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Abstract- We consider a multi-channel cognitive radio net­
work (CRN) where multiple secondary users share a single 
channel and multiple channels are simultaneously used by a 
single secondary user (SU) to satisfy their rate requirements. 
In this competitive CRN, our interest is in determining optimal 
power and rate distribution choices for each SU while maintain­
ing fairness in "quality of experience" across all SUs. Unlike 
prior approaches that focus on resource allocation based on 
instantaneous quality of service (QoS), our approach to fairness 
encompasses both current and prior history of user experience 
with respect to QoS. Specifically, we quantify user experience over 
time by introducing dynamic fairness weights for each SU in the 
resource allocation framework. The dynamics of the weights are 
governed by the Homo Egualis (HE) society model. We consider 
Jain system level fairness index [1] as a measure of fairness in 
resource allocation. Simulation results show that the weighted 
resource allocation scheme provide a better system level fairness 
index relative to the unweighted allocation scheme. 

I. INTRODUCTION 

Any secondary user in a cognitive radio network (a network 
of secondary users) continuously senses the absence/presence 
of primary users in its intended spectrum and may use the 
spectrum when primary users are absent. All SUs maintain 
QoS through the transmission duration by dynamically seek­
ing out the best transmission parameters (e.g., channel, rate, 
transmit power). In a competitive CRN where multiple SUs 
compete with each other for resources (transmit power, rate, 
channel), fairness in resource allocation among SUs plays 
an important role. Prior research efforts have focused on a 
wide range of issues in CRN including sensing of primary 
users [2]-[3], finding optimal channel, transmit power, mod­
ulation type and rate to SUs [4]-[5], fairness among SUs in 
opportunistic spectrum access/scheduling [6]-[9] and fairness 
in transmit power allocation to SUs [10]. In this work, our 
objective is to allocate resources for SUs in a competitive 
CRN maintaining fairness based on both instantaneous and 
past user experiences with respect to QoS (collectively referred 
to as "quality of experience"). In the following paragraphs, we 
provide an overview of prior work in fair resource allocation 
and scheduling, and highlight the contribution of our work. 

A fair random access (in terms of airtime share) protocol for 
dissimilar radio systems in open spectrum access scenario is 
studied in [6].  In their proposed fair random access protocol, 
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each radio system contends for the spectrum with a finite prob­
ability. The authors also propose a HE society model based 
distributed approach to determine the contending probability. 
A fair opportunistic spectrum access based on fast catch­
up strategy that reduces the first passage time (first passage 
time is the amount of time after which all SUs have equal 
access right to the available channels) is studied in [7]. In 
[8], the authors study three variants of utility functions Max­
sum-Reward, Max-min-Reward and Max-Proportional Fair to 
allocate spectrum in CRN under protocol interference model. 
In [9] ,  the authors study the three joint spectrum allocation and 
scheduling methods such as MAximum throughput Spectrum 
allocation and Scheduling (MASS), Max-min fair MAximum 
throughput Spectrum allocation and Scheduling (MMASS) 
and Proportional fAir Spectrum allocation and Scheduling 
(PASS) in CRN with the objective to achieve a tradeoff be­
tween throughput and fairness while ensuring interference-free 
transmission at any time (taking into account both protocol 
and physical interference models). While significant efforts 
have gone into fair spectrum allocation, the authors in [6]-[9] 
have not considered fairness in spectrum access and dynamic 
power/rate management in an integrated framework. 

In [10], the authors find optimal transmit power for users in 
wireless cellular and ad hoc networks considering proportional 
and minmax fairness. In proportional fairness optimization 
problem formulation, the authors consider a static weight for 
each user and use the weight into optimization problem. In 
minmax fairness optimization problem formulation, the trans­
mit power that maximizes the minimum signal to interference 
ratio is determined. However, the authors in [10] do not 
explicitly evaluate user level fairness or system level fairness 
for their proposed resource allocation schemes. 

Though there have been significant research efforts in 
the areas of resource allocation and fairness among SUs in 
open spectrum access/scheduling, resource allocation while 
maintaining fairness in "quality of experience" among SUs 
has not been investigated. We consider a system model where 
(1) multiple channels each with different quality is available 
for opportunistic use by multiple SUs; (2) more than one 
SU may coexist in every channel and each SU needs to use 
multiple channels to satisfy their rate requirements, and (3) 
measure for QoS include BER and minimum rate requirement. 
In such an environment, we determine transmit power and rate 
that each SU needs to employ in its intended channels while 
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maintaining fairness across SUs. Unlike prior efforts that focus 
on fair scheduling of SUs and interference management for 
primary users, we consider an alternate framework. We assume 
scheduling is complete and SUs have identified the channels to 
use. Since we allow more than one SU to coexist in a channel, 
the QoS experience of SUs will be different from each other 
and may vary with time. To achieve fairness in "quality of ex­
perience" across SUs, we associate dynamic fairness weights 
for each SU in the resource allocation scheme. The dynamic 
fairness weights capture the user's present and past experiences 
with respect to QoS and evolve based on the Homo Egualis 
(HE) society attitude. HE based fairness weights result in a 
proportionate resource allocation with respect to users demand. 
Hence, the fairness weights in the resource allocation scheme 
cause some users to sacrifice resources and some users to 
gain resources to maintain a balance in allocated resources. 
We consider Jain system level fairness index [1] to quantify 
fairness in resource allocation. Simulation results show that the 
inclusion of dynamic fairness weight in the resource allocation 
scheme provides a better system level fairness index relative 
to the unweighted resource allocation scheme. 

II. SYSTEM MODEL 

We consider a eRN with a total of M secondary users and L 
free channels available for opportunistic use (determined after 
spectrum sensing) by multiple SUs. We assume that each chan­
nel can be used simultaneously by multiple secondary users 
via some form of non-orthogonal multiple access scheme, 
and a single secondary user can use several channels at the 
same time to meet their rate requirements. Our interest in this 
work is to maintain QoS and fairness for these competing 
SUs via effective resource allocation. We consider BER and 
minimum rate requirement as measures to indicate QoS. In 
order to enable mathematical tractability of the optimization 
framework, we invoke the following assumptions: (1) we 
assume that we have a central cognitive network controller 
that will perform the resource allocation and has access to 
all SUs channel and interference parameters; (2) every active 
SU radio has an upper limit on power and rate (bits/channel 
use) at which it can transmit; (3) all SUs employ M-ary QAM 
modulation scheme with an adaptable modulation order M; 
(4) simple path loss model for channel has been assumed; 
(5) each channel has a maximum rate (bits/channel use) that 
it can support, and (6) each user has a minimum rate and 
BER that needs to be maintained. Additionally, we enforce an 
interference temperature threshold to protect possible primary 
user transmission on any channel. 

Under this system model, we determine transmit power and 
rate while maintaining fairness on present and past quality of 
user experiences with respect to QoS. We introduce dynamic 
fairness weights for each user into resource allocation scheme 
and develop evolution models for the fairness weights that 
captures the present and past quality of user experiences. 
Table I defines all relevant terms (at n-th time instant) used 
throughout the paper. 

a�(n,k) 
pj,i(n) 

TABLE I 

NOTATIONS 

Noise variance in k-th channel 
Orthogonality factor between users j and i 

hi i(n, k) Power gain from i-th transmitter to i-th receiver in k-th channel 
hi,m(n,k) Power gain from i-th transmitter at location m in k-th channel 
Pi(n,k) 

pmax(n, k) 
[fen, k) 
bien, k) 

b;nax(n, k) 
R�h(n,k) 

Rt(n) 
Pe i(n, k) 

P� i(n) 
1'iln, k) 

Transmit power per bit of i-th user in k-th channel 
Maximum transmit power per bit of i-th user in k-th channel 

Interference temperature constraint in k-th channel 
Rate of i-th user in k-th channel 

Maximum rate of i-th user in k-th channel 
Maximum rate supported by k-th channel 

Minimum required rate for i-th user 
BER for i-th user in k-th channel 

BER threshold at receiver for i-th user in any channel 
SINR per bit for i-th user in k-th channel 

In the following section, we describe the resource allocation 
framework that is considered in this work. 

III. RESOURCE ALLOCATION FRAMEWORK 

The objectives of the resource allocation framework are 
to (1) minimize the total transmit power, and (2) maximize 
the total rate while satisfying the QoS requirements and 
maintaining fairness across all active SUs. The mathematical 
description of the bi-objective optimization corresponds to: 

Determine 

where, 

To Minimize: 

Maximize: 

subject to 

where 

[pT(n) bT(n)]T 
p(n) = [P1(n, 1), ··· , PM(n, L)]T and 

b(n) = [b1(n, 1), ··· , bM(n, L)]T 
L M 

F1 = L L wf(n)pi(n, k) and 
k=1 i=1 

L M 
F2 = LLw�(n) bi(n, k) 

k=1 i=1 

C1: O::;Pi(n, k)::;p"[wX(n, k), Vi, k 
C2: bi(n, k) E [ 1, ···, brax(n, k)], Vi, k 

M 
C3: LPi(n, k)hi,m(n, k)::;I;:(n, k), V k 

i=1 
M 

C4: L bi(n, k)::;R�h(n, k), V k 
i=1 

L 
C5: L bi(n, kkRi(n) 

k=1 
C6: Pe,i(n, k)::;p�,i(n), Vi, k. (1) 

3bi(n, k)"(i(n, k) ) 
(2bi(n,k) - 1) , 

for odd bi(n, k); (2) 
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Pe,i(n, k) 

(3) 

Here, wf ( n) and wf ( n) are the dynamic fairness weights for 
user i based on allocation of transmit power and rate till 
time instant (n - 1), respectively; constraints C1 and C2 
indicate limits on transmit power and rate, respectively; C3 
indicates the interference temperature constraint; C 4 indicates 
the total rate supported by a channel; C5 represents the 
required rate of users and finally C6 is QoSIBER constraint. 
Since bi (n, k) is discrete and constraint C6 is nonlinear, the 
optimization formulation presented above is a constrained 
multi-objective mixed integer nonlinear programming (multi­
objective MINLP) resource allocation scheme, which is NP­
hard in general. Relaxing the integer constraint on rate, 
bi(n, k) (as assumed in [11]) and assuming bi(n, k) as con­
tinuous variable, the above resource allocation scheme can be 
restated with C2 as: 

(5) 

As in [5], constraint C6 can be written as 

C7: -I'i(n, k)'.5:. - Cqarg(n)(2bi(n,k) -1), Vi, k; (6) 

where, Cqarg(n) is a constant and is also determined following 
the analysis in [5]. The resource allocation scheme with 
combined single objective can be rewritten as: 

Minimize 71F1 - 72F2 
subject to 

C1, C2, C3, C4, C5, C7. 

(7) 

The parameters 71 and 72 in the combined objective function 
are the scalarization factors and can be set following the 
discussion in [12]. Finally, we use the solution obtained from 
the convex formulation (Eq. (7» as a starting point to search 
in the neighborhood for the optimal discrete valued bi(n, k) 
(denoted as bopt). Based on the new discrete solution, the 
optimal transmit power popt is recalculated using Eq. (6). 

In the following section, we describe the analogy between 
the social behavior of human beings and that of SUs in eRN. 
We then use the society model to design the evolution models 
for the fairness weights wf(n) and wf(n). 

IV. HOMO EGUALIS (HE) SOCIETY MODEL 

The secondary users in a eRN may behave rationally while 
competing and cooperating for resources, survival and social 
efficiency just like human beings in society [13]. Hence, 
secondary users behavior in eRN can be modeled based on 
human society model. 

In many decision-making and strategy-settings people do 
not behave like the self-interested "rational" actor depicted 
in neoclassical economics and game theory [14]. In a Homo 
Egualis society, individuals have an inequality aversion. As 
a result altruists appear in ultimatum and public games. As 
Gintis states in [14], support for Homo Egualis comes from 
the anthropological literature describing how Homo Sapiens 
evolved in small hunter-gatherer groups. Such societies had 
no centralized structure of governance, so the enforcement 
of norms depends on the voluntary participation of peers. A 
Homo Egualis Society can be modeled following [14] where 
the utility function of player m, Um in an M-player game is: 

M 

Um = Zm -;;: 1 L (zo-zm)-:: 1 L (zm -zo) 
o=l,zo>Z1n Zo<Ztn 

(8) 
where z = [Zl,··· ,Zm,··· ,ZMV is the pay-off vector of the 
players and 0 '.5:. flm < am < 1. In Eq. (8), considering flm 

less than am in the utility model reflects the fact that Homo 
Egualis exhibits a weak urge to inequality when doing better 
than the others and a strong urge to reduce inequality when 
doing worse that the others. In [14], it is also shown that in this 
model the salient behaviors in ultimatum and public games, 
where fairness does matter, can be reproduced. 

In the following section, we develop an evolution model for 
wf(n) and wf(n) following the concept of HE society model. 

V. UNDERSTANDING AND MODELING OF FAIRNESS 

A resource allocation framework (as an example, resource 
allocation framework in [5]) for the system model described 
in Section II provides the optimal transmit power and rate 
across the channels for all SUs for a given time instant. 
If the underlying optimization problem is convex, resource 
allocation is optimal. However, users may not be satisfied with 
optimal allocation of resources based on instantaneous QoS. 
An example of dissatisfaction among SUs may arise when two 
SUs with different minimum rate requirements are allocated 
the same rate. Another example of dissatisfaction among SUs 
may arise when a user is assigned higher average power per 
bit relative to other users. Typically dissatisfaction is a feeling 
that develops over time. Hence, fairness in terms of current and 
prior history of user satisfaction with respect to QoS in optimal 
resource allocation is an important consideration. We define 
two fairness metrics, one based on instantaneous average 
power per bit p�Pt(n, k) and another based on instantaneous 
allocated rate b?t (n, k) for user i as 

and 

L 
xf(n) = ±LP?t(n, k) 

k=l 

b R�(n) 
Xi (n) = ,,\,L bOPt( k)· 0k=1 i n, 

(9) 

(10) 

Equation (9) tells that a lower value of xf(n) means a favor­
able power allocation from the resource allocation scheme to 
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a user. Equation (10) tells that x� (n) can take value between 
o to 1. It is to be noted that x� (n) with value close to 0 
indicates a comparatively higher allocated rate to minimum 
requirement (favorable rate allocation to a user) and x�(n) 
with value close to 1 indicates a comparatively lower allocated 
rate to minimum requirement. The fairness weights wf( n) and 
wf(n) are modeled as a function of metrics xf(n) and x�(n), 
respectively, following the concepts in HE society model. 
The metrics xf(n) and x�(n) into fairness weights wf(n) 
and wf(n), respectively, capture the current experience and 
the evolution models of wf(n) and wf(n) capture the past 
experience with respect to QoS. 

The system level fairness as in [1] at time instant n can be 
defined as 

EM M 
fairness index(n) = � ;;1 xi(n) L xi(n), (11) 

Ei=l x�(n) i=l 

where, xi(n) = xf(n) or x�(n). It is also to be noted that 
system fairness index can take value from 0 to 1. An index Oil 
means that system is totally unfairlfair in allocation. An index 
close to 1 results when Xi (n) of all users are comparable and 
close to 1. As an example, for a system with three users (M = 
3), an allocation scheme that results x1(n), x2 (n) and x3(n) 
as 0.85, 0.75 and 0.60, respectively (system fairness index 
value is computed as 0.98) is more fair than the allocation 
scheme that results x1(n), x2 (n) and x3(n) as 1.00, 0.90 and 
0.30, respectively (system fairness index value is computed as 
0.85). This is because 0.85, 0.75 and 0.60 has lower variance 
than 1.00, 0.90 and 0.30. 

The evolution model for the fairness weights wf (n) and 
wf(n) based on HE society model are shown in Algorithm 
1. In Algorithm 1, nmax represents considered time horizon. 
In the first time instant, fairness weight vectors, wP (n) and 
wb(n) are initialized to 1. In the following time instants, based 
on relative values of current quality of experiences xf (n) and 
x�(n), weights wf(n) and wf(n) are updated. A relatively 
higher value of xf(n) and x�(n) (with respect to other users) 
result wf(n) and wf(n) to be a higher value. A higher value 
of wf(n) and wf(n) causes more importance on minimizing 
power and maximizing allocated rate, respectively, in next 
time instant. For a user i, a smaller value for (Jm than am 
indicates a weak urge to reduce wf(n) and wf(n) (as it reduces 
importance on minimizing power and maximizing allocated 
rate, respectively, in next time instant). The criteria {Jm < am 
captures the Homo Egualis society attitude among the SUs in 
CRN. 

TABLE II 

CHANNEL QUALITY PARAMETERS 

Channel, k 8 
u (n,k), (xlO 4 

Algorithm 1 Evolution model of weights wf(n) and wf(n) 
while n <= nmax do 

Initialization; 
if (n - 1) == 1 then 

for i = 1, 2" " , M do 
wf(O) = 1 
wf(O) = 1 

end for 
wP(O) = wP 
wb(O) = wb 

end if 
for i = 1, 2" " , M do 

for j = 1, 2" " , M do 
if joj:i then 

if (xf(n) >= x�(n)) then 
wf(n) = max(O, wf(O) +am(xf(n) - x�(n))) 

else 
wf(n) = max(O, wf(O) - (Jm(X�(n) - xf(n))) 

end if 
if (x�(n) >= x�(n)) then 

wf(n) = max(O, wf(O) + am(x�(n) - x�(n))) 
else 

wf(n) = max(O,wf(O) - (Jm(X�(n) - x�(n))) 
end if 

end if 
end for 

end for 

end while 

VI. NUMERICAL RESULTS 

In this section, we evaluate the impact of introducing 
dynamic fairness weight in the resource allocation framework. 
We assume a CRN with L = 8 available channels and a total 
of M = 9 secondary users. Table II provides information 
on the channel quality for all L channels. Table III lists the 
minimum rate requirement for each SUo Finally, Table IV 
contains all other system parameters that are relevant to our 
resource allocation framework. Based on all this information, 
our objective is to find the optimal transmit power and rate 
that each of the M SUs should employ to achieve fairness in 
"quality of experience." 

The resource allocation scheme has one non-linear con­
straint (constraint C7); we use "Sequential Quadratic Program­
ming (SQP)" method to solve the problem. It is to be noted 
that unweighted resource allocation scheme corresponds to the 
case of assuming wf(n) = 1, \f i, n and wf(n) = 1, \f i, n 
in the resource allocation scheme. Figures l(c), l(d), and 2(c), 
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TABLE III 

MINIMUM RATE REQUIREMENT OF US ERS 

TABLE IV 

SY S TEM PARAMETERS 

pfWX(n,k) Vi, k 5 
bmax(n,k) Vi, k 6 

p� i(n) Vi 10 -6 
[f(n, k) V k 200 x a"(n, k) 

R�h(n,k) V k 30 

pj,i(n) 0.03125 
nmax 50 

am 0.35 
13m 0.15 

9 
\0 

2(d) present the short term averaged power and rate allocated 
for users 2 and 5 from weighted and unweighted resource 
allocation schemes, respectively with time (71 = 72 = 0.5). 
Evolution of weights w�(n), wg(n) and w�(n), wg(n) are also 
shown in Figs. I (a), I(b) and 2(a), 2(b), respectively. 

Figures led) and 2(d) show that a decreasing fairness weight 
(with respect to I) with time (as shown in l(b)) results in 
smaller allocated rate; whereas an increasing fairness weight 
(with respect to I) with time (as shown in 2(b)) results in an 
higher allocated rate. Figures I(d) and 2(d) also show that 
allocated rate with dynamic fairness weight is smaller for 
user 2 and higher for user 5 compared to that obtained from 
unweighted resource allocation. This indicates that proposed 
fairness weight in the resource allocation scheme results in 
sacrificing rate for user 2 and gaining more rate for user 5 to 
achieve a rational resource allocation. That is, dynamic fair­
ness weights wf(n) and wf(n) promote cooperative, rational 
attitude of SUs in CRN like human beings in Homo Egualis 
Society. Similar impact of the weights are observed on short 
term averaged rate allocated to other users in the CRN. 

Figures I(c) and 2(c) depict that allocated power is in­
sensitive to fairness weight (shown in Figs. I(a) and 2(a)) 
for both users. This can be explained as follows. In order 
to satisfy constraint C7, one can increase power, Pi(n, k) 
or decrease rate, bi(n, k). Equation (6) suggests that varying 
rate, bi (n, k) is more effective. This is because 1'i (n, k) is 
linearly related to Pi (n, k) while rate bi (n, k) is an exponent 
of denominator in constraint C7. Therefore, for a given BER 
constraint, optimization engine prefers to vary bi (n, k) instead 
of Pi (n, k) to satisfy the constraint. Hence, changing wf (n) 
has stronger impact than wf (n) in the resource allocation 
scheme. 

Figure 3(a) shows the long term averaged transmit power 
allocated across users (71 = 72 = 0.5). From Fig. 3(a), we 
observe that transmit power allocated from weighted resource 
allocation scheme is same (as expected due to the reason 

mentioned in short term averaged power variation) compared 
to unweighted allocation scheme. Figure 3(b) illustrates the 
long term averaged rate allocated across users (71 = 72 = 0.5). 
From Fig. 3(b), we see almost equal rate is allocated from 
un weighted scheme across users irrespective of their demand. 
Whereas the fairness weights in the resource allocation scheme 
cause some users { I, 5, 6, 7} to sacrifice resources and some 
users {2, 3, 4, 8, 9} to gain resources to maintain a balance 
in allocated resources and their demand as observed in short 
term averaged allocated rate. Therefore, long term averaged 
rate allocated across users also reflect the cooperative, rational 
attitude of SUs in CRN as expected, and observed in short 
term averaged rate from introducing HE society based dynamic 
fairness weights in allocation scheme. 

Figure 4 presents the short term averaged system level 
fairness index for power. We see from Fig. 4 that system level 
fairness index of both weighted and unweighted allocation 
schemes are same which is expected as allocated power is 
insensitive to inclusion of fairness weight in the resource 
allocation scheme. Figure 5 shows the long term averaged 
system level fairness index for rate. From Fig. 5, we see that 
system level fairness index of the weighted allocation scheme 
is higher than the unweighted scheme. This can be explained 
as follows. The weighted allocation scheme promotes equality 
across users unlike greedy attitude in unweighted scheme. 
That is, x�(n) takes value close I in the weighted scheme as 
designed in Eq. (10). Therefore, fairness index of weighted 
allocation scheme becomes higher i.e., more closer to I 
compared to unweighted scheme. 

10 20 30 40 50 

TmelnSlanl,n 

{'" 0.8 

i 07 

� 0.6 

0.5 

(b) 

10 20 30 40 50 

nmelnSlanl,n 

Fig. 1. Short term averaged transmit power and rate allocated to user 2 from 
weighted and unweighted resource allocation schemes, respectively. 

VII. CONCLUSION 

In this paper, we determine optimal transmit power and rate 
distribution that each SU needs to employ in a multi-channel 
CRN considering current and past history of user experience 
with respect to QoS. We introduce fairness weights for each 
user that captures current and past history of user experience 
and design evolution models for the fairness weights based 
on HE society model. We consider Jain system level fairness 
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Fig. 2. Short term averaged transmit power and rate allocated to user 5 from 
weighted and unweighted resource allocation schemes, respectively. 
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Fig. 3. Long term averaged transmit power and rate allocated across users 
from weighted and unweighted resource allocation schemes, respectively. 

index as a measure of fairness in resource allocation scheme. 
Simulation results illustrate that incorporating dynamic fair­
ness weights in the resource allocation scheme provide better 
system level fairness index compared to the un weighted re­
source allocation scheme. 
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