LXECUTION MCDELS FOP TRANSLATOR DES.iGN

5Y
MILES T. CLEMENIS JR.

B.5., NCETH GEORGIA COLLEGE, 1965

A MASTER'S REPORT
SUBMTITED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE CEGREE

MASTER OF SCIENCE
DEPARIMENT OF COMPUIER SCIENCE
KAMSAS STATE UNILIVERSITY
MANHATTAN ,KANSAS

1977

APPRCVED BY:

MAJOR EROFESSOK

Lp

A0LF :

R P
H77 TABLE OF CONTENTS 2
CS'-’ i Lo A

c. 2
Docyment
EFage

Chapter

1.

2.

INTRODUCTION e ccenasosesssacsssscssscnsnscesansaal
Stack Hachin@.cececessveasnscssscassnssansennssl
Theoretical FraseworK.sccsscscssscsssnnccnscch

CS700 STACK FEPRESENTATIONSceeccesnconscsessss..b
Activation BecCCrdS.ecasescsssscsccscsscncsncadl
Argument linkaqe.............................§
Tenporaries..................;.....-........10

CODE TRIPLETSweewssvscsvsssssansssscannanaassss.ll

EXECUTION MOLELS . us ss aw smanaa o5 56w 5w o5 ow i wasll

ASSIGNMENT INS"RUCTION ececccccccsssscesrcansecsnsald

MONADIC ARITHMETIC DNSTHUCCIINS e a9 ve ne oo smns s sel

DYADIC ARITHMETIC INSTRUCTICNS . ceccccaasacaseaas2l

RELATIONAL IBSTRBUCTIONS.ccceccncccncocsccecnssdd

LOGICAL INSTRUCTIONS., we we vy ww we o wa wws ww pwwn e avhl

CONTROL INSTRUCTIONS :ww aw o wn ws au s we ws wn é ow wedd

STACK INSTRUCTICNS.ceucecoccoecssascnssasoanssss3d
PUSH InStENCtioN.ssss usaonssonss e nasnns sn eI
POP InStrUCtiChececcecececccceccnceacnacanaardl

Al INSTRUCTICHS eneanseseness sdesonnonsnss ne url
PUSHAR INnStructioNeeccecccccceseccececnes.. 42

POPAB InStI\JCtion..oo I...l....l..'......".'“

ii

114

chapter Page

LINK INSTRUCTICNS cuumowousesn v ames s g sus e sy
Forvard Link TDStruCtiOD.cecasccaceascsseases .89
Eackward Link InStrUCtiONececcceccoccncesssc.33

BLELICGBAPHY cu v ossoasaieseonssnsssasenssasssssss I
APPENDIXES. .. cessncvsannsscansncsancassnccannsansesnnedl
A. Design Specification LanguUage@.cceeceveeesaes3?

B. Formal Algorithms for InStrucCtioNS.ceceesas..00

ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE

T'HIS BOOK CONTAINS
NUMEROUS PAGE
NUMBERS THAT ARE
ILLEGIBLE

THIS IS AS RECEIVED
FROM THE
CUSTOMER

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH THE ORIGINAL
PRINTING BEING
SKEWED
DIFFERANTLY FROM
THE TOP OF THE
PAGE TO THE
BOTTOM.

THIS IS AS RECEIVED
FROM THE
CUSTOMER.

Chaptaer 1

INTRODUCTICN

The fundamentals fcr this report were covered in a
Translator Design course taught by CL[r.Bill Hankley 1n the
summer of 1975 ind summer of 1976. The CS700 stack rachine
vas desijned and isplemented by the 1975-1976 1Iramnslator
Cesign classes. This report ccmbines class presentations and
existing CS700 documentation to explain the stack corcert

and implementation.

An overview of stack macnines and the CS700 iastruction
set is presented to describe the envircneent, A diagyram ot
an interpreter 1is shown to jrapnically show this repcrts’
relationship to other CS700 reports. The tagged architecture is
explained in chapter 2 Ly regresenting the 2xecution stack
as a data structure. Execution 1aodels are presenrtsd in
chapter 3 for selected instructions., 1Indexing and I/0 are
not included. A description of a d2sign specification
language and formal algorithms for the selected instruction

set are included as appendixes.

Stack Machine

A rasic stack machine is characterized by module calls

wnich are dynamically linked at the ©point of call, A jivan

1

'
‘ &
procedure call may result in €furtaor procedure cills in ta=

called procedure,including recirsive calls}

The jereral
features of the CS700 Interpreter ar::
- calls by linkage values(not adlresses)
- ¢cnly activation records,scalars,and address
references on the stack.

- activation records, argqument linkage, and :emporary

restlts on *he same execution stack.

-procedure table, static link variables(SLOBALS),
symbol table template, and address translation table omn
arotaer structure (Z&aP).

-tagyged architecture with dynamic type checking.

-local/global scope rules.

- thirty three instructions in the set

The instruction set for CS700 is shown in table 1.

1

Cavid Gries, Coampiler Copstructio
(New York:John Wiley £Scns,Inc.,

-
Fall-)
-J

ASSIGNMENT

ARITHMETIC

RELATIONAL

LOGICAL

CONTROL

STACK

AR

LINK

Table 1,

C5700 Instruction Set

i s e e T .

ASGN <operand1><operand2>

CPER<operand 1>

OPER<operandl><operand2>

OPER<Korerand1><ogperand2>

OPER<operandi>

OPER<operand 1><operand2>

CPER<operandi1>

OPER<operand 1><operand2>

CPER<orerand 1>

OPER<orerand 1>

OPER<orerandi1>

ceiling,flcor,ccund
truncate,alksolute,sign
*l’l’c‘li

=, #5082 2

ﬂ
AV

BR,3RT,BRF

BRI,BRT, BRF

EUSH, POP

PUSHAR, PCPAR

FLINK,BLINK

A gqeneral diagram of an interpreter is shown Ltelow:

INTERPRETER

Source Code SCANNER

| Tobens

PARSER/

Instructions
CODE GENERATER :IEIBGMMR Chtmu;

Data

- Scanner- scans the scurce code and jenerates tokens
-Parser- syntactical analyzer

-Code Jeneraters- Generates the instructions
-Executor—- Executes the instructions and produces the

outrput,

This report will focus on tne execution portion of the
interpreter and the (S700 instruction set. The Paster's
report, Walk-Through of Translator Algorithms, Kansas State
Universty, 1977, Lty James R.Meyer discusses scanning ,
parse, and code genceration.It can be used with this report

to obtain an overall understanding of the CS700 Interpreter.

The stack representation presented during the Translator Design classes

will be used extensively in this report.

Essential concepts are presented in chapter 2 and

S
should ke understood before reading the remainder of the
report. Execution =models are presented in Chapter 3.
Representative source lines and the resulting generated code
are shown and are used as a framework for the execution
models. The stack requirements are discussed and snapshots
of the eyecution stack are.. shown for each instructicn tyge.
A sample walk-thru is presented as cptional reading in
chapter 3 (ASSIGNMENT OPERATOR) to demonstrate the use of
the formal algorithas presented in appendix B. The design
specification language is described in appendix A. The
language notation =shculd be understocd before attempting a

walk-thru.

The formal algorithms were written to facilitate futura
enhancerents to the CS700 machine and verify the stack
representations fpresented in the report., It pust be
emphasized that the algorithms are not all inclusive or
necessarily error free. The handling of GLOBALS was
intentionally omitted since they are handled gquite easily
but tend to substantially 1increase the lenqgth of the
algorithms. This author has walked-thru the algorithms and

believes them to e useful as *spring boards' for class

discussions.

The

Chapter 2

CS70C STACK REPRESENTATICNS

execution stack consists of activation racords (aR),

arqument linkage frcm the calling module, and temporaries
produced by the current AR. A representation of the stack
is shown below:
BASE
AR HEADER
COPY OF THE AR'S SYMBOL TABLE ENTRIES
ARGUMENT
LINKAGE
AR
LA HEADEKE FCR A CALLED AR
CCPY OF THE CALLED AR'S
SYMBOL TABLE ENTRIES
TEMFORARY
VALUES

STKTOP-A pointer to the top of the stack.
AR- A pointer to the current AR,

LAR- A pointer to the last AR. In 7jeneral,
LAR=AR. It does not ejual AR when a
new AR is being added to the stack or
is being removed from the stack

stack.

Activation Hecord (AR)

An activation reccrd consists of a header and a copy of the
symbol table. The header contains seven subfields which are

explained below:

ARTAG ARLEN ARLIN ARINST ARLCOD ABPIND ARKET

AR 7 0 0 2100 3 0

ARRET- The relative index of the previous AR.
ARPIND- Index tc the procedure table.

ARLCOD- Logical address of the ccde.

ARINST- Belative index for the instruction teing
executed.

ARLIN- Current source line numker reing executed,
ARILEN- Length c¢f the AR.

ARTAG- Tag subfield.A numeric regresentation for AR.

Phe entries in the symbol table ¢gcrtion of the Ag have
five sutfields: LEN, NAME, SCOPE, TYFE, and VAL. It is
important to note that the first three fields are filled in
during scan, parse, and code generation. The last two subfields
are filled in dynamically during execution. The excefpticn is
GLOBAL variables which are static 1linked during parse ani
code <generation (GLOBAL variatles are similar to CCMMOU
variables in Fortran). The VAL subfield of GLOBAL entrias
contains the relative index cf the variable in the GLCBAL
table. This index , static link, allcws the static value to

be obtained duringj execution.

The subfields for symbol takle entries are shown belcwd:

LEN MAME SCOPE TYPE VAL
INDEX—® i
INDEX- the relative index for a particular syskcl table
entry.
IEN- length of variable name
NAME- name cf the variable
SCCPE- allowable SCCEE entries are: LOC; IN; QUT;
VARY; CGCLCEAL; and LABR.
SCOPE BEANING
LocC Static local variable
IN Cynamic link variakle; TYPE and VAL
sukfields are passed froa the calling
AR tgo the called AEK, as arjuments.
QuT Cynamic link variable; TYPE and VAL
sukfields are returned (copied intc) tc
the calling AR.
VARY IN cr OUT
GLOBAL Static link variatle
TYPE- The following entries are allowable in the [YFPE

VAL-

It is noted that the GLOBAL taktle

The follcwing entries are

subfield; INTEGER, d&EAL, BCCLEAN, STRIKNG

ARRAY .

- -

, O

allowabla in the VAL

has the same structurce.

sutfield depending on the ccntent of the

T'YPE subfield:

ILEE YAL subfield content
INT E lnteger value
REAL Real value
BOOLEAN _ Boolean constant (TRUE or FALSE)
STRING Address of the string
ARRAY Address of the array

The argument linkage consists cf elements having two
subfislds, TAG and V2L. The content of the argument lirkaje

elements is shown below:

TAG Lontent of VAL subfisld

VAR relative index of the variable in the AR.
NARG rupsber of arguments

INT integer value

EAL real value

BOCL boolean constant

ARRAY address of the array

STRING address of the string

A typical examrle of arquament linkage is shown felcw:

TAG VAL
INT 5
VAR 4

10
Teamporaries (TEME)
Temporaries also have two subfields, TAG and VAL. Any

of the TAG and VAL gubfields used in the argument linkage are allowable

as a TEMP except NARG,

11

CODE TRIPLETS

General form: {Operater) {Operandl) {Operand2)

The CS700 instruction set i8 coded, in general, in triplet
form. The three fields composing the instruction are oreratcr ,
operandl, and operand2. Each field is composed of integer subfields .
Symbolic tags are used in this report to represent the code triplets

which are used by the CS700 machine. Example:

aDD (VaR,1,3) CTEMP, - , -) represents 1,4 <209,1,3) <208, -, -

The allowable forms of operands are shown below:

OPERAND MEANING
(VAR, index, -) a legal variable
(‘EEHP, -5 =) a temporary, top of the execution stack

(SCALOR, value, -) a scalar; integer,real,boolean, or string

{RRAY, addr, -) legal address

The operand fields have subfields for TAG, INRDEX, and LOC as

shown belows:
opp» {TAG, INDEX, LOC)
TAGD VAR | CONS | ARRAY | TEMP
CONS> INT| REAL| BOOLEAN | STRING
TEMPD VAR| CONS| ARRAY
INDEX® NINDEX | VALUE
3

The '] " isread 'or'. The ' ' is read 'reduces to'.

Sample «ap:rands and the meaning for =2ach 1s shcwn

Selow:
Operand deaning
<INT, 5, LOC> Cirect scalar value, 5
<VAR, 3, LOC> Indirect reference through
the AR; the third variable
in the AR,
<TEMP, -, -> Indirect retference through

the execution stack.

The :-cerator field has subfields fcr the ccerator ccde
and the location cf the ogerator 1in the scurc2 line as shosn
below:
c?=» <op_code, loc>

The op_code is an integer code identifying th=
operaticn which must te performed. The loc subfield will nct
be shown in this repcrt in order to siaplify the discussicns.
It is us2é by the CS70C machine to F[Fpcint to the correct

column in the source line if an error occurs,

The INDEX and 10C fields are not always defined. It
should te noted that the INDEX and LOC subfields have n»
meaning when a TEMP 1is output during parse arnd code
Jeneration., Further, it must be understocd that the TAG and
INDEX subfields will te defined during execution. 1Inereforz,
a TEMP on the execution stack will have TAG and INCEX

subfi=lds, but the TAG will not ke TEMP. This ©foint will

13

becom2 obvious during the execuntion presented in Chapter 3.

Representative code triplets used in the repcrt are

Shown below.

CODE TRIELET : MEAN ING

ADD<VAR, 2, 5><INT, 5, 7> . Add integer 3, found in the
seventh column ¢f the source
line, to variable 2 in the
carrent AR, Variable 2 occurs
in the fifth column of the source
line.

ASGNKVAR, 4, -><TEME, -, -> Assign the TAG and VALUE subfields
of the temporary on the top of the
execution stack to variatle 4 in
the current AR.

ASGNLYAR><VAR|SCALAR| ARRAY |TEMP>
General form of the above instruction.
It should be read; operandl must be a
variable, operand2 can te a variable

scalar, array, or TEMP.

14

Chaptar 3

EXECUTION MOCELS

An execution model, sample execution, is presented and
discussed for selected CS?OO instructicns. In general,
source lines have been selected <for each model to reinforca
previous =xecution models. Discussions concerning parse and
code jeneration are included as appropriate, especially whan
the generated code effects the efficiency of thne execution.
Changing the instruction counter field, ARINST, is ccamon to
all of the models. ARINST, the fourth field of the AR
beader, points to the instruction being executed., Therefore,
control is transferred to the next instruction by adding th=

word length of the current instruction to ARIJST.

derresentations of the execution stack, snapshcts, are
presented to give a pictcrial view of the stack at any givan
instant. The following notations ares used in the snagshcts:
NCTATICN MEBNING
Lrr777 Previocus activation records and
arqument linkage.
== Fields which are not pertinent to
a particular discussion or did not
change frcm the previous activatinn

record,

ASSIGHNHMENT IN3TRUCTIILN

Dyadic operater: €=

General form of the instruction:

OPERATORKVARD<VAR|SCALAR|ARRAY |TEMPE>

The assignment cperater is used tc define or change the
type and value fields of the variaktle specified by opcrandl.
The assignment implies that: amn activaticn record is on thk«
execution stack; cperand:z refers to eithér a variakle fulivy
defined in the activation record or a temporary on th=
executicn stack; operand! refers to a variable contained in
the activation reccrd,tut it's type and value fields need

not be previously defined.

Upon assignment,the type and value fields of the
variable referenced ty operandl1 are erased,if frevicusly
defined. The tyre and value tields aof th2
temporarysvariable referenced by operand2 are copied intc
the respective fields of the variable specified by operandl.
This results in dynasic coersion of tyge in that cperandil
gust accept the type cf cperand2. Consider the source line,

Y4 X,and the folluwing activation record:

16

171117/
AR -- -- 21 -- -~ --
2 P EROC - -
1 Y LOC |BCOLEAN | TRUE
1 X LOoC INT 5

A snapshot of the execution stack following execution

of ASGN <VAR,3,1><VAR,4,3> would appear as follows:

177777/
AR -- -- 29 -- -- --
1 Y LocC INT 5
1 | LocC INT 5

Changes:

The type field of variakle 3 was dynamically
changed tc integer and the value field was changed
to 5.

The ipstruction counter field was changed tc

29.

It should be ncted that all variaktles to the right of
an assignment operator must be fully defined (scope,type,and
value fields) prior to the assignment,else the assiynment
results in a run time error. In the abcve exanple,variableé

Y and X were defined in previous source lines.

' ' 17

It shculd be evident from the akove example that the
assignment cperator,®,is different from the comaonly used
ejual sign ,=, 1in tkat assignment can establish cr reglace
the value of the variaktle on the left cf the opperator plus
cause dynamic coersicn of type. Another differance, aynaamic

allocation is discuscsed in the ABRAY section of the repcrt.

Formal specificaticns for the assiqnment operator are

showa in appendix B, figure 1.
Sasple Walk-Thry

The previous assignment instruction i

ASGN<VAR,3,-><VAR,4,-> and the formal algqorithm, <figure 1,
appendix B. 4ill ncw ke used for a sample Walk-Thru. Line
numbers have been added to the algorithm to assist the
reader. The snapshot at the top of the [previous page shows
the condition of the stack when the assignment instruction

was encountered. It should be referred to during the Walk-

Thru.

CTICHN

e
]
e

Its

|t

N
|
Lo)

The tag field of operandl is Var.
Likeiise the index field passes .the
assertion. Operand2's tagqg and index meet
the assertion. At this point we should know

that the operator and bcth oferands have legal tag fields.

10

16

18

24

25

26

2

28

34

35

36

18

ACTION

Since variable 3's type field is Etcolearn
we fall thru to the ciase statement.

Operand2's tayg is not array so we continue
to the next cas=a.

The tag field is VAR sSo we must enter.

Again the type field cf variable U4 causes
us to go to the else segment of the IF
THEN ELSE syntax.

cortinue

Assign variable 4's T{FE field tc the typc
field of variable 3.

Place cperand2's val field(5) 1in th=
VAL field of variable 3.

Ené of the :tlse

Ené the case,skip tc the ENDCASE

continue

Increase the instructicn counter field
by the length of the instruction. In this
example, we are using 8, 30 29 1is rplaced
in the instruction countar field.

2NL THE PROCEDURE, It snould be noted that

we now have the stack condition shown in the

previous snapshot.

19
MCNALIC ARITHMEIIC .2.2.JT0L3

Jperators: ceiling,floor,round, truncate, absolute,sign

Seneral form of instructions: orzerator<varysvilueystemp>

The six monadic arithmetic cgerators presently

implemented in CS700 are shown Lelow,each accompanied by its

mathmatical meaning:

C8700
_I7TBATCT NOTATICN BEANING
Ceilirng r1

Return the smallest integer jreater
than cr 2gqual to operand. For example,
-7.6 Ltecaomes -7 , 7.6 beconaes 9,
Flcor LJ
feturn the larjest inteyer 1less
than of equal to operand. For exagsrle,
-7.6 becomes -8, 7.6 Lecaomes 7.
iound RD
Chop (operand+0.5). For exagcgle,
-7.6 tecomes -8, 7.6 Lecomes 8.
Iruncate TR '
Cperand is truncated at the decimal
foint. For <=xaaple, -7.6 becomes -7 ,
7.6 btecomes 7.
Absolute ABS

Absolute value of operand,,operanlL

v | 20
For exaample -7.6 becomes 7.6, 7.6

remains 7.6.

Sign SIGN

Return a -1 if cperand is less than
2ero, O if operand is zero, or 1 |if
cperand is qreater than zero. For
¢xamgle, -7.6 Etecomes -1, 7.6 Lecomes 1,

and ¢ remains 0.

Bach of the atove pperators operate on two data
types,integer or real. Argquments in function references »ay
ke constants, varialtles,or expressicns. For example, i@

ABS(-5), X € ABS(Y) ,or X € ABS(Y -5).

CsS700 functions are intended to cperate on arrays. The
functions operate uapon each element of the array, and return

an array of results cf the same dimensicn as the arjument.

Momadic © aritheetic instructicns imply that an
activation record is on the execution stack and the type and
value fields are specified within the operand; by a variable
in the symbol takle portion of the current activation

record; or by a tempcrary on the top of the execution stack.

The arithmetic opérat.ors result in a a temporary value
being pushed on the execution stack., For example,ccnsider
the source line, ¥ ¢ [X, and the following activation

record:

21

17////77
AR —= S 30 - s =
2 -- ERCC -- =
1 Y Lce
1 X LoC | REAL 7.3

A snapshot of the execution stack follaowing execution

of CEIL<VAR,3,4> is shown below:

PETF AN
AR - - 35 - o i
1 Y LCC
1 X LOC REAL T3
INT 8

Changes:

1- A temporary resulting from the
ceiling operation was pushed onto the
execution stack.

2- The instruction counter field

was changed to 35.

The next instruction might ke an assignment,
ASGN<VAR, 2, 1><temp,~,->, which would cause the temporary to
ke copied into the type and value fiélds of wvariable 2. It
should ke noted that operand2 of the assignment instruction
indicates temporary =since the actual type is not known at

parse and code generaticn tinme,

Formal algorithms for the monadic arithmetic instructions are

shown in appendix B , figure 2,

DYADIC ARITHMETIC OPERATERS
Cocerators: ¢+ , = , * , / , '
seneral form: Ccerator<VAR/TEMP/VALD<VAR/TEMP/VAL>

The dyadic arithmetic iastructions imply that an
activation record 1is c¢n the execution stack and both
operands are fully defined. The fields can be defined in the
sysbol table portion of the current activation rtrecord; in
the jglotal table;a tempcrary on the top of the execution

stack;or in the operand.

The dyadic arithmetic :-perators are the means Lty which
computations invelving addition,subtraction,multiplication,
division,and exponentiation are perforaed. Type. checking and
conversion,if reyguired,is perforaed dypamically Lty the

operation.

Each arithmetic 1instruction results in a temporary
being pushed on the execution stack. If both operands are
real or if either is real,the resulting temporary will be
real. If both operards are integer the resulting temporary

will be an integer.

Consider the following symbol tatle:

4 MAIN EROC = ——
1 1 LOC
1 1 LOC

The fifth source line ,X&Y+5, would cause the

following code to be generated during ccde generation:

INSTRUCTION CCDE

19 PUSH<LINE=5>

20 ADD<VAR,2,5><INT,5,7>
28 ASGN<VAR,3, 1><rEMP,-,->
36 POpP

During execution ,a snapshot of the execution stack

could appear as follows following execution of the PUSH

instruction:
17///7//7/
AR i S 20 e - m—
- s EFroc -- --
1 Y LCC REAL $ed
1 X LCC

Changes: The source line field was changed to

5 and the instruction field was changed to 20.

Execution of the atove ALD instruction would result in

the following snagshct:

Y IePeeds
AR _ 5 28 -- - -—
REAL 12.3

Changes: 1- A temporary was pushed on the
executicn stack.

2- The instruction field was changed to 28.

Execntion of the assignment instruction would cause
variable 3?'s type field to be defined REAL and 1its value
field tc ke defined 12.3. The POP instruction would cause
the temporary, BREAL 12.3 ,to te eftfectively erased,since the
pointer for the top of t he stagk(STKTOP) wculd be

decremented.

Execution of other DYADIC arithmetic instructions woul:d
be the same as shown for the ADD instruction,except the

specified computation would be performed. The formal algorithms

for the dyadic srithmetic instructions are shown in appendix B, figure 3.

FELATIONAL INSTRUCTIuUMNS

_PIFEATCRS: =,$#,2,2,<.£

General form: OFER<VAR/TEMP/VAL><VAR/TEMP/VAL>

Relational orerators are the means Ly which either a
TRUE or FALSE relationship is estatlished between twc
arithqetic expressions. There are six relational
operators , each of which is shown below accompanied by its

mathmatical meaning:

Cs5700
NOTATION MEANIN

= equal to

not equal to

> jreater than

2 greater than or equal to
< less than

£ less than or equal to

The relaticnal instructions result in a ECCLEAN
temporary being pushed on the execution stack. The integer
code for boolean is placed in the: type field of the
temporary. A binary cne *1'8, in the value field represents
TRUE and a bimary ze€ro,'0'B,in the value field represents

FALSE.

l'he relatiocnal instructions imply that an activation

record 1is on the execution stack and both operands are

26
'fully defined! as discussed uander DYADIC aritametic

operators.

Consider the sixth source line,Xx@¥Y<J, and t he

following instructicns:

INSTRUCTION CODE
29 FEUSHKLIKRE=6>
30 LE<VAR,2,3><VAR,3,5>
38 ASGN<VAR, U, 1DCTEMP,-,->
46 ECP

The execution =stack could appear as follows Ffricr tc

execution of the relaticnal instruction:

11717777
AR - 6 30 s —— i
- -- PRCC =i S
1 4 LGC INT 5
1 J Lcc INT 3
1 b4 LccC

A snapshot of changes in the execution stack fcllowinj

executicn of the relaticnal instructiomn is shown belcw:

27
177774777

AR -- -- 38 -- -- --

BOOL FALSE

The assiqnment instruction will copy the type and value
fields of the teaporary toolean into the respective fields
of variable 4 and change the instruction field to 46, T[he
POP instruction would [fcr the temporary from the execution
stack ,ty decremenping STRTOP and changing the instruction

field tc 47,

All the relaticnal instructions wculd be executed in
the same manner as the LE instruction shown above except the
temporary pushed on the execution stack would be the result
of the specified relaticnal operation. The formal algorithms

for the relational instructions are shown in appendix B, figure 4.

LCSICAL IhoTHLOTILNS

Jonadic cperatcr: =
Dyadic operatcr: A, Y
General form: Mcnadic operator<temg/val/var>

dyadic operator<temp/valsvar><temp/val/var>

There are three 1logical operatcrs which cause the
evaluation of the +truth or falsity of 1logical expressicns.
Ivo of the thre2e orerators are the ccnnectives ANL(A) and
OH(V),and the third logical coperatecr is the inverter NCT
Go.sach of the logical operatcrs result in either Eoclean
True or Boolean False being pushed on tze exccution

stack.

The ccrnective,AND,regquires the leyical =2xpression both
preceding and following it be TRUE for the resultant PUSH tc
be TRUE. if either 1s FALSE or both are FALSE ther the

resultant PUSH will te FALSE.

The connective ,0R, requires the logical ezxpression
either preceding and/or following it ke TRUE for the
resultant FUSH tc ke TRUE. If Loth.are FALSE,then Hoclean

False is pushed on the execution stack.

The i1nverter NQOT causes the resultant FUSH to Le TRUE
if the immediately following logical expression 1s FALSE.
Therefore NOT is a monadic operator whereas AND and OR arce

dyadic.

29
Consider a fourth source line, A@XATTY , and the

following symbol talle entries:

- - ERCC
1 X LoC
1 Y LCcC
1 A LcC

The followinj instructions would have been gJenerated

during parse and code generation:

INSTRUCTION

NUMBER CCDE

20 PUSH<LINE=4>

21 NCT<VAR,3,6>

26 AND<VAR,2,3><TEMP,-,=->
34 ASGN<VAR,4, 1><TEMP,-,->
42 ECP

It should be ncted that the variables referenced in a
logical instruction rust be Boolean tygpe and the value field
must contain either of the logical constants, TRUE or FALSE,
else a run time error occurs. A snapshot of the execution
stack following executicn of the ‘EUSH instruction could

appear as follows:

30

117774777
AR = 4 21 - e -
2 P2 PRCC - -
1 1 LCC Boolean True
1 1 LoC Boolean True
1 A LCC

Execution contipues as follows:

INSTRUCTION RESULT OF EXECUTICN
21 Bcolean False is pushed on
the execution stack.Instruction

counter field is changed to 26.

26 The temporary Boclean False,
cn the execution stack is examined
and popped. Type checking is pecrformed.The
AN[L ofperation is perfcrmed resulting in
Beclean False being pushed on the
execution stack. The instructiocn counter

is changed to 34.

3y Bcoclean is copied into
variable 4's - type field .False is
cofried into the value field. The
instruction counter is changed to 42.

o

The POP instructicn pops the temporary from the

executicn stack and increments the instruction counter,

i1
Formal specifications for the 1lojical instructions ar-

shown in appendix B ,fijuce 5.

32

CCNTROL INSTRUCTICNS

Control instructicns provide the computer with the
capability to choose between two or more segquences of
instructions during execution of a program. Contral can be
transferred by a BRANCH instruction or an INDIRECT BRANCH

instruction.

The BRANCH instruction implies that the operand 1is a
value and the value idepntifies the instruction nuster. The

Eranch is direct to the specified instuction number,

The INDIRECT ERANCH instruction implies that the
operand is a varialtle, The branch is indirect thru the
symbol table portion of the current activation reccrd. The
instruction number is oktained from the valuesaddress field

of the specified variatle.

Transfer of ccntrol can be conditional or
unconditiohal. Conditional ¢transfer of «control imglies
evaluation of a Boolean which must exist on the top of the
execution stack. The general format for control

instructions and the meaning for each is shown below:

Branch (BR) Instruction

BEddvalue>

BRF<value>

E’RT<value>

INDIRECT BRANCH(BRI)

Instructions

BaI<variable>

BRF<variable>

BRT;variable>

33

Meaning

Unconditional branch to the

instruction number specified

ty value.

" Branch to the ipnstruction

rumber specified by value if

the temporary on the top of the

stack is Boolean False.
Branch to the instruction
number specified by value if

the temporary on the top of

the stack is Boolean True.

Unconditional indiresct ©tranch to

the instruction number.

Indirect Branch to the instruction

number if the temporary on the tog

cf the stack is Boolean False.

Indirect Brancn to the instruction

number if the temporsry on th: tog

of the stack is Boole~an True,

34

In single G[pass ccmpilers, BERANCH instructions are used

for backward branches to previously identified latels or
when the operand containing the instruction number can be
patched easily. PFor example: a direct branch on fa;se
instruction BRPF,is gushed when the THEN of IF THEN ELSE
syntax is recognized. The operand will be filled
in,patched ,vhen the ELSE is encountered. A patching example
will be shown in the next sample execution.It should be
noted that BRANCH instructions give more efficient execution
than INDIRECT BRANCE instructions ,since a look into the
symbol table portion of the current activation tecord is not

required during executicn.

INDIRECT BBANCH instructions are used to branch forward
to a label which is not fully defined at code generation
time. For example: consider the source code, GO TO JCE , If
the symbol table entry for JOE's address field is null,then
an INDIRECT BRANCH,BRI, instructionm must be generated. This
implies that the systol table entry for JCE's address field
will be enter=ad in the symbol takle as a result of ccmpiling
subsequent lines of source code.It should be noted that if
the 1latel,JOE,had Eeen fully defined, then a direct
BRANCH,ER, could have feen generated ‘since the address field

would contain the ccrrect instructicon numbesE.

The following sapple code generation and execution
~demonstrates the use of BRANCH and INDIRECT BRANCH

instructions: consider the following line of source ccde

33

and symbol table: IF(J= 1) THEN (X=Y) ELSE GO TO JIM

- - EROC
1 J LocC
1 ¥ LoC
1] Loc
3 Jin LABEL

Assuming the altove line of code was the tenth source
line and 28 words had been cutput as code previously,then

the following code would be output during code generaticn:

INSTRUCTION COCE
29 PUSHCLINE= 10)
30 EQ<VAR,2,4) <INT,1,7)
38 BAF<INT,51,10)
43 ASGNCVAR,4, 16) <VAR, 3, 18)
51 BRIKVAR,5,21)

THEN in the source line resulted 1in a direct ERANCH on
FALSE, BRF,Leing generated., The '51' in the operand of the
BRF instruction was initially null.Instruction numker 38 was
pushed on a patch stack,which indicated that the operand had

to be patched when the ELSE was encountered.

ELSE caused thé patch stack to be popped and the
current instruction nuamber,51,to be patched into the operand
of instructicn 38. Purther «a0 uUnconditional INDIRECT
BRANCH, BRI,was gJenerated since since JIM's address field

vas null. The ERI instruction,®%1, implies that during

36
ajecuticn control will ke transferred to the valuaesaddress
tield of variabla 5.1t should ce noted that a coempile time
error will occur if the address field of variable 5 remains

null.

A snapshot of the execution stack following execution

of instruction number 29 could appear as follows:

LELSL LS
AR - 10 30 -- 2100 --
2 P2 PRCC -- -
1 3 LCcC INT 4
1 Y LEC REAL 7.2
1 i LEC
3 JIM LABEL INT 70

Changes:The instruction counter

changed to 30.

Execution of instruction 30 would result in a Eoclean
False Leinjg pushed on the exacution stack and the

instruction counter teing changed to 38.

gxecution of irstruction 38 would cause the temporary
boolean to be evaluated .Since it is- false the instruction

counter is changed to 51,a direct ERANCH to instruction 51.

Bxecution of instruction 51 results in the instruction
counter beinj changed to 70,an TINCIRECT BRANCH to the

value/address field of variable 5.

37

It should be noted that the 1logical address for the
instruction being executed is obtained Lty adding the laogical

address of the ccde,ARLCOC<2100) ,to

ARINST (30,38,51,70,etc.).

The formal algorithms are contained in appendix B, figure 6.

STACK INSTRUCITITONS

There are two stack inﬁtzuctions,PUSH and PCF,used tco
manipulate the temporary values and Jargument linkage of the
execution stack. The PBUSH instruction 1is used to update the
At header ,and place temporary values and argument linkage
on the execution stack.The POP instruction is used tc delet=

temporary values from the execution stack.

PUSH INSTRUCTICN

cach new line of source «code results in a1 PBUSH
instruction in orcer tc update the program line numker ir th2
current activaticn record. The program line number,A&LIN,is

the third field in the header of the current AR.

A call statement commonly results in a series of FUSH
instructions in order to keep the line nuabear rcurrent and
link the <calling arquments into a new activation record.

Example: consider the following syabol table:

- - BgOC
1 / X LoC
1 z LoC

2 EZ EROC

39
Program line 4 contains the source code CALL
F2(X,Z) ,which results 1in the following instructions being

output at code gemneraticn time:

INSTRUCTION CODE
8 EUSH<LINE=U>
9 PUSHLKVAR,2,->
14 PUSH<VAR,3,->
19 EUSH<NARG, 2,->
24 FUSHARKVAR,4,->

PUSH<LINE=4> updates the source line number,the third

field,in the header of the current AR.

AR HEADER before execution: T
ARLIN ARINST

AR -- 3 8 -- -- --

AR HEADER after execution:
AR e 4 9 - —— —
Changes:The ARLIN field was changed toc 4.The
ARINST field was 1incremented bty one since a full
word 1is used for this instruction as currently

implemented in CS700.
It should be noted that each source line results in a
PUSH instruction tc update the ARLIN field,whereas each

instruction causes the ARINST field tc be changed.

Instructions 9-24 effectively push the requi-ed linkage

40

on the execution stack as shown below:

Execution stack following execution of PUSH<KVAR,2,->

177771777
AR - 4 14 -- - --
2 - ERCC = =
1 X LCcC — -
1 Z LCC e -
2 P2 PRCC - i
VAR 2

Changes:

1. <VAR,2> was pushed onto the execution
stack. It should be noted that <VAR, 2> refers
to X, the seccnd variable in the current Agf,which
was the first argument in the call.

2. The ARINST field was changed from 9 tc 14,

Execution of the next two PUOSH instructions wculd

rroduce the fcllowing snapshot of the execution stack:

117777777
ARLIN ARINST
AR -- 4 24 -- - -
VAR 3

NARG 2

41

Prograp line 4§ is still teingy executed. The
ARINST field was <changed to 19 and 24 13s each of
the instructions was executed,since the FUSH

instruction reguires five words as implemented in

Ccs700.

The npumkbter of arguments in the call 1is
represented Lty NARG 2 ,which will be wused to
formally link the arguments 1into the called AR.
This formal linking and execution of the EFUSHAK

instruction will be discussed separately.

It should be noted that Auring execution of arithmetic,
relational,and logical instructions,the FUSH instruction is
used to place temporaries on the execution stack for futur>

reference.

POE INSTRUCTICN

The PCP instruction effectively deletes the teppcrarv
on the top of the -execution stack by decrementing the
pointer ,STKTOE. It should be noted that any reference tc a
temporary,except an assignment,results in it keing pcgged

from the execution stack as implemented in C5700.

AR LNSTRUCIICNS

Two instructions,PUSHAR and POPAR, are used te FUSH and
POP activation records.lThe PUOSHAR instruction transfers
control to the called program ty pushing the new AR on tha
execution stack. The PCPAR instruction returns cantrol to

tne calling program by pcping the current AR.

PFUSHAR INSTIRUCTICN

General fcrm: PUSYA RKVAR,NINDEX,LOC>

An activation reccrd consists of a header and a copy of
ths symbol table.Therefore,the EUSHAR instruction
must:initialize the header;copy the symtol tatle onto tha2

execution stack;and update the stack pointers.

Initializaticn ¢f a sample AR header is shown Lelow:

ARTAG ARLEN ARLIN ARINST *ARLCCD ARPIND ARRET

AR 7 0 0 21C0 7 0

ARRET- The relative index of the previous AR.This
sukfield is wused tc return contrcl to the «calling As
#hen a FOPAR instruction 1is encountered.Tha 'C' shcwn

above: indicates that this is the main program.Fcr cther

43
programs, AR.AREET=LAR ,where LAR is the relative index
of the current AR.

ARPIND=~ Index to the procedure table.

ARLCOD- Loqica; address of the code.This is ccpied
from the procedure table,It should be noted that the
logical address of the current instruction equals
ARLCOD+ARINST.

ARINST- Relative 1index for the instructicn being
executed.

ARLIN- Current source line numkter being executed.

ARLEN- Length of the AR.Initially AR.ARLEN=7,
since the header requires 7 words.It is updated when
the symbol table is copied,AR.ARLEN=AR.ARLEN+LENGTH OF
THE symbol table.

ARTAG- Tag subfield.A numeric representation for
AR.

The formal specifications for the PUSHAR instructicn is
shown in appendix B,fiqure 8. A snarshot of a typical
executicn stack priocr tc executinjy a EUSHAR instruction is

shown below:

S/111717

AK 27 “ 24 200¢ 7 G
= MATIN PROC INI 7

1 X LocC REAL ¥ 43

1 2 Loc EOOL FALSE

2 Pz PROC INT 3

VAR 2

VAR 3 SCOPE TYEE VALUE

NARG 2 €&—STKTCF=233

LAn=2C0

Consider execution of the following instructicn:
FUSHAR<VAR, U4, ->

fhe instruction implies that:

1- The scope field of the variable ramed in
the operand is EROC.

2= The called AR, variable &4,is rully defined
in the procedure takble, The wvalue field of
variable 4 «contains PINDiE4L,the 1index 1ipto the
procedure tatle.

3- The required argument linkaje 1is on ta=
exacution stack. NARG,the numter ot
arjuments,sust be on the toap of the stack.
Temporaries,representing the arjquments must
precede NAFRG.,

fxecntion of EUSHAR<VAR,4,-> woculd result 1n th=

following snapshot of the execution stack:

45

eI dd
AR == i = el == ==
f AR 22 0 0 2200 8 2C0
1 E2 EROC INT 8
1 a IN
1 E VARY
STKTCF=256-———,

LAR=Z34
Changes:
1- The header for the new AR was created.
2. The =symbol takle for F2 was copied cntc
the execution stack.
3- The stack pointers,LAR and STKTCP,were
updated.
It should be ncted that control has been transferred to
F2.The next instruction to be executed will be the first

instruction of P2.The address is found at locaticn 22C0 in

the address translation tabla.

ECEAR INSTRUCTION

——

General form: POPAR
The POPAR instructicn returns control to the calling A&
by moving the stack pointer,STKIOP and LAR,which fpoint to
the top of the stack and the current activaticen reccrd
respectively. When the pointers have heen acved,the
instruction countar is updatced which transf=2rs control to

the naxt instruction to ke executed.

The formal specifications for the FCPAR instructicn is
shown in appendix B,figure ¥, A POPAR 1instruction implies
that:

1- Return arjuments have already teen linked
int¢ the calling AR.

2= Ccrtrol is to be returned to the calliag
AR, which tegins at the logical address specified
by AR.AQRET.

3= The argument linkage and anything
following it can be deleted.

4- A EUSHAR instruction was the last
instructicn executed Lty the <calling Ai,therefore
the instruction counter must ke increased by the
length of the instruction to transfer control to
the next instruction.

A snapshot of a typical execation 3tack prior to

execution of a POPAR instruction is shown below:

47

/11777
Ak 27 4 24 20C0 7]
- FAIN Ea0C -— -
VAR 2
VAR 3
NARG 2
o AR 2 6 30 2200 3 20
2 PZ EROC . -
STKTOP=256——,
LAg=234
gxecution of POPFAR would result in tha ifcllcwing
snapshot of the exectticn stack:
i
AR 27 4 29 2GCG 7 e
4 MAIN FROC - -=
STKTCP=227
Laa=zoo
Chanjes:
1- STKICE was moved te the 1last entry
preceding the argument linkage.
2- LAR was moved to the 1lojical iddress

48
specified !y AJ.ARAET,which makes MAIN the current
AR.

3= AR.ARINST was increased by the 1length of

the PUSHAR instruction(24 teo 29).

49

The two link instructions,FLINK and dJLINK,aro
used to lirk <calling arguments into a new AR and

rTeturn arguments to the calling AR respectively.

FORWARL LINK INSTRUCTICN

General fcrm: FLINK<VAR,NINDEX,LOO>

The fcrward link instructicn is used to link
calling arquments 1into the <called AR,frrogram.

Forward lircks imply that:

1- Both the «calling and called AR are on the
execution stack,

2- The argument linkage immediately precedes the
called AR on the execution sStack. The argument lirkafge
contains the numker of arquaents,NARG, and either the
values or references to the variables which are to be
linked into the called AR.

3- The «rirst arjument in the linkaje ccrresgends
to the first arqument in both the calling and called
AR, etc, tach FLINK instruction has a corresponding
arqument in the linkage.

4- The arguments in the linkaye refer either to a
variable in the previous AR or a constant,whercas the
operand of the FLINK instruction refers to a variable

inh the current AR.

50

5- The sccge of variibles ccntained in tne cperanl
of the FLINK instruction must have be2en detined s
either IN or VARY.

6- If the valuesaddress field ct tn=z
variable,which is to be linked into the new AR,ccntains
an address then a copy must ke made of the okject and
the new address linked into the new AR. Therefore,a.

copy must be made if the type is ARRAY.

Formal specificaticns for the FLINK 1instruction 1is
contained in appendix B, fiqgure 9. A snapshet of an

execution stack is shcwn below frrior to 2xecution of 1 FLINK

instruction:
’17/777/
AR i -- - s —- e
4 MAIN EROC et i
1 A LaC INT 5
1 E LocC ARRAY 500
VAR 3
VAR 4
NARG 2
AR e 1 7 v -—- -—
2 EZ ERQC e —
1 X IN
1 2 VARY

Chanjes in the execution stack are shown 1n the

following snapshot fcllowing execution of FLINK<SVAR,2,-> :

oI

AR —— -
2 Pz
1 S

Zhanges:

31

12 -- -- --
EROC - -=
IN INT 3

1 - Since NARG=2,the first argument which is to be

linked begins
Therefore,variatle

into variable 2 of

2- The tyre
variatle 1in the
respective fields

currant AR.

3= Control 1is
by increasing
is 5 words lcny.
chanjes in

FLINK<VAR,3,-> are

11777
AR -—- -—
1 Z
a Changes:
1- ARRAY, the

PRINST by 5,since tae

the 2xecution stack follcwing

fcur words Erior to NARG.

3 in the previous AR must te linked

the current AR.

and value fields of A,the third
previouns AR are copied 1nto the
cf X, thne saccnd variable of the
transferred to the next instruction

FLINK instruction

@xecuticn ot

shown in the iollowinj snapshot:

VARY

type field of the fourth variable 1in

352

the previous AR is copied into the type field of the
third var variatle in the current AR.

2- Type field,ARRAY, implies that the valuesaddress
field contains an address. Therefore ,the header for
the array is examined for the size of the array and the
proper asount cf sStace is allocated in the HEAP for a
copy of the array. The NREF field of the array header
equals 1 to reflect one reference to the array.The
array is then copied into an address beginning at 520.
520 is placed ip the address field of variable 3 in the
current AR,

3- The instruction counter is changed to 17.

53

BACKWA®XD LINK INSTRUCTION

General form: BLINK<VAR,NINDEX,LCC>

The Lkackward 1link instructions are used to link
arguments ot a called AR back into the calling AR. Eackuafd
link instructions in effect return values to the calling AR.

They imply that:

1- The variaktle referenced in the operand of a
BLIBK instructicn is contained in the current aR.

2- The sccge cf any variakle appearing in th=
BLINK operand must ke either OUT cr VAKY.

3 - The argument can e correctly linked tc the
previous AR after examining the argqument linkage,since
all calling argqueenpts were pushed.

4- NINDEX in the PLIKK operand can Le used tc
identify the ccrresponding | argument in th~
linkage,since NINCEX minus one identifies the argument
placement. NINLCEX=3 implies the second argument in the
linkage,etc.

5- Both the type and valué/address fields are to
be copied from the current AR to the previous AR.

6- If.the valuesaddress field cf the wvariable in
the recieving AR contains an address,then the NEEF
field of the ckject header must Lte decremented., 1If

NREF=0,the space can be deallocated.

he formal specificaticns fcr the BLINK instructicn

rresented in appendix B, figqure 9, A snapshot of
execution stack pricr to executing a BLINK instructicno
shown below:

L1277/

AR - -- -- -- -- --

4 MAIN PROC -- --

1 A Loc INT 5

1 E LOC ARRAY 500

VAR 3

VAR 4

NAGG 2

AR = 4 30 - - e

2 Bz PROC - --

1 X IN INT 5

1 i VARY ARRAY 360

35 -

Changes in the execution stack following executiomn of

BLINK<KVAH,3,-> are shown in the follcwing snapshot:

’l177777

AR - s - - _— .
4 MAIN EROC - e

1 A Loc INT 5

1 B LocC ARRAY 560

VAR 3

VAR 4

NARG 2

AR -= e 35 - S o
2 EZ EROC - P

1 X IN INT 5

1 z VARY ARRAY 560

Discussion:

1-NINDEX=3 implies that the receiving variable is
identified by the second arqum=ant in the
linkage.Therefore variable 4 in the previous AR was
examined.Since it's type field was array,NREF in the
array header was decremented and in this case the blcck
referenced by the 500 was deallocated.

2- ARRAY and.SGG were copied into the previous AR.
It should be noted that NREF=2 for the array referenced
by 560.

3- The instruction counter was changed to 35.

BIBLICGRAPHY

Gries, David Compiler Construction for [igital
Computers (New York: John Wiley & Scans,
Inc.,1971),P.173,195."

Meyer,James R.,*Walk-Thrcugh of Translator

Algorithms.' Unpublished Master's report,Kansas State

University,1977.

57
APPENDIX A
Design Specification Languaje

structured prcgramming technigues were used to
Wwrite the formal algorithamas shown in appendix 3. It
became necessary to add assertions tc the alqgorithes in
an ittempt tc define what was known aktcut the
charteristics of the stack and the allowable TAGS., The
term ASSERT is tsed to state a condition which wust b=
TRUE at that trcint in the proyram. TRESSA is simply
ASSERT spelled backwards and therefcre makes a lcgical

closure.

CASZ statements are used freguently to Zacilitats
future chanjes to the Alyorithms. IF IHEN ELS=
statements are tsed ,and the standard BEGIN EZNLC is used

as a control feature.

The follcwing notation agfplies to the stack

repesentations described in the tody of the repcrt:

HOTATION MEANING
AR The logical address of the current AR,
LAR The logical address of the last AR.

In general, it is used as a pointer to
the previous or calling AR. Sometimes

it points to the current AR,

NOTATION

AR.subfield

AR.INDEX.subfield

58
MEANING
The contents of the specified subfield in the
current AR header. Example: AR.ARINST refers
to the content of the instruction subfield.
The contents of the symbol table entry
identified by the relative index and the
gpecified subfield. Example: AR INDEX,TYPE
refers to the content of the referenced

variable's TYPE subfield.

The following notation is used to simplify writing the high level

algorithms:

NOTATION

oe{gl, £2,9)

MEANING
fl refers to the first subfield of the operand,

etc.

op (£11,£12,-) {£21,£22,-) f£11 refers to Operandl subfieldl,

£21% VAR| 5caLax| TEMPL

'TEMP1= VAR| SCALAR'

£22 refers to Operand? subfield2,etc, where
the first integer identifies the operand and
the second integer identifies the subfield.
Operand2 subfieldl must be variable,sczlar, or
a temporary. T

The quotes ,', are used for comments. This
sample comment states that the TEMP (top of
the execution stack) must be a variable or

scalar,

PUSE(WPE ,(An.flz.VAL)OP(EZZ» This is actually two push operations:

The TYFE is pushed; The result of some operation
is pushed (VAL subfield of the variable specified
by the second subfield of Operandl operating om
the second subfield of Operand2).

59

HOTATION MEANI NG
INST_LEN Word length of the instruction in the

particular implementation.

PRCTAB Refers to the procedure table.

PINDEX Relative index of the procedure
in the procedure table.

NINDEX or INDEX Relative index of the variable im the
activation record.

NEW_ADDR The new starting address for am array
which has been copied.

OBJECT (NEW_ADDR) Refers to the array which begins at the
specified address. The array header can
be examined to determine characteristics

of the array.

MATRIX NOTATION
The first integer identifies fll's type and the second integer
identifies f21's type where; 1=VAR, 2=SCAIAR, and 3=ARRAY. The
following matrix sumarizes the notation:
£21

VAR 53aLlart ARRAY

VAR 1,1 1,2 1,3
£11 3CaLAR |2,1 2,2 2,3

ARRAY (3,1 3,2 3,3

Example: (1,2) means fll is a variable and £21 is a scalar.

APPENDIX B

mal Algorithaes for the

FIGURE 1. For
Assignment Instructicn

General form: ASGN<Ef11,£f12,-><f21,£22,->

‘) PROCEDURE ASSIGNMENT
‘2’ ASSERT f11=D>VAR

‘3‘ £12=>INCEX
‘%’ £21=>VAR|SCALAR|TEMP1 '¥EMP1=>DVAR|SCALAR®

‘47 £22=>INDEX|TEMP2 'TEME2=>INDEX| VAL®
e’ _TRESSA
‘7TF AR.£f12.TYPE=ARRAY
8 THEN CALI CEALLOCATE (AR.f12.VAL)
‘?’casz
:o(f21-umu)
‘I’ BEGIN
17 CALL CCEY_ARRAY (AR.f22.VAL,NEW_ADDR)
ts‘aa £12.IYPE <= ARRAY
Y4°A3.£12.VAL<=NEW_ALLR

Y END

/6(f21 VAR)
Y17°BEGIN
Y#IF AR.f22.TYPE=ARRAY
‘n‘men BEGIN
‘20° CALL COPY_ARRAY (AR.f22.VAL, NEW_ALDR)
‘RI'AH £f12.TYPE<=ARRBAY
'2Z AR.£12.VAL<=NE4_ADLR
‘2 END
2*51.52 EEGIN
‘26°A3.f12,.TiPE€AR.£22.TYPE
'ZGGI,fELJlL6¢1.£ELVlL
. 'RV ENL
R2END

‘29 (£21=SCxL4l)

‘$0°BEGIN
'3AR.£12.TYEE<C=£21
‘32AR.£12.VAL<=£22

‘33 END
3Y'ENCCASE
‘35 AR.ARINST<=A5. AFINST+INST_LEN
‘36°ENCPROC

61 -

APPENCIX B

FIGURE 2, Formal Algorithms for the

ronadic Arithmetic Instruction

General form: CE<Ef1l,f2,->

PROCEDURE MONADIC_ARITH

ASSERT F=>VAR|SCALAR|TEMP1 *TEMP1=>VAR| SCALAR"
£2=>INDEX | VAL *TEMP2=>INDEX|VAL"®
TRESSA
CASE
(f 1=VAR)
BEGIN

ASSERT f2=INDEX; TRESSA
TYFE can ke determined based on
AR.f2,.TYPE and the operator.
TRESS2
PUSHTYPE,OP (AR, £2. VAL))
END
(£2=SCALOR)
BEGIN
ASSERT TYPE can be determined based aon f1
and the operater.
TRESEA
PUSH<TYFE,OP(£2)>
END
ENCCASE
AR.ARINST<=AR.ARINST +INST_LEN
ZNDPRCC

62

APPENDIX B

FIGURE 3. Formal Algorithms for the
Dyadic Arithmetic Instruction

General fcrm: CP<£11,£12,-><f21,£22,->

PROCEDURE DYADIC ARITH i
ASSERT f£11=>VAE|SCALAR|ARRAY ITEHP1
'TEHP1=)?AR|SCALAR]ABBA!'
f12=>INLEX|VAL |ACDR|TEMP?2
'*TEMP2=>INDEX|VAL|ADDR
£f21=> same as f11
£f22=> same as £12
TRESSA
CASE
(1,1
PUSH<TIPE, (AR.f12.VAL)OF {AR.£22.VAL) >

(1.2)
PUSH<TYPE, (AR.£12.VAL) 0P (£22)>

(1,3)
BEGIN
CALL CCFY_ARRAY (AR.f22.VAL,NEW_ADDR)
OBJECT (NEW_ADDR) <= (AR.f£12.VAL) OP (OEJECT (NEW_ADDR)
PUSH<TYPE,NEW_ALLR>
END

2,
PUSH<TYPE, (£12) 0P (AR.£22.VAL)>
(2,2)
PUSH<TYPE, (£12)0OP (£22)>

(2,3)
same as case{1,3)
(3,1
same as case(1,3)
(3,2)
same as case(1,3)
(3.3
same as case(1,3)
ENCCASE -
AR.ARINST<=AB. AFINST +inst_LEN
ENCPROC

APPENDIX B

al Algorithms for the

FIGURE 4. Form
Belational Instructicn

General form:0P<£f11,£12,-><£21,£22,->

PRCCECURE RELATICNAL
ASSERT £f11=>VAR|SCALAR|TENP
TEBE=>INT|REAL
SCALOR=>INT|REAL
£12=>INLEX|VAL|TEMP2
TEEP2=>INDEX]| VAL
£21=> =same as 11
£22=> same as f12

TRESSA
IF £11=VAR
THEN BEGIN
ASSERT f£12=INDEX1;TRESSA
CASE
(£21=VAR)
ASSERT f22=INLCEX2; TRESSA
PUSH<BOOL, (AR.INDEX1,VAL) CE (AR.INDEX2,VAL)>
{£21=TEMP|SCALAR)
PUSH<BOOL, (£12) 0P (£22) >
ENCCASE
END
ELSE BEGIN
EUSE<ECCL, (£12)OP (£22) >
END

AR.ARINST<=2R. AFINST + INST_LEN
ENLCPROC

APPENDIX B

FIGURE 5. Formal Algorithms for the
Logical Instruction

General form: MCNOE<E11,£f12,->
DYOBKE11,£12,-,><f£21,£f22,->

PRCCELCURE LOGICAL
ASSERT f11=>VAR|TEMP
TEME=>BCOL
£12=>INDEX|TEMP
AR. INCEX.TYPE=>BOOL
AR.INDEX.VAL=>BOOLEAN CCNSTANT
TENME=>ECOLEAN CONSTANT
£f21=> same as f11
£22=> sape as f£12

TRESSA
IF £21=null
THEN BEGIN
CASE
(£ 11=VAR)
EUSH<BOOL,OP (AR.f1Z.VAL)>
(£11=BOOL)
EUSH<BOOL,0P (£12)>
ENDCASE
ENC
ELSE BEGIN
CASE

(£11=VAR,F21=VAR)
PUSH<BOOL, (AR.£12.val) OP (AR. £22.VAL) >
(£11=VAR, £21=B0OL)
PUSH<BOOL, (AR.£12.VAL)OP (£22)>
(F11=BCOL,£21=VAR)
PUSH<BOOL, (£12) 0P (AR.£22.VAL)>
(£11=BOOL, £21=BOOL)
EUSH<BOOL, (£12) 0P ({£22) >
ENDCASE
END
AR.ARINST<=AR,ARINST+INST_LEN
£NCPRCC

63

APPENCIX B

FIGURE 6, Formal Algorithms for the
Control Instruction

3eneral form: CPKE1,£2,->

PRCCEDURE CONTRCL
ASSERT OP=>BR|BRT|BRF|BRI
£1=>VAR|INT
£2=>INDEX | VALUE
TRESSA
CASE
(CP=BR)
BEGIN
ASSERT f1=INT;TRESSA
AR.ARINST=£2
END
(OP=BRT)
BEGIN
ASSERT f1=VAR;f2=INDEX;TRESSA
AR.ARINST=AR.ARINST.f2.VAL
END
(CP=BRT)
BEGIN
IF STACK (STKTOP) =TRUE
THEN BEGIN
IF £1=INT
THEN AR,ARINST=f2
ELSE AR.ARINST=AR.f2. VAL
END
ELSE AR.ARINST=AR.ARINST+INST_LEN
END
(CP=BRF)
BEGIN
IF STACK (STKTOP)=FALSE
THEN BEGIN
IF f1=INT
THEN AR.ARINST=f2
ELSE AR.ARINST=AR.f2.VAL;
END
ELSE AR.ARINST=AR.ARINST+INST_ LEN
END —
ENDCASE
ZNCPROC

66

APPENLCIL B

FISURE 7. Formal Algorithms for the
Stack Imnstructicn

General form:LIMEKET>
PUsSHLE1,£2,->
PCE
LOACKE >

PRCCELCURE LINE

ASSERT £1=LINE_XUM;AR points to current AR;TRESSA
AR.ARLINK=f1

AR.ARINST<=aR. AFINST+INST_LEN

ZINLCPROC

PRCCECORE PUSH :

ASSERT f1=>VAR|SCALAR|ARRAY|TEMP1 'TEMPT=DVAR|SCALARJARIAY|NARG'
£2=>INDEX | VALUE|ADDR|TEMP2 'TEMP2=>INDEX|VALUE|ADDR"

TRES5A

STKTOP<=STKTOP+1

STACK (STRTCP)<=£1

STKTOP<=STKTOP +1

STACK (SEKTOP)<=£f2

AR.ARINST<=AR.,ARINST+INST_LZEN

ENCPRCC

PRCCELCURE POP
STKTOE<=STKTCP-2
AH.ARINST<=AR.ARINST+INST_LZN
SNCPRCC

PRCCZDURE LOAD_HEADER
STKLOP=STKTOE+1

STACK (STKToP)<=£f1
ENCPRCC

APPENDIX B

FIGURE 8. Formal Algorithms for the
AR Instructicn

General form:PUSHAR<f1,£2,->
PCEAR

PROCEDURE PUSHAR
ASSERT LAR points to calling AR '0 if MAIN®
STKIOP points to the number of arguments

TRESSA

AR<=STKTOP+1

LOAD<ARD "Initializes AR.ARTAG®
LOAD<KLEN_OF_of_AR_HEADER> ‘'Initializes AR.ARLEN®
LOAD<O> *Initializes AR.ARLIN®

LOAD<len_of_CODE_HEADER+1> ‘*Initializes AR.,ARINST'
PINDEX<=LAR.f2.VALUE
LOAD<PRCTAB.PINLEX.EFRCCOD> 'Initializes AR.ARLCCD'

LOAD<FPINDEX> *Initializes AR.ARPIND?®
LOAD<SLAR> *Initializes AR.AGRET®
LAR<K=AR

ASSERT LAR points to current AR

STKTCE=LAB+LEN_OF_AR_HEALER
TRESSA
AR.ARLEN<=AR.ARIEN+LEN_SYATAB-LEN_SYMTAB_HEADER
CALL COPY_SYM(AR.f2.VAL,STKTIOP)
ASSERT STRKTCE=LAR+AR.ARLEN;TRESSA
AR.ARINST<=AR.ARINST+INSTI_LEN
ENDPRCC

67

PRCCETURE POPAR
IF AR.ARRET=NULL
THEEN DONE
ELSE BEGIN
ASSERT LABR=AR=POINTS tao current AR
Each element of the argument linkage
consist of two one word sukfields
IRESSA)
CALLI SEARCH(AR,AR.ABLEN,STKTOP)
STKTIOP<=LAR-2% (NARG+1)-1
LARK=AR.ARRET

AR<=LAR
ASSERT AR=LAR=POINT tc the calling AR
TREESA
AR. PRINST=AR.ARINST+INST_LEN
END

ENDPRCC

APPENDIX B

FIGURE 9., Formal Al jorithss for the
LINK Instructicn

General form: PLINK<f1,£2,->
BLINK<f1,£f2,->

PRCCEDURE PLINK
ASSERT AR pcints to the called AR
AR.ARRET points to the calling AR
CCUNT=>Number of arquments previously linked
TAG1=>relative index to the type field of an
element in the arqument linkage.
VAL1=>relative index tc the value field of an
element in the argument linkage.
TRESSA
TAG1<=AR —-2% (NAEG+1-COUNT)
VAL1<=TAGT + 1
LAR=AR.ARRET
IF STACK (TAG1) =VAR
THEN BEGIN
ASSERT STACK (VAL1)=INDEX;TRESSA
AR.f2.TYIPE<=AR.INDEX.TYPE
IF IAR.INDEX.TYPE=ARRAY
THEN BEGIN
CALL COPY_AERAY(LAR. INCEX.VAL,NEW_ADDR)
AR.f2.VAL<= NEW_ADDR
END
ELSE AR.f2.VAL<=AR.INDEXI.VAL
END
ELSE BEGIN
AR.f2.TYPE<=STACK (TAG1)
AR.f2.VAL <=STACK (VAL1)
END
LAR=AR
ENCPROC

70

PROCEDURE BLINK
ASSERT £f2 - 1 identifies the placement of the arjument
in the linkage

AR.ARKET points to the previous AR, LAR
AR points to the current AR
POPAR deallocates all address
references in and below the
current AR.
TRESSA o
TAG1<=AR-2* (NARG+1-£f2)- 3
VALY <=TAG1 + 1
ASSERT STACK (VAL1)=INDEX) *In previcus AR'
TRESSA
INDEX<=STACRK (VAL 1)
LAR{=AR.ARRET
IF LAR.INDEX.TYEE=ARRAY
THEN CALL LEALLOCATE(LAR.INDEX.VAL)
ELSE NULL
IF AR.f2.TYPE=ARRAY
THEN BEGIN
LAR.INDEY.TYPE=AR.f2,.TYEFE
LAR.INCEX.VAL=AR.f2. VAL
CALL DEALLOCATE (AR.f2.VAL)
ENT
ELSE BEGIN
LAR.INDEX.TYPE<=AR.f2.TYPE
LAR.INDEX,VAL<=AR.f2.VAL
END
ENTCPROC

EXECUTION MOLCELS FOR TRANSLATOR DESIGN

BY
FILES T. CLEMENTS JR.

B.S5., NCRTH GEORGIA COLLEZGE, 1965

. S ——— . - ——

AN AESTRACT OF A MASTER'S REPORT
SUBMITTED IN FARTIAL FULTILLMENT OF THE
REQUIREMENTS FOR THE CEGREE

EASTER OF SCIENCE
DEPARTFENT OF COMPUTER SCIENCE

KANSAS STATE UNIVERSITY
MANHATTAN ,KANSAS

1977

ABSTRACT

This report presents part of the instruction set for a
virtual machine, <called CS700, which bhas been used as the
target machine for an interactive interpreter in the (S700
class, Translator Cesign I. The report contains discussion
of the machine architecture, discussion of selected
instructions, walk-thrus of the execution cf the
instructions, and (in the appendix) formal algorithms for
the instructions. Selected source lines and the resultinz

generated code are used as a framework fcr the execution.

Instructions ircluded are assignment, @mopnadic and
diadic arithmetic cperators, tranching instructicns,
activation record iritation and completicn, and 1licnkirg o:
argquments Letween invcked mcdules, Indexing and /0

instructions are not included.

