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NOMENCLATURE

a Tool radius

h Depth of cut

P Maximum normal a tress on equivalent indenter

be Contact width of equivalent indenter

Pn Normal load per inch on equivalent indenter

E Modulas of elasticity of workpiece

Re Radius of equivalent indenter

Rq Radius of workpiece before indentation of equivalent indenter

k Yield shear stress of workpiece

y Coefficient of friction between workpiece and equivalent indenter

V2 Coefficient of friction between workpiece and tool

v Poisson's ratio

Y Angle of inclination of equivalent Indenter

T^ Displacement of the workpiece by the equivalent indenter at the

intersection of the tool and the elastic-plastic boundary

T2 Displacement of the workpiece by the tool at the intersection of

the tool and the elastic-pla3tic boundary

?q Normal pressure on tool edge at a point G

Tq Shear force on tool edge at a point G

P^v Load per inch of equivalent indenter (vertical with respect to the

finished workpiece surface)

P^h Load per inch of equivalent indenter (horizontal with respect to the
finished workpiece surface)

vi



P2v Load per inch of tool in the elastic region (vertical with respect

to the finished workpiece surface)

P2h Load per inch of tool in the elastic region (horizontal with respect

to the finished workpiece surface)

vii



INTRODUCTION

For many years, the chip forming process in metal cutting had been

assumed to be like the standard cutting theory shown in Figure 1. It was

assumed that the tool could be approximated as being infinitely sharp and

that the chip was formed along a line of concentrated shear. For larger

depths of cut this was reasonable since the effects of the rounded tool tip

is secondary and often negligible. However, as the depth of cut decreases

the effect of the rounded tool tip increases. Recently, it has become

apparent that in some situations the effect of the rounded tool tip plays

an important role. In the study of wear, for example, it is significant

due to the need to know the stress distribution along the tool edge. It

has also been noted to play a major role in finish machining [l] and grind-

ing [2]. Due to the growing recognition of this problem, it is felt that

research in this area is of prime importance.

When considering small depths of cut, the action that exists around a

rounded tool tip is a very complex process. Besides the complications due

to the tool geometry and material properties, the process includes a region

of plastically flowing material that exists in conjunction with a region of

elastically deforming material. In plasticity, this is referred to as a

"constrained plastic flow problem" and is one of the most difficult types.

The stress-strain relations and compatibility equations that evolve are

difficult to handle, and very few complete solutions are found. Most of
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the work done in this area has been done by using various types of approxima-

tions. Abdelmonelm and Scrutton [l] derived an expression for the specific

cutting energy in terms of the undeformed chip thickness and tool radius.

They modeled the process by assuming the tool edge to be subject to a rubbing

action at and beneath a portion of the curved tool base. Above that, they

assumed the base is subject to a cutting action. Shaw [2] and Goyen [3] both

modeled the cutting process as an extrusion type process. Shaw assumed a

relationship between the cutting process and a new hardness indentation

theory he had developed. He then derived the specific cutting energy based

on the undeformed chip thickness, tool radius, and two terms he developed

within his indentation theory. Goyen developed a method to determine the

geometry of the cutting process based on an approximation of the pressure

distribution along a line in the elastic region of his cutting model. He

was then able to calculate the pressure distribution along the tool edge

based on the geometry and the material properties of the workpiece.

It was the object of this work to investigate the chip forming process

around the rounded portion of a tool tip cutting at a very small depth.

Since the problem is of a complex nature and a direct mathematical approach

was believed not practical, it was felt that an approximation of the cutting

process would again be a more feasible approach. It was decided that the

approximation should take the form of a mathematical model that included the

effects of the blunt nose of the tool and also the compatibility of the

elastic and plastic regions of the workpiece. The model was developed to

determine the force required by the tool in terms of the shape of the tool,

known properties of the workpiece, and a given depth of cut. With this



capability, the model could be applied to a specific cutting case, the

results compared to experimental data, and conclusions drawn as to the

accuracy of the model.

The model developed was based partially on the work presented by Goyen.

His model seemed to most successfully integrate the elastic and plastic

regions together, and also seemed to define the chip forming process logi-

cally. Numerical results were obtained from the theoretical model and

compared to experimental results obtained by Abdelmoneim and Scrutton.



DEFINITION OF THE PROBLEM

The cutting conditions at the tip of a round nose tool, cutting at small

depths, was modeled as a two dimensional plain strain problem, as shown in

Figure 2. The tool was considered to be a rigid cylinder of infinite length

having a velocity vector of Vt . The workpiece was imagined as a half space

being elastically, and plastically, displaced by the tool. Mathematically,

the workpiece material was modeled as elastic, perfectly plastic [4], Figure

3, and it was assumed that it had homogeneous and isotropic properties. In

the plastic region It was also assumed that the properties were not affected

by hydrostatic pressure and that the elastic strain was negligible. Chip

formation was conceived to be at a velocity of Vc , and the result of an

extrusion process where the tool and the elastic-plastic boundary acted as

die walls. It was also assumed that the chip formation was steady state and

not affected by temperature or dynamics. Along the tool face in the plastic

region there was believed to exist an Important point called the "stagnation

point." This point was considered to be the place where the material sepa-

rated and flowed either into the forming chip or underneath the tool. Under

actual cutting conditions, it was believed that a "dead metal zone" might

exist at the stagnation point. However, to simplify the cutting model it

was assumed the dead metal zone did not exist. Although this limited the

application of the model to workpiece material that showed little tendencies

for dead metal zones, it was felt necessary due to the complexity of the

build-up

.
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With the model developed to this point, the chip forming process was

described in general but lacked sufficient information to determine the

specific geometric condition and force requirements of a specific cutting

case. To overcome this problem an analytical aid was added to the model in

the form of an "equivalent indenter." It was conceived as a rigid cylindrical

indenter that elastically deformed the workpiece the same amount as the

cutting process, Figure 4. The equivalent indenter was geometrically

restricted by the cutting process with the pressure along the indenter 's

edge being governed by the geometry of the cutting process and the workpiece

material properties. The equivalent indenter was used in the approximation

of the location of the stagnation point and the approximation of the pressure

distribution along the tool's edge in the elastic region. Along the tool's

edge in the plastic region, the pressure distribution was based on the cutting

process geometry and workpiece material properties. By assuming the formed

chip to be stress free, it was determined that the force required by the tool

had to equal the force required by the equivalent indenter. With this assump-

tion and requiring the work done by the tool to be a minimum, it was found

that there was only one geometric shape for the cutting process that would

satisfy the above conditions. Once the geometric shape of the cutting process

was found the force requirements of the tool could be obtained.

To handle the computations required by the mathematical model a computer

program was developed (APPENDIX A) . As input, it required the depth of cut,

the tool point radius, and properties of the workpiece material. With these

values, it then determined the proper geometry and the cutting force required

per unit length of tool. The basic steps of the analysis used were to first

determine a possible geometric configuration for the model, then determine
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the pressure distribution along the tool and along the equivalent indenter.

Next, the geometry of the model was varied until the forces required by the

tool and the equivalent indenter were equal and the work done by the tool

was at a minimum.

Work done by Poritsky [5], which was later worked out numerically by

Hamilton and Goodman [6], was used to approximate the equivalent indenter.

Poritsky had investigated two cylindrical bodies in sliding contact. He

assumed the pressure distribution to be a "Hertzian" elliptical normal dis-

tribution with a superposed proportional tangential shearing traction. It

was believed that the equivalent indenter could reasonably be represented

by a sliding cylindrical indenter that created this type of distribution.

Therefore, it was assumed the equivalent indenter had a Hertzian elliptical

distribution normal to line AE, Figure 4, with a proportional superposed

shearing traction. With the equivalent indenter located close to the

elastic-plastic boundary it was also assumed that the equivalent indenter

would deform the workpiece to the point of yielding. The normal pressure

distribution on the indenter was determined by the application of the Hertz

theory for contact between two bodies with the stress at the center of the

surfaces in contact being determined from information presented by Hamilton

and Goodman. The relationship between the normal and tangential forces was

assumed to be constant.

To determine the pressure distribution along the tool edge, it was first

necessary to locate the intersection of the elastic-plastic boundary with the

tool. The criteria used to locate this point was based on the physical

limitations and the close relationship that existed between the equivalent

indenter and the tool. It was felt that the displacement of the workpiece



11

by the tool, and the equivalent indenter, would be related with the values

being approximately equal around the point of interest. Therefore, it was

assumed that the point of intersection between the elastic-plastic boundary

and the tool would be on a line perpendicular to the workpiece surface where

the tool and the equivalent indenter elastically displaced the workpiece

material the same amount, Figure 5. The elastic region was assumed to exist

only where the tool displaced the workpiece material less than the equivalent

indenter. The point of intersection was limited to below the surface repre-

sented by the finished surface. This eliminated the possibility of the

elastically deformed material not recovering completely.

The pressure distribution along the tool edge was determined in two

sections, the elastic and plastic regions. The tool edge along the plastic

region was analyzed by applying work presented by Schneider and Cheatham [7j.

They presented equations that determined the pressure beneath a general punch

profile, dependent only on the terminal points of the slip-line field. It

was assumed that all the slip-lines crossed the stress free line AB, into the

stress free chip, at a ir/4 radians angle as determined by Tresca or von Mises

yield criteria [<i]. To determine the angle of intersection of the slip-lines

with the tool, it was necessary to assume a friction relationship between the

tool and the workpiece. Results from a theoretical model for friction in

metal working by Wanhiem and Petersen [8] were used. The stagnation point

was assumed to be where the slip-line intersected the tool at ir/4 radians.

Since the flow above the stagnation point was determined to go into the chip

and below the stagnation point under the tool, it was assumed that the shear

stresses in the tool were as shown in Figure 6. Along the tool edge, in the

elastic region, it was assumed that the pressure distribution was the same
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as the pressure distribution along the equivalent indenter. This was assumed

to be reasonable due to the close relationship between the tool and the

indenter.



THE EQUIVALENT INDENTER

As previously discussed, the pressure distribution on the equivalent

indenter was assumed to be a normal Hertzian elliptical distribution with

a proportional tangential shearing traction. The maximum stress between

the workpiece and the equivalent indenter was assumed to be great enough

in magnitude to deform the workpiece to the point of yielding. It was felt

that this pressure distribution depicted a reasonable approximation to the

actual distribution and also presented an elementary method of analysis.

The normal pressure distribution for the equivalent indenter was

determined by Hertz theory of contact between two bodies [9]. For line

contact between two cylinders of infinite length

P' - hub PQ (1)

where

l-v
x
2

l-v
2

2

4 P ("

El E2

b
'

(2)

1
+

1

R
l

R
2

where ?' is the load per unit length in the normal direction, PQ is the

maximum normal stress, b is the width of contact, v is Poisson's ratio,

E is the modulas of elasticity, and R is the radius of curvature. The

subscripts "1" and "2" refer to the separate cylinders.

15
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The equivalent indenter with Hertz theory was incorporated in the model,

as shown in Figure 7. It was required that the equivalent indenter intersect

the workpiece surface at points A and E, and lie only in the elastic region.

Although the shape of the elastic-plastic boundary was unknown, the inter-

section of it and the stress free line AB was determined to cross at an angle

of ir/4 radians. It was assumed that the equivalent indenter would not intrude

on the plastic region if it intersected line AB at an angle greater than or

equal to u/4 radians. In the model it was required that the equivalent

indenter intersect line AB at ir/4 radians. The radius of curvature of the

equivalent indenter and the workpiece material before indentation were defined

as Rg and Rq, respectively, while the width of the contact was defined as be .

The cylindrical indenter was assumed rigid and therefore the modulus of elas-

ticity was infinite. When the Hertz theory was combined with the model,

equation (1) became:

Pn - *sirbe P (3)

and equation (2) became:

4 P C
1-v2

b p ' (4)'e

Re *o

Pn being the normal load per inch on the equivalent indenter. The values of

Re , RQ , and be were determined when a possible geometric condition was assumed,

E and v were assumed known since they were properties of the workpiece.

The magnitude of PQ was determined from information presented by Hamilton

and Goodman [6]. They had numerically worked out equations, which were
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developed by Poritsky [5], for the stress fields of two cylinders in sliding

line contact. Poritsky had determined the equations assuming the pressure

distribution between the cylinders to be Hertzian elliptical with Hamilton

and Goodman applying the equations requiring Poisson's ratio for the cylinders

to equal 0.3 and the point of maximum stress in the stress fields to be at the

yield point as determined by von Mises yield criteria. Hamilton and Goodman

developed three stress fields, y equal to 0.0, 0.25 and 0.50, which showed

that:

PJ - k» ' f(y') (5)

where P' was the maximum pressure between the two cylinders, k* the yield

shear stress of the cylinder, and f(u') a function of the coefficient of

friction, y', between the cylinders. It was assumed that PQ , the maximum

normal pressure between the workpiece material and the equivalent identer

could be determined by:

P - k * «(W) (6)

where k is the yield shear stress of the workpiece, and f (y) is the same as

f(y') in equation (5) except that the coefficient of friction, y, is between

the equivalent indenter and the workpiece.

When equation (6) was incorporated into the mathematical model it was

necessary to determine a continuous function for f(y). It was chosen to

approximate the continuous function because of its complex origin. The

continuous function was approximated by ploting a line, with respect to the

coefficient of friction, y, through the three known points determined from

the work presented by Hamilton and Goodman, and requiring it to follow a
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lower bound of f'(u), Figure 8. The lower bound, f'(u), was developed by

assuming the element at the point of yielding would not yield before the

element shown in Figure 9. By applying von Mises yield criteria to the

element shown in Figure 9, it is determined that

f*<U) - - r- • (7)

[
2 + V* &•* -

:

T^-)
2

]

Poisson's ratio, v, was assumed to equal 0.3.

With the normal load per inch determined for the equivalent indenter,

the tangential shearing traction, P
t , was easily obtained by:

Pt " yPn • <8 >

Since the work done by the tool was determined to be in the direction parallel

to the workpiece surface, it was chosen to rotate the forces determined for

the equivalent indenter to these axes. The vertical load per inch for the

equivalent indenter, P, , was determined by:

Plv " Pn cos <Y) " P
t

sin (Y)

•

<9 >

and the horizontal load per inch, Pii-» by :

Plh
- Pn sin (y) - P

t
cos (y) • (10)

The angle y was the amount the axes were rotated, Figure 7.
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THE TOOL

To determine the pressure distribution along the tool edge, the analysis

was divided into the elastic and plastic regions. In the elastic region, the

pressure distribution was assumed to be approximately that along the adjacent

equivalent indenter, while in the plastic region, the pressure distribution

and the location of the stagnation point were determined by work presented by

Schneider and Cheatham. The location of the point where the elastic-plastic

boundary intersected the tool was approximated by assuming that the tool and

the equivalent indenter displaced the workpiece material the same amount. It

was also required that along the elastic region the tool displaced the work-

piece material less than the equivalent indenter. Although this analysis was

only an approximation of the pressure distribution, it was felt to be reason-

able.

Before the analysis of the elastic or plastic regions could be completed,

it was necessary to locate the point of intersection between the tool and the

elastic-plastic boundary. The point was assumed to lie on a vertical line

where the tool and the equivalent indenter displaced the workpiece material

the same amount, Figure 10. Since the distance from the line to the inter-

section of the tool with the workpiece surface, distance d, could not be

determined directly, it was found by minimizing the difference between the

two displacements T-^ and T
2

. The magnitudes of T^, the displacement of the

workpiece by the equivalent indenter, and T2 , the displacement of the work-

piece by the tool, were determined by:

22



23

z
I s
oz
IJ
WQ
s

gM
HH
!=>O

oH
fa



24

tj « RQ ([1.0
- C-|~ - sin p)

2 ]*5 - cos p) - Re ([l.O
- <-^ - sin x)

2]^ - cos x)

(ID

and

T, - a([l.O - (A- sin 9)
2
J* - cos 9). (12)

* a

It was chosen to limit the point of intersection between the tool and the

elastic-plastic boundary to below the workpiece surface since it would imply

that the workpiece material did not completely recover elastically if the

point was above it. To insure this, d was limited by:

1 d 1 2 '° a sln 9* (13 )

where, a, was the tool radius. It was determined that for d to be greater

than zero, 9 had to be greater than x~P • This also insured that the equiva-

lent indenter displaced the workpiece material more than the tool elastic

region.

The normal pressure distribution along the tool edge in the elastic

region was assumed to be equivalent to that of the adjacent equivalent

indenter. The force required per inch of tool in the elastic region was

determined by integrating the pressure distribution over the adjacent region

of the equivalent indenter and then calculating the proportional shearing

stress, assuming the coefficient of friction to be that between the tool and

the workpiece. The resulting forces were then rotated to be normal and

tangent to the workpiece surface. The integration resulted in the force,

perpendicular to line AE, Pom* being:
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P - Z°2i (4, - sin | cos <f>) (14)
2N tt

where

<j> - cos"1 (1.0
2, ° d

) (15)
b^ COS Y
e

and the superposed tangential shearing force, P
2t , to be:

P
2t " H P

2N • (16)

where u2 is the maximum theoretical coefficient of friction between the tool

and the workpiece material as determined by Wanhiem and Petersen [8], Figure

11. The forces were rotated to the horizontal and vertical axes with respect

to the workpiece surface, by:

P
2h - P

2N
C08 Y " P

2t
Sin Y (17)

and

P
2v

- P
2N

Sin Y " P
2t

COS Y » (18)

P
2

, and P~ being the horizontal and vertical forces required by the elastic

region of the tool and y being the amount of rotation.

The calculations of the pressure distribution along the tool in the

plastic region were determined from work presented by Schneider and Cheatham.

They presented a theory which stated that the pressure at a point on a rigid

punch indenting a rigid, perfectly plastic material could be determined

uniquely from the boundary stresses and the relative angles between the tan-

gents to the slip line at the punch and the boundary, Figure 12. The normal

pressure, P , on the punch being:
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BOUNDARY PLASTIC MATERIAL

SLIP LINE

RIGID PUNCH

RIGID PUNCH INDENTING RIGID, PERFECTLY
PLASTIC MATERIAL-NOMENCLATURE

FIGURE 12
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pm " an
+ k sin 2*m + k 3in 2K + 2k (*n " 9n

+ K " V <
19 >

and the tangential shearing traction, Tm , being:

T » -k cos i|» . (20)
m m

The normal pressure at the intersection of the boundary with the slip line

was represented by an , while k represented the yield stress in shear of the

plastic material. Equation (19) was adapted to the model as shown in Figure

13. The line AB was considered a stress free surface since the forming chip

was considered stress free. By applying von Mises or Tresca yield criteria,

it was determined that the slip lines would intersect the line AB at a ir/4

radians angle. Assuming line AB to be stress free, equation (19) becomes:

PG
- k + k sin 2i|«

G
+ 2k

(J
- 5 + *Q

- A) (21)

and equation (20) becomes:

T
G

- -k cos 2i|»
G , (22)

where PG is the normal pressure, tg , is the shear force, i|>

G , the angle of

intersection between the slip line and the tool, and A the location of point

G on the tool edge. To determine the angle t|>G , it was required that:

T
G

- y
2

P
G , (23)

where v^ *3 fc^e coefficient of friction between the tool and the workpiece.

The point where the slip line crossed the tool at a ir/4 radians angle was

assumed to be the stagnation point. This was determined since the calcula-

tions of the pressure distribution along the tool edge resulted in a

continuous function and for the shearing stress, x.,, to change sign it must
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pass through the point where Tq equals zero. From equation (22) it was

determined that Tq equals zero when t|/g equals ir/4 radians. To determine

the forces required per inch of tool in the plastic region, the pressure

distribution was numerically integrated by use of Simpson's rule.



RESULTS

To aid in the evaluation of the cutting model developed, the model was

applied to specific cutting cases which had been experimentally investigated.

The data chosen to compare results with were obtained by Abdelmoneim and

Scrutton [l]. It was chosen because the metal used showed little tendency

for a dead metal zone, the data were presented such that the information

needed by the developed model was easily obtained, and was the same experi-

mental data used by Goyen [3] to evaluate his model. It was felt that a

comparison between the model developed in this paper and the model developed

by Goyen would be of significance. Goyen had used the same basic method,

with an identical equivalent indenter, but had determined differently the

location where the tool and the finished workpiece surface intersected, the

location of the stagnation point, and the point of intersection between the

elastic-plastic boundary and the tool. He had also assumed that there was a

flat spot on the lower surface of the tool.

Abdelmoneim and Scrutton had performed experiments which determined the

cutting forces required by a negative rake tool having a known point radius

of .003 inches. They used high-speed orthogonal tools ground to a specific

shape which were then mounted individually into a lathe tool dynamometer,

and the experiments performed. Frequent regrlnding and low speeds were used

to lessen problems due to tool wear. Among other workpiece specimens, they

used free cutting brass composed of 61.5% copper, 35.0% zinc and 3.25% lead.

31
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They had determined the yield shear stress of the free cutting brass to be

approximately 40.9 x 10 psi by sharp tool cutting experiments. This

corresponds to 70.8 x 103 psi tensile yield stress using von Mises yield

criteria. It should be noted that Abdelmoneim and Scrutton presented only

the force required by the tool in the direction parallel to the finished

workpiece surface. Thus no comparison could be made between the calculated

and experimental force required by the tool normal to the finished workpiece

surface.

The cutting cases investigated by Abdelmoneim and Scrutton were adapted

to the model by letting the values of the tool radius, and the yield tensile

stress of the workpiece be .003 inches and 70.8 x 10J psi, respectively. It

was also assumed that the modulus of elasticity and Poisson's ratio of the

workpiece were 14 x 106 lbs/in2 and 0.3, respectively. With these inputs,

the computer program was run and the geometry with the force requirements of

the tool being determined for a range of depths of cut. As with the model

developed by Goyen, it was found that it only worked for a small range of

depths. Table I and Figure 14 give the depths of cut for which the program

worked with the corresponding dimensions and forces as determined by the

model and the experiments. It should be noted that the experimental data

given in Table I were determined from an empirical equation given by

Abdelmoneim and Scrutton which was based on one hundred sixty-six experi-

mental data points. The resulting geometric conditions and pressure

distribution along the edge of the tool are given in Figures 15 thru 18

and Tables II thru V.



TABLE I

EXPERIMENTAL AND CALCULATED VALUES

33

Depth of Cut .0005 .0006 .0007 .0008

Tool Radius (in.) .003 .003 .003 .003

Cutting Model Dimensions

be (see Figure 7) (in.) .00177 .00194 .00210 .00225

Re (see Figure 7) (in.) .00313 .00307 .00308 .00318

RQ (see Figure 7) (in.) .00331 .00323 .00323 .00333

Formed Chip Thickness (in.) .000026 .000030 .000036 .000048

Required Tool Force
(Tangent to Workpiece Surface)

Experiment [l] (lbf )

Calculated (lbf )

Required Tool Force
(Normal to Workpiece Surface)

159.3

109.6

178.8

125.3

197.0

140.1

214.1

153.5

Calculated (lb f ) 142.2 153.5 162.9 170.8
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WORKPIECE

CALCULATED CUTTING MODEL GEOMETRY
(DEPTH OF CUT .0005)

FIGURE 15
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WORKPIECE

CALCULATED CUTTING MODEL GEOMETRY
(DEPTH OF CUT .0006)

FIGURE 16
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CALCULATED CUTTING MODEL GEOMETRY
(DEPTH OF CUT .0007)

FIGURE 17
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CALCULATED CUTTING MODEL GEOMETRY
(DEPTH OF CUT .0008)

FIGURE 18
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TABLE II

STRESS DISTRIBUTION ON TOOL SURFACE
(DEPTH OF CUT .0005)

A* V *G*

(RADIANS) (xlO4 (lbf/in. 2
) (xlO4 (lbf/in. 2

)

0.0000 10.255 4.029

.0491 10.240 3.981

.0983 10.158 3.940

.1474 10.039 3.900

.1965 9.913 3.855

.2457 9.790 3.801

.2948 9.663 3.748

.3439 9.496 3.700

.3931 9.365 3.634

.4422 9.193 3.577

.4913 9.025 3.515

.5405 8.735 3.483

.5896 8.490 3.411

* See Figure 13
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TABLE III

STRESS DISTRIBUTION ON TOOL SURFACE
(DEPTH OF CUT .0006)

A* V *G*

(RADIANS) (xlO4 (lbf/in •

2
) (xlO4 (lbf/in. 2

)

0.0000 10.409 4.049

.0539 10.333 4.019

.1078 10.242 3.984

.1617 10.135 3.942

.2156 10.015 3.896

.2695 9.859 3.845

.3234 9.742 3.790

.3774 9.590 3.730

.4313 9.430 3.668

.4852 9.261 3.602

.5391 9.084 3.533

.5930 8.900 3.462

.6469 8.709

* See Figure 13

3.388
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TABLE IV

STRESS DISTRIBUTION ON TOOL SURFACE
(DEPTH OF CUT .0007)

A* PG*

(RADIANS) (xlO4 (lbf/in. 2
:

0.0000 10.464

.0583 10.401

.1166 10.317

.1750 10.213

.2333 10.093

.2916 9.959

.3499 9.811

.4082 9.651

.4665 9.481

.5249 9.301

.5832 9.111

.6415 8.913

.6998 8.706

(xlO
4 (lbf/in. 2

)

4.070

4.046

4.013

3.973

3.926

3.874

3.816

3.754

3.688

3.618

3.544

3.467

3.387

* See Figure 13
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TABLE V

STRESS DISTRIBUTION ON TOOL SURFACE
(DEPTH OF CUT .0008)

A* V *G*

(RADIANS) (xlO4 (lbf/in. 2
)

10.493

(xlO4 (lbf/in. 2
:

0.0000 4.081

.0625 10.440 4.061

.1249 10.362 3.030

.1874 10.260 3.991

.2498 10.138 3.944

.3123 9.999 3.889

.3747 9.844 3.829

.4372 9.676 3.764

.4997 9.494 3.693

.5621 9.301 3.618

.6246 9.098 3.539

.6870 8.885 3.456

.7495 8.663 3.370

* See Figure 13



CONCLUSIONS AND DISCUSSION

The object of this research was to investigate the chip forming

process around the tip of a tool cutting at very small depths. This was

accomplished by modeling the cutting process, then making the model func-

tional, and finally applying the model to experimentally investigated cases.

It was hoped that the results would accurately duplicate the experimental

data, thus verifying the cutting model.

Though the results did not duplicate the experimental data suffi-

ciently to verify the model, it was felt that the investigation was still

useful. The calculated forces required by the tool did match the experi-

mental data well enough to indicate some merit in the principles of the

cutting model. More importantly, the investigation did indicate a reason

why the results of the model did not more closely duplicate the experimental

data. Before these indications can be verified, more research is needed to

better define the elastic region of the cutting model.

The comparison of the experimental data with the calculated data

showed that the calculated geometry of each cutting process investigated

was distorted; and the calculated force tangent to the workpiece surface

was approximately 70% of the experimental value. The geometry was considered

to be distorted since the formed chip thickness was much thinner than thought

to be realistic.

A comparison of the model developed by Goyen and the model developed

in this investigation was used to determine the reason for the deviation of

43



44

the calculated data from the experimental data. As stated before, the basic

methods used by Goyen were applied except that the location where the tool

and the finished workpiece surface intersected, the location of the stagna-

tion point, and the point of intersection of the elastic-plastic boundary

with the tool were determined differently. The method used to calculate the

pressure distribution along the edge of the equivalent indenter and the

location of the equivalent indenter were the same. Goyen had assumed that

a flat spot existed on the lower surface of the tool, and had calculated

cutting forces and geometry conditions for various depths of cut and flat

spot sizes. As the size of the flat spot decreased, it was found that the

geometry of the tool and the location of the intersection of the tool with

the finished workpiece surface approached the results of this investigation.

It was also found that as the flat spot size decreased, the formed chip

thickness also decreased. For small flat spot sizes, Goyen's results showed

unrealistically small chip thicknesses and, for all sizes of flat spots, low

calculated force values. Although no direct comparison can be made between

the two investigations, a definite relationship between the models and the

results can be shown. From this it was concluded that the major source of

error in both investigations was probably due to common assumptions. Ignoring

errors introduced by assumptions which differ between the two models, and

approximations based on some type of theoretical or experimental work, a list

of four possible sources of large error was developed, Figure 19. From this

list, the assumption that the pressure distribution along the tool's edge in

the elastic region was equivalent to the pressure distribution along the

adjacent equivalent indenter was eliminated since there was a high level of

confidence in the assumption.
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FORMED
EQUIVALENT
INDENTER

•TOOL

3

4

Pressure distribution and magnitude along
edge of equivalent indenter.

Equivalent indenter will lie in the elastic
region if this angle is greater than or
equal to ir/4 radians.

AB is stress free.

Pressure distribution along the tool's
edge in the elastic region is equivalent
to that of the adjacent equivalent indenter.

POSSIBLE SOURCES OF ERROR

FIGURE 19
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The results of this work indicate that a better approximation of the

stress field in the elastic region is needed before an approximate cutting

model of this type can be successful. It is felt that a better understanding

of the stress distribution, essential boundary conditions, and tendencies of

the workpiece material is needed. It is also felt that the best approach to

determine a better approximation would be to first develop a more realistic

theoretical approximation of the elastic stress field. Although the confi-

dence level in the assumption that line AB, Figure 19, was stress free is not

high enough to eliminate it from the list of possible sources of error, it is

felt that the error resulting from the assumption would be small and could

initially be ignored.
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APPENDIX A

COMPUTER PROGRAM



INTRODUCTION TO THE COMPUTER PROGRAM

The following computer program was written to apply the model

developed in this research and determine the forces on a blunt nose tool

in a specified cutting case. To define a specific cutting case the pro-

gram required the modulas of elasticity, yield stress, and Poisson's

ratio of the workpiece, along with the tool radius, and the depth of cut.

The program worked by assuming the values of four independent variables

from which it determined a geometric shape for the cutting process and

the forces along the tool's and equivalent indenter's edges. It then

varied the independent variables until all the governing conditions for

the model were met. It was found that solutions existed for only a small

range of depth of cut due to geometric restrictions.
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IMPLICIT REAL*8U-H,C-Z,$)
REAL*8K,MU
DIMENSION STSZ(4),yATICl4,4),S0L(6),XMU<21),YFMU(21>,PT(6)
DIMENSION BEl(51l,TBEi(51),BE2<5),TBE2<5),TEST2(lO),DU10),D2(2)
CIMENSICN PPP(4,5) ,STPT( 51 , X5< 21 1

,

Y5C21) ,STPT1( 5) , XX5( 5,5)
CIMENSIGN IFIAG(6),IC{4),PT1<6),IFLAG2<6)
COMMON/BLKl/H,A,ZETA,CMEGA,Q,V,RC,P,ASl.,RE,GAM,RHO,CHI
C0MMCN/ELK2/SY,K,E»EFS,PC
C0MM0N/BLK3/STSZ,KATID
CCMMCN/BLK4/XMU,YFMU,RMU
COMMCN/BLK5/0D
CGMMCN/BLK6/IFLAG
CCMM0N/8LK7/PRR
H=.0CC4
THA=0.0
THAE=.0
MU«.2
B*.54
I0(1)«1
IO(2)«2
I0(3I»3
I0(4>«4
E*140CCOCC.
A«. 003
SY*7G8GO
K=SY/<3.**.5)
EPS=.3
ASL=.7€54
RMU*.3E85€5
DC 10 1=1,21
J*I-1

10 XMU(I)».C5*J
YFMU(1)»3.106
YFMU12>*3.1
YFMUJ3)«3.C8
YFMU(4)*3.05
YFMU(5)=2.97
YFMU(6)*2.84i
YFMU(7)»2.65
YFMU(6)»2.40
YFMU<9)=2.16
YFMU<10)*1.S5
YFMU(11I=1.776
YFMU(12)=1.64
YFMU(13)=1.51
YFMU(14)=1.42
YFMU(15)»1.33
YFMU( 16)»1.25
YFMUU7)*1.19
YFMU(18)=1.12
YFMU(1S)=1.C6
YFMU(2C)=1.00
YFMU(21)=.95
DO 20 1-1.4
STSZ(I1»-.00001
DO 20 J* 1,4
MATICU,J)=0.0
IF(I.EO.J) MATIDU,J) = l.G

20 CCNTINUE
NN»3
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PTI ICC1I l»B
PT<IC(2))=MU
PT<I0(31)«THAE
PTU0(4))*THA
PRR»1.
NN=4
CALL SCLVE (PT.SCL, IC,NN)
IFUFLAG(5).LT. I) GC TC 50
CALL SCLVE1(PT,S0L,IC,KN)
PRR=2
CALL CALC(PT,S0L,I0)

50 CONTINUE
STOP
END
SUBROUTINE SOLVEIPT, SOL, 10, NN)
IMPLICIT REAL *8 <A-8,G-Z,$J
CIMENSICN STSZ(4),PT<6),TPT(6),MATID(4,4I ,S0H6) ,10(41 , I FLAG (6)
OIKENSICN PPP(4,5),STPT(5»,STPT1(5),X5<21),Y5<21),XX5(5,5)
CCMMCN/BLK1/H,A,ZETA,0MEGA,Q,V,RC,P,ASL,RE,GAM,RH0,CHI
CCMMCN/8LK3/STSZ,MAT 10
CCMM0N/BLK6/IFLAG
NN2=0
NN3*0
00 11 1=1,5

11 STPTK I>*0.0
Y5(l)»0.0
CALL CALC(PT,SCL,IC)
IFCIFLAG151.LT.0) GO TO -50
00 131 I»l,2

131 IF(DAES(SCLl I) I.GT..1 ) GO TO 100
GO TO 50

100 CONTINUE
IF(IFLAG(5».LT.O) GO TO 50
IJ»0

• 00 101 1*1,4
IF(IFLAGU).GT.O) GO TO 101
IF(ICKI).GT.NN) GC TC 101
IJ=IJ*1
STSZ(IC(I))»-.00C01
IF(IFLAGU).EC.-2) STSZ(IOU))» .00001

101 CONTINUE
IJ=*NN-IJ
IFUJ.LT.2.AND.NN3.EC.1) IFLAG<5)»-3
IF(IFLAG(5).LT.C) GO TC 50
IF(IJ.LT.2)NN3»Nf»3*l
IF(IJ.GE.2)NN3*0
NNl=NN+l
00 70 J*i,NN
PPP(J,NNl)»-l.*SCL(J)
00 70 1=1, NN
PPP(J,I)*SCLUI
XX5( I,1) = SCL(1)

70 CONTINUE
OJ 110 J=NN1,6

110 TPT(J)=PT(J)
00 80 1*1, NN
00 90 J«l,NN

90 TPTJJ)*PTJJ)-MATIC(I,J)*STSZ(J)
CALL CALC(TPT,SCL,IO)
IF(IFLAG(5).LT.O) GO TC 50
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DO 132 11=1,2
132 IF(DABSCSCLUI)).GT..l ) GO TC 105

CO 133 11*1,6
133 PT(II)*TPT(II)

GO TO 50
105 CONTINUE

00 80 L*1,NN
PPP<L,1) = <PPP(L,I»-S0L(L))/STSZU)

80 CONTINUE
CALL GJREC<PPP,PT,STPT,NN)
CO 151 1*1, NN
IF(IFLAGU).LT.O» 60 TC 151
STP*STPT(I)*STPT1(I)
IF(STP.GE.O.O)GO TO 150

151 CONTINUE
152 CCNTINUE

00 10211*1,4
IF(IOUI).GT.NN) GC TO 102
IF t IFLAGtII l.GT.O) JJ=IC(II)

102 CONTINUE
CO 153 1*2,5
DI=(I-ll*.25
Y5(I)*CI
CO 156 J*l,4

156 TPTU)*PTUI- CI*STPT1(JJ
CALL CALC(TPT,SCL,IO)
IF(IFLAG(5).LT.O) GO TC 50
DO 134 11*1,2

134 IF(DABS<SCLUI)).GT..l 1--G0 TO 106
00 135 11=1,6

135 PT(II)*TPT(II>
GO TO 50

106 CCNTINUE
DO 153 11*1, NN
XX5( II,I)*SCL(II)

153 CONTINUE
I*JJ
DO 159 J*l,5

159 X5(J)*XX5!I,J)
TTP-O.C
CALL INTERP(5,5,TTP,STP,X5,Y5,5)
IF{STP. GT.O..AND. STP.LT. 1.01 GO TO 160
IFLAG(5l*-3
GO TO 50

160 CONTINLE
NN2*NN2+1
IFINN2.GT.50) GO TC 50
DO 154 1*1,5
PT(I)*PT(I)-STP*STPTU I)

154 STPT1(I)*0.0
GO TO 155

150 CCNTINUE
CO 157 1*1, NN
PT (I»*PT(I)*STPTII)

157 S7PTim*STPT<I!
155 CCNTINLE

CALL CALC( PT,SOL,IO)
DO 130 1*1,2

130 IF(OAB<(SCL(I)).GT..l ) GO TC 100
50 CCNTINUE
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RETURN
ENO
SUBROUTINE SOLVEKPT ,SCL, ICNN)
IMPLICIT REAL*8(A-H,OZ,SI
DIMENSION PT(6),S0LU) , 10(41 , IFLAGU) ,PT1 (61

CCFMGN/BLK6/IFLAG
IK-0
IN=0
STP-.005
CALL SCLVE2(PT,SCL,IC,NN)
PP«S0L(6J
IF(IFLAG(4I.EQ.-2}ST<>»-«..005
I1=1FLAG(4)
00 11 1*1*6

11 PTHI)*PT(Ii
10 CONTINUE

PT1(4)«PT(4I*STP
NN=3
CALL SCLVE(PT1, SOL, ICNN)
IF(IFLA6(5>.LT.O) GO TC 20

CALL SCLVE2(PT1,SCL,IC,NN)
IF(PP.IT.SCL(6J) GC TO 20
IF(IFLAG(4).LT.0I GO TC 30
IN-IN + 1

00 12 1*1,6
12 PTU) = PT1(I)

GO TO 10
20 CLNTINLE

IF(IN.GT.C) GO TC 30
IFCIK.GT.O) GO TC 30
IK=IK*1
1FU1.LT.0) GO TO 30
00 32 1 =1,6

32 PT1(I)=PT(II
STP=-1.*STP
GO TC 10

30 CONTINLE
00 31 1=1,6

31 PT(I)=PT1(I)
RETURN
ENO
SUBROUTINE SCLVE2( FT ,SCL ,10 ,NNJ

IMPLICIT REAL*8(A-H,C-Z,S>
DIMENSION PT(6),S0L(6),I0(4>,IFL*GU),PTl(6i,IFLAG2<6)
CCMM0K/BLK6/IFLAG
NN=2
IN=0
DO 11 1=1,6
IFLAG2(I)=IFLAG(I)

11 PT1(I)»PT(I1
PP=S0L(6)

15 CONTINUE
IK«0
IJ*1
STP=.005
DO 12 1=1,4
IF( 10(11.NE. 3) GO TO 12
IF(IFLAG2(I).EC.-2) STP=-.005
II=IFLAG2(I)
11 = 1



55

12
10

34

20

41

30

32

40

42

CONTINUE
CONTINUE
PT1(3)*PT<3H-STP
CALL SCLVE(PT1,SCL,IC,NN)
IF(IFLAG(5).LT.0I GO TO 20
IF<PP.LT.S0L(6l» GC TO 20
CO 34 1=1,6
IFLAG2U> = IFLAG(I)
PTU»=FT1(I1
PP*S0L(6)
IJ*IJ+1
IF(IFUGUl) .LT.C) GC TO 30
GC TO 10
CONTINUE
IF(IJ.GT.l) GO T03C
IF(IK.GE.l) GO TC30
IK»IK*1
lF(II.LT.O) GO TO 30
00 41 1=1,6
PT1U1-PTU)
STP»-1.*STP
GO TO 10
CONTINUE
IN»IN+1
IFdJ.GT.ll IN»0
IF(IN.GT.21 GO TO 40
PT2=PT(3J
PT(3)=PT(2)
PTC2I*FT(1) ~"*'

PT(1)»PT2
DO 32 1=1,4
PT1(I) = PT(H
IFU0(I).EQ.4) GC TO 32
IOC I) = 10C 1 1 + 1

IFCICm.EQ.4) ICt 11 = 1

CONTINUE
GO TO 15
CONTINUE
S0LC6)=PP
00 42 1=1,6
1FLAG(I)=IFLAG2( I)

RETURN
END
SUBROUTINE CALC( FT ,SCL

t

IC)
IMPLICIT REAL*8(A-H,C-Z,$>
REAL*8K,MU
DIMENSION PT(6),SCL(6),XfU(2l),YFMU(21JiIFLAG(6),I0<4)
C0MM0N/BLK1/H,A-,ZETA,0MEGA,Q,V,RC,P,ASL,RE,GAM,RH0,CHI
C0MMCN/BLK2/SY,K,E,EFS,PC
C0MM0N/BLK4/XMU,>FfU,RMU
CGMM0N/BLK6/IFLAG
B*PT(IC(D)
MU=PT(I0(2I)
THAE«PT(IG(3J)
THA=PT(IC(4I)
DO 3 1 = 1,6
IFLAG(I)=1
IFCMU.GT.O.O.AND.MU.LT.l.OI GC TC 5

IF(MU.GE.l.O) GO TC 6

MU*O.G
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IFLAG<2)»-1
GO TO 5

6 HU=1.C
IFLAG(2)»-2

5 CONTINUE
CO 20J»1»21
DC=DAES(MU-XMU(II)
IFIOC. IT. .00000001) GO TO 14
IP(MU.LT.XMUU)) GC TO 21

20 CGNTINUE
21 PM»I*2

IFIMM.LT.5)MM=5
IF<MM.GT.2U MH=21
CALL lNTERP(5,MM,HUtFML,XMUtYFMUt21)
GC TO 16

14 CONTINUE
FMU=YFMU(I)

16 CONTINUE
PG»K»FKU
CALL CECM(THAE,B»THA,BE,O f TESTl)
IF(IFLAGI6).EQ.-1) CALL THEMN(THAE, B,THA t 8E,D,TEST 1

t

IF(IFUG<5).LT.0) GC TO 50

IFllFLAG{4).EQ.-3) CALL THAMX( THAE ,B,THA,8EtDi TEST1)

P1P=.25*8E*PG*3. 141592653589793
V*H/BE
C»(1.-IH/BE)**2)**.5
CMEGA=CARSIN(D/A-CSIN(TFA)

)

PHI=2.*DAPC3S(1.-2.*C/8E/Q)
P2P»P1P*(1-- (PHI-CSIN(PHI) )/6.2831S5307179586)
PY»P2F*(C-RML*V)
PX=P2P*(V*RMU*Q)
N*12
Z=-1.*ZETA
IF(CMEGA.GT.Z)GO TO 1

CAUL SINGR(CMEGA,Z,NtXXl,YYl,l)
CALL SINGR(Z,B ,N, XX2, >Y2, 2)

GO TC 10
1 CALL SINGRCCKEGAtB tN

t

XX2 tYY2 f 2 )

XX1=0.0
YY1*0.0

10 CONTINUE
XX»PX -(XX1+XX2)
YY«PY -(YY1+YY21
PXX=XX1+XX2
PYY=YY1+YY2
soum*xx
S0U(2)*YY
PPX=P1P*(V+Q*RKU)
PPY=P1F*(C-V*RMU)
SCUC3)=(PX**2+PY**2)**.5-(PXX**2+PYY**2)**.5
S0U(4)*PX/PY-PXX/PYY
S0L(5)=PPY
SCL16)=PPX
PTU0(1))»B
PTU0(2)) =MU
PT(10(3))»ThAE
PT<IC(4)>*THA
PT15)»C
PT(6)=8E
PXY=0SQRT(S0L(6)**2+S0L(5)**2)
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KRITE(6,7)H,A
WRITE(6,200)PT(IC(4J)fPT(61 ,PT( 5) » PT( 10(2 ) > ,PT ( I0( 1 )l

WRITE (6,300 )SOL(l)tSCL( 2), SOLO), SOL (6) ,SCL(51
WRITE(6,8C0)ZE7A,CKEGA,PT(IC(3)),ASL,PXY
WRITE(6,7C0)RE,RC,RHC,CHI,GAM

7 F0RMATC0' , 'H»« ,E15 ,8,7X, • A*« , E15 .8 )

200 FORMAT(1X,«THA»«,E15.8,5X, , BE» , ,E15.8,7X, , 0*',E15.8,9X, •MU««,E15.8
1,8X, 'LAM*SE15.81

300 FORMATdX.MX-SElS.e^X.'TYa'.ElS.a^X.'Tl^SElS.S^X, «PX»«,E15.8
1,8X,»PY*»,E15.8)

700 FCPMAT(lX,'R6* , ,E15.8,6X,«RC»SE15,e,7X»'RHO* , ,E15.8,7X, , CHl«'
1,E15.8,7X,'GAM=',E15.8»

800 F0RMAT(1X,'ZETA*«,E1S.€,4X,'CMEGA»«,E15.8,4X, «THAE = ' ,E15.8,6X,
1»ASL*' ,E15.8,7X,»PXY««,E15.8)

801 FORMATdXt'IFLAG-SeiSI
50 CCNTINUE

fcRITE(6,e0i>IFLAC(l),IFLAG(2),IFLAG(3>, IFLAGJ4), IFLAG< 51 , IFLAG( 61

RETURN
END
SUBROLTINE GECM(THAE ,B ,ThA,eE,C,TESTi)
IMPLICIT REAL*8<A-H,C-Z,$)
REAL*8K,MU
DIMENSION BE1(51),TBE1(51) ,BE2(5) ,TBE2 (5) ,TEST2 (10 ) ,D1 ( 10) ,02( 2)

DIMENSION IFLAGI6)
CGfMCN/BLKi/H,A,ZETA,GPEGA,Q,V,PC,P,ASL,RE,GAM,RHO,CHI
C0MMCN/eLK2/SY,K,E,EPS,PC
CCMMCN/BLK5/CC
C0MM0N/8LK6/IFLAG
CC(G,fc)»G*((l.-(C/G -DSIN(WM**2)**.5-OCOS(W))
TESTl-G.O
0*0.

C

THEMIN=CARSIN(2.*PO*(1.-EPS**2)/E-)*1.0000C001
IF(THAE.GT.THEMIM GC TC 14
IFLAGO)»-t
THAE=ThEMIN

14 CGNTINLE
IF(H.GT.G.O.AND.H.LT.AI GO TC 17
IFLAG(5)»-1
GO TC SS

17 CONTINUE
7HAMIM0.0
IF(THA.GT.THAMIN) GO TC 13
IFLAG(4>*-1
THA*TMHIN

13 CONTINLE
BMIN=CAPC0SIDC0S(THA)-K/A)+.0001
IF(BMIN.GT.1.57079IIFLAG(4>—2
IF( IFLAG(4l.EQ.-2ITHA*CARC0S(H/AI
6MIN»C/RCCS(0CCS(ThA)-t-/A)
IF(B.GT.BPIN) GC TC 15

IFLAG(l)*-i

15 CONTINLE
IF(B.LT.1.57C791 GO 10 16
IFLAG(l)=-2
B=1.57C79

16 CONTINUE
BEMIN=((A*(0SIN(BMIN)*CSIN(THA)))**2fH**2)**.5
BEMAX* (( H**2 + ( A*(1. + 0S IN (THA) + 0CCS(THA)/.CC0C1)-H/. 000011**2)**. 51

STEP=(BE^AX-BE^'I^>/2G.
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DO 10 1-1,21
BEim«eEMX-(I-l)*STEP
GAM-DAPSIN(H/BE1(I)I
ZETA-ASL-GAM-THAE
IF(ZETA.GT..00001) GC TO 12

IFLAG13)—

2

ZETA-.00C01
THAE-ASL-GAM-ZETA
IF(THAE.LT.THEMIN) IFLAGC5)— 3

IF(IFLAG(5).LT.O) GC TC 99

12 CCNTINUE
Q-((1.-(F/BE1(I))**2)**.5)*BEHI) «^«.,.»iiwiiiiT«Al IQ1=(A*(OCOS(THAJ-CCOS(B)»-H)/DTAN(ZETA)*A*(OSIN(B>+OSIN(THA1I
TBEHII-Q-Q1
IF(DAES(TEEl(I)l.LT.l.E-8> GO TC 26

IF(I.EQ.l) GO TC 10
TTB-TBEK I)*TBE1(I-1>
IFtTTB.LT.O.O) GC TO 11

10 CONTINUE
11 BE2(5)-BElt I)

BE2U)-EE1(I-1)
TBE2(51=TBE1(I)
TBE2UI-TEE1U-1)

21 CONTINUE
STEP-(BE2(5)-BE2(l))/4.
00 20 1-2,4
BE2<I)-BE2(1H-(I-1>*STEP
GAH»DAPSIN(H/BE2(I))
ZETA-ASL-GAf-THAE
Q-((l.-(h/BE2(I))**2)**.5J*BE2<I) in„ UfBlincTM.TUiii
Ql»tA*(DCGS(THA)-CC0S(8>l-H)/DTAMZETA) + A*(DSINlB>+DSIN(THA)l

TBE2(I)=Q-Q1
IF<DABS(TBE2(I)).LT.1.E-81 GO TC 22

20 CONTINUE
TT-O.C
CALL INTERP(5,5,TT,8E,TBE2,BE2,5)
GAF=CAPSIN(h/BE)
ZETA-ASL-GAM-THAE

Ql = (AMDC0StTHA)-CCOS(B))-HI/CTAN(ZETAJ+A*(DSIN(BI+OSIN(THA)l
TBE-Q-Q1
IF(CABSUBEI.LT.l.E-e) 60 TO 24

CO 23 1-2,5
TTB-TBE2C I)*T8E2(I-1J
IFITTB.LT.0,0) GO TO 25

23 CONTINUE
25 TBE2(5>=TBE2<I»

TBE2(1)=TEE2(I-1>
BE2(5)=BE2(I)
BE2(1)-BE2(I-1I
GO TC 21

26 BE-BEHI)
GC TO 24

22 CONTINUE
EE=BE2(I1

24 CONTINUE
GAM=CARSIN(H/BE)
ZETA-ASL-GAM-THAE
RHO-THAE-GAP
RE»BE/2./0SIN(THAE»
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P0*BE/(2.*DSIN(T»-AE)-f4.*P0*<l.-EPS'»*2)/E))
CHI»CARSIN(BE/RC/2.)-GAK
CC=A*(CSIN<B)+OSIN(TFAI)
IF(THA.EG.THAMIN)GC TO 27
D01«A*(l.*OSIN(THA)»
CC2=RE*(1.+CSIN(RHC) )

003=RC*(1.+CSIN(CHI) )

C0O«0HINl(OOl«D02t003l
C2(2)»D00*.99
D2(1J=C.C

34 CONTINUE
STEP*(C2(2)-C2(1I)/10.
00 39 1=1, 1C
C1UI*C2<2)-(I-1)*STEP
0*01(1)
TEST2<II*CC(A,THA)-CC{PE,RHC)+CC(RC,CHI)
IF{CAES(TEST2lI)J.LT.l.E-8)G0 TC 27
IF(TEST2(I).GT.0.0) GC TC 35

39 CONTINUE
02(2>»STEP
GO TO 34

35 CONTINUE
02<2)»01(I-i>
02(1I*CMI)

31 CONTINUE
00 28 I=lt5
Cl(I) = <D2<2)-02(l))*U-l)/4.+02(l)
o-oicn
TEST2(I)*CC(A,THA)-CC(PEtRHC)<-CC(RCtCHI)
IF(DAES(TEST2{I)).LT.l.E-8) GO TO 29

28 CONTINUE
TT=O.C
CALL INTEPP<5,5,TT,C,TEST2,01,5)
TEST1 «CC(AtTHAl-CC(PEfRHC)*CC(RCtCHII
IF(CABS<TEST1 J.LT.l.E-8) GO TC 27
DO 32 1=1,4
TT3=TEST2(H-1)*TEST2(I)

32 IFITT2.LT. 0.0) GO TO 33
33 02(2)*C1(I+L)

D2(i)=CKI)
GC TC 31

29 CONTINUE
TEST1»TES72(I)

27 CONTINUE
IF(D.GT.DO) IFLAG<«)*-3
IF(THA.GT.RHO)IFLAGlt)«-l

99 CCNTINUE
RETURN
ENO
SUBROUTINE SINGRCOE ,N ,X ,Y ,NF»
IMPLICIT REAL*8(A-H,C-Zt$)
REAL*8K,MU
C0MMCN/BLKl/H,A f ZE7A,C*EGAtQtV,PCtPtASlfREtGAM,RH0tCHI
COMM0N/BLK2/SY,K,E,EPS»PC
CCNMCN/BLK7/PRP
IFCPRR.EQ.2.) hRITEU,41)

41 F0PMAT(7X,'LAM',17X,'PSI , tl7X,'PN',18X,«TAU'tl7X,'FX , ,l8X,'FY«)
STEP=E-C
IF<STEP.LT..0000C1> GO TO 11
STEP*(E-C)/N
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SUM-0.0
SUMX=0.0
00 10 1 = 2, N,

2

ST1»C*STEP*I
ST2»C+STEP*tI-U
CALL F(STl»ST2,FYl,FXl,FY2tFX2,NFI
SUMX»FX2*.5*FX1+SUMX
SUM=FY2+.5*FY1+SUM

10 CCNTINLE
STEP»STEP*A*K/3.C
CALL F(C t B t FYl,FXl,FY2,FX2,NFI
X«U.C*SUMX+FX1-FX2MSTEP
Y»(4.0*SUf+FYl-FY2)*STEP
N-12
RETURN

11 X*0.
Y«0.0
RETURN
END
SUBROUTINE F ( S , SS , F, G, FR ,GG,NF >

IMPLICIT REAL*8(A-H,C-Z f $)

REAL*8K f MU
C0MM0N/BLKl/H,A f ZETA,CKEGA,GtV,PC,PtASLtRE,6AM,RH0,CHI
CDMM0N/BLK7/PRR
60 TG (10,20»tNF

10 PSI-0.0
PSS*0.0
GO TC 50

20 CALL CPSI(S,PSI)
CALL CPSKSStPSS)

50 CONTINUE
PN»DSIN(PSI)+2.57C7S6327-2.*(ZETA+S)+PSI
PS=DSIN(FSS)+2.570796327-2.*(ZETA+SS)+PSS
TAU=OCCS(PSII
TAS=DCCS(PSS»
R*OCOS(S)*FN-DSIN(S)*TAU
RR«CCCS( SS)*PS-OSIN( SS)*TAS
G »DSIMS)*PN+CCOS(S)*TAU
GG=OSIN(SS)*PS«-OCCS(SS)*TAS
IFJPRR.EQ.l.) GO TG 30
*»RITE(6,40I SS f PSStPS,TAS,GG,RR
WRITE(6 t 40) S,PSI,PN,TAU,GtR

40 F0PMAT(lX f 6E20.6)
30 CONTINUE

RETURN
END
SUBROUTINE CPSI(ST,PSI)
IMPLICIT REAL*8(A-H,C-Z,$»
REAL*8K,MU
COHMGN/BL-Kl/H,A,ZETA,CfEGA,QtV,RCtPfASL»RE»GAM,RHO»CHI
Xl=t.625*(ST+ZETAI
X2=Xl+.l
Y1=OSIN(X1)*2.57G7S63-2.*(ZETA*ST)*X1-2.5707963*OCOS(X1)
Y2=DSIN{X2)*2.5707Sfc3-2.*(ZE7A+ST»+X2-2.57C7S63*0CGS(X2)

2 CCNTINLE
X*X1-Y1*(>2-X1)/(Y2->1)
TL*DS IN (X 1+2.5707963-2.* (ZETA+ST1+X-2. 5707963*DCQS( X)

Y2=Y1
Y1=TL
X2=X1
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.

X1»X
IFlCAeSlTL).LT..0O01) GO TO 12
GO TC 2

12 CGNTINLE
PSI«X
RETURN
END
SUBROUTINE INT ERP ( N, NN , XC, YO, X, Y , J J )

IMPLICIT REAL*8<A-H,C-Zt$)
DIMENSION X(JJ)tYUJ)
YO«0. .

PU=1.
M=NN+1
DO 11 1=1,

N

11 PU*PU*<XC-X{N1-I))
OG 13 J=1,N
PL=i.
CO 12 1=»1,N

IFII.EC.J) GC TC 12
PL*PL*(X<N1-J)-X(N1-I) J

12 CONTINUE
PT=PU/FL/(XC-X(N1-J]

)

13 YO=YO*PT*Y(Nl-J»
RETURN
END
SUBROUTINE GJREO (CtPT,STPT,N)
IMPLICIT REAL*8(A-K,C-Zfi)
DIMENSION C(4,5),STPT{5),PT(6I
COMMON/BLKl/H f A,ZETA,CMEGA,Q,V f RC,P,ASL,RE,GAM,RHO,CHI
CCMMON/ELK5/CD
N1»N+1 —
THIS PROGRAM PERFCRMS A GAUSS-JORDAN REDUCTION
DO 200 J = 1,N
DlV=C<J t J)

200 S*1.0/DIV
CO 201 K*J,M

201 C(J,KI»C(J,K)*S
DC 202 1=1,

N

IFU-J)202 t 202,203
203 AIJ=-C(I,JJ

DO 204 KsJtNl
204 C(I,KI*C<I,K)*AIJ*C(J,K)
202 CONTINUE
200 CONTINUE

IF<N.LT.«)C<4,Nl)=l.E-e
IF(N.LT.3JC(2,Nl)»l.E-6
IF(CAES(C(l,M)J.GT..l) GO TO 10
IF(CABS(C<2,Nl)).GT..l) GO TO 10
IF(DABS1C(3,N1)).GT..1) GO TO 10
IF(0ABS(C(4 t Nl)).GT..l) GO TC 10
AA=1.
GO TO 50

10 CONTINUE
FF».l/CABS(Ctl,ND)
EE».1/CA8S(C(2,N1))
HH».l/DABS(C(3,Nl)}
GG=.1/CABS{C(4,N1) )

AA=OKIM(EE,FF,GG,HH)
50 CONTINUE

DO 40 1=1, N

r
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40 STPTCI»=CCI»N1I*AA
DC 60 I=M,5
STPT(I)*G.O

60 CONTINUE
RETURN
END
SUBROUTINE THAMXCTHAE, E t THA,BEtOtTESTl

I

IMPLICIT REAL*8CA-h t C-Zf$l
REAL*8 K,*U
DIMENSION IFLAG(t)
CCMMCN/BLK6/IFLAG
C0MM0N/BLK5/DD
X2*THA
Y2=D-DD
THA=THA*.S
CALL GECMITHAE,E,ThA,BEfC,TESTl)
Yl-O-CD
X1=TM

2 CONTINUE
X=X1->1*CX2-X1)/(Y2-U)
CALL CECMCTHAE,B,X ,BE,D,TEST1)
Y2=Y1
Y1*D-DC
X2=X1
X1«X
IFCCABSCY1I.LT. l.E-8) GO TO 12
GO TC 2

12 CONTINLE
ThA=X
IFLAGC4J—2
RETURN
END
SUBROUTINE THEMNCTHAEt E ,THA,BE f D,TEST1

)

IMPLICIT REAL*8CA-H,C-Zt$)
REAL*8 K TMU
OIMENSICN IFLAGC6)
COMMON/BLKl/H f A,ZETA»OMEGA,Q»VfRC,P,ASLfREtGAM f RHOfCHI
CQMMCN/BLK6/IFLAG
NF = 1

IFCIFLAG(2).EQ.-2) NF=2
IFCIFLAGU).EQ.-1.ANC.NF.EQ.2) NF*3
IFCIFLAG(1).EQ.-2.ANC.NF.E0.3) GC TO 31
GO TO (l,2,3) f NF

1 X2»THAE
Xl*Th.AE*l.l
THAE*X1
GO TO 5

2 X2-THA
X1»THA*.9
THAE=.E
THA»X1
NF=2
GO TO 5

3 X2=B
Xl =B*l.l
Tl-A=0.0
THAE*0.8
B-Xl
NF«3

5 CONTINUE
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CALL GECM(THAE,B,Tt-A»BE,0,TESTl)
IF(IFLAG(5I.LT.01 GO TC.30

1FUFLAGC21.EQ.-2. ANC.NF.EQ.il GO TO 2

IF FLAG(4).EQ.-1.^NC.NF.EQ.2 GO TO 3

IF(IFLAG(11.EQ.-2.ANC.NF.EQ.3) 60 TO 3i

Y1»TM-PHC
10 CONTINUE

X»Xi-'«l*(>2-Xl)/<Y2->ll
GO TC(6,7,8)fNF

6 THAE-X
GO TO 9

7 THA»X
THAE*.8
GO TO 9

8 B*X
THAE».e
THA*0.0

9 CONTINUE -e ____.
,

CALL GECMTHAEfBtTHAtBEtCtTESTl)
IFUFLAGm.EQ.-2.ANC.NF.EQ.3HFLAGl 51«-2

IF(IFLAG(51.LT.0» GO TC 30

IF(IFLAG(21. EQ.-2.ANC.NF.EQ.il GC TC 2

IFUFL*gU!:EQ.-1.ANC.NF.EC.21 GO TO 3

Y2*Y1
Y1*TFA-RF0
X2*X1

IF*CABS(Yll.LT.l.E-5) GO TO 12

GO TO 10

12 CONTINUE
GO TO (13tHtl51»NF

13 THAE»X
GO TO 16

1* THA»X
GO TO 16

15 B=X
16 CONTINUE

IFLAG(31»-1
30 CONTINUE

RETURN
31 IFLAG(51=-2

RETURN
END

JENTRY
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I

For many years, the chip forming process in metal cutting has been

approximated by an infinitely sharp tool forming a chip along a line of

concentrated shear. Recently, however, it has become apparent that for

small depths of cut the effect of the rounded tool tip is important. It

is the object of this work to investigate the chip forming process due to

the rounded portion of a tool tip cutting at very small depths. Due to

the complex nature of the cutting process, the investigation took the form

of a mathematical model that approximated the chip forming process.

The chip forming process was conceived to be the result of an extrusion

type process where the tool and the elastic-plastic boundary act as die

walls. The pressure distribution and magnitude along the tool's edge in

the plastic region was determined by the use of slip-line theory while the

pressure distribution and magnitude along the tool's edge in the elastic

region was determined by its close relationship to an equivalent indenter.

The equivalent indenter was conceived as an indenter that created the same

elastic stress field in the workpiece material as the cutting process. The

approximation of the equivalent indenter was dependent on the cutting process

geometry and the workpiece material properties. The correct geometry for a

given cutting case was determined by varying the geometry of the cutting

model until the resulting force required by the equivalent indenter was the

same in magnitude and direction as the resulting force required by the tool.

Although the results of the model did not duplicate experimental data

sufficiently to verify the validity of the cutting model, it did match

experimental data well enough to indicate some merit in the model. More

importantly, when compared with a similar model, the results of the work



indicated the probable source of error. Although more research is needed

before a valid model of this type can be developed, the investigation did

indicate the areas needing more research.


