum.  This is important in 

years with stressful growing conditions such as 2012.  This year brought above average 

temperatures and below average rainfall and the sorghum was able to produce more biomass per 

unit of water than corn because it did not undergo reproductive stress in periods of high 

temperatures and its GDD equation states that the maximum growing temperature for sorghum is 

37.7
o
C versus 30

o
C.  Because the forage sorghum is photoperiod sensitive it is also allowed to 

grow later on in the growing season as seen by the biomass growth over the season and the PAR 

which shows sorghum is still intercepting 90% of the incoming solar radiation at the end of the 

season where corn is decreasing because it is drying down after physiological maturity.  The 

producer needs to understand if their goals are for grain production or biomass production.  In 

areas with declining well capacities with producers needing a fiber product for animals, forage 

sorghum has shown that it can produce just as much biomass as corn with a similar amount of 

water.  The feed nutrition data suggest that though there is significance, the actual values give 
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producers decision making tools to help them pick the right product for evaluation.  To get a true 

value for what the plant material is worth as a feedstuff, feeding trials need to be established to 

understand the digestibility of the material and how it reacts within the rumen. 
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Table 2-1.  Biomass harvest dates for Tribune, Kansas. 

 

2011 2012 2013 

1 July 12 June 25 June 

20 July 25 June 10 July 

3 August 15 July 22 July 

23 August 29 July 22 August 

20 October 15 September 26 September 
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Table 2-2  Long-term (100 yr) temperature and rainfall means by month, mean daily reference  

ET by month and rainfall by month for Tribune, Kansas 2011, 2012 and 2013. 

 

 100-yr mean  Reference ET  Precipitation 

 Max Min Precipitation  2011 2012 2013  2011 2012 2013 

 --oC-- mm  --mm d-1--  --mm-- 

Apr 19.1 1.6 33.5  4.8 4.3 4.3  36.1 38.8 3.0 

May 24.1 7.5 64.0  6.0 6.2 6.7  25.4 9.9 35.3 

Jun 30.1 13.1 70.1  7.8 9.4 8.7  75.4 23.3 36.8 

Jul 33.5 16.1 66.3  7.6 9.3 7.3  116.8 20.5 58.9 

Aug 32.1 15.2 59.9  6.2 7.3 5.9  117.3 20.3 136.1 

Sep 27.7 10.1 32.2  4.2 5.3 5.4  25.1 26.9 37.3 

Oct 21.2 2.9 27.4  3.4 3.3 3.4  76.4 24.1 19.3 

Total   353.4      472.7 188.7 326.9 
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Figure 2-1.  Average daily temperature for Tribune, Kansas 2011, 2012 and 2013. 
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Figure 2-2.  Cumulative growing degree days (GDD) for corn and forage sorghum, 

Tribune, Kansas 2011.  
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Figure 2-3.  Cumulative growing degree days (GDD) for corn and forage sorghum, 

Tribune, Kansas 2012. 
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Figure 2-4.  Cumulative growing degree days (GDD) for corn and forage sorghum, 

Tribune, Kansas 2013. 
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Table 2-3.  Irrigation amounts by month for Tribune, Kansas 2011, 2012 and 2013. 

 

 2011  2012  2013 

   mm   

Apr 72.9  -  38.1 

May 20.3  20.1  80.0 

Jun 110.9  96.5  140.9 

Jul 186.6  156.2  36.8 

Aug 151.1  249.9  40.6 

Sep 68.5  -  38.8 

Total 610.3  522.7  375.2 
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Table 2-4  Irrigated forage sorghum, irrigated corn, dryland forage sorghum and dryland 

corn biomass, irrigated and dryland treatments analyzed separately, Tribune, Kansas 

2011, 2012 and 2013. 

 

Year P>F 

Irrigated 

forage 

sorghum 

 
Irrigated 

corn 
  P>F 

Dryland 

forage 

sorghum 

 
Dryland 

corn 

 

  Mg ha-1
 

2011 0.170 21.1  16.0   0.981 11.1  11.0  

2012 0.002 20.8 a 9.8 b  0.028 6.1 a 3.9 b 

2013 0.195 20.6  17.6   0.167 16.1  11.6  

†Letters within an irrigated or dryland group treatment represent differences at LSD (0.05) 
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Table 2-5.  Corn grain yield and corn harvest index, Tribune, Kansas 2011, 2012 and 2013. 

 

Year 
Irrigated Corn 

Grain Yield 
SE 

Dryland Corn 

Grain Yield 
SE 

Irrigated Corn 

Harvest Index 
SE 

Dryland Corn 

Harvest Index 
SE 

 kg ha-1  kg ha-1      

2011 8868 1876 6776 599 0.57 0.021 0.59 0.004 

2012 7358 168 2667 125 0.63 0.010 0.58 0.013 

2013 12425 313 7391 455 0.60 0.024 0.59 0.024 
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Figure 2-5.  Biomass accumulation for season, Tribune, Kansas 2011. 
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Figure 2-6. Biomass accumulation for season, Tribune, Kansas 2012. 

  



57 

Date

6/1/2013  7/1/2013  8/1/2013  9/1/2013  10/1/2013  

B
io

m
a
s
s
 Y

ie
ld

 (
k
g

 h
a

-1
)

0

5000

10000

15000

20000

25000

O2013 Dryland Corn 

2013 Irrigated Corn

2013 Dryland Forage Sorghum

2013 Irrigated Forage SorghumO

1/6/2013 1/7/2013 1/8/2013 1/9/2013 1/10/2013

 

Figure 2-7.  Biomass accumulation for season, Tribune, Kansas 2013. 
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Table 2-6  Available soil water by depth for irrigated forage sorghum, irrigated corn, 

dryland forage sorghum and dryland corn, irrigated treatments analyzed separately from 

dryland treatments, Tribune, Kansas 2011. 

Date Depth P>F 
Irrigated 

forage 

sorghum 

 
Irrigated 

Corn 
  P>F 

Dryland 

forage 

sorghum 

 
Dryland 

corn 

 

 cm  Available water content, cm3 cm-34  

1/7/2011 30 0.008 0.150 a 0.127 b  0.952 0.165  0.164  

 61 0.014 0.125 a 0.103 b  0.240 0.162  0.152  

 91 0.536 0.123  0.116   0.496 0.161  0.164  

 122 0.604 0.124  0.115   0.829 0.167  0.167  

 152 0.463 0.111  0.104   0.988 0.166  0.165  

 183 0.595 0.102  0.092   0.473 0.162  0.163  

             

20/7/2011 30 0.069 0.123  0.095   0.248 0.086  0.090  

 61 0.007 0.115 a 0.041 b  0.214 0.104  0.134  

 91 0.013 0.110 a 0.050 b  0.577 0.147  0.150  

 122 0.051 0.122  0.088   0.950 0.172  0.171  

 152 0.078 0.129  0.096   0.818 0.175  0.160  

 183 0.195 0.116  0.109   0.903 0.178  0.173  

             

3/8/2011 30 0.149 0.129  0.188   0.352 0.200  0.183  

 61 0.151 0.151  0.115   0.626 0.131  0.126  

 91 0.113 0.136  0.074   0.566 0.127  0.135  

 122 0.101 0.155  0.087   0.760 0.153  0.152  

 152 0.031 0.145 a 0.089 b  0.715 0.165  0.154  

 183 0.026 0.134 a 0.093 b  0.879 0.168  0.164  

             

23/8/2011 30 0.059 0.144  0.153   0.875 0.161  0.115  

 61 0.165 0.130  0.118   0.226 0.112  0.092  

 91 0.115 0.131  0.094   0.901 0.128  0.114  

 122 0.135 0.138  0.082   0.915 0.142  0.136  

 152 0.077 0.149  0.096   0.825 0.154  0.158  

 183 0.019 0.136 a 0.091 b  0.712 0.156  0.169  

             

20/10/2011 30 0.022 0.143 b 0.160 a  0.165 0.164  0.185  

 61 0.301 0.105  0.104   0.833 0.101  0.102  

 91 0.621 0.092  0.081   0.943 0.095  0.085  

 122 0.983 0.098  0.092   0.900 0.114  0.114  

 152 0.658 0.097  0.099   0.823 0.122  0.127  

 183 0.890 0.095  0.098   0.334 0.131  0.144  

†Letters within an irrigated or dryland treatment group represent differences at LSD (0.05) 
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Table 2-7  Available soil water by depth for irrigated forage sorghum, irrigated corn, 

dryland forage sorghum and dryland corn, irrigated treatments analyzed separately from 

dryland treatments, Tribune, Kansas 2012. 

 

Date Depth P>F 

Irrigated 

forage 

sorghum 

 
Irrigated 

Corn 
  P>F 

Dryland 

forage 

sorghum 

 
Dryland 

corn 

 

 cm  Available water content, cm3 cm-3
  

12/6/2012 30 0.368 0.171  0.172   0.735 0.173  0.173  

 61 0.187 0.134  0.158   0.966 0.148  0.142  

 91 0.039 0.147  0.169   0.515 0.132  0.122  

 122 0.155 0.134  0.157   0.963 0.135  0.125  

 152 0.687 0.135  0.132   0.466 0.124  0.122  

 183 0.974 0.122  0.121   0.570 0.116  0.127  

             

25/6/2012 30 0.004 0.186 a 0.172 b  0.281 0.175  0.155  

 61 0.455 0.145  0.147   0.838 0.135  0.135  

 91 0.872 0.153  0.155   0.371 0.136  0.136  

 122 0.679 0.163  0.156   0.293 0.147  0.130  

 152 0.550 0.149  0.148   0.376 0.140  0.137  

 183 0.949 0.132  0.134   0.211 0.131  0.126  

             

25/7/2012 30 0.235 0.107  0.085   0.222 0.092  0.086  

 61 0.448 0.119  0.098   0.468 0.111  0.093  

 91 0.371 0.155  0.139   0.271 0.136  0.115  

 122 0.702 0.153  0.144   0.029 0.149 a 0.123 b 

 152 0.203 0.156  0.131   0.115 0.142  0.136  

 183 0.526 0.146  0.132   0.180 0.144  0.129  

             

29/7/2012 30 0.816 0.080  0.085   0.444 0.082  0.062  

 61 0.981 0.076  0.074   0.809 0.061  0.054  

 91 0.537 0.103  0.070   0.580 0.063  0.045  

 122 0.392 0.111  0.088   0.376 0.087  0.068  

 152 0.640 0.121  0.113   0.121 0.118  0.092  

 183 0.787 0.124  0.116   0.125 0.127  0.105  

             

15/9/2012 30 0.865 0.065  0.069   0.957 0.064  0.066  

 61 0.531 0.052  0.068   0.945 0.065  0.063  

 91 0.858 0.055  0.054   0.909 0.037  0.034  

 122 0.749 0.044  0.064   0.900 0.026  0.020  

 152 0.889 0.051  0.052   0.963 0.023  0.024  

 183 0.771 0.073  0.065   0.961 0.042  0.041  

†Letters within an irrigated or dryland treatment group represent differences at LSD (0.05) 
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Table 2-8.  Available soil water by depth for irrigated forage sorghum, irrigated corn, 

dryland forage sorghum and dryland corn, irrigated treatments analyzed separately from 

dryland treatments, Tribune, Kansas 2013. 

 

Date Depth P>F 

Irrigated 

forage 

sorghum 

 
Irrigated 

Corn 
  P>F 

Dryland 

forage 

sorghum 

 
Dryland 

corn 

 

 cm  Available water content, cm3 cm-3
  

25/6/2013 30 0.613 0.172  0.173   0.744 0.162  0.162  

 61 0.845 0.054  0.062   0.701 0.067  0.064  

 91 0.549 0.162  0.154   0.058 0.122  0.144  

 122 0.716 0.135  0.143   0.812 0.124  0.125  

 152 0.142 0.089  0.110   0.284 0.095  0.110  

 183 0.300 0.062  0.085   0.488 0.060  0.081  

             

10/7/2013 30 0.072 0.174 a 0.156 b  0.749 0.166  0.151  

 61 0.066 0.165  0.141   0.675 0.142  0.139  

 91 0.278 0.162  0.150   0.847 0.132  0.125  

 122 0.635 0.131  0.132   0.725 0.125  0.115  

 152 0.524 0.106  0.114   0.780 0.102  0.104  

 183 0.217 0.076  0.105   0.694 0.094  0.087  

             

22/7/2013 30 0.855 0.155  0.157   0.864 0.157  0.151  

 61 0.129 0.159  0.138   0.327 0.142  0.130  

 91 0.156 0.160  0.155   0.358 0.135  0.122  

 122 0.207 0.142  0.121   0.187 0.126  0.111  

 152 0.924 0.111  0.114   0.347 0.114  0.104  

 183 0.855 0.105  0.101   0.178 0.109  0.093  

             

22/8/2013 30 0.009 0.137 b 0.160 a  0.089 0.142  0.163  

 61 0.302 0.151  0.144   0.990 0.131  0.131  

 91 0.205 0.160  0.153   0.437 0.135  0.124  

 122 0.282 0.143  0.132   0.043 0.144 a 0.102 b 

 152 0.950 0.132  0.126   0.067 0.135  0.115  

 183 0.996 0.121  0.125   0.262 0.136  0.118  

             

26/9/2013 30 0.001 0.124 b 0.162 a  0.002 0.112 b 0.178 a 

 61 0.007 0.112 b 0.140 a  0.092 0.107  0.137  

 91 0.653 0.112  0.128   0.483 0.088  0.094  

 122 0.813 0.108  0.092   0.865 0.089  0.083  

 152 0.885 0.092  0.090   0.299 0.095  0.079  

 183 0.922 0.103  0.101   0.483 0.092  0.089  

†Letters within an irrigated or dryland treatment group represent differences at LSD (0.05) 



61 

 

Table 2-9. Available soil water for the 183 cm profile, irrigated and dryland treatments 

analyzed separately, Tribune, Kansas 2011. 

 

 1/7/2011 20/7/2011 3/8/2011 23/8/2011 20/10/2011 

Available soil water  mm in 183 cm soil profile 

Irrigated forage 

sorghum 
227 219 a 278 a 253 192 

Irrigated corn 205 144 b 197 b 196 199 

      

Dryland forage 

sorghum 
299 259 288 244 223 

Dryland corn 302 274 285 239 234 

    †Letters within an irrigated or dryland treatment group represent differences at LSD (0.05) 

  



62 

Table 2-10. Available soil water for the 183 cm profile, irrigated and dryland treatments 

analyzed separately, Tribune, Kansas 2012. 

 

  

 12/6/2012 25/6/2012 15/7/2012 29/7/2012 15/9/2012 

Available soil water  mm in 183 cm soil profile 

  

Irrigated forage 

sorghum 
262 283 249 189 103 

Irrigated corn 277 279 224 165 111 

      

Dryland forage 

sorghum 
253 265 235 166 76 

Dryland corn 251 252 205 133 80 

    †Letters within an irrigated or dryland treatment group represent differences at LSD (0.05) 
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Table 2-11.  Available soil water for the 183 cm profile, irrigated and dryland treatments 

analyzed separately, Tribune, Kansas 2013. 

 

 25/6/2013 10/7/2013 22/7/2013 22/8/2013 26/9/2013 

Available soil water  mm in 183 cm soil profile 

  

Irrigated forage 

sorghum 
236 251 259 262 198 

Irrigated corn 254 244 241 259 222 

      

Dryland forage 

sorghum 
220 231 236 252 178 

Dryland corn 237 223 217 233 196 

    †Letters within an irrigated or dryland treatment group represent differences at LSD (0.05) 
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Table 2-12.  Total end of season water use for irrigated forage sorghum, irrigated corn, 

dryland forage sorghum and dryland corn, irrigated treatments analyzed separately from 

dryland treatments, Tribune, Kansas 2011, 2012 and 2013. 

 

Year P>F 

Irrigated 

forage  

sorghum 

 
Irrigated 

corn 
  P>F 

Dryland 

forage 

sorghum 

 
Dryland 

corn 
 

  Total water use, mm 

2011 0.008 773 a 744 b  0.831 408  400  

2012 0.545 663  659   0.497 284  291  

2013 0.023 544 b 581 a  0.073 387  342  

†Letters within an irrigated or dryland treatment group represent differences at LSD (0.05) 
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Table 2-13. Water use efficiency (WUEb) for irrigated forage sorghum, irrigated corn, 

dryland forage sorghum and dryland corn, irrigated treatments analyzed separately from 

dryland treatments, Tribune, Kansas 2011, 2012 and 2013. 

 

Year P>F 

Irrigated 

forage 

sorghum 

 
Irrigated 

corn 
  P>F 

Dryland 

forage  

sorghum 

 
Dryland 

corn 
 

  kg ha-1 mm-1
 

2011 0.225 27.1  21.5   0.923 27.0  27.9  

2012 0.003 31.3 a 14.9 b  0.040 21.8 a 13.4 b 

2013 0.092 37.7  30.3   0.428 41.7  34.3  

†Letters within an irrigated or dryland treatment group represent differences at LSD (0.05) 
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Table 2-14.  Water use efficiency (WUEg) for corn grain, Tribune, Kansas. 

 

Year   

Irrigated 

corn 

WUEg 

SE 

Dryland 

corn 

WUEg 

SE 

   kg ha
-1

 mm
-1

  kg ha
-1

 mm
-1

  

2011   10.21 2.3456 14.90 0.6852 

2012   9.44 0.3010 7.76 0.4823 

2013   18.05 0.5230 20.01 1.7180 
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Figure 2-8. Dry matter (DM) biomass yield vs water use for Tribune, Kansas 2011, 2012 

and 2013. 
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Table 2-15  Fraction of intercepted photosynthetically active radiation (IPAR) for irrigated 

corn, irrigated sorghum, dryland corn and dryland sorghum, irrigated treatments 

analyzed separately from dryland treatments, Tribune, Kansas 2011. 

 

            

Date P>F 

Irrigated 

forage 

sorghum 

 
Irrigated 

corn 
  P>F 

Dryland 

forage 

sorghum 

 
Dryland 

corn 

 

  Fraction of PAR intercepted (ϴ)  

1/7/2011 0.004 0.058 b 0.553 a  0.443 0.023  0.017  

20/7/2011 0.042 0.713 b 0.860 a  0.172 0.502  0.353  

3/8/2011 0.454 0.722  0.887   0.077 0.901  0.596  

23/8/2011 <0.0001 0.989 a 0.711 b  <0.0001 0.989 a 0.630 b 

20/10/2011 <0.0001 0.928 b 0.447 a  <0.0001 0.911 a 0.459 b 

†Letters within a row represent differences at LSD (0.05) 
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Table 2-16.  Fraction of intercepted photosynthetically active radiation (IPAR) for 

irrigated corn, irrigated sorghum, dryland corn and dryland sorghum, irrigated 

treatments analyzed separately from dryland treatments, Tribune, Kansas 2012. 

 

Date P>F 

Irrigated 

forage 

sorghum 

 
Irrigated 

corn 
  P>F 

Dryland 

forage 

sorghum 

 
Dryland 

corn 

 

  Fraction of PAR intercepted  

12/6/2012 <0.0001 0.018 b 0.019 a  0.0002 0.014 b 0.298 a 

25/6/2012 0.0003 0.052 b 0.306 a  0.360 0.105  0.240  

15/7/2012 0.148 0.819  0.879   0.871 0.552  0.559  

29/7/2012 0.004 0.991 a 0.961 b  0.935 0.686  0.692  

15/9/2012 <0.0001 0.920 a 0.532 b  0.001 0.884 a 0.312 b 

†Letters within a row represent differences at LSD (0.05) 
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Table 2-17.  Fraction of intercepted photosynthetically active radiation (IPAR) for 

irrigated corn, irrigated sorghum, dryland corn and dryland sorghum, irrigated 

treatments analyzed separately from dryland treatments, Tribune, Kansas 2013. 

 

Date P>F 

Irrigated 

forage 

sorghum 

 
Irrigated 

corn 
  P>F 

Dryland 

forage 

sorghum 

 
Dryland 

corn 

 

  Fraction of PAR intercepted   

25/6/2013 0.003 0.016 b 0.031 a  0.019 0.016 b 0.059 a 

10/7/2013 0.012 0.486 b 0.838 a  0.007 0.187 b 0.297 a 

22/7/2013 0.053 0.838  0.911   0.379 0.726  0.634  

22/8/2013 0.014 0.991 a 0.812 b  <0.0001 0.960 a 0.684 b 

26/9/2013 0.003 0.986 a 0.819 b  <0.0001 0.983 a 0.810 b 

†Letters within a row represent differences at LSD (0.05) 
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Table 2-18.  Fraction of crude protein for irrigated forage sorghum, irrigated corn, dryland 

forage sorghum and dryland corn. Forage sorghum analyzed separately from corn.   

Tribune, Kansas 2012 and 2013. 

 

   

Year P>F 

Irrigated 

forage 

sorghum 

 

Dryland 

forage 

sorghum 

  P>F 
Irrigated 

corn 
 

Dryland 

corn 

 

  Fraction of Crude Protein 

2012 0.0153 7.48 a 9.92 b  1.000 6.47  6.47  

2013 0.0544 6.40  7.34   0.405 6.30  6.6  

†Letters within a crop treatment group represent differences at LSD (0.05) 
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Table 2-19.  Fraction of acid detergent fiber (ADF) for irrigated forage sorghum, irrigated 

corn, dryland forage sorghum and dryland corn.  Forage sorghum analyzed separately 

from corn Tribune, Kansas 2012 and 2013. 

 

 

Year P>F 

Irrigated 

forage 

sorghum 

 

Dryland 

forage 

sorghum 

  P>F 
Irrigated 

corn 
 

Dryland 

corn 

 

  Fraction of ADF 

2012 .0005 40.15 a 27.11 b  0.957 34.425  34.52  

2013 0.319 45.10  42.8   0.015 43.65 a 38.25 b 

†Letters within a crop treatment group represent differences at LSD (0.05) 
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Table 2-20.  Fraction of neutral detergent fiber (NDF) for irrigated forage sorghum, 

irrigated corn, dryland forage sorghum and dryland corn.  Forage sorghum analyzed 

separately from corn Tribune, Kansas 2012 and 2013. 

 

Year P>F 

Irrigated 

forage 

sorghum 

 

Dryland 

forage 

sorghum 

  P>F 
Irrigated 

corn 
 

Dryland 

corn 

 

  Fraction of NDF 

2012 0.001 62.75 a 54.19 b  0.448 57.86  60.13  

2013 0.304 65.80  64.05   0.029 65.13 a 58.60 b 

†Letters within a crop treatment group represent differences at LSD (0.05) 
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Table 2-21.  Nitrates for irrigated forage sorghum, irrigated corn, dryland forage sorghum 

and dryland corn.  Forage sorghum analyzed separately from corn  Tribune, Kansas 2012 

and 2013. 

 

 

Year P>F 

Irrigated 

forage 

sorghum 

 

Dryland 

forage 

sorghum 

  P>F 
Irrigated 

corn 
 

Dryland 

corn 

 

  Nitrate mg kg-1 NO3-N 

2012 0.161 1342.50  955.75   0.01 662.50 a 1812.50 b 

2013 0.172 1034.75  882.75   0.56 716.25  556.75  

†Letters within an crop treatment group represent differences at LSD (0.05) 
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Table 2-22.  Prussic acid for irrigated forage sorghum, irrigated corn, dryland forage 

sorghum and dryland corn.  Forage sorghum analyzed separately from corn Tribune, 

Kansas 2012 and 2013. 

 

Year P>F 

Irrigated 

forage 

sorghum 

 

Dryland 

forage 

sorghum 

  P>F 
Irrigated 

corn 
 

Dryland 

corn 

 

  mg/kg 

2012 0.003 146.50 a 690.05 b  0.19 51.75  32.00  

2013 0.241 145.75  121.50   0.65 33.50  35.5  

†Letters within an crop treatment group represent differences at LSD (0.05) 
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Chapter 3 - Evaluation of Corn and Forage Sorghum Production 

Hoxie, Kansas. 

 

 Introduction 

Another research location was chosen to gain further appreciation of the differences 

between corn and forage sorghum.  A second location was selected in Sheridan County, Kansas, 

near the town of Hoxie.  The location was selected due to some of its traits.  This location was 

important due to its high agricultural productivity.  Sheridan County is located in the northwest 

portion of Kansas and sits on top of the Ogallala Aquifer which is the largest aquifer in Kansas.  

Sheridan County sold $328,685,000 in agricultural commodities namely crops and livestock in 

2012 (NASS, 2012).  Data from NASS (2012) noted Sheridan County having 123,299 acres of 

corn and 117,073 head of cattle in 2012.  The high number of cattle is a driver for corn for feed.  

Of those corn acres 53,000 acres are irrigated.  It has been noted that irrigated corn as feed and 

cattle production follows groundwater use patterns (Steward, 2013).  This becomes important 

when producers consider the decline in water levels in the aquifer (Peterson and Bernardo, 

2003).  Corn has been found to require large amounts of water per year for production (Marsalis 

et al., 2010; Howell et al., 1997).  It is important to start looking at production alternatives to be 

able to sustain production of agricultural exports.  An option to evaluate as a feed source is 

forage sorghum which can be grown on dry or irrigated acres. McCuistion et al. (2009) found 

that in even reduced irrigation schemes, forage sorghum may be an alternative roughage crop.  

An evaluation of forage sorghum and corn production potential in both irrigated and dryland 

environment would provide producers with data for which to make production decisions. 
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 Objective 

 

It is understood that forage sorghum can be competitive with corn for forage use in 

western Kansas.  Biomass production, water use efficiency and feed value of both crops have 

been considered as decision making factors for producers interested in forage production. An 

evaluation of corn alongside photoperiod sensitive forage sorghum may give some insight on 

forage production that is most efficient for western Kansas.  The purpose of this study was to 

agronomicaly evaluate biomass production, water use and also understand basic feed values that 

can be used for further decision making. 

 

 

 Materials and Methods 

 Site data 

A field study was conducted in Sheridan County, Kansas near the town of Hoxie.  The 

soil is a deep silt loam soil (Keith silt loam, fine-silty, mixed, mesic Aridic Argiustoll).  The 

average summer precipitation for the region is 429 mm.  The study was placed on a cooperator’s 

field.  Due to the nature of agronomic research, a structured plot design is not always achievable.  

The study was designed for an irrigated forage sorghum, irrigated corn, dryland forage sorghum 

and dryland corn treatment.  The study was placed on the corner of an irrigation pivot.  A 40 

meter block of photoperiod sensitive forage sorghum (PSS) was planted from the edge of the 

dryland corner into the area underneath the irrigated pivot, the same was done with the corn.  

This allowed for large scale mechanical maintenance and harvest of the plots by the cooperator 

when the study was complete.  This allowed for 4 treatment areas, irrigated forage sorghum, 

irrigated corn, dryland forage sorghum and dryland corn.  Biomass sampling, water analysis and 
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solar radiation data were all done within representative locations within the treatment.  A plot 

map can be found in Appendix B-4.   In 2013, the irrigation system was nozzled so that the 

innermost span of the system received no water making it a dryland location and the outer spans 

were used as an irrigation treatment.  The corn and forage sorghum were planted in a similar 

fashion as the previously mentioned design. A plot map of the design can be found in Appendix 

B-5.  The corn was planted on 5 May 2011, 5 May 2012 and 6 May 2013. The corn variety was 

Pioneer 35F48 (Pioneer) and was planted at a density of 45,000 plants ha
-1

 for dryland plots and 

79,000 plants ha
-1

 for irrigated plots.  The PSS was planted 3 June 2011, 29 May 2012 and 30 

May 2013 and the variety was 1990 (Sorghum Partners) and was planted at a density of 99,000 

plants ha
-1

 for dryland plots and 173,000 plants ha
-1

 for irrigated plots. Pre-emergence herbicides 

were applied to all treatments for weed control.  Plots were irrigated with a central pivot 

sprinkler irrigation system.  Growing degree days (GDD) were calculated with an upper 

temperature threshold of 30°C for corn and 38°C for forage sorghum using a base temperature of 

10°C (McMaster and Wilhelm, 1997).  The initial position of the GDD line on Figure 2-2, 2-3 

and 2-4 is the initial accumulation of GDD after planting.  Temperature data were collected from 

a weather station at Colby, Kansas.  Rainfall and irrigation data were collected on site.  

 Harvest and material handling 

One meter of row (0.762 m
2
) above ground biomass harvests were taken five times over 

the growing season (Table 3-1).  Plants in a randomly selected linear meter of row were 

harvested 3-6 cm above the soil surface. Biomass was then dried at 60 C for 10 days and 

weighed.  On the last day of harvest corn ears were separated from the stalk, mechanically 

shelled, dried at 60
o
C for a minimum of 72 hours and weighed.  Grain yield was adjusted to 

0.155 g g
-1

 moisture (wet basis).  Total biomass was reported as sum of the stover, cob and grain 



86 

on a dry matter basis.  Harvest index was calculated by dividing dry grain yield by total dry 

above ground biomass.  A fresh sample was taken to a laboratory (Servi-Tech Labs, Dodge City, 

KS) the day of harvest for nutrient analysis.  Samples at the lab were dried and then ground.  

Crude protein content was taken using methodology found in AOAC (2012).  Acid detergent 

fiber was evaluated according to Ankom (2006).  Neutral detergent fiber was evaluated 

according to Ankom (2006). Nitrate content was taken using methods described by Cataldo et al. 

(1975).  Prussic acid was taken using methods described by Gillingham et al. (1969). 

 Soil Water 

Soil water was determined using a neutron probe (Model 503DR Hydroprobe Moisture 

Depth Gauge, Campbell Pacific Nuclear, CA.).  The probe was field calibrated as described by 

Evett and Steiner (1995).  Calibration was initiated with gravimetric water content that was 

determined from soil samples centered at 30 cm increments to 244 cm.  Gravimetric water 

content was determined from soil cores (15.24 cm long and 2.84 cm in diameter) obtained with a 

hydraulic probe.  Bulk density cores (15.24 cm long and 2.84 cm in diameter) were also obtained 

using a hydraulic probe.  Bulk density data are found in Appendix B-6.  To calculate volumetric 

water content from the neutron probe counts, gravimetric water content from samples was 

multiplied by dry bulk density for a specific sampling depth.  Cores used for gravimetric 

measurements were also used for bulk density measurements.  Neutron probe counts were taken 

from each depth so that each volumetric value had a corresponding neutron probe count.  Output 

counts were then divided by a standard count to get count ratio.  A linear regression using PROC 

GLM of SAS (version 9.1, SAS Institute Inc., Cary, N.C.) was developed for count ratio as the 

independent (X) variable and soil water content as the dependent variable (Y).  The developed 

equation was: 
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    Equation 4:  Y=  3.3028x-0.9923 

 

with a sample size of (n) = 48 and coefficient of simple determination (r
2
) = 0.783.  The equation 

was developed for inches per foot and soil water values were then converted to mm per 30.5 cm.  

Neutron probe readings were taken at each biomass harvest date.  To attain a sampling depth of 

244 cm, neutron access tubes were installed in the center of each plot and inserted to a depth of 

300 cm so that there was no opportunity for the neutron probe to come in contact with soil in the 

bottom of the access tube. 

 

 Unavailable water contents at 1.5-MPa matric potential were performed to methods 

similar to that described by Klute (1986).  A 15-bar porous ceramic plate SEC (Soilmoisture 

Equipment Corp.; Santa Barbara, CA) was used in a 15 bar SEC extractor for measurements at 

1.5 MPa.  Air dry soil was ground by mortar and pestle and packed into plastic rings (1 cm tall 

and 5 cm in diameter) so that the material was level with the top of the ring.  Bulk density was 

not controlled when filling the rings.  Rings filled with soil were then placed on the ceramic 

plate.  Soil inside the rings were then saturated by immersing the plate in a 5mM CaSO4 solution 

for 24 hours.  This solution helps in minimizing dispersion of clays in the soil.  Samples were 

removed from the extractor after a 7 day equilibration time.  Samples were immediately removed 

from the plates, weighed, dried for 24 hours at 105
o
C and then re-weighed to determine 

gravimetric water content.  Means from multiple runs per sampling depth were used as 

unavailable soil water values for a specific depth.  From these values the profile was shown to 

have 361 mm of unavailable water in a 244 cm soil profile.  Stone et al. (2011) found 388 mm of 

unavailable water on a Keith silt loam soil in the same region.  Water use or evaportranspiration 
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(ET) was calculated by summing irrigation, rainfall and change in soil water content from the 

first sample date to the last sample date minus drainage.  Available profile water content was 

calculated as summing soil water contents at each depth minus unavailable soil water.  Drainage 

was then subtracted from that total.    

 

 Drainage was calculated using a Wilcox-type drainage equation developed from Stone et 

al. (2011).  The drainage equation was used to evaluate drainage at the 244 cm depth.  Drainage 

was found in 2011 in irrigated plots.  The range for total season drainage for irrigated corn plots 

was 87 mm to 101 mm and 52 mm to 83 mm for forage sorghum plots.   

 Water use efficiency of biomass (WUEb) was calculated as above ground biomass (kg ha
-

1
) divided by seasonal water use (mm).  Water use efficiency of corn grains (WUEg) was 

calculated as dry corn grain (kg ha
-1

) divided by seasonal water use (mm). 

 

 Light interception 

Light interception data were collected with a LAI-2000 (LI-COR, Inc., Lincoln, NE) 

which recorded measurements from a 1 m line quantum sensor (Model LI-191SB, LI-COR, Inc., 

Lincoln, NE).  Photosynthetically active radiation (PAR) was measured by placing the sensor 

perpendicular to the row, centered on the row, at the soil surface under the plant canopy.  A 

measurement of incident PAR was taken immediately outside of the canopy.  An inside the 

canopy and outside the canopy measurement was taken for each plot.  Intercepted 

photosynthetically active radiation (IPAR) could then be calculated by dividing the below 

canopy measurement by the outside of the canopy measurement.  Growing degree days were 
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calculated using 30
o
C as maximum daily high temperature for corn and 37.7

o
C for forage 

sorghum. 

Data analysis was done in using PROC MEANS in SAS (version 9.1, SAS Institute Inc., 

Cary, NC).  Means and standard errors were computed for all samples taken for each treatment 

PROC GLM in SAS (version 9.1, SAS Institute Inc., Cary, NC) was used for linear regression. 
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 Results  

 Weather 

 Long term precipitation and reference ET. 

The weather data for the Hoxie location are presented in Table 3-2.  In 2012, there was 

less precipitation than in 2011 and 2013, while 2011 had the most precipitation of the 3 years.  

The 3 study years were lower than the long term average.  The reference evapotranspiration (ET) 

is presented in Table 3-2 as a mean daily value during each month.  The reference ET demand 

was higher in the growing season during 2012 than 2011 and 2013.  Long term weather data 

were extracted from the High Plains Regional Climate Centers web site (HPRCC).  The daily ET 

values used for mean calculation were extracted from the Kansas State University, Research and 

Extension Weather Data Library (KSUREWDL). 

 

 Average daily temperature 

 Average daily temperatures are presented in Figure 3-1.  The year 2011 saw cooler 

growing season temperatures than 2012 and 2013.  The warmest temperatures appeared to be in 

2012.  Maximum and minimum temperatures for the growing season are presented in Appendix 

B-1, B-2 and B-3. 

 

 Growing degree days 2011 

The GDD for 2011 are presented in Figure 3-2.  The corn accumulated GDD faster in the 

growing season due to an earlier planting date.  Forage sorghum was able to quickly accumulate 

GDD due to a higher maximum GDD equation growth temperature and ended the season with 
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close to the same amount of GDD as corn.  The corn initiated silking in early July and reached 

physiological maturity in early September. 

  

 Growing degree days 2012 

The GDD for 2012 are presented in Figure 3-3.  The corn accumulated GDD faster in the 

growing season due to an earlier planting date.  Forage sorghum was able to quickly accumulate 

GDD due to a higher maximum GDD equation growth temperature and ended the season with 

the same amount of GDD as corn.  The corn in 2012 was initiating silking at a time of heat stress 

as shown in Figure 3-1 and Appendix 1.  The corn reached physiological maturity in early 

September. 

 

 Growing degree days 2013 

The GDD for 2013 are presented in Figure 3-4.  The corn accumulated GDD faster in the 

growing season due to an earlier planting date.  The corn initiated silking in early July and 

reached physiological maturity in early September.   

 

 Irrigation amounts 

Irrigation amounts by month for 2011, 2012 and 2013 are presented in Table 3-3.  

Measured irrigation amounts are similar through the three study years.  July of 2012, saw the 

most irrigation with 163 cm while October of 2011 saw the least with 33 cm.   

 

 Biomass 

End of season biomass for irrigated forage sorghum, irrigated corn, dryland forage 

sorghum and dryland corn is presented in Table 3-4.  Irrigated forage sorghum produced higher 
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biomass than irrigated corn for the years of the study with corn and forage sorghum being similar 

in 2013.  The largest numerical difference occurred in 2012, where irrigated forage sorghum 

yielded 12 Mg ha
-1

 more than irrigated corn. Also in 2012, there was the largest difference 

between dryland forage sorghum and dryland corn.  The dryland forage sorghum yielded 6 Mg 

ha
-1

 more than dryland corn.  This can be attributed to high temperatures as well as reduced 

rainfall during the 2012 growing season.  Since the forage sorghum was photoperiod sensitive it 

did not go through a stressful reproductive period like corn went through.  The forage sorghum 

was able to remain in a vegetative stage and endure the stressful period better than the corn, 

which is driven by heat units, therefore maturing faster in warmer temperatures.  Dryland corn 

yields were also low in 2013.   

 

Corn grain yield and corn harvest index are presented on Table 3-5.  Irrigated corn grain 

yield was highest in 2011.  In 2011, there was adequate rainfall and temperatures that were not 

stressful to plant performance.  Irrigated corn saw its lowest yields in 2012 which experienced 

heat stress as well as drought stress during reproductive phases of plant development.  Dryland 

corn yields followed a similar trend with the highest yields in 2011 and lowest in 2012.  Harvest 

indices were higher than other reported harvest indices.  This was due to harvesting the corn well 

beyond physiological maturity where it has been exposed to natural desiccation and weathering.  

 

Biomass accumulation for irrigated corn, irrigated forage sorghum, dryland corn and 

dryland forage sorghum in 2011 is presented in Figure 3-5.  In 2011, irrigated corn had the most 

rapid biomass accumulation due to early planting date and early accumulation of GDD but 

yielded slightly less than forage sorghum at the end of the year.  Irrigated forage sorghum had a 
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constant increase in biomass over the season.  Dryland forage sorghum also steadily increased in 

biomass over the season but at a slower rate.   

 

 

Biomass accumulation for irrigated corn, irrigated forage sorghum, dryland corn and 

dryland forage sorghum in 2012 is presented in Figure 3-6.  Irrigated corn and dryland corn 

followed the same trend with an increase in biomass accumulation until early August and then 

saw a reduced yield in the middle of September.  This can be attributed to high temperatures and 

low precipitation.  The irrigated forage sorghum increased biomass accumulation through the 

growing season along with dryland forage sorghum.   

 

Biomass accumulation for irrigated corn, irrigated forage sorghum, dryland corn and 

dryland forage sorghum in 2013 is presented in Figure 3-7.  Irrigated corn and irrigated forage 

sorghum both followed a similar trend in biomass accumulation in 2013.  In 2013, the growing 

season experienced higher precipitation amounts than 2012 as well as lower average 

temperatures after corn initiated silking. 

 

 

  Soil water and water use efficiency 

 

Available soil water by depth for irrigated forage sorghum, irrigated corn, dryland forage 

sorghum and dryland corn for 2011 is presented in Table 3-6.  The means of the available soil 

water show that as the season progressed the irrigated forage sorghum and irrigated corn was 

able to maintain more volumetric water at deeper depths than dryland forage sorghum and 

dryland corn.  The dryland forage sorghum and the dryland corn both saw a reduction in soil 

available water noticeably in the top six depths from 4 August to 4 September.  During this 
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period dryland corn and dryland forage sorghum were experiencing growth as seen in Figure 3-5 

and were only getting benefit of rainfall versus the irrigated treatments which received rainfall 

and irrigation. 

 

Available soil water by depth for irrigated forage sorghum, irrigated corn, dryland forage 

sorghum and dryland corn for 2012 is presented in Table 3-7.  The dryland sorghum and dryland 

corn treatments both saw reduction in available soil water content through the top seven depths 

between 14 July and 18 September.  That period was under heat stress as well as during a phase 

of growth.  The irrigated sorghum and irrigated corn also saw a reduction in available soil water 

during this period though it did not get as dry as the dryland plots. 

 

Available soil water by depth for irrigated forage sorghum, irrigated corn, dryland forage 

sorghum and dryland corn for 2013 is presented in Table 3-8.  The available water in the profile 

in the early part of the growing season is less than it was in the previous year following a warm 

year and less than average precipitation.   

 

 Available soil water across dates in the 244 cm profile by date is presented in Table 3-9. 

In 2011, irrigated forage sorghum and dryland sorghum tended to have less water in the profile 

than their corn counterparts.  This was due to forage sorghum still growing and corn having 

reached physiological maturity and dried down.  Dryland forage sorghum had a noticeable 

reduction in available soil water from the first sampling period to the last, due to only being able 

to replenish the available soil water with rainfall versus having added irrigation.  Dryland corn 

had a noticeable difference between the 4 August and 4 September sample dates.  
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 Available soil water in the 244 cm profile by date from 2012 is presented in Table 3-10.  

In 2012, all plots saw dramatic decreases in soil water across the growing season.  This can be 

attributed to heat stress and drought stress during the growing season.  Irrigated forage sorghum 

saw the largest decrease with a 216 mm decrease in available water from the first sampling date 

to harvest.  Dryland corn saw the least decrease in available water from the first sampling period 

to harvest with 125 mm.  

 

 Available soil water in the 244 profile by date from 2013 is presented in Table 3-11.  In 

2013, all treatments saw a reduction in available profile water on 23 July.  This can be attributed 

to growth of the forage sorghum and the initiation of silking in the corn.  Available soil water 

increased for the next two sampling dates except the irrigated forage sorghum which showed a 

decrease on the last sampling date, this could be linked with growth. 

 

End of season water use is presented on Table 3-12.  In 2011, irrigated forage sorghum 

water use was very similar to irrigated corn water use.  Also that year, dryland corn water use 

was less than dryland forage sorghum water use.  In 2012, irrigated forage sorghum used more 

water than irrigated corn.  Dryland forage sorghum again used more water than dryland corn.  

Similar to 2012, in 2013 irrigated forage sorghum had higher water use than irrigated corn.  

Again in 2013, dryland forage sorghum had higher water use than dryland corn.  Dryland corn 

water use was low in 2013 and could be attributed to poor plot conditions. 

 

End of season biomass water use efficiency is presented in Table 3-13.  Irrigated forage 

sorghum was very consistent in biomass water use efficiency for all 3 years.  Irrigated corn water 

use efficiency was lower than irrigated sorghum in 2012 but higher in 2013.  This was likely due 
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to the drought and heat stress conditions in 2012 and a less stressful growing season in 2013.  

Dryland forage sorghum exhibited the highest biomass water use efficiency in 2013 for any 

treatment of any year.  Dryland corn water use efficiency for 2013 was also very high.   

 

Corn grain water use efficiency is presented in Table 3-14.  Corn grain water use 

efficiency followed the same trend as the corn biomass.  In 2012, there were noticeably lower 

corn grain yields due to heat and drought stress during reproductive phases.  In 2013, the dryland 

corn had lower yields than expected for less stressful growing conditions than were in 2012.   

  

Hoxie biomass versus water use for 2011, 2012 and 2013 are presented in Figure 3-8.   A 

linear regression was developed for this data.  A liner regression equation was developed by 

using PROC GLM of SAS (version 9.1, SAS Institute Inc., Cary, N.C.) with water use 

(millimeters) the independent (X) variable and the biomass (kilograms per hectare) the 

dependent variable (Y).  The biomass versus water use biomass equation for forage sorghum is: 

 

Equation 5  Y= 0.37+0.026X 

 

where sample size (n)=24, and coefficient of simple determination (r
2
) = 0.874.  The same 

equation was developed for corn and it is given as follows: 

 

Equation 6  Y=0.58+0.019X 

 

where sample size (n)=24, and coefficient of simple determination (r
2
) = 0.551.  The forage 

sorghum biomass accumulation slope shows a greater increase per unit of water than corn. 
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 Light interception 

Light interception values for Hoxie, Kansas 2011, are presented in Table 3-15.  In 2011, 

corn captured more PAR earlier in the season than forage sorghum for both irrigated and dryland 

treatments due to earlier planting date.  On 4 August, forage sorghum had captured a similar 

amount of PAR as corn for all treatments.  At harvest, corn had reduced its captured amount of 

PAR while forage sorghum was still capturing 80% or more in both irrigated and dryland 

treatments. 

 

Light interception values for Hoxie, Kansas, 2012, are presented on Table 3-16.  In 2012, 

irrigated and dryland corn captured more PAR earlier in the season than irrigated and dryland 

forage sorghum.  Forage sorghum exceeded corn in the amount of PAR that it was capturing on 

the 14 July sampling date.  Forage sorghum continued this trend until the end of the season. 

 

Light interception values for Hoxie, Kansas 2013, are presented in Table 3-17.  In 2013, 

Irrigated corn captured more PAR than irrigated forage sorghum on the 28 June and 9 July 

sampling dates.  Irrigated forage sorghum continued to capture more PAR than corn for the rest 

of the season.  PAR values for irrigated corn and irrigated forage sorghum were most similar on 

the 23 August sampling date.  Dryland corn saw a decrease in intercepted photosynthetically 

active radiation (IPAR) from 28 June to 9 July.  This could be due to sampling error. Dryland 

corn increased IPAR until 23 August then it decreased to the 20 September sampling date.  

Dryland forage sorghum continued to capture over 0.90 of PAR on 23 August and 20 September. 
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 Nutritional values 

Nutritional values for Hoxie, 2012, are presented in Table 3-18.  The crude protein 

content of the irrigated treatments were numerically different in irrigated forage sorghum and 

dryland forage sorghum.  Dryland forage sorghum had lower ADF values than irrigated forage 

sorghum.  The NDF values of irrigated forage sorghum were higher than dryland forage sorghum 

values.  Irrigated forage sorghum had higher levels of prussic acid than dryland forage sorghum.  

Dryland forage sorghum had higher concentration of nitrates than irrigated forage sorghum.  

Irrigated corn had lower levels of crude protein than dryland corn.  Irrigated corn had higher 

levels of ADF than dryland corn.  Irrigated corn had higher levels of NDF than dryland corn. 

Prussic acid was very low for both dryland corn and irrigated corn.  Irrigated corn had the 

highest level of nitrate with 3385 mg kg
-1

.   

  

Nutritional values for Hoxie, 2013, are presented in Table 3-19.  Irrigated forage sorghum 

and slightly lower levels of crude protein than dryland forage sorghum.  Irrigated forage 

sorghum had higher ADF and NDF than dryland forage sorghum.  Irrigated forage sorghum had 

lower levels of prussic acid and nitrate than dryland forage sorghum.  Irrigated corn had slightly 

less crude protein than dryland corn.  Irrigated corn had higher ADF and NDF values than 

dryland corn.  Irrigated corn had more nitrate than dryland corn. 



99 

 

 Discussion 

 Biomass 

Biomass production was one of the primary objectives of the research.  Corn biomass 

accumulation started earlier in the spring due to an earlier planting date than forage sorghum.  In 

2011 and 2013, irrigated forage sorghum biomass accumulation did not meet irrigated forage 

sorghum biomass accumulation until close to 1 October.  In contrast forage sorghum exceeded 

irrigated corn growth in early August in 2012.  This difference was due to the stressful growing 

conditions in 2012, where rainfall was below average and initiation of silking was in a period of 

high temperatures.  Other researchers have found high temperatures at vegetation can reduce 

yields by 25%, high temperature stress at silking can decrease yields as high as 50% and high 

temperature after stress can reduce yields by 21% (Denmead and Shaw, 1960).  Irrigated 

sorghum yielding higher than dryland sorghum is expected and observed by other researchers 

(Weichenthal et al., 2003; McCuistion et al., 2009).  Dryland corn yields in Hoxie also suffered 

from stressful conditions.  Irrigated forage sorghum had its highest yield in 2012.  This agreed 

with results found by Bean et al. (2013), that showed a similar yield for forage sorghum in a 

below average year but contrasts with Yohannas (2015) who found the highest yielding year of a 

three year study to be the one with the most rainfall.  Other researchers have found photoperiod 

sensitive sorghum to yield well under full irrigation and under dryland conditions (Hao et al., 

2014).  Dryland corn yields were highest in 2011 due to good growing conditions and lowest in 

2012 when growing conditions were stressful.  The dryland corn yields were also low in 2013 

when growing conditions were not stressful and that is due to pre-existing poor plot conditions 

that existed without researcher knowledge.  Dryland corn grain yields followed the same trend 

with 2011 being the highest yielding year and 2012 being the lowest yielding year.  The irrigated 
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corn grain yield mean was in agreement with a 10 year mean of fully irrigated corn reported by 

Schlegel and Havlin (1995).  Harvest index numbers were higher than reported by others (Olsen, 

1971).  The harvest index numbers were high due to a longer period of time between 

physiological maturity and harvest.  The plants were exposed to natural degradation and 

weathering which caused a loss of vegetative material. 

 

 Water use and water use efficiency (WUE) of biomass and grain production. 

Growing season water use ranged from 675 mm to 207 mm for forage sorghum and 666 

mm to 134 mm in corn.  Dryland forage sorghum was able to achieve similar biomass yields 

with varying levels of water use which was also found by other researchers (Tolk and Howell, 

2003).  The dryland sorghum was able to grow consistent yields, within 1.2 Mg ha
-1

 across a 

range of water use from 365 mm to 207 mm.  Water use was highest for irrigated forage 

sorghum in 2012 which had a stressful growing season but the irrigated forage sorghum was able 

to grow the largest biomass yield for the 3 year study, which shows that irrigated forage sorghum 

was able to maintain the same WUEb in a stressful year as it did in  2011 and 2013.  Sorghum 

WUEb ranged from 23.15 kg ha
-1

 mm
-1

 to 36.46 kg ha
-1

 mm
-1

.  These ranges are slightly lower 

than those found by Hao et al. (2014).  Corn WUEb and WUEg were in agreement with previous 

work (Hattendorf, 1988).  Irrigated corn in 2013 had the highest level of WUEb and WUEg of 

corn which can be related to less stressful growing conditions than 2012.  Tolk and Howell 

(2003) found that generally corn shows high WUE and lower water use in mild weather 

conditions which is what was observed here.  Dryland corn yields were affected by the poor 

growing conditions in 2012 and poor plot conditions in 2013.  In 2011, the dryland corn WUEg 

was higher than any other year but also had the most error in sampling.  The biomass versus 
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water use data (Figure 3-8) shows a greater increase in biomass per unit of water for forage 

sorghum than corn.  According to the equation, forage sorghum can produce 2.6 Mg ha
-1

 with 

each additional 100 mm of water use which is slightly higher than corn which shows an increase 

of 1.9 Mg ha
-1

 for each additional 100 mm of water use.  The r
2
 value for corn is quite low 

compared to sorghum and can be explained by poor yields in the stressful year of 2012 causing 

variation in the yields.  Other researchers in Texas have found an even larger increase in biomass 

production per each additional 100 mm of water for a photoperiod sensitive sorghum at 4.4 Mg 

ha
-1

 (McCuistion et al., 2009). 

 

 Soil water 

In 2011, the available soil water by depth data and the available soil water for the 244 cm 

profile for the irrigated treatment tend to show little change from 4 July to 16 October.  This is 

possible by 384 mm of precipitation from April to October as well as mild temperatures.  The 

dryland treatments available soil water by depth data coincided nicely with the total available 

soil profile water data and showed a decrease across time for dryland forage sorghum.  Dryland 

corn however showed an addition to the soil profile water at 16 October which could be due to 

precipitation that is not being used because of senescence.   

In 2012, the irrigated treatments showed drying at all depths on 18 September.  The total 

available profile also showed that the profile was much dryer on 18 September than any other 

date.  This was due to a stressful growing conditions, irrigation and rain water not being able to 

replenish the profile fast enough.  The dryland treatments also showed a reduction in available 

profile water from 11 June to 18 September.   
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In 2013, similar to 2011 and 2012, there were numerical differences between available 

soil water contents by depth, treatment and across sampling dates.  Available profile soil water 

was much lower in the irrigated treatments than any other year.  This could be due to conditions 

prior to 2013.  The dryland treatments had more profile available water which could be due to 

the dryland plot area being previously irrigated in 2012.  Dryland forage sorghum does show a 

decrease in profile available water across all sampling dates.  Irrigated forage sorghum, irrigated 

corn and dryland corn all show intermittent increases in profile available water from rainfall and 

irrigation events.  For dryland forage sorghum, a steady decrease in profile available water 

through the season does suggest growth and helps to illustrate its WUEb which in 2013 was 

higher than any other treatment at 36 kg ha
-1

 mm
-1

. 

 

 Light interception 

Light interception for 2011, 2012 and 2013 all show a trend for differences.  In all years 

corn intercepted more light faster than sorghum in both irrigated and dryland treatments.  This 

increase in light interception was also seen in the early season growth in Figure 3-15, 3-16 and 3-

17.  In all years, corn also decreased its interception of PAR at the end of the season due to the 

physiological maturation of the corn while the sorghum was still growing.  Forage sorghum 

growing after the corn had reached physiological maturity can be seen by the biomass 

accumulation data as well as the high amount of IPAR on the last sampling date of all years.  The 

data tends to agree with Muchow et al. (1990) who found that under favorable growing 

conditions, biomass accumulation is directly proportional to the amount of radiation intercepted. 
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 Nutritional values 

Nutritional values were collected at the end of the season to get an idea of the nutritional 

quality of the plant material.  Crude protein was evaluated because it is a common parameter in 

animal feed.  Crude protein of the corn stover and forage sorghum was tested to determine what 

the differences were in just the vegetative material.  Because of logistics, we were not able to 

take digestibility data on the samples, therefore comparisons will be made within species only 

for all nutritional values.  In 2012, crude protein contents were higher for dryland forage 

sorghum than irrigated forage sorghum.  Dryland forage sorghum crude protein values were also 

higher in 2013 than irrigated forage sorghum.  Dryland forage sorghum crude protein was higher 

than irrigated forage sorghum in 2012 and 2013.  McCusition et al. (2010) found that crude 

protein content in photoperiod sensitive sorghums tend to decrease with yield which was in 

agreement with the results  Dryland corn stover crude protein was also higher in 2012 and 2013 

than irrigated corn stover.  Corn stover crude protein values tend to agree with Lauer et al. 

(2000) and McCuistion et al. (2010). 

 

Acid detergent fiber (ADF) is a component of NDF which represents fiber in the plant, 

and ADF is composed of cellulose and lignin which have been shown to limit digestion (NRC 

2001).  Irrigated forage sorghum had a higher ADF value than dryland forage sorghum in both 

years of the study.  Forage sorghum ADF values were in agreement with Cummins 

(1981).Irrigated corn followed a similar trend with higher ADF values in 2012 and 2013 than 

dryland corn.  Corn ADF values agreed with Crasta et al. (1997). 
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Neutral detergent fiber (NDF) was evaluated to determine the amount of hemicellulose 

and other neutral detergent solubles in the plant.  In 2011 and 2012 irrigated forage sorghum had 

a lower NDF values than dryland forage sorghum.  The NDF values for forage sorghum were 

similar to those found by McCuistion et al. (2010).  Irrigated corn stover also had higher NDF 

values than dryland corn in both years of the study.  Irrigated corn stover NDF values were 

higher in 2012 which was hot and dry and agrees with a similar trend found by Cox et al. (1994) 

 

Prussic acid which is also known as hydrocyanic acid, was evaluated to determine if toxic 

levels of the compound existed.  In both study years, forage sorghum contained more prussic 

acid than corn in both treatments.  Forage sorghum has been shown to release prussic acid in 

stressful environments (Wheeler et al., 1990).  Prussic acid concentration was highest in 2012 

which was due to stressful conditions and levels reported could be toxic for some animals 

(Egekeze and Oehme, 1980). 

 

Nitrate content was evaluated to determine if toxic levels existed in the plant material.  

Numerical differences existed amongst all treatments.  High nitrate content in plants have been 

found to be toxic and fatal to livestock (Harms and Tucker, 1973).  Nitrate levels in irrigated 

corn in 2012 and 2013 were higher than levels in dryland corn.  Irrigated forage sorghum had 

lower levels of nitrate in both years of the study than dryland forage sorghum.  This could be due 

to excess fertility and stress as suggested by Harms and Tucker (1973). 

 

Due to the nature of the research, corn was not able to be sampled on a representative 

date that it would be taken for corn silage.  The corn samples taken represent a stover harvest.  
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Samples taken to represent silage must also undergo an ensiling process to get a correct 

representation of the nutrients.  The difference in nutritive values will change based on harvest 

date.  Corn has an earlier maturity date than the photoperiod sensitive forage sorghum.  Harvest 

date must be taken into consideration when evaluating nutritional values. 
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 Conclusion 

The forage sorghum overall tended to yield more biomass than corn.  Dryland forage 

sorghum also used more water than dryland corn.  Irrigated forage sorghum used the same or 

more water than irrigated corn.  Though the irrigated forage sorghum and the dryland forage 

sorghum used more water, they also grew more biomass which increased their water use 

efficiency.  Water use efficiency was higher for forage sorghum when compared with corn in all 

years except in 2013 when irrigated corn proved to be more water use efficient than irrigated 

forage sorghum.  One of the ways forage sorghum was able to be water use efficient was never 

undergoing reproductive stress during the growing season and the forage sorghum also grew 

better in warmer temperatures as shown by the increase in maximum daily growing temperature 

of 38 
o
C for sorghum and 30 

o
C for corn for growing degree days.  This is clear in 2012 when 

conditions are stressful.  Forage sorghum was able to yield well in above average temperatures.  

The forage sorghum was also able to take advantage of late season rainfall and irrigation that 

happened after the corn plant had progressed through grain fill and was drying down Figure 3-8 

illustrates forage sorghum ability to yield well and respond to water input.  The corn data are not 

as strong, as sampling error and weather play a major role.  This was also evident in the fraction 

of PAR, as forage sorghum continued to capture 90% of the incoming solar radiation late in the 

growing season.  The dryland corn in 2013 was artificially low because of poor plot conditions 

that could not be avoided.  The feed analysis data showed numerical differences of the two crops 

but in the case of using data for researching forage sorghum and corn, this data is acceptable 

values for the consideration of feeding to bovine.  To get a true value for what the plant material 

is worth as a feedstuff, feeding trials need to be established to understand the digestibility of the 

material and how it reacts within the rumen before statements can be made on animal 
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performance.  Producers must have a clear understanding of their production goals and evaluate 

their needs for fiber or grain.  Producers also must be able to understand the risks involved in the 

production of such crops. 

  



108 

 Future Research 

With increasing pressure on providing food and fiber for a growing population there 

always will be a need for more research.  With the decrease in well levels in the Ogallala Aquifer 

we must always be conscious about the management decisions we make and how it affects 

production today and production for the next generation.  Irrigation scheduling and irrigation 

methodology plays a significant role in how these crops are grown.  Time and money should be 

invested on how to better grow crops with less water input.  Forage sorghum with its high water 

use efficiency should be further studied to find out at what irrigation/management practices 

optimize production at specific locations.  Variable rate irrigation is a technology that is not well 

understood and could help provide some answers in areas with low well capacity and need for 

cattle or biofuels feedstocks.  Management decisions such as plant nutrition, planting 

architectures and weed pressure issues also may give insight on cropping system optimization. 

An evaluation of the sorghum genetic pool would also give us insight on where to turn to next.  

The end process users such as ruminant nutritionist and biofuels producers should also be 

considered.  A replicated live bovine feeding trial with genotypes and irrigation regimes as 

treatment may be a quick step in the right direction.  Our management practices may influence 

the end users saleable products and their needs met to keep all parties moving in the same 

direction.  Harvest technologies are also needed to better prepare the plant material for the end 

user.  Mechanical harvesting processes and chemical inoculation are also areas where very little 

is known how it fits into the big picture.  The possibilities can be endless but the goal should be 

to reduce unnecessary pumping and increase crop water use efficiency to make the aquifer more 

sustainable for future production.  
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Table 3-1.  Biomass harvest dates for Hoxie, Kansas. 

2011 2012 2013 

4 July 11 June 28 June 

16 July 24 June 9 July 

4 August 14 July 23 July 

4 August 28 July 23 August 

16 October 18 September 20 September 
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Table 3-2.  Long-term (100 yr) temperature and rainfall means by month, mean daily 

reference ET by month and rainfall by month, Hoxie, Kansas 2011, 2012 and 2013. 

 

 100-yr mean  Reference ET  Rainfall 

 Max Min Rain  2011 2012 2013  2011 2012 2013 

 --oC-- mm  --mm d-1--  --mm-- 

Apr 19.3 3.0 50.2  4.8 4.5 4.3  37.8 62.2 6.6 

May 24.4 8.9 80.0  6.0 6.8 6.1  46.4 11.1 36.3 

Jun 30.0 14.5 77.4  8.0 9.3 8.2  38.8 6.8 48.1 

Jul 33.6 17.7 77.9  7.8 8.6 7.1  119.8 60.4 60.6 

Aug 32.5 16.8 66.8  6.5 6.9 5.6  67.6 25.0 84.0 

Sep 27.7 11.4 41.4  4.7 5.3 5.5  7.6 16.5 96.5 

Oct 21.2 4.5 35.3  4.0 3.5 3.5  66.3 16.0 20.3 

Total   429.0      384.3 198.0 352.4 
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Figure 3-1.  Average daily temperatures, Hoxie, Kansas 2011, 2012 and 2013. 
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Figure 3-2.  Cumulative growing degree days (GDD) for corn and forage sorghum, Hoxie, 

Kansas 2011. 
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Figure 3-3.  Cumulative growing degree days (GDD) for corn and forage sorghum, Hoxie, 

Kansas 2012. 

  



114 

Date

May  Jun  Jul  Aug  Sep  Oct  

G
D

D

0

500

1000

1500

2000

2500

3000

3500

2013 Corn GDD

2013 Forage Sorghum GDD

Corn Physiological Maturity 2500 GDD

Corn Silking 1250 GDD

 

Figure 3-4  Cumulative growing degree days (GDD) for corn and forage sorghum, Hoxie, 

Kansas 2013. 
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Table 3-3.  Irrigation amounts by month Hoxie, Kansas 2011, 2012 and 2013. 

 

 2011  2012  2013 

   mm   

Jun -  36  - 

Jul 134  163  101 

Aug 69  130  134 

Sep 132  33  129 

Oct 33  -  - 

Total 368  362  364 
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Table 3-4.  End of season biomass for irrigated forage sorghum, irrigated corn, dryland 

forage sorghum and dryland corn, Hoxie, Kansas 2011, 2012 and 2013. 

 

Year 

 Irrigated 

forage 

sorghum 

SE 
Irrigated 

corn 
SE  

Dryland 

forage 

sorghum 

SE 
Dryland 

corn 
SE 

 Mg ha-1
 

2011  18.08 0.61 15.50 0.42  8.27 0.40 6.03 0.34 

2012  19.00 0.33 6.640 0.54  6.86 0.52 2.59 0.22 

2013  14.73 0.54 14.65 0.23  7.58 1.14 3.84 0.23 
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Table 3-5.  Corn grain yield and corn harvest index Hoxie, Kansas 2011, 2012 and 2013. 

 

Year  

Irrigated 

corn 

grain yield 

Std 

err 

Dryland 

corn 

grain yield 

Std 

err 
 

Irrigated 

corn 

harvest 

index 

Std 

err 

Dryland 

corn 

harvest 

index 

Std 

err 

  kg ha
-1

   

2011  12917.42 237.45 5046.07 236.07  0.70 0.008 0.70 0.011 

2012  5096.46 391.04 1992.54 193.46  0.65 0.011 0.65 0.250 

2013  12133.10 284.24 2818.94 113.06  0.70 0.015 0.62 0.015 
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Figure 3-5.  Biomass accumulation over growing season, Hoxie, Kansas, 2011. 
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Figure 3-6.  Biomass accumulation over growing season, Hoxie, Kansas 2012. 
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Figure 3-7.  Biomass accumulation over growing season, Hoxie, Kansas 2013. 
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Table 3-6.  Available water content Hoxie, Kansas 2011. 

 

Date Depth 

Irrigated 

forage 

sorghum 

SE  
Irrigated 

corn 
SE  

Dryland 

forage 

sorghum 

SE  
Dryland 

corn 
SE 

 

 cm Available water content cm3 cm-3
 

4/7/2011 30 0.223 0.0079  0.230 0.0093  0.219 0.0106  0.105 0.0086  

 61 0.220 0.0133  0.249 0.0038  0.240 0.0130  0.233 0.0049  

 91 0.176 0.0046  0.207 0.0108  0.202 0.0061  0.199 0.0259  

 122 0.141 0.0245  0.174 0.0123  0.088 0.0311  0.115 0.0394  

 152 0.118 0.0231  0.144 0.0151  0.031 0.014  0.068 0.0337  

 183 0.092 0.0238  0.117 0.0164  0.117 0.0164  0.028 0.0124  

 213 0.083 0.0211  0.089 0.0103  0.017 0.0043  0.026 0.0076  

 244 0.100 0.0151  0.084 0.0079  0.034 0.0056  0.048 0.0060  

              

16/7/2011 30 0.241 0.0042  0.239 0.0040  0.217 0.0083  0.108 0.0045  

 61 0.228 0.0177  0.223 0.0116  0.250 0.0088  0.214 0.0042  

 91 0.209 0.0111  0.214 0.0061  0.207 0.0114  0.213 0.0182  

 122 0.181 0.0118  0.198 0.0066  0.112 0.0262  0.137 0.0299  

 152 0.152 0.0152  0.185 0.0099  0.053 0.0198  0.085 0.0325  

 183 0.112 0.0147  0.146 0.0017  0.024 0.0064  0.051 0.0148  

 213 0.090 0.0205  0.110 0.0114  0.034 0.0089  0.043 0.0031  

 244 0.096 0.0113  0.110 0.0222  0.042 0.0051  0.062 0.0055  

              

              

4/8/2011 30 0.222 0.0083  0.227 0.0138  0.213 0.0111  0.222 0.0152  

 61 0.210 0.0184  0.209 0.0033  0.189 0.0144  0.193 0.0130  

 91 0.183 0.0139  0.155 0.0112  0.163 0.0143  0.155 0.112  

 122 0.171 0.0146  0.190 0.0077  0.097 0.0221  0.118 0.0170  

 152 0.162 0.0202  0.181 0.0113  0.063 0.0225  0.085 0.0236  

 183 0.127 0.0066  0.177 0.0107  0.032 0.0149  0.063 0.0195  

 213 0.103 0.0183  0.136 0.0075  0.037 0.0125  0.054 0.0119  

 244 0.107 0.0180  0.114 0.0054  0.048 0.0118  0.064 0.0057  
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Table 3-6 Continued 

 
              

4/9/2011 30 0.227 0.0121  0.224 0.0011  0.095 0.0032  0.046 0.0142  

 61 0.215 0.0099  0.237 0.0078  0.143 0.0040  0.154 0.0078  

 91 0.187 0.0110  0.176 0.0148  0.102 0.0045  0.142 0.0125  

 122 0.168 0.01587  0.145 0.0118  0.040 0.0206  0.060 0.0052  

 152 0.133 0.0018  0.143 0.0098  0.015 0.0056  0.042 0.0064  

 183 0.116 0.0038  0.147 0.0103  0.002 0.0012  0.033 0.0100  

 213 0.129 0.0114     0.140 0.0146  0.008 0.0053  0.036 0.0076  

 244 0.132 0.0099  0.147 0.0102  0.030 0.0041  0.060 0.0065  

              

              

16/10/2011 30 0.215 0.0058  0.204 0.0043  0.237 0.0020  0.225 0.0109  

 61 0.196 0.0167  0.239 0.0070  0.181 0.0226  0.217 0.0079  

 91 0.161 0.0147  0.183 0.0116  0.107 0.0190  0.208 0.0085  

 122 0.134 0.0172  0.156 0.0107  0.037 0.0212  0.099 0.0235  

 152 0.123 0.0176  0.145 0.0114  0.029 0.0256  0.030 0.0052  

 183 0.112 0.0113  0.146 0.0142  0.020 0.0199  0.016 0.0071  

 213 0.099 0.0151  0.128 0.0148  0.014 0.0139  0.024 0.0047  

 244 0.111 0.0123  0.130 0.0081  0.018 0.0179  0.049 0.0039  
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Table 3-7.  Available soil water by depth Hoxie, Kansas 2012. 

 

Date Depth 

Irrigated 

forage 

sorghum 

SE  
Irrigated 

corn 
SE  

Dryland 

sorghum 
SE  

Dryland 

corn 
SE 

 cm Available water content cm3 cm-3
 

11/6/2012 30 0.210 0.0163  0.197 0.0147  0.180 0.0178  0.146 0.0228 

 61 0.187 0.0043  0.205 0.0138  0.229 0.0152  0.230 0.0158 

 91 0.137 0.0148  0.180 0.0290  0.229 0.0163  0.232 0.0104 

 122 0.131 0.0167  0.144 0.0249  0.118 0.0287  0.144 0.0106 

 152 0.121 0.0101  0.144 0.0221  0.066 0.0155  0.076 0.0103 

 183 0.108 0.0120  0.136 0.0154  0.069 0.0062  0.070 0.0155 

 213 0.107 0.0061  0.130 0.0060  0.063 0.0174  0.092 0.0182 

 244 0.109 0.0071  0.123 0.0037  0.069 0.0198  0.093 0.0198 

             

24/6/2012 30 0.247 0.0133  0.241 0.0071  0.226 0.0032  0.132 0.0171 

 61 0.212 0.0137  0.211 0.0136  0.253 0.0052  0.208 0.0180 

 91 0.154 0.0168  0.176 0.0173  0.257 0.0068  0.221 0.0103 

 122 0.147 0.0185  0.188 0.0272  0.125 0.0302  0.149 0.0092 

 152 0.136 0.0129  0.151 0.0183  0.075 0.0189  0.082 0.0116 

 183 0.123 0.0115  0.148 0.0146  0.077 0.0076  0.072 0.0176 

 213 0.103 0.0028  0.122 0.0085  0.068 0.0199  0.091 0.0195 

 244 0.137 0.0241  0.145 0.0091  0.079 0.0209  0.088 0.0201 

             

             

14/7/2012 30 0.226 0.0122  0.243 0.0050  0.204 0.0131  0.163 0.0171 

 61 0.188 0.0077  0.206 0.0056  0.210 0.0168  0.173 0.0197 

 91 0.144 0.0161  0.152 0.0176  0.225 0.0104  0.176 0.0111 

 122 0.142 0.0182  0.159 0.0184  0.203 0.0178  0.127 0.0102 

 152 0.136 0.0142  0.151 0.0258  0.150 0.0193  0.082 0.0089 

 183 0.125 0.0172  0.141 0.0138  0.100 0.0060  0.069 0.0184 

 213 0.106 0.0025  0.144 0.0100  0.091 0.0111  0.109 0.0237 

 244 0.119 0.0061  0.142 0.0036  0.089 0.0150  0.100 0.0226 
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Table 3-7 Continued 

 
             

28/7/2012 30 0.174 0.0032  0.159 0.0090  0.061 0.0038  0.065 0.0124 

 61 0.117 0.0040  0.139 0.0132  0.129 0.0051  0.139 0.0156 

 91 0.076 0.0057  0.102 0.0207  0.129 0.0015  0.144 0.0102 

 122 0.096 0.0037  0.112 0.0105  0.116 0.0076  0.084 0.0124 

 152 0.100 0.0046  0.110 0.0110  0.107 0.0027  0.056 0.0098 

 183 0.099 0.0056  0.105 0.0078  0.089 0.0025  0.057 0.0179 

 213 0.091 0.0030     0.104 0.0039  0.091 0.0060  0.073 0.0149 

 244 0.111 0.0019  0.112 0.0079  0085 0.0181  0.077 0.0184 

             

             

18/9/2012 30 0.118 0.0223  0.150 0.0061  0.056 0.0011  0.103 0.00084 

 61 0.066 0.0094  0.092 0.0108  0.095 0.0026  0.139 0.0128 

 91 0.010 0.0070  0.043 0.0253  0.112 0.0117  0.126 0.0068 

 122 0.021 0.0080  0.059 0.0286  0.079 0.0249  0.057 0.0037 

 152 0.024 0.0115  0.081 0.0324  0.032 0.0078  0.042 0.0080 

 183 0.040 0.0229  0.079 0.0100  0.0 0.0  0.058 0.0048 

 213 0.041 0.0146  0.084 0.0042  0.0 0.0  0.067 0.0030 

 244 0.076 0.0109  0.092 0.0097  0.008 0.0073  0.078 0.0064 
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Table 3-8.  Available soil water by depth Hoxie, Kansas 2013. 

 

Date Depth 

Irrigated 

Forage 

sorghum 

SE  
Irrigated 

corn 
SE  

Dryland 

sorghum 
SE  

Dryland 

corn 
SE 

 

 cm Available water content cm3 cm-3
 

28/6/2013 30 0.163  0.0027  0.086 0.0058  0.149 0.0103  0.146 0.0228  

 61 0.162  0.0163  0.166 0.0232  0.192 0.0208  0.230 0.0158  

 91 0.050  0.0147  0.064 0.0193  0.148 0.0152  0.232 0.0104  

 122 0.013  0.0088  0.034 0.0131  0.091 0.0071  0.144 0.0106  

 152 0.009  0.0045  0.018 0.0014  0.079 0.0050  0.076 0.0103  

 183 0.010  0.0056  0.016 0.0054  0.061 0.0043  0.070 0.0155  

 213 0.027  0.0040  0.029 0.0078  0.075 0.0055  0.092 0.0182  

 244 0.059  0.0033  0.062 0.0069  0.111 0.0074  0.093 0.0198  

               

9/7/2013 30 0.159  0.0036  0.118 0.0135  0.100 0.0093  0.055 0.0032  

 61 0.209  0.0050  0.144 0.0126  0.187 0.0195  0.109 0.0198  

 91 0.068  0.0137  0.054 0.0118  0.146 0.0149  0.136 0.0027  

 122 0.019  0.0116  0.017 0.0044  0.095 0.0082  0.085 0.0248  

 152 0.010  0.0045  0.018 0.0041  0.082 0.0052  0.060 0.0179  

 183 0.012  0.0055  0.019 0.0053  0.064 0.0047  0.056 0.0109  

 213 0.027  0.0049  0.029 0.0084  0.077 0.0042  0.081 0.0056  

 244 0.059  0.0039  0.066 0.0071  0.107 0.0083  0.091 0.0042  

               

               

23/7/2013 30 0.126  0.0105  0.105 0.0189  0.047 0.0115  0.038 0.0053  

 61 0.179  0.0096  0.103 0.0091  0.120 0.0220  0.079 0.0110  

 91 0.066  0.0128  0.037 0.0069  0.147 0.0146  0.117 0.0281  

 122 0.017  0.0109  0.018 0.0035  0.099 0.0073  0.077 0.0277  

 152 0.012  0.0059  0.018 0.0047  0.084 0.0044  0.060 0.0173  

 183 0.017  0.0070  0.023 0.0041  0.066 0.0049  0.058 0.0081  

 213 0.033  0.0057  0.030 0.0075  0.076 0.0059  0.084 0.0042  

 244 0.064  0.0046  0.069 0.0058  0.112 0.0075  0.091 0.0034  
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Table 3.8 Continued 

 
               

23/8/2013 30 0.133  0.0102  0.149 0.0203  0.068 0.0115  0.067 0.0099  

 61 0.186  0.0048  0.162 0.0090  0.136 0.0247  0.134 0.0248  

 91 0.084  0.0010  0.049 0.0139  0.137 0.0136  0.120 0.0283  

 122 0.018  0.0141  0.014 0.0051  0.086 0.0069  0.070 0.0281  

 152 0.012  0.0039  0.015 0.0036  0.071 0.0028  0.055 0.0177  

 183 0.014  0.0051  0.022 0.0047  0.062 0.0043  0.053 0.0123  

 213 0.029  0.0064     0.029 0.0085  0.073 0.0050  0.077 0.0055  

 244 0.058  0.0041  0.063 0.0042  0.106 0.0071  0.084 0.0030  

               

               

20/9/2013 30 0.189  0.0023  0.230 0.0052  0.176 0.0028  0.214 0.0052  

 61 0.164  0.0065  0.185 0.0084  0.130 0.0279  0.140 0.0246  

 91 0.014  0.0079  0.036 0.0077  0.124 0.0092  0.109 0.0265  

 122 0.007  0.0042  0.015 0.0044  0.067 0.0043  0.056 0.0195  

 152 0.009  0.0036  0.018 0.0034  0.043 0.0064  0.041 0.0153  

 183 0.011  0.0040  0.023 0.0055  0.040 0.0050  0.048 0.0118  

 213 0.024  0.0054  0.031 0.0080  0.064 0.0076  0.077 0.0031  

 244 0.060  0.0055  0.066 0.0060  0.109 0.0064  0.091 0.0042  
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Table 3-9.  Available soil water in the 244 cm by date Hoxie, Kansas, 2011. 

  

 4/7/2011  16/7/2011  4/8/2011  4/9/2011  16/10/2011  

 

Available 

soil 

water  

SE 

Available 

soil 

water  

SE 

Available 

soil 

water  

SE 

Available 

soil 

water  

SE 

Available 

soil 

water  

SE 

 mm in 244 cm soil profile 

Irrigated 

forage 

sorghum 

348 28 383 12 370 15 373 3 344 23 

Irrigated corn 378 14 401 2 390 4 371 4 377 7 

           

Dryland forage 

sorghum 
256 19 285 12 256 25 133 9 195 40 

Dryland corn 250 33 277 27 289 31 174 18 264 13 
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Table 3-10. Available soil water in the 244 cm profile by date Hoxie, Kansas, 2012. 

 

 11/6/2012  24/6/2012  14/7/2012  28/7/2012  18/09/2012  

 

Available 

soil 

water  

SE 

Available 

soil 

water  

SE 

Available 

soil 

water  

SE 

Available 

soil 

water  

SE 

Available 

soil 

water  

SE 

 mm in 244 cm soil profile 

Irrigated 

forage 

sorghum 

337 21 373 18 355 18 263 7 121 20 

Irrigated corn 385 26 316 20 385 14 286 15 207 32 

           

Dryland forage 

sorghum 
311 18 339 17 379 8 246 8 116 9 

Dryland corn 329 19 316 20 303 24 212 20 204 13 
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Table 3-11.  Available soil water in the 244 cm profile by date Hoxie, Kansas, 2013. 

 

 28/6/2013  9/7/2013  23/7/2013  23/8/2013  20/09/2013  

 

Available 

soil 

water  

SE 

Available 

soil 

water  

SE 

Available 

soil 

water  

SE 

Available 

soil 

water  

SE 

Available 

soil 

water  

SE 

 mm in 244 cm soil profile 

Irrigated forage 

sorghum 
150 16 171 13 156 13 163 11 145 10 

Irrigated corn 144 13 142 17 123 16 153 15 184 10 

           

Dryland forage 

sorghum 
275 13 262 11 228 10 225 12 229 9 

Dryland corn 208 13 204 16 184 20 201 24 236 20 
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Table 3-12. End of growing season water use for Hoxie, Kansas. 

 

Year 

 Irrigated 

forage 

sorghum 

SE 
Irrigated 

corn 
SE  

Dryland 

forage 

sorghum 

SE 
Dryland 

corn 
SE 

 mm 

2011  663 34 666 15  365 32 289 40 

2012  675 22 598 22  295 10 234 14 

2013  532 15 487 16  207 8 134 12 

 

  



131 

Table 3-13.  End of season biomass water use efficiency (WUEb) Hoxie, Kansas 2011, 2012 

and 2013. 

 

Year 

 Irrigated 

forage 

sorghum 

SE 
Irrigated 

corn 
SE  

Dryland 

forage 

sorghum 

SE 
Dryland 

corn 
SE 

 kg ha-1 mm-1
 

2011  27.30 0.5218 23.29 0.5100  23.16 2.326 22.57 4.3670 

2012  27.96 2.750 11.15 1.077  23.15 1.444 11.33 1.624 

2013  27.82 1.700 30.14 1.051  36.46 5.390 29.20 2.892 
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Table 3-14.  Grain water use efficiency (WUEg) for irrigated corn and dryland corn, Hoxie, 

Kansas. 

 

Year 

Irrigated corn 

WUEg 

SE 

Dryland corn 

WUEg 

SE 

 kg ha
-1

 mm
-1

 

2011 16.41 0.2687 15.86 2.9300 

2012 7.23 0.6489 7.337 1.1040 

2013 21.13 1.1480 7.230 1.3880 
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Figure 3-8  Dry matter (DM) biomass yield vs water use for Hoxie, Kansas 2011, 2012 and 

2013. 
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Table 3-15.  Fraction of intercepted photosynthetically active radiation (IPAR) for 

irrigated forage sorghum, irrigated corn, dryland forage sorghum and dryland corn Hoxie, 

Kansas, 2011. 

 

            

Date  

Irrigated 

forage 

sorghum 

SE 
Irrigated 

corn 
SE  

Dryland 

forage 

sorghum 

SE 
Dryland 

corn 
SE 

 

  Fraction of PAR intercepted  

4/7/2011  0.030 0.001 0.118 0.008  0.031 0.009 0.132 0.026  

16/7/2011  0.558 0.049 0.654 0.075  0.601 0.072 0.770 0.020  

4/8/2011  0.993 0.003 0.935 0.009  0.984 0.005 0.966 0.006  

4/9/2011  0.993 0.006 0.895 0.012  0.973 0.006 0.783 0.016  

16/10/2011  0.843 0.009 0.517 0.028  0.818 0.008 0.434 0.011  
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Table 3-16  Fraction of intercepted photosynthetically active radiation (IPAR) for irrigated 

forage sorghum, irrigated corn, dryland forage sorghum and dryland corn Hoxie, Kansas, 

2012. 

 

Date  

Irrigated 

forage 

sorghum 

SE 
Irrigated 

corn 
SE  

Dryland 

forage 

sorghum 

SE 
Dryland 

corn 
SE 

 

  Fraction of PAR intercepted  

11/6/2012  0.022 0.004 0.283 0.014  0.011 0.005 0.194 0.025  

24/6/2012  0.389 0.012 0.607 0.006  0.307 0.046 0.507 0.075  

14/7/2012  0.994 0.017 0.785 0.119  0.897 0.028 0.453 0.013  

28/7/2012  0.875 0.031 0.843 0.026  0.867 0.020 0.740 0.019  

18/9/2012  0.983 0.003 0.803 0.013  0.983 0.003 0.696 0.013  
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Table 3-17.  Fraction of intercepted photosynthetically active radiation (IPAR) for 

irrigated forage sorghum, irrigated corn, dryland forage sorghum and dryland corn Hoxie, 

Kansas, 2013. 

 

            

Date  

Irrigated 

forage 

sorghum 

SE 
Irrigated 

corn 
SE  

Dryland 

forage 

sorghum 

SE 
Dryland 

corn 
SE 

 

  Fraction of PAR intercepted  

28/6/2012  0.071 0.019 0.426 0.012  0.067 0.005 0.341 0.050  

9/7/2012  0.253 0.040 0.324 0.048  0.466 0.025 0.277 0.041  

23/7/2012  0.987 0.001 0.845 0.008  0.556 0.011 0.729 0.004  

23/8/2012  0.992 0.005 0.886 0.009  0.992 0.003 0.836 0.001  

20/9/2012  0.984 0.002 0.742 0.002  0.985 0.003 0.632 0.003  

 

 



137 

Table 3-18. Nutritional values Hoxie, Kansas 2012. 

 

     2012      

 

Fraction of 

crude 

protein 

SE 
Fraction 

of ADF 
SE 

Fraction 

of NDF 
SE 

Prussic acid 

ppm 
SE 

Nitrate 

mg kg-1
 

NO3-N 

SE 

           

Irrigated 

forage 

sorghum 

7.25 0.119 37.86 1.033 59.83 0.576 514.50 10.170 1530.00 66.207 

Dryland  

forage 

sorghum 

11.55 0.155 27.65 0.247 53.23 0.440 474.25 52.889 1762.50 257.370 

           

Irrigated corn 7.43 0.125 49.05 0.126 77.38 0.407 20.25 3.276 3385.00 108.666 

Dryland corn 10.23 0.419 29.80 0.925 55.78 1.209 40.50 1.041 534.00 67.305 
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Table 3-19.  Nutritional values Hoxie, Kansas 2013. 

 

 

 

     2013      

 

Fraction of 

crude 

protein 

SE 
Fraction 

of ADF 
SE 

Fraction of 

NDF 
SE 

Prussic acid 

mg/kg 
SE 

Nitrate 

mg kg-1
 

NO3-N 

SE 

Irrigated 

forage 

sorghum 

10.40 0.540 41.20 0.596 61.43 0.837 184.75 35.472 3067.50 65.495 

Dryland forage 

sorghum 
12.45 0.384 38.20 0.615 59.75 0.144 192.75 49.570 4675.00 367.070 

           

Irrigated corn 9.88 0.193 43.15 2.153 71.63 2.823 25.25 2.175 4312.50 541.346 

Dryland corn 10.23 0.423 37.43 2.533 62.58 3.657 28.50 2.598 3130.00 575.354 
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Appendix A - Tribune Weather Data 
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Figure A-1  Maximum and minimum daily temperature for Tribune, Kansas 2011. 
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Figure A-2  Maximum and minimum daily temperatures for Tribune, Kansas 2012.  
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Figure A-3.  Maximum and minimum daily temperatures for Tribune, Kansas 2013. 
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Appendix B - Hoxie Location 
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Figure B-1. Minimum and maximum daily temperatures for 2011, Hoxie, KS. 
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Figure B-2.  Minimum and maximum daily temperatures for 2012, Hoxie, KS. 
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Figure B-3. Minimum and maximum daily temperatures for 2013, Hoxie, KS. 
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Figure B-4  Plot map for Hoxie, Kansas 2011 and 2012. 
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Figure B-5  Plot map for Hoxie 2013. 
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Table B-6  Measured bulk density values for Hoxie, Kansas 2011, 2012 and 2013. 

 

Depth cm Bulk density g cm-1 SE 

30 1.45 0.063 

61 1.43 0.030 

91 1.41 0.048 

122 1.37 0.058 

152 1.29 0.031 

183 1.28 0.023 

213 1.31 0.034 

244 1.31 0.019 
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