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INRTRODUCTION

The purpose of this report is to fill in more details of Palais' paper
""Morse theory on Hilbert manifolds".

Palais generalized the Morse theory on finite dimensional manifolds (due
to M. Morse) to a general Hilbert manifold modelled on a separable Hilbert
space. (So, we can define a Riemannian metric.) To do this he needed condi-

tion (C).

(C) 1If S is any subset of M on which f is bounded but on which
|Ivf" is not bounded away from zero then there is a critical

point of f adherent to S.

Using this condition he defined the so-called Morse function and from this he
got the Morse theory of Hilbert manifolds. As a corollary, we have the follow-

ing interesting result.

k+2 k+2

If M is a complete Riemannian manifold of class C (k=21), fisacC
Morse function, and if f is bounded below, then M is of the homotopy type of a
CW complex.

As an application, he applied the Morse theory to {)(v;p,q) the loop space
of a complete finite dimensional Riemannian manifold V. With the action inte-
gral J he derived the Morse theory of geodesics.

We are assuming most of the basic results in differential calculus in

Lang's book Introduction to Differentiable Manifolds and we shall not prove or

even gquote them.



1. REGULAR AND CRITICAL POINIS OF FUNCTIONS

1,1. Definition. Let M be a Cl-manifold, f:Ma+Ra cl-function. if

p € M then p is said to be a regular point of f if dfP # 0 and a critical point
of £ if dfp =0. If ce R and f-l(c) contains only regular points of f then

f-l(c) is a regular level of f and c is & regular value,

If f-l(c) contains at least one critical point of f then f-l(c) is called

a critical level and ¢ is a critical value.

1.2, Lemma. Let @ be a ck-isomorphism of an open set V in a Banach space
E onto an open set V' in Banach space E' (k 2 2). Let £ : V' 4 R be of class
2 _ . _ 2
C  and let g = f° ¢ : V- R. Then if dgp =0, d gp(vl,ve)

2

= QD(P) (chp (V ydp (VE))

Proof. By the chain rule we get
(D dgx d§$(x)° dyx and by a straightforward calculation, we have
2 _ 42 2
(2 d gx(vl’va) =d ﬁm(x)(dnx(vl)’d$x(vep) + dfm(x)(d mx(vl;vz))-
Let x = p, then (1) gives dﬁp(p) = 0 (since dmp is a linear isomorphism)

and (2) becomes

2

2 -
d Sp(vl svg) =d fcp(p) (d?p(vl) !dcpp(ve))'

Q.E.D.
1.3. Proposition. 1f f is a Cg—funCtion on a Ce-manifold M, p a critical
point of £, then there is a uniquely determined continuous, symmetric, bilinear

form H(f)P on Hp called the Hessian of f at p. With the following property:

1f ¢ is any chart at p, then

H(f)(VW)-d(f°:p) )

tp(p)

where Wp is the tangent vector using chart om.



Proof. Define H(f)p(v,w) = d2(£ ° ’Wp) where v,w € Mp’ © is a

-1
-
® )cp(p)( @
chart of p. We only need to prove that this is well-defined (i.e. independent

of the chart chosen).

Let  be another chart at p. Without loss of generality, we may assume

that @ and | are defined on a neighborhood U of p. let 8 = fo mfl, &5
=f o *'1 and § = § ° ¢'1. Then & is Ck-isomorphism and g, is 02.

Also since p is a critical point

- -1 _
dp:p(p) - dfp * dwcp(p) s

af

dg = . °
1o (p) P 1CI-‘»(p)

Thus by the lemma and the definition of tangent vector (see L[17)

2 2
CB1npy Vo = 8oy ) (9203 V0090 ()%

- -1 -1
= By (Y 0 P D) ° P Dy (p)

2
d 823(9)(v@’wﬁ)'

Q.E.D.
1.4. Definition. Let B be a bounded, symmetric bilinear form on a Banach

*
gpace E. Then B is non-degenerate if the linear map T : E + E defined by

T(v) (w) B(v,w) for (v,w) ¢ E X E is a linear isomorphism of E onto E*. Other-
wise B is called degenerate.

1.5, Definition. The index of B is defined to be the supremum of the
dimensions of subspaces F of E on which B i1s negative definite. The coindex
is defined to be the index of -B.

1.6. Definition. If f is a Cz—function on a Ca-manifold M and p is a

critical point of f, we define p to be degenerate or non-degenerate accordingly

as the Hessian of f at p is degenerate or non-degenerate. The index and coin-




déx‘gg f at p are defined respectively as the index and coindex of the Hessian
of £ at p.
k+2 .
1.7. lemma. Let f be a C -real valued function defined in a nejghbor-

hood V on a Hilbert space H. Then there is a Ck-map AV LB(H,H) such that
def(x)(u,v) = <A(X)u,v> = A(X)v,u>

i.,e. A(x) is self~adjoint,

Proof. Let L(H,H) be the Banach space of continuous linear maps of H in-
to itself, LB(H,H) the closed subspace of those A such that <Au,v> = <Av,u>
for u,ve V.

Let Lis(H’H) be the subset of L(H,H) consisting of A mapping H isometri-
cally onto H. Then L _(H,H) is open in L(H,H) (see L[1]). Also A - 5 4w
C‘-diffeOmorphism of Lis(H’H) onto Lis(H’H)' (L[1]). We identify LQ(H,R), the
Banach space of continuous bilinear functionals on H, with L(H,H) (L[1]). Then
LE(H,R), the closed subspace of symmetric bilinear functionals, is mapped iso-
metrically onto LS(H,H).

Now d2f : Vo Lf(H,R) is a Ck-map; so by the above identification we have

a Ck—map A: V- LS(H,H) defined by
dgfx(u,v) = <A(x)u,v> = <u,Alx)v>.

Q.E.D.

1.8, lLemma. Let f be a Ck+2-rea1 valued function defined in a convex
neighborhood V of the origin 0 in a Hilbert space H. Suppose 0 is a non-de-
generate critical point of f and £(0) = 0. Then there exists a Ck;isomnrphism

@ at 0 such that

£@(x)) = <A(0)x,x> = d£(0) (x,%).



Proof. Since 0 is a non-degenerate critical point of £, A(0) is inver-
tible., Since A is Ck so for x sufficiently small, A(x) is invertible. Without
1oss of generality, we will assume that this neighborhood is V.

Define B : V » L(H,H) by B(x) = A(0) A(x). Then B is C* and B(x) is
close to the identity I if x is small. Hence C(x) = B(x)]'/2 is defined for
small x. Without loss of generality, we may assume that V is so small that

C : V- L(H,H) is Ck with C(x) invertible, Since A(0) and A(x) are self-ad-

joint and since

B(x) = A(x) LA(0)

A(D) A(x)B(x).
Thus

A(X)B(x) = A(0) = A(0)" = B (x)A(x).

Obviously, the above relation also holds for any polynomial in B(x), hence for

C(x) which is a limit of such polynomials. Thus
Cx) *A®)C(x) = AX)C(x)Z = A(X)B(x) = A(0)

or A(x) = Cl(x)*A(O)Cl(x) where Cl(x) = C(x)-l. Write §(x) = Cl(x)x; then § is

Ck in V and f(x) = <C1(x)*A(0)Cl(x)x,x> = <A0)y(x),¥(x)>. So it suffices to

show only that d¢0 maps H isometrically and hence, by the inverse function

theorem that y is Ck-isomorphism on a neighborhood of the origin. Since
[4(v + %) = y(v) - C;(Wx - d(Cl)v(v)x]
= Icl(v + x) (v + x) - Cl(v)v - Cl(v)x - d(Cl)v(v)xl

< ‘Cl(v + x)v - Cl(v)v - d(Cl)v(v)xl + {Cl(v + x)x| + |C1(v)x‘



+ 0 as |x! -+ 0,

d¢v = Ci(v) + d(Cl)v(v).

In particular, d¢0 = Cl(O) = C(O)-1 = B(O)-”2 = I, Thus @ = ¢-1 is Ck-iso-

morphism and
£@) = £(5 () = <A@ x4 (®)> = <A0)x,x>.

Q.E.D.

1.9. Morse Lemma. Let H be a Hilbert space, V a convex neighborhood of
the origin in H, £ : V+ R a Ck+2-function (k 2 1) having the origin as a non-
degenerate critical point and £(0) = 0. Then there is a neighborhood U of the

origin and a Ck-diffeomorphism ¢ : U=V with ©(0) = 0 and
2 2
fF@()) = |lex||” - || - x|

where P is an orthogonal projection in H.

Proof. Let A be as in 1.7. Let h be the characteristic function of

[0,2), Then P = h(A) is an orthogonal projection. Let g(}) = |k|-1/2.

Since A is invertible, zero is not in the spectrum of A; and since g is
continuous except at zero, T = g(A) is a non-singular self-adjoint operator

sgn(}) = h(A) - (1 - h(})) so AT® = P

which commutes with A, Now Xg(l)2

At x> = |lex||® - |l - Bx|°. so if

- (I - P). Then £(rTx) = <ATx,Tx>
we write o © T as ¢ we have the desired form. Q.E.D.

1.10. Corollary. The index of f at the origin is the dimension of the
range of (1 - P) and the coindex of f at the origin is the dimension of the
range of P,

Proof. Let W be the space on which 62f0 is negative definite.

If we Wand (1 - P)w =0, then by 1.8 and 1.9



defo(w,w) = f(p(w)) = npwua - |la - P)w[|2

“Pw"2 20 so0w=0.

Thus (I - P) is non-singular on W, hence
dim W < dim range (I - P).
On the other hand, we have
dim W = dim ([P + (I - P) W)
2 dim range (I - P).

So the index of f at 0 = dim range (I - P). Q.E,D.
It is easy to see that if p is any non-degenerate critical point of £,
then the Morse Lemma can be stated as:

1.11. Let f be a Ck+2

-real valued function (k 2 1)defined in a convex
neighborhood V of p in a Hilbert space H. BSuppose that p is & non-degenerate
critical point of f. Then there is an origin preserving Ck-isomorphism ¢ of a
neighborhood of the origin into H such that f£(p(v) + p) = £(p) + ”Pvll2
-l - P)v”2 where P is an orthogonal projection in H.

1.12, Corollary. A non-degenerate critical point of a Ck+2-function on
a Hilbert manifold is isolated.

Proof. Without loss of generality, assume 0 is a non-degenerate critical
point and £(0) = 0. Then £(@(v)) = ||2v]|Z = |1 - P)v||®. Thus 8, gy O9)
= 2<Pv,w> - 2<(l = P)v,w>. Hence, if dﬁp(v) = 0, in particular put w = Pv in
the above formula. We have 0 = 2<Pv,Pv>, i.e. Pv = 0. On the other hand, if
we let w = (1 = P)v, then we have (1 = P)v =0, Sov =Pv + (1 - P)v = 0,

That is, the only critical point in the neighborhood (v) of 0 is just O itself.



Q.E.D.

1.13. cCanonical Form Theorem for a Regular Point. Let f be a Ck-real

valued function defined in a neighborhood U of the origin of a Banach space E
(k » 1), Suppose that the origin is a regular point of f and f vanishes there.
Then there is a non-zero linear functional g on E and an origin preserving Ck—
isomorphism ¢ of a neighborhood of the origin E into E such that £(p(v))
= 4(v).

Proof. Clearly g = dfo # 0.

Choose x € E such that £{x) = 1 and let W = 5-1(0). Then T : E +W X R by
T(v) = (v = 4(V)x,4(v)) is a linear isomorphism onto. Define § : U + W X R by
g(v) = (v - L(v)x,£(v)). Then y is Ck and d¢u(v) = (v = j(v)x,dfu(v)) and

dy. = T. By the inverse function theorem, is a Ck-isomor hism which obvious-
Yo ¥ P

ly preserves the origin. If v' = ¢-1Tv then (v' - Hv")x,£(v")) y(v') = T(v)
= (v = g(V)x,2(v)). Hence f(v') = f(w-lTv) = 4(v). Let g = ¢'1T. Q.E.D.

1,14, Let f be a Ck-real valued function on a Ck-manifold M(k>1). Let
a € R be a regular value of f and assume f-l(a) does not meet the boundary of
M. Then Ma ={xeM I f(x) < a} and f-l(a) are closed Ck-submanifolds of M
and 3”3 is the disjoint union of Ma N sM and f-l(a).

Proof. For each x ¢ F-l(a), choose a chart (U,{) at x in M. Without loss
of generality that we may assume a = 0 and §(x) = 0. Define T : $(U) - R by

£=f °yl, then T(0) = £ °y (0) = 0. Also dF,

By the canonical theorem, there is a Ck-isomorphism ¢ on a neighborhood v

-1
= o
df _° dy, #0.

of the origin and a linear functional £ : E -+ R such that f o e(v) = g(v) for
all v in v. Put § = w'l © ¢ : UV, Then ¢ is a Ck-isumorphism and £

- - - -1, - -1
=4 06, Hence £5(0) nU = £ ne tw) = 8141 0) n V). Since 4 (0)

is a half space in some Banach space, (f-l(O) nu, & -1 ) is a chart at
1£f “(0)



x e f'l(o), Thus f'l(O) is a closed Ck-submanifold with boundary. Q.E.D.
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II. THE STRONG TRANSVERSALITY THEOREM

2.1. Proposition. Let M be a Ck+1-manifold without boundary (k 2 1), X

a Ckkvector field on M and mt the maximum local one parameter group generated
by X, If f : M+ R is Ck define a real valued function Xf on M by Xf(p)
= df (X). If Xf =1, then £(® (P)) = £(p) + t.

Proof. Let h(t) = f@yt(p)) = f(op(t)). Then h'(t) = dfcp(t)(c'p(t))
= dfcrp(t) (Xcrp(t)) = Xf(p,(P)) = 1. Thus h(t) =t + £(p). Q.E.D.

2.2. Proposition, If Xf =1, £f(M) = (-¢,e) for some ¢ > 0, and mt(x) is
defined for |t + f(x)l <€, then W = f-l(ﬂ) is a closed Ck-submanifold of M and
the map F : W X (~e,c) + M defined by F(w,t) = wt(w) is a Ck-iscmnrphism of W
X (~€,e) onto M which for each c € (-€,¢€) maps W X {c] Ck-isomorphically onto
£ 1oy,

Proof. Since Xf = 1, f cannot have any critical values, Thus by the
smoothness theorem f'l(c) and W are closed C -submanifolds of M.

Fis 1l -1, Since if F(w,t)

F(w',t'), then

€= £(w) +t = £(@ (W)

£ (w')) = £(w') + ¢’ = ¢’

by the proposition 2.1. Thus t = t' and hence mt,(w'). Set t = 0, then we
have w = w'.

F is also onto. If m € M, then l-f(EO + f(m)‘ <€ B0 W= m_f(m)(uo is
defined, Thus f(w) = f(m) - f(m) = 0 so w ¢ W. Also note that F(w,f{(m))
= wf(uﬂom-f(m)(mo) ='¢f(mfp-f(m0(m) = m., This proves that F is onto, By an
easy calculation, we see F_l(m) = {m_f(m)(m),f(m)) which is obviously Ck. Thus
F is a ck#isomorphism. Also £(F(w,c)) = f@ﬁc(w)) = f{w}) + ¢ = ¢c. Thus F maps
W x {c]} Ck-isomorphically onto £ Y(c). Q.E.D.

2.3. Corollary. W = f-l(O) is Ck-iSOmorphic to f-l(c) for any ¢
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€ (=e,€).
. . k . k+1 . .
2.4, Definition. A C -vector field x on a ¢ -manifold without boundary

M (k 2 1) will be said to be Ck-stronglz transverse to a Ck-function f:MsR

on a closed interval [a,b] if for some & > 0 the following two conditions are
truetfor v = f-l{a -8, b +38).
(1) Xf is Ck and Xf # 0 on V.
| (2) If p e V and cp is the maximum solution curve of X with initial con-
dition p then Up(t) is defined and not in V for some positive t and
also for some negative t.
2.5. Lemma. Let X be a Ck-vector field on a Ck+1~manifold without boun-
dary M (k = 1) and be Ck-strongly transverse to a Ck-function f:MaRon
[a,b].

Lety=x/xf,v=,f,"1(a-a,b+a),g=f1v-a”" b-a

> and € = >

then the triple (V,g,Y) satisfies proposition 2,2,
Proof. Clearly, V is an open submanifold of M and Y£ = 1 on V. 1If o is

an integral curve of X, then

_ X@(8)) _ _o'(t
Y(o(t)) = ﬁé‘l(t)% ~ Xf(o(t))

Since Xf(o(t)) is a scalar function, this means on O(t), Y has the same direc-
tion as X. Since Yf =1 on V, the integral curves of Y are just the integral
curves of X reparametrized so that f(g{(t)) = £f(g(0) + t. By condition (2) of
2.4 we know that if ¢£ is the maximum local one parameter group generated by Y

on V, then ¢t(p) is defined on V. That is

a-8<£f(p) +t<b+ 8.

Then g(v) = (£, - 252 )(v) = (a-6,b+6) - 252 = a5 -2L0,
ath ) = (~€,€). Also for x e V, t + g(x) = t + £(x) - ath

b+8 - 35 =
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But a ~ 8 < f(p) + t <b + &. Thus, -e=a-6-a;b<t+g(p)=f(1=)+t
b
-2 Z 2 o3 = ; =¢; 1.6, e <t +g(p) <eor [t +g(p)| <e. Q.E.D.

2.6. Strong Transversality Theorem. Let f be a Ck-real valued function

on a Ck+1-manifold without boundary M (k > 1). If there exists a Ck-vector
field X on M which is Ck-strongly transverse to f on [a,b], then W = f-l(a) is
g closed Ck-submanifold of M; and for some 8 > 0 there is 2 Ck-isomorphism F of
WX (a-=-6, b+ &) onto an open submanifold of M such that F maps W X {c} Ck-
isometrically onto f-lic) for all c e {a - 6, b + 8).

Proof, Use the same notation as in 2.5. Then (V,g,Y) satisfies 2.2,

since & ; L € (=-€,€) is a regular value of g then g']'(a ; b) is a closed Ck-
submanifold of M. But g(x) = 2= B iff g(x) + 2 - D wa iff £(x) = a. S0

f-l(a) is a Ck-closed submanifold of M. By 2.2, there is a Ck-isomorphism G :
g'l(O) X (~e,e) onto V which maps g-l(O) x {c} Ck-isomorphically onto g-l(c).
E‘:‘E) = f-l(a) = |, and note that there

2
is a C"-isomnrphic function which maps the interval (-¢c,g) onto (-c,c) + 2 ; B

- -1
By 2.3 g 1(0) is Ck-iscmorphic tog (

which is equal to (a - 8§, b + 8). So we have a Ck-isomorphism F:Wx<(a-=-258,
b +8) + W. Q.E.D.

2,7. Corollary. There is a Ck—map H:MxT+M such that if we put
HS(P) = H(p,s) then

(1) Hs is a Ck-isomorphiSm of M onto itself for all s € I.

(2) Hs(mo =mif m ¢ f-l(a - 58/2, b + 8/2).

(3 Hy = identity.

@) B (E (wa) = £ (-a,b).

Proof, Let h : R + R be a Cfunction with strictly positive derivative
such that h(t) =t if t ¢ (a - 6/2, b + §/2) and h(a) = b. This is possible

by rotating a certain bell shaped function. Define HB as follows: Es(x) =x
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ifx ¢ £(a~6/2,b+8/2). H(Fw,0) = Fw,(L - )t + sh(t)) for x
= F(w,t) € f-l(a - &8, b+ 8). Then
(1) H_ is vell-defined. 1If x ¢ £ la-5,a-6/21cf(a-58,b+8)
then x = F(w,t) for some we Wand t ¢ (a - 6§, b + §), since W
X (a -8, b+8) is Ck-isomorphic to f-l(a - 8, b+ 8) under F by 2.6

and t in fact is equal to f(x) ¢ (a - 6§, a - §/2]. Thus Hs(x)

[}

HS(F(w,t)) = F(w,(1l - 8)t + sh(t)) = F(w,(1 - s)t + st) = F(w,t)
= x. Thus H_ is well-defined on f-l(a -5, a - §/2). Similarly we
can prove for f-l[b + &§/2, b + §).

(2) Hs is a Ck-isomorphism of M onto itself for all s € I.

(3) Ifm¢ f-l(a - §/2, b + §/2), then Hs(m) = m by the construction of
Hs.

4) HO(F(w,t)) = F(w,t) by definition.

&) H (£ (-mad) = B (£ (-, @ = 6/2]) U £l ((a - 6/2, a])]
= 1 (£ (-, @ = 8/2]) U B £ (8 - 6/2, a])]

(-2, a = 6/2] U Hl[f-l((a - 8/2, a)l.

Claim that H (£ (a - 6/2, a]) = £ '(a - 8/2, b].

If x € f-l((a - §/2, al]), then x ¢ f-l(f(x)) by the Ck-isomorphism F of
theorem 2.6 that x = F(w,£(x)) for some w e W = £ (a). Hence Hj (%)
= B, (F(w,£(x))) = F(w,;h(£(x))). But F maps W x [h(£(x))} c*-isomorphically to
£ 1(h(£(x))) or £ ° F maps W x {h(£(x))} onto h(£(x)). Thus £(H,(x))
= h(f(x)). Hence as x varies in f'l(a - &8/2, a], £(x) varies in (a - §/2, a)
but as h is strictly increasing hf(x) varies in (h(a - 6/2),h(a)] = (a - 8/2,

b] (by definition of h). Therefore

H (£ a - 8/2, a]) = £ ((h(a - 8/2),h(2) D)



Hence

= £ a - 8/2, bl

Hl(f-l(-n,a]) = f'l(--,b]. Q.E.D.

14
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I1I. RIEMANNIAN MANIFOLD

3.1. Definition. If M is a Ck+1-manifold and for each p e M MP is a
separable Hilbert space, then we say that M is a Ck+1-Hilbert manifold (k > 0).
For each p € M, denote < , > to be an admissible inner product in Mp’ i.e. a
positive definite symmetric, bilinear form on Mp such that the norm “v“p
= <v,v>1/2 defines the topology of MP.

Let (D(p),P) be a chart in M with image in a Hilbert space (H, < , >).
Define & : D) + L2 (H) by <CP(x)u,v> = <dp_ (u),dp. (v)>, where H- (H) is

8,p x x X s,p
the space of positive definite symmetric operators on H.

If (D(}),}) is another chart in M modelled omn H, then let U = D(®) N D(¥),

ft=0p° w-l : §(U) + (V). Then dfw(x) = dpx o dq;%x) or d¢;1 - d$;1 ° dft(x)
for x € U. Then
< u,v> = @i,y 0> = <ol e (0) 001 (d8 0 (0>

_ KD
<dm(x)dfﬁ(x)(u),dfw(x)(v)> = <ﬂfw(x)G(x)df¢(x)(u),v>
kief 6V 1s &,

k

*
for all u,v € H, thus Gw(x) = dfw(x)d?x)df¢(x)' Hence G¥ is C
Thus it makes sense to say that & is Ck if ¢ is. We call x @+ <, > . a c -

Riemannian structure for M and M is a Ck+1-Riemannian manifold.

3.2, Lemma. If M is a connected Ck-Banach manifold x,vy € M then there is
a ck-path o : [a,b] » M such that o(a) = x and g(b) =vy.

Proof. Define a relation x ~ y if such a ¢ exists. Then it is easy to
see that ~ is an equivalence relation.

To see the transitivity, let
c: [a,b] + M

T : [c,d] 4 M
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be two Ck-paths with g(b) = v(c). Without loss of generality assume a = 0,
b=c=1/2,d=1. Let¢ : R -+ R be a non-decreasing c®-function with (o)

=0 and op(t) = 1/2 if 1/4 <t < 3/4, and (1) = 1, Define y : [0,] + M by

y(t) = o(p(t)) 0 <t s 3/4

T(p (L)) 1/4 st <1,

Thus g(0) ~ T(1). Q.E.D.

Claim. The equivalence class of each point ¢qx is open. Since if@® : U
+ V is a chart at x, then every point y € U can be joined to x by a straight
line so X ~ y, Thus M can have only one equivalence class, that is, M is Ck-
path connected,

3.3. Definition. If 0 : [a,b] 2 M is a Cl-map then define the length

L(g) of o by
L(0) = ,];b loce) || at.
For x,y € M, define
p(x,y) = inf {L(0) : 0 is a Cl-path joining x and y}.

This is well-defined by lemma 3.2. 1t is easy to see that p thus defined is a
pseudo metric, To see p is a compatible metric we need the following lemma.
3.4. Lemma. Let H be a Hilbert space, f : [a,b] 2 H a Cl-map. Then
J;b e ey || ae = [[£b) - £¢a) |].
Proof. Assume f(a) # f(b). Let g(t)(£f(b) - £(a)) be the orthogonal pro-
jection of £(t) - £(a) on the one-dimensional space spanned by f(b) - f(a).
Then g : [a,b] 4+ R is Cl. g(a) = 0, g(b) =1 and £(t) - £(a) = g(t) (£(b)

- £(a)) + h(t) where h(t) is in orthogonal complement of f(b) - f(c) and is Cl.
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Then £'(t) = g'(t)(£(b) - £(a)) + h'(t) where h'(t) + (f(b) - f(a)). This is

obvious since (h(t), £(b) - £(a)) = 0. So
e @ |2 = Iz - g@ [ - e @ [F + [l

> l£®) - £ |17 - [g' ) |5

S0 J;b e oy || ae = |l£w) - £ - J;b lg'(t) | dt = ||£(b) - £(a)||. Since

b ' b
I le'@®] ac 2 7 g'(t)de = g(b) - g(a) = 1. QE.D.
3.5. Theorem. p is a metric and is compatible with the original metric.
Proof. Let x,y € chart D(p). Let g : [a,b] 4+ M be a Cl-'map joining x and

y, i.e. 0(a) = x, o(b) =y, x #y. Thus £f =@ ° 0 is a Cl-map : [a,b] 2 H.

By lemma 3.4 we have

lo) =@ || = |l = o®) - ¢ o oa) |

lew - @l < £° le = o' @]l a

b 1
J; ”dpo-(t) °© 0 (t) ” dt

b
< §° llawy ey Il flo'cor | a

a

<M j:’ o' ce) || at

te[a,
< 1M |loty) - o) |-

wh M= < ®. Clearly M >0, Th h L
ere supbJ |Idp0(t)l| = early us we have L(g)

(*) Therefore p(x,y) = 1/M ”w(Y) - m(x)ﬂ > 0.

Therefore p is a metric.

If x and y are not in the same chart, we just consider each of the open
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charts which cover the path from x to y and argue as above.

b - w
2L o) + g ()

On the other hand, let x,y € D(p). Define g(t) =
: (a,b] + H. Then obviously g is ct.

let g =@®p * g, then g is a Cl—path joining x and y.

Also do = dm-l ° dg.

by, b ,
P(x,y) = J; llo* || ae < £ llaw, (o I ls' &) || at

su' f° flg' @l ae
a

-1
where M' = sup I|d$g(t)[| < @

le' ey ) = |- &L+ 2O ) - =L o) - w0 1.

So

() p(x,y) s oty - w00 |

Combining (*) and (**) we get that p is a compatible metric. Q.E.D.
3.6. Definition. If M is a Ck+1-Riemannian manifold then the metric p

defined above on each component of M is called the Riemannian metric of M.

If each component of M is a complete metric space in this metric then M is
called a complete Ck+1-Riemannian manifold.
3.7. Definition. If o is a Cl-map of an open interval (a,b) into a Rie-

mannian manifold M we define the length of g, L(g) to be

Lim JLb llo' vy || ae.
B-b

Note. L(0) may be infinite.

3.8. Proposition. If M is a C' -Riemannian manifold and 0 : (a,b) +M
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is a Cl-curve of finite length, then the range of o is a totally bounded sub-
set of M, hence has compact closure if M is complete.

Proof, If L(0) < e, then given ¢ > 0 there exist a and b such that

Iblhlﬁ)“dt+e-<Lw).
a

For this ¢ and a,b choose thy =ac< t1 < t2 < 4es < tn <b-= tn+1 so that

E,
I e || ae <e.

31
Hence o((a,b)) is contained in the finite union of e-balls about the G(ti)
i=1,2, ..., n. Q.E.D.

k . k+1
3.9. Proposition. Let x be a C -vector field on a complete C =Rie-

mannian manifold M (k 2 1) and 0 : (a,b) -+ M be a maximum solution curve of X.

If b <= then

I® lIxeecen || dt = =,
0

hence in particular ||X(0(t))[| is unbounded on [0,b). Similarly, if a > -m,

then

IO Iz || at = =,

a

hence ||X(0(t))l| is unbounded on (a,0].

Proof. If J’b ||(a(t)) || were finite, then by 3.8 we have
0
b ' b
I “U (v) “ dt = J; ”X(o’(t)) “ dt < .
0

Hence g(t) would have a limit point as t -+ b contradicting [L1l, Theorem 4,

p. 65). Q.E.D.
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3.10. Definition. Let £ : M » R be a Ck+1-real valued function on a
Ck+1-R1Emannian manifold M. Given p € M, dfp is a continuous linear function-
al on MP, hence there is a unique vector vfp € Mp such that dfp(v) = <.v,vfp>p
for all v ¢ MP. pr is called the gradient of f at p and Vf : p vfp is
called the gradient of f.

3.11. Proposition. ¥f is a Ck-vector field in M.

Proof. Let @ : D(®) + H be a chart and H be a Hilbert space with inner
product < , >. Let T be the canonical identification of H* with H, i.e. if £
€ M*, v € H, then £(v) = <v,Tf>. Since T is a linear isomorphism it is c®.
Define g = £ ¢ m-l. Then g € Ck+1 and dg : U >+ H* € Ck. Thus T ¢ dg = ) 1is

c¥. Now by definition of G¥
P x)dp (VE),v> = <VE_,dp (V)
X)Wk V> P WV >k
= af_© dp_ (v)
X X

= dt¢(x)(v) = <Id%$(x),v>.

So dp_(VE ) = @) @) . Thus x + dp _(9£) is a c¥-map of D(®) into H.
By the definition of Ck-structure on T(M), vf is a Ck-vector field on H.

Q.E.D.
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IV. CONDITION (C)

In this section, we assume that M is a Ck+2-Riemannian manifold (k = 1)

without boundary.

4.,1. Definition. A Ck+2-function f : M 3R is called a Ck+2-ﬂorse func-

tion if all the critical points are non-degenerate and it also satisfies the

following condition (C):

(C) 1If S is any subset of M on which f is bounded but on which
“vf” is not bounded away from zero then there is a critical
point of f adherent to S, that is, belongs to S the closure of

S'

4.2. Remarks.
(1) If M is compact, then condition (C) is always satisfied. In fact (C)
is satisfied if f is proper.
(2) Condition (C) only gives a critical point in E, there may not exist
a sequence in S converging to that point. For example, let M = R,
f a constant function, S the set of integers. Then obviously, S has
no limit point.
(3) But if § is such that for every x in §, "fol| # 0, then by condition
{C) we can find a critical point y € S and a sequence in S conver-
ging to y.
4,3. Proposition. If a and b are two real numbers then there are at most
a finite number of critical points of a CE-Morse function f satisfying a < £(p)
< b. Hence the critical values of f are isolated and there at most a finite
number of critical points of f on any critical'level.

Proof, Suppose {pn} is a sequence of distinct critical points of f satis-



fying a <« f(pn) < b. 8Since critical points are isolated we can choose for each
n a regular point q, such that p(pn,qn) < 1/n. Since vf is continuous, we may
agssume that ”qun - vfpn" < 1l/n and a < f(qn) < b. Since vfpn = 0, so we have
0 < "qun" <1/n and a < £(q_ ) <b. By condition (C), there is a subsequence
of [qn} converging to a critical point q of f. Hence the corresponding sub-
sequence of [pn} will also converge to p. But this contradicts the fact that
the critical points of f are isolated. Q.E.D.

4.4, Lemma, Let M be a CE-complete Riemannian manifold and let ¢ : (&,B)
+ M be a maximum solution curve of vf. Then either %ig f(ag(t)) = = or else
B = w and o(t) has no critical point of f as a limit point as t -+ B. Similarly
either %3g f(0(t)) = == or else @ = = and o(t) has a critical point of f as a
limit point as t » Q.

Proof. Let g(t) = f(o(t)). Then g'(t) = dfc(t)(c'(t)) =4d )(Vf

o(t)’
= “vfc(t)“2 =2 0. So g is monotone increasing, hence has a limit point B as

fc(t

t =+ B.
Suppose B < w. Then since B 2 g(t) = g(0) + J‘t g'(s)ds = g(0)
0
12 ds < . If B < ®, then by

t , 2
+ ,](; lvg gy I° ds, 1t follows that J;B 19254 |

1/2

B 1/2 B 2
Schwartz inequality J; HVfG(s) H ds <8 ( J(; “Vfo(s) ” ds) < e« which

would contradict proposition 3.9. Hence B = ® and the fact that

t%u "vfc(s)“2 ds < e will imply that HVfc(s)“ cannot be bounded away from

zero for 0 < s <w. If ||[vE|| = 0 for all except a finite set, then the lemma
is obvious. So we assume S is an infinite set on which “vf“ # 0 and va“ is
not bounded away from zero, then since £(o(0)) < £f(0(s)) B for 0 < s < = s0
by condition (C) o(t) has a critical point of f as limit point as t + 8. Q.E.D.
4.5, Proposition. If M is complete and f has no critical values in the

closed interval [a,b] then Vf is Ck+1-strongly transverse to f on [a,b], hence
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by corollary 2.7 (4), M = {(xeM | £(x) < a} and M o= {xeM l f(x) < b} are
=i somorphic.

Proof. Since critical points of f are isolated, there is a § > 0 such
that £ has no critical values in [a - &, b + §]. Let V = f-l(a -6, b+ 9).
Then (VE)f = ”vf”2 > 0 and c** in v. Let peVand let g : (@,p) -+ M be the
maximal integral curve of vf with initial condition p. We want to show for
some tl, t2 such that O < t2 <0 < t1 < B that U(tl) and o(te) are not in V,
i.e. f(o(tl)) <a- 58, and f(o(te}) >b + 8. Suppose for example that f£(o(t))
<b+5b8 for 0 <t <pB. Then by lemma 4.4 o(t) would have a critical point Po
as limit point as t -+ B.

Since f is continuous and f£(o(t)) is monotone we have a - & < f(p)

= f(c(0)) =< f(po) = tig f(o(t)) =b + 6. So we get f(po) is a critical value

in [a - &, b + 8], which is a contradiction. Q.E.D.



V. HANDLES

Let H be a separable Hilbert space, Dk the closed unit ball of dimension

k (0 £k £ «). By the smoothness theorem for regular levels, Dk is a closed

c®-submanifold of H. Also the boundary ank of Dk is Sk-1

L

the unit sphere in H.

We call Dk x D a handle of index k and coindex §.

5.1. Definition, Let M be a C -Hilbert manifold and N a closed submani-
fold of M. Let f be a homeomorphism of Dk X D£ onto a closed subset h of M.

We say that M arises from N by a ¢ -attachment of a handle of type (k,f) if

(1) M=NU h,

2 f | Sk-1 X DL is a Cr-isomorphism onto h 1 3N.

) ]

(3) ¢ | Dk ¥ D” is a Cr-isomorphism onto M \ N.

5.2. Remark. We actually have NN h = 3N h., For if x ¢ N h, then

since h = f(Dk X Dz) we have f-l(x) € Dk X DL. Now if ful(x) € Dk X DL, then

by (3) of definition 5.1 x = £(£ L(x)) would be in M \ N i.e. x ¢ N. This can-

not happen since x € NN h, Thus f'l(x) x 8571 « 0%, so f(f-l(x)) = x
¢ £s¥ x pY, i.e. x € h N 3N. Q.E.D.
5.3. Definition., Suppose N = Nb, N,y oo NS =M is a sequence of Cr-

manifolds such that N arises from Ni by a cT-attachment fi of a handle of

i+l
type (ki,zi). If the images of the fi are disjoint, then we shall say that M
arises from N by disjoint Cr-attachments (fl, ey fs) of handles of type
((kl,jl), § (ks,bs)).

5.4, Lemma. Let } : R R be a c®~function which is monotone non-increas-
ing and satisfying 3(x) = 1 if x = 1/2; 3(x) >0 if x <1 and }(x) =0 if x 2 1.
For 0 £ s €1 let g(s) be the unique solution of A (0)/(l + o) = %-(1 - g} in

the interval [0,1]. Then g is strictly monotone increasing, continuous c® in

[0,1) and g(0) = 1/2, o(l) = 1. Moreover if € > 0 and u2 - v2 > -¢ and u2
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2

- v2 - 3¢/2 k(u2/e) < = then u2 < eo( 2)-

€ +u
Proof. Clearly 3(g)/(l1 + g) is strictly monotonically decreasing if 0

<0 <1, By definition of ), 3(0)/(L +¢0) =1 if 0 =0 and A(0)/(L +0) =0
if 0 = 1. Thus o exists and is continuous and monotone., By inspection we see
that if s = 0, then o(0) = 1/2 is a solution. Thus by the uniqueness of the
solution, o(0) = 1/2. Similarly og(1l) = 1.

The derivative of A (0)/(1 + o) is

[_:}_ggL], _ I+ a)A' (o) = A(Q)
1+o0 (1 +c)2

80 (A(g)/(L +0))' =0 iff 2,"(©) = A(0)/(1 + 0). But A(0)/(1 +0) = %-(1 - 8)
20 V0 <s <1 whereas },'(0) 0 Vo. So 3(0)/(1 +0) = \'"(0) is only possible
at s = 1. Thus A(0)/(l + o) has a non-vanishing derivative in [0,1). It fol-

lows from the inverse function theorem that ¢ is € in [0,1).

Now consider the function f(u,v) = u2 - e0( v2 2) defined in the region
€ +u

u2 - v2 > =€, u2 - v2 - 3¢/2 1(u2/e) < -e¢. Take partial derivative of f with

respect to u:

v v2
2u + 2ueg'( 2) 55
€ +u (¢ +u)

h
]

v2 v2
2ull + eg'( 2) 5 5
€ +u (u + &)

]

Since g is monotonic increasing, g' = 0. So fu =0 iff u = 0. For v fixed,

u =0 is the only critical point of f. Also it is easy to see that f has a
minimum at u = 0. Since f is monotonic increasing with v fixed, f must assume
ite maximum on the boundary. On the boundary curve u2 - v2 = -¢ we have

v 2

5 = 1 so f(u,v) = u” - e. 1If (u,v) is not also on the other boundary
€ +u
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curve, i.e. u2 - v2 - 3e/2 A(uele) < = or =3¢/2 A(uele) < -u2 + v2 -¢ =0, s0
k(uale) > 0. Hence u2 < € so f(u,v) < 0. On the other hand if (u,v) is on the

boundary u2 - v2 - 3e/2 k(uzle) = -¢ we have

2

v 3

2
=1 - a(u~/e).
& Bout 2(1 + us/e)

Now on this boundary uele 2 1/2 for otherwise uzle < 1/2 implies x(uzle) =1,

Hence then 5 < 1 -3/2(1L +1/2) =1-1=0, Then (u,v) cannot be on the

€ +u

boundary curve u2 - v2 = ~-g, Clearly, u2/e <1 so u2/e = g(p) for some p =p
in (0,17,

By definition of o(p)

2

ve o .3 A00) _, -
L2 1T E2Troy Tt mR

0, i,e. f vanishes on this

hence f(u,v) = 0" eo( v 5) = eo(p) - eo(p)
€ +u

boundary.

Thus f < 0 everywhere on the boundary of the region and hence also is in
the interior. Q.E.D.

5.5. Theorem, Let B be the ball of radius 2¢ about the origin in a Hil-

bert space H. Define £ : B - R by f(v) = HPV“2 - "Qv"2 where P is an ortho=-

b

gonal projection on a subspace H” of dimension 4 and Q = (1 - P) is a projec-

tion on a2 subspace Hk of dimension k. Llet g(v) = f(v) = 3e/2 x(”Pv"EIe) where
2 : R4 R is as in the above lemma, Then M = {x € B [ g(x) < -¢} arises from

N={xeB | f(x) < -} by a C®-attachment F of a handle h of type (k,2).

2

Proof., Let Dk, DL be the unit discs in Hk and H” respectively. Let h be

the set {x € B | £(x) 2 ~¢ and g(x) < -}, SoM =NUh and NN h < 3N. De-

&

fine F : Dk X D” - H by
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F(x,y) = Ceol|x||D 712 + &% + eo(||x P 5

where ¢ is as in the lemma, Then

£Fx,y)) = Lol |Ix|[D Iy = @ + o= Ny 13 |1x]1%)
= efa(|I=x|® IvlIPa - 1=l
2 -e|h:"2 > -c.

g(F(x,3) = elo(||x|[® Iy [1Z = [Ix][® - [Ix]|®

- 2@ Iy 1173
Since ) is monotonically decreasing
gFx.y) < elo([lxD - [x)® - [Ix[® - 2 ao|lx[%)]

but by definition of g we have
ae(I=1®) =2 a + o= a - Ix]?.

Substituting, we have g(F(x,y)} = -c. Hence F maps Dk X DL into h., Conversely,
suppose w ¢ h and let u = Pw, v = Qu. So |Jul|® - |Iv]|® = - and [lu]|® - |Iv]I®
- 3¢/2 x(|h1"2/e) <€ -€. Thus (“v”g)/(e + [hl“a) <1sox = (e + |h1"2)1/2v

€ Dk. Also G('IVHE/(E + [h;”z)) is well-defined and by the lemma

2
Lt
ea(|lv]|"/¢e + Jluf|™)
et sc(lhr"gf(e # |h1"2))-1/2u e %, Thus G(w) = ((e *“‘PWHE)-lleQW,

€U(”QW”2/(€ 4—[,Pw”2))-1/2Pw) defines a map of h into Dk X Dz. Then GF(x,y)

= (x,¥). Since



with x € Dk, y e D7,

Then

So

F(w,

m
I

o
il

G(w) =

9 = eol|lx|D Iy |12 + o

2 Write w

2% + (ec(“x"e))llay

ax + by where

o Ix[® Iy ? + o2

(ecr(||::|!2))1/2 so a = (°|ly|]

b

<

2
|low ||

a

]

l|ew)® = b2 |1y |?

1?

= a%|Ix|I°.

g + E)IIE

(e + 62|y ||> " 2ax, (eo (—”—“—n /20

= (x,y).

Therefore GF(x,y) = (%X,y).

Then

On the other hand,

FG(w) = F((e +

»
n

g
|

2
1=|" =

(e + |lew|®y"1/2

e + ||pw i

+ (lzw)®”

Qw € Dk and

2
= eg(—ﬂglu——)llzpw € D".

1 2
llew |l

e +b°|ly||?

2
”PWHQ)-UEQ(W), (eo (__URw_lL_) -1/2,5

+ p)®

28
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2 =1
7 1% = Ceocfjaw]|®rce + [|2w]|®> 37 {|2w ]
Thus
o fIx]P Iy )2 + 2

low]® |[2w 1|2

= (eo( 5 > + 5)1/2
ol el
e + |ov||
c e+ |Ipw|?) T %00
o (I!Pw”2 + e)lla(e + ||pw]|2)'1/2Qw = Qu.

Simila’rly (EG(“X"2))1/2Y = Pw. Therefﬁre FG(W) = Pw + QW = W.

4

Thus F is a homeomorphism of Dk ¥ D” onto h. But since ¢ is ¢® with non-

vanishing derivative in [0,1), it follows that F is a Cc®-isomorphism on Dk

x Dz.

On Sk-1 x DL, F reduces to F{x,y) = (e("y1|2 + 1))1/2x + elley (so fF(x,y)
= =¢) which is clearly a C®-isomorphism onto N N h, the set where f = -¢ and

||| < €. Q.E.D.
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VI. MAIN THEOREM

6.1. Lemma. Let Q and f be bounded, symmetric, non-degenerate bilinear
forms of a Hilbert space H; @ positive definite. Then there exists an ad-
missible inner product < , > in H such that Q(v,v) = <Gv,v> and f(v,v) = "Pv"2
- ”(1 - ?)V”2 where P is an orthogonal projection which commutes with G.

Proof. Since Q(u,v) is an admissible inner product in H, £(v,v) = Q(Av,V)
where A is self adjoint invertible operator with regpect to this inner pro-
duct. Let G = ‘A]_l and P = hlAI where h is the characteristic function of
[0,m) and define <u,v> = Q(|A]u,v).

Then Q(u,v) = Q('A| [Al-lu,v) = Q('AIGU,V) = <Bu,v>. Since any function
of A is self adjoint relative to < , >, P is an orthogonal projection, G a
positive operator in this inner product, and both being functions of A; they
commute, Now |l|-1k =h(}) - (1 - h(})\)) so GA=P - (I - P) so £(v,v)
= Q(Av,v) = <GAv,v> = MPv”2 - |l - »yv|?. a.E.D.

6.2, Remark. Let M be a complete Ck+2-Riemannian manifold (k =2 1) and £

Ck+2

a -Morse function on M, Let ¢ be a critical value of £. Without loss of

generality we assume that ¢ = 0. Let Pys Pps «ees Py be the critical points

of f with f(pi) = 0.

Let ki and Li be respectively the index and coindex of f at P - By the

Morse lemma we can find for some 6§ <1 a Ck-chart P, at P, whose image is the

ball of radius 286 in a Hilbert space H, such that mi(pi) = 0 and ﬁpll(v)

i

- “Pivu2 - b - Pi)v”2 where P, is an orthogonal projection in H, of rank g,

and (1 - Pi) has rank ki' Moreover, if G' is the positive operator in Hi

uniquely defined by <ﬂm;1(u),d$;l(v)> = «¢lu,v>, then by 6.1 there is a posi-
i i

tive operator Gi which commutes with Pi and <&p;l(v),d$;1(v)>p = <G1v,v>
i i i

= <Giv,v> for all v. Therefore Gl = Gi commutes with Pi'
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6.3. Proposition. Let V be a neighborhood of zero in a Hilbert space H
with inner product < , > made into a Ck+1-Riemannian manifold (k = 0) by de-
fining <@, = <G{(w)u,v> where G is a Ck-map of v into the invertible posi-
tive operators on H. Let P be an orthogonal projection in H which commutes
with G(0) and define £(v) = ||Bv||® - |I(1 - P)v]|°. Then for € > 0 suffi-
ciently small, if we define g(v) = £(v) ~ 3e/2 \(||Bv[|%/e) then (vD)g is C*
and does not vanish on the Z¢ ball about the origin except at the origin.

Proof., Let Q(x) = G(x)ul. Then ((0) commutes with P. Let T(x) = PO(x)

~ ((x)P so PO(x) = T(x) + Q(x)P. Note that

Jl(ep - Dx||® = <(2p - Dx, (2P - Dx>
= <PPx,2Px> - 2<2Px,x> + <X,X>
= Il
Therefore ||(2P - I)x|| = ||x}|. Hence

<Px,N(x) (2P = I)x> = <Px,PO(x) (2P - I)x>

<Px,T(x) (2P = I)x> + <Px,(x)P(X)>
> <Px,T(x) (2P - I)Xx> since ((x) is positive.
8o by Schwartz inequality we have
|<Px,T(x) (2P - I}x:>|2 < [fﬁileﬁrx{[el{(ay - I)x“2
< [|me® ||

or |<Px,T(x)(2P - I)x>| < ||Tx]|| "x“z, hence <Px,T(x)(2P - I)x> 2 - ||Tx|| ”x”e.

Thus
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(1) <Px,0(x)(2P - I)> > - "Tx” ||:ﬂ;||2

/2

Now since ||u||2 = au,u> = <11,G(x)1/2{7(x)1 w> = <G(:~:)1/2

u, 000 %
- <9060 2,000 2w < [le@ || ot Y2a)2 = Jleto || <0t 2u,000 P>
= e || <w,0(x)u>. Thus <(2P - Dx,Qx) (2P - Dx> 2 [I6(x) }|'1 |l¢ep - 1)x[|2
or

) <(@P - Dx,0) (2P - D> = |le@ |71 |Ix|1%.
Since T(0) = PO(0) - Q(0)P = 0 while [IG(0) H‘l > 0 we can find a neighborhood
U of the origin such that for x e U, ||6(x) e >% lT(x)|| sup |n'|. Since
' <0 it follows that for x ¢ U using (1), (2) 4[<(2P - I)x,0(x) (2P - I)x>
- 200 (xlPrer<x, 000 (22 - D] > 4l lew) 172 fxll - 2 4t cleliPre) (- iz |
CxlPyr = e |7t - 2 i ||Pre) | fiTx |7 fix]l 2 0. The above is al-
ways positive unless x = 0. Since f(v) = <Pv,Pv> - <(1 - P)v,v>
= «(2P - T)v,v> hence df _(y) = 2<(2P - I1)X,y> = 2<(x) (2P - I)x,y> . Thus V£,

= 20(x) (2P - I)x. Since g(v) = f(v) - %? k(||Pv"2/e)

3 2 2
dg () = df (y) - F N (|lex|[%/e) T <Px.y>
= df, () - 3" (||ex]|Ze)<Bx,y>,
Hence,
vE (g) = dg (Vf)

ag (vE) - 3" (|lex||®/e)<px,vE,>

2[<(2P - I)x,vfx> - 3)L'(|lPx||2/e)<Px,20(x) (2P - I)x>)

2f[<(2P - 1)x,20(x) (2P - I)x>

- 23" (|| ||%/e)<Bx,20(x) (2P - 1)x]
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= 4T<(2P - I)x,0(x) (2P - D>
X i 2
- S At (lex||%/e) <Px,0(x) (2P - 1)x>]
> 0.

The equality holds only if x = 0. This shows that (vf)g is non-vanishing on U
except at the origin. Q.E.D.

Without loss of generality, we may assume that U contains an open ball
around the origin of radius 28, where § was chosen before. Since critical
wvalues are isolated, we can choose € < 62 so small that 0 is the only critical
value of f in (-3€,3¢). let W = f-]'(-2e,a). Define g : W -+ R by g(cp;l(v))
= £, ) - Z a(||p,v]|/e) and equal to £(w) 1f w ¢ U, D(@,).

Note that if w = qozl(v) € W and f(w) # g(w) then by the definition of g,
l(llPiv"g/e) # 0 so ”Piv"2 < € hence f(w) = ”Piv"2 - |l - P]._)v“2 < € and
since w ¢ W, f(w) > -2¢ or ”Piv"2 & ”(l - P]._)v”2 > =2¢. So |l(1 - P]._)w"2
< 2 + ||Pivl]2 < 3e. Hence ||\.’r||2 = [la - Pi)vH’2 + IlPit:r"2 < 3¢ + € = be
< (26)2. Thus A = {we WD D(cp.l) | £(w) # g(w)}- c D(cpi)o. So if w € A then
W € D(CPJ-_)O and g(w) = g(Cp;l(V)) = f(tp;]'(v)) - 3?6 A ( "Piv"E/e) for some V
€ D(cpi) is Ck. If w ¢ A, then £(w) = g(w) hence is Ck also.

Claim. {we W | f(w) <€} ={weW | g(w) <e}. For if w e W and £(w)
> ¢ then f(w) = g(w), otherwise by the above argument we must have f(w) < €.

Moreover (vf)g is non-vanishing on D(cpi) except at P, - let £ = £ ° cp-l, then

?(v) f op(v) = |;|l?iv”2 + "(1 - Pi)wll2 satisfies the above proposition. So

ifg=g¢° tp;_l then v?(E) is non-vanishing in a ball of radius 25 except the

origin. Since dfx(v) = dfcpi(x) ° dtpix(v), dgx = dgcpi(x) ° d:pix, dfx(v)

= dfcpi(x) (dq:ix(v)) = <d:pix(v) ’Vfcpi(x)>cpi(x) = <chpix(v) ,vfcpi(x)> = “’Vf;?x



34

i - .
= <d°pi:1c ° d‘pix(“)’d“’ii v oy LTS5 o, =<6 Fxydp (VE)> = <dp; (V)
®; % - .. -
G (%) &$ix(vfx)>‘ Thus v%pi(x) =G (x) dmix(vfx). Hence (V)g(x) = dgx(fo)
1 -

(Vﬁpi(x)). Then by the same proof

- - © -
- d5$i(x)° dmix(vfx) = d%mi(x)o e i(x)*
as in the Hilbert space case, we can show that (vf)g is non-vanishing except
at p. . Thus we proved:
6.4. Proposition. (vf)g is Ck and does not vanish on Dﬁmi) except at p,.
6.5. Proposition. If g is the maximal integral curve of vf with initial

condition p, then yf is defined in V = {w e W l - %? < g(w) < %?].

Proof. Since f - %;-s g < f we have for we V, £ - %? <g< %?—implies
f(w) < %? + %? = %% € < 3¢, also -3e < - %? < g(w) < f(w). Thus if we V, -3¢

< f(w) < 3¢. But by our choice, 0 is the only critical value of f in (-3e,€).
Then the only possible critical points of f in V could be Pys +++s Pre But
g(Pi) = - %§-< - % sopy ¢ V. Thus f has no critical point in Vv . Now let
peVand let g : (@,8) + M be the maximal integral curve of yf with initial
condition r. Then by 4.4 either f(o(t)) +» e as t »+p so o(t) gets outside V
as t + p or else g has a ecritical point of f as limit point as t 4 g, but
since V has no critical point, o(t) must get outside V. Q.E.D.

6.6. Corollary. Vf is Ck-strongly transverse to g on [-€,e].

Proof. This follows from 6.4 and 6.5 and noting that f has no critical
point in V.

6.7. Theorem. Let f be a Ck+2-real valued Morse function on a complete
Ck+2-Riemannian manifold M (k > 1). Let Py pe, eess P be the distinct criti-
cal points of f on fpl(c) and let ki and zi be the index and coindex of f at
Py respectively. If a < ¢ < b and c is the only critical value of £ in [a,b]
then {x € M ] f(x) < b} is Ck-isomorphic to {x e M | f(x) < a}, with r-handles

of type (kl,zl, S— (kr,zr) disjointly Ck-attached.
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Proof, By the strong transversality theorem there is a Ck-isomﬂrphism h
of W onto itself such that h(w) =w if [g(¥)| 2 %E and h maps {w e W | g(w)
< =¢} Ck-isomorphically onto {we W | gw) se} ={we W | f(w) <e}. (Puta
= =-c, b=¢, § =¢ in that theorem.) We extend h to a Ck-isomorphism of M by
defining h(x) = x if x ¢ W, By 5.5 {x ¢ M | 8(x) <€} arises from [xeM |
f(x) < -e} by disjoint Ck-attachment of y-handles of type (kl,Ll), eras
(kr,Lr). But {x e M l g(x) se} ={xeM | f(x) <e}. Write [a,b] = [a,-€]
U [=e,e] U [e,b] and note that £ has no critical point in [a,-e¢] y [e,b].
Hence Ma is Ck-iSOmorphic to M—e and Mé is Ck-isamorphic to Hb where Md
={xeM [ f(x) <d}, d = a,b,e, or -e. By the above argument, we know that
He arises from M;E by attaching handles of type (ki,zi), i=1,2, .ea, ¥,

Q.E.D.
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VII. TOPOLOGICAL IMPLICATIONS

7.1. Theorem. Let M be a connected Cl-manifold, f : M2+ R a non-constant
Cl-function and K the set of critical points of £. Then if we denote K as the
the boundary of K, then f(ﬁ) = £(K).

Proof. Since K is clesed, K c K so f(ﬁ) c f(K). Let p € K. We will find
x € K such that £(x) = f(p). This will show that £(K) c f(ﬁ). Choose q ¢ M
with f(q) # f(p) and ¢ : I + M a Cl-path such that g(0) = p and o(1) = q by
3.,2. Put g(t) = £f(o(t)). Then g'(t) = dfc(t)(c'(t)). Since g is not con-
stant, g' £ 0. So o(I) ¢ K. (For if ¢g(I) c K, then dﬁc(t) =0 for all t
hence so is g'(t).) Let ty = inf {t e I I o(t) ¢ K}. Then x = U(to) € K and
g'(t) =0 for 0 <t < ty So f(x) = g(to) = g(0) = £(p), since g is constant
in [O,toj. Q.E.D.

7.2. Remark. Note that the connectedness of M is essential. TFor let M
be the disjoint union of two open sets with no boundary and f is constant on
each component, then f£(K) # £(K) .

7.3. Theorem. Let M be a Cl-Riemannian manifold, £f : M9 R a Cl—function
satisfying condition (C) and K the set of critical points of f. Then f ‘ K is
proper. By f | K is proper we mean that given -e < a <b < w, KN f-l[a,bj is
compact.

Proof. Let [pn} be a sequence in K with a < f(pn) < b, Since K is closed,
it suffices to show that {pn} has a convergent subsequence.

Since P, € ﬁ, by the definition of boundary point we can choose 9, ¢ K
arbitrarily close to p . In particular, since |[v£]] is continuous and ”vfpn"
= 0 we can choose 9. such that “qun” <1l/n, a -1 < f(qn) < b+ 1 and

p(qn,pn) < 1/n where p is the Riemannian metric for M. By condition (C) we can

find a subsequence [qn} converging to a critical point p of f. Since p(qn,pn)
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< 1/n, the corresponding subsequence of [pn} will converge to p. Q.E.D.

7.4. Remark. f | K need not be proper. For example if M is not compact
f = constant, then f satisfies (C) and K = M is not compact.

7.5. Theorem. Let M be a complete CE-Riemannian manifold and £ : M 4+ R
a Ce-function satisfying condition (C). If f is bounded below on a component

M

0 of M then £ | M0 assumes its greatest lower bound,

Proof. Without loss of generality, assume M is connected, and £ is not
constant. Let B = inf {£(x) | X € M}. Given € > 0, choose p € M such that
f(p) <B +e. 1fo0 : (@,B) » M is a maximum integral curve of Vf with initial
condition p then by theorem 4.4 @ = -e and o(t) has a critical point q as limit
point as t + =@, Since f(o(t)) is monotonic increasing f(q) < B + €.

By 7.1 we can find x in K such that f(x) <B +¢e¢. Lete =1/n, n=1, 2,

ess + Choose X such that B = f(xn) < B + 1/n, Then by 7.2, a subsequence of

{xn} will converge to a point x and clearly we must have £(x) B. Q.E.D.

7.6. Corollary, If the set of critical points K of f has no interior
and if f is bounded below on M then f assumes its greatest lower bound.

Proof. Let B = ;2§ f(x). For each n, we can choose x € K (a minimum of
f on some component of M) such that B < f(xn) <B + 1/n., Since K has no in-
terior and is closed K = K. So by 7.2 a subsequence of [xn} will converge to
a point x where f(x) = B. Q.E.D.

7.7. Remark. Note in 7.6 the hypothesis "f is bounded below" is replaced
by "f is bounded above", then the conclusion becomes "f assumes its least upper

bound". To see this, we just consider -f.

7.8. First Morse Inequality. Let M be a complete CE-Riemannian manifold

and f : M+ R be a C2-Morse function. Also let f be bounded below. Then there
are at least as many critical points of index zero as there are components of

M.
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Proof. By 7.5 we know that f assumes its minimum on each component. But
each point where f assumes its minimum is a critical point since f is a Morse
function is of index 0, Thus there are at least as many critical points of
index zero as there are components of M. Q.E.D.

Note, The first Morse inequality will be proved in 7.22 as Rg < C;
where C* is the number of critical points of index zero and R; = dim HO(M)'

0

Since R; is equal to the number of path components thus we shall prove 7.8.
But in 7.22 we shall use the fact that f is at least CB. This is because we
shall need Morse lemma in which f is at least C3.

7.9. Lemma. Let X be a convex subset of a Banach space E, and let A be
a subset of X, If A is a retract of X, then A is a strong deformation retract
of X.

Proof. Let r : X 4+ A be a retract. Sor | A = id Define h : X X I #+ x

A
by h(x,t) = (1 - t)x + tr(x). Then h is a strong deformation retract. Q.E.D.
7.10. Theorem. If H is an infinite-dimensional Hilbert space, D the
unit ball of H, and S the unit sphere of H, then 8§ is a strong deformation re-

tract. Q.E.D.

Proof. We first construct a fixed point free map of D into D.

Claim. We can embed R as a closed subset F of S.

Choose {xn]:;l an orthonormal set in H. Define f(t) = [cos HSEﬁf—El ]xn
+ [sin ELE?§—EL ]xn+l for n st <n+ 1. Then f is a homeomorphism onto F
= f(R). Then the map h : F + F given by h(f(t)) = £(t + 1) is continuous and
fixed point free. Since F is homeomorphic to R which is solid, by the Tietze
extension theorem we can extend h to ; : D F. Also h : DD is fixed point
free. Define r : D 4 S by rx = point where the directed line segment from

h(x) to x meets S.

The directed segment Sx is defined by Sx(t) = (1 - t)h(x) + tx. Solving
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t(x) in ||Sx(t)[|2 = 1 we have

~(h(x), x - B(x)) +J(BGE), x = b)) =[x - hem) |2 |[aeo |
[lx - heo ||?

£(x) =

So t(x) is continuous in x, Thus r(x) = Sx(t(x)) is continuous., Obviously r
is a retraction : D 4+ S. This theorem follows from 7.9. Q.E.D.
7.11. Theorem. Let H, be a Hilbert space of dimension di’ i=1,2, ...,

n; Di the closed unit disc in H,, and Si the unit sphere in Hi' Let g; ¢ Si -+

i
x be continuous with disjoint images in a topological space X. Suppose more-
over that di <wfori=1,2, +.., m and di = w for i > m. Then X Ugl D1
U ses Ugm Dm is a strong deformation retract of X Ugl D1 U ses Ugn Dn'

Proof. This follows from the above theorem by inductiom.

7.12. Corollary. If H, denotes the singular homology functor with any

coefficient G then

Hy(X Ugy Dy U eee Ugy Do

In particular,

. (1)
H (X Ugy Dy U wee Uy D) ~G

where c(r) is the number of indices i =1, 2, ..., n such that di =r,
Let N be a Hilbert manifold with boundary and suppose M arises from N by

disjoint Cr-attachments (fl’ f2, siiid fn) of handles of type (di,el}, e

(dn,en). Define attaching maps gy * Sdi"1 + aN by gi(y) = fi(y,o). Then N
dl dn . ; . dl

Ufi (D7 x0) U «ce Ufn (D0 X 0) can be identified with N Ugl D7 U euu

TR e

gn

7.13. Lemma. Let Dn be the unit ball in H, and Si = aDi, i=1, 2. Then

i

(D1 x {0 u (Sl X DE) is a strong deformation retract of D; X Dy.
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Proof. Since D1 X D2 is a convex subset of Hl X H2 it suffices to define

a retractionr : D, X D

1 - -+ Dl x 0 U Sl x D. as follows:

2
r(x,y) =(——"—"—2" 0) if |lx]| 2-“!-“— y#0
’ 2 o y ’ ! o) ]

- ('ﬂ—ﬂi , @zl + Nyl -2 - m) if |Ix|| = 1 - ﬂél
and y # 0
= (x,0) if y = 0.

Q.E.D.
By a finite induction, we can prove
n .
7.14. Theorem. N U U fi(Ddl % 0) is a strong deformation retract of M.
i=1

. s . . dl dm
Hence if di < e, i =1, 2, ..., m, di = e, 1 >m, then N Ugl DU eue Ugm D

is a strong deformation retract of M.

Then we can restate the Morse theory as:

7.15. Theorem. Let M be a complete C3-Riemannian manifold, £ : M9 R a
C3-Morse function, Let c be a critical value of f, Pys +e+s P be the critical
points of £ at level c, and let di be the index of P+ Assume di < o for all
i. If c is the only critical value of f in a closed interval [a,b], then Mb
has as a deformation retract Ha with cells of dimension dl, wieey dn disjointly
attached to BME by homeomorphisms of the boundary spheres. Hence if H, is the
singular homology functor with coefficient group G then Hk(Mb’Ma) A Gc(k)
where c(k) is the number of critical points of index k on the level c.

7.16. Definition. Let F be a fixed field and H,_ the singular homology
functor with coefficient F. We call the pair of spaces (X,Y) admissible if
H, (X,Y) is of finite type, i.e. each Hk(X,Y) is finite dimensional and Hk(X,Y)

= 0 except for finitely many k.
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From the exact homology sequence of a triple (X,Y,Z) it follows that if

(X,Y) and (Y,Z) are admissible then so is (X,Z).

let S be an integer valued function on admissible pairs, Then S is said

to be subadditive if S(X,Z) = S(X,Y) + X(Y,Z) for all triples (X,Y¥,Z) such
that (X,Y) and (Y,Z) are admissible. § is said to be additive if the above
inequality becomes an equality.

By induction we have if X DX ;2 ... 2%, and each (Xi+1,Xi) is ad-

missible it follows that (Xn,XO) is admissible and

n=-1
S(X.Xg) = Ty S(xi+1’xi)

if S is subadditive, equality holding if S is additive,

7.17. Definition. For each non-negative integer k we define integer

valued functions Rk and Sk on admissible pairs by

R, (X,¥) = dim H (X,Y)

_ k-m
8, (X,¥) = I (-1) R (X,Y)

m<k

and

= F (D" .
xx® = £ DH® R @D

7.18. Lemma. Rk and Sk are subadditive and ¥ is additive.

Proof. Let (X,Y,Z) be a triple of spaces such that (X,Y) and (Y,Z) are

admissible. Then from the exact homology sequence of (X,Y,Z)
S H (7,2) B u (X,2) S E (X,1) I N
a8 n m s m 3 m E] m-l 3 LA
we get three short exact sequences:

0~ Im(am+1) -+ Hm(Y,Z) -+ Im(im) -+ 0
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0 » Im(im) - Hm(X,Z) -+ Im(jm) -+ O
0 -+ Im(jm) = Hm(X,Y) + Im(dm) =+ 0

from which we obtain

Rm(Y,Z) = dim Em(Y,Z) = dim Im(@d_,;) + dim Im(im)
Rm(X,Z) = dim Hm(X,Z) = dim Im(im) + dim Im(jm)
Rm(X,Y) = dim Hm(X,Y) = dim Im(jm) + dim Im(3m).
Hence
(*) Rm(X,Z) - Rm(X,Y) - Rm(Y,Z) = -(dim Im(3m) + dim Im (3 _,;))-

Thus Rm(X,Z) < Rm(X,Y) + Rm(Y,Z). Also,

o

k=m
‘m=0 ("1) [Rm(x,Z) = Rm(st) = RIB(Y,Z)}

-m+1 ]
= Z:l=0 (-1)k [dim Im(3m) + dim Im(d 1)].
That is,

Sk(X,Z) - Sk(X,Y) - Sk(Y,Z) = (-1)k+1 dim Im BO - dim Im(dk + 1).

So §, (X,2) < 5, (X,Y) + X, (Y,2).

Similarly,

m
2o (-D" [Rm(x,2) - Ra(X,Y) - Ra(Y,2)]
- 52 D™ (din In@Ew + dim (In 3,,))

]

lim (-1 dim (Im k) - dim (Im 3,) =0 - 0 = 0.
ke 0
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So y is additive. Q.E.D.

7.19. Theorem. Let M be a complete CB-Riemannian manifold, £ : M3 R a
CB-Morse function. Let a and b be regular values of £, a > b. For each non-
negative integer m, let R denote the mth betti-number of (Mb,Ha) relative to
some fixed field F, and let Cm denote the number of critical points of £ of
index m in f-l([a,b]). Then

(1) R, =<C..

0 0

1° Ro < C1 - CG'

k kem k k-m
(3 Z£=O (=) Rm < Em=0 (-1) Cm'

(2 R

_ m _ m
) x4 M) =T o (D" Rn= 3 (-DY C.
Proof. Let €y <5 < ae <c, be critical values of f in [a,b]. Choose

a,, i=0,1,2, ..., n such that a = a_ < ¢, <a <c

i’ 0 2
= b. Put Xi = Hai = [x eM I f(x) < ai}. Then by theorem 7.14 (X1+1’X1) is

< ... < @ <c_<a
n-1 n n
admissible and Rk(xi+1,xi) = dim Hk(xi+1,xi) = Ci(k) = the number of critical

points of index k on the level Cye Then by definition
Sy oXy) = T DT R 10K

i L

m=0 Ci(m)’

and

-1 -1 k-m
Tieo Skia%) = T Fpep DT 0@
k-m -1
= ZE=0 QORI G
k-m
= Zﬂkl=0 (-l) le

By subadditivity
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This proves (3).

(1) and (2) follow from (3) immediately.

Now
— - m
X(Kp4q0%) = Tong D7 R(Xg 0K
m
= E:=o (-1)" ¢, (m)
while
n=-1 _ <=1 m
Tioo X(Eyq1oX) = Tl g (DG (m)

m _n-1
L (DR T 0@
_ m
=5 (-1 Cpe

Then (4) follows from the additivity of ¥. Q.E.D.

7.20. cCorollary. Rk < Ck for all k., Consequently T Rk < Ck

total number of critical points.

Proof. By (3) of the above theorem, we have

k

k-m k-m
mgﬁ (-1) Rm . ZﬁFO -1 Cm
and
k=1 k-1-m -1 k-1-m
£ D R Do g (-1) s

Adding we get Rk < Ck.

k k=-m _ -1 _ k-m
o CDETTR =S 00M) S T 8, (%K) T DT Cy

A

m

the
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7.21. Corollary. If f is bounded below then the conclusions of 7.18 and

the

7.19 remain valid if we interpret Rm = the mth betti-number of Mb and Cm
number of critical points of f having index m in Mb.

Proof. Choose a < g.l.b. f. Then M.a is empty.

7.22. Corollary. If f is bounded below then for each non-negative inte-
ger m, R: < C; where R: is the mth betti-number of M and C: is the total number
of critical points of f having index m.

Proof. By 7.20 we have C: - Rm(Mb) for any regular value b of f. Hence
it will suffice to show that if R: = dim Hm(M,F) > k for some integer k, then
Rm(Mb) > k for some regular value b of f. (For if we put k = R;, then we have
C: > Rm(Mb) > R:). Let hl’ h2’ ik » hk be linearly independent elements in
Hm(M;F), Zys Zps eers 2y be singular cycles of M which represent them, and C
a compact set containing the support of Zys Zos eess Zoo Then as b + « through
regular values of f then the interiors of Hb form an increasing sequence of
open gsets and cover M, hence C c:Mb for some regular value b of f. Then z1s
ZE’ sers Ty are singular cycles of Hb and no non-trivial linear combination
could be homologous to zero in Mb' Hence Rm(Mb) > k.

7.23. Remark. The assumption that f is bounded below is necessary in
7.22 as can be seen by considering the identity map of R which has no critical
points whereas R;(R) =1,

*

* *
7.24, If M is a torus, then R, =R, =1

o - R =L Ry

*
Hence Z Rk =4, i,e,, if f has only non-degenerate critical point then f must

*
= 2, and Rk =0 for k = 3.

have at least 4 critical points. This is not true for f admitting degenerate
critical points. See Pittcher [1]. Schwartz [1] generalized the Lusternik-
Schnirelman theory of the lower bound of the number of critical points to a

pair (M,f) where f satisfies condition (C).



VIiI. THE MANIFOLDS Hl(I,V) AND Q(V;P,Q)

8.1. Definition. Let HO(I,Rn) = {c HI R“ measurable and

1%1 ”c(t)”2 dt < w}. Then HO(I,Rn) becomes a Hilbert space if we define the

inner product < , >0 by <O,p>5 = ‘%1 <o(t),p(t)> dt where < , > is the inner
product in Rn. |

We define Hl(I,Rn) ={c:1~ R" | o absolutely continuous and g'
€ HO(I,Rn)}. Then HI(I,Rn) is a Hilbert space under the inner product < , >
defined by <T,p> = <0(0),p(0)> + <U',p'>0. In fact, the map : (p,g) =+ O : R

® HO(I,Rn} - Hl(I,Rn) where g(t) = p + ‘%t g(s)ds is an isometry onto. Clearly

*
p =~ 0(0). Define L : H (I,R") + H,(I,R") by Lo = 0' and H (I,R") = {0

e H (LR | 0(0) = o(1) = 0}. Let H’S(I,R“) = {g € ByI,RD) | j(‘)l g(t)dt = 0}.

8.2. Theorem. L is a bounded linear transformation of norm one,
*
HI(I,RP) is a closed linear subspace of codimension 2n in HI(I,Rn) and L maps
* * n
HI(I,Rn) isometrically onto HO(I,R ).
- 2 2 B 2
Proof. Since ||Lo|lg = |lo* lg = |lo(0)||= + |lo* ||5 = |lo]|] therefore [|L]|
< 1. But if 0 is such that o(0) = 0, then we see that |[|L|| = L.
x
It is easy to see that HI(I,Rn) is a linear subspace of Hl(I,Rn). To see
*
that it is closed, let O, ¢ Hl(I,Rn) and let 0, -+ 0 in Hl(I,Rn) where 0, (t)

k |3

- J;t o1 (s)ds, 0, (1) = 0 and o(t) = 0(0) + ,j;t ¢'(s)ds. Then as [lo, - ol

<0 (0) ,0(0)> + J‘l ”Ui(s) - G'(s)”2 ds tends to zero, we must have o(0) = 0
0

and o! =+ o' almost everywhere. So o(l) = j’l o'(s)ds = liux‘rl g'(s)ds = lim
k 0 k % k
* n F o * n, .
ck(l) =0, So0c e Hl(I,R ). Clearly, HO is closed and L maps Hl(I,R ) iso-
*
metrically onto HO(I,RP).

*
Claim. HO(I,Rn) is the orthogonal complement in HO(I,RH) of the set of

constant maps of I into R".
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*
If g ¢ HO(I,RF) and h is a constant function om I then <‘g,h>o = trl <g(t),
0

= 0 for all constant

h(t)>dt = h f' g(t)dt = 0. On the other hand if <g,h>,
0

maps, then in particular let h = 1, then we have J‘l g(t)de = <g,1>0
0

* n * n - n n
HO(I,R ). But HO(I,R ) has codimension n in HO(I,R ) and Hl(I,R )

=0 sog

m

®
HO(I,Rn) @ R" so HO(I,R“) has codimension 2n in Hl(I,Rn). Q.E.D.

*
8.3. Theorem. If p ¢ Hl(I,Rn) and ) is an absolutely continuous map of

[

into R" then J’l Q' (1) ,p(t)>dt = q,-Lp>0.
0

Proof. Since the composition map t - p(t) = <(t),p(t)> is absolutely
continuous, <)\'(t),p(t)>' exists and is equal to < '(t),p(t)> + <A(t),p'(t)>.

S0 0 = < (1),p(1)> = <A(0),p(0)> = J;l A(L) ,p(E)>'dt = J;l ' (£),p(6)>dt

+ 1 Q(t),p'(t)>dt. Therefore, Il ' (t) ,p(t)>dt = - J’l a(t),p'(£)> dt
0

0
A(t),-Lp>dt = <),=Lp>;. Q.E.D.

!
=J=1
0

8.4, Remark. Let CD(I,Rn) be the Banach space of all continuous maps of
I into R” with norm I "u defined by Ik}"a = sup {|loCt)]| : £ € I}. Let i be
the inclusion map : CO(I,RP) -+ HO(I,Rn) and let g,p € CO(I,Rn), then ||i(0)

- 1@ |15 = llo - P”g - J‘ol lloce) - p(e)|IZ et = |lo - pui. So is is uniformly

continuous,

We recall that by the Ascoli-Arzela theorem a subset S of CO(I,Rn) is to-
tally bounded iff it is bounded and equicontinuous. Thus § is also totally
bounded in HD(I,RH).

8.5, Theorem. If o € Hl(I,Rn) then ]k:”w < 2]h3"1.

Proof. Since
2 2 ne
llallL = Nlo@ || + Jlo* ]I

llolly = lloc@ ||



”Uul 2 ”U'“o'

Therefore

oy Il = [loc@ || + [loce) - o0y ||
< llolly + I L5 o' o)as]]
0
=

llofly + £ llo" @) ]| as

A

flofl, + £ llo" (o) [ ds
0

= llofly + Na'lly < 2lloll;-

Thus [lol|_ = 2|lof);. Q.E.D.

8.6, Corollary. The inclusion maps of Hl(I,Rn) into CO(I,Rn) and
HO(I,Rn) is completely continuous. f is said to be completely continuous if
f maps every bounded subset onto a totally bounded set.

Proof. Suppose S5 is bounded in Hl(I,Rn), then by 8.5 S is bounded in

CU(I,Rn). For any 0 € S, ||o(S) - c(t)“ < JLt o' x) || ax < |t - sllla |!c'|l0

< [t - s!llg “01[1 < [t - 5[1/2 K (where K is a bound for § in Hl(I,Rn).

This says that S5 is equicontinuous in CO(I,Rn). So 8 is totally bounded
in CD(I,Rn) by Ascoli=Arzela theorem.

We have shown that every totally bounded set in CO(I,RH) is totally
bounded in HO(I,Rn). Thus the composition map Hl(I,Rn) - CD(I,Rn) ) HO(I,Rn)
is completely continuous., Q.E.D,

8.7. Lemma, Let F be a Cl-map of R" into LS(Rn,Rp). Then the map F of
H,(1,K") into LS(HI(I,Rn) ) (1,RP)) defined by F(0) (Ays +vs A (D)

= F(c(t))(ll(t)s s xs(t)) is continuous. Moreover if F is C3 then F is C1
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and dF = dF.

Proof, First we note that
(F(©) (hys =ers AN (D) = AF_ (@ (OO (E)5 evs A (E))
+ T FOED A (B)s wees AJ(E)5 ees A (D)
This can be seen from the following consideration:
FO) (hys =oes A (E + AL) = FO Oy, oees A (D)
= Flo(t + A (A (E + AE), woey A (T F At))
- F(a(t)) (A (£ + 8E), vy A (E + AL))
+ F(a()) (A (e + L), ceny A (E + At))
= F(O()) O (8), A(E + 48), ooy A (€ +AE)) + ...
+ FOE) A (D)5 ees Ag_1(E), A (E +AE))
- F(@(E)) (A (B 5 «vvs A (D))
Hence
' F@ gy +ees AN (O]
< flam ol flo* @1 @ o Ingce) |
+ E:=1 e || @ <o @I . o]
< Goup [lam ey I3 1oL gl = Mgl

+ 2i=1 (sgp IF@en D ”;\1”a s |!ki(t)|| we l[ks|le.



But ”}‘i ”a < 2'“1"1’ we have
S
< (sup ”dFU(t) I - lo* 6 I il—l]. 2° ”?\1“1

4%t 2i=1 (sup llFCacen D IIx; e |l

n A
C0 gl e Iy oo Mgl
Take || "0 and use the triangle inequality:
IEF©@ s -ees 2 g

< 2° iﬁ-l g lly sue Nlar Il Hlo* Il

s=1 _s

+2 I, sup N |l o[y ... ||)\'l]|0 l“‘s"l'

1=
Again use the fact that ||x;._"0 < H"i"l' So we have
HE@) g5 eees A"

g &
2 151 "11"1 SEP ”ch(t) ! ”U'HO

s-1 =
+ 2 s sup ”F(O(t))" 121 ”li”]_

< 2% m_y I lly (sup JlaF g1 Jlo" flg + s sup [IF(a() |

=25

Moy gl v
where L(g) = sup "ch(t) I |l “0 + s sup |[[F(o(t))|l. Also

TP ys wees 2D,

ol B HCOM O NERFRWON |

50
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= sgP RGO 'ﬁl |lki(t)“] (since F(o(t)) is multilinear)
1= ' v
8
S L) lIx; Il sup IF(ae)) |
8 5
=2° m, Il sep [IFCGaCeN I

since [lo]|Z = loco) |2 + [l N2 = [lo]lZ + [lo" 13- so
T Oys wees AJN]
< [F@ O weea A2+ NE@ Gy s AN Il
<125 1% I |07 Tsup [[FGo(en || P + 2% 15, |, |l L) °
i=1 Apligd L5 ! i=1 Wil
= [2° n2=1 HkiH132 [(sup HF(c(t))H)2 + L@
2.2

= 2° ey I NIEY° X .

Therefore

—_ 5
IF@ Ogs -ees a0y =2° 15, Iyl ;@ =r@ T Il

Since F is clearly multilinear, it follows from the above that F(o)

€ LS(Hl(I,Rn),Hl(I,RP)). If p e Hl(I,Rn) then

((F(0) - F(p)) (xys +=vs A D) '(E)

(F@ (s +vs AN (®) = (FOIOps -oes A ) (D)
= dF (0 () (A (8] wers A(ED)

£ 05 FOE)I (8, cees A{(E), wens A (D)
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- [de(t)(p'(t))(xl(t), cees A (E))
+355_ FODI (D), wees A (), ees A(EN]

= [dF 1y (0" (O)) - dF ¢y @' (EN IO (B)5 eees ag ()

+ [AF (y (PT(E)) - dF 0y (P (D) G (6D -evs kg (D)

£ 55 (FO(D) = FREN O, coes X(E)s ees A (D)
Thus

|(F(o) - Fe) Oys «-es 2D (O]
s 1y Il Nlot e = et @] - g (® ]

+ ||dF et Iyl oon ol

oty ~ Foo
+ 75 [IF@(e) - BN |l @ e @] ... [Iag (o) |
< (sup 14E oy I 0" () - p' (e ||

+ (s%p UdF de(t)u) “p‘(t)”

a(t)
47 (sup [IFCO() - B )« T %
By the triangle inequality we have
I F) - F(e) Oys +-0 2" g
< [sup |ldaF Il llo" - o'[lg + sup [laF oy - aF ] o' llg
+ sup ||F(a(t)) - F(p(e) |2 2% - iil ||li|[1

8 s
g 3 Ix; Il ™G,p)]
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where M(o,p) = sup “dFU(t)!! « o' - p'ﬂo + sup "dFo(t) - de(t)“ ”p'“o

+ s sup |lF(G(t)) - F(p(t))|l. Also we have
|(Fo) = T (s +-vs 2D,

< 2% sup |[F(a(e)) - FCeN || g lly oo IDgllye

Hence
| F©) - FEN Qs -ovs 2Dy
s |(F@ - FED Qs -ovs 2) g
+ [ICF@ = FEDOys «+os AN g

< sup [|[FGo(8)) - FGp(eN || + Mo,p) ] 2° M5 114

- g |

= K(o,p) 0, gty
So |"f(c) - F(p)]“ < K(o,p) where ||| [l is the norm in LB(HI(I,Rn),Hl(I,RP))

and K(og,p) =+ 0 if sup |]F(c(t)) - F(p(t))ll, sup llch(t) - de(t)ll and

lle' - p‘"0 all approach zero. But if p + 0 in Hl(I,Rn), then since |lo - p"e
<2 ”c - p”1 so p + o uniformly. Hence since F and dF are continuous, F(p(t))
-+ F(o(t)) uniformly and de(t) -+ ch(t) uniformly, so K(o,p) =+ 0. Thus

IHF(G) - F(p)'” +0 so F is continuous. This proves the first part of the

lemma.

Now suppose F is 03 so dF is Ce, then by mean value theorem, there is a
clomap R : R® + LE®,L5(R™,R™)) such that if x = p + v then F(x) - F(p) - dF (V)
= R(x)(v,v). Then R : H (I,R") = 12, (1,8Y, Hy(1,1°(R",RP))) 1s continuous
by the first part of the lemma. (Here we embed Ls(Rn,Rp) into some Euclidean

space.,) Now if x =p + O and ¢ are in Hl(I,RP) then
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Fo - F©) - IF_(EDQps «oes A (D)

F(x(t)) - F(a(t)) - dF(c(t))(kl(t), eees A (E))

R(x(2)) (0(£) ,p(E)) (g (E)5 +vny A (ED)

R(X) (P3P (s +ees A (E)-

Clearly EF? is linear in p and R(x) is o(|lp]|). Thus Ef& = df&. Since O is
arbitrary, we must have dF = dF. Q.E.D.

8.8, Theorem. If @ : R +RP is a Ck+2-map then o+ ? 0 is a Ck-map
o : Hl(I,Rn) - Hlu,kp). Moreover if 1 £m < k then dmac(’*r cens A
= d“&b(t)(xl(t), cees A_(ED).

Proof. Let F = d% for 0 s s sk - 1 then Fe C°. So F : R* 4 L°R",RP)

induces F = d% : Hl(I,Rn) ” LS(HI(I,RH) ,HI(I,LS(R“,RP))) is ¢* and dF = dF,

i.e. d(dsqg) = d(dscp) = ds+1cp. Thus we can proceed by mathematical induction,

Q.E.D.
i m n mn

8.9. Theorem. Consider R and R as complementary subspaces of R .
Then the map (A,g) + A + g is an isometry of HI(I,Rm) (3] Hl(I,Rn) onto

m+n
Hl(I,R Y

Proof. The norm of (},0) in Hl(I,Rm) @HI(I,Rn) is “(.\,c) " = ”l”m
+ "U"n whereas () + o)(t) = O‘l(t)’ PR )Hn(t), cl(t), PP crn(t)). Hence it
is easy to see that ()\,0) + A + ¢ is an isometry. Moreover by 8.8 the map is
™,

8.10. Definition. Let V be a finite dimensional Cl-manifold. We define
Hl(I,V) to be the set of continuous maps g of I into V such that @ ® o is ab-

solutely continuous and [[(p ° 0)'|l locally square summable for each chart g

for V.



55

I£V is C° and 0 ¢ H(I,V) we define H (I,V)_ = {\ € B (I,T(M) | A(D)

Vo(ey for all te I}. 1If P,Q e V, we define ((V;P,Q) = {0 € H;(I,V) | o0

P, 0(1) = Q} and if 0 € ((V;P,Q) we define O(V;P,Q) _ = {xe H, (1,V) | 2 (®

6, and A(1) - O

P o}

8.11. Remark, HI(I’V)G is a vector space under pointwise operations,

For if ll’ kg € Hl(I’V)c’ then xl(t), xz(t) € vc(t)' Thus xl(t) + axe(t)

eV where a is a real number, which implies Y + a\, € Hl(I’V)c' Similarly

o(t)
Q(V;P,szis a subspace of Hl(I’V)U'

8.12, Proposition. If V is a closed Ck+4-submanifold of R" (k =2 1),

then Hl(I,V) consists of all o ¢ Hl(I,Rn) such that og(I) € V and is closed in
n
Hl(I,R ).

Proof. Let O € Hl(I,Rn) and 0(I) € V. Let tp be a chart for V. Then it
is easy to check that © ° 0 is absolutely continuous and l!(m ] c)'ll is square
summable. Thus O € Hl(I,V). Conversely, if ¢ ¢ Hl(I,V) then by definition for
each chart ¢p on V, ® ° 0 is absolutely continuous and ”(¢ ° c)'" is square
summable.

Since V is a closed submanifold of R" then i, the inclusion map of V into

n ., n
R is a chart for V. S0 o € Hl(I,R ).

Next, since Hl(I,V) is closed in CO(I,Rn) by 8.6 is hence closed in
Hl(I,Rn). Q.E.D.

, k+4 . n ;

8.13. Theorem. If V is a closed ¢ -submanifold of R then HI(I,V) is
a closed Ck-submanifold of Hl(I,Rp). Also ((V;P,Q) is a closed Ck-submanifold
of HI(I,V). If 0 ¢ Hl{I,V) then the tangent space to Hl(I,V) at o is just

Hl(I,V)U which is equal to {) € Hl(I,Rn) [ awWe) e v vteI}. 1Ifo

o(t)
€ Q(V;P,Q) then the tangent space to ((V;P,Q) at o is just Q(V;P,Q)g which

equals {X € H (I,V)_ | A(0) = a(1) = 0},
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Proof. Here we shall only prove that Hl(I,V) is a Ck-submanifold of
Hl(I,Rn) and Hl(I,V)Cr is the tangent space of Hl(I,V)c. The proof for
Q(V:P,Q) is similar.

Since V is a Ck+4-submanifold of Rn, we can find a Ck+3-Riemannian metric
for R” such that V is a totally geodesic submanifold. Then if E : R® x &% 4 R"
is the corresponding exponential map (i.e. t -+ E{p,tv) is the geodesic starting
from p with tangent vector v). E is Ck+2. Let O € HI(I,V) define @ : Hl(I,Rn)
- Hl(I,Rn) by p(A) () = E(g(t),A(t)). Then by 8.8 and 8.9 p is Ck and clearly

@(0) = g. Moreover, by 8.8 dpo(x)(t) = dEU(t)(l(t)) where Eo(t)

0
o(t) | g n ; ' y
0 is the identity map of R, hence dmo is the identity map of

Hl(I,Rn), so by the inverse function theorem, ¢ maps a neighborhood of zero in

(v) = E(a(t),V).

Since dE

Hl(I,Rn) Ck—iSOmorphically onto a neighborhood of 0 in HI(I,Rn).

Claim. If ) is close enough to 0 in HI(I,RH) then op(}) € Hl(I,V) iff )
€ Hi(I,V) .

For if o)) € HI(I,V) implies @(})(t) € V for all t € I or E(o(t);r (L))
€ V for all t, That is, ¢(}) is a geodesic in V, hence is a geodesic in R" and
is close to o. Thus, ) € Hl(I’V)c' Conversely, if ) € Hl(I’V)c then ¢(})
€ Hl(I,Rn) and @(3) is close to o, which is in Hl(I,V) so @(x) € Hl(I,V).

Hence m-l restricted to a neighborhood of ¢ is a neighborhood of 0 in
Hl(I,V)0 which is the restriction of a Ck-chart for Hl(I,Rn) so is a chart in
HI(I,V). Q.E.D.

8.14. Theorem. Let V and W be closed Ck+4-submanifolds of R" and R
respectively (k =2 1) and let @ : V 3 W be a Ck+4-map. Then 5': HI(I,V) -+
Hl(I,W) defined by 5{0) =@ °¢g is a Ck-map of Hl(I,V) into Hl(I,W). Moreover
dp

i % Hl(I,V)C " Hl(I’W)E(U) is given by dmc(l)(t) = dmg(t)(x(t)).

Proof. Extend i to a Ck+4-map of R" into R" then the theorem follows

from 8.8 and 8.13 and then by taking proper restrictions. Q.E.D.
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8.15. Definition. Let V be a Ck+4-manifold of infinite dimension (k =z 1)
and let j : V 9 R" be a Ck+4-imbedding of V as a closed submanifold of a
Euclidean space (by Whitney's theorem). Then by the above theorem, the Ck-
structures induced omn Hl(I,V) and (V;P,Q) as closed Ck-submanifolds of
Hl(I,Rn) are independent of j. Hence we shall regard HI(I,V) and Q(V;P,Q) as
Ck-Hilbert manifolds.

8.16., Definition. Let V be a Ck+4-finite dimensional Riemannian mani=-
fold (k = 1). We define a real valued function Jv on HI(I,V) called the action
integral by JV(U) =% J;l |'0"(t) ||2 dt.

8.17. Theorem. Let V and W be Ck+&-Riemannian manifolds of finite di-

mension and let @ : V2 W be a Ck+4-10ca1 isometry. Then Jv = Jw ° 51

Proof. Since (@(0))'(t) = (@ © 0)'(t) = dpc(t)(o'(t)). Since d$o(t)

F = ' ' \Y
maps Vc isometrically into Qm(c(t)), 1|(m(0)) (t)|] = ||o (t)|!. So J (o)

JW

()

-3 LM e @ | ae = o) @ 4 - 3 e 5o,
0

8.18. Corollary. If V is a Ck+4-Riemannian submanifold of the Ck*é-

Riemannian manifold W then JV = JW | Hl(I,V).

8.19. Corollary. If V is a closed Ck+4-submanifold of R" then Jv(c)

= % “Lcug. Consequently JV : HI(I’V) 2 R is Ck_

n n
Proof. By definition I (0) =2 [Lof|5. so 3% =% | B (I,M). since

n n
JR is a continuous quadratic form on HI(I,Rn), JR is C’, hence so the re-

striction to the closed Ck-submanifold Hl(I,V) is Ck. Q.E.D.

8.20. Corollary. If V is a complete finite dimensional Ck+4-Riemannian

v

manifold then J is a Ck-real valued function on Hl(I,V).

Proof. By a theorem of Nash V can be Ck+4-imbedded isometrically in some
R™. Then the corollary follows from 8.19. Q.E.D.

8.21. Theorem. If V is a closed Ckﬁa-subm&nifold of R" then Hl(I,V) is
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a complete Ck-Riemannian manifold in the Riemannian structure induced omn it as
a closed ck-submanifold of Hl(I,RP).

8.22. Remark., The Riemannian structure on Hl(I,V) induced on it by an
imbedding onto a closed submanifold of some R" depends on the imbedding. To
be more precise if V and W are closed submanifolds of Euclidean spaces and
@ : VW is an isometry it does not follow that 5': Hl(I,V) - HI(I,W) is an
isometry.

For example, let V = RE, W= R3 and ©» : (x,y) <+ (x cos x, x sin %, y).
Then H(x,y)l]2 = x2 + y2 = ”¢(x,y)"2. But (p{x,y))'(t) = (x' cos x
- x x' sin x, x' sin X + x x' cos x, y) where x,y are functions of t. Then if
we put o(t) = (x(t),y(t)), then as we just calculated H(m o o)‘(t)”2
= x'E(l + x2) + y'2 whereas ”U'(t)"2 = x'2 + y'z.

8.23. Theorem. If V is a closed Ck+4-submanifold of R and P,Q € V then
((V;P,Q) is included in a translate of H:(I,Rn) and Q(V;P,Q)c c H:(I,Rp).

Proof. If o and p are in (V;P,Q) then 0 - p € H:(I,Rn), s0o 0 € p
+ H:(I,Rn). If A € Q(V;P,Q)0 then » + 0 € Q(V;P,Q). Therefore =) +0 -0
€ -0 + (AV;P,Q) ¢ HT(I,RH). Q.E.D.

8.24., Corollary. If we regard ((V;P,Q) as a Riemannian submanifold of
Hl(I,Rn) then the inner product < , s in Q(V;P,Q)0 is given by <p,x>o
= <Lp,Lk>0.

Proof. This follows from 8.23 and 8.2.

8.25. Corollary. If S c (V;P,Q) and if Jv is bounded on S then S is to-
tally bounded in CO(I,Rn} and HO(I,Rn).

Proof. Since JV(U) = %'I!L°1'§’ [|L0]|0 is bounded on S. Since $ is in-
cluded in a translate of H:(I,Rn) so by 8.2 L is an isometry on HT(I,RP). s

is bounded in H1(I,Rn) hence by 8.6 S is totally bounded in CO(I,RP) and

HO(I,Rn). Q.E.D.
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8.26., If [cn} is a sequence in Q(V;P,Q) and ”L(Un - Um)uo 40 as n,m+ e
then o, converges in O(V;P,Q).

Proof. Since o, - Um € Hi(I,Rn) and L is an isometry on H:(I,Rn); [Gn} is
Cauchy in,Hl(I,Rn) hence convergent in HI(I,Rn) but Q(V;P,Q) is closed in
HI(I,Rn) and the corollary follows. Q.E.D.

8.27. Definition. Let V be a closed Ck+4-submanifold of R® (k 2 1) and
let P,Q e V. If 0 ¢ O(V;P,Q) then we define h(g) to be the orthogonal pro-
jection of Lo on the orthogonal complement of L(Q(V;P,Q)U) in HO(I,Rn).

8.28. Theorem. Let V be a closed Ck+4-submanif01d of R" {k 2 1), P,Q
€ V and let J be the restriction of JV to ((V;P,Q). If we comsider (O(V;P,Q)
as a Riemannian manifold in the structure induced on it as a closed submani-
fold of Hl(I,Rn), then for each o ¢ Q(V;P,Q) VJU can be characterized as the
unique element of Q(V;P,Q)G mapped by L onto Lo - h(c). Moreover HVJUHG
= ||lro - h(G)“o-

Proof. Since (V;P,Q) is a closed subspace of Hl(I,Rn) and is included
in H:(I,Rn), by 8.2 L maps Q(V;P,Q)U isometrically onto a closed subspace of
HO(I,Rn) which, therefore, is the orthogonal complement of its orthogonal
complement.

Since Lo - h(o) is orthogonal to the orthogonal complement of L(Q(V;P,Q)c}

it is therefore of the form L) for some ) € Q(V;P,Q)0 and since L is an iso-

metry on Q(V;P,Q)U, 3 is unique and 'fk”c ”Lk"o = ”LG - h(U)”O. So it
suffices to show that dJU(p) = <AsP>, for p € Q(V;P,Q)cr or by 8.24 to show
dJU(p) = <d,Lp>g = <o - h(c),Lp>0 for p € Q(V;P,Q)c. Since by definition
n
<h(o),Lp>b = 0 we need to show dJU(p) = <LU,Lp>0 for p € Q(V;P,Q)G. Now JR (0)
n n
=% l|Lol|§, so ng (p) = <LU,Lp>0 for p € Hl(I,Rn). Since J = JR l a(v;P,Q),

o iR ,
so dJ_ = dJ_ | Q(V;P,Q) ;. Q.E.D.
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IX. ACTION INTEGRAL J
Let V be a closed Ck+4-submanifold of R" (k 23), P,Qe V, and J = JV I
(V;P,Q). We proved that ((V;P,Q) is a complete Ck-Riemannian manifold in the
Riemannian structure induced on it as a closed submanifold of HI(I,RF) and J is
a Ck-real valued function.

9.1. Definition. Define ( : V = L(Rn,Rn) by Q(p) = orthogonal projection
of R" on VP. Then () is Ck+3. If 0 in ((V;P,Q) we define E(V;P,Q)o to be the
closure of Q(V;P,Q)U in HO(I,RP) and we define PU to be the orthogonal pro-
jection of HO(I,Rn) on E(V;P.Q)U-

9.2. Theorem. If 0 e N(V;P,Q) then ((V;P,Q) = {X € Hy(I,R") | A(t)

eV for almost all t € I}; and if ) € HO(I,Rn) then (PGA)(t) = (o (t))A(t).

o(t)
* n
Also PU(Hl(I’R )) = Q(V,P,Q)U-

Proof. Define a linear transformation Iy on HO(I,Rn) by (ch)(t)

(o(t))r(t). Then Hg(x)(t) = HO(HU(X))(t) = Q(U(t))(ﬂc(k)(t))

n

o () 0 (EDA(E) = Ao(E)r(t) = T A(t). Also we have

Ih @ o> e

< (W sh'>
a 0

Pl aeE® ' (0> de
0

Jl A(t),o(e))A"(e)> dt
0

%1 AMLI_ AN ©)> de = QTR

So J] is self-adjoint, hence is an orthogonal projection.
o]

If )\ € H:(I,Rn) then ) € HI(I,RP) and »(0) = 3»(1) = 0, so (Hck)(O)

Qo (0))A(0) =0 = (nox)(l). Also by the definition of (), (Hck)(t)

Q(0(DIN(E) is in Vo for all &, so T maps H)(I,R") into Q(VP,Q) . Onto
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is also clear.
* n
Claim. Hl(I,RF) is dense in Hy(I,R).
*

It suffices to show that Hl(I,R) is dense in HO(I,R). Note that CO(I,R)
is dense in HD(I,R) and the polynomials on I are dense in CO(I,R).

Let ) € HO(I,R). Then for any given € > 0 there is a polynomial p within
¢/3 neighborhood of ). Let M = sup {lp(t)|}. Choose 6 > 0 such that GM?

t

1 2 ’ *
<3 (e/3)". Define f ¢ Hl(I,R) by

f(e)=-g-p(6) 0O<ts<b
= p(t) §<t<l=25
1 -t
== - 8 1-6st=<l,

Then
lp - fn§= J;l lp - £|° at = J;5 lo - £]% at + {1 lp - £|° at
=6

< 8 Pac + 1 oPar = 2 < (/9%
0 1-5

So |‘p - f”o <e/3. so |la - f"o < “X - p“o + |lp - f”D < % € < €. Thus

*
HI(I,R) is dense in HO(I,R).

n_(A (1Y) © 1 (i (LAY = I G (1,ED)

* n . = .
= HO.(H-]_(I:R )) - Q(V,P:Q)O_-

5 = n L =
So we have HU(HO(I’R )) Q(V,P,Q)c. Hence HU Pc'
On the other hand, if ) € HO(I,Rn) is fixed by [ 1ff Ala(E)IN(E) = A (t)

a.e. iff (o(E)Ia(t) € Vb(t) a.e. That is, iff )\(t) € Vc<t) a.e. Q.E.D.

9.3. Corollary, If o e Q(V;P,Q) then PgLo = Lo.
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Proof. Since (Lo)(t)

]

o'(t) € Vc(t) whenever ¢' is defined so Lo

€ E(V;P,Q)U = Po(HO(I,Rn)) a.e. So Pglo = Lo a.e. But these two functions

are continuous. Q.E.D.

9.4. Theorem. Let T ¢ HO(I,L{RF,RP)) and define for each ) ¢ HO(I,Rn) a

measurable function T(}) : I = rP by T()) (t) = T(t)A(t). Then

(1) T is a bounded linear transformation of HO(I,Rn) into Ll(I,Rp);

(2 If T and ) are absolutely continuous then so is T) and ﬁfk)'(t)
= T' (DA (E) + T(E)N"(E);

(3) IfTe H (L,LER"RP), A e B (I,R) then T) € H, (1,R").

Proof. Case 1. p=n =1,

(1) Then T : I »L(R,R), X € Hy(I,R) and T(A) : I + R by T()) (t)

= T(t))(t). Thus

J;l T(e)ace) ]| ae JHa@v @] ae
0

A

J;l Ty |l |Iacer || ae

n

C P o 12 2 gl e | an'?
0 0

by Schwartz inequality. Since T e Hy(I,L(R,R)) ||T!_|2

= P |2 ac <@ so 1 IToA® || dt = fITl 1Al . This
0 0

implies that T is bounded.

(2) If ) and T are absolutely continuous, then (THO) ' () = (T(E)(E))'
= T(£) 'A(t) + T(E)A'(¥).

(3) IfT e H(I,LR,R)); X € H (I,R), then T\ € H (I,R). Since T

€ Hy(I,L(R,R)), ,];1 flT' (v) ||2 dt < ®». Hence
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.l;l N@ )% ac = §1 T ©or® + T ©||° e
0

< fHohr oo |?
0

+2|lT o || [l | (Il
2
+ |lten |77 at

< 2 J;l Il (&) |2 at
w2l lzll, J;l e ey || [ eey || ae

S IO

By Schwartz inequality we have J’l "T'(t)“ “l'(t)‘! dt
0
s PP @) ant’? J;l D2 < @ so
0
‘r]'||(TX)'(t)|[2 dt < », i.e. T\ € H, (I,R).
0

Case 2. General case.

Let ) € Hl(I,Rn) and A(£) = (Ay(E)5 ooy A (E)). Let T e HO(I,L(R“,RP))
be T(t) = (Tij(t))ij where T, . (t) € L(R,R). Then T)(t) = T(t)Ar(t)
= (Tij(t)ij(Ki(t))t = (EiTij(t)ki(t))j. If T and ) are absolutely continuous

then so are the T,, and ), and
ij i

(TH) ' (t) (Ei(xi(t)Tij(t))')j

[

T'()h(t) + T(EIA"(L).

So the theorem follows by looking at the components. Q.E.D.
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9.5. Definition. Given 0 ¢ ((V;B,Q) we define G_ ¢ Hl(I,L(Rn,RP)) by
= o i 0 P — '
G0 Q ° g, and we define QG € HO(I,L(R ,R7)) by QU GU'
9.6. Theorem. Let o € Q(V;P,Q). If pe Hl(I,Rn) then (LB - B L)p(t)
n

= Qc(t)p(t). Given f ¢ HO(I,Rn) define an absolutely continuous map g : I + R

s t * n = -
by g(t) = J; Qo_(s)f(s)ds. Then if p e H (I,R") <f,(LP PO_L)p>0 <g Lp>0.

Proof. Since P p(t) = D(o(e))p(t) = GG(P(t)) = e p(t) and PG(LD)(t)

fi
I

6 (E)Lp(t) = G_(t)p'(t), since Q (t)p(t) + P Lo(E) Go(B)p(t) + G (B)p'(E)

(G () ° p(t))' = (G ° PY'(t) = ((0 °0) o p)'(E) = (B P)'(t) = LB p(L), so
(LPU - PGL)p(t) = Qo(t)p(t). By 9.2 and the above argument, we have s -
Qo(s)f(s) is summable so g is absolutely continuous.

Note that since Gc(t) = O(o(t)) is self-adjoint for all t, Qo(t) = Gé(t)

is self-adjoint whenever it is defined, hence

<;f,(LPc - POL)p>D JEI <f(t),QU(t)p(t)>dt

L (E(e),p(e)>de
0

Jb<e'(0),p(t)>dt.
0

; * n , _
Then if p € HI(I,R ), 8.3 gives <f,(LPG - PGL)p>O = <g,-Lp>,- Q.E.D.

9.7. Theorem. If 0 ¢ Q(V;P,Q) then Pch(a) is absolutely continuous and
(Pch(ﬁ))'(t) = Qc(t)h(c)(t)-

*

Proof. 1If p € Hl(I,R“) then <P h(0) ,Lp>, = <h(0) P Lo>q = <h(0),
(PUL - LPU)p>0, since <h(0),LPUp> = 0, Then by 9.6 <Tch(0),Lp>0 = <g,Lp>O if
we define g to be the absolutely continuous map of 1T » R". g(t)

= £ o (t)n(@)(s)ds. Then <P h(0) - &, Lp>y = 0 for all p e Hy(1,E"). Then
0

” ‘
Pcb(c) - g is orthogonal to L(Hl(I,Rp)) 50 Pch(o) -~ g is constant (8.2). Since
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g is absolutely continuous so is P&h(c) and they have the same derivative. But

g'(t) = Q(t)h(0)(t). Q.E.D.
9.8. Lemma. Given a compact subset A of V there is a constant K such

that J;l llo () || dat s kljually [loll, for all o e Hy(I,R") and all ¢

€ Hl(z,a“) such that o(I) < A.
Proof. Since V is closed in R" and A is compact subset of V so A is closed
* n
and bounded. Let A = {(p,v,x) | pec A, ve VP, Ivl| =1, x ¢ R, Hx“ =1}

®
c Rn X Rn X Rn. Since A is closed and bounded in Rn X Rn X RP hence it is

*
compact, Since (} is Ck+3 the map (p,v,x) -+ ”dﬁ%(v)x” is continuous on A

hence bounded by some constant K. Since Qo(t) il Go(t) Tt O(o(t))

= d)
o(t)
<xllo' @ o . mence ' oo | &t <x £ flo'@ I flace |

(oc'(t)) it follows that "Qc(t)p(t)f[ < “df%(t)![ ”g'(t)l! ”p(t)”

<K ]'Lclh] ”pllo by Schwartz's inequality. Q.E.D.

9.9. Theorem, Let S g {(¥V;P,Q) and suppose J is bounded on § but that
"VJII is not bounded away from Zero on S, Then there is a critical point of J
adherent to S.

Proof. Since |‘VJ" is not bounded away from zero and by 8.28 we can

choose a sequence {cn} in S such that ”vJG ” = ”Lcn - h(on)ﬂo + 0. Since
n

PO is a projection for each n, ”Lﬁn - Pcnh(sn)no = HPUnLon - Pcnh(on)"
< ”Lcn - h(cn)”0 + 0. By 8,25, S is totally bounded so we can assume
”on - Qm”a 4+ 0 as n,m » ®, If we could prove that ”L(cn - Um)”0 + 0 as n,m
+ ®, by 8.26 o, would converge in ((V;P,Q) to a point ¢ in the closure of S,
and o would be a critical point of J.
2 .
But "L(cn - o) “o = <lo_,L(o, - 0>, - <o, -L(o, - 0 )>; hence it will
; 2
suffice to prove that <lo_,L(c, - 0 )>; + 0 as m,n + . Now ”Lonno = 2J(0)

is bounded, hence ||L(cn - 0&9![ is bounded and since Lo - Po h(c ) -+ 0 in
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HO(I,RH'), it will suffice to prove <Pcnh(cn) ,L(crn - Gm)>0 +0 as n,m » ®. Re-
*

calling that o, =0, € Hl(I,Rn) (8.23) it follows from 9.7 and 8.3 that
_ 1 pl : '

|<Bo (o ),Llo, - o>l = | §" o, o) (). (g, - o) (> de |

< ncn - O'm"’ J;l ”Qon(t)h(c)(t) || dt and since non - Gm“un + 0 we only need to

show J‘l ]}QU (t)h{c ) (L) “ dt is bounded.

o " o

Since {cn} is uniformly Cauchy, it is uniformly bounded. We can find a
compact set A such that cn(I) c A for all n. By the lemma there is a constant

K such that J;l lloo_(th(o ) () || dt < K|lLa ||, |lh(o ) [l;. Now since Lo ll,

is bounded and “Lcn - h(cn) "0 2+ 0, ||h(cn) ”0 is bounded. This prove the theo-

rem, Q.E.D.
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ABSTRACT

The finite dimensional Morse theory has been generalized to a Hilbert
manifold modelled on a separable Hilbert space in the following form:
Let M be a complete Riemannian manifold of class Ck+2 (k »21) and £ : M
k+2

+R aC “~function. Assume that all the critical points of f are non-degene-

rate and in addition

(C) 1If S is any subset of M on which f is bounded but on which
|le£|l is not bounded away from zero then there is a critical

point of f adherent to S.

Then

(a) The critical values of f are isolated and there are only a finite
number of critical points of £ on any critical level;

(b) If there are no critical values of f in [a,b] then Mb is diffeomor=-
phic to Ma;

() If a<c<bandc is the only critical value of f in [a,b) and Py
eees P are the critical points of f on the level c, then Hb is dif-
feomorphic to Ma with y-handles of type (kl,jl), v s g (ky,gy) dis-
jointly Ck-attached, where ki and Li are respectively the index and
coindex of P;-

The purpose of this report is to fill in more details of Palais' paper

"Morse theory on Hilbert manifolds".



