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Abstract 

The causative agent of tuberculosis (TB) in cattle is Mycobacterium bovis (M. bovis).  γδ 

T cells are a unique subset of nonconventional T cells that play major roles in both the innate and 

adaptive arms of the immune system.  Bovine γδ T cells have the capacity for multiple immune 

functions during infection with M. bovis.  However, the alternative functions of γδ T cells as well 

as the responses of γδ T cells in vivo at the site of infection remain unclear.  

To identify novel functions for γδ T cells in response to M. bovis infections, RNA 

sequencing and transcriptomics analysis was completed on peripheral blood γδ T cells isolated 

from virulent M. bovis-infected cattle.  Differentially expressed genes were confirmed with real-

time PCR.  In an attempt to model in vivo cell-to-cell interactions at the site of infection, γδ T cells 

were also isolated from naïve and M. bovis-infected calves and co-cultured with autologous, BCG-

infected, monocyte-derived macrophages.  γδ T cell chemokine and cytokine expression was 

analyzed via ELISA and real-time PCR.  The characteristic lesions of bovine tuberculosis are well-

organized pulmonary granulomas.  To determine the relevance of the RNA-sequencing and in vitro 

co-culture results to in vivo infection, tissue samples from granulomatous lesions in the lungs and 

mediastinal lymph nodes of virulent M. bovis-infected cattle were collected 3 months after 

infection.  mRNA transcripts for γδ T cells expression of-- IFN-γ, IL-17, IL-10, IL-22, and CCL2 

were microscopically evaluated within the granulomas using an in situ hybridization system, 

RNAScope (Advanced Cell Diagnostics Inc.).   

  Co-culture experiments and transcriptomics analysis revealed increased expression of 

chemokines and various cytokines by γδ T cells responding to M. bovis infection.  The novel in 

situ hybridization assay revealed that cytokine expression by γδ T cells varied within the lesions, 

with significant levels of CCL2 and IFN-γ, and low expression of IL-10, IL-22, and IL-17 in situ 



  

at this time-point after infection.  Co-culture experiments also revealed that γδ T cells from virulent 

M. bovis-infected cattle have the capacity to directly impact the viability of M. bovis in vitro.  Our 

results suggest that γδ T cells accumulate within the granulomas, and influence host immunity to 

M. bovis by secretion of cytokines and chemokines, and direct cytotoxicity, in response to infected 

macrophages.  
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Chapter 1 - General Introduction 

 Introduction  

Tuberculosis (TB) is among the most important infectious diseases worldwide.  In 2015 

1.8 million people died from this disease (WHO, 2017).  Mycobacterium bovis (M. bovis) is a 

member of the Mycobacterium tuberculosis complex (Mtbc), and is the causative agent of TB in 

cattle (BTB).  M. bovis is capable of causing zoonosis in most mammals, including humans.  

This disease has a significant detrimental impact on the livestock industry; costing billions of 

dollars in loses each year.  Eradication attempts have been successful in some countries; 

however, the broad host range and low infective dose of BTB make worldwide eradication 

difficult.  BTB parallels human TB in regards to disease pathogenesis and development of innate 

and adaptive immune responses, making the bovine an excellent model to study human disease.  

γδ T cells are a unique subset of CD3+ T cells that possess functions characteristic of both 

innate and adaptive immunity, and are therefore thought to bridge the two arms of the immune 

system.  γδ T cells increase in the periphery of patients with active TB, and are among the first 

cells recruited to the site of infection in cattle, suggesting they play a critical role in early 

immunity to TB.  However, the frequency of these cells in humans and mice is very low 

compared to ruminants, making cattle an ideal model to elucidate the role of γδ T cells in the 

immune response to infection.  γδ T cells share several adaptive immune characteristics with 

their α/β T cell counterparts, such as interferon gamma (IFN-γ) production and clonal expansion; 

and such responses have been well described in the context of human and bovine TB.  However, 

γδ T cells are shown to have the capacity for a wide variety of additional functions, such as 

chemokine production, direct cytotoxicity, immunoregulation, and immune cell cross-talk.  The 

occurrence and biological significance of these functions, particularly during TB infection, is 
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poorly understood.  Further, although significant numbers of γδ T cells accumulate at the site of 

M. bovis and Mycobacterium tuberculosis (M.tb) infection, particularly during the early stages of 

disease, their role at the site of infection remains poorly defined.  

 

 Literature Review 

 Mycobacterium bovis 

Mycobacteria are slow-growing, aerobic, gram positive, rod-shaped bacteria. Unlike 

other gram positive bacteria, mycobacteria do not retain the gram stain due to the unique 

structure of the cell wall.  Mycobacteria are therefore identified as being acid-fast and are 

detected using the Ziehl-Nielsen stain (Ulrichs et al., 2005).  M. bovis is one of eight members in 

the Mtbc.  The Mtbc includes: Mycobacterium tuberculosis, Mycobacterium bannettii, 

Mycobacterium africanum, Mycobacterium bovis, Mycobacterium pinnipedii, Mycobacterium 

mungi, Mycobacterium caprae, and Mycobacterium microti (Thoen et al., 2014).  The 

Mycobacterium genus includes several species of TB causing agents; however, not all 

mycobacteria cause TB disease.  Members of the Mtbc are characterized by 99.9% similarity at 

the nucleotide level and identical 16S rRNA sequences; however, they differ in their hosts, 

phenotypes, and pathogenicity (Brosch et al., 2002).  Members of the Mtbc cause TB in a wide 

range of hosts.  M. tb, M. africanum, and M. canettii primarily infect humans, M. mungi infects 

mongooses, M. pinnipedii infects pinnipeds (seals and sea lions), M. microti infects voles, and M. 

bovis infects cattle and goats.  Many other wildlife species (deer, badgers, foxes, wild ruminants, 

etc.) can be infected by a number of these mycobacterial strains as well (Thoen et al., 2014).  M. 

bovis is responsible for causing TB primarily in cattle, but is also capable of causing disease in 

most other mammals, including humans.  M. tb is the pathogen that most commonly causes TB 
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in humans; however, symptoms of M. bovis and M. tb infection are indistinguishable (Thoen et 

al., 2014).   

 

 Epidemiology of BTB in humans and animals 

One third of the world’s population is infected with TB, making it one of the leading 

causes of infectious disease-related deaths world-wide (Thoen et al., 2014).  In the early 1990’s 

the World Health Organization (WHO) declared TB to be a global emergency due to the 

development of antibiotic resistant strains of M. tb (Luca and Mihaescu, 2013; WHO, 1994).  TB 

is responsible for killing approximately 1.7 million people per year; with the majority of those 

deaths attributed to infection with M. tb.  95% of TB cases occur in developing countries, 

especially in populations where HIV/AIDS is endemic (Thoen et al., 2014). 

The most common route of M. bovis infection for humans is through ingestion of 

contaminated foods, such as unpasteurized milk and cheese (Thoen et al., 2014).  It is currently 

stated by the Centers for Disease Control and Prevention (CDC) that M. bovis accounts for less 

than 2% of human TB cases; however, there is growing evidence that suggests the M. bovis 

burden in humans as the cause of TB is significantly underestimated (Thoen et al., 2010; Olea-

Popelka et al., 2016).  Clinically distinguishing a M. bovis from a M. tb infection is difficult 

without the proper diagnostic tools, and the most commonly used assays for detecting TB 

infection are not able to differentiate between M. bovis and M. tb, leading to misdiagnosis and 

under-reporting of actual M. bovis cases (Thoen et al., 2010; Olea-Popelka et al., 2016).  Further, 

reports of M. bovis cases are likely skewed due to more available data from high-income 

countries where TB prevalence is low.  It is estimated that 3 million cases of TB, caused by 

either M. tb or M. bovis, are missed each year (Olea-Popelka et al., 2016).  In the U.S., M. bovis 
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is estimated to account for 1.5% of TB cases; however, in areas with large populations of 

foreign-born people (especially Hispanic), there continues to be a disproportionately higher 

burden of TB (Rodwell et al., 2008; CDC, 2015).  It is estimated that there are 9 million people 

infected with TB each year, and even if a small percentage of those cases are due to M. bovis, 

that results in a substantial absolute number of people infected and killed by M. bovis infection 

each year (Müller et al., 2013; Olea-Popelka et al., 2016).  While cases of BTB are rare in the 

United States, many other countries have seen a continual increase in disease incidence over the 

past 20 years (Witchell et al., 2010; CDC, 2012).  In 2015 there were an estimated 149,000 new 

cases of human zoonotic TB globally, with Africa carrying the heaviest burden with over 76,000 

incidences followed by South-east Asia with more than 47,000 cases (WHO 2016). 

BTB continues to have a significant impact on the agricultural industry world-wide, 

infecting over 50 million cattle and resulting in a $3 billion loss to the industry each year due to 

culling, testing, and control in animals (Palmer et al., 2007).  M. bovis is easily spread, and its 

primary route of infection for cattle in a natural setting is by inhalation of aerosolized droplets; 

however, M. bovis infection can also occur via ingestion of contaminated food or water, or 

experimentally by intravenous, intranasal, intra-tracheal, or intra-tonsillar injection (Harris et al., 

2009, Palmer et al., 2002; Neil et al., 1994).  Efforts to eradicate BTB have been successful in 

some countries, such as the United States, where the prevalence is limited only to sporadic 

outbreaks.  However, eradication in other developed countries, such as the United Kingdom 

(UK) and New Zealand, has been largely unsuccessful due to wildlife reservoirs of M. bovis as 

well as imports received from countries with endemic TB.  The UK has seen an overall long-

term upward trend in incidence rates of TB in cattle, specifically herds in England and Wales, 

since 1996 (Animal and Plant Health Agency, 2017).  The Department for Environment, Food, 
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and Rural Affairs and Animal and Plant Health Agency reported in 2016 that approximately 

80,000 reactor animals were slaughtered in Great Britain, England, Scotland, and Wales, which 

is a drastic increase from the 45,000 animals slaughtered in 2006.   

The wildlife reservoirs for BTB vary depending on geographical region, making 

universal control strategies difficult to implement.  Historically, control of BTB has depended on 

the detection of infected animals and the subsequent slaughter (Aranaz et al., 2006).  Test and 

cull methods have been implemented in cattle herds with varying results.  Culling large groups of 

animals is very costly to producers, especially those in third-world countries, leading to refusal 

of participation (Thoen et al., 2014).  This method was also ineffective in areas where a wildlife 

reservoir of BTB was present, causing a continual re-infection of herds (Buddle et al., 2002).   

  

 BCG and TB Vaccine Development 

TB has proved to be challenging to control due to its unique and complex nature. There is 

currently only one vaccine licensed for use against TB in humans, the Bacille Calmette-Guѐrin 

(BCG) vaccine.   BCG is a live attenuated form of M. bovis, isolated by Albert Calmette and 

Camille Guerin in 1919 (Lee et al., 2004).  Studies have shown that BCG has variable efficacy, 

ranging from 0-80% against the pulmonary forms of the disease (Widdison et al., 2006).  Despite 

its controversial effectiveness, the M. bovis BCG vaccine is the most used vaccine world-wide 

(McShane, 2011; Ottenhoff and Kaufmann, 2012).  The BCG vaccine offers enhanced protection 

when used in infants compared to use in adults, and thus it is commonly administered to children 

in countries with a high risk for TB infection (Lee et al., 2004).  Due to the low prevalence of 

disease, and the questionable efficacy, individuals in the United States are not vaccinated for TB 

unless they are deemed to be at high risk for contracting the disease (Thoen et al., 2014). 
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Since TB was declared to be a global emergency, funding for research towards 

developing a more efficacious vaccine has been increasing.  In humans, several new vaccines 

against TB have been developed, and are currently in human clinical trials (Reviewed in 

Ottenhoff and Kaufmann, 2012; Rowland and McShane, 2011), including: sub-unit vaccines that 

use non-replicating viral vectors or recombinant proteins combined with adjuvants in order to 

boost the BCG response; live vaccines that use variations of attenuation of M. tb with hopes to 

completely replace the current BCG vaccine; and creation of recombinant BCG that genetically 

introduces M. tb-specific antigens that are not naturally present in BCG (Abel et al., 2010; 

Brodin et al., 2004; McShane et al., 2004; Pym et al., 2003; Scriba et al., 2010; Sun et al., 2009; 

Sweeney et al., 2011; Tullius et al., 2008).  The aim of these new vaccine platforms is to be more 

immunogenic and induce long lasting protection while remaining safe and providing protection 

against various TB strains.      

There is currently no vaccine available for use against BTB infection in cattle.  BCG 

vaccination in cattle demonstrates similarly variable efficacy as in humans receiving BCG, with 

some field trials reporting efficacy as high as 80%, and others ranging as low as 0% protection 

with minimal to no benefit (Haring et al., 1930; Watson, 1928; Buddle, 2001; Buddle et al., 

1995; Buddle et al., 1995; and reviewed in Waters et al., 2012).  However, further 

implementation of BCG as a vaccine in cattle is complicated by the need to differentiate 

naturally infected from M. bovis BCG vaccinated animals.  Recently, several diagnostic tests 

have been developed for differentiating between BCG and virulent M. bovis-infected cattle, some 

of which rely on detecting antigens that are present in virulent M. bovis but are absent from M. 

bovis BCG such as early secreted antigenic target 6 (ESAT-6) and culture filtrate protein 10 

(CFP-10) (Andersen et al., 2000).  
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It is believed that development of a more efficacious vaccine and enhanced diagnostic 

tools could make eradication of TB possible for both humans and animals.  However, in order to 

develop a more effective vaccine or improved diagnostic tools, there needs to be a more detailed 

understanding of the immunological factors of this disease (Thacker et al., 2007).  Using human 

patients to study TB immunity poses many challenges, so multiple animal models have been 

developed to allow for adequate sampling and testing after BCG vaccination or TB infection 

(Lee et al., 2004).  Given the many similarities in disease pathogenesis and immunity, the bovine 

model of TB is amongst the best for testing novel vaccine candidates and for identifying 

immunologic correlates of protection from disease. 

 

 Immune Response to M. bovis 

M. bovis is an obligate intracellular pathogen that initially infects the host’s macrophages 

and other mononuclear phagocytes (Meade et al., 2006).  There are multiple factors that affect 

the susceptibility of the host to infection with M. bovis, such as the route of exposure, the dose of 

bacteria, and the virulence of the bacterial strain involved.  For cattle in a natural setting, once 

the bacilli enter the nasal cavity after inhalation, the bacteria must then pass through the mucus 

and epithelial cilia associated with the upper respiratory tract.   The bacilli then enter the terminal 

bronchioles of the lungs where they are phagocytosed by resident alveolar macrophages.  The 

bacilli are able to enter the cell by binding to cell surface molecules such as complement 

receptors, mannose receptors, and Fc receptors present on macrophages (Ernst, 1998; Cambi 

et al., 2005; Greenberg, 1999).  Next, the bacilli enter the phagosome of the macrophage which 

is ultimately how the bacilli are able to protect themselves from immunologic defenses in the 

serum.  The mycobacteria inhibit phagosome fusion with the lysosome, therefore hindering the 

http://www.sciencedirect.com/science/article/pii/S1931312808001546#bib29
http://www.sciencedirect.com/science/article/pii/S1931312808001546#bib13
http://www.sciencedirect.com/science/article/pii/S1931312808001546#bib13
http://www.sciencedirect.com/science/article/pii/S1931312808001546#bib41
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macrophage’s ability to form a phagolysosome where acidification would normally occur to 

destroy the invading bacteria (Hart et al., 1987).  This mycobacterial escape mechanism involves 

the intercalation of mycobacterial membrane lipids with endosomal membranes, leading to the 

phagosome arrest in maturation.  After the infected macrophage undergoes apoptosis, the 

intracellular bacilli are released from the cell where they can then spread throughout the body via 

the blood stream or lymphatics system (Thoen et al., 2014).  The mycobacteria can then take up 

residence in nearly any part of the body; however, the most common areas of dissemination 

include the lungs, kidneys, brain, bones, and lymph nodes.  It is in these areas that the body 

attempts to overcome the virulence mechanisms of the mycobacteria and confine the bacilli from 

further spread by formation of granulomas. 

Mycobacteria have several factors such as complex lipids and proteins contained in the 

cell wall and cytoplasm that contribute to their virulence (Thoen et al., 2014).  M. bovis BCG 

attenuation can be attributed to the loss of the region of difference 1 (RD1) gene region which 

encodes ESAT-6 which participates in phagosome lysis and forms a complex with CFP-10 (Pym 

et al., 2003; Guo et al., 2012).  These antigens are recognized by T cells during natural and 

experimental mycobacterial infection in humans and cattle (Ravn et al., 1999; Aagaard et al., 

2010).  While there are numerous virulence factors, other important M. bovis proteins that 

contribute to pathogenesis include: antigen 85 complex (A, B, and C) which may contribute to 

altered phagocytosis and participate in cell mediated immunity development, and exported 

repetitive protein P36 (Erp) which is involved in intracellular replication in macrophages 

(Armitige et al., 2000; Thoen et al., 2014).         

The characteristic lesion of TB disease in animals and humans is the granuloma.  

Granulomas are the body’s attempt to localize the invading bacteria in order to allow immune 
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cells to arrive and destroy the bacilli.  A granuloma results from the accumulation of cells around 

a foci of infected cells; however, development of granulomas can cause severe tissue damage, 

even to the extent of a loss of function (Guirado and Schlesinger, 2013; Widdison et al., 2009).  

Depending upon the route of infection, TB granulomas can appear almost anywhere throughout 

the body, but are commonly found in the lungs, or the lymph nodes associated with the head and 

thoracic regions (Whipple et al., 1996).  Characteristic TB granulomas contain a caseonecrotic 

core that is surrounded by various immune cells.  The most common cells involved in granuloma 

formation are epithelioid or foamy macrophages, Langerhans-type multinucleated giant cells, T 

and B lymphocytes, fibroblasts, and neutrophils (Palmer et al., 2007).   

TB granulomas are dynamic lesions that follow an orderly progression throughout the 

disease stages, and therefore progression of disease is assessed by the pathology of the 

granulomas (Palmer et al., 2007).  There are four stages of granulomas with Stage I being the 

earliest stage with accumulation of some innate immune cells such as epithelioid macrophages, 

lymphocytes, and neutrophils, and no encapsulation or necrosis present.  In Stage II of 

granuloma formation the innate immune cells are still present and a thin capsule of fibrous 

connective tissue begins to form.  In Stage III there is full fibrous encapsulation and the 

beginning formation of a necrotic center surrounded by a zone of epithelioid macrophages, 

multinucleated giant cells, and lymphocytes.  The final Stage IV granulomas are characterized by 

complete encapsulation by a thick layer of fibrous material, areas of caseous necrosis, and 

mineralization (Thoen et al., 2014; Palmer et al., 2007; Rhoades et al., 1997; Wangoo et al., 

2005).  In most immunocompetent individuals, the granulomas are able to successfully stop the 

spread of the mycobacteria leading to the latent form of infection.  However, in 



10 

immunocompromised situations, the immune system is not able to contain the replication and 

spread of the bacteria, leading to active TB disease (Palmer et al., 2007).   

Host-pathogen interactions within the granuloma over the course of TB infection lead to 

changes in the bacilli, the phenotypes of immune cells, and the levels of immune mediators that 

are produced.  These complex immunological interactions that contribute to the control or the 

exacerbation of TB progression allow for the formation of many varying granuloma structures 

between individuals and even within a single host (Flynn et al., 2011; Mattila et al., 2013).  

Normal granuloma formation is characterized by multinucleated giant cells surrounded by 

macrophages and lymphocytes, and fibroblasts forming a wall around the lesion.  Neutrophils 

and γδ T cells are amongst the first immune cells to arrive at the site of infection, and have been 

found to localize around the periphery of the granuloma (Borregaard, 2010; Palmer et al., 2007; 

Cassidy et al., 1998).  Studies using mice have found that at this stage, γδ T cells are a major 

source of the pro-inflammatory cytokine, IL-17, which leads to neutrophil recruitment (Lockhart 

et al., 2006; Umemura et al., 2007; Guirado and Schlesinger, 2013).  Granulomas typically 

display high monocyte and lymphocyte turn-over rates, making cell recruitment crucial to 

mycobacterial control (Fenton and Vermeulen, 1996).  The accumulation of macrophages and 

dendritic cells ultimately initiates the adaptive immune response, and this cell mediated 

immunity (CMI) typically occurs around three weeks post initial infection.  CD4+ and CD8+ T 

cells also accumulate at the site of infection and produce inflammatory cytokines and release 

cytotoxic molecules to aid in mycobacterial destruction and containment.  If the bacterial load is 

large, necrosis and caseum begin to develop, and are indicative of disease progression and poor 

disease outcome (Guirado and Schlesinger, 2013).  Bacilli are unable to proliferate within the 

granuloma due to the acidic pH, low oxygen availability, and the presence of toxic fatty acids.  
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An adequate CMI response will successfully stop infection, and the granuloma will heal, leaving 

only small calcified lesions.  An inadequate CMI response leads to the escape of infected 

macrophages from the granuloma, spreading infection throughout the body.  The center of the 

granuloma then liquefies, providing an ideal environment for the mycobacteria to thrive (Fenton 

and Vermeulen, 1996).  To date, the dynamics of the immune response within the developing 

granulomas is still poorly understood, especially during the initial stages of development, and it 

remains unclear as to how granuloma development ultimately influences disease outcome.   

It is well accepted that protective immunity to mycobacterial infections is reliant on 

interactions between macrophages and T cells (Palmer et al., 2007; Kaufmann, 2006).  

Macrophages are the preferred host cell for mycobacteria, and these cells have important effector 

functions that aid in the control and destruction of the invading bacteria.  The initial stages of 

granuloma formation are dependent upon the production of tumor necrosis factor (TNF-α) by 

infected macrophages.  This TNF-α signaling is crucial in maintaining chemokine concentrations 

in order for immune cell recruitment (Algood et al, 2005; Kindler et al., 1989; Roach et al., 

2002).  Aldwell et al. found that in a range of animal hosts, naïve macrophages are cable of 

preventing M. bovis BCG growth, while T cell activation and freshly recruited macrophages are 

capable of arresting the growth of virulent M. bovis (Aldwell et al., 2001).  Macrophages are 

capable of mycobacterial inhibition and killing by induction of phagosome acidification, 

apoptosis, autophagy, and production of reactive oxygen intermediates (ROI) such as H2O2 and 

O2 and reactive nitrogen intermediates (RNI) such as NO and NO2-, all of which aid in the 

control of TB infection (Fenton and Vermeulen, 1996; Chan et al., 1992; Gutierrez et al., 2004).  

However, despite the many effector mechanisms possessed by macrophages, mycobacteria 

possess evasion techniques such as inhibiting phagosome-lysosome fusion in order to escape 
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acidic environments inside the phagolysosome, which in some cases allows for uncontrolled 

intracellular bacterial growth (Meena and Rajni, 2010; Ferrari et al., 1999; Xu et al., 1994).  

Similar to macrophages, dendritic cells (DC) are also important phagocytes that can 

ingest and harbor mycobacteria, and are commonly found at the mucosal surfaces where 

mycobacterial infections typically occur (Banchereau et al., 2000; Henderson et al., 1997).  

Macrophages and DCs produce chemokines (IL-8, CCL2, and CCL5) during initial infection in 

order to recruit inflammatory cells to the site of infection.   These antigen presenting cells (APC) 

also produce a wide array of cytokines in response to infection such as: TNF-α, IL-1β, IL-6, IL-

10, IL-12, IFN-γ, and TGF-β that help to further shape the immune response (Fenton and 

Vermeulen, 1996; Blanchard et al., 1991; Johansson et al., 2001; Denis, 1991).  However, similar 

to macrophages, DC can also become infected by mycobacteria, and mycobacterial virulence 

factors are capable of altering normal DC function hindering these cells’ immune inducing 

abilities (Hanekom et al., 2003; Johansson et al., 2001; Denis and Buddle, 2007).  

To date, there are no reliable correlates of protection for TB.  However, research has 

shown that a Th1 type response is critical for the control of the initial mycobacterial infection.  A 

Th2 response is more often observed during the late stages of infection, likely to limit the 

amount of inflammation in order to minimize tissue damage.  Th1-type responses are 

characterized by a specific cytokine profile such as IFN-γ and TNF-α, while Th2-type responses 

are characterized by IL-4 and IL-10 secretion.  Specifically, IFN-γ has been described as a 

critical mediator for protection against TB infection (Lee et al., 2004).  IFN-γ works with TNF-α 

to activate macrophages which promotes nitic oxide synthase production which participates in 

mycobacterial killing (Flesch and Kaufmann, 1991; Saito and Nakano, 1996).  It has been well 

established that CD4+ T cells produce significant quantities of IFN-γ, and are required for host 
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survival during chronic and acute stages of mycobacterial infection (Caruso et al., 1999; Scanga 

et al., 2000).  One study found that CD4-/-  T cell mice are unable to control mycobacterial burden 

and succumb quickly to infection; however these mice are able to survive twice as long as mice 

that are unable to produce IFN-γ (Caruso et al., 1999; Flynn et al., 1993).  These results 

emphasize the fact that IFN-γ production from cell types other than CD4+ T cells is not sufficient 

alone for control of mycobacterial infection.  Another study utilizing a murine adoptive transfer 

model also found that CD4+ T cell IFN-γ production was necessary for optimal long-term TB 

disease control and that IFN-γ was required to initiate a robust CD8+ T cell response (Green et 

al., 2003).  In contrast, it has also been shown that over production of IFN-γ by CD4+ T cells 

during M. tb infection can negatively impact the host and lead to exacerbated pathology (Sakai et 

al., 2016).  CD4+ T cells have been shown to carry out other functions during mycobacterial 

infections such as IL-21 production which suggests cytotoxic capabilities; however, these roles 

are less vital to host survival during TB infection when compared to IFN-γ production (Waters et 

al., 2011).  CD4+ T cells, though necessary for host survival against mycobacterial infection, are 

not sufficient alone to control TB disease.     

Other innate immune cells, such as natural killer (NK) cells and neutrophils, have been 

shown to play a role in the innate response to M. bovis infection.  NK cells are a significant 

population in young calves, and their frequency declines with age, suggesting they have an 

important role in the innate immune response of young animals that have yet to develop 

sufficient adaptive immunity (Hope et al., 2002).  NK cells have been shown to specifically 

target infected cells that display little to no MHC I molecules on their surface (Moretta et al., 

2002).  In response to M.bovis or BCG infection, bovine NK cells provide the initial sources of 

IFN-γ and reduce BCG proliferation in infected macrophages (Portevin and Young, 2013; Denis 
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et al., 2007; Endsley et al., 2006).  NK cells are also a source of perforin and granulysin that aid 

in the killing of infected cells; however, these cells are not efficient at directly killing bacteria 

(Fenton and Vermeulen, 1996; Waters et al., 2011).   

Neutrophils are short-lived, professional phagocytes that make up a significant 

population in the peripheral blood, and are among the first inflammatory cells to arrive at the site 

of TB infection (Pedrosa et al., 2000; Borregaard, 2010; Reviewed in Nathan, 2006).  The exact 

role of neutrophils during mycobacterial infection is still not completely understood, but recent 

evidence suggests that these cells are capable of a wide array of functions from antigen 

presentation, to cross-talk with other immune cells (Sandilands et al., 2005; Morel et al., 2008).  

Neutrophils are known to play a role in TB infection by producing a diverse array of 

antimicrobial molecules; however, the role neutrophils play in M. bovis killing is controversial.  

Some studies have shown that neutrophils are capable of eliminating intracellular M. tb, while 

other studies in humans, mice, and cattle have found that neutrophils are unable to eliminate the 

mycobacteria (González-Cano et al., 2010; Berry et al., 2010; Pedrosa et al., 2000).  Neutrophils 

likely play an important role in accurate early granuloma formation, and are capable of initiating 

the innate and adaptive immune responses by producing pro-inflammatory cytokines and 

chemokines such as TNF-α and CXCL10 (Seiler et al., 2003; Wang et al., 2013).   

Studies have found B lymphocytes to be involved in TB granuloma maintenance in some 

species; however, only a small percentage of cattle infected with TB exhibit a measurable 

antibody response (Gonzalez-Juarrero et al., 2001; Tsai et al., 2006).  In mice, B cells account for 

1–10% of the leukocytes present in the granuloma; however, absence of B cells in mice has also 

shown no effect on TB progression in the chronic phase of disease (Tsai et al., 2006; Turner et 

al., 2001).  In one study using a macaque M. tb B cell depletion model, they found that B cells 
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can modulate the local granulomatous response during acute infection; however, there was no 

difference in the pathology, disease progression, and clinical outcome between the treated and 

untreated macaques (Phuah et al., 2016).  In some cases IgG1 has been associated with lesion 

development; however, it is well accepted that the immune response to intracellular 

mycobacterial infection in all species is predominantly a cell mediated response, therefore 

making antibody responses unimportant in terms of protective immunity (McNair et al., 2007; 

Pollock and Neill, 2002).   

CD8+ T cells, often referred to as cytotoxic T lymphocytes (CTL), are also capable of 

producing IFN-γ, but only in small quantities compared to CD4+ T cells.  CTLs are more 

commonly known for their cytotoxic activities during a TB infection.  CTLs produce granulysin, 

which lyses infected macrophages (Buddle et al., 2002).  One study using M. bovis-infected 

cattle found that the growth of M. bovis within macrophages was inhibited when the cells were 

cultured with M. bovis specific CD8+ T cells (Skinner et al., 2003).  Cytotoxic T lymphocytes 

also have the ability to kill human and mouse macrophages infected with M. tb (Lalvani et al., 

1998; Skinner et al., 1997).  The role of CD8+ T cells in cattle during M. bovis infection is not 

well understood; however one study showed that CD8+ T cells contribute to the IFN-γ response, 

but also found that these cells may contribute to immunopathology of bovine TB (Villarreal-

Ramos et al., 2003).   

  

 γδ T Cells 

γδ T cells were discovered in 1985, and have been found in the circulation and tissues of 

every vertebrate examined thus far (Rhodes et al., 2001, Hayday 2000).  Similar to αβ T cells, γδ 

T cells are produced in the bone marrow and travel to the thymus where differentiation occurs.  
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These T cells can be found in circulation and are also commonly found in tissues, such as the 

dermis, intestine, lung, and uterus (Vantourout and Hayday, 2013).  γδ T cells are a unique 

subset of CD3+ T cells whose functions are still not completely understood.  These T cells have 

been found to play an important role in the innate immune system by acting as immune-

surveillance cells, and are also capable of adaptive functions, such as cytotoxicity, and are 

therefore described as bridging the innate and adaptive arms of the immune system (Born et al., 

2006; Vantourout and Hayday, 2013).  γδ T cells comprise only a small portion of the circulating 

lymphocytes in humans and mice, 5-10%, but are much more abundant in ruminant species, 

accounting for up to 70% of the circulating lymphocytes in calves and 10-20% in adult animals 

(Kabelitz, 2011, Jutila et al., 2008).  The large proportion of γδ T cells in young ruminants 

suggests that these cells play an important role in innate immunity prior to development of robust 

adaptive immunity, and also makes cattle an exceptional model for studying the role that these 

cells play during TB infection.  

Bovine γδ T cells can be divided into sub-populations depending on their expression of 

Workshop Cluster 1 (WC1).  WC1 is a transmembrane glycoprotein and a member of the 

scavenger receptor cysteine rich family which is found to be expressed uniquely on the surface 

of γδ T cells in cattle but not humans or mice (Rogers et al., 2005; Pillai et al., 2007).  However, 

two human gene sequences have been identified that are 85% homologous with the bovine WC1 

sequence (Wijngaard et al., 1994).  The γδ T cells primarily present in circulation are 

characterized as WC1+ CD2- CD4- CD8-, while the γδ T cells primarily found in the tissues are 

WC1- CD2+ CD8+ (Rhodes et al., 2001; Machugh et al., 1997; Wijngaard et al., 1994).   

There are 13 different WC1 genes that can be used to categorize WC1-expressing γδ T 

cells.   Differential expression of these genes on γδ T cells can be used to divide WC1+ cells into 
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the subpopulations, WC1.1, WC1.2, and WC1.3.  WC1.1 and WC1.2 are expressed on exclusive 

subpopulations of γδ T cells, while WC1.3 is expressed on a small portion of WC1.1+ γδ T cells 

(Chen et al., 2009; Rogers et al., 2006; Wijngaard et al., 1994).  These subpopulations of γδ T 

cells have recently been described as having distinct immune functions.  WC1.1+ γδ T cells 

produce IFN-γ in response to stimulation and infection, and the WC1.2+ γδ T cells produce little 

IFN-γ and are thought to play more of a regulatory role (Rogers et al., 2005; Hoek et al., 2009; 

Wang et al., 2011).  Although studies have found these subpopulations to have distinct roles in 

modulating γδ T cells responses, the biological significance of these subsets is not well 

understood (Rogers et al., 2005).      

The way in which γδ T cells are activated through their T cell receptor (TCR) and co-

receptors differs significantly from that of αβ T cells (Chien and Konigshofer, 2007).  Unlike αβ 

T cells, γδ T cells do not require antigen processing and presentation via major 

histocompatibility complex (MHC) I or II (Chien et al., 1996).  However, recognition of antigen 

by γδ T cells via their TCR does appear to require the presence of antigen presenting cells (i.e. 

monocytes, macrophages or dendritic cells) and presentation of antigen.  To date, most antigen 

presenting molecules for γδ T cells remain poorly defined; however, γδ T cells have been shown 

to be capable of responding to antigen presented on CD1, which is a MHC-like surface molecule 

that processes and presents non-peptide antigens to other T-lymphocytes (Beckman et al., 1994; 

Van Rhijn et al., 2006), and recent reports in humans suggest that γδ T cells may respond to 

pyrophosphate antigens presented by the butyrophilin 3 receptor, a member of the 

immunoglobulin superfamily (Harly et al., 2012; Palakodeti et al., 2012).   γδ T cells from 

humans and cattle have also been shown to respond innately through the recognition of danger 

associated molecular patterns (DAMP) or pathogen associated molecular patterns (PAMP), 
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which leads to activation and initial chemokine and cytokine production (Hedges et al., 2005; 

Schwacha et al., 2013).  γδ T cells are unique in the fact that they are capable of responding to 

antigens via their TCR and multiple pattern recognition receptors (PRR); however, co-

stimulatory and co-receptors for γδ T cells are still not well understood.  Human, mouse, and 

bovine γδ T cells have all been shown to express PRRs such as toll-like receptors (TLRs), and 

bovine γδ T cells are able to respond to bacterial TLR agonists by use of TLR 2 and TLR 4 

(Hedges et al., 2005; Jutila et al., 2008; Wesch et al., 2011).  WC1 has also been found to 

participate in antigen recognition and γδ T cell activation, behaving as a PRR, similar to that of a 

TLR, and serves as a co-receptor on γδ T cells, similar to CD4 or CD8 (Baldwin et al., 2014; 

Wang et al., 2011).  

After antigen recognition and activation, γδ T cells have been shown to behave as antigen 

presenting cells to other immune cells leading to initiation of the adaptive immune response.  

Studies have found that activated bovine γδ T cells express high levels of MHC class II and have 

the capacity to directly induce CD4+ T cell proliferation (Collins et al., 1998; Toka et al., 2011).  

Similar antigen presenting characteristics of γδ T cells have been described in humans and mice 

as well (Brandes et al., 2005; Cheng et al., 2008).  It is currently unknown if γδ T cell antigen 

presentation occurs in vivo, and the possible biological significance of antigen presentation by γδ 

T cells during mycobacterial infections needs to be further elucidated.   

 

 γδ T cell Responses to Mycobacteria 

The important role for γδ T cells in response to TB infection was first hypothesized after 

it was noticed that patients with active pulmonary TB had significantly increased proportions of 

peripheral blood γδ T cells (Ito et al., 1992).  In cattle, γδ T cells are known to undergo dynamic 
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changes in circulation following M. bovis infection and BCG vaccination.  After vaccination 

with BCG or infection with M. bovis, an increase in the population of circulating γδ T cells can 

been seen with an increase in expression of CD25, a T cell activation marker (Smyth et al., 2001; 

Buza et al., 2009).  However, this increase is only after an initial decrease in frequency, likely 

due to γδ T cells traveling out of the periphery to the infected tissues (Pollock et al., 1996).   

Studies conducted in vitro have found that γδ T cells from naïve and M. bovis-infected 

cattle proliferate and produce cytokines in response to stimulation with different mycobacterial 

antigens (Smyth et al., 2001).  Similar results have also been demonstrated in mice and human 

models of M. tb (Welsh et al., 2002; Balaji and Boom, 1998).  There are currently only a few 

defined antigens of γδ T cells; however, these T cells have been shown to be capable of 

recognizing small phosphate molecules, peptides, and fully intact protein antigens (Hayday, 

2000; Tanaka et al., 1995 & 1994; Vantourout and Hayday, 2013).  Bovine γδ T cells are capable 

of responding directly to several mycobacterial proteins such as M. bovis purified protein 

derivative (PPD), Ag85, ESAT6, MPB83, and hsp16.1 (Rhodes et al., 2001), as well as the non-

protein antigens mycolyl-arabinogalactan-peptidoglycan (mAGP) and lipoarabinomannan 

(LAM) (McGill et al., 2014).  Human γδ T cells are unique from bovine γδ T cells in the fact that 

they respond to the non-peptide mycobacterial antigen isopentenyl pyrophosphate (IPP), which is 

a metabolite found in prokaryotic and eukaryotic cells, and hydroxymethyl-but-2-enyl-

pyrophosphate (HMBPP), which is an intermediate in the alternative pathway of cholesterol 

synthesis that is used by numerous bacterial species (Tanaka et al., 1995; Morita et al., 2007).  

Other mycobacterial antigens that initiate γδ T cell activation in humans, mice, and primates 

include mycobacterial heat shock protein and non-protein phosphoantigens (Born et al., 1990; 
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Chen, 2013; Haregewoin et al., 1989; Morita et al., 1995), with more continually being described 

(Xi et al., 2013).  

During the early immune response to TB infection, γδ T cells are an important source of 

cytokines and chemokines which aid in the recruitment of other immune cells to the site of 

infection.  γδ T cells produce significant amounts of IFN-γ, similar to that of CD4+ T cells, in 

response to mycobacterial antigens, and there is increasing evidence that these cells contribute to 

immunity and possess unique immunological functions (Lee et al., 2004).  In a study using M. 

bovis-infected calves depleted of γδ T cells, there was a decrease in the production of IFN-γ, an 

increase in the production of IL-4, and a lack of specific IgG2 antibodies, suggesting that γδ T 

cell cytokine production plays a role in the shaping of adaptive immunity to a Th1 response 

(Kennedy, 2002).  Another study utilizing SCID-bo mice found that bovine γδ T cells produced 

IL-2, IL-10, IL-15, and IFN-γ in response to M. bovis infection (Alvarez et al., 2009).  It has also 

been documented that γδ T cells in humans with M. tb, mice challenged with BCG, and cattle 

infected with M. bovis produce significant amounts of IL-17 during early mycobacterial infection 

(Cowan et al., 2013; Jurado et al., 2012; Lockhart et al., 2006; Umemera et al., 2007; Aranday-

Cortes et al., 2013; Vordermeier et al., 2009).  The exact role of IL-17 remains unclear; however, 

these studies suggest a possible role for this cytokine in granuloma formation and initiation of a 

Th1 response.  In studies with non-human primates and cattle, γδ T cell secretion of IL-22 was 

directly correlated with IL-17 secretion, and these cytokines were seen in early lesions with 

diminishing results over the course of infection (Aranday-Cortes et al., 2013; Yao et al., 2010). 

γδ T cells in mice and cattle have been found to accumulate in the lungs and associated 

lymph nodes after infection and vaccination with BTB, and are one of the first cells to arrive at 

the site of infection (Price et al., 2010; Doherty et al., 1996; Dieli et al., 2003).  γδ T cells are 
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often seen localizing to the lymphoid mantle, surrounding the periphery of the lesion (Cassidy et 

al., 1998).  One study using low dose M. tb and M. bovis BCG-infected mice depleted of γδ T 

cells reported irregular granuloma formation, suggesting a crucial role for these cells in the 

recruitment of immune cells and granuloma development (D’Souza et al., 1997; Ladel et al., 

1995).  However, there have been conflicting results on γδ T cell movement to and from 

granulomas throughout the progression of TB disease.  Some groups have found that γδ T cell 

accumulation within granulomas was greatest during early infection with a decrease in number 

of γδ T cells in the developing granuloma throughout disease progression, while Wangoo et al. 

found γδ T cells to be more abundant within advanced granulomas during the later stages of 

disease (Cassidy et al., 1998; Palmer et al., 2007; Wangoo et al., 2005; Aranday-Cortes et al., 

2013).  It is clear that γδ T cells accumulate to the site of TB infection; however, the kinetics of 

their response within the granuloma throughout infection have yet to be well characterized.   

γδ T cells have been found to have cytotoxic capabilities during early TB infection.  γδ T 

cells express the natural killer (NK) receptor, NKG2D, that allows these cells to have innate 

cytolytic functions (Steinle et al., 2001).  However, these T cells are capable of both innate and 

acquired antigen-specific cytotoxicity (Olin et al., 2005).  In human M. tb models, γδ T cells 

produce granulysin and perforin, which are able to directly kill bacilli or inhibit their growth 

(Stenger et al., 1998).  Bovine γδ T cell clones have been shown to express Fas-ligand at the 

mRNA level which suggests the potential for cytotoxic activity through Fas-Fas ligand 

interactions (Hirano et al., 1998).  γδ T cells in cattle are able to use their cytotoxic properties to 

kill macrophages that are infected with M. bovis (Skinner et al., 2003).  One study from mice 

found that BCG-infected γδ T cells were able to kill infected and uninfected macrophages (Dieli 

et al., 2003).   Another study found that γδ T cells can be stimulated by infected macrophages to 

http://onlinelibrary.wiley.com/doi/10.1111/j.1865-1682.2009.01081.x/full#b15
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acquire cytotoxic activity, which resulted in macrophage death (Carding and Egan, 2000).    

However, these cytotoxic capabilities have been negatively correlated with disease progression, 

and are likely not adequate alone to control mycobacterial infection (De La Barrera et al., 2003).  

Cross-talk between γδ T cells and DC has been identified in mice and humans (Conti et 

al., 2004; Devilder et al., 2006; Martino et al., 2007).  It has been well documented that γδ T 

cells and DC exert regulatory influences on one another (Born et al., 2006).  M. tb and BCG 

infection in humans has been shown to impair DC maturation as a mechanism to escape immune 

detection; however, γδ T cells are capable of reversing this effect on the DC (Dulphy et al., 2007; 

Martino et al., 2007; Meraviglia et al., 2010).  There is increasing evidence that this cross-talk 

also occurs in cattle.  One study showed that cross-talk between bovine γδ T cells and M. bovis-

infected DC is contact dependent, and resulted in increased expression of CD25 and MHC II 

(Price and Hope, 2009).  Cross-talk between γδ T cells and DC may play a role in initiating the 

adaptive immune response during TB infection; however much remains to be elucidated in the 

bovine model.   

 Bovine γδ T cells have been shown to have regulatory functions, with the capacity to 

secrete the anti-inflammatory cytokine IL-10; to proliferate in response to IL-10, IL-4, and TGF-

β; and to suppress antigen-specific and non-specific proliferation of both CD4+ and CD8+ T 

cells (Guzman et al., 2014; Hoek et al., 2009).  Some studies have found that depletion of γδ T 

cells from PBMC cultures resulted in increased antigen-specific proliferation and cytokine 

production in ex vivo cultures of T cells (Rhodes et al., 2001; Brown et al., 1994; Graaf et al., 

1998).  Thus, γδ T cell regulatory cytokine production could potentially play a role during TB 

infection; however, this alternative function has not been characterized in the context of TB 

infection. 

http://onlinelibrary.wiley.com/doi/10.1111/j.1865-1682.2009.01081.x/full#b6
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The ability of γδ T cells to produce chemokines continues to be debated, and it is thought 

that γδ T cells chemokine production in the blood may differ from that at the site of TB infection.    

In a study utilizing M. bovis-infected SCID-bo mice depleted of γδ T cells, there was a 

significant reduction in the production of the chemokines CXCL10 and CCL2 in the serum; 

however, this study concluded that although the γδ T cells did produce several cytokines they 

were not the predominant source of chemokine production (Alvarez et al., 2009).  In contrast to 

those findings, other studies evaluating bovine γδ T cell gene expression have found these cells 

to express high levels of CCL2, CXCL1, CXCL2, CXCL6, and CXCL10  (Hedges et al., 2003; 

Lahmers et al., 2006; McGill et al., 2013).  Chemokine production by CD4+ and CD8+ T cells in 

response to TB has not been well characterized, and may be a unique contribution by γδ T cells 

to the immune response during mycobacterial infection. However, it is clear that further 

investigation is essential to evaluate the role of γδ T cells in chemokine production and immune 

cell recruitment during BTB infection.    

 

Purpose 

 γδ T cells are a unique subset of T cells whose immunologic functions bridge the gap 

between the innate and adaptive immune responses.  These cells have been identified in every 

vertebrate examined, and are often referred to as immune sentinel cells.  γδ T cells are capable of 

recognizing antigens through their T cell receptor, similar to that of their α/β counterparts; 

however, γδ T cells also respond independently of their T cell receptor by use of their various 

pattern recognition receptors.  Several characteristics of γδ T cells, such as IFN-γ production, 

have been well described; however, in vitro, γδ T cells are capable of a wide array of immune 
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functions.  To date, it is unclear if γδ T cells participate in these alternative functions in vivo; and 

the biological significance of these alternative roles during disease needs to be further examined.     

γδ T cells are found in large numbers in the circulation of young ruminants compared to 

humans and mice.  These cells and are also known to respond robustly to TB infection, and 

respond specifically to numerous protein and non-protein mycobacterial antigens.  Cattle are a 

natural host for TB infection, therefore making the bovine model ideal for evaluating γδ T cell 

function during TB infection.  The goal of this research was to expand upon current knowledge 

by further elucidating the alternative roles of γδ T cells in the immune response to M. bovis, and 

further defining the role of γδ T cells at the site of infection.  The knowledge gained from our 

studies contributes to the understanding of basic γδ T cell biology and the immune response to 

TB infection in both humans and animals. 

 

 

 

 

 

 

 

 

 

 

 



25 

 References 

Aagaard, C., Govaerts, M., Meikle, V., Gutiérrez-Pabello, J.A., McNair, J., Andersen, P., 

Suárez-Güemes, F., Pollock, J., Espitia, C., and Cataldi, A. (2010). Detection of bovine 

tuberculosis in herds with different disease prevalence and influence of paratuberculosis 

infection on PPDB and ESAT-6/CFP10 specificity. Preventive Veterinary Medicine 96, 

161–169. 

 

Abel, B., Tameris, M., Mansoor, N., Gelderbloem, S., Hughes, J., Abrahams, D., Makhethe, L., 

Erasmus, M., Kock, M. de, van der Merwe, L., et al. (2010). The Novel Tuberculosis 

Vaccine, AERAS-402, Induces Robust and Polyfunctional CD4(+) and CD8(+) T Cells 

in Adults. American Journal of Respiratory and Critical Care Medicine 181, 1407–1417. 

 

Aldwell, F.E., Wedlock, D.N., Slobbe, L.J., Griffin, J.F.T., Buddle, B.M., and Buchan, G.S. 

(2001). In vitro control of Mycobacterium bovis by macrophages. Tuberculosis 81, 115–

123. 

 

Algood, H.M., Lin, P.L. & Flynn, J.L. (2005). Tumor necrosis factor and chemokine interactions 

in the formation and maintenance of granulomas in tuberculosis. Clin. Infect. Dis. 41 

Suppl 3, S189–S193. 

 

Alvarez, A.J., Endsley, J.J., Werling, D., and Mark Estes, D. (2009). WC1+γδ T Cells Indirectly 

Regulate Chemokine Production During Mycobacterium bovis Infection in SCID-bo 

Mice. Transboundary and Emerging Diseases 56, 275–284. 

 

Andersen, P., Munk, M., Pollock, J., and Doherty, T. (2000). Specific immune-based diagnosis 

of tuberculosis. The Lancet 356, 1099–1104. 

 

Animal and Plant Health Agency (2017). Quarterly publication of National Statistics on the 

incidence and prevalence of tuberculosis (TB) in Cattle in Great Britain. Department for 

Environment Food & Rural Affairs. 

 

Aranaz, A., De juan, L., Bezos, J., Álvarez, J., Romero, B., Lozano, F., Paramio, J.L., López-

Sánchez, J., Mateos, A., Domínguez, L. (2006). Assessment of diagnostic tools for 

eradication of bovine tuberculosis in cattle co-infected with Mycobacterium bovis and M. 

avium subsp. paratuberculosis. Vet. Res. 37, 593–606. 

 

Aranday-Cortes, E., Bull, N.C., Villarreal-Ramos, B., Gough, J., Hicks, D., Ortiz-Peláez, Á., 

Vordermeier, H.M., and Salguero, F.J. (2013). Upregulation of IL-17A, CXCL9 and 

CXCL10 in Early-Stage Granulomas Induced by Mycobacterium bovis in Cattle. 

Transbound Emerg Dis 60, 525–537. 

 

Armitige, L.Y., Jagannath, C., Wanger, A.R., and Norris, S.J. (2000). Disruption of the Genes 

Encoding Antigen 85A and Antigen 85B ofMycobacterium tuberculosis H37Rv: Effect 

on Growth  in Culture and in Macrophages. Infection and Immunity 68, 767–778. 

 



26 

Balaji, K.N., and Boom, W.H. (1998). Processing of Mycobacterium tuberculosis Bacilli by 

Human Monocytes for CD4(+) αβ and γδ T Cells: Role of Particulate Antigen. Infection 

and Immunity 66, 98–106. 
 

Baldwin, C.L., Hsu, H., Chen, C., Palmer, M., McGill, J., Waters, W.R., and Telfer, J.C. (2014). 

The role of bovine γδ T cells and their WC1 co-receptor in response to bacterial 

pathogens and promoting vaccine efficacy: A model for cattle and humans. Veterinary 

Immunology and Immunopathology 159, 144–155. 

 

Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.-J., Pulendran, B., and 

Palucka, K. (2000). Immunobiology of Dendritic Cells. Annu. Rev. Immunol. 18, 767–

811. 
 

Beckman, E. M., Porcelli, S. A., Morita, C. T., Behar, S. M., & al, e. (1994). Recognition of a 

lipid antigen by CD1-restricted (alpha)(beta)(positive) T cells. Nature, 372(6507), 691-4.  
 

Blanchard, D.K., Michelini-Norris, M.B., Pearson, C.A., McMillen, S., and Djeu, J.Y. (1991). 

Production of granulocyte-macrophage colony-stimulating factor (GM-CSF) by 

monocytes and large granular lymphocytes stimulated with Mycobacterium avium-M. 

intracellulare: activation of bactericidal activity by GM-CSF. Infection and Immunity 59, 

2396–2402. 

 

Born, W., Hall, L., Dallas, A., Boymel, J., Shinnick, T., Young, D., Brennan, P., and O’Brien, R. 

(1990). Recognition of a peptide antigen by heat shock--reactive gamma delta T 

lymphocytes. Science 249, 67. 

 

Born, W.K., Reardon, C.L., and O’Brien, R.L. (2006). The function of γδ T cells in innate 

immunity. Current Opinion in Immunology 18, 31–38. 

 

Borregaard, N. (2010). Neutrophils, from Marrow to Microbes. Immunity 33, 657–670. 

 

Brandes, M., Willimann, K., and Moser, B. (2005). Professional Antigen-Presentation Function 

by Human γδ T Cells. Science 309, 264. 

 

Brodin, P., Majlessi, L., Brosch, R., Smith, D., Bancroft, G., Clark, S., Williams, A., Leclerc, C., 

and Cole, S.T. (2004). Enhanced Protection against Tuberculosis by Vaccination with 

Recombinant Mycobacterium microti Vaccine That Induces T Cell Immunity against 

Region of Difference 1 Antigenss. The Journal of Infectious Diseases 190, 115–122. 

 

Brosch, R., Gordon, S.V., Marmiesse, M., Brodin, P., Buchrieser, C., Eiglmeier, K., Garnier, T., 

Gutierrez, C., Hewinson, G., Kremer, K., et al. (2002). A new evolutionary scenario for 

the Mycobacterium tuberculosis complex. Proceedings of the National Academy of 

Sciences 99, 3684–3689. 

 

Brown, W.C., Davis, W.C., Choi, S.H., Dobbelaere, D.A.E., and Splitter, G.A. (1994). 

Functional and Phenotypic Characterization of WC1+ γ/δ T Cells Isolated from Babesia 

bovis-Stimulated T Cell Lines. Cellular Immunology 153, 9–27. 



27 

 

Buddle, B.M. (2001). Vaccination of cattle against Mycobacterium bovis. Tuberculosis 81, 125–

132. 

 

Buddle, B.M., de Lisle, G.W., Pfeffer, A., and Aldwell, F.E. (1995). Immunological responses 

and protection against Mycobacterium bovis in calves vaccinated with a low dose of 

BCG. Vaccine 13, 1123–1130. 

 

Buddle, B.., Keen, D., Thomson, A., Jowett, G., McCarthy, A.., Heslop, J., De Lisle, G.., 

Stanford, J.., and Aldwell, F.. (1995). Protection of cattle from bovine tuberculosis by 

vaccination with BCG by the respiratory or subcutaneous route, but not by vaccination 

with killed Mycobacterium vaccae. Research in Veterinary Science 59, 10–16. 

 

Buddle, B.., Skinner, M.., Wedlock, D.., Collins, D.., and de Lisle, G.. (2002). New generation 

vaccines and delivery systems for control of bovine tuberculosis in cattle and wildlife. 

Veterinary Immunology and Immunopathology 87, 177–185. 

 

Buddle, B.M., Parlane, N.A., Wedlock, D.N., and Heiser, A. (2013). Overview of Vaccination 

Trials for Control of Tuberculosis in Cattle, Wildlife and Humans. Transbound Emerg 

Dis 60, 136–146. 

 

Buza, J., Kiros, T., Zerihun, A., Abraham, I., and Ameni, G. (2009). Vaccination of calves with 

Mycobacteria bovis Bacilli Calmete Guerin (BCG) induced rapid increase in the 

proportion of peripheral blood γδ T cells. Veterinary Immunology and Immunopathology 

130, 251–255. 

 

Cambi, A., Koopman, M., and Figdor, C.G. (2005). How C-type lectins detect pathogens. 

Cellular Microbiology 7, 481–488. 

 

Caruso, A.M., Serbina, N., Klein, E., Triebold, K., Bloom, B.R., and Flynn, J.L. (1999). Mice 

Deficient in CD4 T Cells Have Only Transiently Diminished Levels of IFN-γ, Yet 

Succumb to Tuberculosis. J. Immunol. 162, 5407. 

 

Cassidy, J.P., Bryson, D.G., Pollock, J.M., Evans, R.T., Forster, F., and Neill, S.D. (1998). Early 

lesion formation in cattle experimentally infected with Mycobacterium bovis. Journal of 

Comparative Pathology 119, 27–44. 

 

CDC - Mycobacterium bovis in Humans - Publications - Fact Sheets - TB. 

 

Chan, J., Xing, Y., Magliozzo, R.S., and Bloom, B.R. (1992). Killing of virulent Mycobacterium 

tuberculosis by reactive nitrogen intermediates produced by activated murine 

macrophages. J Exp Med 175, 1111. 

 

Chen, C., Herzig, C.T.A., Telfer, J.C., and Baldwin, C.L. (2009). Antigenic basis of diversity in 

the γδ T cell co-receptor WC1 family. Molecular Immunology 46, 2565–2575. 

 



28 

Chen, Z.W. (2013). Multifunctional immune responses of HMBPP-specific Vγ2Vδ2 T cells in 

M. tuberculosis and other infections. Cellular and Molecular Immunology 10, 58–64. 

 

Cheng, L., Cui, Y., Shao, H., Han, G., Zhu, L., Huang, Y., O’Brien, R.L., Born, W.K., Kaplan, 

H.J., and Sun, D. (2008). Mouse γδ T cells are capable of expressing MHC class II 

molecules, and of functioning as antigen-presenting cells. Journal of Neuroimmunology 

203, 3–11. 

 

Chien, Y., and Konigshofer, Y. (2007). Antigen recognition by γδ T cells. Immunological 

Reviews 215, 46–58. 

 

Chien, Y., Jores, R., and Crowley, M. (1996). Recognition by γ/δ T cells. Annu. Rev. Immunol. 

14, 511–532. 

 

Collins, R.A., Werling, D., Duggan, S.E., Bland, A.P., Parsons, K.R., and Howard, C.J. (1998). 

Gammadelta T cells present antigen to CD4+ alphabeta T cells. Journal of Leukocyte 

Biology 63, 707–714. 

 

Conti, L., Casetti, R., Cardone, M., Varano, B., Martino, A., Belardelli, F., Poccia, F., and 

Gessani, S. (2004). Reciprocal Activating Interaction Between Dendritic Cells and 

Pamidronate-Stimulated γδ T Cells: Role of CD86 and Inflammatory Cytokines. J. 

Immunol. 174, 252. 

 

Cowan, J., Pandey, S., Filion, L.G., Angel, J.B., Kumar, A., and Cameron, D.W. (2012). 

Comparison of interferon-γ-, interleukin (IL)-17- and IL-22-expressing CD4 T cells, IL-

22-expressing granulocytes and proinflammatory cytokines during latent and active 

tuberculosis infection. Clinical and Experimental Immunology 167, 317–329. 

 

D’Souza, C.D., Cooper, A.M., Frank, A.A., Mazzaccaro, R.J., Bloom, B.R., and Orme, I.M. 

(1997). An anti-inflammatory role for gamma delta T lymphocytes in acquired immunity 

to Mycobacterium tuberculosis. J. Immunol. 158, 1217. 

 

De La Barrera, S.S., Finiasz, M., Frias, A., Alemán, M., Barrionuevo, P., Fink, S., Franco, M.C., 

Abbate, E., and Sasiain, M.D.C. (2003). Specific lytic activity against mycobacterial 

antigens is inversely correlated with the severity of tuberculosis. Clinical and 

Experimental Immunology 132, 450–461. 

 

Denis, M. (1991). Growth of Mycobacterium avium in human monocytes: identification of 

cytokines which reduce and enhance intracellular microbial growth. Eur. J. Immunol. 21, 

391–395. 

 

Denis, M., and Buddle, B.M. (2007). Bovine dendritic cells are more permissive for 

Mycobacterium bovis replication than macrophages, but release more IL-12 and induce 

better immune T-cell proliferation. Immunol Cell Biol 86, 185–191. 

 



29 

Denis, M., Keen, D.L., Parlane, N.A., Storset, A.K., and Buddle, B.M. (2007). Bovine natural 

killer cells restrict the replication of Mycobacterium bovis in bovine macrophages and 

enhance IL-12 release by infected macrophages. Tuberculosis 87, 53–62. 

 

Devilder, M.-C., Maillet, S., Bouyge-Moreau, I., Donnadieu, E., Bonneville, M., and Scotet, E. 

(2006). Potentiation of Antigen-Stimulated Vγ9Vδ2 T Cell Cytokine Production by 

Immature Dendritic Cells (DC) and Reciprocal Effect on DC Maturation. J. Immunol. 

176, 1386. 

 

Dieli, F., Ivanyi, J., Marsh, P., Williams, A., Naylor, I., Sireci, G., Caccamo, N., Di Sano, C., and 

Salerno, A. (2003). Characterization of Lung γδ T Cells Following Intranasal Infection 

with Mycobacterium bovis Bacillus Calmette-Guérin. J. Immunol. 170, 463. 

 

Doherty, M.L., Bassett, H.F., Quinn, P.J., Davis, W.C., Kelly, A.P., and Monaghan, M.L. (1996). 

A sequential study of the bovine tuberculin reaction. Immunology 87, 9–14. 

 

Dulphy, N., Herrmann, J.-L., Nigou, J., Réa, D., Boissel, N., Puzo, G., Charron, D., Lagrange, 

P.H., and Toubert, A. (2007). Intermediate maturation of Mycobacterium tuberculosis 

LAM-activated human dendritic cells. Cellular Microbiology 9, 1412–1425. 

 

Egan, P.J., and Carding, S.R. (2000). Downmodulation of the Inflammatory Response to 

Bacterial Infection by γδ T Cells Cytotoxic for Activated Macrophages. The Journal of 

Experimental Medicine 191, 2145–2158. 

 

Endsley, J.J., Endsley, M.A., and Estes, D.M. (2006). Bovine natural killer cells acquire 

cytotoxic/effector activity following activation with IL-12/15 and reduce Mycobacterium 

bovis BCG in infected macrophages. Journal of Leukocyte Biology 79, 71–79. 

 

Ernst, J.D. (1998). Macrophage Receptors for Mycobacterium tuberculosis. Infection and 

Immunity 66, 1277–1281. 

 

Fenton, M.J., and Vermeulen, M.W. (1996). Immunopathology of tuberculosis: roles of 

macrophages and monocytes. Infection and Immunity 64, 683–690. 

 

Ferrari, G., Langen, H., Naito, M., and Pieters, J. (1999). A Coat Protein on Phagosomes 

Involved in the Intracellular Survival of Mycobacteria. Cell 97, 435–447. 

 

Flesch, I.E., and Kaufmann, S.H. (1991). Mechanisms involved in mycobacterial growth 

inhibition by gamma interferon-activated bone marrow macrophages: role of reactive 

nitrogen intermediates. Infection and Immunity 59, 3213–3218. 

 

Flynn, J., Chan, J., and Lin, P. (2011). Macrophages and control of granulomatous inflammation 

in tuberculosis. Mucosal Immunology 4, 271–278. 

 



30 

Flynn, J.L., Chan, J., Triebold, K.J., Dalton, D.K., Stewart, T.A., and Bloom, B.R. (1993). An 

essential role for interferon gamma in resistance to Mycobacterium tuberculosis 

infection. J Exp Med 178, 2249. 

 

González-Cano, P., Mondragón-Flores, R., Sánchez-Torres, L.E., González-Pozos, S., Silva-

Miranda, M., Monroy-Ostria, A., Estrada-Parra, S., and Estrada-García, I. (2010). 

Mycobacterium tuberculosis H37Rv induces ectosome release in human 

polymorphonuclear neutrophils. Tuberculosis 90, 125–134. 

 

Gonzalez-Juarrero, M., Turner, O.C., Turner, J., Marietta, P., Brooks, J.V., and Orme, I.M. 

(2001). Temporal and Spatial Arrangement of Lymphocytes within Lung Granulomas 

Induced by Aerosol Infection with Mycobacterium tuberculosis. Infection and Immunity 

69, 1722–1728. 

Graaf, D.C. d., Walravens, K., Godfroid, J., and Peeters, J.E. (1998). A Cryptosporidium parvum 

oocyst low molecular mass fraction evokes a CD4+ T-cell-dependent IFN-γ response in 

bovine peripheral blood mononuclear cell cultures. International Journal for Parasitology 

28, 1875–1880. 

 

Green, A.M., DiFazio, R., and Flynn, J.L. (2013). IFN-γ from CD4 T cells is essential for host 

survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. 

Journal of Immunology (Baltimore, Md. : 1950) 190, 270–277. 

 

Greenberg, S. (1999). Fc receptor-mediated phagocytosis. Advances in Cellular and Molecular 

Biology of Membranes and Organelles 5, 149–191. 

 

Guirado, E., and Schlesinger, L.S. (2013). Modeling the Mycobacterium tuberculosis Granuloma 

– the Critical Battlefield in Host Immunity and Disease. Frontiers in Immunology 4, 98. 

 

Guo, S., Xue, R., Li, Y., Wang, S.M., Ren, L., and Xu, J.J. (2012). The CFP10/ESAT6 complex 

of Mycobacterium tuberculosis may function as a regulator of macrophage cell death at 

different stages of tuberculosis infection. Medical Hypotheses 78, 389–392. 

 

Gutierrez, M.G., Master, S.S., Singh, S.B., Taylor, G.A., Colombo, M.I., and Deretic, V. (2004). 

Autophagy Is a Defense Mechanism Inhibiting BCG and Mycobacterium tuberculosis 

Survival in Infected Macrophages. Cell 119, 753–766. 

 

Guzman, E., Hope, J., Taylor, G., Smith, A.L., Cubillos-Zapata, C., and Charleston, B. (2014). 

Bovine γδ T Cells Are a Major Regulatory T Cell Subset. The Journal of Immunology 

Author Choice 193, 208–222. 

 

Hanekom, W.A., Mendillo, M., Manca, C., Haslett, P.A.J., Siddiqui, M.R., Barry, I., Clifton, and 

Kaplan, I., Gilla (2003). Mycobacterium tuberculosis Inhibits Maturation of Human 

Monocyte-Derived Dendritic Cells In Vitro. The Journal of Infectious Diseases 188, 257–

266. 

 



31 

Haregewoin, A., Soman, G., Horn, R.C., and Finberg, R.W. (1989). Human [gamma][delta]+ T 

cells respond to mycobacterial heat-shock protein. Nature 340, 309–312. 

 

Haring, C.M., Traum, J., Hayes, F.M., and Henry, B.S. (1930). Vaccination of Calves against 

Tuberculosis with Calmette-Guérin Culture, BCG. Hilgardia. J. Agric. Sci. 4, 307–394. 

 

Harly, C., Guillaume, Y., Nedellec, S., Peigné, C.-M., Mönkkönen, H., Mönkkönen, J., Li, J., 

Kuball, J., Adams, E.J., Netzer, S., et al. (2012). Key implication of CD277/butyrophilin-

3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood 120, 

2269–2279. 

 

Harris, J., Master, S.S., De Haro, S.A., Delgado, M., Roberts, E.A., Hope, J.C., Keane, J., and 

Deretic, V. (2009). Th1–Th2 polarization and autophagy in the control of intracellular 

mycobacteria by macrophages. Veterinary Immunology and Immunopathology 128, 37–

43. 

 

Hart, P.D., Young, M.R., Gordon, A.H., and Sullivan, K.H. (1987). Inhibition of phagosome-

lysosome fusion in macrophages by certain mycobacteria can be explained by inhibition 

of lysosomal movements observed after phagocytosis. The Journal of Experimental 

Medicine 166, 933–946. 

 

Hayday, A.C. (2000). γδ cells: a right time and a right place for a conserved third way of 

protection. Annual Review of Immunology 18, 975–1026. 

 

Hedges, J.F., Cockrell, D., Jackiw, L., Meissner, N., and Jutila, M.A. (2003). Differential mRNA 

expression in circulating γδ T lymphocyte subsets defines unique tissue-specific 

functions. Journal of Leukocyte Biology 73, 306–314. 

 

Hedges, J.F., Lubick, K.J., and Jutila, M.A. (2005). γδ T Cells Respond Directly to Pathogen-

Associated Molecular Patterns. J. Immunol. 174, 6045. 

 

Henderson, R.A., Watkins, S.C., and Flynn, J.L. (1997). Activation of human dendritic cells 

following infection with Mycobacterium tuberculosis. J. Immunol. 159, 635. 

 

Hirano, A., Brown, W.C., Trigona, W., Tuo, W., and Estes, D.M. (1998). Kinetics of expression 

and subset distribution of the TNF superfamily members CD40 ligand and Fas ligand on 

T lymphocytes in cattle. Veterinary Immunology and Immunopathology 61, 251–263. 

 

Hoek, A., Rutten, V.P., Kool, J., Arkesteijn, G.J., Bouwstra, R.J., Van Rhijn, I., and Koets, A.P. 

(2009). Subpopulations of bovine WC1(+) γδ T cells rather than 

CD4(+)CD25(high)Foxp3(+) T cells act as immune regulatory cells ex vivo. Veterinary 

Research 40, 06. 

 

Hope, J.C., Sopp, P., and Howard, C.J. (2002). NK-like CD8+ cells in immunologically naïve 

neonatal calves that respond to dendritic cells infected with Mycobacterium bovis BCG. 

Journal of Leukocyte Biology 71, 184–194. 



32 

 

Ito, M., Kojiro, N., Ikeda, T., Ito, T., Funada, J., and Kokubu, T. (1992). Increased proportions of 

peripheral blood gamma delta T cells in patients with pulmonary tuberculosis. Chest 102, 

195+. 

 

Janis, E., Kaufmann, S., Schwartz, R., and Pardoll, D. (1989). Activation of gamma delta T cells 

in the primary immune response to Mycobacterium tuberculosis. Science 244, 713. 

 

Johansson, U., Ivanyi, J., and Londei, M. (2001). Inhibition of IL-12 production in human 

dendritic cells matured in the presence of Bacillus Calmette–Guerin or 

lipoarabinomannan. Immunology Letters 77, 63–66. 

 

Jurado, J.O., Pasquinelli, V., Alvarez, I.B., Peña, D., Rovetta, A.I., Tateosian, N.L., Romeo, 

H.E., Musella, R.M., Palmero, D., Chuluyán, H.E., et al. (2012). IL-17 and IFN-γ 

expression in lymphocytes from patients with active tuberculosis correlates with the 

severity of the disease. Journal of Leukocyte Biology 91, 991–1002. 

 

Jutila, M.A., Holderness, J., Graff, J.C., and Hedges, J.F. (2008). Antigen-independent priming: 

a transitional response of bovine γδ T-cells to infection. Animal Health Research 

Reviews 9, 47–57. 

 

Kabelitz, D. (2011). γδ T-cells: cross-talk between innate and adaptive immunity. Cellular and 

Molecular Life Sciences 68, 2331. 

 

Kaufmann, S.H.E. (2006). Tuberculosis: Back on the Immunologists’ Agenda. Immunity 24, 

351–357. 

 

Kennedy, H.E. (2002). Modulation of Immune Responses to Mycobacterium bovis in Cattle 

Depleted of WC1+gammadelta T Cells. Infection and Immunity 70, 1488–1500. 

 

Kindler, V., Sappino, A.P., Grau, G.E., Piguet, P.F. & Vassalli, P. (1989). The inducing role of 

tumor necrosis factor in the development of bactericidal granulomas during BCG 

infection. Cell 56, 731–740.  

 

Ladel, C.H., Hess, J., Daugelat, S., Mombaerts, P., Tonegawa, S., and Kaufmann, S.H.E. (1995). 

Contribution of α/β and γ/δ T lymphocytes to immunity against Mycobacterium bovis 

Bacillus Calmette Guérin: studies with T cell receptor-deficient mutant mice. Eur. J. 

Immunol. 25, 838–846. 

 

Lahmers, K.K., Hedges, J.F., Jutila, M.A., Deng, M., Abrahamsen, M.S., and Brown, W.C. 

(2006). Comparative gene expression by WC1+ γδ and CD4+ αβ T lymphocytes, which 

respond to Anaplasma marginale, demonstrates higher expression of chemokines and 

other myeloid cell-associated genes by WC1+ γδ T cells. Journal of Leukocyte Biology 

80, 939–952. 

 



33 

Lalvani, A., Brookes, R., Wilkinson, R.J., Malin, A.S., Pathan, A.A., Andersen, P., Dockrell, H., 

Pasvol, G., and Hill, A.V.S. (1998). Human cytolytic and interferon γ-secreting CD8+ T 

lymphocytes specific for Mycobacterium tuberculosis. Proceedings of the National 

Academy of Sciences 95, 270–275. 

 

Lee, J., Choi, K., Olin, M.R., Cho, S.-N., and Molitor, T.W. (2004). γδ T Cells in Immunity 

Induced by Mycobacterium bovis Bacillus Calmette-Guérin Vaccination. Infection and 

Immunity 72, 1504–1511. 

 

Li, L., and Wu, C.-Y. (2008). CD4+CD25+ Treg cells inhibit human memory γδ T cells to 

produce IFN-γ in response to M tuberculosis antigen ESAT-6. Blood 111, 5629. 

 

Lockhart, E., Green, A.M., and Flynn, J.L. (2006). IL-17 Production Is Dominated by γδ T Cells 

rather than CD4 T Cells during Mycobacterium tuberculosis Infection. J. Immunol. 177, 

4662. 

 

Luca, S., and Mihaescu, T. (2013). History of BCG Vaccine. Mædica 8, 53–58. 

 

Machugh, N.D., Mburu, J.K., Carol, M.J., Wyatt, C.R., Orden, J.A., and Davis, W.C. (1997). 

Identification of two distinct subsets of bovine γδ T cells with unique cell surface 

phenotype and tissue distribution. Immunology 92, 340–345. 

 

Martino, A., Casetti, R., Sacchi, A., and Poccia, F. (2007). Central Memory Vγ9Vδ2 T 

Lymphocytes Primed and Expanded by Bacillus Calmette-Guérin-Infected Dendritic 

Cells Kill Mycobacterial-Infected Monocytes. J. Immunol. 179, 3057. 

 

Mattila, J.T., Ojo, O.O., Kepka-Lenhart, D., Marino, S., Kim, J.H., Eum, S.Y., Via, L.E., Barry, 

C.E., Klein, E., Kirschner, D.E., et al. (2013). Microenvironments in tuberculous 

granulomas are delineated by distinct populations of macrophage subsets and expression 

of nitric oxide synthase and arginase isoforms. Journal of Immunology (Baltimore, Md. : 

1950) 191, 773–784. 

 

McGill, J.L., Nonnecke, B.J., Lippolis, J.D., Reinhardt, T.A., and Sacco, R.E. (2013). 

Differential chemokine and cytokine production by neonatal bovine γδ T-cell subsets in 

response to viral toll-like receptor agonists and in vivo respiratory syncytial virus 

infection. Immunology 139, 227–244. 

 

McGill, J.L., Sacco, R.E., Baldwin, C.L., Telfer, J.C., Palmer, M.V., and Ray Waters, W. (2014). 

The role of gamma delta T cells in immunity to Mycobacterium bovis infection in cattle. 

Veterinary Immunology and Immunopathology 159, 133–143. 

 

McNair, J., Welsh, M.D., and Pollock, J.M. (2007). The immunology of bovine tuberculosis and 

progression toward improved disease control strategies. Vaccine 25, 5504–5511. 

 

McShane, H. (2011). Tuberculosis vaccines: beyond bacille Calmette–Guérin. Philosophical 

Transactions of the Royal Society B: Biological Sciences 366, 2782–2789. 



34 

 

McShane, H., Pathan, A.A., Sander, C.R., Keating, S.M., Gilbert, S.C., Huygen, K., Fletcher, 

H.A., and Hill, A.V.S. (2004). Recombinant modified vaccinia virus Ankara expressing 

antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in 

humans. Nat Med 10, 1240–1244. 

 

Meade, K.G., Gormley, E., Park, S.D.E., Fitzsimons, T., Rosa, G.J.M., Costello, E., Keane, J., 

Coussens, P.M., and MacHugh, D.E. (2006). Gene expression profiling of peripheral 

blood mononuclear cells (PBMC) from Mycobacterium bovis infected cattle after in vitro 

antigenic stimulation with purified protein derivative of tuberculin (PPD). Veterinary 

Immunology and Immunopathology 113, 73–89. 

 

Meena, L.S., and Rajni (2010). Survival mechanisms of pathogenic Mycobacterium tuberculosis 

H37Rv. FEBS Journal 277, 2416–2427. 

 

Meraviglia, S., Caccamo, N., Salerno, A., Sireci, G., and Dieli, F. (2010). Partial and Ineffective 

Activation of Vγ9Vδ2 T Cells by Mycobacterium tuberculosis-Infected Dendritic Cells. 

J. Immunol. 185, 1770. 

 

Morel, C., Badell, E., Abadie, V., Robledo, M., Setterblad, N., Gluckman, J.C., Gicquel, B., 

Boudaly, S., and Winter, N. (2008). Mycobacterium bovis BCG-infected neutrophils and 

dendritic cells cooperate to induce specific T cell responses in humans and mice. Eur. J. 

Immunol. 38, 437–447. 

 

Moretta, L., Biassoni, R., Bottino, C., Cantoni, C., Pende, D., Mingari, M.C., and Moretta, A. 

(2002). Human NK cells and their receptors. Microbes and Infection 4, 1539–1544. 

 

Morita, C.T., Beckman, E.M., Bukowski, J.F., Tanaka, Y., Band, H., Bloom, B.R., Golan, D.E., 

and Brenner, M.B. (1995). Direct presentation of nonpeptide prenyl pyrophosphate 

antigens to human γδ T cells. Immunity 3, 495–507. 

 

Morita CT, Jin C, Sarikonda G, Wang H. Nonpeptide antigens, presentation mechanisms, and 

immunological memory of human Vgamma2Vdelta2 T cells: discriminating friend from 

foe through the recognition of prenyl pyrophosphate antigens. Immunol Rev. 

2007;215:59–76. 

 

Müller, B., Dürr, S., Alonso, S., Hattendorf, J., Laisse, C.J.M., Parsons, S.D.C., van Helden, 

P.D., and Zinsstag, J. (2013). Zoonotic Mycobacterium bovis –induced Tuberculosis in 

Humans. Emerging Infectious Diseases 19, 899–908. 

 

Nathan, C. (2006). Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6, 

173–182. 

 

Neill, S.D., Pollock, J.M., Bryson, D.B., and Hanna, J. (1994). Pathogenesis of Mycobacterium 

bovis infection in cattle. Veterinary Microbiology 40, 41–52. 

 



35 

Olea-Popelka, F., Muwonge, A., Perera, A., Dean, A.S., Mumford, E., Erlacher-Vindel, E., 

Forcella, S., Silk, B.J., Ditiu, L., El Idrissi, A., et al. (2016). Zoonotic tuberculosis in 

human beings caused by Mycobacterium bovis—a call for action. The Lancet Infectious 

Diseases 17, e21–e25. 

 

Olin, M.R., Hwa Choi, K., Lee, J., and Molitor, T.W. (2005). γδ T-lymphocyte cytotoxic activity 

against Mycobacterium bovis analyzed by flow cytometry. Journal of Immunological 

Methods 297, 1–11. 

 

Ottenhoff, T.H.M., and Kaufmann, S.H.E. (2012). Vaccines against Tuberculosis: Where Are 

We and Where Do We Need to Go? PLOS Pathogens 8, e1002607. 

 

Palakodeti, A., Sandstrom, A., Sundaresan, L., Harly, C., Nedellec, S., Olive, D., Scotet, E., 

Bonneville, M., and Adams, E.J. (2012). The Molecular Basis for Modulation of Human 

Vγ9Vδ2 T Cell Responses by CD277/Butyrophilin-3 (BTN3A)-specific Antibodies. The 

Journal of Biological Chemistry 287, 32780–32790. 

 

Palmer, M.V. (2007). Tuberculosis: A Reemerging Disease at the Interface of Domestic Animals 

and Wildlife. In Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances 

and Consequences of Cross-Species Transmission, S.R.S.J.E. Childs, P.J.S. Mackenzie, 

and V.M.O.J.A. Richt, eds. (Springer Berlin Heidelberg), pp. 195–215. 

 

Palmer, M.V., Ray Waters, W., and Whipple, D.L. (2002). Aerosol delivery of virulent 

Mycobacterium bovis to cattle. Tuberculosis 82, 275–282. 

 

Palmer, M.V., Thacker, T.C., and Waters, W.R. (2015). Analysis of Cytokine Gene Expression 

using a Novel Chromogenic In-situ Hybridization Method in Pulmonary Granulomas of 

Cattle Infected Experimentally by Aerosolized Mycobacterium bovis. Journal of 

Comparative Pathology 153, 150–159. 

 

Palmer, M.V., Waters, W.R., and Thacker, T.C. (2007). Lesion Development and 

Immunohistochemical Changes in Granulomas from Cattle Experimentally Infected with 

Mycobacterium bovis. Vet Pathology 44, 863–874. 

 

Pedrosa, J., Saunders, B.M., Appelberg, R., Orme, I.M., Silva, M.T., and Cooper, A.M. (2000). 

Neutrophils Play a Protective Nonphagocytic Role in Systemic Mycobacterium 

tuberculosis Infection of Mice. Infection and Immunity 68, 577–583. 

 

Phuah, J., Wong, E.A., Gideon, H.P., Maiello, P., Coleman, M.T., Hendricks, M.R., Ruden, R., 

Cirrincione, L.R., Chan, J., Lin, P.L., et al. (2016). Effects of B Cell Depletion on Early 

Mycobacterium tuberculosis Infection in Cynomolgus Macaques. Infection and Immunity 

84, 1301–1311. 

 

Pillai, M.R., Lefevre, E.A., Carr, B.V., Charleston, B., and O’Grady, P. (2007). Workshop 

cluster 1, a γδ T cell specific receptor is phosphorylated and down regulated by activation 

induced Src family kinase activity. Molecular Immunology 44, 1691–1703. 



36 

 

Pollock, J.M., and Neill, S.D. (2002). Mycobacterium bovis Infection and Tuberculosis in Cattle. 

The Veterinary Journal 163, 115–127. 

 

Pollock, J.M., Pollock, D.A., Campbell, D.G., Girvin, R.M., Crockard, A.D., Neill, S.D., and 

Mackie, D.P. (1996). Dynamic changes in circulating and antigen-responsive T-cell 

subpopulations post-Mycobacterium bovis infection in cattle. Immunology 87, 236–241. 

 

Portevin, D., and Young, D. (2013). Natural Killer Cell Cytokine Response to M. bovis BCG Is 

Associated with Inhibited Proliferation, Increased Apoptosis and Ultimate Depletion of 

NKp44+CD56bright Cells. PLOS ONE 8, e68864. 

 

Price, S., Davies, M., Villarreal-Ramos, B., and Hope, J. (2010). Differential distribution of 

WC1+ γδ TCR+ T lymphocyte subsets within lymphoid tissues of the head and 

respiratory tract and effects of intranasal M. bovis BCG vaccination. Veterinary 

Immunology and Immunopathology 136, 133–137. 

 

Price, S.J., and Hope, J.C. (2009). Enhanced secretion of interferon-γ by bovine γδ T cells 

induced by coculture with Mycobacterium bovis-infected dendritic cells: evidence for 

reciprocal activating signals. Immunology 126, 201–208. 

 

Pym, A.S., Brodin, P., Majlessi, L., Brosch, R., Demangel, C., Williams, A., Griffiths, K.E., 

Marchal, G., Leclerc, C., and Cole, S.T. (2003). Recombinant BCG exporting ESAT-6 

confers enhanced protection against tuberculosis. Nat Med 9, 533–539. 

 

Ramos, D.F., Silva, P.E.A., and Dellagostin, O.A. (2015). Diagnosis of bovine tuberculosis: 

review of main techniques. Brazilian Journal of Biology 75, 830–837. 

 

Ravn, P., Demissie, A., Eguale, T., Wondwosson, H., Lein, D., Amoudy, H.A., Mustafa, A.S., 

Jensen, A.K., Holm, A., Rosenkrands, I., et al. (1999). Human T Cell Responses to the 

ESAT-6 Antigen from Mycobacterium tuberculosis. The Journal of Infectious Diseases 

179, 637–645. 

 

Rhoades, E.R., Frank, A.A., and Orme, I.M. (1997). Progression of chronic pulmonary 

tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. 

The International Journal of Tuberculosis and Lung Disease 78, 57–66. 

 

Rhodes, S.G., Hewinson, R.G., and Vordermeier, H.M. (2001). Antigen Recognition and 

Immunomodulation by γδ T Cells in Bovine Tuberculosis. J. Immunol. 166, 5604. 

 

Roach, D.R., Bean, A.G.D., Demangel, C., France, M.P., Briscoe, H., and Britton, W.J. (2002). 

TNF Regulates Chemokine Induction Essential for Cell Recruitment, Granuloma 

Formation, and Clearance of Mycobacterial Infection. J. Immunol. 168, 4620. 

 



37 

Rodwell, T.C., Moore, M., Moser, K.S., Brodine, S.K., and Strathdee, S.A. (2008). Tuberculosis 

from Mycobacterium bovis in Binational Communities, United States. Emerging 

Infectious Disease Journal 14, 909. 

 

Rogers, A.N., VanBuren, D.G., Hedblom, E., Tilahun, M.E., Telfer, J.C., and Baldwin, C.L. 

(2005). Function of ruminant γδ T cells is defined by WC1.1 or WC1.2 isoform 

expression. Veterinary Immunology and Immunopathology 108, 211–217. 

 

Rowland, R., and McShane, H. (2011). Tuberculosis vaccines in clinical trials. Expert Review of 

Vaccines 10, 645+. 

 

Saito, S., and Nakano, M. (1996). Nitric oxide production by peritoneal macrophages of 

Mycobacterium bovis BCG-infected or non-infected mice: regulatory role of T 

lymphocytes and cytokines. Journal of Leukocyte Biology 59, 908–915. 

 

Sakai, S., Kauffman, K.D., Sallin, M.A., Sharpe, A.H., Young, H.A., Ganusov, V.V., and 

Barber, D.L. (2016). CD4 T Cell-Derived IFN-γ Plays a Minimal Role in Control of 

Pulmonary Mycobacterium tuberculosis Infection and Must Be Actively Repressed by 

PD-1 to Prevent Lethal Disease. PLoS Pathogens 12, e1005667. 

 

Sandilands, G.P., Ahmed, Z., Perry, N., Davison, M., Lupton, A., and Young, B. (2005). Cross-

linking of neutrophil CD11b results in rapid cell surface expression of molecules required 

for antigen presentation and T-cell activation. Immunology 114, 354–368. 

 

Scanga, C.A., Mohan, V., Yu, K., Joseph, H., Tanaka, K., Chan, J., and Flynn, J.L. (2000). 

Depletion of Cd4(+) T Cells Causes Reactivation of Murine Persistent Tuberculosis 

despite Continued Expression of Interferon γ and Nitric Oxide Synthase 2. The Journal of 

Experimental Medicine 192, 347–358. 

 

Schwacha, M.G., Rani, M., Zhang, Q., Nunez-Cantu, O., and Cap, A.P. (2013). Mitochondrial 

damage-associated molecular patterns activate γδ T-cells. Innate Immunity 20, 261–268. 

 

Scriba, T.J., Tameris, M., Mansoor, N., Smit, E., van der Merwe, L., Isaacs, F., Keyser, A., 

Moyo, S., Brittain, N., Lawrie, A., et al. (2010). Modified vaccinia Ankara-expressing 

Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces 

polyfunctional CD4+ T cells. Eur. J. Immunol. 40, 279–290. 

 

Seiler, P., Aichele, P., Bandermann, S., Hauser, A.E., Lu, B., Gerard, N.P., Gerard, C., Ehlers, 

S., Mollenkopf, H.J., and Kaufmann, S.H.E. (2003). Early granuloma formation after 

aerosol Mycobacterium tuberculosis infection is regulated by neutrophils via CXCR3-

signaling chemokines. Eur. J. Immunol. 33, 2676–2686. 

 

Skinner, M.A., Parlane, N., McCarthy, A., and Buddle, B.M. (2003). Cytotoxic T-cell responses 

to Mycobacterium bovis during experimental infection of cattle with bovine tuberculosis. 

Immunology 110, 234–241. 

 



38 

Skinner, M.A., Yuan, S., Prestidge, R., Chuk, D., Watson, J.D., and Tan, P.L. (1997). 

Immunization with heat-killed Mycobacterium vaccae stimulates CD8+ cytotoxic T cells 

specific for macrophages infected with Mycobacterium tuberculosis. Infection and 

Immunity 65, 4525–4530. 

 

Smyth, A.J., Welsh, M.D., Girvin, R.M., and Pollock, J.M. (2001). In Vitro Responsiveness of 

γδ T Cells from Mycobacterium bovis-Infected Cattle to Mycobacterial Antigens: 

Predominant Involvement of WC1(+) Cells. Infection and Immunity 69, 89–96. 

 

Steinle A, Li P, Morris DL, et al. (2001). Interactions of human NKG2D with its ligands MICA, 

MICB, and homologs of the mouse RAE-1 protein 

family. Immunogenetics. 2001;53:279–87. 

 

Stenger, S., Hanson, D.A., Teitelbaum, R., Dewan, P., Niazi, K.R., Froelich, C.J., Ganz, T., 

Thoma-Uszynski, S., Melián, A., Bogdan, C., et al. (1998). An Antimicrobial Activity of 

Cytolytic T Cells Mediated by Granulysin. Science 282, 121. 

 

Sun, R., Skeiky, Y.A.W., Izzo, A., Dheenadhayalan, V., Imam, Z., Penn, E., Stagliano, K., 

Haddock, S., Mueller, S., Fulkerson, J., et al. (2009). Novel recombinant BCG expressing 

perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical 

characterization, safety and protection against challenge with Mycobacterium 

tuberculosis. Vaccine 27, 4412–4423. 

 

Sweeney, K.A., Dao, D.N., Goldberg, M.F., Hsu, T., Venkataswamy, M.M., Henao-Tamayo, M., 

Ordway, D., Sellers, R.S., Jain, P., Chen, B., et al. (2011). A recombinant Mycobacterium 

smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. 

Nat Med 17, 1261–1268. 

 

Tanaka, Y., Morita, C.T., Tanaka, Y., Nieves, E., Brenner, M.B., and Bloom, B.R. (1995). 

Natural and synthetic non-peptide antigens recognized by human [gamma][delta] T cells. 

Nature 375, 155–158. 

 

Tanaka, Y., Sano, S., Nieves, E., De Libero, G., Rosa, D., Modlin, R.L., Brenner, M.B., Bloom, 

B.R., and Morita, C.T. (1994). Nonpeptide ligands for human gamma delta T cells. 

Proceedings of the National Academy of Sciences of the United States of America 91, 

8175–8179. 

 

Thoen, C.O., LoBue, P.A., and de Kantor, I. (2010). Why has zoonotic tuberculosis not received 

much attention? The International Journal of Tuberculosis and Lung Disease 14, 1073–

1074. 

 

Thoen, C.O., Steele, J.H., and Gilsdorf, M.J. (2008). Mycobacterium bovis Infection in Animals 

and Humans (Wiley). 

 

Thoen, C.O., Steele, J.H., and Kaneene, J.B. (2014). Zoonotic Tuberculosis: Mycobacterium 

bovis and Other Pathogenic Mycobacteria (John Wiley & Sons). 



39 

 

Toka, F.N., Kenney, M.A., and Golde, W.T. (2011). Rapid and Transient Activation of γδ T 

Cells to IFN-γ Production, NK Cell-Like Killing, and Antigen Processing during Acute 

Virus Infection. J. Immunol. 186, 4853. 

 

Tsai, M.C., Chakravarty, S., Zhu, G., Xu, J., Tanaka, K., Koch, C., Tufariello, J., Flynn, J., and 

Chan, J. (2006). Characterization of the tuberculous granuloma in murine and human 

lungs: cellular composition and relative tissue oxygen tension. Cellular Microbiology 8, 

218–232. 

 

Tullius, M.V., Harth, G., Masleša-Galić, S., Dillon, B.J., and Horwitz, M.A. (2008). A 

Replication-Limited Recombinant Mycobacterium bovis BCG Vaccine against 

Tuberculosis Designed for Human Immunodeficiency Virus-Positive Persons Is Safer 

and More Efficacious than BCG. Infection and Immunity 76, 5200–5214. 

 

Turner, J., Frank, A.A., Brooks, J.V., Marietta, P.M., Vesosky, B., and Orme, I.M. (2001). 

Tuberculosis in aged γδ T cell gene disrupted mice. Experimental Gerontology 36, 245–

254. 

 

Ulrichs, T., Lefmann, M., Reich, M., Morawietz, L., Roth, A., Brinkmann, V., Kosmiadi, G.A., 

Seiler, P., Aichele, P., Hahn, H., et al. (2005). Modified immunohistological staining 

allows detection of Ziehl–Neelsen-negative Mycobacterium tuberculosis organisms and 

their precise localization in human tissue. J. Pathol. 205, 633–640. 

 

Umemura, M., Yahagi, A., Hamada, S., Begum, M.D., Watanabe, H., Kawakami, K., Suda, T., 

Sudo, K., Nakae, S., Iwakura, Y., et al. (2007). IL-17-Mediated Regulation of Innate and 

Acquired Immune Response against Pulmonary Mycobacterium bovis Bacille Calmette-

Guérin Infection. J. Immunol. 178, 3786. 

 

Van Rhijn, I., Koets, A.P., Im, J.S., Piebes, D., Reddington, F., Besra, G.S., Porcelli, S.A., van 

Eden, W., and Rutten, V.P.M.G. (2006). The Bovine CD1 Family Contains Group 1 CD1 

Proteins, but No Functional CD1d. J. Immunol. 176, 4888. 

 

Vantourout, P., and Hayday, A. (2013). Six-of-the-best: unique contributions of γδ T cells to 

immunology. Nature Reviews. Immunology 13, 88–100. 

 

Villarreal-Ramos, B., McAulay, M., Chance, V., Martin, M., Morgan, J., and Howard, C.J. 

(2003). Investigation of the Role of CD8+ T Cells in Bovine Tuberculosis In Vivo. 

Infection and Immunity 71, 4297–4303. 

 

Vordermeier, H.M., Villarreal-Ramos, B., Cockle, P.J., McAulay, M., Rhodes, S.G., Thacker, T., 

Gilbert, S.C., McShane, H., Hill, A.V.S., Xing, Z., et al. (2009). Viral Booster Vaccines 

Improve Mycobacterium bovis BCG-Induced Protection against Bovine Tuberculosis. 

Infection and Immunity 77, 3364–3373. 

 



40 

Wang, F., Herzig, C.T.A., Chen, C., Hsu, H., Baldwin, C.L., and Telfer, J.C. (2011). Scavenger 

receptor WC1 contributes to the γδ T cell response to Leptospira. Molecular Immunology 

48, 801–809. 

 

Wang, J., Zhou, X., Pan, B., Yang, L., Yin, X., Xu, B., and Zhao, D. (2013). Investigation of the 

effect of Mycobacterium bovis infection on bovine neutrophils functions. Tuberculosis 

93, 675–687. 

 

Wangoo, A., Johnson, L., Gough, J., Ackbar, R., Inglut, S., Hicks, D., Spencer, Y., Hewinson, 

G., and Vordermeier, M. (2005). Advanced Granulomatous Lesions in Mycobacterium 

bovis-infected Cattle are Associated with Increased Expression of Type I Procollagen, γδ 

(WC1+) T Cells and CD 68+ Cells. Journal of Comparative Pathology 133, 223–234. 

 

Waters, W.R., Palmer, M.V., Buddle, B.M., and Vordermeier, H.M. (2012). Bovine tuberculosis 

vaccine research: Historical perspectives and recent advances. Vaccine 30, 2611–2622. 

 

Waters, W.R., Palmer, M.V., Thacker, T.C., Davis, W.C., Sreevatsan, S., Coussens, P., Meade, 

K.G., Hope, J.C., and Estes, D.M. (2011). Tuberculosis Immunity: Opportunities from 

Studies with Cattle. Clinical and Developmental Immunology 2011, 768542. 

 

Watson, E.A. (1928). Researches on Bacillus- Calmette-Guerin and Experimental Vaccination 

against Bovine Tuberculosis. Journal of the American Veterinary Medical Association 

73, 799–816. 

 

Welsh, M.D., Kennedy, H.E., Smyth, A.J., Girvin, R.M., Andersen, P., and Pollock, J.M. (2002). 

Responses of Bovine WC1(+) γδ T Cells to Protein and Nonprotein Antigens of 

Mycobacterium bovis. Infection and Immunity 70, 6114–6120. 

 

Wesch, D., Peters, C., Oberg, H.-H., Pietschmann, K., and Kabelitz, D. (2011). Modulation of γδ 

T cell responses by TLR ligands. Cellular and Molecular Life Sciences 68, 2357–2370. 

 

Whipple, D.L., Bolin, C.A., and Miller, J.M. (1996). Distribution of Lesions in Cattle Infected 

with Mycobacterium Bovis. J Vet Diagn. Invest 8, 351–354. 

 

World Health Organization. Global Tuberculosis Report 2016. World Health Organization, 

Geneva, Switzerland. 

 

World Health Organization. Tuberculosis: A Global Emergency 1994.  World Health 

Organization, Geneva, Switzerland. 

 

Widdison, S., Watson, M., and Coffey, T.J. (2009). Correlation between lymph node pathology 

and chemokine expression during bovine tuberculosis. Tuberculosis 89, 417–422. 

 

Wijngaard, P.L., MacHugh, N.D., Metzelaar, M.J., Romberg, S., Bensaid, A., Pepin, L., Davis, 

W.C., and Clevers, H.C. (1994). Members of the novel WC1 gene family are 



41 

differentially expressed on subsets of bovine CD4-CD8- gamma delta T lymphocytes. J. 

Immunol. 152, 3476. 

 

Witchell, J., Maddipatla, S.V.P.K., Wangoo, A., Vordermeier, M., and Goyal, M. (2010). Time 

dependent expression of cytokines in Mycobacterium bovis infected cattle lymph nodes. 

Veterinary Immunology and Immunopathology 138, 79–84. 

 

Xi, X., Han, X., Li, L., and Zhao, Z. (2013). Identification of a New Tuberculosis Antigen 

Recognized by γδ T Cell Receptor. Clinical and Vaccine Immunology : CVI 20, 530–

539. 

 

Xu, S., Cooper, A., Sturgill-Koszycki, S., van Heyningen, T., Chatterjee, D., Orme, I., Allen, P., 

and Russell, D.G. (1994). Intracellular trafficking in Mycobacterium tuberculosis and 

Mycobacterium avium-infected macrophages. J. Immunol. 153, 2568. 

 

Yao, S., Huang, D., Chen, C.Y., Halliday, L., Zeng, G., Wang, R.C., and Chen, Z.W. (2010). 

Differentiation, Distribution and γδ T Cell-Driven Regulation of IL-22-Producing T Cells 

in Tuberculosis. PLoS Pathogens 6, e1000789. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



42 

Chapter 2 - Measuring Bovine γδ T Cell Function at the Site of 

Mycobacterium bovis Infection 

 

A paper waiting review by co-authors for submission 

 

Rachel A. Rusk1, Mitchell V. Palmer2, W. Ray Waters2, Jodi L. McGill3 

 

1Pathobiology Graduate Program, Department of Diagnostic Medicine/Pathobiology, 

College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA 

2Infectious Bacterial Diseases Research Unit, National Animal Disease Center, 

Agricultural Research Service, USDA, Ames, IA 

3Department of Diagnostic Medicine and Pathobiology, Kansas State University, 

Manhattan, KS 

 

 Abstract 

Bovine γδ T cells are amongst the first cells to accumulate at the site of infection in the 

lungs, and are known to contribute to the immune response to M. bovis infection by secreting 

inflammatory cytokines such as IFN-γ.  However, their specific role in vivo, particularly at the site 

of infection remains unclear.  γδ T cells have the capacity for a broad array of immune functions, 

and the importance of these alternative functions in immunity to M. bovis has not been determined.  

In this study, we used transcriptomics analysis, an in situ hybridization assay, and a novel, 

macrophage/γδ T cell co-culture system to further elucidate the role of γδ T cells in the immune 

response to M. bovis infection.  Transcriptomics analysis revealed that γδ T cells upregulated 

expression of a number of novel genes in response to M. bovis antigen, including IL-15RA, 

SOCS1, NOS2 and TNF.  In situ within late stage granulomas, as expected, a significant frequency 
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of γδ T cells expressed IFN-γ; however, we observed little expression of IL-10, IL-22, or IL-17.  

Interestingly, we observed for the first time, robust expression of CCL2 by γδ T cells accumulating 

in chronic TB granulomas.  Results from our macrophage/γδ T cell co-culture system suggest that 

γδ T cells secrete multiple cytokines and chemokines, including CCL4, CXCL10 and CCL8 in 

response to M. bovis BCG-infected macrophages and, in comparing γδ T cell responses from 

uninfected calves with those from virulent M. bovis-infected animals, their expression profile may 

change over the course of disease.  Consistent with previous reports of direct cytotoxicity by γδ T 

cells responding to M. bovis, we also found that γδ T cells from virulent M. bovis-infected animals, 

but not naïve animals, had the capacity to significantly impact M. bovis BCG viability in our co-

culture systems.  Together, our results suggest that γδ T cells accumulate within the granulomas 

and influence host immunity to M. bovis by secretion of cytokines and chemokines, and by direct 

cytotoxic responses.  

Key words: Mycobacterium bovis, γδ T cell, granuloma, bovine 

 

 Introduction 

Tuberculosis (TB) is among the most important infectious diseases worldwide.  In 2015 

1.8 million people died from this disease (WHO, 2017).  Mycobacterium bovis (M. bovis) is a 

member of the Mycobacterium tuberculosis complex (Mtbc), and is the causative agent of TB in 

cattle (BTB).  M. bovis is an aerobic pathogen capable of causing zoonosis in most mammals, 

including humans.  This disease has a significant detrimental impact on the livestock industry; 

costing billions of dollars in losses each year due to disease testing and control efforts (Waters et 

al., 2012).  Eradication attempts have been successful in some countries; however, the broad host 

range and low infective dose of BTB makes worldwide eradication difficult.  
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Cattle are a natural host for M. bovis, and BTB parallels human TB in several aspects of 

disease pathogenesis and the development of innate and adaptive immune responses (Van Rhijn 

et al., 2008; Waters et al., 2011).  Historically, the study of bovine and human TB has been 

closely intertwined, and our understanding of disease in animals has been instrumental in our 

understanding of that in humans.  For example, the vaccine strain that is widely administered to 

infants and people at high risk for TB is actually M. bovis Bacille Calmette Guerin (BCG), and 

was tested in cattle before being administered to humans; IFN-γ release assays were first 

implemented in the bovine TB eradication program, and are now widely used in human 

diagnostics. Thus, the study of virulent M. bovis infection in cattle represents an excellent model 

for understanding Mycobacterium tuberculosis (M. tb) infection in humans, and for testing novel 

vaccine strategies and therapeutics (Waters et al., 2012). 

Granulomas are characteristic of TB infections, and are the body’s attempt to protect the 

host by containing the invading mycobacteria.  They are an organized structure of immune cells 

that form around the invading bacterium and are comprised of macrophages, neutrophils and 

lymphocytes.  The structures undergo a process of ordered maturation during the course of 

disease, and can be staged (I-IV) based upon cellular composition and amount of fibrosis and 

necrosis (Thoen et al., 2014; Palmer et al., 2007; Rhoades et al., 1997; Wangoo et al., 2005).  

Importantly, simple formation of a granuloma is not sufficient to control or eliminate the disease, 

and the ability of the host to establish well-organized granulomas, with an appropriate balance of 

pro- and anti-inflammatory immune responses is crucial to controlling the infection (Flynn et al. 

2011; Gideon et al., 2015).  Despite the importance of the granuloma structure in dictating the 

outcome of infection, we understand very little about the dynamics of the immune response at 
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the site of infection, including the cells and cytokine production necessary for formation and 

maintenance of an effective granuloma. 

γδ T cells are a unique subset of CD3+ T cells that possess functions that are 

characteristic of both innate and adaptive immunity, and are therefore thought to bridge the two 

arms of the immune system.  γδ T cells constitute a significant proportion of the immune cells 

found in the mucosal and epithelial surfaces of the respiratory tract, and are generally recognized 

to be critical as the first line of defense against invading pathogens and in shaping the 

downstream adaptive immune response (Hayday, 2000).  However, the frequency of γδ T cells 

circulating in mice, humans, and non-human primates is low, representing 1-5% of the 

circulating peripheral lymphocyte population (Kabelitz, 2011), making it difficult to 

experimentally dissect the role of the γδ T cells in the immune response.  In contrast, γδ T cells 

circulate at significantly increased frequencies in ruminant species, where they constitute 30-

60% of the peripheral blood lymphocytes in young animals (Hein and Mackay, 1991; Jutila et 

al., 2008).  The increased incidence of these cells in blood makes the bovine an excellent model 

for studying γδ T cells and for understanding their role in innate and adaptive immunity. 

γδ T cells in mice and cattle accumulate in the lungs and lung-associated lymph nodes 

after either M. bovis infection or BCG vaccination administered via respiratory routes (Price et 

al., 2010; Dieli et al., 2003).  These cells are also one of the first cells to arrive at the site of 

infection (Doherty et al., 1996).  These cells have also been shown to accumulate within all 

stages of lesions in cattle infected with M. bovis, and are often found localizing to the lymphoid 

mantle surrounding the periphery of the lesions (Cassidy et al., 1998).  Mice deficient in γδ T 

cells develop large and poorly organized granulomas during M. tb infection (D’souza et al., 

1997), and mice and rodents depleted of γδ T cells show alterations in granuloma architecture 
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with increases in neutrophil infiltration and necrosis (Smith et al., 1991), suggesting that γδ T 

cells may be an important source of cytokines and chemokines which aid in the recruitment of 

other immune cells to the site of infection.  In vitro, γδ T cells have been shown to produce 

significant amounts of IFN-γ, similar to that of CD4+ T cells, in response to mycobacterial 

antigens (Lee et al., 2004), but less is known about their capacity to secrete IFN-γ in vivo, 

particularly at the site of infection; and their ability to secrete chemotactic molecules or other 

immune factors in response to M. bovis infection is not well defined.  Therefore, in this study, we 

used RNASeq analysis to further define the M. bovis-specific γδ T cell response and to identify 

previously unrecognized immunologic factors that may contribute to the γδ T cell’s capacity to 

establish and maintain granuloma structures in vivo.  To correlate the in vitro responses 

measured by our RNASeq analysis with those that occur in vivo at the site of infection, we also 

used in situ hybridization to assess the expression of multiple cytokines by γδ T cells 

accumulating in the chronic, granulomatous lesions of cattle infected with virulent M. bovis; and 

developed a novel, in vitro macrophage/ γδ T cell co-culture system that allowed us to model the 

interactions that may occur in the lungs between tissue-resident γδ T cells and M. bovis-infected 

macrophages in the early stages of BTB infection.  Our hypothesis was that γδ T cells influence 

immune cell recruitment and granuloma formation, and shape the adaptive M. bovis-specific 

immune response by producing inflammatory and regulatory cytokines and chemokines at the 

site of M. bovis infection.  Determining the role that γδ T cells play in the localized immune 

response to M. bovis infection is expected to further our understanding of basic γδ T cell biology, 

as well as aid in developing effective ways in which to manipulate protective responses to TB in 

both humans and animals.   
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 Materials and Methods 

Animals 

Tissues samples were collected from animals used in a previous study (Waters et al., 

2014).  Briefly, 23 Holstein steers approximately 6 months of age were obtained from a 

tuberculosis-free herd in Sioux Center, Iowa and housed in a biosafety level-3 (BSL-3) facility at 

the National Animal Disease Center (NADC), Ames, Iowa, USA, according to Institutional 

Biosafety and Animal Care and Use Committee guidelines.  Treatment groups consisted of non-

infected steers (n = 7) and animals receiving 104 colony forming units (cfu) of M. bovis 95-1315 

(n = 8) or 104 cfu M. bovis 10-7428 (n = 8) by aerosol as described by Palmer et al. (2002).   

Animals used for co-culture experiments were 10 Holstein steer calves that were housed 

at the NADC in Ames IA.  Calves were experimentally infected with 104 cfu of virulent M. bovis 

10-7428 as above and peripheral blood was collected at ~12 weeks after challenge.  Prior to 

sample collection, the calves were confirmed BTB positive by skin test and whole blood IFN-γ 

release assay.  Blood samples were also obtained from 19 Holstein steer calves maintained in an 

M. bovis-free herd housed at the Kansas State University Dairy Facility in Manhattan, KS.   

All animal procedures were conducted in strict accordance with federal and institutional 

guidelines and were approved by the NADC Institutional Animal Care and Use Committee or the 

Kansas State University Institutional Animal Care and Use Committee. 

 

Preparation of PBMCs 

Peripheral blood was collected from the jugular vein into 2X acid citrate dextrose. 

Peripheral blood mononuclear cells (PBMCs) were isolated from buffy coat fractions and 

overlaid onto Histopaque 1077 (Sigma Aldrich, St. Louis MO, USA).  Contaminating red blood 

cells were removed using a hypotonic lysis.  Cells were washed and re-suspended in complete 
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RPMI (cRPMI) composed of RPMI 1640 (Life Technologies, Carlsbad, CA) supplemented with 

2mM L-glutamine, 1% antibiotic-antimycotic solution, 1% nonessential amino acids, 2% 

essential amino acids, 1% sodium pyruvate, 50µM 2-mercaptoethanol (ME), and 10% fetal 

bovine serum (FBS).   

 

γδ RNA Sequencing 

 PBMCs from 5 M. bovis-infected animals were collected, and stimulated with either 

purified protein derivative of bovine tuberculin (PPD-b) (Prionics AG, Schlieren, Switzerland) at 

200 U/mL or cRPMI for 18 hours.  γδ T cells were then sorted to >90% purity by magnetic 

activated cell sorting (MACS) according to manufacturer’s instructions (Miltenyi Biotec, 

Auburn, CA, USA).  γδ T cell RNA was extracted using Trizol Reagent (Invitrogen, Life 

Technologies) according to manufacturer’s instructions.  Samples were sent to The University of 

Kansas Center for Molecular Analysis of Disease Pathways Genome Sequencing Core to be 

processed.  Sample quality and quantity was confirmed by Tape Station analysis and Qubit 

quantification, and then Truseq RNA Libraries prepared per manufacturer’s instructions. The 

libraries were sequenced on an Illumina HiSeq 2500 Next Generation Sequncer.  

 Further assistance with analysis was provided by The Bioinformatics Center at Kansas 

State University.  Sequencing reads were aligned to the most recently annotated version of the 

bovine genome (Bos_taurus_UMD_3.1.1).  Single end reads were obtained and FastQC was ran 

to identify over-represented sequences, and Perl script was written and used to remove the over-

represented reads.  Differential expression analysis was performed using RNA Sequencing by 

Expectation Maximization (RSEM) and empirical Bayes sequencing (EBSeq) software (Li and 

Dewey, 2011; Leng et al. 2013).      
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A list of commonly differentially expressed genes resulting from the RNA sequencing 

analysis was submitted to Ingenuity Pathway Analysis (IPA; Ingenuity Systems, USA) in order 

to identify the most significant canonical pathways (Breuer et al., 2013).  

 

RNA Scope 

Visualization of γδ T cells, cytokine, and chemokine mRNA transcripts was done 

according to manufacturer’s instructions for RNAScope 2.0 (Advanced Cell Diagnostics, 

Hayward, CA, USA).  Samples were sectioned from formalin-fixed, paraffin embedded tissues 

from animals 3 months post-infection.  The tissue sample slides were baked for 1 hour at 60°C in 

a HybEZ ™ hybridization oven (Advanced Cell Diagnostics). Tissues were then de-paraffinized 

in xylene followed by rehydration in ethanol and dried at room temperature (RT) for 5 minutes.  

Slides were treated with an endogenous peroxidase block for 10 minutes at RT.  Slides were 

rinsed in double distilled water (ddH2O), and immersed in an antigen retrieval citrate buffer, for 

22 minutes at boiling (210°).  Slides were washed in ddH20 followed by an ethanol rinse and 

allowed to air dry.  A hydrophobic barrier was created around the tissue sections and the slides 

were then allowed to dry at RT overnight.   

The following day, slides were incubated with a protease for 30 minutes at 40°C in the 

HybEZ oven.  Slides were then washed in ddH2O, and target or control probes applied, and 

incubated at 40°C for 2 hours.  Bos taurus-specific probe combinations (Adanved Cell 

Diagnostics) were used; γδ T cell TCR (Cat. No. 407481-C2), IFN-γ (Cat. No. 315581), IL-10 

(Cat. No. 420941), IL-17A (Cat. No. 406601), IL-22 (Cat. No. 420931) and CCL2 (Cat. No. 

14314A).  The positive control probe consisted of a proprietary 2-plex probe for Bos taurus 

cyclophilin B (Cat. No. 319451-C2), while the negative control probe targeted dapB of Bacillus 

subtilis strain SMY (Cat. No. 320751).  The slides were then rinsed in wash buffer (Advanced 
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Cell Diagnostics) for 2 minutes. Signal amplification reagents 1 through 6 were serially applied 

for 30 minutes, 15 minutes, 30 minutes, 15 minutes, 30 minutes and 15 minutes, respectively, 

with a 2 minute rinse in wash buffer between each amplification reagent.  Incubations with 

amplifier reagents 1 through 4 were done in the HybEZ oven at 40°C, while incubations with 

amplifier reagents 5 and 6 were done at RT.  Slides were then incubated with a Red A and B 

mixture for 30 minutes at RT, followed by a rinse in wash buffer.  Slides were incubated in a 

Green A and B mixture and RT for 10 minutes, and washed in ddH20.  Slides were immersed in 

Gill’s hematoxylin for 30 seconds at RT, washed in ddH20 and then briefly immersed into 

ammonia, followed by a wash in ddH20.  Finally, slides were dried for 15 minutes at 60°C, and 

cover-slipped using mounting media (EcoMount, Biocare Medical, Concord, CA, USA).   

In order to quantify the amount of cytokine or chemokine being expressed by γδ T cells, 

10 representative images at 100X magnification from 5 M. bovis-infected calves were taken 

around the periphery of each late-stage granuloma.  Granulomas were determined to be late-

stage, meaning stage III or stage IV, based on descriptions by previous groups (Thoen et al., 

2014; Palmer et al., 2007; Rhoades et al., 1997; Wangoo et al., 2005).  Stage III and IV 

granulomas are described to have full fibrous encapsulation, and a necrotic center surrounded by 

a zone of epithelioid macrophages, multinucleated giant cells, and lymphocytes (Thoen et al., 

2014; Palmer et al., 2007; Rhoades et al., 1997; Wangoo et al., 2005).  The images were then 

used to quantify the number of the cells that were expressing the cytokine or chemokine of 

interest, and what percentage of those cells were γδ T cells.   

 

γδ T cell and Monocyte Sorting and co-cultures 

Monocytes and γδ T cells were enriched from PBMCs using Magnetic Activated Cell 

Sorting (MACS) according to the manufacturer’s instructions.  Briefly, PBMCs were re-
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suspended at 107 cells/mL in MACS buffer (0.5% BSA, 2mM EDTA in PBS) and labeled with  

10µg/mL mouse anti-bovine CD14 (Clone CAM36A) or 10µg/mL mouse anti-bovine γδ T cell 

receptor (Clone GB21A), both from Washington State Monoclonal Antibody Center (Pullman, 

WA, USA), for 20 minutes at 4°C.  Monocytes and γδ T cells were washed then labeled with 

anti-mouse IgG1 or IgG2a+b Microbeads (Miltenyi Biotech) respectively.  CD14+ and γδ T cell 

populations were purified over magnetic columns by positive selection.   

Isolated monocytes were allowed to differentiate into macrophages by plating at 5x105 

monocytes per well in 24 well plates and cultured in cRPMI media with GM-CSF (Kingfischer 

Biotech, St. Paul, MN, USA) at 4ng/mL for 7 days at 37°C in 5% CO2, and the culture media 

was changed every 3 days (Werling et al., 2004).  After 7 days of culture, monocyte-derived 

macrophages (MDM) were cultured in media alone or infected with BCG Danish strain 1331 at a 

multiplicity of infection (MOI) of either 1:1 or 10:1 for 4 hours in cRPMI without antibiotics and 

antimycotics at 37°C in 5% CO2. After infection, BCG-infected or uninfected macrophages were 

cultured either alone or with 2.5x106 autologous γδ T cells for 24 and 72 hours.   

 

BCG culture 

BCG Danish strain 1331 was cultured in Middlebrook 7H9 broth supplemented with 10% 

OADC (oleic acid, albumin, dextrose, catalase) enrichment (BD Biosciences), and 0.05% Tween 

80 (Sigma Aldrich) (7H9-OADC-T).  Optical density (OD) was measured with a SmartSpec™ 

3000 spectrophotometer (Bio Rad, Hercules, CA, USA).   

 

BCG viability.  

 

BCG viability assay was performed as previously described (Baquero and Plattner, 

2016).  Briefly, after 72 hours, MDM cell cultures were collected in 7H9-OADC-T media and 
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frozen at -80°C until ready for analysis.  After thawing, cells were vortexed vigorously for 10 

seconds and centrifuged at 400 x g for 2 minutes.  Pellets were re-suspended in 7H9-OADC-T 

and incubated in 24-well plates for 24 h at 37°C in 5% CO2.  Contents of each well were 

centrifuged at 4200 x g for 10 minutes and pellets were re-suspended in 50 μL of sterile saline 

solution in 2 mL conical tubes. 1 μL of fluorescein diacetate (FDA) (Sigma Aldrich) at a 

concentration of 2 mg/mL was added to each tube.  After 30 min of incubation at 37°C, samples 

were analyzed by flow cytometry using a BD LSRFortessa X-20 (BD Biosciences, Franklin 

Lakes, New Jersey, USA).  Standardization of the procedure and determination of gates was 

generated from known proportions of live and heat-killed BCG (Figure S2). 

 

Cytokine Profile Secretion 

 Cell culture supernatants were collected after 72 hours of incubation in co-cultures, and 

stored at -80°C until thawed for ELISA analysis.  Commercial bovine VetSet™ ELISA kits 

(Kingfisher Biotech, Saint Paul, MN, USA) were used to quantify bovine IFN-γ (detection range 

0.125-8 ng/mL ), IL-17 (detection range 0.188-12 ng/mL), and CXCL10 (detection range 0.188-

12 ng/mL) according to manufacturer’s instructions.  Optical density was measured using an 

Epoch microplate spectrophotometer (BioTek, Winooski, VT, USA).    

 

Real-time PCR 

Total RNA was extracted using the RNeasy Mini RNA Isolation Kit (Qiagen, 

Germantown, MD, USA), according to manufacturer’s instructions.  Contaminating genomic 

DNA was removed using RNase-Free DNase digestion set (Qiagen), according to manufacturer’s 

instructions.  The RNA concentration in each sample was measured by using a NanoDrop 8000 

spectrophotometer (Thermo Scientific, Wilmington, DE, USA).  Total eluted RNA was reverse 
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transcribed into cDNA using Random Primers and Superscript III Reverse Transcriptase per the 

manufacturer’s instructions (Invitrogen, Life Technologies).   

Quantitative real-time PCR was performed using Power SYBR Green PCR Master Mix 

(Applied Biosystems).  Forward and Reverse primers are listed in Table 1.  Reactions were 

performed on Mx2005P qPCR System (Agilent Technologies).  The following amplification 

conditions were used: 2 minutes at 50°, 10 minutes at 95°, 40 cycles of 15 seconds at 95°, and 1 

minute at 60°, followed by a dissociation step, 15 seconds at 95°, 1 minute at 60°, 15 seconds at 

95°, and 15 seconds at 60°.  Relative gene expression was determined using the 2-ΔΔCt method 

with RPS9 as the reference housekeeping gene.     

 

Statistical Analysis 

ΔCt values were used in the statistical analysis of relative gene expression.  ΔΔCt values 

were transformed (2-ΔΔCt) and are shown as expression relative to uninfected control samples, as 

appropriate.  Data were analyzed using a paired one-way analysis of variance (ANOVA) and 

Tukey’s multiple comparisons test using Prism v7.0 (GraphPad Software, La Jolla, CA, USA).  

The mean and standard error of the mean (SEM) were calculated in experiments containing 

multiple data points.  A P value of ≤0.05 was considered statistically significant.   

 

 Results  

RNA Sequencing of M. bovis-specific γδ T cells.  

 PBMC were prepared from the peripheral blood of 5 virulent M. bovis-infected calves 

and were stimulated in vitro for 18 hours with M. bovis PPD-b, or remained unstimulated.  γδ T 

cells were then purified and mRNA was isolated for whole-transcriptome RNA sequencing.  

Utilizing RNA sequencing allowed us to conduct an in-depth molecular analysis to identify 
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possible novel functions for γδ T cells that are responding to M. bovis infection that may 

contribute to their role in establishing and maintaining maturing granuloma lesions.  Our 

transcriptomics analysis revealed a range of 299-2,240 genes that were > 2-fold differentially 

expressed (DE) between the unstimulated and PPD-b-stimulated γδ T cells for all five animals.  

Within those genes, a range of 169-1,514 genes were down-regulated, and a range of 130-1,437 

genes were up-regulated.  Of all of the genes that were DE, 132 of those genes were common 

between all animals.  Sixty of the common DE genes were up-regulated, 60 genes were down-

regulated, and 12 genes had mixed regulation between animals.  Importantly, both IFN-γ and IL-

17A were amongst the genes identified as being significantly upregulated in response to PPD-b.  

We and others have previously demonstrated that γδ T cells produce both cytokines in response 

to mycobacterial antigens (Lee et al., 2004; Smyth et al., 2001; Rhoades et al., 2001; Lockhart et 

al., 2006; McGill et al., 2014), therefore corroborating these previous results and confirming that 

the results of our RNASeq analysis were in agreement with previously published observations. 

In order to aid in the understanding of uncommon or unknown DE genes, we selected the 

132 genes that were commonly DE between the stimulated and unstimulated γδ T cells from all 

five calves, and subjected them to a pathways analysis (Figure 1) where the most significant 

canonical pathways were revealed.  A closer look revealed that genes encoding for chemokines, 

regulatory cytokines, and cytotoxic factors, such as CXCL10, TNF, SOCS1 and Granzyme B 

represented a significant proportion of the genes involved in the immune system related 

pathways (Table 2).  The next most significantly represented pathway was G protein signaling 

which included genes such as: adrenomedullin (ADM), endothelin β receptor (EDNRB), and 

platelet-activating factor receptor (PTAFR).  Other genes relating to the signal transduciton 

pathway such as, apolipoprotein E (APOE), inhibin beta A chain (INHBA), and cytokine 
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inducible SH2 containing protein (CISH) also comprised a significant portion of the pathways 

identified (Table 3).  The RNA sequencing results were validated using qRT-PCR (Table 4).       

 

Evaluation of γδ T cell cytokine and chemokine production in situ in response to M. bovis 

infection.   

 Our transcriptomics analysis gave us a better understanding of the M. bovis-specific 

response of peripheral γδ T cells; however, systemic immune responses are often not an accurate 

measure of the response at the site of BTB infection.  In order to compare the peripheral and 

localized responses, as well as to gain better understanding of cytokine and chemokine 

production by γδ T cells at the site of M. bovis infection, tissue samples from the lungs and 

mediastinal lymph nodes were collected from 5 Holstein calves, at 3 months post infection with 

virulent M. bovis.  The tissue samples were evaluated by RNAScope, an in situ hybridization 

assay that allows for the detection of target RNA within intact cells, and is much more sensitive 

and specific than previous in situ assays.  Proprietary probes were used to stain for mRNA 

transcripts of the γδ TCR, IFN-γ, IL-10, IL-17, IL-22 and CCL2 (Figure 2).  All granulomas 

were determined to be late-stage based on exhibition of necrotic centers with numerous 

lymphocytes, including γδ T cells, surrounding the periphery (Thoen et al., 2014; Palmer et al., 

2007; Rhoades et al., 1997; Wangoo et al., 2005).  Ten representative images at 100X 

magnification were taken around the periphery of each late-stage granuloma and were used to 

quantify instances of co-expression between γδ T cells and the cytokine/chemokine of interest 

(Table 5).   

In vitro, γδ T cells are a significant source of IFN-γ, which is thought to contribute to Th1 

polarization during TB infection (Lee et al., 2004).  To our surprise, however, fewer than 10% of 
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the cells in the lungs expressing transcripts for IFN-γ at this time point were γδ T cells (Figure 

2C and Table 5).  In contrast, γδ T cells comprised greater than 20% of the cells expressing IFN-

γ within the lymph nodes of these same animals.  Interestingly, we observed that γδ T cell 

expression of all cytokines/chemokines examined was higher within the lymph node lesions 

compared to lesions in the lungs.  CCL2 expression is known to be upregulated in TB 

granulomas, and has been associated with increased disease severity in both humans and 

animals, although the source of CCL2 within the granuloma has not been defined (Hasan et al., 

2010; Mastroianni et al., 1998; Alvarez et al., 2009).  We observed that γδ T cells comprise a 

significant proportion of the cells expressing transcripts for CCL2 within both the lungs and the 

lymph nodes of infected animals (Figure 2E, Table 5).   Expression of IL-10, IL-17, and IL-22 is 

also upregulated during TB, and γδ T cells have been implicated as a significant source of these 

cytokines at the site of infection (Steinbach et al., 2016; Aranday-Cortes et al., 2013; Palmer et 

al., 2015).  However, in contrast to published reports, we found that fewer than 20% of cells 

producing IL-10 or IL-17 were γδ T cells (Figure 2D and F and Table 5), and we observed no γδ 

T cells expressing IL-22 in the tissues at this stage of infection (data not shown).       

 

Cytokine expression during initial interactions between γδ T cells and BCG-infected 

macrophages.  

One of the challenges associated with measuring the early immune response to TB at the 

site of pulmonary infection in experimental models such as cattle and non-human primates, is the 

difficulty locating and isolating granulomas prior to the development of grossly apparent lesions, 

which are often undetectable until 2-4 weeks after infection (Palmer et al., 2007).  Further, in situ 

analysis of tissues collected at the time of necropsy in a chronically infected animal allows for an 
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assessment of only a single time point after infection, and does not allow for functional analysis 

of viable immune cells that accumulate at the site of infection.  M. bovis is primarily transmitted 

to cattle via the aerosol route (Neill et al., 1994).   Therefore, the first cells likely to encounter 

the infection are macrophages residing in the lungs and upper respiratory tract, followed by other 

lung-resident sentinel cells.  γδ T cells represent a significant proportion of the sentinel cells 

lining the respiratory mucosa (Reviewed in Vantourout and Hayday, 2013).  In order to gain 

insight into γδ T cell functions during the early stages of infection, our next objective was to 

develop an in vitro model that allowed us to assess the initial interactions that may occur 

between M. bovis-infected macrophages and sentinel γδ T cells.  Therefore, we developed a γδ T 

cell and MDM co-culture system, using γδ T cells from M. bovis-infected or M. bovis-naïve 

animals, cultured with autologous M. bovis BCG-infected MDM.  Peripheral blood monocytes 

were isolated from naïve or virulent M. bovis-infected calves, and cultured for 7 days with GM-

CSF to generate MDM (Werling et al., 2004).  On day 7, MDM were infected at 1 or 10 MOI 

with M. bovis BCG Danish Strain 1331.  4 hours later, autologous γδ T cells were added at a 

ratio of 1:5 with infected monocytes.  Cells were then collected for qPCR analysis, and in 

parallel cultures, cell culture supernatants were preserved for measurements of cytokine secretion 

by ELISA.  We measured expression of IL-17 and IFN-γ, cytokines known to be upregulated by 

γδ T cells responding to M. bovis infection (Alvarez et al., 2009; Lockhart et al., 2006; Aranday-

Cortes et al., 2013), and utilized the results from our M. bovis-specific γδ T cell RNA sequencing 

data in order to decide which biological factors would be most appropriate to assess in our co-

culture experiments.  As seen in Figure 3, co-cultured γδ T cells and MDM from virulent M. 

bovis-infected animals expressed higher levels of IFN-γ and IL-1β than did γδ T cells and MDM 

from M. bovis-naïve animals, regardless of MOI.  Inter-animal variability was a complication in 
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our co-culture experiments; however, general trends were observed.  Co-cultured cells from 

naïve animals tended to express increased levels of IL-10, IL-22, and TNF-α compared to co-

cultured cells from infected animals.  In the naïve animals, a lower MOI correlated with 

increased expression of IL-22 and TNF-α, while a MOI of 10 was correlated with increased IL-

10 expression (Figure 3).  Interestingly, although expression of IL-17 was increased, no 

difference was detected between γδ T cell/MDM co-cultures from naïve compared to M. bovis-

infected animals.  IL-17 is hypothesized to be an innate response by γδ T cells (Lockhart et al., 

2006; Reviewed in Chien et al., 2013), and can also be produced by activated macrophages 

(Barin et al., 2012), therefore, it’s possible that IL-17 production is a component of both the early 

and chronic immune response to TB.  BCG-infected MDM cultured in the absence of γδ T cells 

also expressed some IL-10, IL-22, and TNF-α, and significant levels of IL-1β, IL-17, and IFN-γ 

(Supplemental Figure 1).   

 

Chemokine expression during initial interactions between γδ T cells and BCG-infected MDM.   

 γδ T cells are thought to contribute to the establishment and maintenance of well-

organized granulomas (D’Souza et al., 1997; Plattner et al., 2009), and the results of our RNA 

sequencing analysis suggested that γδ T cells express transcripts for a number of chemokines that 

may play a role in recruiting other immune cells to the site of infection.  Therefore, we used 

qPCR to measure expression of CCL1, CCL2, CCL4, CCL8, CCL24 and CXCL10 in our BCG-

infected γδ T cell/MDM co-cultures.  As seen in Figure 4, co-cultures from virulent M .bovis-

infected animals tended to express increased levels of CCL2, CCL8, and CXCL10 compared to 

co-cultures from naïve animals.  CCL2 and CCL8 expression were greatest when MDM were 

infected at an MOI of 1, while CXCL10 expression was greatest at the higher MOI (Figure 4).  
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Co-cultures from naïve animals tended to express increased levels of CCL1 and CCL24 

compared to M. bovis-infected animals.  CCL4 expression was significantly increased for co-

cultures from both naïve and infected animals at an MOI of 10; however, co-cultured cells from 

M. bovis infected animals expressed more CCL4 than the naïve animals at the lower MOI.  BCG-

infected MDM cultured in the absence of γδ T cells also upregulated expression for CCL2, 

CCL4, CCL8, CCL1, and CXCL10, but not CCL24 (Supplemental Figure 2).   

 

Cytokine and chemokine production during initial interactions between γδ T cells and BCG-

infected MDM.   

 To confirm the results of our qPCR analysis, commercial ELISA kits were used to 

measure the concentration of selected cytokines and chemokines in cell culture supernatants 

isolated from γδ T cell/MDM co-cultures after 72 hours.  Consistent with our qPCR analysis, co-

culturing γδ T cells from M. bovis-infected animals in direct contact with BCG-infected MDM 

resulted in increased production of IFN-γ, IL-17, and CXCL10 compared to BCG-infected MDM 

cultured alone (Figure 5).  A higher MOI induced increased production of IFN-γ and CXCL10 in 

γδ T cell/MDM co-cultures from virulent M. bovis-infected animals, while the MOI did not seem 

to have an effect on IL-17 production.  No significant IFN-γ, IL-17 or CXCL10 production was 

detected in cell culture supernatants from naïve animal co-cultures. 

 

Expression of cytotoxic factors during initial interactions between γδ T cells and BCG-infected 

MDM.   

 γδ T cells have been found to have cytotoxic capabilities during early TB infection.  One 

group found that γδ T cells in cattle are able to directly kill macrophages that are infected with 
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M. bovis (Skinner et al., 2003).  In support of this previous report, our transcriptomics analysis 

also revealed that γδ T cells upregulate expression of both Granzyme B and nitric oxide synthase 

(NOS2) in response to stimulation with PPD-b.  Therefore, we evaluated expression of the 

cytotoxic factors granzyme B, NOS2 and granulysin in our γδ T cell/MDM co-cultures.  As seen 

in Figure 6, co-cultures from M. bovis-infected animals tended to express higher levels of 

granulysin and granzyme B at an MOI of 10 compared to the lower MOI as well as compared to 

the co-cultured cells from naïve animals at either MOI.  NOS2 was more highly expressed by 

infected animals at the lower MOI with little to no difference between groups at the higher MOI.  

BCG-infected MDM cultured in the absence of γδ T cells expressed granulysin and NOS2 but 

not granzyme B (Supplemental Figure 3).   

 

BCG viability within co-culture systems.  

  

 Given that both our transcriptomics analysis of γδ T cells, and PCR analysis of our co-

cultures suggested increased expression of various cytotoxic factors, we next measured the 

functional cytotoxic capacity of γδ T cells interacting with MDM by analyzing BCG viability 

within our co-culture systems.  Cell cultures were collected, stained with FDA, and analyzed by 

flow cytometry to quantify amounts of live BCG present using a protocol adapted from Baquero 

and Plattner (2016).  As seen in Figure 7, BCG viability was significantly reduced in γδ T 

cell/MDM co-cultures established from virulent M. bovis-infected calves, compared to co-

cultures established from M. bovis-naïve animals.  This reduction was most apparent in cultures 

infected with the higher MOI.  Together, our results suggest that in addition to a role in 

recruitment of immune cells to developing granulomas, that γδ T cells may contribute to the 

control of M. bovis infection through their ability to directly impact bacterial viability. 
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 Discussion 

γδ T cells are thought to play an important role during M. bovis infection in cattle 

primarily through their production of IFN-γ, which is critical for promoting the development of a 

strong Th1 immune response (Lee et al., 2004).  However, in addition to production of IFN-γ, γδ 

T cells have the capacity for a variety of other innate and adaptive immune functions, such as 

regulatory cytokine production and chemokine production (Guzman et al., 2014; Hoek et al., 

2009; Lahmers et al., 2006; McGill et al., 2013).  As a significant population in the respiratory 

mucosa, it is highly likely that γδ T cells participate in early, local immunity to M. bovis 

infection; however, their specific role at the site of infection, particularly with regard to these so-

called alternative functions, has not been well characterized.  In the present study, we utilized 

transcriptomics analysis to further appreciate the breadth of the γδ T cell response to M. bovis 

infection, and an in situ hybridization assay to assess the local γδ T cell response in vivo during 

the chronic stage of BTB infection.  We also developed a novel γδ T cell/MDM co-culture 

system to model interactions that may occur between γδ T cells and M. bovis-infected 

macrophages in the early stages of aerosol TB infection. 

To the best of our knowledge, we are the first to perform transcriptomics analysis on γδ T 

cells responding to M. bovis infection.  Through this approach, we identified thousands of genes 

that were DE between unstimulated and PPD-b stimulated peripheral γδ T cells, many of which 

have not been previously described, thus providing significant insight into the diverse functions 

of these cells during Mycobacterium infection.  Of particular interest, we observed upregulation 

of a number of cytokine genes, some of which were expected (IFN-γ, IL-17A, IL-10) and some 

that have not been previously described.  IL-1β was identified as being significantly upregulated 

by M. bovis-specific γδ T cells in our transcriptomics analysis, and was also up-regulated in our 
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γδ T cell/macrophage co-cultures.  IL-1β has been found to play an important role in the anti-

mycobacterial response by aiding in macrophage destruction of mycobacteria (Zhou et al., 2016; 

Master et al., 2008); however, its expression by γδ T cells has not been previously characterized 

during M. bovis infection.  In both mice and humans, IL-1β, in synergy with IL-23 has been 

shown to play a critical role in the production of IL-17 by γδ T cells (Sutton et al., 2009).  In 

mice, the absence of IL-1 type I receptor results in failure to secrete IL-17 in response to IL-23 

or TLR agonists (Reviewed in Sutton et al., 2012).  γδ T cells express the IL-1 receptor; 

therefore, one could speculate that IL-1β secretion by γδ T cells may act to enhance IL-17 

production during the early stages of infection.  

TNF-α was also identified in our transcriptomics analysis as a gene that was upregulated 

by γδ T cells in response to M. bovis antigen.  Interestingly, in our in vitro co-culture assay, 

TNF-α appeared to be more predominantly expressed by γδ T cells isolated from naïve animals 

compared to γδ T cells from M. bovis-infected animals.  The initial stages of granuloma 

formation are dependent upon the production of TNF-α, as its signaling is crucial in maintaining 

chemokine concentrations to mediate early immune cell recruitment (Algood et al, 2005; Kindler 

et al., 1989; Roach et al., 2002).  Human γδ T cells have been shown to produce TNF-α in 

response to M. tb infection (Tsukaguchi et al., 1999); however the expression of TNF-α by 

bovine γδ T cells responding to M. bovis infection has not been previously described.  Its 

significant upregulation in our in vitro co-culture system, particularly in co-cultures from naïve 

animals, supports an important role for this cytokine during the early stages of infection.   

Chemokine gradients are critical for the recruitment of other immune cells to the site of 

infection.  It is hypothesized that the chemokine response by infected cells during the initial 

infection are crucial for the control of the invading mycobacteria, whereas the chemokine 
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response during chronic infection may aid in granuloma formation and maintenance, in attempt 

to physically wall-off the pathogens (Aranday-Cortes et al., 2013).  Consistent with a role for γδ 

T cells in both controlling infection at the early stages of disease, as well as in promoting the 

formation and maintenance of a well-organized granuloma, our sequencing results and co-culture 

system allowed us to identify several novel chemokines that were upregulated by γδ T cells 

responding to M. bovis antigen, including CCL4, CCL8 and CXCL10.  CCL4, also known as 

macrophage inflammatory protein-1β (MIP-1β), is commonly produced by T cells and is 

involved in inflammatory functions (Rollins, 1997).  CCL4 production in the context of TB has 

been previously described (Sutherland et al., 2016), however not in the bovine model and not by 

γδ T cells.  We observed increased CCL4 expression in the co-cultures from both M. bovis-

infected and naïve animals, suggesting a potential role for this chemokine throughout BTB 

disease progression.  CCL8, also known as monocyte chemoattractant protein 2 (MCP-2), is 

chemotactic for monocytes, lymphocytes, basophils, and eosinophils (Rollins, 1997).  Consistent 

with our results in BTB, γδ T cells have been previously shown to express CCL8 in response to 

Anaplasma marginale infection (Lahmers et al., 2006).  Our findings suggest γδ T cell 

production of CCL8 may be an important mediator in cell recruitment during chronic BTB 

infection.  CXCL10 was identified as differentially upregulated in our transcriptomics analysis, 

and was up-regulated in co-cultures from M. bovis-infected animals compared to M. bovis-naïve 

animals.  CXCL10, also known as interferon gamma-induced protein 10 (IP-10), is chemotactic 

for monocytes, NK cells, and T cells (Rollins, 1997).  CXCL10 is known to be increased in the 

stage I and stage IV granulomas in cattle infected with M. bovis, however the source of CXCL10 

has not been identified (Aranday-Cortes et al., 2013; Palmer et al., 2015).  Our results suggest 

that γδ T cells may be one important source of CXCL10 at the site of infection.   



64 

Interestingly, through our in situ analysis, we identified CCL2 as a chemokine that was 

highly expressed by γδ T cells at the site of M. bovis infection; although we did not observe 

significant CCL2 expression in our in vitro co-cultures, nor was this chemokine identified as 

significantly DE in our transcriptomics analysis.  CCL2 expression is significantly upregulated in 

M. tb granulomas, and has been associated with increased disease severity in both humans and 

animals, although the source of CCL2 within the granulomas was not been defined in these 

previous reports (Hasan et al., 2010; Mastroianni et al., 1998; Alvarez et al., 2009).   In the report 

by Alvarez et al., depletion of γδ T cells from M. bovis-infected mice resulted in a significant 

reduction in CCL2 expression; however, the authors concluded that γδ T cells themselves were 

not a significant source of the chemokine, but indirectly contributed to its production.  Our 

results are in direct contrast to this report, as we identified bovine γδ T cells as major producers 

of CCL2 at the site of infection in the context of chronic M. bovis infection.  The reasons for this 

disparity are unclear; however, our results rely on the more physiologic model of M. bovis 

infection in cattle, while the results by Alvarez et al. employed a murine model of BTB 

infection.  The increased expression of CCL2 by γδ T cells at the site of infection may support 

effective granuloma formation, leukocyte recruitment, or bacterial containment within the 

granuloma.  

γδ T cells from non-human primates are a significant source of IL-22 during M. tb 

infection, both in the peripheral blood and at the site of infection (Yao et al., 2010).  In 

agreement, Steinbach et al. recently described bovine γδ T cells from the periphery as being 

major producers of IL-22 during infection with M. bovis (Steinbach et al., 2016).  Consistent 

with these previous reports, we measured significant expression of IL-22 in our γδ T 

cell/macrophage co-cultures; in contrast, however, we observed no expression of IL-22 by γδ T 
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cell within late-stage M. bovis granulomas.  This is in agreement with Aranday-Cortes et al., who 

observed a decrease in IL-22 levels by qPCR in late-stage granulomas from M. bovis-infected 

cattle (Aranday-Cortes et al., 2013; Steinbach et al., 2016), and Palmer et al. who observed very 

low levels of expression of IL-22 by RNAScope in any stage of lesion collected at 150 days post 

M. bovis infection (Palmer et al., 2016).  In human patients chronically infected with M. tb, 

cellular immune responses become depressed (Zhang et al., 1995); therefore, it may not be 

surprising that decreased levels of IL-22 were found at the later stages of infection.  The 

disparities we observed in both CCL2 and IL-22 expression between our in vitro re-stimulation 

assay and our in situ analysis confirms previous reports describing critical differences between 

the systemic and mucosal immune responses during TB (Brighenti and Andersson, 2012), and 

underlines the importance of analyzing the local immune response rather than relying solely on 

in vitro assays with peripheral blood populations.   

After discovering multiple cytotoxicity genes upregulated in our γδ T cell RNA 

sequencing results, we evaluated the expression of cytotoxic genes in our co-culture systems.  In 

agreement with our RNASeq analysis, we measured increased expression of NOS2, granzyme B, 

and granulysin in our co-cultures from both M. bovis-infected and naïve animals.  Granulysin 

expression in our co-culture system was expected, as a bovine homologue of granulysin has been 

previously identified, and production of granulysin by γδ T cells has been previously described 

in the context of human TB (Dieli et al., 2003; Endsley et al., 2004).  Until recently, NOS2 

expression has been primarily attributed to myeloid cells, and the production of iNOS has been 

well documented in human and murine macrophages in response to TB and BCG infection 

(Sciorati et al., 1999; Douguet et al., 2016; Saito and Nakano, 1996).  However, recent studies 

have also established that lymphoid cells have the capacity to express NOS2 (Yang et al., 2013; 
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Obermajer et al., 2013), and a report in mice has shown that NOS2 expression has a significant 

impact on the viability and proliferative capacity of γδ T cells in vivo (Douguet et al., 2016).  To 

our knowledge, ours is the first report describing NOS2 expression by γδ T cells in cattle, and the 

first to demonstrate this expression in the context of BTB.  Importantly, in addition to expressing 

molecules associated with cytotoxicity, we determined that γδ T cells had the functional capacity 

to eliminate M. bovis-infected cells in our in vitro co-culture system.  Although the exact 

mechanisms of cytotoxicity are unclear, we determined here that γδ T cells from M. bovis-

infected animals were able to significantly reduce the viability of BCG in our γδ T 

cells/macrophage co-cultures compared to γδ T cells from naïve animals.  This result is in 

agreement with a previous report by Martino et al., showing that BCG-infected human 

monocyte-derived dendritic cells induce the development of a functionally cytotoxic central 

memory Vγ9Vδ2 T cell population that is highly efficient at killing infected monocytes in vitro 

(Martino et al., 2007), as well as a report by Skinner et al. demonstrating that, in vitro, bovine γδ 

T cells can directly kill macrophages that are infected with M. bovis (Skinner et al., 2003).  In 

vivo, γδ T cells from non-human primates have been shown to express both perforin and 

granulysin (Chen et al., 2013).  The capacity of bovine γδ T cells for cytotoxicity at the site of M. 

bovis infection is unknown and will be the subject of future research in our laboratory. 

Measuring the function of immune cells within developing TB granulomas remains 

challenging, primarily due to technical difficulties in locating lesions during the early stages of 

infection, and in isolating viable immune cells from lesions during the later stages of infection.  

However, utilizing RNAScope allowed us to look at mRNA expression of cytokines and 

chemokines by γδ T cells directly at the site of late BTB infection.  Consistent with our own 

previous work (McGill et al., 2014), and reports from others (Wangoo et al., 2005; Aranday-
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Cortes et al., 2013), we observed γδ T cells accumulating in the lymphoid mantle surrounding 

the periphery of late-stage lesions.  In our RNAscope analysis, γδ T cells comprised a significant 

portion of the immune cells expressing IFN-γ within lymph node granulomas, although this 

proportion was much reduced within lung granulomas.  Overall, we noted that the expression of 

inflammatory cytokines was reduced within lung granulomas compared to lymph node 

granulomas from the same animal.  This difference between tissue cytokine expression is in 

agreement with recent results by Palmer et al. who observed significant differences in 

inflammatory cytokine expression between lung and lymph node lesions, as well as differences 

between lesions located in the caudal mediastinal vs. tracheobronchial lymph nodes (Palmer et 

al., 2016).  Although the biological significance of these findings is unclear, it suggests that 

anatomic location has a significant impact on the host immune response to M. bovis.  We were 

surprised to observe relatively few cells, γδ T cells or otherwise, expressing transcripts for any of 

the inflammatory cytokines that we measured.  However, our findings are in agreement with 

another recent report by Palmer et al., which used RNAscope to quantify overall expression of 

inflammatory cytokines, including IFN-γ, within virulent M. bovis granulomas at various stages 

of development (Palmer et al., 2015).  In this study, Palmer et al. observed no significant 

expression of IL-10 and only low levels of IL-17, while the most highly expressed transcripts 

included IFN-γ and the chemokines CXCL9 and CXCL10.  It is important to recall that in situ 

analyses such as those performed using RNAScope are limited to only a single time point, often 

belying the complex and dynamic interactions that are occurring during an active M. bovis 

infection. 

 Previous studies have used in vitro co-culture systems to study interactions between 

bovine or human γδ T cells with DC (Price and Hope, 2009; von Lilienfeld-Toal et al., 2005).  In 
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these previous reports, it was found that there was an increase in IFN-γ production when γδ T 

cells were cultured in direct contact with infected DC, which is consistent with our findings.  A 

recent report by Baquero and Plattner (2016) also used a similar co-culture system to assess 

interactions between γδ T cells and macrophages infected with Mycobacterium avium subspecies 

paratuberculosis (Map).  Similar to our own co-culture findings, culturing bovine γδ T cells with 

Map-infected MDM resulted in increased production of IFN-γ, IL-17A, and nitrites (Baquero 

and Plattner, 2016), suggesting that γδ T cells have the capacity to enhance the immune response 

to both tuberculous and non-tuberculous Mycobacterium. 

Significant inter-animal variability was observed during this study.  This variability has 

been described previously and can likely be attributed to the fact that cattle are not an inbred 

species (Svendsen and Hansen, 1999).  It has been shown that individuals respond differently to 

TB infection due to genetic predisposition.  Genetic differences between breeds have been found 

to play a role in breed susceptibility to BTB (Vordermeier et al., 2012).  Further work has 

identified genetic factors that influence susceptibility of cattle to BTB (Driscoll et al., 2011).  

Another study identified a genetic marker that is associated with a decreased reaction of cattle to 

the tuberculin test, making these animals less likely to test positive for BTB (Amos et al., 2013).  

Continued work to better understand individual animal variability is important as it contributes to 

our understanding of immunity and disease resistance during TB infection.   

 In summary, our findings show that γδ T cells are extremely dynamic and are capable of 

producing a number of different cytokines and chemokines, suggesting an important role for 

these cells throughout disease progression at the site of M. bovis infection.  Although peripheral 

γδ T cells were initially used for RNAseq, the results allowed us to identify novel immune 

factors that could potentially play a role at the site of M. bovis infection.  Utilizing RNAScope 
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allowed us to look directly at the site of infection; however, it is important to note that the tissue 

samples collected for this study depict only a brief snap-shot of γδ T cell function within 

granulomas during chronic infection.  Future studies should be aimed further describing γδ T cell 

functions at the site of infection over the full course of M. bovis infection.  Moreover, our unique 

co-culture approach to mock initial interactions of γδ T cells with infected macrophages at the 

site of infection gave us insight into γδ T cell expression of immune factors during the early 

stages of granuloma development.  Future studies utilizing trans-well systems or blocking 

antibodies will allow for a better understanding of γδ T cell interactions with innate immune 

cells.  Taken together, our findings strongly support the hypothesis that γδ T cells play a dynamic 

role in immune cell recruitment and granuloma maintenance in response to BTB infection, thus 

contributing to control of the disease and promoting a positive disease outcome. 
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Table 1.  Primers used for qPCR 

 

The Integrated DNA Technologies PrimerQuest Tool was used to create custom primers that 

have not been previously published.   
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Figure 1.  Pathways related to the immune response are most significantly modulated in M. 

bovis-specific γδ T cells.  PBMCs were collected from calves (n=5) infected with virulent M. 

bovis and stimulated over-night with PPD-b or culture media alone.  γδ T cells were isolated by 

magnetic separation and RNA was extracted and subjected to transcriptomics analysis.  

Differential gene expression values were calculated for each gene as the fold change of 

stimulated γδ T cells over mock treated γδ T cells for each animal.  Genes commonly expressed 

between all five calves were subjected to a pathways analysis to reveal the most significant 

canonical pathways being represented by RNA sequencing results.  
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Table 2.  RNA sequencing genes relating to the immune system commonly expressed between M. 

bovis-infected calves. 

  

Values are the mean ± SEM. 
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Table 3.  RNA sequencing genes relating to various pathways commonly expressed between all 

M. bovis-infected calves. 

 

Values are the mean ± SEM. 
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Table 4.  Confirming RNA sequencing with qPCR.   

 

γδ T cells from calves that were subjected to RNA sequencing were also analyzed by qPCR to 

confirm sequencing results.  Values indicate average fold change ± SEM in gene expression 

between unstimulated and PPD-b stimulated γδ T cells isolated from M. bovis-infected calves 

(n=5). 
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Figure 2.  γδ T cells express various cytokines and chemokines within late-stage granulomas.  

Tissue samples from granulomatous lesions in the lungs and mediastinal lymph nodes were 

harvested from calves (n=5) 3 months post-infection with virulent M. bovis.  Tissue sections 

were preserved onto slides by formalin fixation and paraffin embedding.  RNAScope was used 

for in situ analysis of mRNA transcripts of various cytokines/chemokines (green) and the γδ 

TCR (red).  Characteristic TB granuloma at 10X magnification (A) and at 40X magnification (B) 

within the lymph node of a chronically infected animal.  Arrows indicate instances of γδ T cell 

and IFN-γ (C) IL-10 (D) CCL2 (E) IL-17 (F) co-expression.     
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Table 5.  Quantitative measure of mRNA labeling using RNAScope for various cytokines and 

chemokines expressed by γδ T cells within bovine pulmonary tuberculoid granulomas. 

  

Tissue samples from granulomatous lesions in the lungs and mediastinal lymph nodes were 

harvested from calves (n=5) 3 months post-infection with virulent M. bovis.  Tissue sections 

were preserved onto slides by formalin fixation and paraffin embedding.  RNAScope was used 

for in situ analysis of mRNA transcripts of various cytokines/chemokines and the γδ TCR.  Ten 

representative images at 100X magnification from around the periphery of the granuloma were 

used for quantification.  Values represent the percentage of γδ T cells expressing the cytokine or 

chemokine of interest out of the total number of cells expressing the cytokine or chemokine of 

interest ± SEM. 
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Figure 3.  Cytokine expression in γδ T cell/MDM co-cultures from naïve and M. bovis-infected 

calves stimulated with BCG.  MDM and autologous γδ T cells isolated from M. bovis-infected or 

naïve animals were cultured together for 24 hours after a 4 hour infection with BCG at an MOI 

of 1:1 or 10:1.  RNA was extracted and reverse transcribed into cDNA and qPCR was performed 

for various inflammatory, anti-inflammatory, and regulatory cytokines.  Results were normalized 

to the housekeeping gene RPS-9, and expressed relative to uninfected γδ/ MDM co-culture 

(mock) samples.  Data represent means ± SEM (n=19 for naïve group and n=10 for infected 

group) (* P≤ 0.05; ** P≤0.01; ANOVA). 
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Figure 4. Chemokine expression in γδ T cell/MDM co-cultures from naïve and M. bovis-infected 

calves stimulated with BCG.  MDM and autologous γδ T cells isolated from M. bovis-infected or 

naïve animals were cultured together for 24 hours after a 4 hour infection with BCG at an MOI 

of 1:1 or 10:1.  RNA was extracted and reverse transcribed into cDNA and qPCR was performed 

on various chemokines.  Results were normalized to the housekeeping gene RPS-9, and 

expressed relative to uninfected γδ/ MDM co-culture (mock) samples.  Data represent means ± 

SEM (n=19 for naïve group and n=10 for infected group) (* P≤ 0.05; ** P≤0.01; ANOVA). 
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Figure 5.  γδ T cells from M. bovis-infected calves are the main source of IL-17, IFN-γ and 

CXCL10 when in contact with BCG-infected MDM.  Commercial ELISA kits were used to 

measure IL-17A, IFN-γ, and CXCL10 from the supernatants of uninfected and BCG-infected co-

cultures of MDM in direct contact with autologous γδ T cells.  Data represent mean ± SEM 

(n=19 for naïve group and n=10 for infected group) (* P≤ 0.05; ** P≤0.01; ANOVA). 



88 

 

Figure 6.  Cytotoxic factors expressed in γδ T cell/MDM co-cultures from naïve and M. bovis-

infected calves stimulated with BCG.  MDM and autologous γδ T cells isolated from M. bovis-

infected or naïve animals were cultured together for 24 hours after a 4 hour infection with BCG 

at an MOI of 1:1 or 10:1.  RNA was extracted and reverse transcribed into cDNA and qPCR was 

performed on various cytolytic factors.  Results were normalized to the housekeeping gene RPS-

9, and expressed relative to uninfected γδ/ MDM co-culture (mock) samples.  Data represent 

means ± SEM (n=19 for naïve group and n=10 for infected group). 
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Figure 7.  BCG viability is reduced when cultured with cells from M. bovis-infected animals.  

Cells were collected 72 hours after infection with BCG and frozen until ready for analysis.  After 

thawing, cells were re-suspended in 7H9-OADC-T and incubated in for 24 h.  Cells were 

centrifuged and re-suspended in saline solution, and 1 μL of FDA at a concentration of 2 mg/mL 

was added to each tube.  After 30 min of incubation at 37°C, samples were analyzed by flow 

cytometry.  Data represent means ± SEM (n=19 for naïve group and n=8 for infected group) 

(**** P≤0.0001; ANOVA). 
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Supplemental Figure 1.  Cytokine expression by MDM from naïve and M. bovis-infected calves 

cultured alone or with BCG.  MDM isolated from M. bovis-infected or naïve animals were 

cultured together for 24 hours after a 4 hour infection with BCG at an MOI of 1:1 or 10:1.  RNA 

was extracted and reverse transcribed into cDNA and qPCR was performed on various 

inflammatory, anti-inflammatory, and regulatory cytokines.  Results were normalized to the 

housekeeping gene RPS-9, and expressed relative to uninfected MDM culture (mock) samples.  

Data represent means ± SEM (n=19 for naïve group and n=10 for infected group) (* P≤ 0.05; 

**** P≤0.0001; ANOVA). 
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Supplemental Figure 2.  Chemokine expression by MDM from naïve and M. bovis-infected calves 

cultured alone or with BCG.  MDM isolated from M. bovis-infected or naïve animals were 

cultured together for 24 hours after a 4 hour infection with BCG at an MOI of 1:1 or 10:1.  RNA 

was extracted and reverse transcribed into cDNA and qPCR was performed on various 

chemokines.  Results were normalized to the housekeeping gene RPS-9, and expressed relative 

to uninfected MDM culture (mock) samples.  Data represent means ± SEM (n=19 for naïve 

group and n=10 for infected group) (* P≤ 0.05; ** P≤0.01; *** P≤0.001; **** P≤0.0001; 

ANOVA). 
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Supplemental figure 3. Cytotoxic factors expressed by MDM from naïve and M. bovis-infected 

calves cultured alone or with BCG.  MDM isolated from M. bovis-infected or naïve animals 

were cultured for 24 hours after a 4 hour infection with BCG at an MOI of 1:1 or 10:1.  RNA 

was extracted and reverse transcribed into cDNA and qPCR was performed on various cytolytic 

factors.  Results were normalized to the housekeeping gene RPS-9, and expressed relative to 

uninfected MDM culture (mock) samples.  Data represent means ± SEM (n=19 for naïve group 

and n=10 for infected group) (* P≤ 0.05; ** P≤0.01; **** P≤0.0001; ANOVA). 
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Supplemental figure 4.  BCG viability assessed with FDA using known proportions of live and 

heat-killed bacteria. Optical density was measured with a SmartSpec™ 3000 spectrophotometer 

(Bio Rad, Hercules, CA, USA).  BCG suspension with a concentration of 1.5 x 107
 bacteria/mL 

was heat-killed using a water bath incubator at 80°C for 30 minutes.  Bacteria were then 

centrifuged at 2000 rpm for 5 minutes.  Supernatants were discarded and the pellet was re-

suspended in a sterile saline solution to get a concentration of 1 x 107
 bacteria/100 µl.  Five 

different proportions of live and heat-killed bacteria (100:0, 75:25, 50:50, 25:75 and 0:100) were 

mixed to have a total of 1 x 107 bacteria/tube. 1 μL of FDA (Sigma Aldrich) at a concentration of 

2 mg/mL was added to each tube, and incubated at 37°C for 30 minutes in 5% CO2.  Samples 

were analyzed by flow cytometry using a BD LSRFortessa X-20 (BD Biosciences, Franklin 

Lakes, New Jersey, USA), and gating was determined based on the known proportion of live, 

dead, and unstained-live BCG.  
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Chapter 3 - Conclusions 

 General Discussion 

The aim of the current study was to identify novel functions of γδ T cells at the site of M. 

bovis infection.  It has been well established that γδ T cells play a role in BTB infection, and that 

the response of peripheral blood γδ T cells is not necessarily an accurate representation of their 

response at the site of infection (Gideon et al., 2015).  To date, the specific role γδ T cells play in 

vivo is not well understood; however, it has been shown that these cells accumulate at the site of 

infection and, in murine models, are necessary for proper granuloma development; suggesting an 

important role for these cells in shaping the immune response against BTB infection (D’Souza et 

al., 1997; Ladel et al., 1995).   

As a unique approach to identifying novel functions of γδ T cells, we utilized RNA 

sequencing to conduct an in-depth molecular analysis of the response of M. bovis-specific γδ T 

cells.  We found a significant number of immune-related genes to be differentially expressed by 

γδ T cells responding to M. bovis antigen.  Some of the cytokines and chemokines identified 

were in-line with previous research such as IFN-γ, CCL2, IL-10, and IL-17 (Lee et al., 2004; 

Kennedy, 2002; Alvarez et al., 2009; Lockhart et al., 2006; Guzman et al., 2014), while others 

had not been characterized in this context such as SOCS1, IL-15RA, IL-1β, NOS2, TNF-α, 

CCL8, and CCL24.  Our transcriptomics analysis also revealed γδ T cell expression of the 

cytotoxic factors nitric oxide synthase and granzyme B.  When we assessed γδ T cell cytotoxic 

activity in our γδ T cell/MDM co-cultures, we found a significant reduction in BCG viability in 

co-cultures established from M. bovis-infected animals, but not naïve animals.  Cytotoxic 

activities of γδ T cells has been previously described; however, the importance of these cytotoxic 
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functions in response to M. bovis infection is not well understood (Hirano et al., 1998; Skinner et 

al., 2003; Dieli et al., 2003;  Egan and Carding, 2000; De La Barrera et al., 2003).       

Granulomas are characteristic of TB disease and aid in the containment of mycobacterial 

spread; however, they are not sufficient alone to control the disease.  The immune response 

within the granuloma, and the signals required to establish and maintain an effective granuloma 

structure, are not well understood; therefore, we sought to elucidate the role of γδ T cells in these 

events.  Utilizing an in situ hybridization assay allowed us to directly examine γδ T cell mRNA 

expression within the granulomas of calves chronically infected with M. bovis.  Consistent with 

previous findings (Palmer et al., 2007; Cassidy et al., 1998), we observed a significant 

population of γδ T cells in the lymphoid mantle surrounding the periphery of the granulomas.  

We determined that γδ T cells comprised a significant population expressing CCL2 and IFN-γ 

within the lesions, which has not been previously described.  However, γδ T cell IFN-γ 

expression was significantly lower in the lung lesions compared to the lymph node lesions.  We 

observed few γδ T cells expressing IL-17 or IL-10 at this time point of infection, and detected no 

γδ T cells expressing IL-22.  Expression of these cytokines by γδ T cells responding to M. bovis 

infection has been described (Aranday-Cortes et al., 2013; Steinbach et al., 2016; Palmer et al., 

2015).  However, it is likely that the role of γδ T cells changes as disease progresses, and it may 

be possible that γδ T cells express IL-17, IL-10 and IL-22 more prominently during early 

infection, or possibly, that γδ T cells do not contribute significantly to local expression of these 

cytokines during infection.  Limited availability of tissue sections hindered our ability to look at 

additional cytokines and chemokines identified by our RNA sequencing in this study, but will be 

the subject of future research for our group.     

http://onlinelibrary.wiley.com/doi/10.1111/j.1865-1682.2009.01081.x/full#b15
http://onlinelibrary.wiley.com/doi/10.1111/j.1865-1682.2009.01081.x/full#b6
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After identifying novel immune genes in our sequencing data and looking at the γδ T cell 

response in vivo to chronic M. bovis infection, we next sought to explore the γδ T cell response 

during early M. bovis infection.  In order to do so, we created a novel in vitro co-culture system 

in which γδ T cells from M. bovis-infected or M. bovis-naïve calves are in direct contact with 

autologous BCG-infected MDM in an attempt to mock the initial interactions that may occur 

between these cells at the site of infection, prior to granuloma development.  Similar co-culture 

systems have been utilized by other groups to study γδ T cells interactions with innate immune 

cells (Baquero and Plattner, 2016; von Lilienfeld-Toal et al., 2005); however, ours is the first to 

be used in the context of BCG-infected macrophages and is a novel approach to identifying 

functions of γδ T cells at the site of initial mycobacterial infection.    

Consistent with our sequencing results, co-cultured γδ T cells and MDM from naïve and 

M. bovis-infected animals expressed various cytokines, chemokines, and cytotoxic factors.  We 

detected expression of IL-1β and TNF-α by both γδ T cells and macrophages, and identified 

expression of several novel chemokines (CCL4, CCL8, & CCL24), giving further insight into the 

role of γδ T cells in immune cell recruitment during initial formation of granulomas.  Expression 

of the cytotoxic factors granzyme B, NOS2, and granulysin were also analyzed in our co-culture 

system.  BCG viability within the co-culture system was significantly reduced in cultures from 

M. bovis-infected animals compared to naïve animals.  Similar to our results, γδ T cells in cattle 

have been shown to directly kill macrophages that are infected with M. bovis (Skinner et al., 

2003); although, it is likely that these cytotoxic activities are not sufficient alone for the control 

of BTB.   

Our findings show that γδ T cells are capable of a wide array of functions when 

responding to mycobacterial infection.  These cells are important for recruiting other immune 
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cells to the site of infection by chemokine secretion, helping to shape the immune response by 

secretion of various inflammatory and regulatory cytokines, and interacting with other innate 

immune cells throughout disease progression.  This work contributes to the understanding of 

bovine γδ T cell function in response to M. bovis infection.  An enhanced understanding of the 

immune response to TB is essential in the effort to create more efficacious vaccines and 

diagnostic tests for animals and humans.   

 

 Recommendations for future research 

Our research is aimed at elucidating the role of γδ T cells at the site of M. bovis infection.  

We have shown that γδ T cells are capable of a wide array of functions in response to M. bovis 

infection, and identified functions for these cells that have not been well characterized.  We have 

identified a number of novel genes expressed by γδ T cells responding both in vivo and in vitro 

to M. bovis infection.  Future work to expand upon these initial findings is expected to contribute 

to a more complete understanding of γδ T cell function in the context of BTB infection.   

Our transcriptomics analysis and co-culture experiments showed that γδ T cells have the 

capacity to produce numerous cytokines and chemokines within granulomas, thus contributing to 

the recruitment of immune cells to the site of infection and shaping the outcome of disease 

progression.  One approach to develop a more complete understanding of the dynamic role that 

γδ T cells play at the site of infection throughout TB disease progression would be a time-course 

study in which RNAScope could be used to analyze γδ T cell co-expression of various cytokines 

and chemokines in all the different stages of granulomas.  This would allow for a more complete 

understanding of how γδ T cell function changes as the immune response develops after 

mycobacterial infection.  It would also allow us to evaluate γδ T cell expression of the 
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chemokines we identified in the current study, which would give further insight into the role of 

these cells in local immunity.  A recent study by Palmer et al., utilized RNAScope as a way to 

analyze cytokine expression within pulmonary granulomas in cattle and found increased 

expression of IFN-γ, TNF-α, IL-16, CXCL10, and CXCL9; however, expression of cytokines 

and chemokines by γδ T cells was not specifically evaluated (Palmer et al., 2015).   

TB granulomas take time to develop and it is difficult to grossly identify lesions in the 

very early stage of infection.  Therefore, our co-culture system provided an in vitro model to gain 

insight into γδ T cell function during early interactions with mycobacteria-infected macrophages, 

similar to what may happen at the initial site of infection.  γδ T cells are often referred to as 

immune sentinel cells, and are prominent at mucosal surfaces such as the lungs and respiratory 

tract.  Therefore, γδ T cells are likely to be one of the first cells to encounter an infected 

macrophage following an aerosol TB infection (Reviewed in Vantourout and Hayday, 2013).  

We analyzed γδ T cells and MDM together in our co-culture system, as initial interactions 

between these two populations is likely critical for dictating subsequent events in the immune 

response to TB; however, in order to gain a better understanding of the individual contributions 

of γδ T cells or macrophages, these cells could be sorted back out into two separate populations 

to be analyzed.  Sorting the two cell types back out of culture could be completed by magnetic 

separation or by FACS sorting.  Another way in which the two cell types could be co-cultured 

and sorted back out would be the use of a trans-well system.  This system could be utilized to 

differentiate between contact-dependent and soluble interactions between γδ T cells and infected 

macrophages.  A study similar to this has been completed by Baquero and Plattner where, similar 

to our co-culture results, they found that when they cultured bovine γδ T cells with 

Mycobacterium avium subspecies paratuberculosis (Map)-infected MDM, there was increased 
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IFN-γ, IL-17A, and nitrite secretion (Baquero and Plattner, 2016).  Also, expanding upon our 

work with more ELISAs on the cytokines, chemokines, and cytotoxic factors would be useful 

when comparing mRNA expression to actual protein secretion.   

The ability of bovine γδ T cells to behave in a cytotoxic manner towards M. bovis-

infected macrophages has been previously described (Skinner et al., 2003); however the 

cytotoxic function of these cells is not well understood.  γδ T cell expression of cytotoxic factors 

was identified in our transcriptomics analysis and in our co-culture systems.  We also found that 

BCG viability was reduced in our co-cultures; however, further work to evaluate the exact 

mechanisms of cytotoxicity by γδ T cells would provide further insight into the complex role 

these cells play during early interactions with infected cells.  Also, the capacity of bovine γδ T 

cells for cytotoxicity at the site M. bovis infection is unknown and should be the subject of 

further investigation, potentially by RNAScope, to further address the functional cytotoxic 

capabilities of these cells.     

There are multiple subsets of γδ T cells in cattle, and they are hypothesized to possess 

unique biological functions, although there is little known about the contribution of the 

individual populations during infection. WC1+ γδ T cells are the predominant γδ T cell 

population present in circulation, while WC1- γδ T cells are more prominent in the tissues 

(Rhodes et al., 2001; Machugh et al., 1997; Wijngaard et al., 1994).  A logical next step would 

be to elucidate the role of these individual subsets in response to M. bovis infection, as opposed 

to analyzing the response of the γδ T cell population as a whole.  During Map infection, WC1+ 

and WC1-  subsets have been reported to play differing roles in granuloma formation, with WC1+ 

γδ T cells accumulating after antigenic priming and likely functioning as early effector or 

memory cells, and WC1- γδ T cells having an enhanced ability to respond innately to live 
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mycobacteria (Plattner et al., 2009).  These subsets may influence the protective immune 

response to mycobacterial infection in cattle.    

Since γδ T cells were first discovered in 1985, significant efforts have gone into 

understanding the role of these unique T cells (Weintraub and Hedrick, 1995), but many 

questions still remain.  The quest to understand the importance of these cells in the immune 

system is far from complete and research seems to raise as many questions as it answers.  This 

study contributes to our understanding of basic γδ T cell biology and provides critical 

information regarding the role of γδ T cells in immunity to TB.   
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