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Abstract

Polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE) are en-

docrine disrupting chemicals which can imbalance the hormonal system in the human body

and lead to deleterious diseases such as diabetes, irregular menstrual cycles, endometriosis,

and breast cancer. These chemicals as environmental exposures still exist in the environ-

ment and food chains and can be accumulated in human fatty tissues for many years. These

chemicals can also be passed from mothers to their children through placental transfer or

breastfeeding; therefore, their offspring may be at increased risk of adverse health outcomes

from these inherited chemicals. However, it is still unclear how the parental association

with offspring health outcomes and the inter-generational phenotypic inheritance could be

affected by these chemical compounds. In this study, we mainly focus on how PCBs and

DDE can affect the inheritance of Body Mass Index (BMI) across generations, as BMI is

the primary health outcome (or phenotype) linked to diabetes. We propose a biometrical

inheritance model to investigate the effects of PCBs and DDE on the heritability of BMI

over two generations. Technically, a linear mixed effects model is developed based on the

decomposition of phenotypic variance and assuming the variance of the environmental effect

depends on parental exposures. The proposed model is evaluated extensively by simulations

and then is applied to Michigan Fisheater Cohort data for answering the research question

of interest.
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Chapter 1

Introduction

In 1920s, Lake Michigan suffered from a severe pollution issue due to harmful chemicals were

poured into the lake from production facilities on the shore. The most significant pollutants

were metabolites of organochlorines (OC) exposures, for instance polychlorinated biphenyls

(PCBs) and dichlorodiphenyldichloroethylene (DDE). Such OC exposures have a long-lasting

effect and impact on the environment and ecosystem as they take decades to disintegrate

(Kamrin, 1997). The fish in the Lake of Michigan was therefore highly polluted as these

chemicals can be accumulated in fish fatty tissues for many years; as one of the consequences,

people who consumed the fish from the lake could have human hormonal system disorders

and at high risk of malignant diseases. In addition to the fish consumption, many studies

have indicated that PCBs and DDE can be passed from mothers to their offspring through

placental transfer or breastfeeding (Longnecker et al., 1997; Adetona et al., 2013), thus

these chemicals may further undermine the health outcomes of offspring. For example, some

studies have shown that if mothers were exposed to a higher level of PCBs and DDE, their

offspring might have a higher chance to inherit such chemicals, then resulting in immune

system disease, diabetes, and asthma (Tryphonas, 1998; Wu et al., 2013; Gascon et al.,

2013).

Karmaus and others have shown that OC exposures are linked to increase the body

mass index (BMI) in affected individuals and to increased risk of Type 2 Diabetes (Vasiliu
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et al., 2006; Karmaus et al., 2009; Arrebola et al., 2014; Tang-Pronard et al., 2014; Trasande

et al., 2016; Frug et al., 2016; Geng Zong and Sun, 2018). However, it is still unclear

that how PCBs and DDE affect the inheritance of BMI across generations. To answer this

question, we can study heritablity of BMI under the presence of these exposures. Generally,

heritability can be estimated by modeling the resemblance traits between one parent and

one offspring with phenotypic data using the classical regression technique. However, there

are some problems with this approach. The estimated heritability completely depends on

the estimated regression coefficient which could be a negative or unrealistic large value,

therefore leading heritability to be a negative or a value larger than one (Kumar and Wehner,

2011; Murrin et al., 2012; Welch and Munday, 2017). Clearly, such estimation violates the

definition of heritability which requires its value between zero and one. Another way in

the literature to estimate heritability is using variance components approach which can be

referred to as ACDE models (Wang et al., 2011; Lazzeroni and Ray, 2013). This type of

approach is often applied to twin data with additional genotypic values if available, however,

there is no application to family data at all in the literature (Martin et al., 1997; Rabe-

Hesketh et al., 2008; Keller et al., 2009; Guo et al., 2013). Also, the influence of environmental

exposures is seldom included in this type of model.

In this study, we propose a biometrical inheritance model to investigate the impact of the

environmental factors (PCBs and DDE) on the heritability of BMI across two generations

using the multigenerational data of the Michigan Fisheater Cohort (MFC). The MFC study

was initiated by Michigan Department of Community Health with investigations in 1973/74,

1979/82, and 1989/91. Follow-up investigations were conducted in 2001, 2006, and 2012 to

recruit additional offspring participants. The main aim of MFC study was to investigate

the impact of environmental exposures on health outcomes of fisheaters and their offspring

who consumed fish from the Lake of Michigan. Technically, our proposed model is a linear

mixed effects model built upon the idea of ACDE models and the theory of genetic. A more

reliable and interpretable heritability can be provided through our model, even under the

case of unbalanced family data (i.e. different sizes of a family). The environmental factors

are also incorporated as covariates in our proposed model by assuming the dependence of
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these factors on the variance of a random effect.

In addition to simulation studies for evaluating the proposed model in finite sample sizes,

we apply our model to Michigan Fisheater data. For two generations, seventy-seven families

including four different sizes (2, 3, 4, 5 family members) of a family are used for this real

data analysis in order to answer the research question of interest.

This report is organized as follows. In Chapter 2, we introduce the statistical definition of

heritability. In Chapter 3, we propose a biometrical inheritance model that can incorporate

environmental effects and can be fitted with unbalanced family data. In Chapter 4, we

conduct simulation studies and apply our model to Michigan Fisheater data. In Chapter

5, we extend ACDE model to unbalanced family data and demonstrate it with simulation

studies and application to Michigan Fisheater data; as we know there is no discussion about

ACDE model for family data in the literature. Finally, some discussions and conclusions are

given in Chapter 6.
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Chapter 2

Statistical models for heritability

A very interesting question in the field of biology is how the genes and environmental factors

influence a certain trait in a species. It is known that the observed traits of a human

determined mainly by genes that are inherited from parents. For example, children’s BMI

are usually affected by their parental genetic factors (Dubois et al., 2012). In addition to

genetic factors, environmental effects may affect the observed traits as well. For example,

offspring’s BMI may also be influenced by parental education (Greenlund et al., 1996). To

describe the impact on a certain trait due to the genes, the measure of heritability is often

used for such purpose in the field of genetics (Wray and Visscher, 2008).

2.1 Definition of Heritability

Before we introduce the statistical definition of heritability, we would first present a statistical

model that is based on genetics theory and can incorporate the genetic and environmental

effects. We then can define the heritability under this model.

In general, phenotypes, such as height and weight, appear differently among individuals

and are characterized by genotypic effect (G), environmental effect (E) and interaction be-

tween them (G*E). The genotypic effect is defined as the impact of all loci (the sites of a

particular gene on its chromosome). The environmental effect represents the effect of the
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surroundings that shared by individuals in a family, such as the same dietary habit. To

describe how these effects can impact the phenotypic outcome, a common statistical model

for phenotype (e.g. Visscher et al., 2008) can be given as:

P = G+ E +G ∗ E (2.1)

The genotypic effect typically can be partitioned into additive effect (A), dominance effect

(D) as well as epistatic effect (I) which is the interaction between two or more genes to

control a phenotype. Specifically,

G = A+D + I

Based on the above model, we can understand that the variation in a phenotype is sim-

ply attribute to the variations of genotypic effect and environmental effect. Therefore, the

phenotypic variance of a trait can be expressed as the sum of the variance of the genotypic

effect, the environment variance (σ2
E), the covariance between genotype and environment

(σG,E) and the variance of G*E interaction (σ2
G∗E) (see Visscher et al., 2008):

σ2
P = σ2

G + σ2
E + 2σG,E + σ2

G∗E, (2.2)

where σG,E in Equation 2.2 is generally negligible (Visscher et al., 2008).

In Equation 2.2, the genetic variance (σ2
G) is known as the sum of the additive genetic

variance (σ2
A), the dominance genetic variance (σ2

D) and the epistatic genetic variance (σ2
I ):

σ2
G = σ2

A + σ2
D + σ2

I

The heritability is then defined as the ratio of genetic variation over phenotypic variation,

which is often used to measure the proportion of variation in a trait due to the variation of

genes inherited from the previous generation.

In general, there are two types of heritability, (1) broad-sense heritability (H2) and (2)

narrow-sense heritability (h2).
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(1) Broad-sense heritability (H2) is defined as

H2 =
σ2
G

σ2
P

,

which is the ratio of genotypic variance and the phenotypic variance. It captures the portion

of phenotypic variation due to genetic values (A, D and I).

(2) Narrow-sense heritability (h2),

h2 =
σ2
A

σ2
P

, (2.3)

captures only the portion of the genetic variation due to additive genetic values (A).

The differences between broad-sense heritability and narrow-sense heritability is not clear.

However, the narrow-sense heritability is usually used in animal and plant breeding studies.

2.2 Estimation

Two common methods are mentioned in the literature to estimate the heritability: (1)

regression approach for narrow-sense heritability and (2) variance component approach for

broad-sense heritability. We give more details about these two methods below.

2.2.1 Regression Approach for h2

With this approach, a simple linear regression model can be fitted to describe the relationship

of a certain trait resembled between parents and their offspring. The regression model for

such resemblance focusing on one offspring and one parent in a family is given by (Lynch

and Walsh, 1998, p. 538),

zoi = α + βopzpi + ei,

where zoi is the phenotype of offspring in the ith family, zpi is the phenotype of a parent in

the ith family, α is the intercept, βop is the slope of the regression line and ei is the error

term which is i.i.d. N(0,σ2
e).

In general, the coefficient βop can be estimated as β̂op = σ̂(zo, zp)/σ̂
2(zp), where σ̂(zo, zp)
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is an estimate of σ(zo, zp). The σ(zo, zp) is the covariance of parent and offspring. Based

on theory of genetics, this covariance should be a weighted sum of the variance components

(σ2
A, σ2

D, σ2
AA, σ2

AD, σ2
DD, · · · ). Their corresponding weights can be found in Table 2.1. Thus,

σ(zo, zp) = 1
2
σ2
A + 0σ2

D + 1
4
σ2
AA + 0σ2

AD + 0σ2
DD + · · · , where σ2

A is the additive genetic vari-

ance and σ2
D is the dominance genetic variance which is defined as the interactions between

two alleles at the same locus. And σ2
AA is the variance of additive × additive genetic effects.

Since there are two alleles at each locus, four combinations of the alleles from two loci will be

considered (each involves one allele from each locus). Thus, the additive × additive genetic

effect is the sum of four combinations. σ2
AD is the variance of additive × domiance genetic

effect, which involves one allele at one locus and two at the other locus. The variance of

dominance × dominance genetic effect (σ2
DD) is the sum of interactions for the two-locus

genotypes. A good example about those variances (σ2
A, σ2

D, σ2
AA, σ2

AD, σ2
DD, · · · ) can be

found in Lynch and Walsh (1998, p. 88-99). Therefore, with the notation σ2(zp) = σ2
z and

without the consideration of the environmental factors, we have

E(β̂op) =
σ(zo, zp)

σ2(zp)
' (σ2

A/2) + (σ2
AA/4) + · · ·
σ2
z

(2.4)

It is worth to mention that, we can calculate any covariance between any two relatives based

on Table 2.1.

Under the following three assumptions: (1) random mating, (2) no genotype-environment

covariance and (3) parents do not transmit their environmental effects to their offspring, we

see that β̂op ' σ2
A/(2σ

2
z), by ignoring the term involves epistasis (i.e. σ2

AA) in Equation 2.4.

Therefore, the narrow-sense heritability (h2 =
σ2
A

σ2
z
) can be simply estimated as ĥ2reg = 2 ∗ β̂op

(Lynch and Walsh, 1998).

The regression approach is widely used in literature. For examples, Murrin et al. (2012)

used the regression approach to investigate the association of BMI across three generations.

Keller et al. (2001) studied the heritability of morphological traits in the Medium Ground

Finch across three generations. Howerver, there exists one difficulty while using this ap-

proach. It is clear that the heritability should be between 0 and 1 (Equation 2.3), but in
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Table 2.1: Coefficients for the components of genetic covariance between different types of
relatives under the assumptions of random mating, free recombination, and gametic phase
equilibrium (Lynch et al., 1998, p.145).

Relationship σ2
A σ2

D σ2
AA σ2

AD σ2
DD

Parent-offspring 1
2

1
4

Grandparent-grandchild 1
4

1
16

Great grandparent-great grandchild 1
8

1
64

Half sibs 1
4

1
16

Full sibs, dizygotic twins 1
2

1
4

1
4

1
8

1
16

Uncle(aunt)-nephew(neice) 1
4

1
16

First cousins 1
8

1
64

Double first cousins 1
4

1
16

1
16

1
64

1
256

Second cousins 1
32

1
1024

Monozygotic twins (clonemates) 1 1 1 1 1

practice, the estimated heritability values through regression approach could be less than 0

or greater than 1 (for example, Keller et al., 2001; Murrin et al., 2012), resulting a negative

heritability or a heritability greater than 1. This makes it difficult to interpret.

2.2.2 Variance Components Approach for H2 (ACDE model)

One popular approach to estimate broad-sense heritability is based on variance components

analysis. In the literature, most studies applied the variance componenets analysis on twin

data (for example, see McArdle and Prescott, 2005; Guo et al., 2013). McArdle and Prescott

(2005) compared the biometrical path analysis model and the biometric variance components

model by analyzing the simulated twin data. Guo et al. (2013) applied the variance compo-

nents approach to estimate the heritability of anterior chamber depth in order to study the

etiology of angle closure.
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As mentioned earlier (Equation 2.2), the phenotypic variance of a trait is the sum of the

genotypic variance and environmental variance, where the genotypic variance is composed of

additive genetic variance, dominance genetic variance and epistatic genetic variance. Like-

wise, Keller et al. (2009) mentioned that the total variance of the trait can be decomposed

into four components: Additive genetic effect (A), dominant genetic effect (D), common

enviornmental effect (C) and individual environmental effect (E). This biometrical genetic

model is also known as ACDE model. The ACDE model for jth subject (j = 1, 2, · · · , ni)

in ith family (i = 1, 2, · · · ,m) is given as

Yij = µ+ x′ijβ + Aij +Dij + Cij + eij, i = 1, 2, · · · ,m, j = 1, 2, · · · , ni (2.5)

where Yij is the observed trait, µ is the overall mean and β is the coefficients for the co-

variates xij. Aij is additive genetic effect, where Ai = (Ai1, Ai2, · · · , Aij) ∼ N(0, ΣA), Dij

is dominant genetic effect, where Di = (Di1, Di2, · · · , Dij) ∼ N(0, ΣD), Cij is the environ-

mental effect, where Ci = (Ci1, Ci2, · · · , Cij) ∼ N(0, ΣC) and eij ∼ N(0, σ2
e) is the error

term. ΣA,ΣD,ΣC can be determined by the family structures. In order to estimate these

structures, we have to determine the covariance structure of the random effects (A, D, C).

The coefficients for the covariances between different types of relatives are shown in Table

2.1. An example is given in the following section.

Example: ACDE model for twin data

In a family with two parents and a pair of dizygotic (DZ) twins, where DZ twins means that

they share half genetic similarity. According to genetic theory, the covariance between a par-

ent and one of the twins is σ2
A/2, and the covariance between the DZ twins is σ2

A/2+σ2
D/4+σ2

C

(Table 2.1). Therefore, the covariance structure for jth individual in ith family (j = 1, 2 for

parents and j = 3, 4 for DZ twin) can be given as

9



ΣA = cov



Ai1

Ai2

Ai3

Ai4


=



1 0 1/2 1/2

0 1 1/2 1/2

1/2 1/2 1 1/2

1/2 1/2 1/2 1


σ2
A = MA ∗ σ2

A, where σ2
A > 0,

ΣD = cov



Di1

Di2

Di3

Di4


=



1 0 0 0

0 1 0 0

0 0 1 1/4

0 0 1/4 1


σ2
D = MD ∗ σ2

D, where σ2
D > 0,

ΣC = cov



Ci1

Ci2

Ci3

Ci4


=



0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1


σ2
C = MC ∗ σ2

C , where σ2
C > 0

In the case of a family with two parents and a pair of monozygotic (MZ) twins, where

the MZ twins share identical genetic similarity. The covariance between a parent and one

of the twins is σ2
A/2, and the covariance between the MZ twins is σ2

A/2 + σ2
D + σ2

C (Table

2.1). Then the covariance structure for jth individual in ith family (j = 1, 2 for parents and

j = 3, 4 for MZ twin) can be given as

ΣA = cov



Ai1

Ai2

Ai3

Ai4


=



1 0 1/2 1/2

0 1 1/2 1/2

1/2 1/2 1 1

1/2 1/2 1 1


σ2
A, where σ2

A > 0,
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ΣD = cov



Di1

Di2

Di3

Di4


=



1 0 0 0

0 1 0 0

0 0 1 1

0 0 1 1


σ2
D, where σ2

D > 0,

ΣC = cov



Ci1

Ci2

Ci3

Ci4


=



0 0 0 0

0 0 0 0

0 0 1 1

0 0 1 1


σ2
C , where σ2

C > 0

Clearly, we see the difference in covariance structure under the two cases of twin studies.

In fact, the theory of separation (see McArdle and Prescott, 2005) indicates that the

additive genetic effect (A) can be separated into two parts, AC and AU, where AC is the

common component within a family and AU is the unique component for each individual.

Both of them follow the same distribution as Ai (i.e. normal) and we assume that AC and

AU are uncorrelated with each other. Similarly, dominant genetic effect (D) can be also

separated into DC and DU, where DC is the common part within a family and DU is unique

for each individual. They follow the same distribution as Di (i.e. normal) and mutually

independent.

In practice, based on the covariance structure and theory of separation, Equation 2.5 can

be rewritten as the following model for jth (j = 1, 2, 3, 4) individual in ith family,

Yij = µ+ x
′

ijβ + wac,jACi + wau,jAUij + wdc,jDCi + wdu,jDUij + Ci + eij, (2.6)

where for different jth subject in a family, we will assign different values for wac,j, wau,j, wdc,j, wdu,j

accordingly. These weights are assigned based on the correlation between relatives, specifi-

cally,

σ(Yi1, Yi3) = σ(Yi1, Yi4) = σ(Yi2, Yi3) = σ(Yi2, Yi4) = σ2
A/2

11



For DZ twins,

σ(Yi3, Yi3) = σ2
A/2 + σ2

D/4 + 1σ2
C ,

and for MZ twins,

σ(Yi3, Yi4) = 1σ2
A + 1σ2

D + 1σ2
C

For the programming purpose, in order to represent each individual in a family (two

parents and a pair of twins), the forementioned components (Equation 2.6) can be further

separated into different genetic scores (see McArdle and Prescott, 2005). Based on the

genetic theory, the additive genetic effect (A) is separated into AC1, AC2, AU1 and AU2,

where AC1 represents the common part among father and a pair of twin in a family and

AC2 is the common part among mother and a pair of twin in a family, AU1 and AU2 are

unique components to each individual of a pair of twin. The weights are assigned for each

genetic score. Therefore, the additive genetic effect can be rewritten as

Aij = wac1,jAC1i + wac2,jAC2i + wau1,jAU1i + wau2,jAU2i, (2.7)

Likewise, the dominance genetic effect can be seperated as

Dij = wdc1,jDC1i + wdc2,jDC2i + wdu1,jDU1i + wdu2,jDU2i, (2.8)

and likewise, we can rewrite the environmental effect as

Cij = wc1,jC1i + wc2,jC2i + wc3,jC3i (2.9)

To identify the estimated variance terms, for each effect, the sum of squares of the weights

should be equal to one (e.g. (wac1,j)
2 + (wac2,j)

2 + (wau1,j)
2 + (wau2,j)

2 = 1).

As an example, the weights for each random effect for a family with MZ twins are given

in Table 2.2. The weights for a family with DZ twins are given in Table 2.3. From the tables,

the covariance between two members in a family should be the same as the correlation in

12



the covariance structure.

As we mentioned earlier (Equation 2.6), we can estimate the variance components σ̂2
A,

σ̂2
C , σ̂2

D and σ̂2
E by using a non-linear mixed model in SAS (PROC NLMIXED) easily. Then,

the broad-sense heritability can be estimated by

Ĥ2 =
σ̂2
A + σ̂2

D

σ̂2
A + σ̂2

C + σ̂2
D + σ̂2

E

.
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2.3 Potential problems of two approaches

In the regression approach, the estimated narrow-sense heritability is two times the estimated

slope coefficient of a simple linear regression model. However, in practice, the estimated value

of heritability could be negative or greater than one. This clearly violates the definition of

heritability (Equation 2.3) which requires its value between zero and one.

For the variance components approach, it is discussed only for twin data in the literature.

There is no study with this approach for the sibling or family data.

Another common issue is that, the environmental factors are usually not discussed under

these two approaches. To our knowledge, there is no study in the literature to investigate

the impact of environmental exposures on the heritability under a more general setting

rather than a twin study. Therefore, we propose a biometrical inheritance model that can

incorporate environmental factors for family data consisting different sizes of families.
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Chapter 3

The proposed biometrical inheritance

model with environmental factors

We proposed a biometrical inheritance model to incorporate environmental exposures. The

proposed model not only can be used for twin study, but also it can be applied to fam-

ily studies. By adopting the notations from Chapter 2, our statistical model for the jth

individual in ith family can be written as

Yij = µ+ x
′

ijβ + Aij +Dij + Cij + eij (3.1)

where i = 1, 2, · · · ,m and j = 1, 2, · · · , ni. Yij is the observed trait, xij is a vector of

observed covariates, Aij is additive genetic effect and Ai = (Ai1, Ai2, · · ·Aij) ∼ N(0, ΣA), Dij

is dominant genetic effect and Di = (Di1, Di2, · · · , Dij) ∼ N(0, ΣD), Cij is environmental

effect, where

Ci = (Ci1, Ci2, · · · , Cij) ∼ N(0, ΣCi
),

and eij is the error term, eij ∼ N(0, σ2
e). In this model, we particularly consider the variance

of the environmental effect varies among families, whereas the variance is often assumed

fixed across whole families in other models (such as ACDE).
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For a family with one parent and p−1 children, the covariances (ΣA,ΣD,ΣCi
) are given as

ΣA = cov



Ai1

Ai2

Ai3
...

Aip


=



1 1/2 1/2 . . . 1/2

1/2 1 1/2 . . . 1/2

1/2 1/2 1 . . . 1/2

...
...

...
. . .

...

1/2 1/2 1/2 . . . 1


σ2
A = MA ∗ σ2

A, (3.2)

ΣD = cov



Di1

Di2

Di3

...

Dip


=



1 0 0 . . . 0

0 1 1/4 . . . 1/4

0 1/4 1 . . . 1/4

...
...

...
. . .

...

0 1/4 1/4 . . . 1


σ2
D = MD ∗ σ2

D, (3.3)

ΣCi
= cov



Ci1

Ci2

Ci3
...

Cip


=



0 0 0 . . . 0

0 1 1 . . . 1

0 1 1 . . . 1

...
...

...
. . .

...

0 1 1 . . . 1


σ2
Ci

= MC ∗ σ2
Ci
, (3.4)

where the subscript index i1 represents a parent and the subscript index i2, i3, . . . , ip for

children. Here, MA,MD and MC are the associated p × p correlation matrices, which are

given based on the relationships mentioned in Table 2.1. For example, in ΣA, the coefficient

of the genetic covariance between a parent and an offspring is 1/2 and the coefficient between

siblings is also 1/2. Likewise, in the covariance structure of ΣD, the the coefficient of the

covariance between a parent and an offspring is zero and the coefficient between siblings is

1/4. For the covariance structure of ΣCi
, all siblings share the same environmental effects,

thus, the correlation of environmental effects between any children in a family is 1. We

further assume σ2
Ci

depends on observed environmental factors. We use a log link function
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to let σ2
Ci

relate to the environmental factors (Zi) which can be written as

σ2
Ci

= exp(Z
′

iγ)

By using our model, the heritability estimate is

ĥ2i =
σ̂2
A + σ̂2

D

σ̂2
A + σ̂2

D + σ̂2
Ci

+ σ̂2
E

(3.5)

It is worth to mention that, in practice, we use similar ideas (theory of separation,

Equation 2.5) discussed in Chapter 2, Equation 3.1 then can be rewritten as,

Yij = µ+ x
′

ijβ + wac,jACi + wau,jAUij + wdc,jDCi + wdu,jDUij + Ci + eij, (3.6)

where for different jth individual in a family, different values of weights will be assigned for

the effects ACi, AUij, DCi, DUij. In the following section, we provide an example to show

how to assign weights (i.e. wac,j, wau,j, wdc,j, wdu,j) for each random component.

3.1 Example

This example is about how to assign weights for each family consisting one parent and

three children (i1 for a parent and i2, i3, i4 for children). According to Equation 2.7 and

2.8, we can separate the components in Equation 3.6 into different genetic scores. Each

individual in a family has different parameters to represent the genetic scores. The model

of jth (j = 1, 2, 3, 4) individual in the ith family is written as

Yij = µ+ x
′

ijβ + wac1,jAC1i + wac2,jAC2i + wau1,jAU1i + wau2,jAU2i + wau3,jAU3i

+ wdc1,jDC1i + wdc2,jDC2i + wdu1,jDU1i + wdu2,jDU2i + wdu3,jDU3i + Ci + eij

(3.7)

Based on Equation 3.7, the corresponding variances and covariances for this model can
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be given as

σ2(Yij) =
[
(wac1,j)

2 + (wac2,j)
2 + (wau1,j)

2 + (wau2,j)
2 + (wau3,j)

2
]
∗ σ2

A

+
[
(wdc1,j)

2 + (wdc2,j)
2 + (wdu1,j)

2 + (wdu2,j)
2 + (wdu3,j)

2
]
∗ σ2

D + σ2
Ci

+ σ2
e ,

σ(Yij, Yij′) = (wac1,j ∗ wac1,j′ + wac2,j ∗ wac2,j′ + wau1,j ∗ wau1,j′

+ wau2,j ∗ wau2,j′ + wau3,j ∗ wau3,j′) ∗ σ2
A

+ (wdc1,j ∗ wdc1,j′ + wdc2,j ∗ wdc2,j′ + wdu1,j ∗ wdu1,j′

+ wdu2,j ∗ wdu2,j′ + wdu3,j ∗ wdu3,j′) ∗ σ2
D

+ σ2
Ci
,

(3.8)

where j 6= j′, j = 1, 2, 3, 4. To distinguish each individual in the family, the weights are

assigned differently for each individual,

when j = 1, wac2,1 = wau1,1 = wau2,1 = wau3,1 = wdc2,1 = wdu1,1 = wdu2,1 = wdu3,1 = 0,

when j = 2, wau2,2 = wau3,2 = wdc1,2 = wdu2,2 = wdu3,2 = 0,

when j = 3, wau1,3 = wau3,3 = wdc1,3 = wdu1,3 = wdu3,3 = 0,

when j = 4, wau1,4 = wau2,4 = wdc1,4 = wdu1,4 = wdu2,4 = 0
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Then the variances and covariances in this model can be rewritten as

σ2(Yi1) = (wac1,1)
2 ∗ σ2

A + (wdc1,1)
2 ∗ σ2

D + σ2
e

σ2(Yi2) =
[
(wac1,2)

2 + (wac2,2)
2 + (wau1,2)

2
]
∗ σ2

A +
[
(wdc2,2)

2 + (wdu1,2)
2
]
∗ σ2

D + σ2
Ci

+ σ2
e

σ2(Yi3) =
[
(wac1,3)

2 + (wac2,3)
2 + (wau2,3)

2)
]
∗ σ2

A +
[
(wdc2,3)

2 + (wdu2,3)
2
]
∗ σ2

D + σ2
Ci

+ σ2
e

σ2(Yi4) =
[
(wac1,4)

2 + (wac2,4)
2 + (wau3,4)

2
]
∗ σ2

A +
[
(wdc2,4)

2 + (wdu3,4)
2
]
∗ σ2

D + σ2
Ci

+ σ2
e

σ(Yi1, Yi2) = (wac1,1 ∗ wac1,2) ∗ σ2
A

σ(Yi1, Yi3) = (wac1,1 ∗ wac1,3) ∗ σ2
A

σ(Yi1, Yi4) = (wac1,1 ∗ wac4,4) ∗ σ2
A

σ(Yi2, Yi3) = (wac1,2 ∗ wac1,3 + wac2,2 ∗ wac2,3) ∗ σ2
A + (wdc2,2 ∗ wdc2,3) ∗ σ2

D + σ2
Ci

σ(Yi2, Yi4) = (wac1,2 ∗ wac1,4 + wac2,2 ∗ wac2,4) ∗ σ2
A + (wdc2,2 ∗ wdc2,4) ∗ σ2

D + σ2
Ci

σ(Yi3, Yi4) = (wac1,3 ∗ wac1,4 + wac2,3 ∗ wac2,4) ∗ σ2
A + (wdc2,3 ∗ wdc2,4) ∗ σ2

D + σ2
Ci

From the correlation matrices (MA,MD,MC) in Equation 3.2, 3.3 and 3.4, we can see

that the variance of Yi1 for MA is 1σ2
A and for MD is 1σ2

D. Based on the theory of genetics

(σ2
P = σ2

A + σ2
D + σ2

Ci
), σ2(Yi1) equals the sum of 1σ2

A and 1σ2
D. In this way, the variances

and covariances are given as

σ2(Yi1) = 1σ2
A + 1σ2

D

σ2(Yi2) = σ2(Yi3) = σ2(Yi4) = 1σ2
A + 1σ2

D + 1σ2
Ci

σ(Yi1, Yi2) = σ(Yi1, Yi3) = σ(Yi1, Yi4) = σ2
A/2

σ(Yi2, Yi3) = σ(Yi2, Yi4) = σ(Yi2, Yi3) = σ2
A/2 + σ2

D/4 + 1σ2
Ci

The weights for each random effect (i.e. wac1,j, wac2,j, wau1,j, wau2,j, · · · , etc) should be satis-

fied the given correlation matrices (MA,MD,MC) and the variance and covariance equations.

For example, from the equations of σ2(Yi1), we can get (wac1,1)
2 = 1 and (wdc1,1)

2 = 1, thus
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Table 3.1: Weights for the family size of 4

wac1,j wac2,j wau1,j wau2,j wau3,j wc,j wdc1,j wdc2,j wdu1,j wdu2,j wdu3,j
Parent 1 0 0 0 0 0 1 0 0 0 0
(j = 1)

Child 1 0.5 0.5
√

0.5 0 0 1 0
√

0.25
√

0.75 0 0
(j = 2)

Child 2 0.5 0.5 0
√

0.5 0 1 0
√

0.25 0
√

0.75 0
(j = 3)

Child 3 0.5 0.5 0 0
√

0.5 1 0
√

0.25 0 0
√

0.75
(j = 4)

wac1,1 = 1 and wdc1,1 = 1. All weights are shown in Table 3.1.

To include additional children, we can simply extend our model by adding the unique

component of additive and dominant genetic effect for each additional children. Specifically,

suppose we have one parent and p− 1 childern for each family, the statistical model can be

expressed as

Yij = µ+ x
′

ijβ + wac1,jAC1i + wac2,jAC2i

+ wau1,jAU1i + wau2,jAU2i + wau3,jAU3i + · · ·+ waup−1,1AUp−1

+ wdc1,jDC1i + wdc2,jDC2i

+ wdu1,jDU1i + wdu2,jDU2i + wdu3,jDU3i + · · ·+ wdup−1,1DUp−1 + Ci + eij

(3.9)

Then the estimated variance components σ̂2
A, σ̂2

D and σ̂2
E and σ̂2

Ci
= exp(Z

′
iγ) can be

obtained by using SAS (PROC NLMIXED) and then the estimated heritability: ĥ2 = (σ̂2
A +

σ̂2
D)/(σ̂2

A + σ̂2
Ci

+ σ̂2
D + σ̂2

E).

3.2 SAS code

We assign weights for each genetic score before we fit the model. It is worth to mention that

those weights can be any number between 0 and 1 as long as they satisfy the given structures

of covariances (i.e. ΣA,ΣD,ΣC) mentioned earlier. We provide a SAS example in Appendix
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A to show how to assign the weights in practice.
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Chapter 4

Numerical study for the proposed

model

4.1 Application - Michigan Fisheaters Cohort Study

In this study, the proposed biometrical inheritance model is applied to real data from the

Michigan Fisheaters’ Cohort study, which was initially established by Michigan Depart-

ment of Community Health (MDCH). The main goal of this cohort study was to study the

organochlorines (OC) exposure effects (i.e. PCBs and DDE, two chemicals) on the health

outcome of fisheaters as well as their offsprings. In this cohort study, fisheaters and their

spouses were recruited by the MDCH in 11 counties along the shoreline of Lake Michigan

at sites of fishing activities at three different time points between 1973 and 1991. Question-

naires were conducted and the serum of PCB levels were collected for each period (1973-1974,

1979-1982, 1989-1991), while the serum of DDE levels were only collected in the second and

third periods. The participants were asked about their demographic, medical, gynecologic

and reproductive history, as well as the request for the permission of the follow-up study. In

2000, a follow-up study was conducted by the MDCH. Mail was sent to 686 participants (621

families). Among them, 398 participants provided answers. In 2001/2002, those participants

who provided responses in the previous year were contacted again by telephone interview to
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ask about the contact information of their offspring. In 2006/2007, those offspring received

information brochures by mail and were contacted by telephone to invite them to participate

the fisheater study. Around 70% of offspring agreed to participate in the study and provided

their demographic and reproductive history information as well as the blood samples. More

details of the study can be found in the papers of Karmaus et al. (2009), Hsu et al. (2014)

and Han et al. (2017).

The dataset we used in this study is a subset of the Michigan Fisheaters’ Cohort dataset

which include BMI, age, PCBs and DDE levels of two generations. There are total 77

families including four different sizes of family (2, 3, 4, 5 family members) in this study,

where 77 participants were mothers (F0 generation) and 163 participants were offspring (F1

generation). The summary statistics of our data are presented in Table 4.1 and the number

of families under each family size is shown in Table 4.2.

Table 4.1: Summary statistics of two generations
Mother Offspring

BMI Age DDE PCB BMI Age

(kg/m2) (yr) (µg/l) (µg/l) (kg/m2) (yr)
n 77 77 77 77 163 163

Mean 24.91 49.72 15.06 11.14 26.68 44.45

Median 23.97 50.66 11.60 8.10 25.42 45.04

5th percentile 21.79 38.61 7.90 5.28 23.38 36.95

95th percentile 26.87 60.02 19.10 13.72 29.23 51.31

Table 4.2: Number of families for each size family

Family size Number of families
2 26

3 23

4 21

5 7

Total 77

For our proposed biometrical inheritance model, PCBs and DDE values are included
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as both fixed and random effects in the models. However, since PCBs and DDE are highly

correlated, we fit the model seperately for PCBs and DDE. Specifically, the statistical models

for jth individual in the ith family are given as

Model 1: BMIij = µ+ β1 ∗ Age+ β2 ∗ PCBsi + Aij +Dij + Cij + eij,

Model 2: BMIij = µ+ β1 ∗ Age+ β2 ∗DDEi + Aij +Dij + Cij + eij,

where i = 1, 2, · · · , 77 and j = 1, 2, · · · , ni, the maximum value of ni is 5 which means that

one mother and four offspring in the same family. Age, PCBs and DDE are covariates for the

fixed effects, Aij, Dij and Cij are random effects that satisfy the assumptions as mentioned

in Equation 3.1. The random effect Ci = (Ci1, Ci2, · · · , Cini
) ∼ N(0,ΣCi

) and

ΣCi
= cov



Ci1

Ci2

Ci3
...

Cini


=



0 0 0 . . . 0

0 1 1 . . . 1

0 1 1 . . . 1

...
...

...
. . .

...

0 1 1 . . . 1


σ2
Ci
,

where

σ2
Ci

=


exp(γ0 + γ1 ∗ PCBsi), for Model 1

exp(γ0 + γ1 ∗DDEi), for Model 2.

The analysis results for the model involved PCBs and DDE are given in Table 4.3. As

shown in Table 4.3, the coefficient of the fixed effect for PCBs is positive but not significant

(i.e. β̂2 =0.036, p-value=0.385). The estimated coefficient γ̂1 = −1.461 is not significant

(p-value=0.099) which suggests that PCBs does not have a significant impact on the her-

itability. The estimated heritability is 0.589 (S.E.= 0.144). The proportion indicates that

the influence of the genes in the variation of observed BMI is 58.9%.
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For the analysis based on DDE data (see Table 4.3), the coefficient β̂2 is 0.047 (p-value=

0.024), that represent the higher DDE value can predict higher BMI. The estimated coef-

ficient (γ̂1) for the variance σ2
Ci

is −0.935 with p-value= 0.141, which indicates the non-

significance of DDE for σ2
Ci

. In other word, DDE has no impact on heritability. The corre-

sponding estimated heritability is 0.438 (S.E. = 0.137), which means 43.8% of the variation

in observed BMI can be explained by the variation of genes.

Table 4.3: Analysis results of the proposed model that used PCBs/DDE

Model 1 Model 2

Estimate (S.E) p-value Estimate (S.E) p-value
µ 12.575 (2.074) <0.001 19.972 (1.262) <0.001

β̂1 0.279 (0.046) <0.001 0.117 (0.028) <0.001

β̂2 0.036 (0.041) 0.385 0.047 (0.020) 0.024
σ̂2
A 8.746 (6.942) 0.212 3.986 (2.422) 0.105
σ̂2
D 10.030 (6.733) 0.141 3.750 (2.777) 0.182
γ̂0 8.133 (3.483) 0.023 7.358 (3.165) 0.023
γ̂1 −1.461 (0.871) 0.099 −0.935 (0.628) 0.141
σ̂2
e 9.877 (2.162) <0.001 7.421 (1.474) <0.001

¯̂
h2 0.589 (0.144) 0.438 (0.137)

Note:
¯̂
h2 is the average of ĥ2 across all subjects.

4.2 Simulation for the proposed model

To evaluate the performance of our proposed model, we conduct a simulation study. For our

simulation, one sample consists four different sizes of family (i.e. 2, 3, 4 and 5 members). For

each size of family, we generate 50 families. In other words, we generate total 200 families

(=50*4) for a sample. To further investigate the performances under different family sizes,

we also consider total 300 families (=75*4) and 400 families (=100*4).

We generate the family data based on the model yij = µ+β1∗xi1+β2∗xi2+Aij+Dij+Ci+

eij, i = 1, 2, · · · ,m and j = 1, 2, · · · , ni, where ni ∈ {2, 3, 4, 5}. In our setting, we let yij be

the observed trait for the jth individual in the ith family (j = 1 for a parent and j = 2, 3, 4, 5
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for offspring). The covariate xi1 for all j is generated from a uniform distribution on the

interval [0, 1] and xi2 for all j is genetated from a Bernoulli distribution with probability

0.3. We assume the associated coefficients β1 = 0.5 and β2 = 1. The additive genetic effect

Ai = (Ai1, Ai2, · · · , Aini
) ∼ N(0,ΣA), where ΣA = MA ∗ σ2

A and σ2
A = 2. The dominant

genetic effect Di = (Di1, Di2, · · · , Dini
) ∼ N(0,ΣD), where ΣD = MD ∗ σ2

D and σ2
D = 4. The

environmental effect Ci = (Ci1, Ci2, · · · , Cini
) ∼ N(0,ΣCi

) and ΣCi
= MC ∗σ2

Ci
. The variance

of environmental effect σ2
Ci

= exp(γ0 + γ1xi1 + γ2xi2), where γ0 = 1.5, γ1 = 0.5 and γ2 = 0.3.

The error term eij ∼ N(0, 1.5). For the correlation matrices, MA,MD,MC can be found in

Equation 3.2, 3.3 and 3.4. The simulations are replicated 200 times and all simulations are

performed using SAS.

The simulation results are shown in Table 4.4. From Table 4.4, as the number of families

increases, the estimated values of parameters are getting close to the true values and the

associated standard errors decrease. For example, by comparing the estimates of heritability

under three different number of families (m = 200,m = 300 and m = 400), as the number of

families inreases, the estimated heritability is more close to the true value (i.e. 0.436) with a

smaller standard error. However, through this simulation, we notice that it requires a larger

sample size of family data to achieve the statistical consistency, which is often challenge in

practice.

27



Table 4.4: Estimated parameters from simulated data of four different sizes of family
(i.e. two, three, four and five members), based on 200 Monte Carlo samples

Number of families for each family size
50 75 100

Total Families
m = 200 (50× 4) m = 300 (75× 4) m = 400 (100× 4)

True value Estimates (S.E.) Estimates (S.E.) Estimates (S.E.)
µ = 0 0.013 (0.354) −0.004 (0.268) 0.002 (0.209)
β1 = 0.5 0.475 (0.581) 0.488 (0.455) 0.497 (0.358)
β2 = 1 0.973 (0.344) 1.001 (0.300) 1.125 (0.255)
σ2
A = 2 1.845 (1.199) 2.003 (1.060) 1.918 (0.878)
σ2
D = 4 3.570 (2.501) 3.551 (2.157) 3.762 (2.119)
γ0 = 1.5 1.492 (0.411) 1.515 (0.349) 1.475 (0.297)
γ1 = 0.5 0.518 (0.635) 0.442 (0.481) 0.540 (0.450)
γ2 = 0.3 0.259 (0.345) 0.261 (0.294) 0.275 (0.293)
σ2
E = 1.5 1.963 (1.866) 1.837 (1.573) 1.735 (1.559)
h̄2 = 0.436 0.396 (0.166) 0.410 (0.154) 0.416 (0.151)

Note: h̄2 is the average of h2 across all subjects.
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Chapter 5

ACDE model for family data

In the literature, there are various statistical models to estimate heritability. ACDE model

is one of the statistical models that used to estimate heritability in classical twin studies.

Usually in the twin study, data of observed traits are obtained for families with equal sizes

(each family includes two parents and a pair of twin). To our knowledge, no discussion of

ACDE model in the literature is applied to the family studies as well as unequal sizes of

family. We extend ACDE model to family data with the illustrations of a simulation study

and real data analysis using Michigan Fisheater data.

5.1 Simulation – ACDE model with simulated family

data

We conduct simulation studies to examine the performance of ACDE model under the setting

of family study. In the simulation, one sample consists families of different sizes (2, 3, 4 and

5 members). In each size of family, we generate data of 50 families. Total 200 (= 50 ∗ 4)

families are generated in one sample. To evaluate the performance under different family

sizes, we also consider total 300 (= 75 ∗ 4), 400 (= 100 ∗ 4), 800 (= 200 ∗ 4), 1600 (= 400 ∗ 4)

and 3200 (= 800 ∗ 4) families.

We generate data based on the statistical model for jth individual in the ith family can
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be expressed as

Yij = µ+ β1 ∗ xij + Aij +Dij + Cij + eij,

i = 1, 2, · · · ,m, j = 1, 2, · · · , ni, where ni ∈ {2, 3, 4, 5}. Data are generated under follow-

ing settings, we assume the covariate xij ∼ U(0, 1) with the coefficient β1 = 0.5, Ai =

(Ai1, Ai2, · · · , Aij) ∼ N(0,ΣA), where ΣA = MA ∗σ2
A and σ2

A = 2, Di = (Di1, Di2, · · · , Dij) ∼

N(0,ΣD), where ΣD = MD ∗ σ2
D and σ2

D = 5, Ci = (Ci1, Ci2, · · · , Cij) ∼ N(0,ΣCi
), where

ΣCi
= MC ∗ σ2

Ci
and σCi

= 3, eij ∼ N(0, 1). The correlation matrices MA,MD,MC can be

found in Equation 3.2, 3.3 and 3.4. All simulations are replicated 1000 times and we perform

the simulations using R.

The simulation results are shown in Table 5.1. The results demonstrate that the estimates

are getting close to the true value and the standard errors decrease as the family size increases.

Table 5.1: Estimated parameters and standard errors from simulated data of four different
sizes of family (i.e. two, three, four and five members), based on 1000 Monte Carlo samples

True value
Total families σ2

A = 2 σ2
D = 5 σ2

C = 3 σ2
e = 1 µ = 0 β1 = 0.5 h2 = 0.636

m = 200 (50 × 4) 2.054 4.128 3.176 1.692 −0.001 0.488 0.565
(1.030) (2.413) (0.992) (1.789) (0.312) (0.540) (0.206)

m = 300 (75 × 4) 2.063 4.245 3.111 1.595 0.008 0.484 0.576
(0.940) (2.238) (0.792) (1.640) (0.241) (0.407) (0.189)

m = 400 (100 × 4) 2.072 4.402 3.125 1.435 0.001 0.506 0.589
(0.790) (1.994) (0.683) (1.494) (0.214) (0.370) (0.167)

m = 800 (200 × 4) 2.042 4.747 3.049 1.177 0.002 0.500 0.618
(0.560) (1.538) (0.500) (1.166) (0.147) (0.253) (0.131)

m = 1600 (400 × 4) 2.010 4.950 3.004 1.030 −0.004 0.506 0.634
(0.393) (1.219) (0.351) (0.919) (0.103) (0.183) (0.102)

m = 3200 (800 × 4) 1.997 4.987 3.005 1.013 0.001 0.495 0.635
(0.296) (0.943) (0.271) (0.718) (0.072) (0.126) (0.081)

5.2 Application to Michigan Fisheaters’ Cohort Study

The ACDE model (see for example, Keller et al., 2009) is used to analyze Michigan Fisheaters’

Cohort data. Age, PCBs and DDE are considered as the fixed effects in the model. Since
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PCBs and DDE are highly correlated, we consider one variable each time in the model. The

statistical models incorporating PCBs or DDE for jth individual in the ith family are given

as

Model 1: BMIij = µ+ β1 ∗ Age+ β2 ∗ PCBsi + Aij +Dij + Cij + eij

Model 2: BMIij = µ+ β1 ∗ Age+ β2 ∗DDEi + Aij +Dij + Cij + eij

where i = 1, 2, · · · , 77 and j = 1, 2, · · · , ni, ni ∈ {2, 3, 4, 5}. Age, PCBs and DDE are covari-

ates for the fixed effects, Aij, Dij and Cij are random effects that satisfy the assumptions as

mentioned in Equation 2.5.

The analysis results are shown in Table 5.2. Since R can not directly provide standard

errors for those variances, we use boostrap approach to obtain standard errors. For the model

incorporate PCBs, the coefficient of PCBs is positive (β̂2 = 0.002) but not significant (S.E.=

0.040). The estimated heritability is 0.081 with S.E.= 0.129. For the model incorporate

DDE, the coefficient β̂2 of DDE is 0.001 (S.E.= 0.020), which suggest that DDE does not

have a significant impact on BMI. The estimated heritability is 0.082 with S.E.= 0.133,

which is not significant. R code is provided in Appendix B.

Table 5.2: Analysis results for Michigan Fisheaters Cohort Study

β̂0 β̂1 β̂2 σ̂2
A σ̂2

D σ̂2
C σ̂2

e
¯̂
h2

Model 1 20.203 0.116 0.002 1.273 0.329 4.804 15.036 0.081
(S.E.) (1.437) (0.033) (0.040) (1.905) (1.710) (2.938) (2.598) (0.129)

Model 2 20.344 0.113 0.001 1.239 0.379 4.930 14.966 0.082
(S.E.) (1.415) (0.033) (0.020) (1.892) (1.848) (2.988) (2.711) (0.133)
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Chapter 6

Discussion

In this study, we propose a biometric inheritance model to investigate the impact of the

environmental factors (PCBs and DDE) on the heritability of BMI across two generations

in the Michigan Fisheater Cohort. In contrast to the existing model, our model assumes the

variance of environmental effect relates to the measurements of PCBs and DDE and is more

general to the data that contain different sizes of a family (i.e. two, three, four or five family

members in a family). Moreover, our proposed model can be easily performed using SAS

and R.

The results of Michigan Fisheater data analysis reveal that the levels of PCBs and DDE

are positively correlated with the outcome BMI, but PCBs and DDE are not significant for

predicting heritability of BMI across two generations. It is worth to note that the family

sample size of Michigan Fisheater data is relatively small, compared with the number of

parameters in the model. Large variations could be the reason of having non-significant

results in the analysis. Therefore, we should interpret the final results with caution.

As other statistical models, our proposed model also requires the assumptions to be

examined. The random effects in our model are assumed to be normally distributed, however;

in practice the real data maybe not. The fixed effects can be checked with diagnostic plots

and QQ plots can be used to validated for each level of the random effects. Violation of

the normality assumption may cause unwanted consequences when the sample size is small.
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Especially it may impact the validity of statistical inferences about the parameters. When

the assumption of normality is not met, a proper transformation might be used to achieve

normality approximately.

As mentioned previously, the proposed model can be implemented in SAS or R easily,

but we strongly suggest that trying different initial values as a sensitivity analysis for the

parameter estimation to ensure the globe maximum is achieved. This sensitivity analysis

may also help us understand the overall performance of model convergence.

The Michigan Fisheater dataset includes the information of participants across three gen-

erations. It will be interesting to extend the model to analyze the data of three generations,

but it is beyond the scope of this study.

In addition to evaluating the relationship of the environmental exposures and BMI, the

model proposed in this study can also be extended to quantitative genetic studies on the

plant and animal selective breeding. Typically, the ‘animal model’ is used to estimate the

heritability in plant and animal breeding studies. It is a form of the mixed model with phe-

notypic response variable and genotypic independent variables (Misztal et al., 1992; Kruuk,

2004). However, there is no application of ‘animal model’ using only phenotypic covariates

in the literature. Therefore, our proposed model could fill this gap of knowledge.

For comparative convenience, the features of the existing biometrical genetic/inheritance

models are summarized in Table 6.1.
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Table 6.1: Characteristics of different biometrical genetic/inheritance models

Regression Animal ADE ACDE Proposed
approach model model model model

Phenotypic outcome X X X X X

Genotypic variables X X

Twin data X X X X

Equal-size family data X X X X

Unequal-size family data
(e.g. 2, 3, 4, 5 members) X X X X

Incorporating environmental effect X X X

Variance of environmental effect
depends on covariates X

ADE model: An ADE model is a genetic model where A is additive genetic effects, D for
dominance genetic effects, and E for individual environment effects. (Locatelli et al., 2004)
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Appendix A

SAS code

libname mydata "e:/master report/heritability/data" ;

/*assign weights*/

data weight;

set bmi10new3;

if frequency =2 and count =1 then do;

weightAC1 =1; weightAC2 =0; weightAU1 =0; weightAU2 =0; weightAU3

=0; weightAU4 =0;

weightS =0;

weightdc1 =1; weightdc2 =0; weightdu1 =0; weightdu2 =0; weightdu3

=0; weightdu4 =0;

end;

else if frequency =2 and count=2 then do;

weightAC1 =0.5; weightAC2 =0.5; weightAU1=sqrt (0.5); weightAU2 =0;

weightAU3 =0; weightAU4 =0;

weightS =1;

weightdc1 =0; weightdc2=sqrt(1/4); weightdu1=sqrt(3/4);

weightdu2 =0; weightdu3 =0; weightdu4 =0;

end;

else if frequency =3 and count=1 then do;

weightAC1 =1; weightAC2 =0; weightAU1 =0; weightAU2 =0; weightAU3

=0; weightAU4 =0;

weightS =0;

weightdc1 =1; weightdc2 =0; weightdu1 =0; weightdu2 =0; weightdu3

=0; weightdu4 =0;

end;

else if frequency =3 and count=2 then do;

weightAC1 =0.5; weightAC2 =0.5; weightAU1=sqrt (0.5); weightAU2 =0;

weightAU3 =0; weightAU4 =0;
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weightS =1;

weightdc1 =0; weightdc2=sqrt(1/4); weightdu1=sqrt(3/4);

weightdu2 =0; weightdu3 =0; weightdu4 =0;

end;

else if frequency =3 and count=3 then do;

weightAC1 =0.5; weightAC2 =0.5; weightAU1 =0; weightAU2=sqrt (0.5);

weightAU3 =0; weightAU4 =0;

weightS =1;

weightdc1 =0; weightdc2=sqrt(1/4); weightdu1 =0; weightdu2=sqrt(3

/4); weightdu3 =0; weightdu4 =0;

end;

else if frequency =4 and count=1 then do;

weightAC1 =1; weightAC2 =0; weightAU1 =0; weightAU2 =0; weightAU3

=0; weightAU4 =0;

weightS =0;

weightdc1 =1; weightdc2 =0; weightdu1 =0; weightdu2 =0; weightdu3

=0; weightdu4 =0;

end;

else if frequency =4 and count=2 then do;

weightAC1 =0.5; weightAC2 =0.5; weightAU1=sqrt (0.5); weightAU2 =0;

weightAU3 =0; weightAU4 =0;

weightS =1;

weightdc1 =0; weightdc2=sqrt(1/4); weightdu1=sqrt(3/4);

weightdu2 =0; weightdu3 =0; weightdu4 =0;

end;

else if frequency =4 and count=3 then do;

weightAC1 =0.5; weightAC2 =0.5; weightAU1 =0; weightAU2=sqrt (0.5);

weightAU3 =0; weightAU4 =0;

weightS =1;

weightdc1 =0; weightdc2=sqrt(1/4); weightdu1 =0; weightdu2=sqrt(3

/4); weightdu3 =0; weightdu4 =0;

end;

else if frequency =4 and count=4 then do;

weightAC1 =0.5; weightAC2 =0.5; weightAU1 =0; weightAU2 =0;

weightAU3=sqrt (0.5); weightAU4 =0;

weightS =1;

weightdc1 =0; weightdc2=sqrt(1/4); weightdu1 =0; weightdu2 =0;

weightdu3=sqrt(3/4); weightdu4 =0;

end;

else if frequency =5 and count=1 then do;

weightAC1 =1; weightAC2 =0; weightAU1 =0; weightAU2 =0; weightAU3

=0; weightAU4 =0;

weightS =0;

weightdc1 =1; weightdc2 =0; weightdu1 =0; weightdu2 =0; weightdu3

=0; weightdu4 =0;

41



end;

else if frequency =5 and count=2 then do;

weightAC1 =0.5; weightAC2 =0.5; weightAU1=sqrt (0.5); weightAU2 =0;

weightAU3 =0; weightAU4 =0;

weightS =1;

weightdc1 =0; weightdc2=sqrt(1/4); weightdu1=sqrt(3/4);

weightdu2 =0; weightdu3 =0; weightdu4 =0;

end;

else if frequency =5 and count=3 then do;

weightAC1 =0.5; weightAC2 =0.5; weightAU1 =0; weightAU2=sqrt (0.5);

weightAU3 =0; weightAU4 =0;

weightS =1;

weightdc1 =0; weightdc2=sqrt(1/4); weightdu1 =0; weightdu2=sqrt(3

/4); weightdu3 =0; weightdu4 =0;

end;

else if frequency =5 and count=4 then do;

weightAC1 =0.5; weightAC2 =0.5; weightAU1 =0; weightAU2 =0;

weightAU3=sqrt (0.5); weightAU4 =0;

weightS =1;

weightdc1 =0; weightdc2=sqrt(1/4); weightdu1 =0; weightdu2 =0;

weightdu3=sqrt(3/4); weightdu4 =0;

end;

else if frequency =5 and count=5 then do;

weightAC1 =0.5; weightAC2 =0.5; weightAU1 =0; weightAU2 =0;

weightAU3 =0; weightAU4=sqrt (0.5);

weightS =1;

weightdc1 =0; weightdc2=sqrt(1/4); weightdu1 =0; weightdu2 =0;

weightdu3 =0; weightdu4=sqrt(3/4);

end;

run;

/*results with NLMIXED*/

proc NLMIXED Data=weight;

yexp=mu+ gamma1*age+gamma2*fdde_8+ weightS*S + weightAC1*AC1+

weightAC2*AC2+weightAU1*AU1+weightAU2*AU2+weightAU3*AU3+

weightAU4*AU4

+weightDC1*DC1+weightDC2*DC2+weightDU1*DU1+weightDU2*DU2+

weightDU3*DU3+weightDU4*DU4;

model BMI~normal(yexp ,ve);

vs=exp(beta0+beta1*fdde_8);

random S AC1 AC2 AU1 AU2 AU3 AU4 DC1 DC2 DU1 DU2 DU3 DU4 ~

NORMAL ([0,0,0,0,0,0,0,0,0,0,0,0,0],

[vs ,

0 ,va,

0 , 0,va,
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0 , 0, 0,va ,

0 , 0, 0, 0,va,

0 , 0, 0, 0, 0,va,

0 , 0, 0, 0, 0, 0,va ,

0 , 0, 0, 0, 0, 0, 0,vd,

0 , 0, 0, 0, 0, 0, 0, 0,vd,

0 , 0, 0, 0, 0, 0, 0, 0, 0,vd ,

0 , 0, 0, 0, 0, 0, 0, 0, 0, 0,vd,

0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,vd,

0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,vd]

) subject=familyid;

parms mu=0 va=1 vd=1 ve=1 beta0=1 beta1 =1 gamma1 =1 gamma2 =1;

*parms mu=0 va=2 ve=2 vs1=1 vs2=1 vd=1;

predict (va+vd)/(va+vs+ve+vd) out=h2estimate;

ods output ParameterEstimates=ParameterEstimates;

run;

proc means data=h2estimate;

var Pred;

title2 "estimated h^2";

where count =1;

run;
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Appendix B

R code

The following code is referenced by Guo et al. ,2013.

library(nlme)

install.packages ("boot");

library(boot);

install.packages ("dplyr")

library (" dplyr")

data<-read.csv("K:/master report/heritability/data/Family2345.

csv")

familyid <-data[,8]

B=1000

for (j in 1:B) {

h1 <- add1 <- com1 <- dom1 <- uni1<-beta1<-beta0 <-

beta2<-random_id<- NULL;

data_fit=function (B) {

random_id <- sample(unique(familyid) ,77,

replace=TRUE)

datata=NULL

for (i in 1:77) {

d=which(familyid == random_id[i])

newdata=data[d,]

newdata$newid<-c(rep(i,times=length(d))

)

datata=rbind(datata ,newdata)

}

BMI<-datata [,4]
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weightac1 <-datata [,12]

weightac2 <-datata [,13]

weightau1 <-datata [,14]

weightau2 <-datata [,15]

weightau3 <-datata [,16]

weightau4 <-datata [,17]

weightS <-datata [,18]

weightdc1 <-datata [,19]

weightdc2 <-datata [,20]

weightdu1 <-datata [,21]

weightdu2 <-datata [,22]

weightdu3 <-datata [,23]

weightdu3 <-datata [,24]

newid<-datata [,25]

frequency <-datata [,11]

age<-datata [,5]

dde<-datata [,6]

pcb<-datata [,7]

acde1<-lme(BMI~age+dde ,random=list(newid=pdBlocked(list(pdIdent

(~weightac1+weightac2+weightau1+weightau2+weightau3+

weightau4 -1),pdIdent(~weightS -1),pdIdent(~weightdc1+

weightdc2+weightdu1+weightdu2+weightdu3+weightdu4 -1)))),data

=datata ,method ="REML")

h1<-(getVarCov(acde1)[1]+ getVarCov(acde1)[8,8])

/(getVarCov(acde1)[1]+ getVarCov(acde1)[7 ,7]+ getVarCov(acde1)

[8 ,8]+ acde1$sigma ^2)

add1<-getVarCov(acde1)[1]

com1<-getVarCov(acde1)[7,7]

dom1<-getVarCov(acde1)[8,8]

uni1<-acde1$sigma ^2

beta0=coef(acde1)[1,1]

beta1=coef(acde1)[1,2]

beta2=coef(acde1)[1,3]

}

}

h1 <- add1 <- com1 <- dom1 <- uni1<-beta1<-beta0 <-beta2<- NULL

;

for (k in 1:B){

all_stuff=data_fit(B);

h1[k]=all_stuff$h1;

add1[k]=all_stuff$add1;

com1[k]=all_stuff$com1;

dom1[k]=all_stuff$dom1;

uni1[k]=all_stuff$uni1;
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beta1[k]=all_stuff$beta1;

beta0[k]=all_stuff$beta0;

beta2[k]=all_stuff$beta2;

}

res<-data.frame(h1 ,add1 ,com1 ,dom1 ,uni1 ,beta0 ,beta1 ,beta2);

EA=apply(res ,2,mean)[2]; S.E.A=apply(res ,2,sd)[2];

ED=apply(res ,2,mean)[4]; S.E.D=apply(res ,2,sd)[4];

ES=apply(res ,2,mean)[3]; S.E.S=apply(res ,2,sd)[3];

EE=apply(res ,2,mean)[5]; S.E.E=apply(res ,2,sd)[5];

Ebeta0=apply(res ,2,mean)[6]; S.E.beta0=apply(res ,2,sd)[6];

Ebeta1=apply(res ,2,mean)[7]; S.E.beta1=apply(res ,2,sd)[7];

Ebeta2=apply(res ,2,mean)[8]; S.E.beta2=apply(res ,2,sd)[8];

Eh2=apply(res ,2,mean)[1]; S.E.h2=apply(res ,2,sd)[1];
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