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Abstract 

 

Objective: To assess the in vitro ability of a novel lipopolysaccharide binding compound 

(EVK063) to inhibit cytokine production in lipopolysaccharide-stimulated equine 

peripheral blood mononuclear cells 

Animals: Eight healthy horses were sources for mononuclear cells. 

Procedures:  Replicate aliquots (concentrated at 4-5 million cells/mL) were stimulated 

with S. typhimurium lipopolysaccharide (LPS) (100ng/mL), treated with graded 

concentrations of EVK063, (0.01µM, 0.1µM, 1µM, 10µM), Polymyxin B (PMB) (10µM) 

and incubated at 37°C for 6 hours.  Media and cell samples were collected and stored at -

80°C for evaluation of Tumor necrosis factor (TNF) using an equine specific ELISA and 

Interleukin-6 (IL6) via qRT-PCR.  NanoDrop confirmed RNA quantity and primer sets 

designed for equine IL6 and the housekeeping gene 18s were used.  EVK063 toxicity was 

evaluated with propidium iodide staining as determined by flow cytometry.  Data was 

normalized, expressed as percent inhibition of cytokine up-regulation by LPS, and 

statistically evaluated by analysis of variance. Statistical significance was set at P ≤ 0.05. 

Results: Samples incubated in media with 0% serum demonstrated the following results: 

0.01µM and 0.1µM EVK063 maintained >90% cellular viability yet failed to 

significantly inhibit TNF production or IL6 expression.  The 1µM and 10µM EVK063 

concentrations exhibited 25% and 70% cell death respectfully and therefore an 

interpretation as to their efficacy to inhibit TNF production or IL6 expression could not 

be made.  Samples incubated in media with 10% serum demonstrated the following 

 
 



results: 0.01µM, 0.1µM and 1µM concentrations of EVK063 maintained >90% cellular 

viability yet failed to inhibit TNF production or IL6 expression.  The 10µM EVK063 

concentration exhibited 35% cell death and therefore an interpretation as to the efficacy 

to inhibit TNF production or IL6 expression could not be made.  In a whole blood 

preparation, all samples evaluated maintained >90% cellular viability.  The 10µM 

EVK063 significantly reduced TNF production and IL6 expression. 

Conclusion: This in vitro study confirms the ability of EVK063 to inhibit TNF 

production and IL6 expression in LPS stimulated equine mononuclear cells with 

comparable results to PMB. 
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Chapter 1 

Background literature 

History 

Endotoxemia is a devastating clinical condition in human and veterinary medicine.  

Despite constant medical advancements, endotoxemia remains a leading cause of death in 

the horse, and the number one non-coronary cause of death in the human intensive care 

unit accounting for greater than 215,000 deaths annually.1  The disease process 

overwhelms the hosts defense mechanisms and promotes a viscous inflammatory 

response responsible for the associated clinical signs.  One reason for the high mortality 

rate is the inability to reduce the inflammatory response due to the lack of appropriate 

non-toxic antiendotoxic therapy.   Consequently, research has focused on the cause of 

these clinical signs, their pathogenesis and potential attenuation of their effect.  As a 

result, valuable data has been generated that began over 100 years ago in Germany and 

continues even now, with investigations going on worldwide. 

Richard Pfeiffer, a German physician alongside Robert Koch, was working with the 

organism vibrio cholera when he made two important observations.2,3  Pfeiffer noticed 

the organism released two toxins, an exotoxin when alive and a heat stable toxin after 

death.2,3  He believed the heat stable toxin was sequestered by the organism while alive 

and therefore labeled it endotoxin.  Interestingly, Eugenio Centanni was making a similar 

discovery in Europe.  Centanni extracted a heat stable toxin from Salmonella typhi and 

named it pyrotoxina for its ability to induce fever.2,3  A great deal of work was done 

through the next decade analyzing these bacterial extracts.  However, it was not until the 

1920’s and 30’s that chemists determined the bacterial extracts were complex structures 
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composed of polysaccharide, phospholipid and protein.2,3  This discovery drove 

investigations into the relationship between the endotoxin structure and its associated 

clinical signs; such as hypothermic extremities, profuse sweating, weak peripheral pulses, 

and purple and congested mucous membranes.2  Further interest in septic shock was 

stimulated by the increased incidence of sepsis and death from traumatic wounds in 

human medicine associated with World War II. 

Investigations focusing on the mechanisms responsible for trauma induced shock and 

effects of bacterial infections continued in the 1950’s and 60’s.4  Animal models were 

utilized to reproduce clinical effects previously observed in human patients suffering 

from sepsis and shock.  Studies were conducted at Harvard University and the University 

of Minnesota where cardiac parameters were evaluated when anesthetized canines were 

intravenously administered endotoxin.4-6  A decrease in cardiac output, systemic blood 

pressure and venous return leading to poor tissue perfusion and death were 

demonstrated.4-6  These findings supported the association between hypotension and poor 

clinical outcome in human patients with circulatory shock. 

With research demonstrating similar clinical signs in multiple species, endotoxins 

became implicated in conditions other than traumatic wounds and septic shock.  Rooney 

et al described ‘colitis X’ in horses in 1963, where endotoxins were hypothesized to 

cause the clinical findings of fever, dehydration, diarrhea and colic.7  Carroll et al 

corroborated this hypothesis in 1965 after intraperitoneal injection of endotoxin at 

0.025mg/kg created similar clinical signs including diarrhea, hemoconcentration, severe 

leukopenia and death.8  They also demonstrated a species difference in the susceptibility 

to endotoxin.  The 0.025mg/kg used in horses was much lower than the 20mg/kg used in 
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mice, 0.48mg/kg in cats and 0.12mg/kg in cattle.8  The recognition of specie specific 

sensitivity led investigations to explore this phenomenon.   

Subsequent studies contributed knowledge regarding the body’s response to various 

amounts of endotoxin, including the synthesis and release of histamine, catecholamines, 

coagulation factors and arachidonic acid metabolites.9-11  Studies using anesthetized 

ponies where E. coli endotoxin was administered at different dosages (typically 150-200 

ug/kg), routes (intravenous and intraperitoneal) and concentration profiles (bolus or slow 

infusion) showed arterial hypoxemia, pulmonary hypertension, lactic acidosis, 

hypotension, leucopenia, hemoconcentration and decreased central venous pressure.12-14  

Additional in vitro and in vivo studies over the last two decades have evaluated host 

responses to systemic effects of low dose of endotoxin administration (20-30 ng/kg).  In 

addition, investigations have characterized the structure of endotoxin, cellular activation 

pathways, specific inflammatory mediators and clinical changes associated with host 

exposure to endotoxin.15-32  The information gained from these studies has proven vital 

towards the development of therapeutics, which are directly impacted by determination of 

the LPS molecule. 

Structure of Lipopolysaccharide 

Our understanding of the structure of the lipopolysaccharide molecule (LPS) and basic 

mechanisms underlying the cellular response to LPS has increased vastly in recent years 

(Fig. 1.1).  Lipopolysaccharide consists of a polysaccharide portion and a lipid called 

lipid A (Fig. 1.2).  The polysaccharide portion consists of a polymer of repeating 

oligosaccharide units, the composition of which is highly varied among Gram-negative 

bacteria.33-36  A relatively well-conserved core hetero-oligosaccharide covalently bridges 
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the polysaccharide with lipid A.33-36  The structurally highly conserved lipid A is the 

active moiety of LPS.33-36  In order for LPS to exert its toxic effect, it must be transported 

to its effector cell.  Lipopolysaccharide is hydrophobic and tends to form aggregates in 

plasma that either interact with lipopolysaccharide binding protein (LBP) or high density 

lipoproteins forming an endotoxin monomer.37-41  

Lipopolysaccharide Binding Protein   

Lipopolysaccharide binding protein (LBP) is synthesized by the liver and normally 

exists in small quantities in plasma.  As part of the acute phase response, the production 

of LBP is increased roughly 100 fold.41-43  Lipopolysaccharide binding protein binds to 

lipid A facilitating endotoxin monomer interaction with peripheral blood monocytes and 

macrophages.2,39,41,44-47  As part of its function in shuttling endotoxin to the inflammatory 

cells, LBP increases the sensitivity of the animal to endotoxin.  The LPS-LBP complex is 

transported to mononuclear phagocytes with a CD14 receptor on their surface.39,42,45,48-52   

CD14 

CD14 is a glycoprotein cell surface receptor that is attached to the cell via a 

carbohydrate linkage and whose expression is increased after LPS stimulation.39,42,45,48-52  

There are two forms of CD14; membrane bound and soluble.53  Soluble CD14 is able to 

extract LPS from the blood and stimulate cells that do not contain the membrane form of 

CD14.53  However, CD14 does not contain a transmembrane domain and therefore, the 

LPS-LBP-CD14 complex must interact with another receptor, Toll-like receptor 4 to 

exert its effect.54 

Toll-like Receptors 
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The innate immune system recognizes bacterial products and complexes through 

pattern recognition receptors known as Toll-like receptors that bind and are activated by 

various ligands.50,55-57  Toll-like receptors are named due to their similarities with Toll, a 

plasma membrane receptor discovered in the fruit fly Drosophila melanogaster.58-60  Toll 

was determined to play an integral role in the immune function of Drosophila and later 

shown to contain a cytoplasmic domain homologous to the mammalian interleukin-1 

receptor protein.58-60  There are currently thirteen TLR’s mapped between humans and 

mice, with most mammals exhibiting between 10-15 TLR’s.  Toll-like receptor 4, a type 

1 transmembrane protein characterized by 22 leucine-rich repeats on its extracellular 

domain, was first characterized in man.61  Subsequent studies demonstrated TLR4’s 

ability to initiate an immune response.62-65  While some debate existed whether TLR2 or 

TLR4 elicited the necessary response in the LPS pathway, studies have shown that TLR4 

is required during LPS challenge.65-69  This work confirmed that TLR4 is a principle 

LPS-signal transduction molecule.  Research has also demonstrated the need for a co-

receptor to completely activate TLR4.61,70,71  This receptor is Myeloid Differentiation 

Factor 2.61,70,71   

Myeloid Differentiation Factor 2 

Myeloid Differentiation Factor 2 (MD2), a 160 amino acid secreted glycoprotein 

located on the cell surface, is required for recognition and signaling of LPS.61,70,71  The 

LPS complex is presented to MD2 where binding to the lipid A portion occurs.71,72  The 

LPS bound MD2 behaves as an activating ligand for TLR4 to form a TLR4-MD2 

heterodimer.71,72  Through these interactions, LPS is able to translocate from the cell 
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surface to the cytoplasm.  After translocation, LPS initiates a cascade of events 

eventually leading to the production of multiple cytokines. 

Nuclear Factor kappa B 

The LPS complex interacts with a universal adaptor gene (Myeloid Differentiation 

Primary Response Gene 88) that links the complex to signaling molecules with the 

purpose of activating the Nuclear Factor kappa B (NFkB) pathway.53 

Nuclear Factor kappa B is a transcription factor protein complex that is involved in 

cellular responses to stimuli, including viral and bacterial antigens such as LPS.53,62,73  

Nuclear Factor kappa B naturally exists in an inactive state as a dimer bound by Inhibitor 

kappa B (IkB) within the cytoplasm.53,62,73,74  The IkB family of proteins contain multiple 

copies of a sequence called ankyrin repeats which allow them to mask the nuclear 

localization signals (NLS) of NF-κB proteins and keep them sequestered in an inactive 

state in the cytoplasm.  Within this family, IkB-β is the most prominent isoform in the 

horse.53  In order to activate NFkB, the IkB must be phosphorylated by IkB kinase 

(IKK).53,62,73,74  Following activation, IkB kinase phosphorylates IkB leading to 

ubiquitization and eventual degradation by proteasome.53,74  After degradation of IkB, 

NFkB is released from its inactive state and translocates to the nucleus where it activates 

expression of several kB genes.53,74  These genes code for IkB, creating a positive 

feedback loop, and a variety of cytokines.53,74  These cytokines are responsible for the 

clinical signs of endotoxemia.53,74   

Cytokines 

Cytokines are small protein and glycoprotein molecules that function in both the innate 

and adaptive immune responses.  While typically host protective, during some disease 
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processes production is amplified and clinical effects can be deleterious.  Cytokines such 

as Tumor Necrosis Factor-α (TNF) and IL6 are confirmed in the pathogenesis of 

endotoxemia and the focus of many research endeavors.  Tumor Necrosis Factor and IL6 

are synthesized by mononuclear phagocytes and are responsible for many of the clinical 

signs associated with endotoxemia.  The upregulation of TNF has shown significant 

association with increased temperature, heart rate, lethargy and decreased white blood 

cell count, hypotension, hemoconcentration and endothelial dysfunction, while IL-6 

correlates with enhanced synthesis of acute phase proteins, cellular differentiation and 

increased temperature.16,17,24,26,31,32,46,75-79  Consequently, therapies aimed at reducing or 

eliminating activation of the NFkB pathway due to LPS stimulation are at the forefront of 

scientific evaluation. 

Therapeutic agents 

While there are different therapeutic approaches to endotoxemia, success comes from 

rapidly determining the underlying cause and subsequent implementation of appropriate 

therapy.  One approach is to prevent translocation of endotoxin into circulation by 

removing affected structures such as devitalized bowel or an infected umbilicus.  Another 

therapeutic approach is neutralization of the LPS molecule prior to its interaction with the 

effector cell population.  Antiendotoxin antibodies targeted against the O-antigen of the 

LPS molecule is one therapeutic option.2,3,29,80-84  These antibodies are collected from 

horses vaccinated against the core regions of the Re Salmonella mutant of the rough 

strains of J5 Escherichia coli.2,3,29,53  However, these antibodies are specific for a 

bacterial strain and therefore do not afford much crossover protection.  Additionally, 

antiendotoxin antibodies have shown conflicting results.  Studies have reported 
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improvement of clinical signs in treated adult horses while others report no improvement 

or worsening of clinical signs in foals.22,29,83,85  The exact reason for this discrepancy is 

not fully understood, however there are some explanations.  It is possible the antibodies 

were administered too late in the disease process given that the interaction between 

endotoxin and equine inflammatory cells occurs rapidly.3,22  Additionally, the 

antiendotoxin titer may be insufficient to effectively neutralize the endotoxin 

challenge.3,22  Since the toxic moiety of the LPS molecule is the inner lipid A portion, the 

O-antigen antibodies may not penetrate the molecule to bind lipid A.3,22  Therefore, the 

structurally invariant and biologically active center of LPS, lipid A, is a logical 

therapeutic target for neutralization (Fig. 1.3).   

Lipid A is composed of a hydrophilic, negatively charged bisphosphorylated 

diglucosamine backbone, and a hydrophobic domain of 6 (E. coli) or 7 (Salmonella) acyl 

chains in amide and ester linkages (Fig. 1.3).35,86-88  The anionic, amphiphilic nature of 

lipid A enables it to interact with a variety of cationic hydrophobic ligands.89  Lipid A 

receptor antagonists such as the unusual lipid A derived from Rhodobacter sphaeroides 

or Polymyxin B (PMB) are strategies that have produced mixed results.  Diphosphoryl 

lipid A from R. sphaeroides (RsDPLA) and the TLR4 antagonist E5531 inhibited binding 

of enteric LPS, cytokine release, and activity of LPS induced gene expression in human 

and murine models.90,91  However, in horses, RsDPLA and E5531 behave as potent 

agonists.90,91  This receptor-ligand interaction is suggested  to result from the composition 

of  equine TLR4.91   

Polymyxin B is a cationic amphiphilic cyclic decapeptide antibiotic isolated from 

Bacillus polymyxa that has long been recognized to bind lipid A and neutralize its toxicity 
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in vitro in animal models of endotoxemia.2,3,20,22,23,92,93  While not used in humans at 

standard antimicrobial dosages due to life-threatening toxicity, low dose PMB is a 

recognized beneficial form of therapy for endotoxemia in horses and foals.2,3,22,23,53,92  

Unlike S. typhimurium antiserum, polymyxin B exhibits beneficial effects when 

administered to endotoxemic foals by reducing TNF and IL-6 production.22  However, 

studies have shown polymyxin B to exhibit toxic side effects such as ataxia when given 

intravenously every 6 hours at high dosages such as 36000 IU/kg in horses.93  At the 

University of Georgia’s Veterinary Medical Teaching Hospital, use of polymyxin B at a 

dose of 1000-5000 IU/kg given intravenously every 12 hours for 3 days duration has not 

demonstrated toxic side effects.20  Given the potential for toxicity, it is recommended that 

polymyxin B be used judiciously in patients with renal compromise. 

Lipopolysaccharide effector cell interaction initiates a cascade that culminates in the 

production of inflammatory mediators associated with the clinical signs of endotoxemia.  

In order to reduce morbidity, antiendotoxic therapy is targeted at prevention or reduction 

of synthesis, release or action of the inflammatory mediators.2,3  Therapeutic efficacy of 

nonsteroidal anti-inflammatory drugs, specifically flunixin meglumine, results from 

prevention of prostaglandin synthesis and thromboxane while reducing clinical signs 

associated with endotoxemia.2,3,94  Another option is administration of omega-3 fatty 

acids (alpha-linolenic and eicosapentaenoic acid).3,27,95-97  The theory behind this strategy 

is to reduce the synthesis of proinflammatory cyclooxygenase-derived metabolites of 

arachidonic acid by replacing it with an alternative fatty acid.  Different studies have 

evaluated the most efficacious route for administration.  Intravenous administration of 

omega-3 fatty acid in a 20% lipid emulsion altered the fatty acid composition of 
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monocytes within 8 hours.96  These changes persisted for roughly 1 week and the 

production of thromboxane and TNF were reduced.96  Pentoxifylline is a rheologic agent 

used in humans that has demonstrated the ability to reduce production of cytokines and 

thromboxane.18,19,94,98  While the beneficial effects of pentoxifylline alone are limited19, 

when combined with flunixin meglumine the protective hemodynamic effects were 

greatly enhanced.94   

Additionally, general supportive care strategies with intravenous fluids such as 

crystalloids and colloids are commonly used.2  Currently, investigations into therapeutic 

agents that would prevent or interfere with endotoxin induced cellular activation are 

being explored.  Given that no treatment options work completely and some therapeutics 

are toxic, novel therapeutic options are constantly being explored. 

Recently, small molecule analogs of PMB have been under development.  A small-

molecule that has the binding ability of polymyxin B without the associated 

nephrotoxicity would be ideal.  It was determined that the pharmacophore necessary for 

optimal recognition and neutralization of lipid A by small molecules requires two 

protonatable positive charges so disposed that the distance between them are equivalent 

to the distance between the two anionic phosphates on lipid A (~ 14 Å; see Fig. 1.3).  

This compound would have the ability to form ionic H-bonds between the phosphates on 

the lipid A backbone and the positive charges on the compound.36 In addition, 

appropriately-positioned pendant hydrophobic functionalities are necessary to further 

enhance binding affinity and stabilize the resultant complexes via hydrophobic 

interactions with the polyacyl domain of lipid A (for a recent review, see David et al.89). 

These structural requisites were first identified in certain members of a novel class of 
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compounds, the lipopolyamines, which were originally developed, and are currently 

being used as DNA transfection (lipofection) reagents.99-102  The compounds of the 

conjugated spermine class are of particular interest because they are active in vitro and 

afford protection in animal models of Gram-negative sepsis, are synthetically easily 

accessible, and are nontoxic due to their degradation to physiological substituents 

(spermine and fatty acid).103,104   

Preliminary Data: 

Recent reports describe the synthesis and structure-activity relationships pertaining to 

the anti-endotoxic activities of several mono- and bis-acylated homologated spermine 

molecules.36  Of these, EVK063 (4e36) was found to be as active as PMB in a panel of in 

vitro assays, including inhibition of proinflammatory cytokine production in LPS-

stimulated human blood ex vivo (Fig. 1.4).  In this study, EVK063 afforded complete 

protection against LPS-induced lethality in a murine model of shock, and yet, did not 

display any signs of demonstrable toxicity.36 For the sake of brevity, only a summary of 

the in vivo data obtained in the murine model of shock is given below. The protective 

effects of 4e, the most potent compound in the human TNF inhibition assay have been 

characterized using a well-established animal model of LPS-induced lethality in mice 

sensitized by D-galactosamine.78,79  A supralethal dose (twice the dose causing 100% 

lethality) of endotoxin (200 ng/mouse) was administered intraperitoneally (i.p.) to groups 

of 5 mice sensitized with D-galactosamine.  Experimental treatments consisted of 

concurrent, separate intraperitoneal injections of graded doses of compound, and lethality 

was observed at 24 h. As is evident from Table 1.1, a clear dose-response is observed, 

with 4e affording complete (statistically significant) protection at the 100 or 
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200µg/mouse dose, and partial protection at the 50µg dose. In earlier studies on 

DOSPER, the first lipopolyamines PMB mimic that was studied,104 it was observed that 

the temporal window of protection was very short. DOSPER had to be administered 

concurrent with the LPS challenge, and significant mortality resulted when the compound 

was given even 15 minutes prior to LPS. This was attributed to the extreme hydrolytic 

susceptibility to serum esterases of the ortho-ester linkages of the oleoyl groups,104 and it 

was of interest if the amide-linked acylhomospermines would display a longer plasma 

half-life, thus affording a longer time-window of protection. It is evident from the time-

course experiment (Table 1.2) that 4e is indeed apparently much longer-lived, with near-

complete protection evident when the compound is administered 6 h prior to LPS 

challenge. In a few cohorts, the observed time window of protection was 4 h when 4e was 

administered intravenously (i.v.), and was 8h when given subcutaneously, suggesting a 

depot effect and prolonged release into systemic circulation in the latter experiments.36   

Although investigations testing the utility of EVK063 have shown promising results in 

rodent models, it has not yet been tested in a large animal model.  As mentioned earlier, 

horses are exquisitely sensitive to the effects of endotoxin and the clinical signs of 

endotoxemia have been well documented.  While not possible in rodent models, 

parametric data invaluable to enhancing our understanding of the endotoxemic cascade 

can be easily obtained in the equine, making the horse an appropriate model to study.  
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Fig. 1.1. Schematic of LPS signaling pathway 
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Fig. 1.2 Schematic (left), and crystal structure 
(right) of lipopolysaccharide (LPS). Atoms are 
shown colored in standard CPK scheme. 
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Fig. 1.3. Structure of Lipid A. The presence of 
anionic, hydrophilic, and hydrophobic domains 
enable the binding of cationic amphipaths to lipid A.  
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Table 1.1. Dose-dependent protection of CF-1 mice 
challenged with a supralethal dose of 200 ng/mouse (LD100 
= 100 ng) by EVK063/4e in cohorts of five animals. 
Lethality was recorded at 24 h post-challenge. Ratios 
denote dead/total. Asterixes indicate statistically significant 
values, p<0.05. 
Dose (µg/mouse) Compound 4e 

200 0/5* 

100 0/5* 

50 2/5 

10 5/5 

0 5/5 
Table 1.2. Time-course of protection afforded by 
EVK063/4e in the D-galactosamine sensitized CF-1 mouse 
lethality model. Animals were injected with 200 µg 4e i.p. at 
times noted with respect to LPS challenge (200 ng/mouse). 
Lethality was recorded at 24 h following LPS challenge. 
Asterixes indicate statistically significant values, p<0.05. 
Time of 4e 
Administration 

Lethality (dead/total) 

-6h 1/5* 

-4h 1/5* 

-2h 0/5* 

0h 0/5* 

+1h 5/5 

+2h 4/5 
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Chapter 2 

Introduction 

Despite constant medical advancements, endotoxemia remains a leading cause of death 

in the horse.1-5  Endotoxins, or lipopolysaccharides (LPS), are liberated from the outer 

leaflet of the cell wall outer membrane during either rapid proliferation or lysis of a 

Gram-negative microorganism.6  Since fermentation occurs in the hind gut of the horse, 

the gastrointestinal tract naturally contains Gram-negative bacteria and large amounts of 

LPS.7  The gastrointestinal epithelium provides a barrier to prevent LPS absorption; 

however, when epithelial disruption occurs, as in some colic (mechanical disruption) and 

colitis (inflammatory disruption) cases, clinical consequences can be devastating.  A 

similar scenario is observed in humans where gram-negative sepsis remains a leading 

cause of overall mortality and the number one non-coronary cause of death in the 

intensive care unit.8  Human hospital costs associated with the treatment of endotoxemia 

exceed 17 billion dollars annually and continue to rise.8  Considering the enormous 

economic burden and high mortality rates, an animal model with recognized sensitivity to 

LPS would be invaluable in evaluation of novel therapeutics.   

Lipopolysaccharide consists of a polysaccharide portion and a lipid called lipid A (Fig. 

1.2).  The polysaccharide portion consists of a polymer of repeating oligosaccharide 

units, the composition of which is highly varied among gram-negative bacteria.  A 

relatively well-conserved core hetero-oligosaccharide covalently bridges the 

polysaccharide with lipid A.9,10 The structurally highly conserved lipid A is the active 

moiety of LPS.11-13  

 
 

21 



Our understanding of basic mechanisms underlying the cellular response to LPS has 

increased in recent years.  Research contributions demonstrate LPS recognition by 

CD1414-23   via an LPS-binding acute-phase plasma protein (LBP),14,23-31 followed by 

initiation of signal transduction by Toll-like receptor-432-42 and Myeloid Differentiation 

Factor 2.32,43-47   These interactions allow translocation of LPS into the cytoplasm where 

cellular activation events lead to nuclear translocation of Nuclear Factor kappa B (NF-

κB)15,48-51 resulting in cytokine mRNA transcription.  Tumor Necrosis Factor-α (TNF) 

and Interleukin-6 (IL6) are two predominant inflammatory mediators released subsequent 

to activation of the NF-κB pathway,5,25,49-58 and are mainly secreted from the 

macrophage, the primary effector host cell associated with sepsis.20,28,58-60  Consequently, 

studies have shown both TNF and IL6 are elevated during naturally occurring, as well as 

iatrogenically-induced, endotoxemia with TNF activity slightly preceding that of 

IL6.5,53,55,56  The up-regulation of TNF expression correlates with pyrexia, tachycardia, 

lethargy and leukopenia, while IL6 correlates with up-regulation of acute phase proteins, 

cellular differentiation and pyrexia.3,5,55,61  

Therapeutic strategies attempt to bind and sequester LPS prior to its interaction with its 

effector cell.  The most recognized method involves binding Lipid A, the toxic portion of 

the LPS molecule, to mask the binding region in an attempt to decrease the inflammatory 

response.  While several options are available, none are completely effective. Anti-

endotoxin antibodies60,62-69, pentoxifylline50,62,63,70-72, polymyxin B (PMB)1,2,4,60,62,63,73,74, 

antibiotics and non-steroidal anti-inflammatory drugs (NSAIDs)60,62,63,70,75 have minimal 

efficacy.  Additionally, each therapeutic agent does not elicit the same response in all 

species; with many having negative side effects.  
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Recently, a novel molecule, EVK063, has been developed.  EVK063 is a C16 monoacyl 

homospermine compound with comparable binding strength and potency to polymyxin 

B.76  Unlike polymyxin B, EVK063 is broken down into the metabolically non-toxic 

molecules spermine and fatty acid and therefore does not exhibit the associated oto-, 

neuro- and nephrotoxicity.76  Although investigations testing the utility of EVK063 have 

shown promising results in rodent models, it has yet to be tested in a large animal model.   

The horse is exquisitely susceptible to the effects of endotoxin and is commonly 

affected with the clinical syndrome of endotoxemia, resulting in death.  Moreover, this 

inherent sensitivity makes the horse an appropriate model for testing anti-endotoxin 

therapies.  Therefore, the purpose of this study was to assess the ability of EVK063 to 

inhibit the inflammatory response of LPS-challenged equine peripheral blood 

mononuclear cells (PBMCs) in vitro.  We hypothesize that EVK063 will inhibit cytokine 

production by endotoxin-challenged equine PBMCs in a manner comparable to PMB. 

Method Development 

Endotoxin is present throughout the environment.  Consequently, horses are naturally 

exposed to various amounts and types of endotoxin throughout their lives, creating 

biological variability.  Therefore, in order to appropriately characterize the effects of 

EVK063 on the host cell, our experimental protocol was carried out in series.  The first 

stage consisted of incubating samples in culture media without autologous serum.  This 

allowed cell-EVK063 interaction to be determined without the influence of proteins or 

other molecules.  The second stage consisted of incubating samples in culture media that 

contained 10% autologous serum.  We chose 10% serum to stay consistent with previous 

work.77,78  This permitted evaluation of potential protein interactions that have been 
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observed in previous investigations of EVK063.  The third stage consisted of incubating 

samples in whole blood to allow assessment of additional interactions not observed in the 

previous two stages. 

Materials and Methods 

First stage – with and without serum:  Whole blood was collected from eight healthy 

horses in pre-heparinized syringes using an approved institutional animal care and use 

committee protocol.  Blood was then placed into 50mL conical screw top tubes and 

allowed to settle for 30 minutes.  The plasma was layered over Ficoll® 1.077a 

(radiopaque polysucrose) in a 60/40 plasma/Ficoll ratio and centrifuged for 30 minutes at 

400 X g.  The mononuclear rich middle layer was removed, placed in a separate 50mL 

conical screw top tubes and centrifuged for 10 minutes at 400 X g.  The supernatant was 

decanted and the pellet consisting of mononuclear cells was washed with phosphate 

buffered saline.  The pellet was suspended in 1640 RPMI mediab and replicate aliquots 

(concentrated at 4-5 million cells/mL) were placed in 6 well culture plates containing 

1640 RPMI culture media without serum.  The same treatments were assigned to samples 

incubated with and without serum as designated in Table 2.1.  Samples to be stimulated 

with Salmonella typhimurium LPSc (100ng/mL)79 were treated with graded 

concentrations of EVK063, [0.01µM (E0.01), 0.1µM (E0.1), 1µM (E1), 10µM (E10)], 

and 10µM PMBd (PL), then incubated at 37°C, 5%CO2 for 6 hours.  Non LPS stimulated 

samples consisted of a control with no treatment (C), vehicle control with 10uL Dimethyl 

Sulfoxide (DMSO)e (VC), 10µM PMB control (P) and 10µM EVK063 control (EC).  

One sample was stimulated with LPS but received no treatment (L).  All wells had a final 

volume of 4mL.  Media samples were collected and stored at -80°C for TNF protein 
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analysis while RNA was harvested using a commercial kit (Qiagen, Valencia, CA) and 

stored at -80°C for IL6 gene expression analysis.  Following analysis, samples were 

incubated in culture media that contained 10% autologous serum.  Treatments were 

assigned to samples as designated in Table 2.1.  Following analysis of the intial 

experiment, the study was replicated with samples incubated with 10% autologous serum, 

a whole blood model was developed.  

Second stage – whole blood: Whole blood was collected from each horse via jugular 

veinapuncture into a syringe containing 50µL heparin per 1mL blood.  Nine milliliters of 

heparanized blood was placed into each of 6 T-75 culture flask’s containing 9mL of 1640 

RPMI media.  Treatments were assigned as designated in Table 2.2.   

Non LPS stimulated samples consisted of a control with no treatment (C), 10µM PMB 

control (P) and 10µM EVK063 control (EC).  Three samples were stimulated with 

2ng/mL Salmonella typhimurium LPS.  One sample received no treatment (L), one 

received 10µM PMB (PL) and one received 10µM EVK063 (EL).  Flask’s were placed 

on an agitator and incubated at 37ºC, 5% CO2 for 6 hours.  After incubation, the diluted 

whole blood was removed and layered over 20 mL of Ficoll 1.077 in a 50 mL conical 

screw top tube and centrifuged for 30 minutes at 400 X g.  The mononuclear rich middle 

layer was removed and placed in a separate 15mL conical screw top tube and centrifuged 

for 10 minutes at 400 X g.   The supernatant was decanted and frozen at -80ºC for TNF 

evaluation.  The cell pellet was washed with Phosphate Buffered Saline (PBS) and 

subsequently disrupted to allow collection of 200µL for flow cytometry.  The remaining 

cell suspension was centrifuged for 10 minutes at 400 X g to create a cell pellet.  

Ribonucleic acid (RNA) was harvested using a commercial kit (Qiagen, Valencia, CA).   
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RNA Isolation 

The cell pellet was disrupted using Buffer RLT Plus.  The solution was then transferred 

to a QIAshredder spin column and centrifuged for 2 minutes at 16.1g.  The homogenized 

lysate was transferred to a gDNA Eliminator spin column to which an equal volume of 

70% ETOH was added and centrifuged at 16.1g for 30sec.  The samples were washed 

once with RW1 Buffer and twice with RPE Buffer and centrifuged following 

instructions.  RNase-free water was added to the spin column and centrifuged at 16.1g for 

1min, allowing collection of the RNA into an RNase-free collection tube.  Storage 

solution (RNA) was added in equal volume to each sample.  The samples were aliquoted 

in 10µL increments and frozen at -80ºC.  NanoDrop confirmed RNA quantity and IL6 

gene expression was analyzed using qRT-PCR (Invitrogen, Carlsbad, CA) with primer 

sets specific for equine IL6 and 18s (Table 2.3).   

Real Time quantitative Reverse Transcription Polymerase Chain Reaction (qRT-

PCR) 

The SuperScript III Platinum One-Step Quantitative RT-PCR system (Invitrogen, 

Carlsbad, CA) in combination with sequence specific primers and a labeled fluorogenic 

probe was employed for the analysis of IL6 message.  Analysis of the housekeeping gene 

18s was performed in the presence of 0.2x SYBR green I (Molecular Probes, Eugene, 

OR) with primers obtained from a commercially available equine kit (TaqMan, ribosomal 

RNA, Applied Biosystems, Foster City, CA).  All qRT-PCR reactions were run on a 

Cepheid SmartCycler (Sunnyvale, CA) with RNA from treated cells.  Thermocycling 

protocols for IL6 were as follows: Stage 1; 50.0°C for 120 seconds, 95.0°C for 600 

seconds; Stage 2; 40 cycles of 95.0°C for 15 seconds, 63.0°C for 30 seconds, 72.0°C for 
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30 seconds, 78.0°C for 7 seconds, 78.0°C for 13 seconds.  Melt Curves were performed 

at 60.0°C to 95.0°C at 0.2°C/second.  Gel electrophoresis in the presence of 2% ethidium 

bromide confirmed that IL6 was produced at 214 base pairs.   

Tumor Necrosis Factor Quantification 

Quantification of TNF was by an equine specific ELISA kit (Endogen®, Rockford, IL).  

The technique will be described with incubation occurring at room temperature unless 

otherwise stated.  Briefly, 100µL of coating antibody in carbonate/bicarbonate buffer 

solution was placed in each well and incubated overnight at 4ºC.  Blocking buffer was 

then added to each well for 1 hour.  After a 3 wash cycle with PBS’T, the appropriate 

dilution of standard and samples were then added to each well and incubated for 90 

minutes.  The wells were then washed 3 times with PBS’T and 100µL of detection 

antibody solution added to each well.  Following 60-minute incubation and a wash cycle, 

100µL of streptavidin-HRP was added and the wells incubated for 30 minutes.  Another 

wash cycle was performed and 100µL of substrate placed in each well.  The plate was 

incubated in the dark for 20 minutes.  A stop solution of H2SO4 was added prior to 

reading on a micro-elisa plate reader. 

Flow Cytometry 

Cellular viability was determined using propidium iodide staining (PI, 2 mg ml-1) a dye 

that intercalates with nucleic acids to determine if an interruption in the cell membrane 

existed following damage or cell death.  Duplicate 200µL aliquots from each sample 

were reserved for analysis of cellular viability.  One aliquot served as control and the 

second aliquot received 10µL of Propidium Iodide.  Samples were run on the FACS 

Calibur (Becton Dickinson Immunocytometry system serial # E4400). 
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Synthesis of EVK063: The compound was synthesized using published procedures76 as 

summarized in Scheme 1. 
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Statistics 

Statistical evaluation was performed using Analysis of Variance with significance set at 

p≤0.05.  Using the mean squares for treatment and error, the F statistic allowed 

acceptance or rejection of the research hypothesis.  Multiple pairwise comparisons of 

treatment means were made using the Tukey method.  The experimental error rate was 

set at 0.05.  All computations were performed using Statistical Analysis Software (SAS® 

Cary, NC).  The data was then normalized to the control sample (100% inhibition) and 

the LPS sample (0% inhibition) for presentation. 

Results 

Samples incubated without serum 

Lipopolysaccharide stimulated equine PBMC’s were incubated without serum and 

evaluated for TNF production and IL6 expression.  All samples were treated under the 
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same conditions to minimize variability in technique.  Tumor necrosis factor ELISA 

analysis revealed a concentration dependent reduction in TNF production (Fig 2.1, Table 

2.4).  Non LPS stimulated samples (C, VC, P, EC) demonstrated significantly lower TNF 

production when compared to the non-treated LPS stimulated sample (L), but did not 

show significance between each other.  Samples stimulated with LPS and treated with 

0.01µM, 0.1µM and 1µM concentrations of EVK063 were unable to reduce TNF 

production by more that 27% when compared to the untreated LPS stimulated sample.  

The 10µM EVK063 concentration inhibited TNF production (84-98%), which was 

consistent with the LPS stimulated 10µM PMB treated sample.   

Interleukin-6 analysis by qRT-PCR was performed in the same manner as described for 

TNF analysis.  Samples were normalized to control and fold increase in IL6 gene 

expression was determined (Fig 2.2, Table 2.4).  Non LPS stimulated samples (C, VC, P, 

EC) showed statistical significance in IL6 expression when compared to the untreated 

LPS stimulated sample, but did not show significance between each other.  At 0.01µM, 

0.1µM, and 1µM concentrations there was no effect of EVK063 on IL6 expression in 

LPS treated cells.  The 10µM EVK063 significantly reduced IL6 expression (67-82%), 

similar to the effect of 10µM PMB treatment.   

Flow Cytometry of samples incubated without serum  

Cellular viability between 94-97% was maintained in the following samples: C, VC, L, 

E0.01, E0.1, P and PL.  However, the E1 sample exhibited 15-25% cell death while the 

EC and E10 samples exhibited 62-72% cell death. 
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Samples incubated with 10% Autologous serum 

Equine PBMCs were evaluated in culture media that contained 10% autologous serum 

using the same 10 treatment conditions as previously developed (Fig. 2.3, Table2.5).  

Non LPS stimulated samples (C, VC, P, EC) demonstrated significantly lower TNF 

production when compared to the untreated LPS stimulated sample, but did not show 

significance between each other.  Inhibition of TNF at 0.01µM, 0.1µM and 1µM 

EVK063 concentrations ranged from 5-37%.  The 10µM EVK063 sample inhibited TNF 

production (86-97%), which was comparable to the LPS stimulated 10µM PMB treated 

sample.  

 Interleukin-6 analysis by qRT-PCR was performed with 10% autologous serum as 

described for TNF analysis.  Samples were normalized to control and fold increase in IL6 

gene expression was determined (Fig. 2.4, Table 2.5).  Non LPS stimulated samples (C, 

VC, P, EC) demonstrated statistical significance in IL6 expression when compared to the 

untreated LPS stimulated sample but did not show significance between each other.  The 

0.01µM, 0.1µM, and 1µM EVK063 concentrations showed minimal reduction in IL6 

expression when compared to the untreated LPS stimulated sample.  Interleukin-6 

expression was reduced (71-84%) in the LPS stimulated 10µM EVK063 sample, which 

was comparable to the LPS stimulated 10µM PMB treated sample.   

Flow Cytometry of samples incubated with 10% Autologous serum 

Cellular viability between 92-97% was maintained in the following samples: C, VC, L, 

E0.01, E0.1, E1, P and PL.  EC and E10 samples exhibited 35-39% cell death. 
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Samples incubated with whole blood 

The following samples were used in the whole blood model: C, L, P, PL, EC, E10.  The 

10µM EVK063 concentration inhibited tumor necrosis factor production (73-81%) (Fig 

2.5) and IL-6 gene expression (69-75%) (Fig 2.6) at levels similar to the 10µM PMB 

sample.  

Flow Cytometry of Samples incubated with whole blood 

All samples maintained 92-98% cellular viability.   

Discussion 

Data from this investigation demonstrates the ability of EVK063 to reduce TNF 

production and IL6 expression by LPS stimulated mononuclear cells in vitro with 

comparable results to PMB.  EVK063 is a novel lipopolysaccharide binding 

pharmacophore with the ability to attenuate the effects of endotoxemia in lab animal 

models with comparable results to PMB.  We chose to evaluate TNF and IL6 due to their 

documented role in endotoxemia and to remain consistent with previous work regarding 

evaluation of PMB.1,2,4,52,73   

We examined EVK063 at concentrations of 0.01µM, 0.1µM, 1µM and 10µM.  A 10µM 

PMB concentration served as the standard for inhibition of cytokine synthesis.  Previous 

investigations have demonstrated the ability of EVK063 to bind LPS in a similar manner 

to PMB. 80  Therefore, we chose 10µM PMB to stay consistent with previous work and to 

obtain the same concentration as the highest sample of EVK063.80   

Originally all 8 samples were incubated in culture media without autologous serum.  

This allowed evaluation of the EVK063-cell interaction without interference from protein 

or other plasma constituents.  While the 10µM sample demonstrated inhibition of TNF 
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production and IL6 expression comparable to PMB, the lower concentrations of EVK063 

did not exhibit greater than 30% inhibition.  However, flow cytometry determined the 

samples containing 10µM EVK063 experienced 70% cell death and the 1µM EVK063 

sample experienced 25% cell death.  All other treatments groups experienced less than 

7% cell death.  We were concerned the higher concentrations of EVK063 created an 

unsuitable osmolar environment that may have lead to cell lysis, however, media from all 

samples were evaluated with an osmometer and determined to be within normal range 

(300-330mOsm).  Given the amount of cell death, confirmation as to the efficacy of 

EVK063 at 1µM and 10µM concentrations could not be made.   However, we concluded 

that the treatment groups containing 0.01µM and 0.1µM EVK063 were ineffective at 

inhibiting TNF production and IL6 expression under 0% serum conditions. 

We then evaluated all sample conditions in culture media with 10% autologous serum 

to determine if the toxicity at 1µM and 10µM concentrations of EVK063 could be 

attenuated, or the efficacy of the 0.01µM and 0.1µM concentrations of EVK063 

enhanced. 

Tumor necrosis factor and IL6 inhibition results with 10% autologous serum conditions 

were similar to our first trials without serum.  We were able to determine that the 

0.01µM, 0.1µM and 1µM EVK063 concentrations were ineffective at inhibiting TNF 

production and IL6 expression in LPS stimulated mononuclear cells under 10% serum 

conditions. However, cell death was reduced from 70% to 35%, for without and with 

serum respectively, in the 10µM EVK063 samples and 8% in the 1uM concentration as 

confirmed by flow cytometry.  Even though cell death was reduced to 35% for 10µM 

concentrations, we considered this value unacceptable and an interpretation could not be 
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made about the efficacy of the 10µM EVK06 concentration.  Following these results we 

evaluated the 10µM concentration of EVK063 in a whole blood model. 

We used previous whole blood and ex vivo models evaluating PMB to determine the 

amount of LPS used for stimulation.1,3,4,61,79  Evaluation of whole blood samples again 

showed a reduction in TNF production and IL6 expression when compared to non-treated 

LPS stimulated samples.  Evaluation of samples via flow cytometry demonstrated no 

difference in cell death between control and treated samples.  Therefore, the results from 

the whole blood model confirmed the ability of EVK063 at a 10µM concentration to 

attenuate cytokine production from LPS stimulated mononuclear cells with comparable 

results to 10µM PMB.  

The improvement in cell viability after adding autologous serum to the culture media 

was not unexpected.  Previous work in murine models demonstrated attenuation of 

toxicity when the compound was administered in conjunction with albumin.76  These 

findings indicate a fraction of the compound binds to albumin and thus reduces toxicity.76  

The mechanism of this attenuation is unclear at this time.76  However many endotoxic 

patients are hypoproteinemic, therefore, further investigations should evaluate the amount 

of protein binding by EVK063.   

A shortcoming of this study is the low number of samples in the whole blood model.  

While we concluded the ability of a 10µM concentration of EVK063 to inhibit TNF 

production and IL6 expression, additional samples are required to increase the power and 

validity of these findings.  Additionally, we only evaluated a 10µM concentration of 

EVK063 in the whole blood model.  Therefore, while we concluded that the 0.01µM, 

0.1µM and 1µM EVK063 concentrations were ineffective at inhibiting TNF production 
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and IL6 expression under 0% and 10% serum conditions; these concentrations should be 

evaluated in a whole blood model.   

Additional whole blood investigations should also evaluate the potential for synergistic 

effects with known therapeutic options, such as Polymyxin B.  Polymyxin B is a cationic, 

amphiphilic cyclic decapeptide antibiotic that has long been recognized to bind lipid A 

and neutralize its toxicity in animal models of endotoxemia both in vitro and in 

vivo.1,2,4,62,63,73,74,81  However, side effects of Polymyxin B including neurotoxicity and 

nephrotoxicity are well documented.  Therefore, Polymyxin B is a recognized beneficial 

form of therapy in endotoxemic horses and foals, but must be used judiciously.2,4,60,62,63,73  

In order to reduce the toxic effects of PMB, investigations have evaluated conjugating 

PMB with additional molecules such as dextran-70.2,82,83  Dextran-70 was chosen due to 

its use as a plasma expander and its molecular weight limits the loss of PMB from the 

intravascular space.82  The conjugated molecule of Polymyxin B-Dextran-70 (PMB-70) 

has demonstrated the ability to neutralize endotoxin in a murine, equine and ovine model 

of endotoxemia.2,82,83  Additionally, neither neurotoxocity or nephrotoxicity were 

observed in the equine model.2  However, specie specificity often precludes the use of 

novel therapeutics.      

Species specificity has made the development of novel antiendotoxic therapeutics 

challenging.  Antiendotoxic therapeutics such as Rhodobacter sphaeroides and E5531 

have shown promising results in lab animal models yet have failed to demonstrated 

beneficial effects in the equine model.84,85  In some cases they acted as an agonist after 

LPS stimulation in equine mononuclear cells.84,85  One explanation for these differences 

is structural modification of the molecule within the equine model.84  While there are no 
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data to support the theory, it was suggested by the authors that neutrophils may release 

enzymes that could alter the biological activity of the compound.84   

Even with constant advancements in therapeutics, endotoxemia remains a devastating 

clinical problem for both human and veterinary practitioners.   

While fewer than 100 cases were documented prior to 1920, sepsis is now recognized 

to be one of the leading causes of mortality and the number one non-coronary cause of 

death in the human intensive care unit, accounting for greater than 215,000 deaths a 

year.86  While known therapeutics like PMB are recognized as short term treatment 

options for animal models, the life threatening toxicity in humans precludes its use.  

Therefore, a molecule with the ability to bind LPS with the same potency as PMB 

without exhibiting the toxic side effects would be ideal.  This investigation demonstrates 

the ability of EVK063, a novel lipopolysaccharide binding pharmacophore, to inhibit 

cytokine synthesis from LPS stimulated equine mononuclear cells in vitro. 

   While much work is still required prior to ex vivo and in vivo assessment of EVK063, 

a positive groundwork has been established.  This in vitro study confirms the ability of 

EVK063 to inhibit TNF production and IL6 expression in LPS stimulated equine 

mononuclear cells with comparable results to PMB. 

 

aFicoll® 1.077; Sigma-Aldrich®; St. Louis, MO 
bHyQ® RPMI-1640 Medium (1x); Logan, UT 
cLipopolysaccharide from S. typhimurium; List Biological Laboratories; Campbell, CA 
dPolymyxin B; Bedford LaboratoriesTM; Bedford, OH 
eDimethyl Sulfoxide; Sigma-Aldrich®; St. Louis, MO 
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Sample ID  

C Control 

VC Vehicle Control (10 µL DMSO) 

L LPS 

P PMB (10 µM) 

PL PMB (10 µM) + LPS 

EC EVK063 10 µM 

E10 EVK063 10 µM + LPS 

E1 EVK063 1 µM + LPS 

E0.1 EVK063 0.1 µM + LPS 

E0.01 EVK063 0.01 µM + LPS 

Figure Legend 
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Figure 2.1: Tumor Necrosis Factor inhibition: cells incubated 
without serum 
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Figure 2.2: Interleukin-6 inhibition: cells incubated without 
serum 
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Figure 2.3: Tumor Necrosis Factor inhibition: cells 
incubated with 10% autologous serum 
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Figure 2.4: Interleukin-6 inhibition: cells incubated with 10% 
autologous serum 
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Figure 2.5: Tumor Necrosis Factor inhibition: whole blood 
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Figure 2.6: Interleukin-6 inhibition: whole blood 
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Table 2.1: Sample Identification: with and without 
10% autologous serum  

 
Sample ID Treatment S. typhimurium LPS 

C none 0 

VC Vehicle 
(10 µL DMSO) 

0 

P PMB (10 µM) 0 

EC EVK063 (10 µM) 0 

L none 100ng/mL 

PL PMB 10 µM 100ng/mL 

E10 EVK063 10 µM 100ng/mL 

E1 EVK063 1 µM 100ng/mL 

E0.1 EVK063 0.1 µM 100ng/mL 

E0.01 EVK063 0.01 µM 100ng/mL 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Sample ID Treatment S. typhimurium LPS 

C None 0 

L None 2ng/mL 

P PMB 10µM 0 

PL PMB 10µM 2ng/mL 

EC EVK063 10µM 0 

E10 EVK063 10µM 2ng/mL 

Left

Righ

Hyb

Table 2.2: Sample identification: whole blood model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Table 2.3: IL6 specific primers; product length: 214bp

 primer CCCCTGACCCAACTGCAA 

t primer TGTGCCCAGTGGACAGGTTT 

 Oligo CCTGCTGGCTAAGCTGCATTCACAG 

40 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 2.4: Tumor Necrosis Factor and Interleukin 6
inhibition:  cells incubated without serum
Sample ID Tumor Necrosis 
Factor  
% inhibition 

Interleukin 6 
% inhibition 

C 100 100 

VC 98 96 

P 97 93 

EC 95 91 

L 0*+ 0*+

PL 96 90 

E10 95 88 

E1 21*+ 20*+

E0.1 30*+ 7*+

E0.01 6*+ 4*+

*comparison to PL with significance at p≤0.05 
+comparison to E10 with significance at p≤0.05  
Table 2.5: Tumor Necrosis Factor and Interleukin 6 
inhibition:  cells incubated with 10% autologous serum
Sample ID Tumor Necrosis 
Factor  
% inhibition 

Interleukin 6 
% inhibition 

C 100 100 

VC 99 95 

P 98 95 

EC 95 92 

L 0*+ 0*+

PL 97 90 

E10 95 81 

E1 9*+ 5*+

E0.1 17*+ 5*+

E0.01 7*+ 2*+

*comparison to PL with significance at p≤0.05 
+comparison to E10 with significance at p≤0.05  
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Chapter 3 

Future Investigations 

While positive findings were obtained regarding the ability of EVK063 to attenuate 

cytokine production from lipopolysaccharide (LPS) stimulated equine peripheral blood 

mononuclear cells (PBMC’s), there is an imminent need for the continued exploration 

into the efficacy of EVK063.  While Tumor necrosis factor-α (TNF) production and 

Interleukin-6 (IL6) expression were reduced when compared with non-treated LPS 

stimulated samples, their values were elevated compared to control samples.  Therefore, 

further evaluation to determine the concentration of EVK063 that maximally inhibits 

cytokine production without displaying toxic effects on the cells in vitro would be 

prudent.  Given the results from previous evaluations and this study, a whole blood model 

should be used for additional in vitro evaluations of EVK063. 

We administered LPS and the assigned treatment to the cells at time 0.  In previous 

investigations, EVK063 exhibited a time dependent relationship of protection from LPS 

stimulation in a murine model.1  When administered as little as one hour post LPS 

challenge, all mice in the cohorts died after 24 hours.1  While factors predisposing 

patients to endotoxemia are documented, most causes are not recognized prior to insult.  

In select cases, the source of endotoxin can be successfully removed.  However, many 

times this is not possible; therefore, investigations evaluating the protective effects of 

EVK063 administered both pre and post LPS challenge are essential.  This investigation 

focused on the cytokines TNF and IL6.  Additional cytokines such as IL1, IL2 and IL6 

should be evaluated to determine if EVK063 has the ability to attenuate their production. 
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An NFkB induction assay has been utilized in lab animal models.2-4 and could provide 

valuable information if configured to evaluate equine samples.  If EVK063 could inhibit 

activation of the NFkB pathway, several devastating clinical signs could be reduced.  A 

p38 mitogen-activated kinase (MAPK) flow cytometric assay has also been utilized in lab 

animal models.2-4  However, it was unclear if p38 MAPK existed in equine cells as it had 

not been described in the literature.5  Recently, two separate studies have documented 

that p38 MAPK is essential in the equine LPS induction pathway.6,7  Therefore, 

adaptation of the p38 MAPK flow cytometric assay to equine cells would prove 

beneficial.   

Due to the severity of endotoxemia and the lack of appropriate therapies, multiple 

therapeutic agents are often used in conjunction.  Therefore, after establishing the 

appropriate concentration of EVK063 for maximal inhibition, investigations should 

evaluate possible synergy with additional therapeutics.  Non-steroidal anti-inflammatory 

drugs such as flunixin meglumine5,8-11, antibiotics5,8,9 and polymyxin B5,8,9,12-16 are 

therapeutic agents that are commonly used in endotoxic patients.  In vitro assessment 

using combinations of these agents with EVK063 should be considered. 

Once sufficient in vitro data are obtained demonstrating the ability of EVK063 to 

attenuate cytokine production, ex vivo investigations will follow.  Serial blood samples 

can be readily obtained after systemic administration of the compound.  These samples 

will be stimulated with LPS and evaluated as previously described in vitro.  Ex vivo 

studies will also allow evaluation of pharmacokinetic parameters and the efficacy of 

EVK063 following first pass effect.  The ex vivo investigations will also provide the 

proper dose and interval for in vivo assessment.  In vivo studies will provide the ultimate 
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test in the ability of EVK063 to not only inhibit cytokine production, but more 

importantly the manifestation of clinical signs.   
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