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I. Introduction

The Poisson process 1s a popular model for reliability and
queuing applications. Its assumptions are met often enough and
sufficiently well in practice to make it useful, and its mathe=-
matical simplicity makes it attractive to the practitioner,

However, there are important cases where the model is overly
simplistie. As a failure model in reliability applications, the
Poisson process has the unrealistic pfoperty of having a constant
failure rate. Therefore, it cannot be used to model the wear out
or reliability growth that characterize many real systems. In
queuing applications, the constant transition intensity of the
Poisson process is not appropriate when the rate at which customers
enter the queue is affected by the number already in the queue.

In this study a 2-parameter pure birth model is investigated that
has many of the desirable mathematical and statistical properties
of the Poisson process but is more flexible to account for realistic
deviations from a strictly Poisson model.

Specifically, models are proposed for system which change
noticeably in their characteristics after thg first event of interest
has occurred. Of course, systems may change after other events have
occurred, but an adjustment in the probability model to account for
changes in the system after the first event has occurred can greatly
improve the goodness of fit of the model. This is especially trus

if relatively few events are observed and the bulk of the probability



is concentrated near zero. In such cases, a simple Poisson=-like
model can reasonably describe the non-zero events after adjusting
for observing a zero. Conventional parameter estimation methods
have been used with the goodness of a specified method being judged
by the estimated mean square error. Particularly, small sample

behavior of the system is studied.



II. Mathematical Model

1. Pure Birth Process

A natural generalization of the Poisson process is to permit
the chance of an event occurring at & given instant of time to
depend upon the number of events which have already occurred.

An e#ample of this phenomena is the reproduction of living
organisms in which under certain conditions (sufficient food,
no mortality, no migration, etc.,) the probability of a birth
at a given instant is proportional to the population size at
that time. This example is known as the Yule process,

Let

N(t) = number of events which occurred in time interval (0,t)
P, (t) = Prob(N(t)=1)

ki = transition intensity at state i

Define a pure birth process as a Markov process satisfying the

postulates:

1) Pr(N(t+h)=N(t)=1|N(t)=1) = k.h + o(h)
i1) Pr(N(t+h)-N(t)=0[N(t)=i) = 1 - k. h + v(h)

1i1) Pr(N(t+h)=N(t)<O|N(t)=1i) = o(h)

where o(h) is such that lim o¢h)/h = 0
h->0

iv) N(0OY =0



With these postulates N(t) does not denote the population
size but, rather, the number of births in the time interval (0,t),.
For h>0, i> 0, by invoking the law of total probabilities, the

Markov property, and iii) it can be obtained that

x
P, (t+h) = ;é% Pj(t)Pr(N(t+h)=i|N(t)=j)

[0 ]
= ) B (E)Pr(N(t+h) -N(E)=i=]|N()=})

§=0
1
= EO P, (t)Pr(N(t+h) -N(t)=i-1|N(t)=]) (1)
jﬂ
Now for j=0, 1, 2,..... aes 1=2

Pr(N(t+h)-N{t)=i-3|N(t)=3)
< Pr(N(t+h) =N(t)> 2|N(t)=1)= o(h)
Thus

pi(t+h) = Pi(t)(l - kih + o(h))

i=2
+ Pi-l(t)(ki-lh + o(h)) + ;;0 Pj(t)o(h)

or
P, (t+h) =P, (t) = P, (t) (-k h+o(h)) +
P, 1 (B)(k;_4h + o(h)) + o(h) (2)

Dividing by h and passing to the 1lim h-»0, one gets



' W ' )
Pi(t) kiPi(t) < ki_IPi_l(t) for i>1 (3)

Clearly

P(') (t) = -kOP(t) (4)

with boundary conditions

Py(0) = 1, and P (0) = 0, >0

The set of differential equations (3) and (4) can then be
gsolved to get the time dependence of the probability of each
state. Equation (4) can be solved without difficulty. In

solving equation (3) define

Qi(t) = exp(kit)Pi(t) (5}
then
Q{(t) = exp(k, t)P] (t) + k exp(k t)P, (t)
= ki-le@((ki - ki.-l)t)Qi-1<t) (6)
hence,
i o
Q (t) = /g k, _qexp((k -k, _,)8)Q, ,(s)ds 7

it follows that:

t
P (8) = k,_jexp(-k, t) exp(k;s)P, _ (s)ds (®)



For a 2-parameter pure birth process, that, is,

It can be shown that

Po(t) = exp(-k,t) (9)
ko
Py(t) = ==-=- (exp(~k,t)-exp(=-kt)) (10)
k-kg
Kk
P,(t) = =ve=eee =exp(~k t) (1-exp(-(k-k ) t)-t(k-k,)
2 (k_ko)i 0 0 0
exp(-(k=kg)t) (11)
and in general
1 j
k. exp(=k.t)k" n-1  (t(k-k.))
P (t) S 9-1.1 ..... (1= Z ...... .
(k=ky) j=0 it
exp (= (k=k,)t)) (12)

The moment generating function is found to be equal to:



koexpts) . o
M(s) = exp(-kot) + eeneccn= we===o(exp(kt(exp(s)-1}))
kexp(s)-k+ko

-exp(-k,t)) (13)

The first two moments can be found through M(s) and are as

shown below:

E(N(t)) = M'(0) = kt + =--z--- (1-exp(~k,t)) (14)

var(N(e)) = M'!(0)=(M' (0))2 = ket (g =k) (K =2k) (1-exp(~k t)
(k=) 2 (Lmexp(=k .£)) /K242 (k . -k) exp (=k .t} /K
0 0 gtekiRy R
(15)
2. Waiting Time Distribution

For the pure birth process define Ti to be the waiting time

between the i-1 th occurrence and the ith ocecurrence, then,

T1 = waiting time for the first occurrence

and

Pr(T1>ut) = P(N(t)=0) = exp(-kot)



Since

Pr(T1> tY) =1 = FT (t)

1
where FT is the cumulative distribution funection of Tl’ hence,
1
1l - FT1(t) = exp(-kot) (16)
and
dF,, (t)
Ty
fp (£) = ===aZaae = koexp(~k,t) 017
1 dt

That is, the waiting time distribution for the first occurrence

is exponential distribution parameterized by kU' Similarly, the
?aiting time distribution for the i+l th occurrence is exponential
distribution parameterized by ki. Thus for a 2-parameter pure

birth process the waiting time distributions are:

T1 is exponentially distributed with parameter kO

T are all exponentially distributed with parameter k.

2, T3,-r-



III Estimating Methods

1. Introduction

Five estimation methods have been used to estimate the

parameters k. and k in the model previously discussed and the

0
results compared with the experimental data and other distinct

methods.
2, Method of E(NO) and E(S)

Higgins and Tsokos (1978) preposed an easy estimating
method by matching the empirical probability of zero to the
theoretical probability to estimate kot and matching the expected
value to the sample mean to estimate kt. With notation as in the
previous section and by putting NO/N in for Po(t) in equation (9)

and S/N in for E(N(t)) in equation (14) this can be expressed as:

kot = -log(No/N) (18)
and
b N 1 -1 s
kt = (e=ca- = 1) (mmmm= P mems ) (19)
N-No N-NO log(NO/N)

where
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g e , Yﬁ = random sample from P(Y;ko,k)

N = sample size

N, = number of Yis equal to n

@

§= E: n.Nn

n=1

The estimated values of kot and kt can be obtained directly

from the above two equations by substituting the experimental data.

3. Methed of E(Nb) and E(NI)

Similar to above method, two equations obtained by equating
the observed frequencies of state 0 and 1 to the corresponding

expected values can be used to estimate k.t and kt, It can be

0
shown that
E(Ny) = N(exp(-k,t)) (20)
E(NI) = N(exP(-kt)-exP(-kot))/(1-kfko) (21)

Equation (20) can be solved directly to get the estimated value

of kot which substituted into equation (21) and then solved - .

numerically to get kt.

4, Minimum Chi-Square Method

The objective of this method is to find the optimum estimated
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value of ko and k which minimizes the following function:

: 2
M (N,-NP, (k.t,kt))
xz (kotskt) = Z --!--- --9---—---- (22)
j=0 NPj(kot,kt)

where M is the maximum observed state of the process. This is
a two-dimensional parameter searching problem. A number of
searching techniques are available, the one used in this study

will be discussed later.

5. Maximum Likelihood Method

The likelihood function of the pure birth process can be

written as:

@ Nn a0} Nn
L(ky. k) = TTO P(Nsky k) " = T];) ®.) (23)
n= n=

Define

®
L*(ko,k) = log(L(k,.k)) = Y N log(P )
n=0

M
- HZO N_log(? ) (24)

The maximum likelihood estimator of ko and k is then the roots



of the following two equations!

%
QL. (k) = 0

e (kovk) = 0

or

M N =P
em—— b 4 [ (25)
n=0 P ok
n 0

and
M N <P
ZJ R e e 0 (26)
n= Pn ok
ShR S) N
Now, ==~- and =--- can be obtained easily; for n>0 it can be
Sk, Dk

shown that

s n-1 k|
WS L LSO g o
= g e i
0 - 0 J= jt
kokn-lex-p(-k.)
expl(lesh ) =omanrremame (27)

(n-l)!(k-ke)



éDPn -fk#fn-l)ko)kokn-zexp(-ko}(1 n-1 fk-ko)j
Ok (kke) ™ =0 g
. kokn-j'ex-pl(-k)
exp{=(keko)I)} & mrmmummmmmmas (28)
(n-l)l(k-ko)

Equation (27) and (28) must be solved simultaneously to obtain
the estimated value of koand k. Due to the complexity of these
equations direct solving it is quite impractical, however, an
alternative approach can be applied. Let (ﬂh,k be the roots
of equations (27) and (28), that is,

N, 9P (0

..... e smcnmecas=e = (29)
Pn(ko,k) éako

N emG&d 485

Pn(ko,k) ok

Now define

N P N P
e R 1)
Pn ko Pn k

then F possesses a minimum value of 0 which occurs when

(kg k) = (iey 10

13
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A root finding problem is now converted to a twoe=dimensional
extremum searching probiem, and this can easily be done by

applying optimization techniques.

6. Method of Moments

Equations (14) and (15) can be equated to the sample mean
and variance respectively and then solved gsimultaneously to obtain
the estimated wvalue of ko and k. Again, solving these equation

directly is tedious and some parameter searching technique are

applied in this case also.

7. Optimization Method

The searching technique used here is derived by Hooke and
Jeeves (1961)., 1t is among the simplest and most efficient
methods for solving the unconstrained non-linear minimization
problems. The technique consists of searching the local.nature
of the objective function in the space and then moving in a
favorable direction for reducing the functional value. The direct
search method of Hooke and Jeeves is a sequential search routine
for minimizing a function f£(x) of more than one variable x=(x1,x2?
...,xr). The argument X is varied until the minimum of f(x) is
obtained. The search routine determines the sequence of values for

X. The successive values of X can be interpreted as points in an

r-dimensional space. The procedure consists of two types of moves:
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exploratory and pattem.

A move is defined as the procedure of going from a given
point to the following point. A move is a success if the value
of f(x) decreases: otherwise, it is a failure. The first type
of move is the exploratory move which is designed to explore the
local behavior of the objective function, £(x). The success §r
failure of the exploratory moves is utilized by combining it
into a pattern which indicates a probable direction for a
successful move.

The exploratory move is performed as follows:

1. Introduce a starting point X with a prescribed step length

s; in each of the independent variables X . i=1.2,...,r.

2. Compute the objective function, f(x) where

X = (xl,xz,....xr), set i =1

3. Compute fi(x) at the trial point
X = (xl,xz,...,xi+si,xi+1,...,xr)
4. Compute fi(x) with f£(x)

(i) If fi(x)<;f(x), set f(x) = fi(x), X= (xi:xz,...,xi+si,
.4.,xr) and i=i+l. Consider this trial point as &
starting point, and repeat from step 3.

(ii) If fi<x)> f(K), set X - (X1.1!2,...,xi-zsi,...,!r).

Compute fi(x), and see if fi(x)<(f(x). If this move
is a success the new trial point is retained. Set

f(x) = fi(x). and X = (xl,xz,...,xi-Zsi,...,xr). and
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i=i+l, and repeat from step 3. If again fi(x)> f(x)‘, then move is
a failure and X remains unchanged, that is, X = (xl,xz,....xi.

...,xr). Set i=i+l and repeat from step 3.

The point XB obtained at the end of the exploratory moves,
which is reached by repeating step 3 until i=r, is defined as a
base point. The starting point introduced in step 1 of the
exploratory move is either a starting base point or a point
obtained by the pattern move,

The pattern move is designed to utilize the information
acquired in the exploratory move, and executes the actual mini-
mization of the function by moving in the direction of the
established pattern. The pattern move is a simple step from the

current base to the point

K=ty + () 6
X; is either the starting base point or the preceding base point.
Following the pattern move a series of exploratory moves is
conducted to further improve the pattern. If the pattern move
followed by the exploratory moves brings no improvement, the
pattern move is a failure, Then one returns to the last base
which becomes a starting base and the process is repeated.

If the exploratory moves from any starting base do not yield
a point which is better than this bases, the lengths of all the

base are reduced and the moves are repeated. Convergence is
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assumed when the step lengths, S;» have been reduced below

predetermined limits.

8. Numerical Results

The first set of data is from g reliability study [51.
Failures were recorded for each of 19 PPI consoles which were
operated for a period of 8640 hours. The second set of data
is taken from a queuing study [1] . The arrivals per unit
serving time were recorded at a tool crib counter in a factory.
The observed and estimated number of frequencies by five methods
metioned above. are given in Table 1 and 2. As can be seen every
estimating method predicted frequencies reasonably well. In fact,

Griffiths (1977) observed that estimation of the parameters ko

and k is more easily done by using the expressions for E(No) and
E(S8), and he showed that in the case of one set of data from

Simmonds (1956) this simpler procedure resulted in values that

differ little whether obtained by equating the sample value with
P(NO) and E(S8) or P(NO) and P(Nl)’ or by maximum likelihood: using
the first two moments E(S) and Var(S) gave k., and k values of similar

0

order but not so much in agreement as the other estimates.



Table 1

Number of failures 0 1 2 3 or more

Observed 8 4 3 4

E(NO) and E(S) 8.1 4.3 3.4 3.3
E(No) and E(Nl) 8.0 4,0 3.3 3.7
Min. Chi-Square 8.0 3.7 3,2 4,1
M.L.E. 8.1 3.7 3.2 4.0

Method of Moments 5.9 6.0 4,2 3.0

Table 2
Number of failures 0 1 2 3 &4 5 or more*
Observed 272 306 213 117 L 24
E(No) and E(S) 272,0 292.0 224,0 118.0 38.0 32.0

E(Ny) and E(N,)  272.0 306.0 225.1 112,8 42.8 17.2
Min, Chi-Square  272.7 278.8 223,3 124,0 52.5 24.5
M,L.E. 277.0 240.6 214.5 136.9 67.5 39.5

Method of Moments 208,9 303,7 247.1 135.4 55.8 25,1

* : Observations of failures 5,6,7 and 8 are combined as 5 or

more,



IV. ©Pure Birth Process Simulation

1. Introduction

‘In this study, pure birth process has been simulated by

computer. Primarily, interest will be given to small sample

19

size behavior. Parsmeters are estimated by the methods discussed

in the last chapter. The results are analyzed to compare the

goodness of prediction and efficiency of the various methods.
2 Simulation of 2-parameter Pure Birth Process

It has been shown in chapter 1 that the waiting time
distribution for the first count of a 2-parameter pure birth

process is exponential(ko). Since the c¢.d.f. of Tl = F(TI)‘

= le exp(kOTI) is distributed as uniform (0,1), it is obvious

that

1n(l-U) = -koT1 (33)

Consequently, T, can be simulated by drawing an random number

1

from (0,1) and substituting in equation (33), provided kO is
given., Similarly, the following counts cen be simulated by

the equation below

In(l-U) = -kTi 182, 3veesss (34)
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where U is some random number in the interval (0,1), and k is

the second parameter of the pure birth process under consideration.
The algorithm to generate a two parameter pure birth process is
then as listed below{

Let

N = total number of events (observations)
T = gvservation time

NC(i) = number of events observed in state i

1) Set NC(i) = 0 and count = 0

2) A rendom number within the interval (0,1) is generated and
by equation (33) Tiiis calculated, If T1>'T then count=count+l
and NC(0)=NC(0)+l. ©Now if T1<'I then another uniform random
number be drawn and by equation (34) T2 be calculated. If
T1+T2>-T then count=count+l and NC(l)=NC(1)+1l. 1If T1+T2<'r
then repeat drawing random number and by equation (34) to
calculate Tiuntil T1+T2+.....+Ti>rT, then set count=count+l
and NC(i=-1)=NC(i=1)+1l. Step 2) is repeated until countsN

A 2-parameter pure birth process with N cbservations can thus be

generated and the parameter estimating methods discussed in

chapter 3 are then used to estimate the parameters of each

simulated data.
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3. Random Number Generating

The method most commonly used to generate random number is
the linear congruential method [8]. Each number in the sequence,

rj, is calculated from its predecessor, r -1’ using the formula:

3

rj = (multiplier x rj_1 + increment) MOD modulus {35)

The numbers generated by using this formula repeatedly are not
truly random number in the sense that tosses of a coin or throws
of a8 die are random, because we can always predict the value of

rj given the value of r The sequence generated by this

i-1

formula is therefore more correctly called a pseudo-random

sequence, and its members are called pseudo random numbers.
In this study the following values have been chosen:

16 _ 63536

modulus = 2
multiplier = 25173

increment = 13849
i.e.,

+ 13849) MOD 65536 (36)

rj = (25173 x rj_1

This calculation will not cause overflow on a computer for which

31

Maximum integer>2"" - 1
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The equation (36) generates a permutation of the integers

and then repeats itself. The first number generated is the
initial value of seed.

Since uniform random numbers are needed equation (36) is
modified to get a real random wvalue between O and 1, by

dividing by 65536.

&4, Results and Conclusions

Two different processes have been simulated. The first one
comes from [5] with the estimated values of kot = (0.8675 and
kt = 1.91. The second is from [1] with the estimated values of
kot = 1.273 and kt = 1.63, For each process, 30 sets of data have
been generated each containing (1) 20 and (ii) 40 observations.
In an attempt to examine the variations of estimated mean square
error for each method, two replications of each process have
been simulated.

The results of estimated parameters of the first process
for five estimating methods are shown in Table 3 and 4 (only
estimated means and estimated mean square error are exhibited).
Those for the second process are shown in Table 5 and 6. In

each table columns one and three show the estimated values of

parameters and columns two and four show the corresponding



23

estimated mean square error for each method. Figure 1 and 2 show
the box=-plots of the distribution of the two estimated parsmeters
for the first process and figures 3 and 4 give the same information
for the second process. In each figure the vealue of horizontal
axis represents the following; 1.00, 3.00, 5.00, 7.00, 9.00 stand
for frequency distribution of the estimated parameters by using
method of E(N) & E(S), E(N)) & E(N,), Min. Chi-Square, M.L.E.,
and method of moments respectively with sample size 20 and 2,00,
4,00, 6.00, 8,00, 10.00 are frequency distribution for above five
methods with sample size 40,

By examining the results obtained above the following

conclusions can be drawn:

(1) The estimation method using either E(No) & E(S) or
E(No) & E<N1) can give a quick estimation of the system parameters,
The second method, however, might result in a large mean square
error.

(2) As the number of observations increased the mean square
error of each method generally decreased as one would anticipate.

(3) M.L.E. does not give significant improvement over the
other methods. 1In addition, it is a very time consuming technique
since it involves solving simultaneous equations involving
derivatives.

(4) Minimum Chi-Square method gives reasonable mean square

error, Typically, the time consumption of this method is ten times
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as much as that of method of moments and one half to two thirds
of that of MLE

(5) Method of moments method sometimes gives large mean
square error. Another major drawback of this method is that the

bias is usually large.

(6) Judging from the above observations it is concluded
that method of using E(No) and E(S) is generally the most desirable
one. The minimum Chi-Square method could also be considered.

(7) The 'data structure as shown in Table 3, 4, 5 and 6 allows
one to test the appropriatness of the simulation process, i.e.,
if the sample is normally distributed, an F-test can be performed
to test the equal sample variance hypothesis. In particular, if
certain estimator is unbiased a central F-statistic can be used.
Such a test has been done to the simulated data. For those

normally distributed sample set the equal sample variance hypothesis

is confirmed at 0.05 level.



Table 3

k. t=0,8675 Lkt=1,91 Time=8640 hr number of sets=30

0

number of observations per set=20

replication 1

A

k'gt m./s\.e. kt m./s\.e.
E(Nb) and E(S) 0.934 0,071 1,827 0.346
E(NO) and E(Nl) 0,934 0,071 2,055 1l.664
Min, Chi=-Square 0,970 0.078 2,053 0.420

LY

M.L.E, 0.926 0,110 2,268 0.873
Method of Moments 1.253 0.177 1.438 0,299

replication 2

k‘;t m.’s}.e- ﬁ\t m.@.e.
E(Nb) and E(S) 0.855 0,045 1,836 0,294
E(Nb) and E(Nl) 0.855 0,045 2.235 2.453
Min, Chi=Square 0.909 0,054 2,046 0.275
M,L.E, 0.8854 0,180 2,316 0.909
Method of Moments 1.358 0,378 1.471 0.313

25
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Table 4

k0t=0.8675 kt=1,91 Time=8640 hr number of sets=30

number of observations per set=40

replication 1

Egt mfg.e. ﬁl mfg.e.

E(Ny) and E(S) 0.809 0.017 1,948 0,190
E(Ny) and E(N)) 0.809 0,017 2.069 0,612
Min. Chi-Square 0.846 0.015 2,102 0,202
M.L.E. 0.780 0.024 2,202 0,357
Method of Moments 1.146 0.107 1.408 0.305

replication 2

0,

kAOt m.@.e. é\t m.A.e.

E(N,) and E(S) 0.894 0,027 1,915 0.239
E(Ny) and E(N,) 0.894 0,027 2.226 1.728
Min, Chi-Square 0.925 0.033 2,060 0.302
M.L.E. - 0,874 0.030 2,239 0.867

Method of Moments 1.312 0.272 1.515 0,310




Table 5

kot=1.273 kt=1.630 Time=100 hr number of sets=30

number of observations per set=20

replication 1

k%t _m./s}.e. Q: m./s}.e.

E(NO) and E(S) 1,478 0,194 1,500 0,213
E(No) and E(Ni) 1.478 0,194 1,750 1,708
Min. Chi=-Square 1.513 0,195 1,675 0.205
M.L.E. 1.721 0.505 1.742 0.353

Method of Moments 1,603 0,185 1.491F 0,087

replication 2

kfgt m.’g.e. Qt m.@.e.

E(N&) and E(S) 1.298 0.122 1,646 0,234
E(NO) and E(Nl) 1.298 0.122 2,225 3.683
Min, Chi-Square 1.368 0.120 1,798 0,190
M.L.E. 1.283 0.140 2,268 1.364

Method of Moments 1.554 0,225 1.509 0,118




Table &

k0t=1.273 kt=1,630 Time=100 hr number of sets=30

number of observations per sei=40

replication 1

k/St m.@.e. Q: m.

E(Nb) and E(S) 1,242 0,045 1,614 0,120
, E(Nb) and E(Nl) 1.242 0,045 1,652 0,268
Min, Chi-Square 1,272 0.042 1,734 0.136
M.L.E. 1.232 0,044 1.841 0,340

Method of Moments 1.388 0.034 1.484 0.065

replication 2

kgt m.@.e' Qt m.g.e.

E(NO) and E(S) 1.347 0,058 1.596 0,111
E(NO) and E(Ni) 1,347 0.058 1.656 0.240
Min, Chi«Square 1,378 0,065 1.726 0.160
M.L;:E; 1.320 0.077 1,878 0,616

. f
Method of Moments 1.560 0,157 1,550 0,110
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A Sample Box Plot Is Showm In Figure 5
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Appendix

The following is the program used to estimate the parameters

of 2-Parameter Poisson process.
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E THE FARAMETERS OF A 2-FARAMETER FOISSON PRDCESS(INTERPRETED AS
c A FURE RIRTH PRECESS) BE ESTIMATED RY FIVE METHOD(SEE TEXT FOR
c DETAILS), IN PARTICULAR» MIN-CHISQUAREs M.L.E.r AND METHOD OF
c MOMENTS ARE ALL SOLVED RY HODKE AND JEEVE OFTIMIZATION METHOD.
n

IMPLICIT REALX8(A-H,0-Z)
DIMENSION EXFXO(Ss100)sEXFX(S»100)FMEEXQO(S) yFMSEX(S)
DIMENSION ESNI(10)»DEAI(10)yDI(10)
DIMENSION X(10)y BBOCL10)sRSNC10}DL(10)»TITLE(SE0)sNC1(100)
COMMON XNTOT»DEACLO) yNCOsTJrNEsNCC(100) »NOsNEsNMsNSrM» Ny INDEX
o1 FORMAT(4D10,4)
S4 FORMAT(20I4)
110 FORMAT (10I5)
444 FORMAT (/73X 20C1XyI4))
J79 FORMAT(3D10.4514)
477 FORMAT (/5Xs’METHOD OF MINIMUM CHI-SQR’)
578 FORMAT (/5Xy'METHOD OF M.L.E.”)
479 FORMAT (/3X» "METHOD OF MOMENTS )
779 FORMAT(/GX,S(1X,D12.4))
BEBE FORMAT(//3Xs ‘MEAN SQUARE ERROR OF FIRST FARAMETER’)
88% FORMAT(//5Xs "MEAN SQUARE ERROR OF SECOND FARAMETER’)
B90 FORMAT{/8Xy'DATA SET’+2X»I4)
?03 FORMAT(/5X, METHOD OF USING EQ.(17) AND (18)7)
F04 FORMAT(/SX» X0 = “#1XrD12.453Xy X = "21X:D132,4}
P05 FORMAT(//5X,y METHOD OF USING E(X0) AND E(X1)7)
?0& FORMAT(/5Xe ' THEOXO='D[12,4¢2Xy "THEOX="»012.4,2Xs 'TIME=",012.4
¥2X» “NUMBER OF DATA SET=',I4)
75¢  FORMAT (71 PURE BIRTH FROCESS FARAMETER ESTIMATION
1130 FORMAT (’ OBJECTIVE FUNCTION “,DIB.4/’ OFTIMAL FOINT “»S018.5
L/CLGXsSD18.5))
c THEQXO = THEORITICAL VALUE OF X0
C THEDX = THEORETICAL Val.UE DOF X
C TIME = OESERVING TIME
i NCGF = TOTAL NUMRBRER OF DAaTA SET
REATI{S,S7%) THEDXOQ THEDX, TIME r NOF
WRITE(S,750)
WRITE(&rF06) THEDXO» THEDX» TIME,NOF
5 INFUT SEARCHING DIMENSION
READI(Z,210) ND

C INFUT INITIAL BASE FOINT,INITIAL STEFP EIZE AND STOFFING STEF SIZE
REALCT,»S1) (BSNI(I)rI=1,ND) 2 (DEAT(I)»I=1,ND)s (DICI) T=1,NI)
C M = NUMBRER OF STATES(INCLUDING STATE Q)

DO 1250 LMN=1,MNCF
REAL(S,54) M
IF(M.ER.O0) GO TC 101
WRITE(&,B?0) LMN

TJd=p~1

C NM = MAXIMUM STATE NUMBER
NM=M-2

c NC = NUMBER OF COUNTS

REALI(S»Z4) NCOr(HCC(LLLYsLLL=1,I.1)
WRITE(4,444) NOOy (NCILLLYrLLL=1,I.0)

c METHOL OF USING EQG.{(17) AND (18)
NCO1=NCO
c ANTOT = TOTAL NUMEER OF OESERVATIONS

XNTOT=NCOX1.0
DD 902 Li=1,IJ

FO2 XNTOT=XNTOTH+NC{L1) %1
CaALL SEMENT(XQLrX1)



o]

oooaoo

WRITE(4,903)

EXFX0(1,LMN)=X01

EXFXC(1sLMNY=X]

WRITE(&6,704) X0LrX1

METHOD DF USING E(X0) AND E(X1)
A=0,0

E=10.0

DELX=1.00-05

XNCO=1.,0%NCO
X02==0LOG(XNCO/XNTOT?
EXPXO(2:LMN)=X02

CALL ROOT(XZ2rArBsDELX e IKJ» IJK,X02)
IF(IJK.EQ.2) X2=A

WRITE{(&,P05)

EXFX{2s LMN)=X2

WRITE(&HsF04) X02:X2

THE FOLLOWING ESTIMATION METHODS USE HOOKE aND JEEVE METHOD
METHOD OF MINIMUM CHI-SQUARE (INDEX = 3)

METHOD OF M.L.E. (INDEX = 4}

METHOD OF MONENT (INDEX = 5»

IO S55 INDEX=3r3
IF(INDEX.EQ.3) WRITE(&4+6477)
IF(INDEX.EQ.4) WRITE(4:678)
IF(INDEX.EQ,5) WRITE(&s679)
MM=:
NE=0Q
DO 201 Lil=1rND
BSN(L11)=RSNI(LLL)
DEACLLL)=DEAICLIL)
DLCLL1)=0T(LLL)
701 CONTINUE
IF(INDEX.LT.4) B0 TO 222
BEN(1)=2ZZZX0
BEN(2)=22ZZX
GO TO 700
222 FXBEN=DEBJ3(BSN)
GO TO 70t
700 IF(INDEX.GT.4) GO TO 703
FXBN=0RJ4 (BN}
GO TO 701
703 FXBN=0BJI(ESN)
701 CONTINUE
1 DO 10 I=1.ND
10 X(I)Y = RSN(ID
FX = FXEN
CalLL EPV(FXyX)
IF(FX.GE.FXEBN) GO TO 3
2 DO 20 I=1¢ND
BS0(I) = RSN(I)
BEN(I) = X(I)
20 CONTINUE
FXBN = FX
NNRB=NE
00 21 I=1HD
X{I) = BEN(I)X2,0-BSO(I)
21 CONTINUE
IF(INDEX.BT.3> GO TO 500
FXBN=0OBJ3{ESN}



ooOO

303
301

&00

403
401

30

31

100

Ly i
G
[eR &)

101

GO TO 501

IF(INDEX.GT.4) GO TO 503
FXBN=0RJ4(BEN)

GO TD 501

FXEN=0BJS(BSN)

CONTINUE

IF(INDEX.GT.3) GO TO &00
FX=0BJ3(X)

GO TD &01

IF(INDEX.GT.4) GO TO 403
FX=0BJA4(X)

GO TO &C1

FX=0BJI(X)

CONTIMNUE

CALL EFV(FXeX)

IF(FX.LT,FXEBN)Y GO 7O 2
NN=NNB

GO TO 1

CONTINUE

00 30 I=1r.MD
IF(DEACIY.GE.DL(I)) GO TO 31
CONTINUE

GO0 T0 100

DO 35 I=1,ND

DEA(I) = DEACII%0.5

CONTINUE

GO TO 1
WRITE(4,P04)(BSN(I)sI=1,ND)
ZZZX0=BEN(1)

ZZZX=BBN(2)
EXPXOCINDEX » LMN) =EBN(1)
EXPX(INDEXsLMN)=BSN(2)
CCNTINUE

CONTINUE

N0 777 INI=1,5

XOMSE=0.0

XMSE=0.,0

[0 778 LMN=1,NDF
XOMSE=XOMSE+(EXFXO(INDrLMN}~THEDXD} XX2
XMSE=XMSE+(EXFX{(INDy LMMN)~THEOX ) XX2
FMSEXC(IND)=XOMSE/NOF

FMSEX (IND)=XMSE/NOF

CONTINUE

WRITE(&4B8B88)

WRITE(&6»77%) (FMSEXOCIND) s IND=1,3)
WRITE(4,88B%)

WRITE{(&¢77%) (FMSEXC(IND) »IND=1,3)
sTar

END

-------------- ENDIl OF MAIN FROBRAM = =m = m e oo oo e

SURROUTINE EFV FERFORMS EXFLANATORY MOVE

SUBRQUTINE EPV (FXsX)

IMPLICIT REAL¥B(A-H,0-Z)

DIMENSION X(10), BSOC10)BSN(10)sDL(10)»TITLE(AOD)

COMMON XNTOT)DEACL1Q) s NCOrIJsNByNCC(LOO) s NIy MErNM o NSy Ne INDIEX
[0 201 I=1.ND

X(I) = X(I) + DEACI)

IF(INDEX.GT.2) GO TO S00



oo n

SOoaon

aono

FXI=0BJ3(X)
GO TO S01
500 IFC(INDEX.GT.4) GO TO 303
FXI=0BJA(X)
GO TO So1
503 FXI=0BJS(X)
S01 CONTINUE
NE = N
IF(FXI-FX) 200,180,180
180 X(I) = X(I) - 2.%XDEA(I}
IF(INDEX.GT.3) GO TO 400
FXI=0BJI(X?
GO TO 401
600 IFCINDEX.GT.4) GO TO 403
TXI=0BJA4(X)
GO TO 601
603 FXI=0BJS(X)
501 CONTINUE
NE = N
IF(FXI-FX) 200:181,181
121 X(I) = X{I) + DEA(I)
NE=N-2
GO TO 202
200 FX = FXI
202 CONTINUE
201 CONTINUE
RETURN
END

SUBROUTINE SEMENT CALCULATE THE ESTIMATED VALUE OF XO AND X EY
EQ,(17) AND (18)

SUBROUTINE SEMENT(X0,X)
IMPLICIT REALXB{A-H,0-2)
COMMON XNTOTsREACLO) yNCO2IJrNEyNCC100) s NIy NEsNMs NS HMsNs INDEX
XNCO=NCO*1.0
$=0.0
D0 1 I=1,IJ
S=G+NC(I)*I%1.0
1 CONTINUE
X0=-DLOG(XNCO/XNTOT)?
X=(S/{XNTAT-XNCO)—-1,0)/(XNTOT/(XNTOT=XNCO)+1./DNLOG(XNCO/XNTOT))
RETURN
END

SUBROUTINE USING ROLZANO METHOD TO FIND ROOT OF F(X) = 0

SUBROUTINE ROQT(X:AsBs[ELX,»IsKyX02)}
IMPLICIT REALXB(A-H!0-Z}
A= LEFT LIMIT OF VALUE X
B=RIGHT LIMIT OF VALUE X
DELX=MINIMUM ERROR
X0=X02
FA=FUNC(A»X0)
FE=FUNC(E, X0}
I=0
7 X=(AtE) /2.
IF(DABS(X-A).LE.1,0E-09.0R.DABS(X-K),LE.1.0E-0%?) GO TO 10



aonoon

12
11

10

1C

8]

I=I+1
F=FUNC(XsX0)

IF(F) 12/10s11
IF(F+DELX) 3:10s10
IF(F-DELX) 10+110,3
IFCFXFA) S:8r6

B=X

FB=F

GO TO 7

A=X

FA=F

GO TO 7

K=1

60 TO @

K=2

CONTINUE

RETURN

END

FUNC!FACT XPOIFC,FROBTYDFROE ARE USED TO CALCULATE THE

FROBABILITY DISTRIBUTION OF FURE BIRTH FROCESS

FUNCTION FUNC(Y»X0)
IMPLICIT REAL¥8(A-H:0-2Z)

COMMON XNTOT,DEACLO) rNCOsIJeNEyNC(100) s NIsNEyNM,NGrMeNr INIEX

FUNC=C(DEXF{(-Y)-DEXF{(-X0))/(1.=-Y/X0)~-NC(L1}/XNTOT
RETURN
END

FUNCTION FACT(K)
IMPLICIT REALXB{A~Hr0-Z)
FACT=1.0

IF(K.LE.1> RETURN

ng S5 J=2,K

FACT=FACTXJ

CONTINUE

RETURN

END

FUNCTION XFOIFC(NyXD)

IMPLICIT REALX*8(A-H-0-2)

L=N-1

IF(L.ER.0) GO TO 2

XFOIFC=1.0

FACTOR=1,0

TERM=1.0

Do 7 K=1,L

TERM=TERMXXL/FACTOR
XPOIFC=XFOIFC+TERM
FACTOR=FACTOR71.0

CONTINUE

IF(OARS(XDY.LE.1.00-10Q) GO TO 10
XFOLFC=(1.0-XFOIFCKXDEXF(-XD ) /XD¥XkN
RETURN

XFOIFC=(1,0--XFOIFLC)/XDEXN

RETURN

IFCHARS(XD) .LE.1.00-10) GO TO 11
XFOIFC=(1,0-DEXF(-XIN) ) /XD

RETLRN



nDOonoo

anoo

(%)

11 XPOIFC=1.,0/XD
RETURN
END

OBJECTIVE FUNCTION OF MIN-CHISGUARE METHOD

FUNCTION OBJ3(PHI)

IMPLICIT REALXB(A-H»0-2)

DIMENSION F(100)PHIC10)

COMMON XNTOT,DEACLIO) yNCOsLJNReNC{100) s NIsNErNMsNSrMeNry INDEX

CALL FROBTY(FPHICL)»FHI(2)+FO:F)

DBRJ3=(FOXXNTOT-NCO)Y KK/ (FCEXNTOT)

DO 7 I=1,14

0BJ3=0BJI+(F (I KXNTOT-NC(I) Y RX2/(F(I)XXNTOT)
7 CONTINUE

RETURN

END

OBJECTIVE FUNCTION OF M.L.E. METHOD

FUNCTION ORJA(FHI)

IMFLICIT REALXB{(A-HyD-Z)

DIMENSION F(100)yDFO(100)DIFL(L00:FHI(10) .
COMMON XNTOT»DEACLG) sNCOrIJyNRsNC(LOO) sNIIo NExNMr NS My Ny INDEX
CALL FROBTY(FPHIC1)yFHIC(2)sFOsF)

CALL DPROB(PHIC1)FHIC2YyDFOQ,DFG DOFLO,DFL)
FO=NCOXDFOQ/FO

F1=NCOXDF10/F0

DO T I=1,IJ

FO=FO+NCIIIRDFOCI)/F (L)
F1=F1+NCC(IDIRDOFLCIM/FC(I)

CONTIMUE

OBJ4=DABS(FO)+DARSB(F L)

RETURN

END

[&)]

SUBROUTINE FROBTY(XOsX:FOrF)
IMPLICIT REALXS(A-H,0-7}
DIMENSION F(100}
COMMON XNTOT:DEACL10) sNCO» TJs NEsNCC100) s NIy NE r NMs NS s My Ny INDEX
XO=X-X0
EXO=DEXF (X0}
CX=DEXF (-X)
EXD=DEXF (-XI)
PO=EX0
D0 3 I=1sNM
IF(I.EQ.1) GO TO 4
F(I)=XOXEXORXK¥(I-1)KXFOIFC{TI XD
GO TO 3
4 FUI)=XOXEXOKXFOIFC (I XD
3 COHTINUE
SUM=FY
00 & I=1¢NM
4 SUM=SUMSE (D)
F(IJ)=1,0-8UM
RETUEN
CND
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SUBROUTINE DFROB(XOs X OFQOrIIFQsDFLO-DFL) -

IMPLICIT REALXB(A-H.,0-2)

DIMENSION DPOC100)DP1(100)

COMMON XNTOT,DEACLO) frNCOrIJyNEyNCC(LOO) sNDyNEsNMsNS»H,Nr INDEX
XO=X~X0

EXO=DEXF (-X0)

EX=DEXF(-X)

EXD=DEXF{-XI!)

DFOO=-XOXEXD

DP10=0,0

00 3 I=14NM

IF(I.EQ.1)} GO TO 4

DPOCIN=( (1, -XO)XXD+IXX0)XXkX(I-1)XEXOXXFOIFC(I X[ /XD~
KXORXKK(I-1)REX/FACT(I-1) /XD

IF(I.EQ.2) GD TO 7

DPLCIN==(X+{I-1)XX0)RXOXXKK(I-2) KEXOKXFOIFCC(I» XD) / XD+
XXOXXXX(I-1)XEX/FACT(I-1)/XD

GO TO 3
ODFO(I)=(C1.-X0)KXD+XO)XEXOXXFOIFC{I XD /XD-XOXEX/XD
DF1(T)=XOKEXOKXPOIFC(I » XI1) /XT+XOKEX/ XD

GO 10O 3

DPL(I )=~ (X+X0) kXOKEXOKXFDIFC (I »XD) / XD+ XOXXKEX /XD
CONTINUE

SUM2=DF00

SUM3=0F10

OO & I=1sNM

SUM2=8UMZ+IFO(I)

SUM3=8UM3+0F1(I>

CONTINUE

DFO(IJ)=-SUMZ

DF1{IJ)==8UM3

RETURN

END

OBJECTIVE FUNCTION OF METHOD OF MOMENTS

FUNCTION OEJS(FHI)

IMPLICIT REALXB(A-H,CQ-Z)

OIMENSION F(100),FHI(10)

COMMON XNTOT»DEACIQ)YsNCOyIJyNEsNC(100) yNOyNErNMsNE»My Ny INDEX
XO=FHI(1)

X=FHI{2}

EXQ=DEXF{-X0?}

XO=X-X0

5=0.

52=0.

Do 301 JJ=1,1J

S=S+JJXNCC I

S2=524+NC{JI) K IIk%2

COMNTINUE

FHEAN=X=-X[X{1.-EXQ)/ XO-3/XNTOT
FUAR=X+{XDRCXD+HX) K (1, —EXO - (ATK (L . =EXD) YKK2) /X0 XO+2  KXKEXO KX,
KXQ-S2/XNTCTH{G/XNTOT kX2

OBJS=DARS{FMEANY+DARS (FUARD

RETURN

END
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Abstract

Five parameter estimating methods have been used to estimate a

simulated 2-parameter Poisson process namely, method of using E(NO)
and E(S), method of E(NO) and E(Nl), minimum Chi-Square method,
maximum likelihood estimate and method of moments. It has been found
~ that despite of its simplicity the method of using E(No) and E(S) is
in general the most desirable method. The minimum Chi-Square method

is also appropriate and could be considered as to obtain comparable

results,



