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CHAPTER I

INTRODUCTION



Artificial Intelligence (AI) is the branch of computer science that

attempts to have machines emulate intelligent human behavior. This goal

is rather formidable, and, until recently, workers in the field had met

with limited success. However, research activity directed towards

reasoning from knowledge in restricted domains has produced computer

programs that often approach, and, at times, even exceed human levels

of performance. This has led to a renewed interest in AI (Kinnucan
s
1984)

which has spawned buzz-phrases such as Knowledge Engineering and Expert

Sys terns

.

The recent successes encountered in AI research are due to shifts

in the philosophy and direction of conventional approaches. The older

methodologies sought for generalized increases in computational power,

and researchers strived to develop techniques that were as general as

possible (Minsky and Papert, 1974). Unfortunately, such strategies

proved to be hopelessly inefficient for dealing with the sheer

combinatorial complexity that was often encountered in real-world

problems. The knowledge-based or epistemic strategy (Feigenbaum, 1977),

on the other hand, is a pragmatic approach toward the emulation of

intelligent human activity. The approach emphasizes domain-specific

problem solving strategies over the older, weaker methods. Progress is

seen as coming from better ways to express, recognize, and use diverse

and particular forms of knowledge. The approach recognizes explicitly

the local quality of human expertise, and we are encouraged to attack

realistic problems that may have been suitably constrained so that

useful solutions are realized. The shift to the knowledge-based approach



in AI has contributed to the fast-growing sub-field of Knowledge

Engineering and the development of Expert Systems.

Knowledge is a precious resource, and Knowledge Engineering is

concerned with the tasks of extracting, articulating, and computerizing

knowledge. In much the same way as electricity is the power source for

electrical engineers, knowledge engineers view knowledge as a source of

power. They tinker with knowledge, and the appliances they create run

on knowledge

.

Expert systems may be considered to be the appliances created by

Knowledge Engineering, They are computer programs that embody knowledge

and use it to solve real-world problems in specific areas of human

activity. These programs use collections of facts, rules of thumb, and

other forms of domain-specific know-how, coupled with methods for

applying this knowledge, to make inferences. They differ substantially

from conventional computer programs because their tasks have no simple

algorithmic solutions, and because often they must reason in the presence

of incomplete and uncertain information.

Production rules (also known as condition-action , or IF-THEN rules;

see, e.g., Barr and Feigenbaum, 1981) are a popular approach for

representing and manipulating domain knowledge in expert systems. Rule-

based, or Production Systems (Davis and King, 1977), as they have come

to be called in the jargon of AI , operate by selecting rules, verifying

whether the premises or condition parts of the rules are satisfied,

noting the results, and applying new rules based on the changed situation.

Production rules are natural to human strategies of problem solving and



decision making, and this has contributed to their application in many

expert systems.

An expert system that relies on a pattern of rule-directed inference

represents an attempt to capture the spirit of human reasoning in a

computer program. This is consistent with the goals of AI research.

However, human reasoning is characterized by an ability to reason in

qualitative and imprecise terms; and this ability must be introduced

into the production rule formalism. Several expert systems (see, e.g.,

MYCIN, Shortliffe, 1976), in their attempts to emulate human strategies,

soften production rules so that partial satisfaction of their premises

are sufficient to lead to certain actions or decisions being made. In a

soft product-ion rule, the propositions that make up the premise are

permitted to take truth values in the interval ranging from complete

truth to absolute falsehood. This represents a departure from the domain

of conventional two-valued logic to one of multivalued logic. Most

theories of approximate reasoning (see, e.g., Zadeh, 1975a, 1975b, 1975c)

are founded on a multivalued logic base, and could be justified on the

basis of observation of human behavior in the real-world.

It is well-known that human experts introduce considerable

subjectivity into their decision making. When performing evaluations,

they are inclined to weigh and balance the evidence. From this point

of view, it is not sufficient that propositions be allowed to take

multivalued truth levels; but it is also necessary that we incorporate

methodologies for combining these truth values, so that the evidence is,

indeed, weighed and balanced.



The combination of the separate pieces of evidence, provided by

individual propositions contained in premises of production rules, is

distinctly non-linear, and requires raeta-level descriptions of knowledge.

It is a fact that some propositions are more important than others, and

would, therefore, carry greater weights in the evaluation of a premise.

This deeper information concerning the relative weights of propositions

might be a significant feature of domain-specific know-how. The essential

characteristic of an expert, perhaps, is that he possesses accurate

conceptions of these weights. Doubtless, these a priori notions usher

in the subjectivity that sways his evaluations. As knowledge engineers,

we must look toward ways to express, represent, and use this meta-level

knowledge in synthetic models of human reasoning. In doing so, we are

able to introduce the non-linear and subjective aspects of human expertise

into the framework of mechanistic decision making.

The objective of the present work is to develop a methodology for

the combination of evidence in the production rule formalism. This

methodology must model effectively the subjectivity that is a feature

of human evaluative strategies, and will be applied to the problem of

classification of milled rice grain.



AN OVERVIEW OF THE METHODOLOGY

Any methodology that is devised for the combination of evidence

must be founded on a basic human trait. Mono tonicity is one such

fundamental concept that appears to play a major role in human

evaluative strategies. The principle of monotonicity is illustrated

by the adage

:

Given more, we feel at least as good, or even better*.

This principle accurately reflects human behavior, and has special

relevance in modeling the subjective combination of evidence.

Very often, in real-life, a single piece of evidence is not

sufficient to force an evaluation in the direction of truth or

falsehood. On the other hand, as additional pieces of evidence are

obtained, the total weight of the body of evidence pointing to the

conclusion becomes greater, the picture begins to clear, and the

evaluation becomes more certain, or, at least, remains the same. This

process conforms with the principle of monotonicity.

The present methodology focuses on the combination of evidence

in the production rule formalism. The premise of a rule comprised of

AND-connected propositions is written as a set. Each proposition is an

element of the premise set, and is considered to represent a specific

piece of evidence that points toward the action. Thus, the evaluation

of the premise essentially involves the combination of the distinct

pieces of evidence provided by the individual propositions. Since the

premise is expressed as a set, it is convenient to employ measures of



subsets of this set to quantify the relative weights that groups of

propositions, or bodies of evidence, carry in an evaluation. These

weights are the a priori notions that are used by human beings when

they weigh and balance the evidence. The combination of the measures

models the combination of the evidence provided by individual

propositions. Human combination of evidence is performed monotonically

.

The measures, therefore, must obey the same principle. Specifically,

fuzzy measures (Sugeno, 1974) are employed in the present work to

quantify the relative importances that groups of propositions carry.

These measures follow the principle of monotonicity, and for this

reason, we prefer to call them monotonia measures. This term has been

employed throughout this thesis

.

If the propositions comprising the premise are allowed to adopt

just one of two truth values - true and false, the combination of

measures is sufficient to model the combination of evidence. However,

the present methodology permits multivalued truth levels, and it is

necessary to combine these truth values with the relative weights in

a premise evaluation. The Sugeno Integral t also known as the Fuzzy

Integral (Sugeno, 1974), defined on monotonic measure space, unites

these two quantities. The result is a mean or weighted premise evaluation

that is also monotonic, and possesses excellent intuitive justification.

As will be seen in later chapters, several significant advantages

are offered by the application of monotonic measure theory in the

framework of production rules.

i) The methodology employing monotonic measures provides a



convenient foundation for expressing, representing, and coping with

the subjectivity that is the hallmark of human evaluative strategies.

ii) It offers a viable framework for the representation and

treatment of ignorance, and the conservatism that is seen in evaluations

made in its presence.

iii) The Sugeno Integral is simply an extension of the minimum

operator that is conventionally used to evaluate premises consisting

of AND-connected propositions. In fact, it will be seen that the Sugeno

Integral reduces to the minimum operator in the absence of meta-level

knowledge about the relative weights of propositions

.

iv) The methodology may be extended to admit multilevel

reasoning without any loss in generality.

The guidelines imposed by Knowledge Engineering exhort us to search

for better ways to express, recognize, and use diverse and particular

forms of knowledge. This is our intention, and the advantages gain

significance when viewed in this light.



ORGANIZATION OF THE THESIS

In this thesis, we employ elements of monotonic measure theory to

model the human subjective combination of evidence in the production

rule formalism. The current emphasis on the proper representation and

use of knowledge has motivated the development of the present methodology,

and in Chapter II, we review the significance of the knowledge-based

approach in AI. Expert systems are a natural consequence of this approach,

and we proceed to examine some of the more important issues in expert

systems research.

Chapter III provides the theoretical foundation for the methodology.

In order to gain an insight into the controversy surrounding non-additive

probability, we begin by tracing the historical conceptions of probability.

We go on to examine monotonic measures, and finally, focus on the Sugeno

Integral, a functional defined on monotonic measure space.

Chapter IV forms the core of the present work. We start by examining

production systems in considerable detail. The concept of monotonic

measures is introduced into the production rule formalism, and a

methodology based on the Sugeno Integral is proposed for the evaluation

of premises of production rules. The methodology is shown to offer a

convenient framework for the treatment of ignorance, and is subsequently

extended to admit multilevel reasoning.

In Chapter V, the methodology is applied to the problem of classi-

fication of rice grain. An attempt is made to follow the visual approach

that an expert grain inspector would adopt. Essentially, a prototype
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from each class is defined by a unique production rule s
similar in form

to a discriminant function employed in classical pattern recognition

theory.

The conclusions and recommendations for future work are summarized

in Chapter VI.
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CHAPTER II

ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING, AND EXPERT SYSTEMS
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Ever since Charles Babbage conceived his Difference and Analytic

Engines in the mid-nineteenth century, mankind has devoted considerable

effort toward machine-based creativity. The advent of the first digital

computers in the early 1950s revolutionized this effort, and attempts

to develop thinking machines , that could emulate intelligent human

behavior, seemed destined for success. Artificial Intelligence (AI) is

the discipline that is devoted to developing and applying computational

approaches to intelligent behavior. However, researchers in the field

always fell short of their goal, the creation of a genuine thinking

machine.

In the mid-1960s, AI underwent a shift to a knowledge-based

paradigm. The new approach emphasizes the power of knowledge, and has

led to the creation of a new sub-field called Knowledge Engineering.

Knowledge Engineering is the technology that promises to make knowledge

a valuable commodity, and, in recent years, research in this area has

had many major successes. Perhaps, the most noteworthy of these has

been the construction of Expert Systems. Modeled on human experts,

these programs are designed to represent and apply domain-specific

knowhow in solving practical problems. Several conventional systems

have been evaluated as performing at or above the level of human experts.

As a result, interest in expert systems has exploded in industry and

government.

In this chapter, we review the significance of the shift in emphasis

of AI research from the older, weaker methods to the knowledge-based

approach and Knowledge Engineering. Expert systems are a natural
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development of this approach, and we proceed to examine some of the

more important issues in expert systems research.
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THE KNOWLEDGE-BASED APPROACH IN ARTIFICIAL INTELLIGENCE

The realization that digital computers are not just fast adding

machines, but instead, are potentially capable of being programmed to

exhibit human-like intelligence has sparked serious interest in

Artificial Intelligence (AI) . AI is perceived as the computational

study of intelligence , and researchers in the field attempt to develop

computational models of intelligent behavior, including both its

cognitive and perceptual aspects [see, e.g. , Barr and Feigenbaum. 1981,

1982. ] . In practical terms , this reduces to the development of computer

programs that can solve problems normally thought to require human

intelligence.

The earliest years (the late 1950s and early 1960s) saw attempts to

solve problems that had a distinctive non-numerical flavor. Computers

were programmed to play games, compose music, solve puzzles, and even,

devise and prove theorems in mathematics and symbolic logic. On the

theoretical side, the important techniques that emerged emphasized the

symbolic aspects of problem solving. Researchers looked for structures

for representing symbolic information, methods for manipulating these

structures and heuristics for searching through them. While the results

obtained during this period supported the possibility of machine

intelligence, they could not provide a basis for solving complex

practical problems.

Goldstein and Papert (1977) discern important reasons for this

failure. The early period confined AI to the domain of heuristic search,



16

that is, the study of procedural techniques for exploring state spaces

too large to be explored exhaustively. This was due to the feeling that

a relatively small number of powerful general mechanisms would be

sufficient to generate intelligent behavior, and manifested itself in

the power-based approach. Minsky and Papert (1974) characterize this

point of view.

"The power strategy seeks a generalized increase in computational
power. It may look toward new kinds of computers (parallel or fuzzy or
associative or whatever) or it may look towards extensions of deductive
generality , or information retreival , or search algorithms - things
like better resolution methods, better methods for exploring trees and

nets , hash- coded triplets , etc. . In each case the improvement sought is

intended to be uniform - independent of the particular data base."

Experience showed that programs that relied on uniform search or logistic

techniques which were problem-independent proved to be hopelessly

inefficient for handling the sheer combinatorial complexity that was

often encountered. Additionally, according to Duda and Shortliffe (1983).

the general techniques were found to be inadequate when confronted with

imprecisely stated problems, uncertain facts, and unreliable axioms.

Today, the most fundamental problem in AI is not the identification

of a few powerful techniques. Instead, as suggested by Goldstein and

Papert (19 77), is the question of "how to represent large amounts of

knowledge in a fashion that permits their effective use and interaction"

.

It is realized that there are diverse kinds of knowledge, and the

problem-solver, whether man or machine, must know how to process the

knowledge it has. For this reason, it is imperative that the general
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techniques of the older approach be supplemented with "domain-specific

pragmatic knowhow". Thus, there has been a shift from the power strategy

to what is termed as a knowledge-based or epistemio approach. In the

words of Minsky and Papert (1974),

"The knowledge strategy sees progress as coming from better ways to

express, recognize, and use diverse and particular forms of knowledge.
This theory sees the problem as epistemological rather than as a matter
of computational power or mathematical generality. It supposes, for
example, that when a scientist solves a new problem, he engages a highly
organized structure of especially appropriate facts , models , analogies

,

planning mechanisms, self-discipline procedures, etc.. To be sure, he

also engages in general problem solving schemata but it is by no means
obvious that very smart people are that way directly because of the
superior power of their general methods - as compared with average
people. Indirectly, perhaps, but that is another matter: a very
intelligent person might be that way because of specific local features
of his knowledge-organizing knowledge rather than because of global
qualities of his thinking which, except for the effects of his

self-applied knowledge, might be little different from a child's."

The knowledge-based approach serves to identify AI as a procedural

theory of knowledge. The view is that the process of intelligence is

determined by the knowledge held by the subject, and the approach stresses

an understanding of the operations and data structures involved. We can

discern two key procedural concerns. Knowledge within a specific domain

must be represented so that it can be used efficiently. Comprehension,

transformations, and results must occur within a reasonable length of

time . So the first concern is to identify and formalize domain-specific

knowledge. Most intellectual activity involves the interaction of

knowledge from different domains. Hence, the second, and essential

concern , is to construct frameworks so that diverse kinds of knowledge
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can successfully interact. In this view, AI embraces attempts to structure

knowledge into procedural systems that can solve complex real-world

problems

.

The shift to the knowledge-based approach, while delivering AI from

its initial forays into toyland t has contributed to a fast-developing

sub-field called Knowledge Engineering . Feigenbaum (1977) has defined

this activity as

"...the art of bringing the principles and tools of AI research to

bear on difficult applications problems requiring experts ' knowledge for
their solution. The technical issues of acquiring this knowledge,
representing it, and using it appropriately to construct and explain
lines-of reasoning, are important problems in the design of knowledge-
based systems. ... It is the art of building complex computer programs
that represent and reason with knowledge of the world."

Feigenbaum's definition of Knowledge Engineering is a prescriptive

guide for the construction of Expert Systems. An expert system is a

computer program that can help solve complex, real-world problems in a

specific area of human expertise. The development of expert systems is

the result of the shift to the knowledge-based approach, and these

programs are characterized by their use of large bodies of domain-specific

knowledge. Human experts normally possess extensive knowledge about a

narrow class of problems. It is this feature that makes it feasible to

provide a computer with sufficient knowledge so that it could serve as

a consultant for decision making.

The field of expert systems is perhaps the most active area of

applied research in AI . Several factors have motivated this development.
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In many areas of human expertise, problems are very complex, and this

often results in large solution spaces. A large solution space renders

it difficult for a human being to locate all possible solutions, or

even, to be confident of a particular solution. For a computer, this

limitation is not too severe, and it can effectively search a large

solution space if it is provided with a proper conceptual methodology.

Often, the same methodology can be used to search an even larger

solution space with no significant increase in computational time.

Additionally, in domains such as medical diagnosis, problem solving

by computer also ensures that remote possibilities are not overlooked.

Otherwise , a potentially disastrous situation is likely. An expert system

could, therefore, provide reliable and thorough services, more rapidly,

and perhaps, at a reduced cost.

Another motivation is due to the fact that some tasks are too

routine for a human being to perform repeatedly. It is a good idea to

delegate such tasks to a computer. In these scenarios, the human

assumes the role of a supervisor; to man is allotted the task he does

best - thinking.
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IMPORTANT ISSUES IN EXPERT SYSTEMS RESEARCH

The simplest and most successful expert systems are classification

programs. These systems, which are designed to be used in a well-defined

context, weigh and balance pieces of evidence for a given manifestation

to decide how it should be classified. A number of consultation systems

which are used as aids in medical decision-making fall in this category.

The expert system, MYCIN (Shortliffe, 1976), is designed to provide

consultative advice on the diagnosis and therapy for microbial infectious

diseases. CASNET (Weiss at al. , 1977) aids in the assessment and

treatment of Glaucoma. PUFF (Kunz et^ al . , 1978) is being used to analyze

pulmonary function tests . Other important medical applications systems

are INTERNIST (Pople, 1975), for internal medical diagnosis; the

Digitalis Therapy Advisor (Silverman, 1975): and EXPERT (Weiss and

Kulikowski, 1979), a general facility that helps investigator build

medical consultative models in Rheumatology , Opthalmology , and

Endocrinology

.

Expert systems have not been confined to medical diagnosis alone,

and DENDRAL (Buchanan and Feigenbaum, 1978) , is perhaps the best known

system from outside this domain. It is one of the earlier expert systems,

and predicts the chemical structure of unknown compounds by analyzing

mass spectral patterns. Also well-known is PROSPECTOR (Duda et al. , 1979).

PROSPECTOR assists geologists in hard-rock mineral exploration. Some of

the other important expert systems are Rl [or XCON (McDermott, 1982)],

which is being used by Digital Equipment Corporation (DEC) to configure
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VAX computers; HASP and SIAP (Nii et_ al . , 1982), which use information

about vessels and the sea, and expertise about signal interpretation to

analyze signals from ocean sensors; and DELTA (Bonissone, 1983), which

is used by General Electric Corporation for troubleshooting diesel

electric locomotives.

Many of these systems are considered to have achieved performances

at the expert level. This success is, in part, due to the fact that

much of the experts' knowledge in these domains concern specific pieces

of information, which has made it easier to identify and filter the

necessary knowledge. In contrast, Duda and Shortliffe (1983) opine that

it is much more difficult to develop expert systems that have a more

synthetic character, such as those that concern planning or require

de novo generation of solutions. There are other basic problems that

have been holding back the wide proliferation of expert systems. We

proceed to examine some of the more important issues in expert systems

research.

Knowledge Acquisition

Building an expert system requires the transfer of expertise to a

computer program. The identification and representation of this knowledge

is complex and presents many problems. Experts often have difficulty

expressing their knowledge in the knowledge representation formalism

that is being used. Currently, the only successful method of knowledge

transfer is through a computer scientist intermediary.

Attempts to construct knowledge bases often disclose inadequacies
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in our understanding of the subject domain. Human beings also tend to

forget , or to simplify details about their expertise . Additionally,

the domains themselves develop rapidly with time , and it is necessary

for the system to augment its knowledge at a later date.

If an expert system is to perform as well as human experts, it

should be able to learn as they do. Current research is geared towards

the development of learning systems as a means of knowledge acquisition.

A potential solution is to allow the expert to teach the system directly.

It is realized that learning is not just the accumulation of new facts,

but instead, involves the interaction of old and new knowledge. From

this point of view, it is important to understand how human experts talk

about what they know, and it has been suggested (Duda and Shortliffe,

1983), that, in the design of systems that allow for interactive

transfer of expertise, the machine should be able to ask focused

queries, and not general questions. The system must also be able to

make changes in its knowledge base, and it must do so easily, and in

an incremental or modular fashion [see, e.g., TEIRESIAS for EMYCIN

systems (Davis, 1976)]. It is, therefore, obvious that proper knowledge

representation is also an essential concern in the design of expert

systems

.

Knowledge Representation

Efficient knowledge representation is the key issue at this point

in the development of AI . Most researchers adopt a pragmatic view of

knowledge representation. In this view, a knowledge representation
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formalism is a combination of data structures and interpretative

procedures that if used properly by a program could lead to

knowledgeable behavior. Duda and Shortliffe (1983) list the roles

that a knowledge representation formalism must assume; they are:

i) Faithful representation of the concepts and intentions of

the expert.

ii) Allow for effective and correct interpretation by the

program.

iii) Support explanations that convey a line of reasoning that

a human expert can understand and critique,

iv) Facilitate the process of finding gaps and errors in the

knowledge base.

v) Allow the separation of domain knowledge from the interpretation

program so that the knowledge base can be enlarged or corrected

without the need for rep rog ramming the interpreter.

The last three properties point toward a single, uniform formalism that

is simple and easy to interpret. This methodology has been used

successfully in many expert systems. However, recently there has been

a trend towards more complex and heterogeneous representation schemes

that would allow for faithful representation and effective interpretation

(Stefik et al. , 1982).

Lately, research in knowledge representation schemes has involved

the design of several classes of data structures for storing information.

They include logic, production rules, semantic networks and frames. The

flexibility and precision of mathematical logic make it a useful method
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and also promote it as a basis for comparing different representation

schemes. Production rules offer a modular and uniform mechanism which

has been used successfully in several conventional expert systems.

Semantic networks simplify certain deductions (inferences through

taxonomic relations) by reflecting them directly in the network. Frames

generalize this idea by providing frameworks or structures for organizing

knowledge. For an excellent treatment of these knowledge representation

schemes, the reader is referred to Barr and Feigenbaum (1981).

Research on expert systems has benefitted from the simplicity of

using uniform representation schemes. However, significant penalties

are incurred when these formalisms are used in large knowledge bases.

Stefik et al. (1982) , suggest that future research should look into

methods of tuning expert systems by making changes in the ways they

represent knowledge. This would involve the use of specialized data

structures, knowledge compilation schemes, and knowledge transforms

for cognitive economy. Such a system could automatically improve its

performance by changing its internal representation.

Other open problems in knowledge representation include

quantification, that is, the ability to specify properties of

arbitrarily defined sets; the representation of beliefs, degrees of

certainty, mass nouns, time and tense information, and processes that

consist of sequenced actions taking place over time (Barr and

Feigenbaum, 1981).
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Reasoning and Inference

The ability to reason is intrinsic to human intelligent behavior,

and substantial research has been directed towards the development of

reasoning mechanisms for expert systems. The process of reasoning, which

must resemble that a human expert would employ, usually involves the

creation of hypotheses and their verification by weighing and balancing

the different pieces of evidence. In a chain of reasoning, the hypotheses

are nested, and hypotheses at one level are successively used to verify

hypotheses at a higher level. We can discern two specific methodologies.

A system could either start from the goals and reason backwards to the

data, or, it could reason forwards from data to goals . Most conventional

expert systems employ one of these two strategies. The specific domain

of application and the architecture of the system's data base play

important roles in the selection of the appropriate strategy.

In MYCIN (Shortliffe, 1976), expert reasoning is represented by

condition-action rules, which, while linking patient data to infection

hypotheses, also provide estimates of certainty for the links. The

reasoning process chains backwards from hypothesized diagnoses (goals).

Rules are used to estimate the certainty of conclusions based on the

certainty factors of their antecedents, to see if the evidence (data)

supports a diagnosis. All possible hypotheses are evaluated, after

which, MYCIN matches treatments to all diagnoses that have certainties

higher than a predefined threshold value. This is termed as a goal-

driven or backward-chaining inference strategy.

The expert system Rl , on the other hand, uses a data-driven
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mechanism to configure VAX computer systems. The user initially enters

all the information about the problem, and the rules chain forward to

evolve the best possible configuration. This strategy is appropriate

because the computer configuration problem can be solved without

backtracking and without undoing previous steps (Gevarter, 1983).

A new level of complexity is introduced when the expert system

must be designed so that it is able to reason in the presence of

uncertainty . Conventional systems cope with unreliable or incomplete

data in a variety of ways. One of the earliest approaches has been

incorporated in MYCIN. This approach employs a model of approximate

implication involving a calculus of certainty factors to indicate the

strengths of heuristic rules. Although MYCIN has been demonstrated as

having expert skills in clinical tests (Yu, Buchanan e_t jil . , 1979),

several researchers opine that the methodology may be ad hoc, at best,

since the operational meaning of the computed values is not always

clear (Stefik et al. , 1982; Duda and Shortliffe, 1983). Other expert

systems use methods based on statistical theories. For example,

PROSPECTOR assigns probabilities to conclusions using a form of Bayes

'

rule to update probabilities as more information is obtained. The

major drawback in using Bayes' posterior probabilities is that a large

number of observations is needed to determine them. This is often not

possible, and as a result, the approach may not be statistically valid.

Duda e_t _al . (1976) suggest an alternative approach based on subjective

estimates of prior probabilities. Other methods for increasing

reliability by combining evidence are based on non-additive monotonic
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measures (see, e.g., Zadeh, 1978; Shafer, 1976; and Martin-Clouaire

and Prade, 1983); and exact approaches using non-mono tonic correction

rules (Stefik, 1978). All the approaches mentioned require the use of

meta-level descriptions of knowledge, but a general methodology is

lacking. Duda and Shortliffe (1983) are of the opinion that Possibility

Theory (Zadeh, 1978), or the Dempster-Shafer Theory of Evidence (see,

e.g., Shafer, 1976), could be used as the basis for formal treatments

of imprecision and uncertainty.

A human expert incorporates substantial subjectivity in his

decision-making, and this feature has yet to be introduced successfully

in expert systems . Future research concerning reasoning mechanisms is

also expected to involve reasoning in the presence of ignorance , the

ability of a program to recognize the limits of its knowledge, and,

when required, engage in cautious guesswork.

Explanation

Explanation of the program's line of reasoning is an important

factor for the acceptance of an expert system. Like a human expert, the

system must be able to provide explanations about its behavior. A user

may need clarification or reassurance about the program's output . An

explanation facility contributes to the transparency of the reasoning

process, and is an essential feature of medical consultation systems.

Furthermore , causal explanations also help in the debugging process

.

Here, the human expert could use the explanations provided to locate

the causes of error. The specific knowledge representation formalism
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used is an important consideration, and in certain cases, it may be

necessary to augment empirical knowledge with causal links to represent

functional behavior.

Another feature of human experts is that their explanations are

adjusted to satisfy the perceived needs of the user. An expert system

should, therefore, maintain a user profile. It must assess what the

user does and does not know, and what he is trying to accomplish. This

feature is especially important for the instructional use of expert

systems (see, e.g., MACSYMA Advisor: Genesereth, 1979). Presently,

however, research in this direction is in its infancy, and these features

often create more problems than they solve (Duda and Shortliffe, 1983).

Justification and Validation

These are important factors that must be considered before an

expert system is deemed fit for general use. A panel of experts must

assess the accuracy, reliability, and utility of the system. This

would involve examining whether the knowledge representation formalism

effectively captures the experts ' conceptions of the problem, and

whether the associations represented in the system's data base are

justified. In order to facilitate justification, a useful design

methodology would relate the reasoning steps to deeper causal models

using split-level representations

.

In some instances, a consensus opinion of the architecture of an

expert system may be sufficient to validate it. However, medical

consultation systems are also put through years of clinical tests to
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verify their performances. CASNET and MYCIN have been rated in

experimental evaluations as performing at human-expert levels in

their domains (see, e.g., Yu, Buchanan et_ al. , 1979; Yu, Fagan e_t al.

1979).

The success of expert systems has led to several ethical and

sociological problems, especially concerning their use in sensitive

areas such as medical diagnosis and nuclear defence. The idea of a

computer going beserk has been the subject of several thrillers,

such as the recent movie, WarGanes . A word of caution is in place.

Expert systems must be designed to provide advice only if and when

the need arises, and under no circumstances should they be allowed

to usurp the roles of physicians or missile defence strategists.

For further details concerning expert systems , the interested

reader is referred to Hayes-Roth et al. (1983) , Barr and Feigenbaum

(1981, 1982), Gevarter (1983), and Kinnucan (1984).



30

CONCLUDING REMARKS

The knowledge-based strategy in AI lays stress on the expression,

recognition, and use of diverse and particular forms of knowledge. It

acknowledges the local quality of human expertise, and has led to the

creation of a new sub-field called Knowledge Engineering. Knowledge

Engineering concerns itself with the technical issues of acquiring,

representing, and using knowledge in constructing complex computer

programs - Expert Systems.

The aim in expert systems research is to develop programs that

are able to provide expert-level advice in various domains of human

activity. This does not mean that an expert system is viable only if

it duplicates intelligent behavior in all its aspects. At present,

most expert systems are not able to converse in idiomatic natural

language, nor can they perceive evidence directly and learn from

experience. Often, they are not able to reason at the expert-level,

or even possess elements of common-sense knowledge. We must adopt a

pragmatic view and look toward the utility of expert systems. At this

point in time, the intention has been to solve realistic problems that

have been constrained so that useful solutions are obtained. However,

the development of high-performance computer programs is not the only

contribution of expert systems research. An equally important

contribution is the systematization and codification of domain-specific

knowledge. This often leads to new insights, and contributes towards

progress within the domains themselves.
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The past few years have seen a rush to design expert systems in

various areas of human activity. In the simplest sense, an expert system

is a computer program which contains relevant information and the

techniques necessary to manipulate this information, so that, for all

practical purposes , it could function at the same level of competence

as a human expert in the specific domain. An essential feature of human

expertise is the ability to reason, a feature that induces a substantial

amount of subjectivity. A viable expert system must model this phenomenon.

Conventional systems use the theory of probability in their attempts to

approximate human subjective reasoning.

The theory of probability has been the subject of controversy ever

since its inception. The relation of probability to frequencies is often

denied, and scholars have, therefore, broken down probability into two

distinct parts: a part belonging to the realm of randomness which retains

its relationship to frequencies, and a second part which is due to

knowledge, and is known a priori. However, the additivity of probability

has not been the subject of debate, and most discussions have tended to

re ly on an addi t ive concep tion of p rob ab il ity

.

The axiom of additivity states that the probability of a proposition

and its opposite must sum to one. Stated simply, this means that for two

independent events, the combined probability is exactly equal to the sum

of the two individual probabilities. This constraint comes about as a

result of the frequentative interpretation and should be reserved for the

domain of pure chance. While probabilities defined by this axiom would

suffice for the study of coin-tossing experiments, etc., it would seem
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to be incorrect to extend this to the domain of evidence and its

subjective combination. Non-additivity , on the other hand, implies

that the combined probability of two independent propositions could

be greater or less than (or even equal to) the sum of the individual

proposition probabilities. Given the enigmatic nature of human judgments,

it is reasonable to use non-additivity to mirror human strategies

involved in the combination of evidence, and also utilities in economic

theory.

In this chapter, we attempt to shed some light on the conundrum by

tracing the historical conceptions of probability. We go on to examine

monotonic measures (a general definition which includes additivity as

well as non-additivity) in some detail, and finally, focus on a

functional defined on monotonic measures.
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HISTORICAL CONCEPTIONS OF PROBABILITY

The word probability is used today in a variety of ways, and

philosophers have discerned many different kinds of probability. However,

the most common, and perhaps, the most fundamental distinction is between

aleatory (Latin, aleae: die, chance) and epistemic (Greek, episteme:

knowledge) probabilities

.

An aleatory (or, objective) probability of an outcome is simply the

probability of a chance event and attempts to measure the propensity of

its occurrence. Since this concept is approximated by the frequency with

which the outcome does occur when a large number of trials are performed,

it is a feature of the objective world. Due to this relationship with

frequencies, aleatory probabilities must be additive. Epistemic

probability, on the other hand, Is strictly a feature of our knowledge.

It is a number that very subjectively represents the degree to which we

are certain of a proposition, the measure of our belief in it, or, the

extent to which our evidence supports it. There is no necessary relation

to frequencies, and therefore, epistemic probabilities need not be

additive

.

The foregoing definitions may appear to be idealized views of the

overall conception of probability, and nuances in the way we understand

probability could be used to attack them. But these nuances must not be

allowed to obscure the important fact that at least a part of probability

is a feature of knowledge and Is due to nothing else. The view that

epistemic probabilities should also be additive is deeply engrained in
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current thought. This could be the result of a failure in recognizing the

difference between aleatory and epistemic probabilities, and from a

misunderstanding of the mathematics of additive probability. More

importantly, the Bayesian theory of statistical inference has exerted

considerable influence in favor of additivity. To gain insight into the

debate on additivity, it is of interest to trace the historical

conceptions of probability.

For several centuries, the idea of chance and the concept of belief

have been united under the name probability. In this essay, we reject

the unification and use the term probability to refer to the domain of

subjective judgments and beliefs. Chance has been reserved for the realm

o f randomness

.

According to Van Brakel (1976) , the Greeks divided knowledge into

three categories: "(i) that of which certain knowledge is possible,

(ii) that of which probable knowledge is possible, and (iii) that of

which no knowledge is possible." The first two categories arise out of

Plato's distinction between knowledge (episteme: Latin, soientia) and

opinion (doxa: Latin, opinio). Since the Greeks subscribed to

determinism, the third category belonged to the realm of randomness.

These distinctions appear to have endured through the middle ages;

probability was an attribute of opinion where the random was quite out

of play.

With the advent of the Renaissance, these categories were

transformed for reasons still not clear. Racking (1975) traces the

transformation to the notion of sign> as it had been understood during
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the middle ages. The modern concept of evidence was lacking, and the

notion of testimony was extended by including signs - the testimony of

nature. Opinion was based on testimony, and a probable opinion was one

approved by some authority after observing the relevant signs.

Towards the end of the Renaissance, the connection between

probability and chance seems to have first been made in a discussion

of the philosophical concept of probability by Arnauld (1662), He

distinguished between two kinds of evidence: external evidence, or the

evidence of testimony, and internal evidence, the evidence of things. At

that time, the mathematical theory of chance was just emerging, and

Arnauld suggested that the principles of the new theory be used when

considering the "probabilities of gain and loss in everyday life".

Hacking (1975) is of the opinion that the origin of the new concept of

internal evidence in the older concept of sign was reflected in a

tendency of philosophers of the day to relate issues of evidence and

probability to wagers in games of chance. This new kind of evidence

made propositions worthy of approval by virtue of the frequency with

which they made correct predictions . Although Arnauld used the theory of

chance to calculate his probabilities, it is clear that they were

epistemic. They were known a priori and, therefore, were unequivocally

a feature of knowledge. The connection seems to have been introduced in

an attempt to lend mathematical formality to the study of epistemic

probability

.

In the late seventeenth century , the tendency to associate

epistemic ideas with chance could also have been furthered by the
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activities of the practical statisticians of the age - the demographers.

Stimulated by the new theory of games of chance, political curiosity,

and the fashion of selling annuities, many authors began using a more

epistemic vocabulary than had been seen in the early theory of chance.

Yet, none of these authors followed Arnauld in using the weightier

epistemic term - probability.

Jacob Bernoulli was the first substantial contributor to the theory

of games of chance to grapple with its connection with probability. In

his Are Conjeatandi (the Art of Conjecture), written around 1692, and

published posthumously in 1713, Bernoulli has stated that probability

is a degree of subjective certainty. The probabilities of different

arguments have been combined to produce a probability based on the total

evidence. Although Bernoulli has used methods from the mathematical

theory of chance, non-addltivity is evident, in several instances, when

the probability of a thing and its opposite do not add to one. In essence,

Bernoulli realized that combinations of arguments in the epistemic

domain were quite different from corresponding manipulations in the

theory of chance.

Bernoulli's subtle view of the connection between probability and

chance did not endure, and Shafer (1978) has discerned important reasons

for its failure. The theory of combining arguments was a prelimnary

attempt and could not be compared as a mathematical theory with the

already well-developed theory of games of chance. Bernoulli's

understanding was a bit too subtle, and his successors simplified it

by connecting his probability with the ease of happening as understood



41

in games of chance. The simplification was to some extent encouraged by

Bernoulli's own Law of Large Numbers . This theorem which plays an

important role in the theory of chance, maintains that in cases when

the ease of happening of an event is not known a priori, it may be

learned a posteriori from the observation of frequencies. Bernoulli

thought one could use frequencies to find the ease of happening of

various cases in individual arguments, the probabilities of these

individual arguments could then be calculated and combined according

to general rules. His successors abandoned his struggle with the

combination of arguments and tended to think of probability as an ease

of happening to be found directly from frequencies.

The word probability continued to have its broad epistemic

connotations after Bernoulli's death. But the connection with chance

gradually came to dominate the thinking of those who endeavored to

treat epistemic probability numerically. In the works of Montmort (1708)

and DeMoivre (1711) , the notion of numerical probability essentially

narrows to the paradigm of chance, and attempts to compute probabilities

in situations other than games of chance are seen as extensions of the

paradigm to those cases.

By the middle of the eighteenth century, the synthesis of

probability and chance was complete. Lambert (1764) stands out as

the only scholar at the time who was able to break away from the

assimilation of probability in the additive theory of chance. He

explicitly recognized and sought to explain the possible non-additivity

of the probabilities of propositions, and he extended Bernoulli's rules
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for combining arguments. Lambert's rule of combination turns out to

be a special case of Dempster's rule of combination (Dempster, 1967).

Lambert's ideas did not influence the opinion at the time.

Probability and chance continued to be used synonymously, and scholars

began to learn, From Bayes (1764), Condorcet (1785), and Laplace (1785),

just how additivity worked in the case of propositions.

Almost two centuries later, we accept the synthesis of probability

and chance in the all-embracing term probability , and have further

split it into aleatory and epistemic categories . More importantly , our

study of epistemic probability has been pervaded by a universal and

unconscious acceptance of additivity. The recent interest in AI, and

its applications in thinking machines requires us to lessen our

dependence on the restrictive constraint of additivity. For the sake

of future progress, we may have to rediscover the concept of

non-additivity introduced by Bernoulli and Lambert.

The reader is referred to Shafer (1978), Hacking (1975),

Van Brakel (1976), and, Pearson and Kendall (1970) for interesting

discussions on the history of probability.
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MONOTONIC MEASURES

Kolmogorov (1933) was the first to axiomatize probability by

representing random events as sets. According to this framework.,

probability is a normed measure defined on these sets. The measure-

theoretic treatment has provided a logical and consistent foundation

for the theory of probability and has united it with the mainstream

of modern mathematics. In this section, the concept of a monotonia

measure, defined using the same approach, is shown to include

additive as well as non-additive features . We start by defining

some basic concepts in measure theory.

Definition 3.2.1

A o-additive field (or a C-algebva) is a non-empty class of

subsets of a set X which is closed under the formation of countable

unions and complements and contains the emoty set 0.

Example 3.2.1

Let X be a finite set given by

X = {x-, x
2

, X-}.

The smallest a-field that can be generated is given by

£ = (X, 0}

= {{x
x

, x
2

, x
3
>, 0}.

The largest a-field is

£
m

= U*^, *
2

, x
3
>, 0, {x

1
, x }, {x

3
}, {x

2
, x }, {x }, {x x },

(x
2
}}.
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I is also the power set of the finite set X, written as P(X).

Definition 3.2.2

A Borel a-additive field, B, defined on any subset of X

satisfies the following conditions:

DBS P(X) (3.1a)

ii) £ B (3.1b)

iii) If Q £ 8, then Q £ B (3.1c)

iv) If Vi £ N (the set of natural numbers) Q.E g,

then U Q. £. B. (3. Id)

ieN
x

Definition 3.2.3

The Borel a-field of subsets on the real line, R, is the a-field

generated by the class of all bounded semi-closed intervals of the

form (a, b], and is denoted by B r .

Definition 3.2.4 (Sugeno, 1974)

A monotonia (or fuzzy) measure, g, is a fuction from a Borel field

to [0,1], which has the following properties:

i) g(0) " 0, g(X) = 1; (Boundedness and Non-negativity)
(3.2a)

ii) VQi , Q, £ S, if Q, £ Q 9 , then g(Q ) < g(Q ) ; (Monotonicity)
1 Z L Z

(3.2b)

iii) If Ti e N, Q i £ B, and the sequence (Q.). is monotonic

(i.e., Q 1
C q 2 £Q 3

S....S QjS...., or, Qji 2 Q2 2 Q 3 2
=Q2 ), then
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lira g(Q
1

) = g(lim Q
L
); (Continuity). (3.2c)

Note that in these definitions, is the null or empty set, and X

is the reference set.

Definition 3.2.5

(X , g) is called a measurable space, or Borel space.

Definition 3.2.6

The triplet (X, 6, g) is known as a monotonia (or fuzzy) measure

space

.

The concept of a raonotonic measure broadly defines most commonly

used measures. The key axiom is monotonicity
, property (ii) in

Definition 3.2.4. This is a very general property that includes the

lesser constraint of additivity. Hence, a probability (additive)

measure is a member of the class of monotonic measures. The measure,

g, is associated with a non-located element x
±

of X. Sugeno (1974)

has called g(Q) a grade of fuzziness of set Q. It expresses an

evaluation of the statement

x^ belongs to Q

in a situation in which one subjectively guesses whether x. is within

Q (For the case of probability, the study of frequencies helps determine

the grade which is objective and necessarily additive.). Thus,

monotonicity of the measure g entails that
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x
l

£ Ql

is never more certain than

x
±

Z Q 2

when

h* Q 2-

It is also obvious that

Vt^, Q 2
E 6, g(Q 1

UQ
2 ) ^MaxCgCC^), g(Q

2
)), (3.3a)

and

\/Qi» Q 2
e 0. gCQ!nQ

2
) $ MinCgCQ^, g(Q 2

))- (3.3b)

For the case of a finite reference set, the continuity axiom,

property (iii) in Definition 3. 2. A, is dropped. It is also

common to define the measure, g, on the power set, P(X)

.

We shall now examine some of the more commonly used

monotonic measures defined over normal sets.

Definition 3.2.7

A monotonic measure, p, is a probability measure iff

i) V i £ N, Q. £ 8 and i± i j, Q. fj Q . = 0, then

p( U Q ± ) = Zp(Q
1 );

(Additivity)

.

(3.4)
isH ieN

Example 3.2.2

Suppose we have an urn containing three balls of different colors,

red, blue, and green. The balls collectively represent a set X, where

X = (x,, Xj, xj,

x s red ball,
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blue ball.

and

x~ = green ball.

Let Q be any subset of X, i.e., Q SX, and assume that we randomly

pick one colored ball from the urn.

a) If Q is the empty set, we know that the ball is not contained

in set Q, and we write

p(0) 0.

b) If Q is the reference set, X, the ball definitely belongs to

the set, and,

p(X) = 1.

c) Suppose

Qi = {xxK

Since the ball has been selected at random, it may or may not be

contained in set Q,. Additionally, there is an equal chance that

the ball could be either red, blue, or green. Hence, we assign a

probability measure of 1/3 to set (J,, In other words, we are 1/3

certain that the unknown ball belongs to Q. . Similarly, we are

also 1/3 certain that the ball belongs to each of

Q 2 - {x2 },

and

Q
3

- fx
3
h

Let

Q4 - (*!, x
2
),

and we would like to assign a measure to which we are certain that
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the unknown ball belongs to this set. Again, since each color is

equally probable, the measure assigned to Q, is 2/3. Additivity is

inherent in the choice of measures, and is due to the element of

randomness. By Definition 3.2.7, we see that

p(Q4 ) - pC^, x
2
})

• p({x
1
}U{x

2
})

• p(Q
1uQ 2

)

- p(Q x
) + p(Q

2
)

= 1/3 + 1/3

- 2/3.

Since we are certain that a ball is either contained in a set or

its complement, we have

p(Q) + p(Q) - p(QUQ)

= p(X)

- 1.

This example illustrates two important features of additivity,

namely, the combined measure is exactly equal to the sum of the

individual parts, and, the measure of a set added to its complement

is exactly equal to one.

Definition 3.2.8 (Dubois and Prade, 1980)

A dtvac measure is a monotonic measure, d. , defined by
i J

q £ 6, d
i
(Q) = 1, iff x

±
£ Q (3.5a)

= 0, otherwise (3.5b)

where x^ is a given element in X, d.(q) is simply the membership
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(or characteristic function) of x^ in a subset Q of X.

Example 3.2.3

Let

X = {x
1

, x
2

, x,}.

a) If Q = 0; Vx
±

E X, d.(Q) - 0.

b) If Q = X; Vx. € X, d.(Q) • 1.

c) Suppose that

\ " {V>
Q, - (x },

Q
3

- {x
3
L

Then we have

dj^Qj) = 1, d
2 (Q 1

) = 0, d
3 (Q 1

) = 0,

d
x (Q 2 ) = 0, d

2 (Q 2
) = 1, d

3 (Q 2
) 0,

d
1 (Q 3 ) - 0, d

2 (Q 3 ) = 0, d
3 (Q 3

) = 1.

It can be seen that d^ is additive for fixed

d
1
({x

1
, x

2
J) = d

1
({x

1
}U{x

2
))

= 1

• 1 +

- d^) + d
1
(Q

2
)

- d
1
({x

1
}) + d

1
({x

2
J).

Similarly,

d
2
((x

1
, x

2
>) d

2
({ Xl }U{x2

})



50

d
2
(Q

1
UQ

2
)

1

+ 1

d
2
(Q

l
) +W

d
2
({ Xl }) + d

2
({ Xl }),

and

d
l
(Q

l
U V = d

l
(X)

= 1

« 1 +

= d
1 (Q 1 ) + dyfij .

It is of interest to note that the Dirac assignment is performed

when the color of the ball (Example 3.2.2) which has been picked

from the urn is already known.

We now enter the realm of non-additivity which, in our opinion,

is suitable for the treatment of epistemic probability.

Definition 3.2.9 (Zadeh, 1978)

A possibility measure, II, is a monotonic measure such that for

any collection {Q.} of subsets of X,

H(U Q ± ) = Sup II(Q.), (3.6a)
1 i

and, for finite sets,

H(U Q ± ) = MaxH(Q). (3.6b)
i i

A possibility measure can be built from a possibility distribution
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i.e., a function n from X to [0,1] such that

Sup tt(x.) - 1. (3.7)
x^eX

This is a normalization condition which implies that at least one

event x
1

is absolutely possible. The normalization condition also

forces IT(X) to be equal to one [property (i) in Definition 3. 2. A].

Example 3.2.4

Consider the colored balls problem in Example 3.2.2. It is

always possible that the unknown ball belongs to any non-empty

subset of X, where

X = {X,, X2, Xn}.

Hence , we have

TT({x
i
}) = 1, VX;L E X.

This leads to the assignment of the following possibility measures;

n(Q) = 1; VQ£X, Q * 0.

Let us suppose that for some (strange ?) reason, a person feels

that the green ball plays hard to get. A visit to any casino will

amply demonstrate this phenomenon. The assigned measures could be

given by

tt({ Xi }) = 1,

and

Thus

TT(tx
2
)) = 1,

tt({x
3
)) = 0.5.

H(Q) • 1; VQSX, Q i (J, Q r {x
3
),
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H(Q) = 0.5; Q = {k
3
},

and

n(Q) = 0; Q - 0.

The possibility measure is not additive, and it is obvious that

H(Q) + II (Q) > 1.

For further details concerning possibility measures, it is

useful to examine Zadeh (1978), and Dubois and Prade (1980).

Interesting relationships between possibility and necessity

[N(Q) = 1 - II(Q)] measures are provided by Dubois and Prade (1983).

The measures discussed so far relate mainly to the concept of

randomness (Possibility measures attempt to deal with subjectivity

introduced in the analysis of randomness.). We shall now focus on

measures that are useful for dealing with the subjectivity that is

inherent in epistemic probability.

In a measure-theoretic treatment of epistemic probability, each

element of the reference set, X, may be considered to be a fundamental

proposition. A measure would then assign a number between zero and one

to indicate a degree of belief or a grade of fuzziness accorded to a

subset Q of X, on the basis of the evidence it contains. The reference

set is given a measure of one, and this stands for the totality of

evidence. Shafer (1976) has called it a frame of discernment.

The intuitive picture is as follows. A portion of belief

committed to a proposition is also committed to any other proposition

it implies. This means that a portion of belief accorded to a subset
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is also accorded to any subset containing it. Thus, of the total

belief committed to a subset Q of X, some may also be committed

to one or more subsets of Q. However, there is a remainder that

is committed exactly to Q - to Q and to no smaller subset. The

fact that it ought to be possible to partition the total belief

among different subsets of the frame of discernment, while

assigning to each subset Q a portion that is committed to Q,

and to nothing smaller, has led to the following definition.

Definition 3.2.10 (Shafer, 1976)

If X is a finite frame of discernment (reference set), then

a function, m, from P(X) to [0,1] is called a basic probability

assignment whenever

i) m(0) = (3.8a)

and

ii) I m(q) = 1. (3.8b)
QSX

Note that m(Q) measures the belief committed exactly to Q,

not the total belief accorded to Q. Hence, to obtain the total

belief committed to Q, we must add to m(Q) , the quantities m(Q.)

for all proper subsets Q. of Q; i.e.,

Bel(Q) = I m{q
t ). (3.9)

QiSQ

This is known as a belief function (Shafer, 1976). The following

example should clarify the intuitive understanding of the belief

function.
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Example 3.2.5

Combining individual propositions into a body of evidence can be

likened to building an edifice brick by brick. We use this idea to

illustrate the intuitive aspects of a belief function.

Let us suppose that our edifice (the totality of evidence)

consists of three bricks cemented together. This corresponds to

the frame of discernment,

X = {x1> x
2

, x
3
}.

In this model, the basic probability assignment, m, represents the

masses of the individual elements of the structure. So we have,

m({x^}) = mass of brick 1,

m({x
2
)) = mass of brick 2,

and

m({x3}) = mass of brick 3.

Suppose we start with brick 1. The total mass is given by

m(0) + m({x
1 }).

A wall does not consist of bricks alone. Cement is used to bind

them together. Thus, when we join brick 2 to brick 1, the total

mass is the sum of the masses of the individual bricks, plus an

amount that is due to the cement bond. This is given by

m(0) + m({ Xl }) + m({x
2
}) + m({ Xl , x

2
)).

It is the mass of the cement bond alone, m({x1; x
2 }), that corresponds

to the portion of belief that is committed exactly to set Q, and to no

smaller set, in Shafer's theory. This fits beautifully into our picture

of evidence combination. Whenever we combine the weights of two separate
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a) In the beginning, there is emptiness.
m(0) = 0;

Bel(0) = m(0)
= 0.

b) Three bricks are introduced into the
emptiness.
m({x }) > 0, i - 1, 2, 3;

Bel({ Xl }) = m(0) + m({ Xi }).

c)

L 1

x
s

1 *i H I* i

Two bricks are joined using a small
amount of cement, m({x, , x

?
}).

Bel({x
1 , x

2
>) = m(0) + m({ X]L }) +

m({x
2
» + m({xv x

2
J).

Bel({x,}) = m(0) + m({x,}).

d)

I"?J
5K1

To complete the edifice, it is

necessary to join the third brick
to the other two, using some more
cement

.

Bel(X) = m(0) + m({x
1 }) + m({x

2 }) +

m({x
3
}) + m({x

1
, x

2
>) +

m({x
1

, x }) + m({x , x }) +

m({x . x
2

, x })

.

Bel(X) = 1 (by definition).

Figure 3.1. Combination of evidence using the belief function.
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propositions, we have an additional weight that is the result of

the combination - the glue that is an essential part of the union.

Figure 3.1 demonstrates the steps involved in building the edifice.

Definition 3.2.11 (Shafer, 1976)

A monotonic measure defined on a finite set, X, is a belief

function iff

VQ 1 , Q 2 . • • > Qn e P(X),

Bel(U Q
J_)

» E Bel(Q.) - J Bel(Q flQJ + . . . .

i i=l i<j -
1

. . + (-l)
n+1

Bel(f1 0.). (3.10)

Note that the belief function is defined on the monotonic measure

space, (X, P(X) , Bel). The reference set, X, is always assumed to

be finite in Shafer's theory of evidence (Shafer, 1976).

Xj},

Example 3.2.6

Let

X = {x1;

and

Q - {x
x , x

2
).

Due to the definition of the belief function in terms of the basic

probability assignments [Equation (3.9)!, we have

Bel(X) = m(0) + mf^}) + m({x
2
}) + m({x

3
}) + mCtx,, x })

+ m({x
1

, x
3
}) + m({x

2
, x

3
)) + m({x., x,, x,})

" 1.
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Bel(Q) = m(0) + m({ Xl }) + m({x
2
}) + mCtxj^, x

2 }),

and

Bel(q) = Bel({x
3
})

- m(0) + m({x
3
}).

Hence, if

"(Qi) > 0; VO^SX, Q t
# 0,

we have

Bel(Q) + Bel(Q) < 1.

In general, however,

Bel(Q) + Bel(Q) $ 1.

This means that a lack of belief in an unlocated x^ £ Q, does not

imply a strong belief in x^ £ Q.

For further details concerning belief functions, see Shafer (1976).

Shafer's belief functions, while very general in their scope, do

not lend themselves to the specification of functionals defined over

them. This is due to the fact that knowledge of BelfQj^) and Bel(Q 2 )

is not always sufficient to calculate BelCQj^O Q 2 ) [see Equation (3.10)].

In order to define a functional on the monotonic measure space,

(X, 6, g) , the values of g must be given over the entire domain.

Additionally, since g is monotonic, this property must be satisfied

by all members of S without exception. Suppose that X is a finite

set with n elements, and P(X) is taken to be 8, the number of

monotone sequences in S is n!. Thus, without a simple rule to define

the measure, g, it is almost impossible to proceed.
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Sugeno (19 74) has provided a function that specifies g over

the entire domain:

g(Q!0Q 2 ) * f
(g(Qi). g(Q 2 ))> (3.11a)

where

Qi. Q2 £ 6; QiHQ2 0. (3.11b)

and

f (yi> y 2 ) = yi + y 2 + A 'yi'y 2 > x e c-i, <*). o.iic)

The definition of a Sugeno measure follows.

Definition 3.2.

1

2 (Sugeno, 1974)

A monotonic measure, g, , is a Sugeno measure iff

fQj, Q 2 E S; Q 1 0Q2
= 0,

g
A
(Q

1UQ 2
) g

A
(Q

1
) + g

x
(Q

2
) + A-g

A
(Q

1
)-g

A
(Q

2
), (3.12a)

where

X £ (-1, <»). (3.12b)

More generally, when 0^ and Q, are any subsets of X, the following

formula (Dubois and Prade, 1980) holds;

gA (Qj.) + g x
(Q 2 ) - 8 x

(Q 1 nQ 2 ) + *'g
A (Qi)-g A

(Q 2 )

«»«io<y -

i + A-g
A
(Q

1
nQ

2
)

(3.13a)
where

A E (-1, °°). (3.13b)

Note that unlike the belief functions of Shafer, the Sugeno

measure is not restricted to finite reference sets.
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Example 3.2.7

It is interesting to see how the restriction, X £ (-1, ">) i

Equations (3.11c), (3.12b), and (3.13b), arises.

a) It is obvious that the following relation should always

hold.

g
x
(Q) = s

A
w>; VQSX.

Now,

8 A
(QUQ) g x

(X)

= 1

= 8 X (Q) + g X (Q) + *'»x «3>'*A®.
Hence

,

1 - 8 X (Q)

s x «y
1 + *-g

x (Q)

and thus

,

g
A
(Q)

i - s x (Q)

1 + *"*j(Q)

1 -
1 -

g X W)

1 + A-g
x (Q)

1 + A

1 -

«x«)

gA (Q)

1 + X-g
x
(Q)

1 + A-g
A
(Q) - 1 + g A

(Q)

1 + .\-g
x
(Q) + A - A-g

A
(Q)

gx (Q) (1 + X)

(1 + X)
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This implies that

x 4 -l.

b) For all

we have by Definition 3.2.12,

g
)v
(Q1UQ 2 )

= M^ + M Q 2> + ^-Sx^'Sx^

• i
x
(Q

x
) + g

A
(Q

2
) • (i + x-g^)).

Also,

g^(Q1UQ 2 ) >, MV'
Hence, we obtain

g
A
(Q

2
) • (1 + X-g

x
(Q

1
)) >, 0.

Now, since

gx (Ql)> g x
(Q

2 ) £ [0,1],

we can write

1 + X-g>.(Qi) » 0,

indicating that

X fc
-1.

Thus, since [see part (a)]

X + -1,

we have

X E (-1, ~).

Example 3.2.8

a) If A = 0, the Sugeno measure has the additive structure of

a probability measure.
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For Q^, Q 2
e 6, Q 1 (\Q 2

- 0,

8
A
(Q

1UQ 2
) = 8X (Q1

) + 8
X
(Q

2
) + A-g^Q^-g^Q^,

and when X = 0,

b) Since

1 - 8X (Q)

gx (Q)
= *

,

1 + A-g
A (Q)

we obtain

1 - gA (Q>

8
A
(Q) + 8 A (Q) - 8

A
(Q) +"

1 + A-g
A (Q)

/Q) + A-S
A
(Q) + 1 - g

A
(Q)

1 + A-g
x
(Q)

l + A-g^q)
3 A (Q) + 8,(03 -

1 + A-g (Q)

Since

,

gA (Q) £ [0,1],

it is obvious that

8
A
(Q) « s

A
(Q),

and thus

,

i) for A e [0, ">),

8 A (Q) + g
A
(Q) « i.

which means that a lack of belief in a non-located x. E Q does not

imply a strong belief in x
± e Q. Hence, in this range, the Sugeno

measure is a belief function of Shafer.
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ii) for A £ (-1, 0],

we have

g
A
(Q) + 8

X
(Q) » l,

or, a lack of belief In a proposition implies a very strong belief in

its negation.

Example 3.2.8 demonstrates that the Sugeno measure with

* E [0. •) (3.14)

is intuitively similar to Shafer's belief function (Example 3.2.5).

However, for

* E ("I. 0). (3.15a)

there is a certain amount of overlap whenever two independent

propositions are combined, i.e., for

Q 1 flQ 2
• (3.15b)

we have

g x
(Q

1UQ 2 )
< g

x
(Q

x
) + s

A
(Q

2
)- (3.15c)

This seems to model the phenomenon of marginal utility in economic

theory. The marginal utility, or extent of increase in satisfaction

per unit of commodity, in general, decreases with each increase in

the amount of commodity consumed. On the other hand, the total

utility, which follows the axiom of monotonicity , always increases.

The plausibility of a subset Q of a finite set X has been

defined by Shafer (1976) as

Pi(Q) = 1 - Bel(Q). (3.16)
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Definition 3.2.13 (Shafer, 1976)

A plausibility measure, ?l, is a monotonic measure for which

VQr Q
2

, - . . , Q e P(X),

p«((lQ.) < £ P«.(Q.) - .r.PUQ UQ ) +

. . + (-1) P«.(U Q.). (3.17)

Example 3.2.9

a) Suppose that

\, Q
2
S x, q

i
Oq

2
- 0.

Then, by Definition 3.2.13,

P4(Q
i nQ 2

) « PJUQ^ + Pf.(Q
2

) - P«(Q
1 UQ 2

),

or

P^(Q
1UQ 2

) $ P«(Q
1

) + P«(Q
2

) - P«(Q
i
nQ

2
)

S P£(Q
1

) + P£(Q
2

) - PJ(0).

Thus,

P*(Q
XUQ2 ) $ PUQ

X
) + PUQ

2
).

b) For any Q£X,

we have, using Equation (3.16),

Pi(Q) + PS>(Q) = (1 - Bel(Q)) + (1 - Bel(Q))

= 2 - (Bel(Q) + Bel(Q)).

Since (see Example 3.2.6),

Bel(Q) + Bel(Q) $ 1,

we obtain

PJ(Q) + PS.(Q) >, 1.

Thus, a plausibility measure has the same structure as a Sugeno measure



64

with A E (-1, 0].

The following theorems are pertinent.

Theorem 3.2.1

A Sugeno measure is a belief function iff

A E [0, »). (3.18)

Proof (Banon, 1978)

Let Q be a subset of X finite. Developing gx (Q) in terms

of g({x^})'s yields,

Card(Q.) - 1

g x
(Q) t A i n g({x

i }), (3.19)

where Card(Q-) is the cardinality of subset Q..

Thus, by writing

Card(Q.) - 1
m(Q.) A J II gCfxj^}); iff A > 0. (3.20)

we see that

gx
(Q) - I m(Q,)

QjSQ

- Bel(Q). . (3.21)

Q.E.D.

Theorem 3.2.2

A Sugeno measure is a plausibility measure iff

A £ (-1, 0]. (3.22)

Proof (Dubois and Prade, 1980)

Let g be a Sugeno measure with A £ (-1, 0], and denote
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f(Q) - 1 - g
x
(Q). (3.23)

For any Q1; Q 2 £X,

f(Q
1
UQ

2
) - 1 - g

A
(Q

1
UQ

2
). (3.24)

On expressing g^Q^l/O^) in terms of g^Q^, g^CQj) . and g^riO^),

and simplifying, we obtain

f(Q,) + f(Q,) + I-f(Q.)-f(Q ) - f(Q.nQ,)
f^uo.;,) = —-—— _—1 :—_± L

,

i+ WCQjftijj)

where

A =

(3.25)

(3.26)

-A
X * —

( = A ) (3.27)

1 + A

Thus, f is a Sugeno measure with parameter A.

Note that the function

1 + A

is an involutive bijection from (-1, 0] to [0, «•)

.

Due to the definition of plausibility measures in terms of

belief functions , and also to the fact that g is a belief function

iff A E [0, °°) [Theorem 3.2.1], a Sugeno measure is a plausibility

measure iff A £ (-1,0].

Q.E.D.
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In order to be able to use monotonic measures in applications,

it is essential that they be specified over the entire domain. The

Sugeno measure, due to its explicit definition, is easily fitted

from researched data. This section describes an efficient algorithm

(Wierzchon, 1983) for the determination of Sugeno measures by

regression from subjective estimates obtained by experiment.

Let

X = { Xl , x
2 , . . . , xn ), (3.28)

be a finite reference set, and let

"(Q), QSX, (3.29)

be the experimentally determined subjective estimates which are

to be fitted to the constraints of Sugeno measures. The procedure

must look for densities

Si " g({x
± } ), i - 1, 2 n (3.30)

with a corresponding value of a so that an appropriately defined

error function is minimized. In mathematical terms, it is customary

to state the problem as:

Locate densities,

g± , i = 1, 2, . . . , n (3.31a)

so as to minimize

.2
J = I (w(Q) - gl (Q)r

QSX

subject to the Sugeno constraints on g, , i.e.,

(3.31b)
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M > " °. (3.31c)

8xW = 1, (3.31d)

and

VQ
1 , Q

2
c P(X), Qj^OQj = 0,

g
A
(Q

1 UQ 2
) - g^Q^ + g

x
(Q

2
) + A-g

A
(Q

1
)-

g;i
(q

2
). (3.31e)

The optimization problem defined by Equation (3.31) can be

solved using a suitable objective function minimization technique.

Sekita and Tabata (1977) have suggested the use of a (rather

tedious) Sequential Unconstrained Minimization Technique (SUMT)

.

Other objective function minimization techniques can also be used.

However, the method of Wierzchon (1983), presented in this section,

is simple, fast and easily programmable. The method is based on the

following important results.

Theorem 3.3.1

Let (X, S, p) be a measurable space with a probability or

finite Lebesgue measure, p. A composition fop produces a Sugeno

measure if f is of the form

f(y) = -— ( c
y - 1 ) ; c > 0, c t 1. (3.32)

X

Proof [see Wierzchon, 1983.]

Corollary 3.3.1

A Sugeno measure gA defined on 6 produces exactly one probability

measure p defined on this 3 where
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P(Q) log
(1+A)

(l + X-g^(Q)), Q E 6. (3.33)

The inverse is not true [see Wierzchon, 1983].

Example 3.3.1

Let P(Q^) and p(Q
2

) be probability measures for

Qx , Q
2
SX (finite),

and

Q
1
nQ

2
- 0.

a) By definition of probability measures (Definition 3.2.7)

we have

pd^UQ.,) - p(Q
1

) + p(Q
2
).

Using Theorem 3.3.1 (subject to the restrictions on c) , we obtain

1 /n -,

f«p(Q,) - ( c
ptV - i )

1
A

f.p (Q 2
) = i

( ep«te) . x j

and

f^ftJil/Qj) = -< c
P(Q

l
WQ

2> -1 ).

A

As shown below, f p is a Sugeno measure;

f.p(q
1 uq 2 ) = f.pCQ^ + f. P (Q 2 ) + x-fop(Q

1 )-f6p(Q 2 )

. l(cP<Ql). d +
'

(c
pW 2)_ u +

'

(cp«i)_ 1)(cp(Q 2 ). „AAA
. ^(c

P (<5i)_
x + c

p(Q2>_
x + c

p(Qi)+p(Q2)_
cp(Qi)_ c

p(Q2>

A

+ 1)
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= _ c cp(Qi)+p(Q2) . x )

a

1

A

= f.p(Q.UQ,).

Example 3.3.2

It is of interest to see how the restrictions on c [Equation (3.32)]

arise. From Theorem 3.3.1, we have

g,(Q) - - ( c
p(Q) - 1 ); c > 0, c f 1, QSX.

A

But, by definition of monotonic measures,

gx
(X) = 1,

and

p(X) = 1.

On writing

g A
(X) = - ( c

P(X)
- 1 ),

A

and simplifying, we obtain

1

A

- ( c
1

- 1 ).

Thus,

c = A + 1.

However, by definition of Sugeno measures (Definition 3.2.12),

A e (-1, •»],
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and, therefore,

c > 0.

Also, since A corresponds to the additive case,

c t 1.

Hence

,

c > o, c 4 l.

Since the minimization of the error function,

1 m 2
J - - I ( w(Q.) - g (Q.) ) (3.34a)

m j = l J A J

where

Qj E P(X) (3.34b)

and

m = Card(P(X)), (3.34c)

subject to the Sugeno constraints on g^ , is rather difficult

from a mathematical standpoint, the problem is simplified by

employing the transformation provided by Corollary 3.3.1 to

define a new error function;

1

r ( ,rm.,R - - I < v(Q.) - p(Q.) ) (3.35a)
m j=l

where

v(Q
j

) = log
c
(l + A-wCQj)) (3.35b)

A = c - 1 (3.35c)

Qj £ P(X) (3.354)
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and

D = Card(P(X)). (3.35e)

Wierzchon (1983) has also shown that minimizing the error

function R [Equation (3.35a)] is equivalent to minimizing the

function J [Equation (3.34a)], and the optimization problem

simplifies to:

Locate probability densities,

pt , i - 1, 2, . . . , n (3.36a)

so as to minimize

1 m ~

R - - £ ( v(Q.) - p(Q.) ) (3.36b)
m j-1

J J

subject to the probability constraints,

V ± £ 0, i = 1, 2 n (3.36c)

X P, = 1, (3.36d)
i=l

P(0) = 0, (3.36e)

and

P(X) = 1. (3.36f)

The method of least squares is employed to derive an analytic

solution to the minimization problem.

The overall approach is as follows;

i) Reduce the identification procedure to the probability

domain using the fact that the Sugeno measure is the

exponential transformation of a probability measure

(Corollarv 3.3.1).
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ii) Minimize the error function using the method of least

squares,

iii) Having identified the probability measures, transform

them to Sugeno measures (Theorem 3.3.1).

The algorithm is comprised of the following steps [for details

and derivations, see Wierzchon (1983)];

i) Read in the data: the cardinality n of the set, X;

and experimentally obtained subjective weights, w(Q.),

j - 1, 2. ... , 2
n" 2

, i.e.,

Q fix, Q i 0, Q / X.
J 1 j

ii) Find the values of A by solving the following equation;

n (i + x-w(q.))
j=l J

where

J = (A + 1)
2
n_2

(n+l) - n
(3.37a)

k- = Card(Qj)

m = Card(P(X))

n = Card(X)

.

iii) Using a non-complex value of X closest to zero,

compute the values of z. , 1 = 1 , 2 , . . . , n,

according to

(3.37b)

(3.37c)

(3.37d)

z. = log n (i + >.-w(q.) -d.

.

1 c
j=i J «

where

(3.38a)

ij " 1. i£ xi £ Qj
= 0, otherwise.

(3.38b)

(3.38c)
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g, = - (c
Pl

" 1) (3.40a)

iv) Compute the values of Pl , 1 = 1, 2, . . . , n, according

to the equation

p. = 2
"n

( Zl + 1) - 1. (3.39)

v) Finally, compute the Sugeno densities, g. , i = 1, 2, . , n,

using the transformation,

1

X

where

c = A + 1. (3.40b)

The preceding algorithm has been termed a direct method for

the estimation of Sugeno densities because it requires the knowledge

of weights for all subsets of set X. There is, however, a practical

difficulty. When the cardinality of the reference set is large, a

considerable number of subjective estimates are needed (If there are

10 elements in the reference set, a subject has to provide 1022

estimates!). In such instances, we may drop from the set X those

aspects whose grades of importance are close to zero. Lowering the

cardinality results in a reduction of the number of subjective

judgments that are required (If the number of elements in the

reference set is reduced from 10 to 8, only 254 subjective estimates

are needed.)

.



74

THE SUGENO INTEGRAL

In the preceding sections, the mathematical and intuitive aspects

of monotonia measures have been reviewed in some detail. We have seen

that measures with non-additivity have properties which could render

them useful for modeling human decision making strategies. Before we

venture any further, let us sum up the ideas we have expounded to this

point.

There are two distinct types of probability, aleatory and epistemic.

The measure-theoretic approach for aleatory probability represents

random events as sets. A weight (or, probability) is assigned to each

subset depending on the likelihood that an unknown event would belong

to it. In a sense, the measure of probability could be taken to

represent the grade of importance the specific subset has for the

purpose of predicting an event. Due to an implicit relation between

randomness and frequencies , the measure is necessarily additive.

In the epistemic domain, each element of a set is a fundamental

proposition. A measure defined on a subset is taken to indicate the

degree of belief accorded to the subset on the basis of evidence it

contains. Observation of human behavior points to many non-compensatory

and conjunctive strategies . It is these features that we attempt to

model using non-additivity. The following example illustrates the point.

Example 3.4.1

For some time, a Chemical Engineering Department has been searching



75

for a suitable candidate to fill a vacant position of Assistant

Professor in the department. The advertisement states that a young

candidate with demonstrated research skills, and substantial

teaching ability is preferred. Since the department is oriented

towards research, the candidate's research skill is very important.

However, it is not necessary that the candidate be young.

A mathematical formulation could represent the reference set

by

X {x^, x,, x,}

where

x. = candidate is young,

*2 - candidate is a good teacher,

and

x^ - candidate is a good researcher.

Members of the selection committee were asked for their opinions

concerning the relative weights (measures) for each subset of X. The

consensus values provided were as follows;

g(0) -

gC^}) = 0.10

g({x,}) = 0.20

g(.U
x

, x
2
)) = 0.55

gCtx^ x
3
}) = 0.75

g({x
2

, x
3
J) = 0.95
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Observe that these measures satisfy the axiom of monotonicity , and

are non-additive. Each value expresses the level of satisfaction

that would arise if a candidate has the qualities contained in the

corresponding subset of X. A value of one entails sure selection of

the candidate, while a value of 0.5 could be taken to suggest that

the candidate may or may not be selected. Note that good research

skills alone will not ensure selection. However, a person with

demonstrated research and teaching abilities is almost a cinch for

the position.

In this example, the propositions are all assumed to be

answered with either a yes or a no. But, in real-life situations,

a candidate might satisfy each proposition partially - somewhere

between a sure yes and an emphatic no. Monotonic measures alone

will not suffice. As we shall see, the Sugeno Integral, a functional

defined on a Sugeno measure space (or other monotonic measure spaces)

,

could help solve this difficulty.

Definition 3.4.1 (Sugeno, 1974)

Let (X, B, g) be a monotonic measure space, and let h:X + [0,1]

be a measurable function defined on X. A Sugeno Integral (or Fussy

Integral) over Q E B, of h(x) with respect to a monotonic measure g

is defined by

f h(x)og(.) - Sup (Min(a, g(QflF)), (3.41a)
Q a e [0,1]

where
F
a

= (xjh(x) > a}. (3.41b)
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In this work, we are concerned with finite reference sets, and

it is not necessary to assume continuity of monotonic measures. The

definition for this case follows.

Definition 3.4.2 (Sugeno, 1974)

Let (X, P(X), g) be a measurable space, and let h:X * [0,1] be

a function defined on X. The Sugeno Integral over any set Q g P(X)

is given by

f h(x)»g(.) = Max ( Min (h(x.))A g(QnF) ). (3.42)
Q FeP(X) XieF

For further details, see Sugeno (1974).

The following example demonstrates the evaluation of the Sugeno

Integral.

Example 3.4.2

Let X be a finite reference set given by

X = {x^, Xn, x.,}.

The monotonic measures on (X, P(X), g) are

g(0) =

gt^}) = 0.2

g({x
2
» = 0.3

g({x
3
}) = 0.4

g({x1; x
2
)) = 0.6

gdx^ x-j}) = 0.7

g((x,, xJ) = 0.9
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g({x1; x
2

, x
3
}) = 1.

Let the function h(x) be given by

h(jcj) = 0.5

h(x
2

) = 0.6

h(x
3

) = 0.8.

a) Evaluation of the Sugeno Integral over Q {x. , x }.

{ h(x).g(.)

Q

Max ( Min (h(x ))Ag(QflF) ).

FeP(X) x.eF

Max

V

Min(h(0))A g(Qf10), F =

Min(h(x
1))Ag(Qf|{x1 }), F = { Xl }

Min(h(x
2
))/Vg(Qn{x

2
}), F = {x

2
>

Min(h(x
3
))Ag(Qn{x

3
}), F = {x

3
J

MinOUx^, h(x
2
))/\g(Q(l{x

i
, x }), F = {x

Min(h(Xl ), h(x
3
))Ag(QfHx

1
, x-j}) , F = ix

±
, x^}

Min(h(x
2
), h(x

3
))Ag(Qn{x

2
, x

3
)), F - {x

2
, x

3
J

Mindi^), h(x
2 ), h(x

3
))Ag(QH{x

1
, x

2
, x

3
i), F = X

"O.O A 0.0 (g(0)]

0.5 A 0.2 [g({x
1»]

0.6 A 0.3 [g({x
2
})]

0.8 A 0.0 [g(0)l

0.5 A 0.6 [g({x
1

, x
2
})]

0.5 A 0.2 [g({x
1 })]

0.6 A 0.3 [g({x
2 »]

.0-5 A 0.6 IgC^, x
2
J)]

- o.o"

- 0.2

= 0.3

= 0.0

= 0.5

- 0.2

= 0.3

= 0.5.
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Thus,

i h(x)og(.) = Max(0.0, 0.2, 0.3, 0.0, 0.5, 0.2, 0.3, 0.5)
Q

= 0.5.

b) Evaluation of the integral over X = {:
i' v v-

f h(x).g(.) = Max ( Min (h(x ) ) A g(X flF) )

X FeP(X) x.eF

= Max ( Min (h(x))Ag(F) ).

FeP(X) x.eF

On substitution, we obtain

{ h(x)og(.) = Max(0.0, 0.2, 0.3, 0.4, 0.5, 0.5, 0.6, 0.5)

0.6.

Note that, in general, we have

i h(x).g(.) .$ / h(x).g(.), Q£X.
Q X

(3.43)

Defined on a monotonic measure space, the Sugeno Integral is

is interesting functional that is analogous to the Lebesgue Integral

(a well-known functional defined on additive measures). Sugeno (1974)

has shown that if p is a probability measure (additive monotonic

measure), defined on a reference set, X, then

i h(x).p(.) / h(x)dp
X

where

1

« -
4

(3.44a)
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{ h(x)op(.) (3.44b)
X

is the Sugeno Integral evaluated over X, and

/ h(x)dp (3.44c)
X

is the Lebesgue Integral (or probability expectation value) . The

relation presented in Equation (3.44) demonstrates that the Sugeno

evaluation is at most 1/4 away from the probabilistic expectation.

Hence, we could interpret the Sugeno Integral as representing a

subjective expectation value in applications where the subjectivity

has been grasped by monotonic measures. Some of the more important

properties of Sugeno Integrals are given below.

i) 4} h.g(.) ^ 1. (3.45)

ii) f (aVh).g(.) = aVfh.g(.), ae[0,l] (3.46)

iii) j (aAh)og(.) = aA^hog(.), as; [0,1] (3.47)

iv) } (h
x
Vh

2
).g(.) > { h

1
.g(.) V f h

2
.g(.) (3.48)

v) f (h
1
Ah

2
)o g (.) ^ { h1#g(,) A { h

2
«g(.) (3.49)

vi) f h.g(.) % } h.g(.) V i h.g(.) (3.50)

Q 1°Q 2
Q
l

Q
2

vii) j h.g(.) £ f hog(.) A j h.g(.) (3.51)

Q
l"

Q
2 \ Q

2

These properties follow from the definition of the Sugeno Integral

(Definitions 3.4.1 and 3.4.2), and are easy to prove. For further
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details, see Sugeno (1974), and, Terano and Sugeno (1975).

The Sugeno Integral In Definitions 3.4.1 and 3.4.2 is just one

functional defined on monotonic measures. It is possible to define

different functionals that may be suitable for other applications.

We are concerned with modeling human subjectivity, and from this

standpoint, the most important property of Sugeno Integrals is

monotonicity

.

If

Vx
±

E X, hj.fXj) ^ h
2

( Xl ), (3.52a)

then

f h
1
(x)og(.) ^ f h

2
(x)»g(.), (monotonicity for the integrand, h)

x X (3.52b)

Additionally,

VQ 1; Q 2
e P(X), Ql£ Q 2 , (3.53a)

f h(x)»g(.) ^ f h(x)og(.), (monotonicity for the sets over
Q^ Q2 which integration is performed)

(3.53b)

These properties follow from the definition of the Sugeno Integral.

He shall shortly see that monotonicity is essential for approximating

human evaluative tendencies.

As stated previously, in the present framework, each element of

the reference set, X, is a fundamental proposition or criterion. Any

subset Q of this set consists of a collection of criteria, or intuitively,

is an aspect or view of the overall picture. A monotonic measure provides

a grade of importance, g(Q) , to each view, Q. In general, a manifestation
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would not satisfy the propositions completely. So the integrand, h(x-),

represents a truth value in the sense of logic, or a level of

satisfication of the proposition, x., with reference to the

manifestation. The operation

Min (Mx^), (3.54)
x^Q

would then provide the pessimistic or most secure level of satisfaction

that the manifestation offers when examined from the point of view of

the criteria contained in view Q.

The Sugeno Integral attempts to combine the most secure level of

satisfaction obtained from a view, with the relative importance of

that particular view. This is done for each view, Q, of the overall

picture, X. The power set, P(X), lists all possible views. Finally,

the integral gives the mean or expected value after considering all

views

.

There are two specific operations that are performed. First, the

most secure level of satisfaction is combined with the relative

importance of the corresponding view using the minimum operator.

Since the value obtained can never be greater than the importance

of the view, g(Q), this operation serves in limiting the evaluation

offered by the view to a value no greater than its importance, g(Q)

.

The second operation selects the best evaluation from among

all possible views. This is a common tendency in human judgments.

We evaluate things from many different angles or aspects. The angle

that strikes in terms of satisfaction as well as importance, plays
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a major role in our final analyses.

The Sugeno Integral restricts itself to the use of "Max" and

"Min" operators. Since both the level of satisfaction and the grade

of importance take values between zero and one, these operators are

appropriate, and the functional takes a non-linear form. Of course,

we could also define isomorphic functionals that employ other

operators. For example, the Lebesgue Integral uses "+" and "x"

operators. These operators are deemed necessary to deal with

additivity and the implicit relation between aleatory probability

and frequencies.

The following example should clarify the intuitive aspects of

the Sugeno Integral.

Example 3.4.3

As seen in Example 3.4.1, monotonic measures alone are not

sufficient for selecting a candidate for the post of Assistant

Professor. In this example, the Sugeno Integral is employed to

arrive at a more meaningful decision.

The criteria are represented by

X = {x,, x
2

, x^}

where

X-, = candidate is young

*2 - candidate is a good teacher

and

x~ = candidate has good research abilities.
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The relative weights for each collection of criteria, as given by

the selection panel, are as follows;

g(0) =

gMxjH o.io

g({x
2
» = 0.20

g({x
3
)) = 0.50

g({jc,, x
2
J) = 0.55

g({ Xl , itJ) = 0.75

5((x
2

, x
3
l) = 0.95

gffxj^, x
2

, x }) = 1.

The weights satisfy the axiom of mono tonicity; they indicate that a

candidate with good research abilities is preferred, while it is not

very important that the candidate must be young.

Let us suppose that two candidates have applied for the position,

and the selection committee has felt that they have satisfied the

criteria to the following levels.

hx (H) = 0.4

h
1
(x

2 ) = 0.7

and

0.8,

for candidate 1, and,

h
2

( Xl ) = 1.0

h
2
(x

2
) = 0.8

and
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h
2
(x

3
) = 0.4,

for candidate 2.

a) Evaluation of candidate 1.

0.00 A 0.00

0.40 A 0.10

0.70 A 0.20

0.80 A 0.50

0.40 A 0.55

0.40 A 0.75

0.70 A 0.95

0.40 A 1.00

j h
1
(x)og(.) = Max

and we obtain

i h
x
(x)og(.) 0.70.

Note that this value is obtained because the candidate has satisfied

the important important criteria of research ability and teaching

skill collectively to a value not lower than 0.7.

b) Evaluation of candidate 2.

0.00 A 0.00

1.00 A 0.10

0.80 A 0.20

0.40 A 0.50
Max

0.80 A 0.55

0.40 A 0.75

0.40 A 0.95

[0.40 A 1.00

f h (x).g(.)
X *
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and, therefore,

{ h
2
(x).g(.) = 0.55.

In this case, although candidate 2 has satisfied the age and teaching

criteria to high degrees, poor research ability has led to the low

evaluation.

c) Candidate 1 is selected for the post due to a higher evaluation.

d) Let us suppose that a secretary has misplaced information about

the candidates' research abilities. However, due to time limitations, a

candidate must be selected. Additionally, the members of the selection

committee have given very low default values for research ability

[ ^l^
x3^

= n2^x3^ = 0.2: the other values remain the same ]. Hence,

we obtain

1 h (x).g(.)

X

0.00 A 0.00

0.40 A 0.10

0.70 A 0.20

0.20 A 0.50

0.40 A 0.55

0.20 A 0.75

0.20 A 0.95

0.20 A l.ool

Max(0.00, 0.10, 0.20, 0.20, 0.40, 0.20, 0.20, 0.20)

\ h
x
(x).g(.) = 0.40,



for candidate 1; and

{ h,(x)og(.) = Max

87

. 00 A .
00"

1.00 a 0.10

0.80 a 0.20

0.20 A 0-50

0.80 A 0.55

0.20 A 0.75

0.20 A 0.95

0.20 A 1.00

Max(0.00, 0.10, 0.20, 0.55, 0.20, 0.20, 0.20, 0.20)

f h (x).g(.)

X
0.55

for candidate 2.

Candidate 2 is selected because of higher satisfaction levels of

the criteria for which information is available. Note that the highest

possible evaluation is 0.55, since the two criteria are not too

important in the selection procedure. .



CONCLUDING REMARKS

The underlying principle of probability, be it aleatory or

epistemic, is monotonicity. Aleatory probability, because of its

relation to frequencies, is necessarily additive. In contrast,

epistemic probability, which is purely a feature of the human mind,

need not be so restricted. We feel that non-additive monotonic

measures lend mathematical formality to the study of subjectivity

and its existence in human reasoning.

In our attempt to introduce human subjectivity into mechanistic

decision making, we have broken down the decision strategy into two

separate parts. One is the intrinsic importance that propositions

carry, and the other, is the extent to which a manifestation

satisfies each proposition. Non-additive measures provide numerical

weights or levels of importance to sets of propositions. These values

are assumed to be known a priori. On the other hand, the truth value

of each proposition would depend on the manifestation, and is the

result of observation.

The Sugeno Integral combines these two quantities non-linearly

,

and results in an overall evaluation of the manifestation. This

functional, which is also monotonic, has excellent intuitive features,

and in our opinion, effectively approximates a human evaluation.

Additionally, when probability measures are employed, the Sugeno

Integral is close to the probability expectation value (or, Lebesgue

Integral). Thus, the Sugeno evaluation may be considered to be a
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subjective expectation value in applications where monotonicity is

used to grasp the concept of subjectivity.

The field of Expert Systems is one of the most active and exciting

areas of research in AI. A high performance expert system must

incorporate human subjectivity in its decision making. For this reason,

we feel that monotonic measures and the Sugeno Integral, defined on

these measures, could find applications in the design and construction

of efficient expert systems.
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CHAPTER IV

THE SUGENO INTEGRAL IN THE PRODUCTION RULE FORMALISM
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The technical issues of acquiring, representing, and using

knowledge are important problems in Knowledge Engineering, and in

the design of expert systems. Production Rules (or IF-THEN rules)

are a popular approach for representing and manipulating domain

facts and heuristics in expert systems. Implemented in Rule-based,

or Production Systems, these rules are natural to human strategies

of problem solving and decision making.

In this chapter, we focus on production systems, and go on to

propose a methodology for evaluating the premises of production

rules based on the concepts of monotonic measures and the Sugeno

Integral. The methodology essentially deals with the combination

of evidence in the production rule formalism, and provides an

excellent foundation for expressing, representing, and coping with

the subjectivity that is often introduced into human evaluations.

Additionally, the methodology offers a convenient framework for

the representation and treatment of ignorance, and the conservatism

that is seen in evaluations made in its presence. Finally, we extend

the formulation so as to admit multilevel reasoning.
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Production Systems were first proposed by Post (1943) as a formal

mechanism for combinatorial decision problems. Newell and Simon (1972)

later incorporated them in their models of human cognition, and since

then, the methodology has undergone substantial theoretical development

which has led to its extensive use in several AI programs. A production

system is a modular knowledge representation scheme that has been found

to be useful as a mechanism for controlling the interaction between

declarative and procedural knowledge (Barr and Feigenbaum, 1981). This

has made it a popular approach for representing both facts and heuristics

of domain knowledge in an expert system. Production systems are founded

on a notion of condition-aetion (or situation-action, or IF-THEN) rulss

known as production rules, or simply, productions.

All production systems have three basic components: a set of

production rules that forms the rule base for problem solving, a

context or data base that helps in evaluating the rules, and, an

interpreter that controls the system's activity by using the rules

to mainpulate the data base.

A production rule is a conditional statement written in the form

If this condition holds, then this action is appropriate.

This scheme represents both logical implication

A implies B

as well as causality

A causes B,
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and is a convenient methodology for dealing with humanistic reasoning.

For example, the oft-used thumb-rule in football (Barr and Feigenbaum,

1981)

Always punt on fourth down with long yardage required,

may be translated to the production rule

IF it is fourth down AND long yardage is required THEN punt.

The IF part of a production rule (also called the condition part or

left-hand side) stipulates the conditions that must be satisfied if

the production rule is to be applicable. In general, this is a complex

conditional statement comprised of simple or unitary propositions

joined by AMD and OR connectors. The THEN part (or action part, or

right-hand side) defines the action to be taken. A production whose

condition part is satisfied can fire, that is, have its action part

executed by the interpreter. The invocation of many rules in a

production system can be viewed as a chained sequence of modus ponens

actions. This is a data-driven (or bottom-up) strategy, and it is

possible to vary the methodology to obtain a goal-driven (top-down, or

backward) scheme. Here, the elements of the left-hand side are

interpreted to be the goals obtained by the successful matching of

elements from the right-hand side. In this case the rules unwind. Thus,

the same set of rules can be used in two different ways, with

characteristically different control structures, and possibly, behavior.

In some instances it may be feasible to attempt a solution to a problem

by moving bi-directionally, that is, both forward and backward

simultaneously (Nilsson, 1980).
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The data base is the focus of attention of production rules. Also known

as the short-term memory buffer, it contains the state variables, the

facts and assertions about the world. Before a production rule can fire,

each element of its condition part must be present in the context data

structure. This may be a simple list, a large array, or even a medium-

size buffer with an internal structure of its own. But whatever the

organization of the data base, it is the sole storage medium for all the

state variables of the system, and all information must go there.

Moreover, the store is universally accessible to every rule in the

system, so that anything located there is potentially detectable by

any rule. This is termed as the unity of data and control store.

The interpreter, which is the source of much of the variation

found among different systems, controls the system's activity by

adjusting the sequence of application of the rules. The simplest

interpreter operates in a select-execute loop, in which a rule

applicable to the current state of the data base is chosen and then

executed. The action results in a modified data base, and the select

phase begins again. This alternation of selection and execution is an

essential element of production system architecture, and is responsible

for a very fundamental feature. Since a rule is selected for execution

on the basis of the total contents of the data base, a complete

re-evaluation of the control state of the system is performed at each

cycle . This is distinctly different fron procedurally-oriented approaches

,

and production systems are potentially sensitive to any changes in the

entire environment

.
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There are several approaches Co the selection procedure. Data-driven

approaches utilize variations of a left-hand scan, in which each left-

hand side is evaluated in turn. In such designs, conflict resolution is

an important consideration. Some systems resolve conflicts by stopping

their scan at the first successful evaluation. However, once this is

done, the question of where to start the next scan remains to be solved.

MYCIN (Shortliffe, 1976), which is goal-directed, uses a right-

hand scan. Given a sub-goal, it examines all rules whose actions conclude

something about the sub-goal. Evaluation of the first right-hand side is

undertaken, and if any clause in it refers to a fact not already present

in the data base, a generalized version of the fact becomes the new

sub-goal, and the process recurs. Since MYCIN is designed to deal with

judgmental knowledge (implemented in meta-rules and certainty factors),

it does not stop after the first success. Instead, it evaluates all

possible rules and estimates the certainties of their conclusions. Thus,

the use of meta-level knowledge is seen to aid in conflict resolution.

Interpreter architecture strongly influences the overall efficiency

of a production system, and the specific domain of application has an

important bearing on the design of the interpreter. Interested readers

are referred to Davis and King (1977), and, Nilsson (1980) for excellent

treatments of interpreters for production systems.

The use of a production system methodology has several advantages.

Production rules offer a modular representation of knowledge that is

easily accessed and modified. The rules do not call each other, and

communicate only through the data base. In the process, interaction
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between the rules themselves is kept to a minimum, and each rule is

almost an independent piece of knowledge. Rules may, therefore, be

added, deleted, or modified independently. This modularity in knowledge

representation is useful as a scheme for systems designed to approach

competence in an incremental fashion. Encoding domain knowledge in the

form of rules reduces the entropy within the system and imposes a

uniform structure on the knowledge within the rule base. This facilitates

human understanding of the problem solving process. Better synthetic

understanding is also achieved by the machine itself, and this translates

into a more efficient explanation facility. An added advantage is that

production systems are natural to human understanding of problem solving.

Most experts , when asked about their knowledge , find it convenient to

express it in the form of production rules. This allows for easier

filtering of domain knowledge during design, and also permits knowledge

acquisition by the system.

There are , however, significant disadvantages in production system

formulations. The uniformity and modularity of knowledge representation

give rise to large overheads in problem solving. Often, each action is

performed by a select-execute cycle, and all information must be

communicated to the context data structure . This creates inefficiencies

in program execution. It is not possible to program sequencies of actions

that may be required in certain applications. Larger steps, or leaps in

reasoning are, therefore, never permitted. Another disadvantage is the

opacity of control flow in problem solving, due to the fact that

production systems are distinctly different from procedural approaches,
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and are, therefore, not easily represented in algorithmic form.

Production systems easily solve problems in some domains, but are

rather inappropriate for others. Production rules capture effectively

knowledge that is diffuse, consisting of many facts and rules of thumb.

Most classification and diagnosis problems fall in this category. On the

other hand, the methodology fails when applied to areas in which a few

tenets embody much of the domain knowledge. For this reason, production

rules are not able to capture knowledge in concise fields, such as

mathematics and physics. The complexity of control flow is also

important in determining whether production systems are appropriate.

They are suitable for modeling processes which can be represented as a

set of independent actions, but are awkward for complex, parallel

processes with dependent sub-processes, for which procedural approaches

may be better suited. An important feature of production system

architecture is that the data base is completely separated from the

interpreter, and the methodology makes no prior assumptions about

the way facts are employed. Thus, production systems are appropriate

when domain knowledge can be separated from the way it is to be used.

Fields in which representation and control are merged are better treated

procedurally.

An excellent overview of production systems is presented by Davis

and King (1977). Other pertinent references are Nilsson (1980), Barr and

Feigenbaum (1981,1982), Cohen and Feigenbaum (1982), and Gevarter (1983).
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THE SUGENO INTEGRAL AS THE BASIS FOR EVALUATING PRODUCTION RULES

In this section we propose a general formulation for representing

and evaluating production rules. The methodology provides a convenient

framework for approximate reasoning in the presence of ambiguity as

well as partial ignorance. We start by examining production ruie

formulations in two well-known expert systems.

A production rule is a statement cast in the form

IF condition THEN action.

One of the rules that the expert system, Rl (McDerraott, 1982), summons

while configuring VAX computers is:

IF the most current active context is assigning a power
supply

AND an SBI module of any type has been put in a cabinet
AND the position it occupies in the cabinet (its nexus)

is known
AND there is space available for a power supply for that

nexus
AND there is an available power supply

THEN put the power supply in the cabinet in the available
space.

Rl operates this rule by matching the conditions to the current

situation. Each proposition or assertion in the premise is matched

with corresponding elements in the data base. The rule is fired

only if all the conditions that make up the premise are satisfied.

The propositions in the premise are crisp - answered by yes or no,

true or false, or, 1 or 0.

This is the simplest form of a production rule. Mathematically,

the evaluation of the premise is performed by a minimum operator, i.e.,
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Min(h(Xl), h(x
2
), h(x

3
) , h(x

4 ) , h(x
5 ))

wher

h(x ) S {0,1),

represents the truth value of proposition x., such that

h(x^) = 1, if proposition x^ is true (satisfied).

and

h(x.J = 0, if proposition x. is false (not satisfied).

Min(h(x.)) = 1,

(4.1)

(4.2)

(4.3)

the condition part of the rule is satisfied, and the rule can be

fired. On the other hand, if

Min(h(x )) = 0, (4.4)

at least one of the propositions is false, and the premise of the

rule is, therefore, not satisfied. In general, the left-hand side

of the rule could be a complex conditional statement comprised of

unitary or atomic propositions linked by AND and OR connectors.

Evaluation would then involve the use of minimum (AND) and maximum

(OR) operators.

Judgment plays an important role in clinical diagnosis, and

MYCIN introduces a new level of complexity in its rule base. The rule

IF the infection which requires therapy is meningitis
AND the patient has evidence of a serious skin infection
AND organisms were not seen on the strain of the culture
AND the type of infection is bacterial

THEN there is evidence that the organism (other than those
seen on cultures or smears) which might be causing the
infection is

staphylococcus-coagpus (0.75)
streptococcus (0.50)
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is used by MYCIN to diagnose and prescribe therapy for bacterial

infectious diseases. The left-hand side still consists of simple

assertions, but uncertainty is introduced into the right-hand side.

For the rule presented above, the evidence cited in the premise

provides degrees of confidence (rule certainty factors, CFs) of 0.75

and 0.50 for staphylococcus-coagpus and streptococcus, respectively.

The CFs are measures of association between the premise and action

clauses for each rule in MYCIN'S rule base. They assume that all the

antecedents are known with absolute certainty. If the rules'

antecedents are not determined to be completely true, the certainty

factors for the conclusions are reduced accordingly.

The premise of each rule in MYCIN is a boolean combination of

one or more clauses. It is always a conjunction of clauses, but may

contain complex conjunctions and disjunctions nested within each

clause (Instead of writing a rule whose premise would be a disjunction

of clauses, a separate rule is written for each clause). Each clause

is represented in the form of a 4-tuple,

(<predicate function> <object> <attribute> <value>)

.

Thus, to cope with situations in the real-world, medical facts are

represented in the form of 4-tuples corresponding to an atomic

formula with a numeric truth value between -1.0 and 1.0. A value of

-1.0 implies complete confidence that the proposition is false, while

a value of 1.0 represents complete confidence in its truth. A proposition

is given a value of if there is no evidence for its truth or falsehood.

This allows for the combination of evidence both, in favor of and against



103

the same hypothesis. For example,

( TYPE INFECTION BACTERIAL 0.70 )

is interpreted as the type of infection is bacterial is known with a

certainty of 0.70. Hence, depending on the evidence, MYCIN permits its

propositions to have varying levels of truth and falsehood.

As in predicate calculus, the rules of inference provide a basis

for combining well-formed-formulas and truth values. MYCIN'S model of

approximate reasoning employs a unique calculus for combining evidence.

When the premise of a rule is evaluated, each predicate returns a

number between -1.0 and 1.0. The AND connector necessitates a

minimization of the arguments , while an OR connector requires that

a maximization be performed (recall that a rule may have nested OR

conditions in its premise). Thus, evaluation of a premise results in

a numerical value between -1.0 and 1.0. For a rule whose premise

evaluation does not lie within the empirically determined interval

(-0.2,0.2) , the conclusion is made with a certainty that is the

product of the premise evaluation and the certainty factor of the

rule.

Approximate reasoning is a process by which a possible imprecise

conclusion is deduced from a collection of imprecise premises. In

fact , it is the ability to reason in qualitative , imprecise terms

that distinguishes human intelligence from machine intelligence.

Imprecision is a feature of the real-world, and , whether it is

caused by uncertainty, ambiguity, or even, ignorance, human beings

display an ability to reason in its presence . The conclusions

,
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of course, would then be less than completely certain. In the

framework of production rules , imprecision gives rise to ambiguous

premises which are rarely completely satisfied. A suitable approach

for dealing with imprecision is to soften production rules so that

even partial satisfaction of their premises could lead to some

action being taken by the interpreter.

The first step in creating soft production rules is to allow

the propositions that make up the premises to take truth values

between truth and falsehood. Several conventional expert systems

provide multivalued truth values to their propositions. For example,

MYCIN'S propositions are assigned values in the range -1.0 to 1.0,

as suggested by the clinical evidence. As the following example

illustrates, human knowledge often consists of facts that can only

be stated imprecisely . It is this feature that admits propositions

that can have varying degrees of truth.

Example 4.2.1

Most people who are familiar with the game of football have a

general idea of the qualities a good running back should possess. A

running back is usually well-built, but not too bulky. More

importantly, he should be very quick, and must have excellent ball-

handling ability. This knowledge can be represented in the following

production rule

;

IF a man is well-built, but not too bulky
AND he is very quick
AND he possesses excellent ball-handling ability

THEN he would make a good running back.
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The premise consists of three propositions, pertaining to the

attributes: build, speed, and ball-handling ability. Note that the

propositions are judgmental, and appear to be ambiguous. However,

this is a feature of knowledge about a running back, and even expert

football scouts would agree that the rule is reasonable. Indeed, the

same is also true in many other domains. Experts often find it

difficult to express their knowledge exactly. The facts and definition

are usually very qualitative, and the evaluations are purely

judgmental. Yet, an expert is able to provide excellent results.

Perhaps, this is because the expert possesses a deeper, more

correct conception of domain knowledge.

Consider the proposition concerning a running back's speed,

he is very quick.

When an expert (himself, a well-known running back) was asked for

additional details, his response was

"...he should be able to run the 40-yard dash in 4 . 7 seconds,
or less. And, the faster, the better."

This is the expert's deeper perspective. He knows what to look for,

and how to rate what he sees. Thus, depending on his speed, a

candidate could satisfy the proposition to a greater or lesser extent.

This degree of satisfaction is the truth value of the proposition

(with reference to the candidate) . A possible relation between the

time, t, taken to run 40 yards, and the truth value of the proposition,

is :

h(x
2 ) =1, if t < 4.5 seconds
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h(x
2 ) = 1.0 - 0.25(t - 4.5), if t £ [4.5,4.9] seconds

and

h(x ) = 0, if t > 4.9 seconds.

The presence of linguistic concepts in the propositions gives

rise to ambiguity, and necessitates multivalued truth levels.

Perhaps, the essential difference between an interested spectator

and an expert scout is in the fact that the latter has a better

notion of these linguistic concepts that qualify the attributes.

It is this better notion that we call expertise. Hence, on

observation of a candidate, the expert could provide better

truth values to the propositions.

As Example 4.2.1 demonstrates, ambiguities in facts and definitions

arises from their specification in qualitative, linguistic terms (see,

e.g., Zadeh, 1975a, 1975b, 1975c; concerning the use of linguistic

variables in approximate reasoning) . Another characteristic of human

reasoning is that one is rarely absolutely confident of the truth or

falsehood of propositions. To accomodate the ambiguity and uncertainty

inherent in many areas of human expertise, it is plausible to permit

propositions to take multivalued levels of truth. This is a general

formulation that would always embrace conventional crisp propositions.

A production rule can be represented in the general form:

IF proposition 1

AND proposition 2

AND proposition 3
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The left-hand side of the rule presented above, is a compound condition

comprised of unitary or atomic propositions linked by AND connectors.

We assume that premises having OR connectors can always be decomposed

into two or more production rules of the general form, with the same

action, or right-hand side. For example, the production

IF proposition 1

AND (proposition 2 OR proposition 3)
THEN action

can be broken down to two rules having the same action,

IF proposition 1

AND proposition 2

THEN action

IF proposition 1

AND proposition 3

THEN action.

The right-hand side of a rule in this formulation is not restricted to

a single action. More generally, it could consist of a set of actions

to be performed once the conditions are satisfied.

Since the premise of a production rule in the present framework

is restricted to a compound statement consisting of AND-connected

,

soft propositions, for purposes of evaluation, it is convenient to

represent it as a set of propositions. For example, the rule

IF proposition 1

AND proposition 2

AND proposition n
THEN action
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would have its premise, X, given by

X = {x-p x
2

, . . . , x
n } (4.5)

where x. represents the i-th proposition in the premise, X. The

production rule can, therefore, be written as

IF X THEN action.

Depending on the observation or manifestation, truth values,

h(x.) e [0,1], (4 . 6)

are provided to each proposition, x
±

£ X. Many conventional expert

systems (Rl and MYCIN, included) perform evaluations of their premises

(containing AND-connected propositions) using the minimum operator.

The premise evaluation, E (X), for the rule is given by

E
m
(X) = Min(h(x.)). (4 .7)

x.eX
i

There are two important points to be noted concerning this operation.

First, the evaluation is very pessimistic, since the premise

evaluation is the lowest truth value from among the propositions

contained in the premise set. Secondly, the evaluation using the

minimum operator is also feasible for crisp propositions, for which

h(x.) e {0,1}. . (4. 2)

Human experts introduce considerable subjectivity into their

decision making. Some extent of subjectivity is incorporated into

production rules due to the specification of premises in terms of

soft propositions. However, also important is the fact that in

performing evaluations , human beings are inclined to weigh and

balance the evidence. We often have prior conceptions concerning
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the relative weights of propositions. These notions play important

roles in our analyses.

Example 4.2.2

Knowledge pertaining to the selection of a good running back

(Example 4.2.1) is represented in the production rule:

IF a man is well-built, but not too bulky
AND he is very quick
AND he possesses excellent ball-handling ability

THEN he would make a good running back.

The propositions that make up the premise of the rule deal with three

criteria: build, speed, and ball-handling ability. We felt that, while

all three criteria are relevant in selecting a running back, some

qualities could, possibly, be more important than others. So we went

back to our old friend, the expert, for his opinion. His answers were

most enlightening.

"...Most important, perhaps, is his speed. A good running back
is almost always an excellent sprinter. Take Herschel Walker, for
example. .

."

"...But then, he should be able to hold on to the ball without
fumbling. So ball-handling ability would be almost as important.
Well, perhaps, slightly lower on the scale..."

"...Build is surely not as important as the other two criteria.
But we can't have someone too small or too big, playing running back.
In any case, it would be unlikely for someone rather big to be able
to run real fast..."

The comments provided above illustrate that knowledge about the

relative weights of propositions does form a sizeable chunk of expertise.

Additionally, they are usually known a priori.



110

Monotonicity is a fundamental feature that is inherent in human

evaluative strategies. The principle of monotonicity is illustrated

by the adage

Given move, we feel at least as good, or even better.

Since a premise of a production rule is written as a set, it is

convenient to employ measures of sets to represent the magnitudes

of importance that groups of propositions (or subsets of the premise

set) carry. The principle of monotonicity is used as the basis for

the definition of these measures. Monotonic measures (or fuzzy

measures, see, e.g., Sugeno, 1974) provide a plausible framework

for dealing with information concerning the relative weights of

propositions

.

Definition 4.2.1 (Sugeno, 1974)

A monotonia (or fuzzy) measure, g, defined on a finite reference

set, X, is a function from the a-algebra, P(X), or power set of X to

the interval [0,1], which has the following properties;

i) g(0) 0, g(X) = 1. (Boundedness and Non-negativity) (4.8a)

ii)
V°-i> Q2 £ P(X)

>
if Qi£Q2'

g(Q
x

) « g(Q
2
). (Monotonicity) (4.8b)

The premise of a production rule is the finite reference set, X,

in Definition 4.2.1, and any subset Q of X would then be a subset of

propositions from the premise. The measure, g(Q) , is taken to represent

the collective importance that the criteria (propositions) contained in
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set Q contribute toward the evaluation of the premise. The complete

premise, X, represents the totality of evidence that can be used in

the evaluation, and is, therefore, assigned a measure of one, i.e.,

g(X) = 1. (4.8a)

On the other hand, the null set, 0, contains no propositions, and,

therefore, contributes no information towards the evaluation; thus,

g(0) - 0. (4.8a)

The second property in Definition 4.2.1, which gives monotonicity

to the measures, provides the necessary intuitive framework. If Q

is a subset of Q the set Q contains at least one more criterion

(proposition) than set Q . It would, therefore, carry at least as

much weight as (if not more than) set Q in the evaluation. Thus,

we write

g(Qi) -S g(Q 2 )- (4.8b)

The broad definition of monotonicity includes additive as

well as non-additive features. A monotonic measure which is

subject to the additional constraint

g(Q
1
0Q

2
) = g(Q,) + g(Q,), for Q Q £ P(X) and O^DO., - 0,

(4.9)

is additive. This restriction implies that the combined measure

is exactly equal to the sum of the individual measures of sets

Q and Q . Or, in our framework, the total information content or

importance of a group of criteria is exactly equal to the sum of the

contributions of the individual criteria. The principle of additivity

(Equation 4.9) is used to define probability measures in stochastic
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theory, and finds its rationale in the frequentative interpretation

of randomness.

The phenomenon of human subjectivity in the combination of

evidence is purely an epistemic concern. We are dealing with

a priori notions that may have nothing in common with the paradigm

of chance. It is implausible to suggest that these notions always

follow the axiom of additivity. A more reasonable approach would

be to allow for general non-additivity in the domain of evidence

combination. Additivity of measures is restricted to special

cases. Hence, instead of Equation 4.9, non-additive monotonic

measures are subject to the additional constraint;

gCQxUty B^) + g(Q2 ), f°r Qj, Q 2 £ P(X) and Qx f| Q 2
= 9-

(4.10)

The following example demonstrates the utility of monotonic

measures in knowledge representation.

e 4.2.3

In Examples 4.2.1 and 4.2.2, the premise, X, of the production

rule contains three propositions, i.e.,

X = {x^, x
2

, x
3

J

where x
±

concerns the person's build, x
2

concerns the person's speed,

and, x
3

concerns the person's ball-handling ability. The production

rule can, therefore, be written in the form

IF X THEN Y (i.e., the person would make a good running back)

IF {x x , x } THEN Y.12 3
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Corresponding to this formulation we could define sub-rules of the

original production. The premises for these sub-rules are subsets

of the original premise, and, in general, 2 separate sub-rules can

be generated from a premise consisting of n propositions. The premise

in our example has three propositions, and the following eight sub-

rules result.

i) IF THEN Y

ii) IF {x } THEN Y

iii) IF {x } THEN Y

iv) IF {x > THEN Y
3

v) IF {x, , x„} THEN Y
1 2

vi) IF {x x } THEN Y

vii) IF {x , x } THEN Y

and

viii) IF {x
l

, x
2

, x } THEN Y.

Each sub-rule can be used independently in an evaluation. However,

depending on the importance of the propositions contained in the premise

of a sub-rule, a greater or smaller weight is accorded to it. This would

later manifest itself in the evaluation. The weights of importance of

the premises of sub-rules represent the meta-level knowledge that is

inherent in human expertise. An expert would know exactly how important

each subset of his original premise is, and the effect it would have on

his evaluation.

Monotonic measures provide a useful methodology for representing

meta-level knowledge. The premise, X, corresponds to the totality of
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evidence that can be used in an evaluation. Hence

g(X) - 1.

On the other hand, the empty premise in the sub-rule

IF THEN Y

bears no information, and thus,

g(0) 0.

The expert's remarks in Example 4.2.2 indicate that although the

three attributes of build, speed, and ball-handling ability are relevant,

all of them are not equally important for the task, of selecting a

running back. Speed is the most preferred attribute, while it is not

absolutely essential that the person must satisfy the build criterion.

Based on these aspects, the following measures for sets of criteria

from the original premise (or, degrees of importance for premises of

sub-rules) have been provided by the expert.

g(0) =

5 ({x1
}) = 0.10

;({x
2
» = 0.25

g({x
3
}) = 0.20

g({x
x

, x
2
» = 0.50

g({x
x

, x
3
}) = 0.40

g({x
2 , x

3
}) = 0.60

g({x
1

, x
2

, x
3
>) = 1.

The measures are seen to be monotonic and non-additive.

One important point remains to be noted. It is almost a fact that



115

an obese person cannot run very fast. One might, therefore, argue that

It is incorrect to treat build and speed as independent criteria, as

the theory of monotonic measures dictates. We concede that the relation

between build and speed does exist. However, we are dealing with epistemic

concepts, and the subjectivity that enters in their combination is,

perhaps, too complex to model precisely. In order to admit mathematical

treatment of these concepts, the present approach assumes that each

proposition is an independent piece of knowledge. Interactions, such as

the one between build and speed, are implicitly dealt with in the

procedure for formulating the measure for their combination.

Before venturing any further, it is useful to review the ideas we

expounded to this point. We have seen that domain-specific knowledge

encoded in the production rule formalism offers manifold advantages.

However, imprecision is a feature of the real-world, and allowances

must be made for reasoning in its presence. The specification of the

premise of a production rule in terms of soft propositions that can

take shades of truth, is the first step toward reasoning in the presence

of imprecision. An expert tends to have a clear conception of the

propositions that make up his expertise. He knows what the propositions

mean, and how to evaluate them depending on what he sees. Hence, the

task of a knowledge engineer is to find out exactly what the soft

propositions imply. He should also define them in a manner that would

enable a computer to assign accurate truth values depending on the

manifestation.
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Human experts also have prior notions about the relative weights

of propositions in a premise. Some propositions are more important

than others, and this deeper information is taken into account when

the evidence is weighed and balanced. Monotonic measures have been

shown to possess properties that come in useful for representing

meta-knowledge of this type. Perhaps, a person could be considered

to be an expert because he has clearer notions concerning the

relative importances of criteria. If this is true, Knowledge

Engineering requires us to glean this information from the expert

so that the most accurate measures of importance are obtained.

In the present attempt to introduce human subjectivity into

mechanistic decision making, the decision strategy has been decomposed

into two distinct parts. One is the intrinsic importance that each

proposition (and each group of propositions) carries in an evaluation,

and the other is the extent to which the propositions are satisfied

once an observation is made. A functional is needed to combine

these two aspects so that a mean evaluation of the premise is

achieved. The Sugeno Integral (or, Fuzzy Integral, see, e.g., Sugeno,

19 74) is one such functional that also has excellent intuitive

justification.

Definition 4.2.2 (Sugeno, 1974)

For a finite reference set X, let (X, P(X), g) be a monotonic

measure space, and let h:X » [0,1] be a function defined on X. The

Sugeno Integral over any finite set Q e P(X) is given by
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j h(x)og(.) - Max ( Min (h(x. ) ) A g(Q F) ). (4.11)
Q FeP(X) x.eF

x

The Sugeno Integral combines the function, h, with the monotonic

measure, g , in a non-linear fashion that may appear to be rather

enigmatic; however, it possesses useful mathematical properties. The

Sugeno Integral may be interpreted as representing a mean or expected

value in applications where monotonic measures are used to grasp

human subjectivity. The integral is itself monotonic, and is analogous

to the Lebesgue Integral (a functional defined on additive measures)

that finds applications in the theory of probability. In fact,

Sugeno (1974) has shown that if the integral is defined on a probability

measure space (i.e., the measure, g, follows the axioms of probability),

the value is close to the probability expectation value. In addition to

these mathematical properties, the Sugeno Integral has excellent

intuitive features that render it useful for the evaluation of premises

of production rules. For the time being, let us confine ourselves to

the Sugeno Integral defined over the finite reference set X, which is

written as

j h(x)og(.) = Max ( Min (h(x. ) ) A g(X (\ F) )

X FeP(X) x eF
x

l

= Max ( Min (h(x ))Ag(F) ). (4.12)
FeP(X) x.eF

Recall that in the present framework, the premise of a production

rule is the reference set, X. Each element of this set is a proposition

or criterion, and the premise is a collection of criteria on the basis
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of which the manifestation must be evaluated. Intuitively this

corresponds to a complete picture, while a subset F of X, is a

partial or incomplete view of the overall picture. Information

about the importance of the view F is specified by the monotonic

measure, g(F). The term, h(x
±

) , is the truth value or level of

satisfaction of the criterion, x , with reference to the manifestation.

The operation

Min (hCx^) (4.13)
x^F

in Equation (4.12) may be interpreted as providing the pessimistic,

or most secure level of satisfaction that the manifestation offers

when examined from the point of view of the criteria contained in

the view F.

In its attempt to provide a mean evaluation, the Sugeno Integral

combines the most secure level of satisfaction obtained from a view

with the relative importance of that particular view. This is done

for all possible views [F eP(X)] of the overall picture, X. These

values are then further combined, resulting in the mean evaluation.

Two specific operations are performed. First, the most secure level

of satisfaction is combined with the relative importance of the

corresponding view using the minimum operator. The value obtained is

no greater than the importance of the view, g(F) ; and this serves to

limit the evaluation provided by a view to a value no greater than

its importance. The second combination, which involves the maximum

operator, selects the best evaluation from among those provided by
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all possible views. This is a common tendency in human judgments. We

look at an object from many different angles or aspects. The angle

that strikes us in terms of satisfaction as well as importance plays

a major role in our analyses.

Example 4.2.4

In previous examples, we have seen that knowledge pertaining to

the selection of a running back is embodied in the production rule

IF a man is well-built, but not too bulky (x )

AND he is very quick (xj)
AND he has excellent ball-handling ability (x,)

THEN he would make a good running back (Y)

where

IF X THEN

{x. , X2 , XoK

Let us suppose that an expert football scout has given the

following evaluations to a walk-on candidate for the football team;

h(Xl ) = 0.35

h(x
2 ) = 0.45

and

h(x
3

) = 0.55.

Or, the candidate has been evaluated as satisfying the criterion of

build to a degree of 0.35, speed to a degree of 0.45, and, ball-

handling ability to a degree of 0.55.

a) The conventional scheme involves the use of a minimum operator.
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The expert systems, Rl and MYCIN use this methodology [see, Equation

(4.7)], and the premise evaluation is given by

E
m
(X) = Min(h(x ))

x.eX

= Min(h(x
1
), h(x

2
), h(x ))

Min(0.35, 0.45, 0.55)

= 0.35.

The blanket use of the minimum operator results in a very pessimistic

evaluation, since the candidate is evaluated to be only as good as his

worst quality indicates. More importantly, the deeper, yet pertinent,

information concerning the relative importances of the three criteria

has been neglected in the evaluation.

b) In Example 4.2.3, we have seen that the original production

can be broken down into 2
3

(= 8) separate sub-rules, given by

IF F THEN Y

where

FSX,
i.e. ,

F £P(X) = {0, { Xl }, {x
2
}, {x

3
}, { Xl , x

2
), {xr x

3
), (x

2
, x

3
), X}.

Each sub-rule is a specific piece of knowledge which could be used

independently in deciding whether the candidate would make a good

running back. However, depending on the criteria contained in its

premise, the sub-rule carries a varying level of importance as an

independent evaluation. In terms of the intuitive picture discussed

previously, the premise of a sub-rule corresponds to a view of the

overall picture. The view may be incomplete, in which case, the
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resulting evaluation Is not absolutely certain. The measures, g(F)

,

where F £P(X), carry information pertaining to the importance of each

view. Our expert has provided the following values;

g(0) -

g({x }) = 0.10

g({x
2
J) = 0.25

g({x
3
)) = 0.20

g({x,, x,}) = 0.50

g({x 1; x
3
}) - 0.40

g({x
2

, x
3
J) » 0.60

and

g({x1> x , x }) = 1.

The Sugeno Integral takes each sub-rule (or, view), and calculates

the minimum or most secure level of satisfaction for its premise. Thus,

the operation

Min(h(x.))
x.eF 1

i

gives rise to

for F = 0,

0.35 for F = {x },

0.45 for F = {x },

0.55 for F = {x },

Min(0.35, 0.45) = 0.35 for F = {x , x },
1 2

Min(0.35, 0.55) = 0.35 for F = {x x },

Min(0.45, 0.55) = 0.45 for F = {x x },
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and

Mln (0.35, 0.45, 0.55) - 0.35 for F • {x x x }

1 2 3'
Next, the most secure level of satisfaction and the importance of the

premise of each sub-rule are combined. The evaluation provided by any

sub-rule is limited to a value no greater than its importance, and the

operation

Min(h(x ))Ag(F)
x.cF
i

yields

OftO = for F = 0,

0.35ft 0.10 = 0.10 for F = {x.},

0.45A0.25 = 0.25 for F={x
2
},

0.55A0.20 = 0.20 for F = {x },

0.35A0.50 = 0.35 for P - {x,, x,};

0.35 K0. 40 = 0.35 for F={x.,x,},
1 3

0.45 ftO. 60 = 0.45 for F={x
2 , x-j},

and

0.35M.00 = 0.35 for F = {x , x , x }.12 3

Finally, the Sugeno Integral takes the best (highest) evaluation from

among those provided by all the sub-rules. The premise evaluation is

given by

E (X) = /h(x).g(.)
X

Max(0, 0.10, 0.25, 0.20, 0.35, 0.35, 0.45, 0.35)

0.45.
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Note that the value obtained using the Sugeno Integral [E (X) = 0.45]

is substantially higher than the evaluation obtained using the minimum

operator in part (a) [1^00 = 0.35]. This is because we have been able

to take into account the information concerning the relative weights

of propositions in the evaluation. The criteria of speed and ball-

handling ability are considered to be rather important when taken

together [g({x2> x }) = 0.60]. Our candidate has satisfied these

criteria, collectively, to a value of 0.45; this has resulted in

the higher evaluation.

Monotonic measures have been introduced in the context of

production rules so that the a priori notions that human experts

have about the relative weights of propositions in premises can

be represented and dealt with effectively. The Sugeno Integral,

defined on these monotonic measures, has been shown to have a

reasonable intuitive justification as a means for evaluating premises.

On the other hand, the evaluation employed by Rl and MYCIN does not

take into account the importances of propositions, and has been seen

to be rather pessimistic. We employ the concept of a vacuous belief

function (Shafer, 1976) to demonstrate an interesting relationship

between the Sugeno Integral and the conventional procedure of

evaluation, using the minimum operator.

Definition 4.2.3 (Shafer, 1976)

A vacuous belief function, g , is a monotonic measure defined on
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a finite reference set, X, that satisfies the condition

VQCX, gv
(Q) = 0. (4 . U)

Or, alternatively,

gv
(Q) =1, if Q = X, (4 . 15a)

and

g (Q) = 0, if Q is any other subset of X. (4.15b)

Let us examine the Sugeno Integral defined on the measure space

of a vacuous belief function, (X, P(X), gy ) . The Sugeno Integral over

a finite reference set, X, is given by

f h(x).g(.) - Max ( Min (h(x. ) ) A g(Xfl F) )

X FeP(X) x.eF x

Max ( Min (h(x.))Ag(F) ). (4.12)
FeP(X) x.eF 1

Thus,

j h(x)og (.) = Max ( Min (h(x.))Ag (F) ).
X v FeP(X) x.eF v

(4.16)

Since

h(x.) E [0,1] (4 . 6)

and

(F) =1, if F = X (4.15a)
" °. if FC X, (4.15b)

for FCX, we obtain

Min(h(x,))/\g (F) = Min(h(x.))A0
x.eF v

Xj eF
X

(4.17)

or, more specifically,

Min(h(x.))A g (F) = 0. (4.18)
xiE F

l v

PeX
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On substituting Equation (4.18) into Equation (4.16), we obtain

I h(x).g (.) = Max ( Min (h(x,))Ag (F) )

X FeP(X) XieF
v

= Max ( (Min(h(x.)) A g (F) ) , (Min(h(x
t ) ) A gv (F) ) )

x.eF x eF
F eX F =X

= Max (0, 0,..., 0, (Min(h(x,))A gv (X)) )

XjeX

= Min (h(x.))f^g
v
(X)).

( 4 .19)
x^eX

Additionally, since

h(x
± ) 6 [0,1] (4-6)

and

8V
(X) = l > (4.15a)

Equation (4.19) reduces to

I h(x).gv (.) = Min (h(x
±))A 1

X x.eX
1

Min (h(x
± )). (4.20)

X.eX
1

Equation (4.20) leads to the following lemma.

Lemma 4.2.1

The Sugeno Integral over a finite reference set, X, and defined

on the measure space of a vacuous belief function, (X, P(X), g ),

reduces to the conventional evaluation using the minimum operator. Or,

the following relation holds;

i h(x)»g
v (.) = Min (h( Xi )). (4.20)

X x.eX
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Lemma 4.2.1 provides a significant relationship between the Sugeno

Integral and the conventional evaluation using the minimum operator. In

the present framework, monotonic measures are employed to convey

information about the relative weights of propositions in a premise.

The vacuous belief function is a special case of a monotonic measure

that corresponds to abject ignorance about the relative weights. This

measure gives no importance to all evaluations based on incomplete

views (or, sub-rules). Only the complete premise has a non-zero level

of importance, and, since it corresponds to the totality of evidence,

it is given a weight of one. This implies that all the criteria must

be used in the evaluation of a premise, and a partial or incomplete

set of criteria will not suffice.

We have stated that the conventional scheme of evaluation is

pessimistic. However, the pessimism involved now has added significance.

The fact that the Sugeno Integral under the conditions of vacuous

belief is equivalent to the minimum operator, implies that the

pessimism that is a feature of the latter could be considered to be

the result of ignorance. Almost always in real-life, when we know

more about something, we are more certain about our results. Ignorance,

or knowing nothing about the relative weights is implicit in the

definition of vacuous belief, and the Sugeno Integral under these

conditions, should correspond to the lowest possible evaluation. This

fact is, indeed, true, and follows from Lemma 4.2.1. In general, for

constant h(x)

,

f h(x).g(.) >, f h(x).g (.) (4.21a)
X X
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or, by Lemma 4.2.1,

i h(x).g(.) J. Min(h(Xi )) (4.21b)
X x±eX

where g(.) is any monotonic measure; and, g (.) is Che vacuous

belief function.

The development of expert systems that can reason in the presence

of ignorance is the focus of ongoing research. Yet, as Duda and

Shortliffe (1983) point out, "questions about how a program should

reason in the presence of ignorance, or how it can even recognize the

limits of its knowledge, are largely unanswered". It is, perhaps,

impossible to develop mechanisms that can reason in the presence of

complete ignorance, and our attention, therefore, is confined to

situations in which ignorance is not total. The definition of the

vacuous belief function, and its use in the Sugeno Integral represents

a step In this direction. A vacuous belief function entails the

absence of the meta-level knowledge that is used to weigh and balance

the evidence prior to making a decision. The Sugeno Integral in this

situation is the lowest bound or most pessimistic value. The low

value is the consequence of ignorance. Observation of human behavior

also shows that ignorance is often associated with conservatism and

pessimism, and these lead to lower levels of certainty being assigned

to the resultant decisions. The present treatment of ignorance is

based on this fact.

We have so far confined ourselves to the Sugeno Integral evaluated

over the reference set, X. The premise of a production rule is the
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reference set, and the Sugeno Integral has been used to obtain a mean

evaluation over the entire premise, given by

E (X) = j h(x).g(.)
X

Max ( Min (h(Xi )) A g(X F) )

FeP(X) x.eF
l

Max ( Min (h(xj))Ag(F) ). (4.22)
FeP(X) x±eF

The evaluation, E
S
(X), has been shown to have excellent intuitive

features. Since the premise is represented in terms of a set of

criteria, there are several views or aspects on the basis of which

an object may be examined. The Sugeno Integral combines the most

secure level of satisfaction obtained from each view, with the

relative importance of that particular view. Each view, therefore,

provides a partial evaluation, and the integral selects the best

evaluation from among all possible views. As stated previously,

the Sugeno Integral appears to model the human tendency, whereby,

we look at an object from many different angles. The angle that

strikes us the most plays a major role in the final analyses.

Since the evaluation is performed over the entire premise of the

production rule, the Sugeno Integral considered up to now attempts

to examine the object from all possible views. The power set, P(X),

lists the maximum number of views that can be used.

We have mentioned that ignorance, or not knowing enough, leads

to conservative evaluations. In terms of the intuitive picture,

however, it is suitable to consider conservatism in evaluations
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within the paradigm of ignorance as arising out of an inability to

examine an object from all possible aspects. Complete knowledge

creates no such limitation; in this situation, it is possible to

look at an object from all angles.

To illustrate this point, suppose that we are required to make

a judgment concerning the girth of a tree-trunk. We would first

attempt to walk around the tree, and only then, would we make our

evaluations. On the other hand, if a barrier prevented us from

circumnavigating the tree, the analyses would be incomplete, and

the resulting judgments would not be very certain. In the present

treatment, we view ignorance as the allegoric barrier that prevents

circumspection. The list of possible views is no longer the power

set, but instead, is a proper subset of P(X). And, the greater the

ignorance, the fewer the views, and hence, the smaller the subset

of the power set over which information is integrated.

The term

E (X) = f h(x)og(.) (4.22)
X

represents an evaluation of the entire premise. The evaluation is

made on the basis of all the criteria, or all possible views, and

hence, the upper bound on E
g
(X) is one [This is because in Equation

(4.22) g(F) = 1, for F = X; if h(x
±

) - 1 for all x
±

E X, E
S
(X) = 1].

Consider now, the Sugeno Integral evaluated over a proper subset Q

of the reference set, X. Since one or more criteria present in the

premise are not contained in set Q, the corresponding evaluation is
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incomplete, and Is, at best, a partial evaluation, given by (see,

Definition A. 2. 2)

E
S
(Q) = ;fh(x).g(.)

Q

Max ( Min (h(x
± ) ) A g (Q fl F) ). (4.23)

F£P(X) xl£;F

This corresponds to a situation of partial ignorance in the present

framework. Note that the measure, g, on the right-hand side of

Equation (4.23) has the set, QflF, as its argument. Although F can

be any element of the power set of X [F £ P(X) ] , the argument, QflF,

limits the number of views on the basis of which the evaluation is

made. The new list of views is given by P(Q) , where P(Q) is the

power set of set Q. Additionally, the Sugeno Integral is restricted

to a value no greater than g(Q) . In general, since

QSX, (4.24)

due to the definition of monotonic measures (Definition 4.2.1),

g(Q) * g(X) (4.8b)

and we obtain

E
S (Q) $ E

s
(X) (4.25)

where

E
S
(Q) - { h(x).g(.) (4.23)

Q

and

E (X) =
f h(x).g(.).

5
X

Equation (4.25) demonstrates monotonicity for the Sugeno Integral.

(4.22)
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In the present treatment of evaluations made in the presence

of ignorance, the set Q, over which the integration is performed,

is a subset of the premise set, X. The complete set of criteria is

not taken into account in the evaluation, and, therefore, the

result can never be absolutely certain. Monotonicity of the Sugeno

Integral is a key point in the treatment of reasoning in the

presence of ignorance. It can be seen that the smaller the set Q,

over which the integration is performed (or, the fewer the criteria

considered) , the lower the value of the Sugeno Integral. This

monotonicity is convenient for dealing with ignorance, and also

effectively models the conservatism that arises from this situation.

Note that we adopt a methodology by which an evaluation made in

the paradigm of total ignorance is always assigned a value of zero,

or false , i.e.

,

E
s (0)

=
f h(x).g(.)

Max ( Min (h(x.))A g(0fU) )

FeP(X) x±eF

Max ( Min (h(Xj))A g(0) )

FeP(X) x^F

°- (4.26)

[Recall that due to the definition of monotonic measures (see

Definition 4.2.1), g(0) = 0.]

The following example demonstrates the applicability of the

Sugeno Integral.
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Example 4.2.5

Continuing with the problem of selecting a running back, recall

that the production rule is given by

IF a man is well-built, but not too bulky (x-.)

AND he is very quick (X2)

AND he possesses excellent ball-handling ability (x,)
THEN he would make a good running back (Y)

.

This is equivalent to the rule

IF X THEN Y

where

X = {x_ ( X2» x~}.

Let us suppose that for some reason it is not possible to

evaluate the candidate's ball-handling ability. This could occur

in a situation in which information about the extent to which the

candidate satisfies this attribute has not been provided. Hence,

only the criteria of build and speed are taken into account, and

the production rule reduces to

IF a man is well-built, but not too bulky (xi)
AND he is very quick (x2 )

THEN he would make a good running back (Y)

.

The premise of this production rule is a subset of the original

premise, X; it is given by

Q = (Xj, x
2 ),

corresponding to the sub-rule

IF Q THEN Y.

In Examples 4.2.3 and 4.2.4, we have seen that the relative

importances of groups of criteria are
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8(0)

gUx^) • 0.10

g«x
2
}) = 0.25

g({x
3
}) = 0.20

g({x. , x,}) = 0.50
1 2

g({x
1 , x

3 }) = 0.40

({x
2 , x

3
)) « 0.60

g({x1> x
2 , x

3
)) = 1.

These values correspond to the eight different views on the basis of

which the original premise is evaluated. Since the measure

g({x
1 , x2> Xj}) = 1,

the Sugeno Integral evaluation of the entire premise E (X) , has an

upper bound of one. On the other hand, the Sugeno Integral defined

over the set Q is employed to evaluate the incomplete sub-rule,

and

E
S
(Q) = $ h(x).g(.)

Q

Max ( Min (h( Xi ) ) A g(Q f) F) ). (4.23)
FeP(X) x^F

The argument, QflF, for the measure, g, restricts the evaluation

to just four different views. This is because

g(QO0) - g(0), for F =

gCQdtx!}) = g({ Xl }), for F = { Xl }

g(QIMx2 }) = g({x
2
}), for F = {x

2
}
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g(Qr>{x
3
}) = g(0), for F = {x }

eCJnfxp x
2
)) = g((xv x

2
}), for F =

i Xl , x
2

}

gCQfJtxj^, x
3
}) = gCfxj^}), for F = {jtj, x

3
)

8(QnU
2 >

x
3
>) g(tx

2
}), for F = {x

2
, x }

and

g(Q0tx1> x
2

, x
3
)) = g({x

1
, x

2
)), for F = {k

± , Xj, «
3).

The measures corresponding to these four views are given by

g(0) =

gCfx^) = 0.10

g({x
2
}) = 0.25

and

g({x
1

, x
2
J) = 0.50.

Due to the operations involved in the Sugeno Integral [Equation (4.23)],

we can see that

E
S (Q) * gCQn^, x2> * }) = g({x x

2
J) = 0.50.

In Example 4.2.4, the degrees to which the walk-on candidate has

satisfied the three propositions are

h(x
x

) = 0.35

h(x
2 ) = 0.45

and

h(x
3

) = 0.55

The present example, however, does not take into account the criteric

of ball-handling ability. This corresponds to ignorance about the

attribute, and, a suitable default value is
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h(x
3

) = 0.

The other truth values, h(x.) and h(x~) , are unchanged. In assigning

the value of zero to the proposition, we assume that a worst-case

evaluation is given to a criterion that is not considered. This

smacks of pessimism; however, it is a common trend in human judgment

to give a conservative estimate concerning something that is unknown.

Thus

E (Q) = j h(x)og(.)

Q

Max ( Min (h(x.)Ug(QnF) )

FeP(X) x.cF

Max

0.00A0, for F

0.35A0.10, for F = {x^

0.45A0.25, for F = {x
2

>

0.00A0, for F {x,

0.35AO.50, for F =
{ Xl> x

2
)

O.OOA0.10, for F = {x
± , x

J

0.00A0.25, for F = {x
2 ,

Xj}

0.0OA0.50, for F = {x x., x }

Max(0, 0.10, 0.25, 0, 0.35, 0, 0, 0)

0.35.

Note that the value, E
S (Q) 0.35, obtained above, is significantly

lower than the evaluation of the premise in Example 4.2.4 [E (X) • 0.45].

This lower value is expected.

An interesting point to note is that the evaluation of the
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incomplete premise, Q, under the conditions of vacuous belief is

given by

E (Q) = i h(x)og (.)

Q

(4.27)

This is because the vacuous belief function places absolutely no

importance on all incomplete views. Indeed, the evaluation is

performed strictly on an all or nothing basis.

'
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THE SUGENO INTEGRAL IN MULTILEVEL REASONING

In the preceding sections, we have seen that production rules

offer a modular representation of knowledge that captures the essence

of human expertise. The methodology proposed by us employs the Sugeno

Integral to evaluate the premises of soft production rules which are

comprised of AND-connected propositions. This provides a convenient

framework for approximate reasoning in the presence of ambiguity as

well as partial ignorance. Additionally, the conventional evaluation

that uses the minimum operator has been shown to be a special case

of the present methodology. In this section, we extend the formulation

to admit multilevel reasoning.

A production rule connects a set of conditions with one or more

actions that are relevant once the conditions have been satisfied.

This represents a single deductive step. During the operation of a

production system, the interpreter summons the short-term memory or

data base, each time it executes a rule. If the premise of the rule

is satisfied, the rule is fired, and the corresponding actions modify

the data base. The interpreter proceeds to control the activity of

the system by adjusting the sequence of application of the rules.

Rules are selected and executed according to a predetermined sequence,

and each time, the data base is accessed. This elicits a chain of

reasoning, in which, a series of production rules appear to be linked.

The action parts of production rules at one level form the premises

of production rules at another level. Rules nested in this manner
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represent larger deductive steps, or, deductive leaps.

As an example, consider the following production rules;

and

IF X C1)
THEN Y

(D

IF x (2) THEN Y
(2)

IF x (3) THEN Y (3)

where X* ;
, X (

', and X (3> are the premises of three different rules.

Let us assume that the interpreter selects, executes, and then fires

each rule in turn. The actions, Y (1)
, Y (2)

, and Y (3)
, then proceed to

modify the data base.

Suppose that there exists a fourth rule which uses these actions

as conditions in its premise. This rule could be written as

IF X (4) THEN Y (4)

or

IF Y
(1)

(2)AND Y v ;

(3)
AND Y

l ;

(4)
THEN t .

The scheduling, execution, and firing of the four rules in sequence,

represent two unitary deductive steps, or a deductive leap spanning

two levels

.

At this stage, it is of interest to examine the reasoning

methodology that MYCIN (Shortliffe, 1976) employs. Suppose that

the following productions are present in MYCIN'S rule base;

Rule 1: IF X
(1)

THEN Y
(1)

[ CF
(1J

]
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Rule 2: IF ( X
(2a)

OR X
(2b)

) THEN Y
(2)

[ CF
(2)

]

Rule 3: IF X*^ THEN Y (3)
[ CF

(3)
]

and an additional rule that uses the actions, Y , Y , and Y ,

as propositions in its premise. This rule could be specified as

Rule 4: IF ( Y
(1)

AND Y
(2)

AND Y
(3)

) THEN Y
(4)

or,

Rule 4: IF X 1-
4

-1 THEN Y*-
4

'
[ CF^ ].

Note that X represents an AND-connected set of propositions, and

the term, CF , is the certainty factor for the i-th rule.

Let us suppose that data concerning the premises of Rules 1, 2,

and 3, are already present in the data base. Additionally, let us

assume that the action of Rule 4, t"', is the prescribed goal. MYCIN

is a goal-directed system, and the process of reasoning starts by

searching the rule base for rules whose actions conclude something

about the goal. This points to Rule 4. Next, the premise of Rule 4

is examined. The clauses, Y , Y , and Y , which comprise the

(4)
premise, X , become the new sug-goals, and MYCIN proceeds to

search its rule base for more information. This procedure comes up

with Rules 1, 2, and 3. A tree is generated, and using truth values

h E [-1.0, 1.0], (4.28)

for the propositions in Rules 1, 2, and 3, the certainty or truth

(4)value of the goal, Y , is established. The methodology is as

follows

:

First, the premises of Rules 1, 2, and 3, are evaluated by

resorting to conventional maximum (OR), and minimum (AND) operators;
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the results are given by

Em(X
(1)

) = Mln (h(x.)) (4.29)

x.eX
(1)

J

Em (X
<2)

) = Max ( E
m
(X

(2a)
), Em (X

(2b)
) )

= Max ( Min (h(x.)), Min (h(x.)) ) (4.30)

x eX< 2a > x ,X<
2b

>

'

J j

and

E (X
(3)

) = Mln (h(x )). (4.31)

v (3)
J

x.eX

Next, the certainties of the actions are obtained by multiplying

the premise evaluations with the corresponding rule certainty factors.

Note that if a premise evaluation, Em , lies in the interval (-0.2,0.2),

there is insufficient evidence pointing to truth, or falsehood, and

the certainty of the corresponding action is equated to zero. Otherwise,

h(Y (1)
) = CF

(1)
• Em (X

(1)
) (4.32)

h(Y
(2

>) - CF
(2)

• Em (X
(2)

) ( 4 . 33 )

and

h(V
(3)

) - CE
(3) -Ey 3

').
( 4 . 34)

The premise of Rule 4 can now be evaluated. The result is given

by

(4)
E (X

v
') = Min (h(x.))

x.eXW '

3

= Min ( h(Y
(1)

), h(Y
(2)

), h(Y
(3)

) ). (4.35)
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Finally, the certainty or truth value of the goal t is

estimated. This is specified by

hCY<*>, - »<« • ^«) (4 . 36 a)

= 0, if Em (X
v

') E (-0.2,0.2). (4.36b)

In the present methodology, premises of production rules are

restricted to those consisting of AND-connected propositions. This

is a convenient approach that gives rise to uniformity and modularity

within the rule base. Additionally, in our opinion, human experts

find it easier to comprehend and specify rule certainty factors for

rules that are made up of conjunctions of simple propositions. The

OR connector is quite ambiguous, and logical ORs nested within

premises normally complicate matters. More importantly, it will be

seen that the decomposition of complex premises containing disjunctions,

into two or more rules having the same action, is performed with no

loss in generality. In fact, the methodology involving the

decomposition and subsequent evaluation of complex premises is

the more general of the two methodologies.

Let us consider the four rules examined previously. Rules 1, 3,

and 4 satisfy the restriction placed on the premises of production

rules in the present treatment. However, Rule 2 has an OR connector

in its premise, and must be decomposed into two simple rules having

the same action. The new rule base is shown below.

CF
(1)

]

CF
(2a)

]

e 1: IF x
(l)

THEN Y
(D

e 2a: IF x
(2a)

THEN Y
(2)
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Rule 2b:

Rule 3:

Rule 4:
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IF x
(2b)

THEN Y
(2) [cF (2b)

,

IF x
(3)

THEN Y
(3)

[ CF
(3)

]

IF x
(4) THEN y(«

[ CF
(4)

]

For this modified rule base, let us examine the evaluation of

the certainty of the goal Y (
^

. The premises of Rules 1, 2a, 2b, and

3 offer the following evaluations;

E (X
(1)

) = Min (h(x.)) (4.37)

x.eX (1)

and

Em (X
C2a)

) = Min (h(x,)) (4.38)

x.,X<
2a>

J

E (X
(2b)

) = Min (h(x.)) (4.39)

x. £X<
2b >

J

(3)
Em (X > = Min (h(x.)). (4.40)

(3)
J

There are now two distinct ways in which we can proceed. Either, we

can essentially combine the evaluations of Rules 2a and 2b, as MYCIN

does, or we can go on to estimate the certainties of the sub-goals,

Y , Y , and Y . Following the latter procedure, we obtain

h(Y (1)
) = CF

(1)
• V* (1)

) (4.41)

h(Y<
2\ -

2a
CE

(2a) •Vx (2a)
), from Rule 2a (4.42)

(2)
CF

(2b) v* (2b)
>. from Rule 2b (4.43)

and
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. ,„(3). (3) (3),h(Y ) - CF E^X ). (4.44)

We now have two estimates of the certainty or truth value of the

(2)
sub-goal Y [Equations (4.42) and (4.43)]. Since Rules 2a and

2b are two distinct pieces of knowledge that point toward the

same conclusion, it is feasible to select the certainty of Y

using the maximum operator. Thus,

h(Y
U)

) = Max ( ha (2>
)
2a

, h(Y
(2)

)
2b

)

- Max(CF< 2a) .Em (X
(2a)

),CF
(2b)

, «W) ).

(4.45)

Note that this result is equivalent to the certainty estimated in

the previous case [see Equation (4.33)], only if

„„(2) (2a) (2b)
CF = CF

V

CF . (4.46)

This is because, if Equation (4.46) holds, we obtain

h(Y
(2)

) - Max ( CF
(2a)

• Em (X
(2a)

), CF
(2b)

• Em (X
(2b)

) )

CF
(2)

• Max ( Em (X
(2a)

), Em (X
(2b)

) ). (4.47)

Through the use of Equation (4.30), we can write

h(Y
(2)

) . CF
(2) .Em (X

(2)
), (4.33)

which is the estimate obtained prior to the modification of the

rule base.

In general, the two certainty factors do not have to be equal,

and, therefore, the results provided by the two approaches do indeed

differ. We adopt the modified-rule-base approach which is more general,

and is also justified from the point of view of convenience. Having

obtained the certainties of the sub-goals, Y , Y , and Y ; the

(4)
estimation of h(Y ) proceeds as before. Thus,
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(4)
Em (X

v
'•) - Min OlGc,))

(4)
3

and

x eX
J

Min ( h( Y
(1)

), h(Y
(2)

), h(Y
(3)

) ) (4.48)

h(Y
(4)

) = CF
(4)

• E (X
(4)

). (4.49)

[Note that Equations (4.48) and (4.49) are the same as Equations

(4.35) and (4.36) respectively.]

It is now a simple matter to incorporate the Sugeno Integral in

multilevel reasoning. As already stated, the present formulation deals

with production rules whose premises consist of AND-connected soft

propositions. Furthermore, the truth values or degrees of certainty,

h, that are assigned to propositions are restricted to the [0,1]

interval, i.e.

,

h £ [0,1] (4. 6)

where "0" corresponds to falsehood, and "1" entails truth or

complete satisfaction. In the conventional scheme, the premise

evaluation is given by

Em (X) = Min (h(x )). . (4.7)
x.eX J

J

We have seen that this evaluation is equivalent to the Sugeno Integral

defined on a vacuous belief function measure space, (X, P(X)
, g )

[This fact follows from Lemma 4.2.1.], i.e.,

E (X) = Min (h(x,))
x.eX J

I h(x)og (.). (4.20)
X
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Monotonic measures are employed to convey meta-ievel Information

about the relative weights that groups of propositions carry in the

evaluation of a premise. The vacuous belief function is a special

monotonic measure that corresponds to an absence of this deeper

information. In general, for any monotonic measure, g, the value

of the Sugeno Integral is never less than the value obtained by

using the minimum operator (or, the Sugeno Integral defined under

the conditions of vacuous belief). This fact is stated mathematically

where

and

E
S
(X) >, EfX) = E„(X)

E
s
(X) - Sf h(x).g(.)

E (X) = Min (h(x.))

x.eX J

E (X) - ^h(x).g(.).
X

(4.50)

(4.22)

(4.7)

(4.51)

The higher value for E
g
(X) in Equation (4.50) is expected, and arises

from the use of additional or meta-level knowledge in the evaluation.

Since the evaluation can cope with additional information, it is more

general than the conventional minimum operator; and is employed in

the present methodology to evaluate the premises of production rules.

Before we can specify a generic production rule, one more point

remains to be considered. After a premise has been evaluated, it is

necessary to establish the certainty (or truth value) of the
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corresponding action. Recall that MYCIN'S model of approximate

reasoning employs a certainty factor, CF, for each action in a

production rule, where

CF £ [0,1]. (452)

A certainty factor that is close to one represents a strong link

between the conditions and action of the production rule. In

other words, this implies that the action has a high degree of

certainty when the premise is satisfied. For a rule i, whose

premise evaluation does not lie within the interval, (-0.2, 0.2),

MYCIN'S conclusion is made with a certainty, h(Y
1

). that is the

product of the premise evaluation, Em (X
(l)

), and the corresponding

rule certainty factor, CF^ 1 ). Thus,

h e [-1.0, 1.0]
( 4.28)

and

h(Y
(l)

) = 0, if E
m
(X

(i)
) £ [-0.2, 0.2] (4.53a)

h(Y
1

) = CF • E
ffl

(X
L

), otherwise. (4.53b)

In general, however, a certainty function, f , defined by

-f
U)

: E
m (X

(1)
) [or, E

S
(X

(1)
)] * [0,1], (4.54)

is suitable for expressing the strength of the link between the

conditions and action of the i-th production rule. Human experts

usually find it quite convenient to specify their conceptions in

linguistic terms. The notion of linguistic variables (see, e.g.,

Zadeh, 1975a, 1975b, 1975c) provides a rationale for the

representation of linguistic concepts in terms of the certainty
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functions, V . These certainty functions are similar to the

certainty factors in MYCIN; however, the certainty or truth

value of the action, Y , is given by

h(Y
(l)

) = y
(1)

(E
s
(X

(1)
)). (4.55)

We may now express a generic production rule in the form

Rule i: IF X
(l)

[ g
(l)

(.) ]

THEN Y
(1)

j f
(i)

,

(4.56)

4* [ f<«

Y
(i>

r
y(i)

m. m.

where X**J ± s the premise of Rule i, which consists of n. AND-

propositions , and is written as

X
(1)

- (x^.x^, x^ } . (4 . 57)

The truth value or extent of satisfaction of a proposition x. e X ,

is given by

h(xj ) £ [0,1]. (4.58)

Additionally, the importances of groups of propositions in the

(i)
premise, X , must be provided. They follow the constraints

imposed on monotonic measures (see, Definition 4.2.1):

8
(1)

£ [0,11 (4.59a)

g
(l)

(0> = (4.59b)

(D,v (iK
8 (x ) * 1 (4.59c)

and
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forQ<«, Q<« £ P(x
(i)

), IfQ^gQ^,

g
(1)

(Q^).<g
(1)

(Q^). (*.»«

There are 2 different arguments for g
11 "', and there are 2 1

corresponding values.

The premise evaluation, E (X ) , is given by

E
S
(X ) = j h(x Jog (.)

(i)
X

= Max ( Min (h( X
(l)

) ) A g
(l)

(X
(l)

(\ F) )

(i) (i) J

F e P(X ) x. eF

= Max (Min (h( x
(l)

) ) A g
(l)

(F) ) . (4.60)
(i) (i) J

FeP(X ) x. eF
J

For situations in which it is not possible to provide truth values to

all the propositions in a premise, X , the integration is performed

over a subset Q of X
X

[The set Q
(l)

contains all x^
X)

for which

truth values are available.]. Thus,

h(x<
1)

) =0, if *<«
t Q
W

. (4.61)

and the evaluation of the incomplete premise, Q , is given by

E
S (Q

(1)
) =

f h(x
(i)

).g
(i)

(.)

(i)

Q
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Max ( Min Wsf'))A g
(i)

(Q
(i)

n F) ),
(i) (i)

J

FeP(X ) x. eF

(4.62)

where, in general,

E (Q
(i)

) « E(X (i)
).

The certainties or truth values for the actions, Y , Y ,

(4.63)

Y
U)

are given by

HY (

k

±}
) - T

(1)
(E

s (Q
(1)

)), k .l, 2,

„wwhere ty. is the certainty function for the k-th action in the

i-th rule, and ES (Q ), Q
x
£ x

(
, is the premise evaluation.

(4.64)

The rule base of the proposed production system would contain

several production rules of the generic form presented above. During

the operation of this production system, the interpreter schedules

the execution of the rules. The sequence of rule selection, validation,

and firing essentially nests the rules, and this elicits a chain of

reasoning. The execution of each rule represents a single deductive

step. But when rules are nested, the single deductive steps are

chained, and the reasoning process spans several deductive steps.

The present formulation employs the Sugeno Integral to evaluate

the premises of production rules. This functional permits the use

of meta-level information in the evaluation, and is a generalization

of the minimum operator. It can be used in conjunction with

conventional data-driven and goal-driven strategies. The following
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example demonstrates the application of the Sugeno Integral in

multilevel reasoning.

Example 4.3.1

In the preceding section, we have seen that knowledge about

a running back is specified by the production;

Rule 1: IF a man is well-built, but not too bulky (x )

AND he is very quick (x!j )

AND he has excellent ball-handling ability (x )

THEN he would make a good running back (Y )

Rule 1: IF X
(1)

[ g
(1)

(.) ]

where

THEN l'
1
'

[ f^
1 1

„(« , (1) CD (1),X » {x. , X, , X, }.

The measures of importance, g (.), are as follows;

g
U)

(0) =

g
(1) ({x (1)

}) = 0.10

g
(l) ({x (l)

}) , . 2 5

g
C1) <{*<«}) - 0.20

and

(1) ((x^, f>» - o .50

1
x (1 >}) = 0.
3

.40

2
*<»}) - 0.
3

.60

(1) ((x^, *f,*f)) = 1.
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Th*> nfir-i-aint-Ar fim^f-!'^ W ^ 'e certainty function, ¥ , is uniformly-true , or u- true (see, e.g.,

Zadeh, 1975c) , and is given by

Y
CW „<», . , (i)

1
* *! ( E (Q

v
') )

MQ (1)
),

where

Q
(1) SX (1\

and

E
S (Q

(1)
) - ^h(x (1)

).g
(1)

(.).

Q
(1)

Let us assume that there exists another rule that defines the

attribute of build. This is given by

Rule 2: IF a man has the requisite height (x. )
1

AND he has the requisite weight (x, )

THEN he is well-built, but not too bulky fl5 )

Rule 2: IF X
(2 >

: s
(2)

(.) i

THEN Y|
2)

|: *{
2)

i

where

x
(2) = <x<

2

\xf>h
( 2)The measures of importance, g^ (.), are as follows;

g
(2)

(0) =

g
(2)

({x (2)
}) = 0.30

g
(2)

((xf }) - 0.40

*

(2)«42

\*f

»
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(2)The certainty function, f, , is u-true, and is given by

i
2)

- ^
2)

( Es cq
(2)

>)

E
S (Q

( 2 >),

where

Q
(2)£X (2)

,

and

e
s
(q< 2 >) = fh(x( 2 )). g

ra
( .).

Q
(2)

Additionally, assume that the following rule defines the speed

criterion;

Rule 3: IF a man has a good timing for the 40 yd. dash (x\ )

AND he has a good timing for the shuttle run (xi )

(3)AND he has a good timing for the obstacle race (x )

THEN he is very quick (y|
3)

)

Rule 3: IF X
(3)

[ g
(3)

(.) ]

where

THEN y' 3
'

[ <F
<

'
3 '

,(3) . (3) (3) (3).
C = CJEj , x

2
, x

3
}.

(3)The measures of importance, g (.), are as follows;

g
(3)

(0) -

g
(3)

({x{ 3)
}) - 0.20

g
(3) ({xp )

}) = 0.20

g
(3) ({x^ 3)

}) = 0.15
3
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an d

,
0,«^.^H - 0.60

.(3) «x< 3
>, *«>}) . 0. 50

5

(3W 3 > .(3)
, *l )) = 0.50

5

(3)
({x<

3
>, .(3)

}) 1.x
(3)

2 ' "3

The certainty function, «, , is u-true, and is given by

»C3) ,„<3>, _ , (3)
f *, ( E (0/ ')

)

E(Q (3)
),

where

and

Q
(3)£X (3)

,

EJQ (3)
)

(3)

Note that the actions of Rules 2 and 3 are propositions in the

premise of Rule 1. The three rules are linked, and the tree that is

generated is presented in Figure 4.1.

h(x3

(2).

Let us suppose that a walk-on candidate has been evaluated as

satisfying the propositions to the following levels;

) = 0.35 (ball-handling ability)

') = 0.45 (height)

) = 0.55 (weight)

) = 0.60 (40 yard dash timing)

) = 0.55 (shuttle course timing)

h(x

h(x<
2 >>

h(x<
3^
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HEIGHT

Rule 2 BUILD

Rule 1

WEIGHT

Rule 3 SPEED

40 YARD DASH

SHUTTLE RUN RUNNING BACK

OBSTACLE RUN

BALL-HANDLING ABILITY

Figure 4.1. Selection of a running back.
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(3)
h(x^ ) = 0.75 (obstacle course timing).

The process begins by evaluating Rule 2. Since truth values have

been provided for all the propositions in the premise, integration is

performed over the premise set, X
(2)

[i.e., Q
(2)

= X
(2)

] . The premise

evaluation is given by

E
S
(X

(2)
) . fn(K

(2
>).g<

2
>(.)

x
(2)

= 0.45.

The truth value or certainty of the corresponding action, Y.
(2 '>

, is

given by

h(Y{
2)

) . ^ 2
>( E (X

< 2
>) )

Vx<
2
>)

0.45.

( 2)The certainty of the action, Y^ , is also the degree to which the

candidate satisfies the build criterion in Rule 1, i.e.,

hCx^) . h(Y<
2)

)

0.45.

Next, Rule 3 is evaluated. Since truth values have been provided

for all the propositions in its premise, integration is performed over

the premise set, X [i.e., Q
3

= X
(3)

]. The evaluation is given by

E
S
(X

(3)
) . ^h(x

(3)
).g

(3
\.)

x
(3)

= 0.55.

The truth value or certainty of the corresponding action, tP , is
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given by

h(Y<
3)

) - ^ 3) (E
S
(X»>) )

= E
s
(X

(3)
)

0.55.

This certainty is also the degree to which the candidate satisfies

the speed criterion in Rule 1, i.e.,

hix^h = h(YJj
3)

)

0.55.

Finally, Rule 1 is evaluated. Since truth values for its

propositions are available, integration is performed over the

premise set, X [i.e., Q = X ]. The evaluation is given

. , Y U), r ,. (l), (l),
,E (X ) = f h(x )og (.)

by

x
(1)

= 0.45.

The truth value for the action, Y-, , is given by

h(Y{
1)

) = t^i E
g
(X

(1)
) )

- E (X
(1)

)
s

0.45,

or, the walk-on candidate has been found to satisfy our conception

of a good running back to a level of 0.45.

Note that the levels to which the candidate has satisfied the

(1) (2) (2) (3) (3) (3) upropositions; x^ , x-^ , y>2 , x^ * *h i
ana x3 • have been

provided. There are no missing data, and all evaluations are complete.

In a real-world problem, there is always a possibility that some data
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may be missing. In such instances, we suggest that default truth values

of zero be assigned to propositions for which data are not available.

Since integrations are performed over subsets of premise sets, one or

more premise evaluations are essentially incomplete; and the final

evaluation (the extent to which a candidate satisfies our conception

of a good running back) is even less certain.
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CONCLUDING REMARKS

The production rule formalism is natural to human strategies of

problem solving and decision making in several areas of human activity.

This has contributed to its increased use in conventional expert

systems

.

Human beings are able to engage in approximate reasoning. In fact,

it is this ability to reason in imprecise, subjective terms that

distinguishes human intelligence from machine intelligence. The

specification of premises of production rules in terms of soft

propositions that can take shades of truth, represents an attempt

to induce human-like reasoning that is able to cope with the imprecision

rampant in the real-world.

The goal of research in AI is to emulate intelligent human activity.

Yet, it is important to realize that this does not mean that a computer

program is considered successful only if it duplicates human intelligence

in its entirety. Instead, the intention must be to simulate human

strategies as reasonably as possible. Given the subjectivity that enters

into human decision making, it is evident that the specification of

soft production rules, on its own, is not sufficient. Human beings tend

to weigh and balance the individual pieces of evidence in arriving at

an evaluation. Clearly, a functional is needed to model this subjective

combination of evidence. The evaluation of premises of production rules

using the Sugeno Integral is, therefore, an attempt to introduce the

human quality of subjective combination of evidence into the production
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rule formalism.

In our methodology, premises are written in the form of sets of

AND-connected propositions. This is done without any loss of generality.

Monotonic measures of sets represent the magnitudes of importance that

groups of propositions (or subsets of premises) carry. These measures

are meta-level descriptions of the a priori notions that are inherent in

human expertise. Thus, in our attempt to introduce human subjectivity

into mechanistic decision making, the premise evaluation has been

decomposed into two distinct parts. One is the intrinsic importance

that propositions carry in an evaluation, and the other, is the extent

to which the propositions are satisfied. The Sugeno Integral combines

these two aspects non-linearly. The result is a mean evaluation that

has excellent intuitive justification. Additionally, the Sugeno Integral,

which includes the conventional minimum operator as a special case, also

provides a convenient framework for modeling the conservatism that is

seen in human reasoning in the presence of ignorance.

The knowledge-based strategy in AI is a pragmatic approach towards

the emulation of intelligent human activity. The pragmatism exhorts us

to look for better ways to express, recognize, and use diverse and

particular forms of knowledge in solving realistic problems that have

been suitably constrained so that useful solutions are obtained. We

believe that the present methodology is in line with this pragmatism.
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CHAPTER V

AN APPLICATION IN THE CLASSIFICATION OF RICE GRAIN
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Processing operations performed on rice crops give rise to

appreciable amounts of broken grain. Unlike other cereals, rice

demands a premium price only as whole grain. Broken fragments sell

for approximately half the price of corresponding whole kernels, and

in the rice industry, it is a matter of considerable importance to

divide rice grain into several classes, depending on the degree to

which the kernels are damaged. The emphasis on uniformity and accuracy

in specifying standards on rice quality has seen the acceptance of

mechanical procedures of classification that involve the use of sieves

and plates. Although these procedures do work rather well, there is no

doubt that they tend to move away from a common-sense view of rice

classification.

The task of separating rice grains into different classes depending

on the extent of breakage, we believe, is purely a matter of visual

discrimination that is easily and effectively performed by trained

personnel. Observation of experienced grain inspectors indicates that

they have clear notions of what prototypes from different classes look

like. More specifically, they know what to look for, and exactly how to

assess what they see. In performing their analyses, they draw and act

on relevant pieces of domain-specific knowledge.

In this chapter, the ideas developed in preceding chapters are

brought to bear on the problem of classification of rice grain. We

attempt to follow the visual approach that an expert grain inspector

would adopt. Information specific to the task of classification is

coded in the form of production rules (see, e.g., Barr and Feigenbaum,
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1981). Essentially, a prototype from each class Is defined by a unique

production rule, similar in form to a discriminant function (see, e.g.,

Andrews, 1972) employed in classical pattern recognition theory.
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ON THE CLASSIFICATION OF RICE GRAIN

The quality of rice is usually evaluated on the basis of its

suitability for a specific end-use by a particular group of consumers.

In the United States, where standards on quality are rigidly observed,

rice quality depends on a variety of parameters, such as grain size,

shape, uniformity and general appearance. Other pertinent factors

concern milling yields, cooking and processing characteristics,

cleanliness, soundness and purity (Webb and Sterner, 1972). Throughout

much of the rice-growing world, however, the standards on quality are

less stringent, and there is still no generally accepted basis for

evaluation. Yet, since most rice is processed and consumed in whole

kernel form, we may anticipate that the physical properties of the

intact kernel, such as shape, size, and general appearance, are of

particular significance in determining the quality of rice. Indeed, it

must be emphasized that the majority of international trade in the

commodity is generally conducted on the basis of quality as determined

by visual examination by experts (Webb and Stermer, 1972).

Rice is unique among cereals in that it is almost always used for

human consumption, and demands a premium price only as whole grain. A

certain amount of breakage, however, is unavoidable. Rice kernels have

been observed to be cracked while still in the husk, and are also

broken during harvesting, handling, drying, and milling. Milling, which

is almost always performed on rough rice (unhulled rice, also known as

paddy), involves the removal of the hull, bran layers and germ, while
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preserving the kernels to approximately their original shape. It is

of interest to note that about 15 percent of all rice milled in the

United States is broken (U.S.D.A. , 1969). This translates to an annual

figure of approximately 1 billion lbs. [0.45 million metric tons].

Since the larger pieces of broken rice sell for a little more than

one-half the price of whole rice, while smaller fragments sell for

less than one-half the price of comparable whole grains; the annual

loss due to breakage may be conservatively estimated to be around

30 million dollars. A great deal of effort has already been focussed

toward the reduction of grain breakage, and many experts opine that

the percentage of grain breakage will not reduce drastically. It is,

therefore, quite obvious that economic considerations necessitate the

adoption of reliable and efficient procedures for separating whole

kernels from broken fragments of rice.

In the United States, rice is marketed under three types, designated

as long-grain, medium-grain, and short-grain (Adair, 1972). The present

work is confined in its scope to the treatment of long-grain milled

rioe (see APPENDIX I, for U.S. Standards for Hilled Rice.).

Milling operations result in the production of rice grains with

varying degrees of breakage. Depending on the extent of breakage, it is

customary to divide milled rice into four classes; wholes or head rice,

second heads, screenings, and brewers (see APPENDIX I). The class, wholes,

consists largely of unbroken kernels, although, it is common to consider

grains upto three-quarters of unbroken kernels as belonging to this

category. Second heads are the larger broken grains, one-half to three-
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quarters of the whole kernel. Screenings consists of medium-sized broken

kernels, one-quarter to one-half of the whole grain. The smaller broken

fragments that do not meet the kernel size requirements of the other

classes are termed as brewers. It is conventional to designate fragments

approximately one-quarter (or slightly lower) of the whole kernel as

belonging to this category. Second heads and screenings are usually

blended back into the head rice and used for human consumption (Witte,

1972). The extent of blending depends considerably on the orders placed

by specific consumers, and the standards governing the quality of rice

sold in the United States. Brewers, the least expensive of the four

classes, is usually sold to breweries where it is used as an adjunct

in the manufacture of beer (In the United States, it is permitted to

use rice as a starch source for making beer.). Representative samples

belonging to the four classes are presented in Figure 5.1.

Cursory examination of the grain samples seems to indicate that

properties such as shape, size, and general appearance are sufficient

for the task of distinguishing between grains belonging to different

classes. More importantly, the task appears to be purely a problem of

visual discrimination that could be performed by trained humans. However,

the U.S. Standards for Milled Rice suggest the use of procedures that

involve the operation of sieves and plates for classification. This is

largely due to a need for uniformly accurate procedures for judging

rice quality. In rice trading circles, there is a common feeling that

unless the grading procedures are objective, the criteria of quality

cannot be accurately and uniformly measured, interpreted, and specified.
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wholes second heads

screenings b rewe rs

Figure 5.1. Representative samples from the four classes of rice grain.
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It appears that the emphasis on objective procedures arises out of a

lack of faith in the reproducibility of human judgment. We do not feel

that this lack of faith is sufficient to justify the transmutation of

the classification problem, from one viewed in common-sense visual

terms, to another defined on the basis of objective and procedural

aspects

.

We must retain our a priori conceptions of grain classification.

Prototypes from the four classes should be defined in terms of what

we see, and not how we could mechanically separate them. In order to

do so, we must attempt to understand and emulate the reasoning an

expert grain inspector would adopt when he places a rice kernel on

his palm, prior to making a quantitative assessment of quality.
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PRODUCTION RULES FOR THE CLASSIFICATION OF RICE GRAIN

An experienced grain inspector, on examination of a rice kernel

that rests on his palm, is almost effortlessly able to place it in one

of the four prescribed classes. The assessment of the general appearance

of a grain sample plays a major role in the process of discrimination.

Production rules offer a convenient representation of knowledge relevant

to the discrimination process. In this section, we attempt to construct

the production rules that define prototypes from the four classes.

The extent of damage to the rice kernel is a basic attribute that

determines the belonging of a grain sample to a given class. This

enables us to specify the following simple rules.

Rule 1. IF the kernel is approximately intact
THEN the sample is a whole.

Rule 2. IF the kernel is approximately three-quarters intact
THEN the sample is a second head.

Rule 3. IF the kernel is approximately one-half intact
THEN the sample is a screening.

Rule 4. IF the kernel is approximately one-quarter intact
THEN the sample is a brewer.

Considerable clarifications are needed before the general rules

presented above can be applied. Specifically, it is important to

understand precisely what the concepts approximately intact, approximately

three-quarters intact, etc., entail. We contend that an expert grain

inspector has the ability to solve the classification problem because he

has clear notions of these concepts. Our task, therefore, is to elicit
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chis information from him and other experts.

There appear to be two separate strategies that a grain inspector

uses when he attempts to evaluate the degree of intaatness . In one

scheme, he superimposes a mental image of a prototype kernel over the

sample under consideration. Alternatively, he might extrapolate the

sample to achieve the prototype grain, and then assess the extent of

breakage. Consultations with several grain inspectors and grain

processing experts have indicated that both schemes are employed,

simultaneously, and to varying levels. The simulation of hybrid

matching-extrapolation schemes requires sophisticated hardware and

software capabilities. In our attempt to simplify the problem, while

retaining these aspects of the discrimination process, we examine a

set of more basic attributes, the consideration of which is implicit

in both methodologies.

Each of the parameters, length, width, area, and slenderness, has

an important bearing in an expert's assessment of the general appearance

of a rice grain. Length is the distance between the most distant tips

of a kernel. For milled rice, width is defined as the distance across

the kernel at its widest point. The area that a kernel projects along a

view, perpendicular to the length and width axes, is the area parameter.

Slenderness is defined as the ratio of kernel length to its width. The

four parameters, illustrated schematically in Figure 5.2, form the

basis for definitions of the ambiguous concepts, approximately intact,

etc., which occur in the simple discrimination rules specified above.

The incorporation of the four parameters, described in the preceding
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A.

width

length

Figure 5.2, Shape parameters for milled rice kernels.
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paragraph, in a model of visual discrimination is justifiable. Whether

an expert superimposes a mental image of a prototype kernel over the

grain sample, or, whether he extrapolates from the sample kernel, he

proceeds from a priori concepts. In the first case, the mental image

itself is the prior notion, and this could be specified as a function

of the four parameters. On the other hand, we could consider the four

parameters as governing the extent of extrapolation in the alternate

scheme, in much the same way as strings control the movements of a

marionette. Our simplified four parameter model, like a crude puppet,

is unable to simulate human ability completely, and it may be necessary

to introduce additional parameters at a later stage.

Notions about degrees of intactness, that appear in the simple

rules of discrimination, may now be expressed in terms of the four

parameters. The definitions, constructed in collaboration with experts,

incorporate linguistic concepts to qualify the parameters of length,

width, area, and slenderness (The grain experts who were consulted,

found it convenient to express their knowledge in qualitative, linguistic

terms.). These definitions are quite obvious, and are natural to human

understanding of the discrimination problem.

approximately intact (wholes) implies
i) a high length parameter

and ii) a medium to high width parameter
and iii) a high area parameter
and iv) a high slenderness parameter.

approximately three-quarters intact (second heads) implies
i) a medium to high length parameter

and ii) a medium to high width parameter
and iii) a medium to high area parameter
and iv) a medium to high slenderness parameter.
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approximately one-half intact (screenings) implies
i) a low to medium length parameter

and ii) a medium to high width parameter
and iii) a medium area parameter
and iv) a low to medium slenderness parameter.

approximately one-quarter intact (brewers) implies
i) a low length parameter

and ii) a medium to high width parameter
and iii) a low area parameter
and iv) a low slenderness parameter.

Corresponding to the four definitions, a set of four discrimination

rules may be specified. They are given below.

Rule 1. IF the kernel has a high length parameter
AND the kernel has a medium to high width parameter
AND the kernel has a high area parameter
AND the kernel has a high slenderness parameter

THEN the kernel is a whole.

Rule 2. IF the kernel has a medium to high length parameter
AND the kernel has a medium to high width parameter
AND the kernel has a medium to high area parameter
AND the kernel has a medium to high slenderness parameter

THEN the kernel is a second head.

Rule 3. IF the kernel has a low to medium length parameter
AND the kernel has a medium to high width parameter
AND the kernel has a medium area parameter
AND the kernel has a low to medium slenderness parameter

THEN the kernel is a screening .

Rule 4. IF the kernel has a low length parameter
AND the kernel has a medium to high width parameter
AND the kernel has a low area parameter
AND the kernel has a low slenderness parameter

THEN the kernel is a brewer.

Symbolically, a rule may be written in the form:

IF X
(l)

THEN Y
(l)

, i - 1, 2, 3, 4 (5.1a)

where
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Y
(i) _ ,

(i) (i) (i) (i).
X = Ix-l , x 2 , x

3 , x4 } (5.1b)

is the premise set consisting of four AND- connected propositions

(pertaining to the length, width, area, and slenderness parameters

of the kernel) , and Y is the action corresponding to the i-th

discrimination rule.

Each rule defines a prototype kernel from one of the prescribed

classes. Although, the rules do provide reasonable conceptions of the

prototypes, they are still fairly ambiguous. The propositions that

comprise the premises of the discrimination rules are subject to

interpretation of the linguistic terms they contain. Before the rules

can be applied, it is important that we specify exactly what the

propositions entail.

A clear understanding of the propositions, therefore, is an

essential part of the expertise involved in grain classification.

This understanding enables a grain inspector to evaluate correctly

the extent to which a sample kernel satisfies each proposition, or

more precisely, assign a satisfactory truth value to each proposition.

In the present work, trapezoidal representations are employed to

specify truth values, h(x^ ), corresponding to a proposition x^ in

the i-th rule. The representations, illustrated in Figures 5.3 through

5.6, prescribe truth values (ranging from "0", or false, to "1", or

true) over feasible ranges of the measured parameters. The truth value

representations have been obtained in consultation with experts. The

task involved the measurement of length, width, area, and slenderness

for a large number of pre-evaluated kernels from each class (known as
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1

*P)
/I \/ < > \

1 , 1 1 /ill 1 1 \ 1 J
5.12 5.40

Length: z^ (mm)
6.887.12 00

Proposition: the kernel has a high length parameter

(1).

) 1.5 1.7 2.5 2.7

Width: zo (mm)

Proposition: the kernel has a medium to high width parameter

h(f)

7.5 9.5 14.5 16.5 00

Area: z-^ (mm )

Proposition: the kernel has a high area parameter

h(x|«)

2.48 2.62 3.64 3.75
Slenderness : Za (dimensionless)

Proposition: the kernel has a high slenderness -parameter

CO

Figure 5.3. Truth values for the propositions defining a prototype
whole.
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1

x<
2)

)

i i / i \II 1 ll \ 1 1 «*
3.5 3.75 4.9 5.375
Length: z-, (mm)

Proposition: the kernel has a medium to high length parameter'

CO

h(x<
2)

) n,
> 1—>

1.5 1.7 2.5 2.7

Width: Zn (mm)

Proposition: the kernel has a medium to high width parameter

h(x<
2
>)

4.0 5.0 8.0 9.0 00

Area: Zo (mm )

Proposition: the kernel has a medium to high area parameter

h(x4 )

1.3 1.6 2.5 2.9

Slenderness: z, (dimensionless)

Proposition: the kernel has a medium to high slenderness parameter

Figure 5.4. Truth values for the propositions defining a prototype
second head.
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h<«P>>

2.7 2.9 3.6 4.3
Length: z^ (mm)

Proposition: the kernel has a low to medium length parameter

h(x< 3 >)

1.5 1.7 2.5 2.7

Width: z„ (mm)

Proposition: the kernel has a medium to high width parameter

CO

h(x<
3
>)

> 3.8 4.1 6.2 6.8

Area: 23 (mm )

Proposition: the kernel has a medium area parameter

h(4 3)
)

0.88 1.04 1.68 2.0
Slendemess: z, (dimensionless)

CO

Proposition: the kernel has a low to medium slendemess parameter

Figure 5.5. Truth values for the propositions defining a prototype
screening.
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1.41.6 2.62.9
Length: z, (mm)

Proposition: the kernel has a low length parameter
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h(*»)

i LA , L
1.5 1.7 2.5 2.7

Width: z, (mm)

Proposition: the kernel has a medium to high width parameter

h(x<*>)

1,82.1 4.5 5.3

Area: z^ (mm )

Proposition: the kernel has a low area parameter

CO

l_

r t
—

\

h(x^) n
/: > !\

0.68 0.72 1.24 1.26

Proposition: the kernel has a low slenderness parameter

Slenderness: z, (dimensionless)

Figure 5.6. Truth values for the propositions defining a prototype
brewer.
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a training set, in the jargon of pattern recognition). Using this

information, a range of variation for the measured parameter corres-

ponding to each proposition was determined. The guidance of experts

was solicited for the purpose of specifying truth values over each

range.

It is now possible to assess the degrees to which the parameters

of an unclassified kernel satisfy individual propositions. The premise

of each rule, however, consists of four separate propositions, and the

assessment of these propositions produces four distinct pieces of

evidence which must be combined in evaluating the level to which the

unclassified kernel satisfies the entire premise. Since the premises

are comprised of AND-connected propositions, it is conventional to

employ the minimum operator to perform the combination (see, e.g.,

Shortliffe, 1976; and McDermott, 1982). Using this scheme, the

premise evaluation for the i-th rule, E^CX ) , is given by

E^Cx'
1
') = Min (h(x?

L)
)), (5.2)

CD »<«
x. eX

where h(x> 1J
) is the degree to which the sample kernel satisfies the

j-th proposition in the i-th rule. The major drawback of this scheme

is that it provides a very pessimistic evaluation. The sample kernel

is judged to be only as satisfactory as its worst quality indicates,

and it is debatable whether grain experts are so conservative in

their evaluations.

Our conversations with grain experts have indicated that they
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are Inclined to weigh and balance the different pieces of evidence

before arriving at an evaluation. A sample kernel may not satisfy

one proposition very well; yet, if the other propositions are

satisfied sufficiently, a trade-off is performed, and the resultant

evaluation could be quite high. Information about the relative

weights that propositions carry in an evaluation is significant

in the trade-off procedure. Some propositions are more important

than others, and a look at the discrimination rules will illustrate

this point. Note that the proposition pertaining to the width

parameter

the kernel has a medium to high width parameter

is common to all four rules. This is because only seldom in normal

grain processing, does a rice kernel break along a plane parallel

to the length axis (a break, so to speak, against the grain). Hence,

although the width proposition may be pertinent for the task of

differentiating rice kernels from other cereal grains, it does not

provide any information for the specific task of classifying rice.

On the other hand, the propositions dealing with length, area, and

slenderness are of special significance in both tasks, and would

surely carry greater weights in the evaluation of a premise.

The concept of monotonic measures, also known as fuzzy measures

(Sugeno, 1974; also see the preceding chapters), is employed to

capture the a priori notions that experts have concerning the relative

weights of propositions. In the present methodology, the premise of

the i-th rule, X , is written as a set, i.e.,
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v
(i) , (i) (i) (i) (i),

X = [*
1

, x
2

, x
3

, x
4

}, (5.3)

and the monotonic measure

g
(i)

(Q
(i)

) E [0,l], «
(i)=X (i)

, (5.4)

represents the combined importance that the set of propositions,

Q , carries in an evaluation. The entire premise, X , corresponds

to the totality of evidence, and

S
(i)

(X
(i)

)=l. (5. 5)

On the other hand, the null set, 0, contains no propositions, and,

therefore, contributes no information to the evaluation. Thus,

g
(l)

(0) = 0. (5.6)

For other sets,

Q
(1)

S X
(1)

, ,
(i) ^(i)

, Q
(1)

*0, (5.7)

depending on the propositions contained; a value in the closed

interval [0, 1] is assigned to the measure, g (Q ) - The assignment

of values must follow the axiom of raonotonicity, that is,

qf>, QfW», qfSQ<«,

S^fqfXg'1'^'). (5.8)

The set, Q , is a subset of the premise, X , and for each

rule, there are sixteen different subsets, or mathematically,

Q
(l)

e P(X
Cl) )*

(5.9a)

P(X ) is known as the power set, or set of all subsets, of X

The cardinality (number of elements) of P(X ), written as card(P(X ),

is 16.
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where

and

P(X
(1)

) - {Q«*>. «4«,

Ai) , (i)
Q
3

- {x
2

n
(i) , (i)

Q 4 - {x3

tf»- Cxf)

*
w - i^. x, )

*f-
,

(i)
{x

l '

CD,
X, }

4
13 - t,f\ ?>)

c- u<«. f>,

tf- <4°. xf>

#- (x^, 4^
<#- c4°.

(i)
x2

(i)
x
3

o
(1) -Q 13 - c*i», x

(i)
x
2 ,

x
(1)

x
4

«<«

.

f,<« .<« .<«

3
(1)

3
(1)

.(« .(« _(Di

Ci)j

(i) (i) (i) (i>, _ Y (i)

(5.9b)

(5.9c)

(5.9d)

(5.9e)

(5.9f)

(5.9g)

(5.9h)

(5.91)

(5.9j)

(5.9k)

(5.91)

(5.9m)

(5.9n)

(5.9o)

(5.9p)

(5.9q)

(5.9r)

„ . .
(i) (i) . .

Ine monotonic measure, g (Q ) , is used to represent the a pi^cpra

notion of the weight carried by the body of evidence, Q , in an

evaluation of the premise. Our task, therefore, is to assign values

between zero and one, for the sixteen different bodies of evidence

provided by each of the four rules (or, 16 x 4 = 64 values from the

[0, 1] interval).
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The experts we have consulted are of the opinion that since each

rule deals with the same four parameters, it would be reasonable to

assume that the measures are identical for equivalent sets from all

rules . Thus

,

(1) (1) (2) (2) (3), (3) (*),„(*>,
g (Qj ) = g (Qj ) = g (Q. ) = g (Qj ),

j = 1, 2, . . . , 16. (5.10)

Once this assumption is made, it is necessary to assign values to

just sixteen measures; in reality, only fourteen values need be

specified, since, by definition,

g
(l)

(0) - 0, (5.6)

and

g
(i)

(x
(i)

} m x _ (55)

The experts have found it quite convenient to specify magnitudes of

relative importance for individual propositions; however, the assign-

ment of values to subsets containing more than one proposition is a

difficult task. To alleviate this difficulty, the sixteen subsets are

arranged in order of increasing importance. The values are then

carefully assigned, one at a time , always checking that the axiom of

mono tonicity is satisfied. The following measures have been found to

be suitable for the discrimination rules:

,(i)
(0) = (5.11a)

g
(i)

((x^
i)

}) = 0.01 (5.11b)

g
(i)

({x^
i)

}) = 0.02 (5.11c)

g
(i)

({x£
i}

}) = 0.03 (5. lid)

g
(l)

({x|
i)

}) = 0.05 (5. lie)
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(^({.p, 4^)) 0.30

l
(1)«lW X(D }) . Q.30

0.35<*>«««> ««:

^Uk'", ««}) =0.40

5
(1)

{{^
i)

, x*
15

)) = 0.55

^({x^xi^.x^
(i),. (i) (i) (i)

? (tx
2

, x
3

, x
4

(i),, (i) (i) (i)
1 (tx, , x, , xA

}) » 0.40

) - 0.60

}) = 0.65

}) = 0.75

(5.11f)

(5.11s)

(5.11h)

(5.111)

(5.11J)

(5.11k)

(5.11£)

(5 . 11m)

(5.11a)

(5.11o)

and

(1) (1) (1) (i) (1)
; (tx , x

2
, x , x^ )) = 1. (5. lip)

The Sugeno Integral (Sugeno, 1974; also see the preceding chapters

for additional details) combines the bodies of evidence provided by

individual propositions. The resultant expression for the premise

evaluation, ES (X ), is given by

»(D,
E S (X
W

) - fh(x
W

)

v (i)

UK U)
(.)

.

Max ( Min (h(x '(jAg' '(X
(l)

nF) )

U) U)
J

FrP(X ) x. eF

Max ( Min (n(xW))/\ g
(l)

(F) ).

U) U)
J

FeP(X ) x. eF

(5.12)

The Sugeno Integral in Equation (5.12) is evaluated over the reference
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set, X , and corresponds to an evaluation of the entire premise.

In certain situations, it may not be possible to evaluate a premise

completely. Specifically, information pertaining to certain parameters

may be missing, and truth values cannot be assigned to all propositions

within a premise. The present methodology permits the partial evaluation

of a premise. This may be represented by the evaluation of the sub-rule;

(i)
HEN Y (5.13a)

(5.13b)

IF Q
(i)

whe re

Q
(1W3.)

for which

E
S (Q ) =

J-
h(x ).g (.)

Max ( Min (h(x
(l)

)) A g
(l)

(Q
(l)

F) ). (5.14)
(i) (i)

FeP(X ) x. eF

The set, Q , contains the propositions for which data are available.

We suggest that truth values of zero be assigned to propositions for

which no information is available. This corresponds to -the conservatism

that is often seen in human analyses performed in the presence of

ignorance. The conservatism also manifests itself in the resultant

evaluation, E s (Q^
10. Since the Sugeno Integral is also monotonic, i.e.,

E
S (Q

(1)
) $ E

s
(X

(i)
), forQ

(i)£X (1)
. (5.15)

In other words, a partial evaluation, or one performed in a state

of ignorance, is never better than the complete evaluation of the
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premise.

To this point, we have confined ourselves to the evaluation of

premises of the discrimination rules. A production rule, however, has

two specific parts , a condition, and an action. Therefore , having

obtained the premise evaluation, ES (Q ), it is necessary to translate

this information into a certainty of the corresponding action. The

certainty or truth value of an action,

h(Y
(l)

) £ [0,1], (5.16)

depends on the premise evaluation, and the strength of the link

between the condition and action.

A certainty function , ¥ , is used to relate the action certainty

to the evaluation of its premise (see Chapter IV) . This function, which

is similar to a certainty factor in MYCIN (Shortliffe, 1976), is

adjusted to express the strength of the condition-action link. For the

purposes of grain classification, we assume that the action of each

rule is as certain as its premise evaluation. Thus , the certainty

functions take a u-true, or uniformly-true form (see, e.g., Zadeh, 1975c);

this gives rise to

h(Y
(1)

) - *
(1)

(E
s (Q

(i)
))

= EfQ (i)
), i = 1, 2, 3, 4, (5.17a)

q
(i)sx (i)_

(5.17b)
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A RULE-BASED CLASSIFIER FOR RICE GRAIN

In the preceding section, we have developed simple rules that

define prototype kernels from the four prescribed classes of rice

grain. The simple rules of discrimination are quite natural to an

expert's understanding of the classification problem. Naturally, at

this stage, it is of interest to implement these ideas in a simple

rule-based classifier that relies on these rules to identify unknown

kernels

.

The following rules define the four classes;

Rule 1. IF X (1) THEN Y (1) {wholes)

Rule 2. IF X
(2:)

THEN Y
(2)

{second heads)

Rule 3. IF X ( THEN Y^
3)

{screenings)

Rule 4. IF X (4
' THEN Y (4) {brewers)

(see the preceding section for details)

.

Input data pertaining to

the shape and size of an unclassified kernel, I, is represented by

a pattern vector, z . This is given by

h =
<•*!• zn< z

i3> *w} - (5 - 18a)

where

*jl length of kernel l (mm) (5.18b)

Z£2 = width of kernel I (mm) (5.18c)

2
Z£3 = area of kernel I (mm ) (5.18d)

Zjj^ " slenderness parameter of kernel I (dimensionless) (5.18e)

Values of zero are substituted in place of missing data in the
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pattern vector.

The classifier proceeds by scheduling Rules 1 through 4 in sequence.

For each rule i, depending on the elements in the pattern vector, t.,

truth values,

h<*j >
£

E [0,1], J • 1, 2, 3, 4, (5.19)

are assigned to the propositions, x'
1
^, in the premise. The Sugeno

Integral is used to obtain the premise evaluation,

E
s (Q

(i)
) , Q

(i) cx (i)
; (5.20)

after which, the corresponding action certainty, h(Y ) , is estimated.

The certainty functions are all assumed to be uniformly-true, i.e.,

h(Y
(1\ . *

(i)
(E

s (Q
(1\)

= E
s ((5

(i))
i> (5.21a)

where

Q £X . (5.21b)

Rules 1 through 4 provide independent estimates of certainty

for their actions, i.e.,

h(Y )
l

= certainty that kernel I is a whole (Rule 1)

(2)
h(Y ) = certainty that kernel I is a second head (Rule 2)

x,

(3)
h(Y )j = certainty that kernel 1 is a screening (Rule 3)

(4)
h(Y )^ = certainty that kernel I is a brewer (Rule 4).

(i)
The action certainty, h(Y ) . , may be interpreted as representing

the degree of belonging of the unclassified kernel, <!. , to the class

defined by the i-th rule. Therefore, we place the kernel, I, in the

class which has the highest certainty. A rule that prescribes the

allocation of an unclassified kernel to a class must be scheduled
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after the application of Rules 1 through 4 . This rule is given by

Rule 5. IF h(Y^) = Max (h(Y
(l)

)„), k e {1, 2, 3, 4}
i i=l I

(k)
THEN adopt the action Y

(or, kernel I belongs to the class defined by Rule k) .

In some instances, two or more action certainties could satisfy Rule 5.

An additional rule is required to resolve deadlocks , i.e
.

,

Rule 6. IF h(Y
(

*) = h(Y
(

') = Max (h(Y
C±)

) ),
I I i=l X

AND fci < kl, fel, 82 e U, 2, 3, 4}

Oil)
THEN adopt the action Y

(or, kernel I belongs to the coarsep alass
defined by Rule kl) .

Hence, the proposed rule-based classifier must schedule Rules 1 through

6 in sequence.

A computer program, CERES (named after the Roman Goddess of grain

and harvests) , has been designed to classify rice kernels based on the

preceding six rules. The program is written in WATFIV, and is currently

in the process of validation by grain experts. Several hundred milled

rice kernels have been classified to this point , and the results have

been most satisfactory.
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EXPERIMENTAL WORK

The methodology for the combination of evidence in the production

rule formalism was applied to the problem of classifying long-grain

milled rice into the four classes, wholes, second heads, screenings ,

and brewers , described in the preceding sections. The present approach

towards grain classification relies on simple rules of discrimination

that define prototype kernels from the four classes. These rules are

expressed in terms of parameters that pertain to the shape and size

of kernels. The experimental work involved the measurement of the

parameters of length, width, area, and slenderness for sample rice

kernels. Samples of Arkansas-grown, long-grain milled rice were used

in the study.

Equipment

A Quantimet 720B image analyzing computer, manufactured by Image

Analyzing Computers (IMANCO) , Hertfordshire, England, was employed

for measuring the parameters pertaining to the shape and size of rice

kernels. To increase the accuracy of measurements, this system deli-

berately abandons conventional television standards in incorporating

digitally controlled 720 line scanners, purpose-built to minimize

electronic noise. Additionally, an automatic 686 point matrix shading

corrector, coupled with the low noise of special slow-speed scanners,

enable the detection of 64 gray levels. The instrument is equipped

with the following basic modules for operation in the manual mode:



i) Vidicon Scanner (50 mm lens)

ii) Display

iii) System Control

iv) Frame Generator

v) ID Auto-Detector

vi) MS3 Standard Computer

vii) Light Pen.

All experimental work was performed with the analyzer located at the

United States Grain Marketing Research Laboratory, Manhattan, Kansas.

Measurement Procedure

The Quantimet 720B image analyzer is permanently calibrated in

picture points, and all measurements are made in these units. For

calibration in absolute units, it was necessary only to find the

linear equivalent at the specimen of a picture point for the optical

system being used. This was accomplished by employing a scale cali-

brated in millimeters, and computing the picture-point-equivalent.

After the calibration procedure, grain samples were placed on

a black background, and were imaged on the Display Screen. Next, the

imaged kernels were detected using the ID Auto-Detector. Subsequently,

the MS3 Standard Computer was employed to measure the length, width,

and area (projected) of the detected kernels. All measurements were

performed in the manual setting, and, therefore, the slenderness

parameter, defined as the ratio of kernel length to its width, was

computed off-line.

192
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CONCLUDING REMARKS

In applications of classical pattern recognition theory, discriminant

functions (see, e.g., Andrews, 1972) are often used as the basis for

constructing classification algorithms . Discriminant functions have the

property that they partition the pattern or feature space into mutually

exclusive regions , each region contributing to the domain of a class.

Suppose that S is the pattern space, and it is required to partition

this space into n regions, s-, , s , . . . , s„. A discriminant function,

$.(2), is defined such that for all points (pattern vectors), 2, within

the class defined by s . , we have

$.(2) > *.(z), V2 e s., i i j. (5.22)
1 J 1

Thus, within the region s^, the i-th discriminant function will have the

largest value.

The construction and adjustment of suitable functions are important

tasks in the design of a discriminant- function-based classifier. Methods

involving parametric or non-parametric statistical techniques are often

used for developing proper discriminant functions. Sometimes, distribution-

free techniques are employed; here, the functional forms of the discrim-

inant functions (i.e. , linear, quadratic, etc.) are assumed before-hand.

The rule-based classifier developed in this chapter operates in much

the same way as one relying on discriminant functions. Instead of an

assumed polynomial functional form, each production rule itself is a

linguistic discriminant function. The premise is first evaluated, and
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the subsequent estimation of the action certainty, h(Y ), corresponds

to the computation of the value of the discriminant function. Thus,

h(Y
(

') E $
1
(z) defines class 8^ (wholes) (5.23a)

(2)
h(Y ) - $2(8) defines class s 9 (second heads) (5.23b)

(3)
h(Y ) 5 $0(2) defines class s, (screenings) (5.23c)

(4)
h(Y ) = $,(z) defines class s, (brewers) (5.23d)

where

% = (z
l%

z
2 , z

3 , z
4 ) (5.23e)

is the pattern vector containing the shape parameters of a milled rice

kernel, and h(Y ) is the action certainty for the i-th rule of dis-

crimination.

The present methodology offers advantages that are not available

when conventional discriminant function formulations are employed.

Perhaps, the most significant advantage is in the flexibility offered

by the production rule formalism. Human experts find it comfortable to

express their knowledge in the form of linguistic rules. Instead of

abstract mathematical functions, the propositions in a production rule

are easy to understand, and focus directly on the problem of discrimination.

Additionally, the evaluation of premises of the production rules employing

the Sugeno Integral permits discrimination and classification in an instance

in which the pattern vector, 2, is incomplete. In this situation, the

computation of a polynomial discriminant function in classical pattern

recognition theory, and the evaluation employing the minimum operator

in rule-based formulations, are both meaningless. All things considered,
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the present methodology provides a powerful framework for a novel scheme

of discriminant-function-based classification.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS
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The present approach employs elements of monotonic measure

theory in modeling the subjective combination of evidence in the

production rule formalism. The approach has been motivated by

the current emphasis on knowledge-based expert systems and the

corresponding field of Knowledge Engineering.

Knowledge is power, and Knowledge Engineering is the technology

that promises to make knowledge a valuable commodity. In this

chapter, we examine the advantages offered by the present method-

ology in the light of Knowledge Engineering; and proceed to list

our recommendations for future work.
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CONCLUSIONS

The knowledge base of an expert system is a repository of human

knowledge, and the inference engine - the mechanism that manipulates

this knowledge - represents an attempt to mirror the processes involved

in human reasoning. Human beings are characterized by their ability to

reason in subj ective terms . This subjectivity is not only an intrinsic

feature of human knowledge, but also enters into the reasoning process.

Any attempt at modeling human subjectivity, therefore, involves looking

toward ways of representing subjective knowledge, as well as procedures

for using this knowledge effectively in reasoning mechanisms.

The principle of monotonicity underlies most human evaluative

strategies; and the monotonic measures, employed in this work, offer

a convenient means of representing subjective information about the

relative weights of propositions in premises of production rules. The

measures correspond to the deeper or meta-level knowledge pertaining

to the interactions of propositions. They are a priori epistemic notions

that come into play when the evidence provided by individual, or groups

of propositions is weighed and balanced. In many areas of human activity,

this kind of information forms a large chunk of human expertise. The

proper representation of these concepts , therefore , is of considerable

importance from the point of view of Knowledge Engineering.

Having represented the subjective knowledge , the next step in

developing a methodology that mirrors human subjective reasoning is

to get the inference engine to process this knowledge. The mechanism
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that processes the deeper knowledge may operate non-linearly , but must

also possess reasonable intuitive justification. The Sugeno Integral

,

a functional defined on monotonic measure space, has been shown to have

these properties. Employed to evaluate premises comprised of AND-connected

propositions, it unites the lower-level knowledge pertaining to the truth

values of propositions with the meta-level information concerning the

relative weights of propositions. The result is a subjectively weighted

premise evaluation that is also monotonic

.

The monotonicity of the measures and the Sugeno Integral have been

shown to provide a viable framework for the representation and treatment

of ignorance, and the conservatism that is seen in human evaluations

made in its presence. Human beings demonstrate an ability to reason in

the presence of incomplete information, and the present methodology

introduces this ability into systems relying on a pattern of rule-directed

inference.

It might be argued that the Sugeno Integral is just one more

functional that has been proposed for evaluating premises of production

rules. However, it has one significant property; the Sugeno Integral is

an extension of the minimum operator that is conventionally used to

evaluate premises consisting of AND-connected propositions. It is often

felt that the minimum operator is too conservative, since the evaluation

it offers is only as good as the worst attribute indicates. The fact that

the evaluation employing the minimum operator is the lower bound for the

Sugeno Integral and is equal to the Sugeno evaluation in the absence of

meta-level knowledge about the relative weights of propositions (vacuous
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belief conditions) , is in accordance with the conservatism that is the

hallmark of human evaluations made in the presence of ignorance.

The methodology is easily extended to admit multilevel reasoning,

and good results have been obtained in its application in a rule-based

classifier for long-grain milled rice.

In their pioneering paper on the knowledge-based approach in AI,

Minsky and Papert (1974) envision "... progress as coming from better

ways to express , recognize, and use diverse and particular forms of

knowledge...". The subjectivity that enters in the human combination

of evidence may be considered to be a specific local feature of

knowledge-organizing-knowledge . The present approach appears to

provide an excellent framework for expressing, recognizing, and

using this knowledge.
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RECOMMENDATIONS

In this section, we outline our recommendations for future work;

they are listed under two categories. The first concerns potential

areas of application of the methodology developed in this thesis

,

while the second includes extensions and refinements of the method-

ology.

Production rules are natural to human understanding of problem

solving and decision making, and offer a modular scheme for repre-

senting and using domain-specific knowledge. Monotonic measures and

the Sugeno Integral give production systems the power to express

and manipulate human subjective knowledge. Hence, in addition to

areas that are attractive for production rule representations, the

methodology is especially useful for application in areas in which

subjective decision making is an important feature of human expertise.

The Sugeno Integral has been employed in the present work to

weigh and balance the evidence provided by individual propositions.

In doing so, it essentially performs a rational and systematic trade-

off, and the resulting evaluation is balanced and well-rounded. This

property could be used in developing novel lexicographic optimization

techniques. The use of production rule formulations for this purpose

also has its own benefits.

The design and synthesis of chemical processes is more an art

than a science. A considerable portion of expertise in this area

consists of heuristics , rules-of- thumb , and empirical associations
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that are acquired through extensive experience; this is valuable

knowledge that can be captured and preserved effectively by production

rules. Good engineering judgment has an important role in design and

synthesis. This judgment is characterized by its subjectivity, and is

central in making trade-off decisions.

Automatic control of chemical processes is another area in which

the present methodology can be implemented successfully. Many chemical

systems are too complex to model mathematically. Yet, expert human

operators are capable of performing control actions very satisfactorily.

Heuristic knowledge guides the operator, and often, control actions are

performed although all the feedback information may not be provided.

It appears to be a good idea to incorporate operator-specified, linguistic

rules as a means for effective control. The ability of the present method-

ology to provide evaluations in the absence of complete information is

significant in such applications

.

There are several extensions and refinements that could increase

the power and applicability of the methodology for the combination of

evidence. In this work, we have been concerned mainly with the tasks

of expressing and using subjective knowledge. The acquisition of

knowledge is an important aspect of Knowledge Engineering; and future

work must focus in this direction.

A learning system seems to be the best way in which the machine

could obtain accurate values for measures of groups of propositions.

Tazaki (1983), and Yasuhara (1983) have investigated the inverse

problem, in which knowledge of the value of the Sugeno Integral is
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employed in estimating the values of the monotonic measures. This

requires an understanding of the functional behaviour of the Sugeno

Integral. Another method involves the use of the conditional fuzzy

measure (Sugeno, 1974). This monotonic measure is similar to Bayes'

conditional probability (additive monotonic measure) that is often

used in constructing conventional learning systems (see, e.g. , Fu,

1970).

The use of the present methodology in an expert system requires

an explanation facility designed specifically for the evaluation

employing the Sugeno Integral. The construction of such a facility

needs knowledge of the functional behaviour, and the operations

involved in integration.

It seems plausible to employ a measure-theoretic approach to

express subjective meta-level knowledge. However, as stated previously,

the Sugeno Integral is just one functional defined on monotonic measure

space that is employed for our purposes because it appears to mirror

certain human evaluative strategies. It is, perhaps, possible to define

other functionals having better properties. Detailed psychological

investigations of human evaluative behaviour are required so that

appropriate functionals can be developed.
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U.S. STANDARDS FOR MILLED RICE 1/

TERMS DEFINED

§ 68.301 Definition of milled rice .

Whole or broken kernels of rice (Ovyzg sative L. ) from which the hulls

and at least the outer bran layers have been removed and which contain

not more than 10.0 percent of seeds, paddy kernels, or foreign material,

either singly or combined.

§ 68.302 Definition of other terms .

For the purposes of these standards, the following terms shall have the

meanings stated below:

(a) Broken kernels . Kernels of rice which are less than three-

fourths of whole kernels.

(b) Brown rice . Whole or broken kernels of rice from which the

hulls have been removed.

(c) Chalky kernels . Whole or broken kernels of rice which are one-

half or more chalky.

(d) Classes . There are seven classes of milled rice. The following

four classes shall be based on the percentage of whole kernels, (broken

kernels), and types of rice:

Long-Grain Milled Rice

Medium-Grain Milled Rice

XI Compliance with the provisions of these standards does not excuse
failure to comply with the provisions of the Federal Food, Drug, and
Cosmetic Act, or other Federal laws.
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Short-Grain Milled Rice

Mixed Milled Rice

The following three classes shall be based on the percentage of whole

kernels and of broken kernels of different size:

Second-Head Milled Rice

Screenings Milled Rice

Brewers Milled Rice

(1) "Long-grain milled rice" shall consist of milled rice which

contains more than 25.0 percent of whole kernels of milled rice and in

U.S. Nos. 1 through 4 not more than 10.0 percent of whole or broken

kernels of medium- or short-grain rice. U.S. No. 5 and U.S. No. 6 long-

grain milled rice shall contain not more than 10.0 percent of whole ker-

nels of medium- or short-grain milled rice (broken kernels do not apply).

(2) "Medium-grain milled rice" shall consist of milled rice which

contains more than 25.0 percent of whole kernels of milled rice and in

U.S. Nos. 1 through 4 not more than 10.0 percent of whole or broken

kernels of long-grain rice or whole kernels of short-grain rice. U.S. No.

5 and U.S. No. 6 medium-grain milled rice shall contain not more than

10.0 percent of whole kernels of long- or short-grain milled rice (broken

kernels do not apply).

(3) "Short-grain milled rice" shall consist of milled rice which

contains more than 25.0 percent of whole kernels of milled rice and in

U.S. Nos. 1 through 4 not more than 10. Q percent of whole or broken

kernels of long-grain rice or whole kernels of medium-grain rice. U.S.

No. 5 and U.S. No. 6 short-grain milled rice shall contain not more
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than 10.0 percent of whole kernels of long- or medium-grain milled rice

(broken kernels do not apply)'

(4) "Mixed milled rice" shall consist of milled rice which contains

more than 25.0 percent of wnole kernels of milled rice and more than

10.0 percent of "other types" as defined in paragrapn (i) of this

section. U.S. No. 5 and U.S. Ho. 6 mixed milled rice shall contain more

than 10.0 percent of whole kernels of "other types" (broken kernels do

no t app ly

)

.

(5) "Second-head milled rice" shall consist of milled rice which.

when determined in accordance with §§ 68.303 and 68.304 contains:

(i) Not more than (a) 25.0 percent of whole kernels, (b) 7.0

percent of broken kernels removed by a 6 plate, (c) 0.4 percent of

broken kernels removed by a 5 plate, and (d) 0.05 percent of broken

kernels passing through a 4 sieve (southern productvon) ; or

(ii) Not more than (a) 25.0 percent of whole kernels, (b) 50.0

percent of broken kernels passing through a 6h sieve, and (c) 10.0

percent of broken kernels passing through a 6 sieve (western production).

(6) "Screenings milled rice" shall consist of milled rice which.

when determined in accordance with §3 68.303 and 68.304. contains:

(i) Not more than (a) 25.0 percent of whole kernels, (b) 10.0

percent of broken kernels removed by a 5 plate, and (c) 0.2 percent of

broken kernels passing through a 4 sieve (southern production); or

(ii) Not more than (a) 25.0 percent of whole kernels (b) 15.0

percent of broken kernels passing through a 5^ sieve; and more than

(c) 50.0 percent of broken kernels passing through a 5% sieve and
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(d) 10.0 percent of broken kernels passing through a 6 sieve (western

production) .

(7) "Brewers milled rice" shall consist of milled rice which, when

determined in accordance with 51 68.303 and 68.304, contains not more

than 25.0 percent of whole kernels and which does not meet the kernel-

size requirements tor the class Second Head Milled Rice or Screenings

Milled Rice.

(e) Damaged kernels . Whole or broken kernels of rice which are

distinctly discolored or damaged by water, insects, heat or any other

means, and parboiled kernels in nonparboiled rice. "Heat-damaged

kernels" [see paragraph (g) of this section] shall not function as

damaged kernels.

(f) Foreign material . All matter other than rice and seeds. Hulls

germs, and bran which have separated from the kernels of rice shall be

considered foreign material.

(g) Heat-damaged kernels . Whole or broken kernels of rice which

are materially discolored and damaged as a result of heating and par-

boiled kernels in nonparboiled rice which are as dark as. or darker in

color than, the interpretive line for heat-damaged kernels.

(h) Objectionable seeds . Seeds other than rice, except seeds of

Eahinoch log cztisgalli (commonly known as barnyard grass^ watergrass
_,

and Japanese Millet).

(i) Other types . (1) Whole kernels of : (i) Long-grain rice in

medium- or short-grain rice, (ii) Medium-grain rice in long- or short-

grain rice, (iii) Short-grain in long- or medium-grain rice, and (2)
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broken kernels of long-grain rice in medium- or short-grain rice and

broken kernels of medium- or short-grain rice in long-grain rice,,

except in U.S. No. 5 and U.S. No. 6 milled rice. In U.S. No. 5 and

U.S. No. 6 milled rice, only whole kernels will apply.

NOTE: Broken kernels of medium-grain rice in short-grain rice and

broken kernels of short-grain rice in medium-grain rice shaii not be

considered other types.

(j) Paddy kernels . Whole or broken unhulled kernels of rice; whole

or broken kernels of brown rice, and whole or broken kernels of milled

rice having a portion or portions of the hull remaining which cover one-

eighth (1/8) or more of the whole or broken kernel.

(K } Red rice . Whole or broken kernels of rice on which there is an

appreicable amount of red bran.

(1) Seeds . Whole or broken seeds of any plant other than rice.

(m) Types of rice . There are three types of milled rice as follows:

Long grain

Medium grain

Short grain

Types shall be based on the length-width ratio of kernels of rice that

are unbroken and the width, thickness, and shape of kernels that are

broken as set forth in the Rice inspection Handbook 2/.

(n) Ungelatinized kernels . Whole or broken kernels of parboiled

2/ Publications referenced in these standards will be made available upon
request to the Federal Grain Inspection Service, U.S. Department of

Agriculture, 1400 Independence Avenue, S.W. Washington, D.C. 20250.
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rice with distinct white or chalky areas due to incomplete gelatinization

of the starch.

(o) Well-milled kernels . Whole or broken kernels of rice from which

the hulls and practically all of the germs and bran layers have been

removed.

NOTE: This factor is determined on an individual kernel basis and applies

to the special grade Undermilled milled rice only.

(p) Whole kernels . Unbroken kernels of rice and broken kernels of

rice which are at least three-fourths of an unbroken kernel.

($) 5 plate . A laminated metal plate 0.142-inch thick, with a top

lamina, 0.051-inch thick, perforated with rows of round holes 0.0781

(5/64) inch in diameter, 5/32 inch from center to center, with each row

staggered in relation to the adjacent rows, and a bottom lamina 0.091-

inch thick, without perforations.

( r ) §. PAft-t-Jr ' A laminated metal plate 0.142-inch thick, with a top

lamina, 0.051-inch thick, perforated with rows of round holes 0.0938

(6/64) inch in diameter, 5/32 inch from center to center, with each row

staggered in relation to the adjacent rows, and a bottom lamina 0.091-

inch thick, without perforations.

(s) 2\ sieve . A metal sieve 0.032-inch thick, perforated with rows

of round holes 0.0391 (2^/64) inch in diameter, 0.075-inch from center

to center, with each row staggered in relation to the adjacent rows.

£t) 4 sieve . A metal sieve 0.032-inch thick, perforated with rows

of round holes 0.0625 (4/64) inch in diameter, 1/8 inch from center to

center, with each row staggered in relation to the adjacent rows.
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(u) 5 sieve . A metal sieve 0.032-inch thick, perforated with rows

of round holes 0.0781 {5/64) inch in diameter, 5/32 inch from center to

center, with each row staggered in relation to the adjacent rows.

(v) 5h sieve . A metal sieve 0.032-inch thick, perforated with rows

of round holes 0. 0859 (5%/64) inch in diameter, 9/64 inch from center to

center, with each row staggered in relation to the adjacent rows.

(w) 6 sieve . A metal sieve 0.032-inch thick, perforated with rows

of round holes 0.0938 (6/64) inch in diameter, 5/32 inch from center to

center, with each row staggered in relation to the adj acent rows

.

( x ) §h s ieve • A metal sieve 0.032-inch thick, perforated with rows

of round holes 0.1016 (6%/64) inch in diameter, 5/32 inch from center to

center with each row staggered in relation to the adjacent rows.

(y) 30 sieve . A woven wire cloth sieve having 0.0234-inch openings,

with a wire diameter of 0.0153-inch, and meeting the specifications of

American Society for Testing and Materials Designation E-ll-61, as set

forth in the Equipment Handbook 2/

.

PRINCIPLES GOVERNING APPLICATION OF STANDARDS

§ 68.303 Basis of Determination .

All determinations shall be on the basis of the original sample. Mechan-

ical sizing of kernels shall be adjusted by handpicking, as set forth in

the Rice Inspection Handbook 2/, or by any other method which gives

equivalent results

.

§ 68.304 Temporary modifications in equipment and procedures .

The equipment and procedures referenced to in the milled rice standards
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are applicable to rice produced and harvested under normal environmental

conditions. Abnormal environmental conditions during the production and

harvest of rice may require minor temporary modifications in the equip-

ment or procedures to obtain results expected under normal conditions.

When these adjustments are necessary, Federal Grain Inspection Service

Field Offices, official inspection agencies, and interested parties in

the rice industry will be notified promptly in writing of the modification.

These modifications shall not include changes in interpretations of iden-

tity, class, quality, or condition.

§ 68.305 Broken kernels determination .

Broken kernels shall be determined by the use of equipment and procedures

set forth in the Rice Inspectation Handbook 2/ t or by any method which

gives equivalent results

.

§ 68.306 Interpretive line samples .

Interpretive line samples showing the official scoring line for factors

that are determined by visual observation shall be maintained by the

Federal Grain Inspection Service, U.S. Department of Agriculture, and

shall be available for reference in all inspections offices that

inspect and grade rice.

§ 68.307 Milling requirements .

The degree of milling for milled rice; i.e., "well milled," "reasonably

well milled," and "lightly milled" shall be equal to, or better than

that of the interpretive line samples for such rice.

§ 68.308 Moisture .

Water content in milled rice as determined by an approved device in
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accordance with procedures prescribed in the Rice Inspection Handbook

2/. For the purpose of this paragraph, "approved device" shall include

the Motomco Moisture Meter and any other equipment that is approved by

the administrator as giving equivalent results 3/

•

§ 68.309 Percentages .

Percentages shall be determined on the basis of weight and shall be

rounded off as follows:

(a) When the figure to be rounded is followed by a figure greater

than 5, round to the next higher figure; e.g., 0.46, report as 0.5.

(b) When the figure to be rounded is followed by a figure less

than 5, round to the next lowest figure; e.g., 0.54, report as 0.5.

(c) When the figure to be rounded is followed by the figure 5,

round to the nearest even figure; e.g., 0.45, report as 0.4; 0.55,

report as 0.6.

All percentages, except for milling yield, shall be stated in whole

and tenth percent to the nearest tenth percent. Milling yield shall

be stated to the nearest whole percent.

GRADES, GRADE REQUIREMENTS, AND GRADE DESIGNATIONS

For §§§§ 68.310, 68.311, 68.312, and 68.313 see United States Standards

for Rice, revised July 1983, pp 23-26, U.S. Department of Agriculture,

3/ Requests for information concerning approved devices and procedures

,

criteria for approved devices, and requests for approval of devices
should be directed to the Federal Grain Inspection Service, U.S.

Department of Agriculture, 1400 Independence Avenue, S.W., Washington,
D.C. 20250.
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Federal Grain Inspection Service, Washington, D.C..

§ 68.314 Grade Designations .

(a) The grade designation for all classes of milled rice, except

Mixed Milled Rice, shall include in the following order: (1) The letters

"U.S."; (2) the number of the grade or the words "Sample grade", as

warranted; (3) the words "or better", when applicable and requested by

the applicant prior to inspection; (4) the class ; and (5) each applicable

special grade (see § 68.316).

(b) The grade designation for the class Mixed Milled Rice shall

include, in the following order: (1) The letters "U.S."; (2) the number

of the grade or the words "Sample grade," as warranted; (3) the words

"or better," when applicable and requested by the applicant prior to

inspection; (4) the class ; (5) each applicable special grade (see

§ 68.316); (6) the percentage of whole kernels of each type in the

order of predominance and when applicable; (7) the percentage of broken

kernels of each type in the order of predominance; and (8) the percentage

of seeds and foreign material.

NOTE: Broken kernels other than long grain, in Mixed Milled Rice, shall

be certificated as "medium or short grain".

SPECIAL GRADES, SPECIAL GRADE REQUIREMENTS, SPECIAL GRADE DESIGNATIONS

§ 68.315 Special grade and special grade requirements .

A special grade when applicable, is supplemental to the grade assigned

under § 68.314. Such special grades for milled rice are established and

determined as follows:
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(a) Coated milled rice . Coated milled rice shall be rice which is

coated, in whole or in part, with substances that are safe and suitable

4/ according to commercially accepted practice.

(b) Granulated brewers milled rice . Granulated brewers milled rice

shall be milled rice which has been crushed or granulated so that 95.0

percent or more will pass through a 5 sieve, 70.0 percent or more will

pass through a 4 sieve, and not more than 15.0 percent will pass through

a 2\ sieve.

(c) Parboiled milled rice . Parboiled milled rice shall be milled

rice in which the starch has been gelatinized by soaking, steaming,

and drying. Grades U.S. No. 1 to U.S. No. 6, inclusive, shall contain

not more than 10.0 percent of ungelatinized kernels. Grades U.S. No. 1

and U.S. No. 2 shall contain not more than 0.1 percent, grades U.S. No. 3

and U.S. No. 4 not more than 0.2 percent, and grades U.S. No. 5 and U.S.

No. 6 not more than 0.5 percent of nonparboiled rice. If the rice is:

(1) Not distinctly colored by the parboiling process, it shall be con-

sidered "Parboiled Light"; (2) distinctly but not materially colored by

the parboiled process, it shall be considered "Parboiled"; (3) materially

colored by the parboiled process, it shall be considered "Parboiled Dark".

The color levels for "Parboiled Light", "Parboiled", and "Parboiled Dark"

shall be in accordance with the interpretive line samples for parboiled

4/ Compliance with the provisions of these standards does not excuse
failure to comply with provisions of the Federal Food, Drug, and
Cosmetic Act, or other Federal Laws. Safe and suitable is defined in
the regulation issued pursuant to the Federal Food, Drug and Cosmetic
Act at 21 CFR 130.3(d)

.
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NOTE: The maximum limits for "Chalky kernels", "Heat-damaged kernels",

"Kernels damaged by heat", and the "Color requirements" in § § § § 68.310,

68.311, 68.312, and 68.313 are not applicable to the special grade

"Parboiled milled rice".

(d) Undermilled milled rice . Undermilled milled rice shall be milled

rice which is not equal to the milling requirements for "well milled",

"reasonably well milled", and "lightly milled" rice (see § 68.307).

Grades U.S. No. 1 and U.S. No. 2 shall contain not more than 2.0 percent,

grades U.S. No. 3 and U.S. No. 4 not more than 5.0 percent, grade U.S.

No. 5 not more than 10.0 percent, and grade U.S. No. 6 not more than

15.0 percent of well-milled kernels. Grade U.S. No. 5 shall contain

not more than 10.0 percent of red rice and damaged kernels (singly ot

combined) and in no case more than 6.0 percent of damaged kernels.

NOTE: The "Color and milling requirements" in §§§§ 68.310, 68.311,

68. 312, and 68. 313 are not applicable to the special grade "Undermilled

milled rice"

.

§ 68.316 Special Grade designation .

The grade designation for coated, granulated brewers, parboiled, or

undermilled milled rice shall include, following the class, the word(s)

"Coated", "Granulated", "Parboiled Light", "Parboiled", "Parboiled

Dark", or "Undermilled", as warranted, and all other information as

prescribed in § 68.314.

[These standards are taken from "United States Standards for Rice",

revised July 1983, U.S. Department of Agriculture, Federal Grain

Inspection Service, Washington, D.C.]
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ABSTRACT

The goal of research in Artificial Intelligence (AI) is to get

machines to emulate intelligent human behaviour. Knowledge Engineering,

a sub-field of AI , focuses on the technical issues of acquiring,

representing, and using knowledge in constructing computer programs

that can "reason". This has led to the development of expert systems.

Modeled on human experts, these programs embody knowledge, and use it

to solve real-world problems in specific areas of human activity.

Production rules (or IF-THEN rules) are a popular approach for repre-

senting and manipulating domain knowledge in expert systems. Implemented

in rule-based or production systems, they are natural to human problem

solving strategies.

Human beings are able to reason subjectively, and this ability

must be incorporated in any synthetic model of human reasoning. In

making evaluations, humans tend to weigh and balance the evidence

they receive, and this feature may be assumed to introduce subjectivity.

The present work focuses on the combination of evidence in the

production rule formalism. The premise of a rule, comprised of AND-

connected propositions, is written as a set, and each proposition is

a distinct piece of evidence pointing to the action. Some propositions

are more important than others, and monotonic measures are employed to

hold meta-level information pertaining to the subjective weights of

propositions. The evaluation of the premise, therefore, requires the

combination of truth values of individual propositions with their



relative weights. The Sugeno Integral, a functional defined on a monotonia

measure space, unites these two quantities. The result is a subjectively

weighted premise evaluation that is also monotonic, and has excellent

intuitive justification.

The introduction of monotonic measure theory into the production

rule formalism provides a logical foundation for expressing and coping

with the subjectivity that is the hallmark of human evaluative strategies.

It offers a viable framework, for the representation and treatment of

ignorance. Additionally, the Sugeno Integral is simply an extension of

the conventional minimum operator, and the methodology can be extended

to admit multilevel reasoning. The development of the present methodology

is in keeping with the guidelines of Knowledge Engineering, and the

advantages gain significance when viewed in this light.

The methodology is implemented in a rule-based system for the

classification of long-grain milled rice. Several hundred unclassified

kernels have been evaluated, and satisfactory results have been obtained.


