/L—EQUEI/ AN EMBEDDED QUERY LANGUAGE
FOR FRANZ L1SF

by Ay
ANNE ROBERTA ;RACH SEL

B.S., The Ohio State University, 1979

A MASTER'S REPORT

submitted in partial ful fillment of the

requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

Approved by:

Kagey

Ha:[ﬁr Professor

LD

2668 . _
'H% CONTENTS | ALL202 9kL48YS
T7a% |
1%‘ CHAPTER ONE - INTRODUCTION 1=1
1.1 Overview 1=1
1.2 Contents of This Report 1=2
2. CHAPTER TWCO - BACKGROUND INFORMATION 2=-1
2.1 Current Database Features For _
LISP 2-1
2.1.1 Advantages 2=1
2.1.2 Disadvantages 2=2
2.1.3 PEARL - An Example 2=2
2.2 LISP Access to General-Purpose ‘
Databases 2-3
2.2.1 Desired General Database
Features 2=3
2.3 Existing Embedded Query
Languages 2-4
2.3.1 System kK - Overview 2-4
2.3.2 INGLES = Overview 2=5
2.3.3 Logistics Of The Embedded
Interface 2=-6
2.3.4 Variables 2=9
2.3.4.1 Variable
Restrictions 2=9
2.3.4.2 Tuple
Variables 2=9
2.3.4.3 Type~Checking and
Conversion 2-10
2.3.4.4 Copying
Variables 2=10
2.3.5 Side Effects 2=-10
2.3.6 Error Handling 2=-11
2.4 Choosing EQUEL For LISP 2=11

ILLEGIBLE

DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE

3.

CHAPTER THREE - IMPLEMENTATION SECTION

3.1

3.2
3.3

3.4

3.5

Implementetion Goals and

Requirements

3.1.1 Choice of Command Set

Assumptions

Interfaces

3.3.1 User (Programmer) Interface -
Commands

3.3.2 User Interface = Invoking L-
BQUEL

3.3.3 Sof tware (INGRES)

Interface

The Design Of L-EQUEL

30"-1

3;" .2

3.4.3
3."' ou
3.4.5

Modules of L=-EQUEL
3.4.1.1 Initielization
3.4.1.2 Parsing The Input

File 3-11
3.4.1.3 Processing Non-lL-
EQUEL

Commands 3=13
3.4.1.4 Processing L-EQUEL

Commands 3=-14
3.4.1.6 Utilities 3=-16

The Lequel Command - Internal

Viewpoint
The Keyword Table
Treatment of Variables

Use Of INGRES Library

Detailed Design Of L-EQUEL Command
Functions

3.5.1

Common Design Features
3.5.1.1 INGRES

Interface 3=-19
3.5.1.2 Command

Options 3-20

- il =

3-6
3-8~
3-8

3-18
3-18
3-18
3-19

3=19
3-19%

3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.7
3.5.8
3.5.9
3.5.10
3.5.11

3.5.

The

The

1.3 Error
Handling

LEAPPEND Command
LECREATE Command
LEDELETE Command
LEDESTROY

LEEXIT Command
LEINGKES Command
LEPRINT Command
LERANGE Commend
LEREPLACE Command

LERETRIEVE Command

4. CHAPTER FOUR - IMPLEMENTATION RESULTS

4.1 Evaluation of Requirements

§.2 Design Issues and Difficulties

4.2.1

u.2l2

Internal EQUEL
Documentation

Retrieve Command

3-20

4.3 Extensions and Suggested Changes

4.3.1

4.3.2

4.3.3

5. CHAPTER FIVE -

Additional Utility
Routine

Method Of Invoking The

Command

Capabilities

SULMMARY

6. CHAPTER SIX - ACKNOWLEDGEMENTS

BIBLIOG RAPHY

- 1ii -

" Additional BQUEL Command

APPENDIX I - L~EQUEL Command Syntax

L1
L2
13
LY

General Syntax Statements

I~-EQUEL Command List

Notation

Individual L-FEQUEL Command

Syntax
Ilul‘

I.'-l.?

I.4.3

I.4.4

1.4.5

LEAPPEND
Li.1.1
L.4y.1.2
L.4.1.3
I-n-"-u
LECREATE
I.4.2.1
Iouoana
I.n.2-3
I.4.2.4
LEDELETE
L.4.3.1
L4.3.2
L4.3.3
IU"-BIJI
LEDESTROY
L4.4.1
Ly.4.2
L 4.4.3
I-ﬂ.u.u
LEEXIT
I'u05'1
L.4.5.2
1."-5.3

L4.5.4

Name I-4
Calling

Syntax I-4
Description and
Parameters I-4
Examples I-5

Name I-6
Calling

Syntax I-6
Description and
Parameters I-6
Exampl es I-7

Name I-8
Calling

Syntax I-8
Description and

Parameters I-8
Exampl es I=9
Name I=-10
Calling

Syntax I-.10
Description and
Parameters I-10
Exampl es I-10

Name I-11
Calling

Syntax I-11
Description and
Parameters I-11
Examples I-11

I-1

I-1

I-6

I-8

I-10

-1

L. 4.6 LEINGRES
I.b4.6.1
1.4.6.2
1.4.6.3
L4.6.4

I.4.7 LEPRINT
L4.7.1
L4.T.2
Lui.7.3
I.U.T.4

L4.8 LERANGE
1.4.3.1
L4.8.2
I1.4.8.3
I-uosou

I.4.9 LEREPL ACE
L4.9.1
LH.Q-E
L4,9,3

L4.9.4

Name I-12
Calling

Syntax I=-12
Description and
Parameters I-12
Examples I-12

Name 1-13
Calling

Syntax I-13
Description and
Parameters I-13
Exampl es I=-13

Kame I-14
Calling

Syntax I-14
Description and
Parameters I-14
Exampl es I-14

Name I-=15
Calling

Syntax I-15
Description and
Farameters I-15
Exampl es I-15

I.4,10 LERETRIEVE

J.4.10.1
I.4.10.2

I.4.10.3

I.4,10.4

Name I-17
Calling

Syntax I-17
Description and
Parameters I-17
Examples I-18

APPENDIX II - Manual Page for L-BEQUEL

Comnmand

APPENDIX I1I - Example of L-FEQUEL Use

III.1 Introduction

II1.,2 Background Information

II1,3 L-BEQUEL Source Code

I-12

1-13

I-14

I-15

I-17

II-1
III-1
III-1
III-1

III-2

I11.3.1 legexample 111-3

11I.3.2 ex_ingres I1I-}
I11,3.3 ex_create , _ I1I-5
II1.3.4 ex_append _ I11-6
I1II.3.5 ex_retrieve III-7
I11.3.6 ex_replace I11-8
II1.3.7 ex_delete 111-9
I11.3.8 ex_destroy III-10
III.3.9 ex exit III=-11
III.4 Output From L-BEQUEL ITI-11
- II1.4.1 Legexample ITl-12
III.4.2 ex_ingres III-12
I11.4.3 ex create III-12
IIT.4.4 ex_append I11-13
III.4.5 ex_ retrieve III-13
III.4.6 ex_replace III-14
I1I.4.7 ex_ delete I1I-15
II1.4.8 ex_destroy 11l-15
II1.5 Output From Running the Frogram III-16
III.5.1 ex_ingres I111-16
II1,5.2 ex_create I1I-16
II1.5.3 ex_append I1I-16
II1.5.4 ex_retrieve III-17
III.5.5 ex_replace . 11117
1I1.5.6 ex_delete - III=-17
I11.5.7 ex destroy II1-18

I11.5.8 ex exit III-18

APPENDIX IV -« L~-EQUEL Source Code V=1

- vii -

1. CHAPTER ONE - INTRODUCTION
1.1 Overview

This master's report describes the design and implementation
of the LISP-Embedded Query Language, L-EQUEL. EQUEL,
Embedded Query Language, enables the C language programmer
to embed INGRES queries within a C language program. L=
EQUEL, a set of EQUEL-based database access routines for
LISP, enables the Franz LISP programmer to embed INGRES

database queries within a Franz LISP program.

Current LISP databases depend on features unique to LISP;
the information stored in them is not accessible to programs
written in other languages, because the databases are
enclosed within the program's storage area. By allowing
access to the INGRES database from within a LISP program,
L-EQUEL provides a facility for data sharing between

programs written in Franz LISP and programs written in other

languages.

Franz LISP, developed at the University of California at
Berkeley[1], is available on Berkeley UNIX® systems. INGRES

and EQUEL, developed at University of California at Berkeley

® UNIX is a registered trademark of AT&T Bell Laboratories

1=1

[7) [9], are marketed by Relational Technology, Inc. [4].
INGRES is available for UNIX and VMS®® operating systems [4]
[6]. EQUEL was implemented using a combination of YACC (Yet

Another Compiler Compiler) [12]) and C language routines.
1.2 Contents of This Report

Chapter One of this report is this chapter. Chapter Two
disousses current databases for LISP systems and contains an
investigation of the feasibility of creating Franz LISP
access routines for existing databases. Chapter Three
presents the details of the design and implementation of the
L=-EQUEL database interface. Chapter Four discusses the
results of‘the impl ementation, Chapter Five presents a
summary of the implementation, and Chapter Six contains the
acknowledgements, The references and appendices follow
chapter six; the appendices contain a summary of the L-EQUEL
Syntax, a manual page for L-EQUEL, an example of L-EQUEL

use, and the Franz LISP code that implements L-EQUEL,

#% Trademark of Digital Equipment Corporation.

2. CHAPTER TWO - BACKGROUND INFORMATION

This chapter desoribes current database features for LISP
and provides examples of existing embedded query language

systems.
2.1 Current Database Features For LISP

Current database features for LISP rely on capabilities
unique to the LISP language, and the data is stored within
the LISP program enviromment. Instead of maintaining the
data separately on disk, the entire program image, including

the data, is stored together.

Internal LiSP databases tend to contain rather conplex
tuples, and to have relatively few occurrences of those
tupl es. In contrast, stand-alone database managements
systems tend towards simpler individual tuples, and the

databases contain many occurrences of those tuples.

2.1.1 Advantages

Relying on unique LISP features allows the database
management system to maximize all possible internal
efficiencies. The database doesn't have to support
different languages'! interfaces, so0 the database designer
can tune the database for a particular application or set of

applications.

2.1.2 Disadvantages

While the advantages listed above are valuable, the fact
that existing LISP databases rely on internal LISP
capabilities also limits the LISP programmer. He/she cannot
access commercial, general=-purpose database management
systems., Also, the relative complexity of the tuples tends

to make them more difficult to create and maintain.

2.1.3 PEARL - An Example

PEARL (Package for Efficient Access to Representations i:
LISP) is an example of a current internal LISP database
system [11]. Developed at University of California ir
Berkeley, PEARL is an artificial intelligence language
providing capabilities for manipulating associative
databases. PEARL functicns, which include database
insertion and deletion, are compiled and loaded directly

into LISP.

With PEARL, a programmer can insert and delete items from a
database. The PEARL user manipulates "symbols"™ and
"structures”, "Symbols" are described as semantically
equivalent to LISP atoms, but are used and represented

differently for efficiency [7].

Al though FEARL contains functions that could be used for
general-purpose applications, it does depend on LISP's

internal structure, so the restrictions listed above apply.

The author could find no example of an internal LISP
database management system that provides data accessibility

to programs written in other languages.

2.2 LISP Access to General-Purpose Databases

2.2.,1 Desired General Database Features

In determining the feasibility and advantages of adding a
Franz LISP interface to a given existing database management
system, several criteria were considered. The database

management system should:

- be general=-purpose,

~ be able to access data from within a host language

program,

= provide exception handling,

- be flexible,

- allow the use of variable names for data values,

- provide a consistent access syntax, whether the queries
are made from within a host-language program or are

executed separately,
= be available for a UNIX system.
The next sections of this report discuss these criteris with

respect to two existing database management systems and

2-3

their associated embedded languages.

2.3 Existing Embedded Query Languages

The following sub-sections describe two existing relational
database management systems, both of which feature embedded
query languages. The database management system described
first, System K, was developed by IBM., The second database
management system discussed, INGRES, was developed at the

University of California, Berkeley.

The discussion begins with general facts regarding each
database management system. Following that, several
features of the database management systems and their

embedded languages are compared,

2.3.1 System k - Overview

System R began as an experimental relational database
management system, developed at IBM Research Laboratory in
San Jose, California [14][15]. After installation and
evaluation at several IBM locations for more than two years,
System R was adapted for commercial use by IBM Programming
Center in Endicott, New York. The resulting product, called
"SQL/Data System", was announced in 1981. SQL/Data System

runs on the DOS/VSE operating system.

In this report, the terms "System K" and "SQL/Data System"

are used interchangeably, except where noted.

2=4

The goals of System R development included the desire to
support one-of-a-kind ("ad hoe" [14]) queries as well as
those queries that can be defined once and _executed
repeatedly. While the latter form of query can bevcom;iled
into library routires, the former query type implies user
interaction and thus must be handled separately curing

execution.

The decision was made that System [should suppcrt both a
stand-alone query interface and an embeddec language
interface. The stand-alone interface was callec UFI, the
User-Friendly Interface. The embedded lanhguage features are
available for COBOL and for PL/I. The user interface,
called SQL, is consistent across the cstand-alcne and

embedded language versions., As expected, user reaction to

the consistent interface is favorable [15]).

2.3.2 IKGHKES = Overview

INGRES is a relctional database management system ceveloped
at the University of California in Berkeley, Californias, and
marketed by Lelational Technology, lne. It runs on the LLI)

operating system and is written primarily in C lenguage.

INGRES provides a shell-level query interface known as QUEL
(Query Language), and features EQUEL (E.beddec Query
Language). EQUEL enables the proframmer to embed gqueries

inside a C language program, providing the full capabilities

2-5

of both C and QULL. The EQUEL interface presented to the
programmer is irndependent from EQUEL's interface to Il GRES,
Since the EQUEL coumand syntax is quite similar to the QUEL
syntax, the programmer works with a consistent inter“face for
database transactions whether they are writing a C language

program or executing queries from the shell (QUEL).

2.3.3 Logistics Of The Embedded Interface

This section discusses the methods of user interaction with
the embedded interface; that is, the appearance of embedded
statements in the code and the invocation of the embedded
language system. The section presents a discussion of
System R's SQL logistics, and compares them with the

logistics of the INGRES/EQUEL system.

For "canned interactions" {(those queries that can be fully
defined when the program is written), the SQL statements are
embedded in the host COBOL or FL/I program. A preprocessor
(called XPREP in System R [14]) recognizes the SQL
statements because they are prefixed with a dollar sign ($),
and compiles them into a series of machine-language
routines. The machine-language routines collectively are
called an "access module® [14][15]. In the user's program,
host language calls to the access module replace the SQL
statements, and the program can then be compiled normally. -
¥When the COBOL or PL/I program is executed, the access

module provides the database interface.

With this approach, the error checking, selection of access
path, and parsing are concentrated into the preprocessor
steps and do not affect execution time. In addition, since
the access module is taileored to the individual pr;gram's
database needs, the running program interacts with =a
customized subset of the SQL capabilities that is sraller

and executes more quickly than the complete SQL.

For interactive embedded queries, the parsirg, validity=-
checking, and selection of the most appropriate access path
must take place during execution, since the complete
information is not available during preprocessing. However,
experiments have illustrated that compiling the SQL
statments into an access module is still efficient for these

queries [14].

The treatment of EQUEL commands inside a C language program
is similar in appearance to SQL, in that all EQUEL commands
must be prefixed by two number signs (##). In addition,
declaration statafients for any C language variables used by
EQUEL statements must be prefixed by two number signs. Ir
the programmer wants a block of code to be executed
repeatedly as a result of an EQUEL query, then the beginnirg
and ending brackets ({}) of that block of code must be

preceded by two number signs.

As in SQL, the EQUEL preprocessor recognizes the two number

signs. Rather than replacing the preprocessor statements
with machine~language access modules, EQUEL replaces the
EQUEL statements with calls to the C language subroutines
that provide the direct interface to INGRES. Anyi EQUEL
commands' references to variables are included as parameters
to these subroutine calls. The program can then be compiled
with the C compiler, and loaded with the IEGRES library to

resoclve the EQUEL/INGHES routine references.

The major difference in the logistics categcry between EQUEL
and SQL occurs when the program originally containing the
embedded statements is executed. The EQUEL/INGKES interface
always interprets the database requests, while SQL executes
compiled database requests. While the compilation is more
efficient, interpretation allows more flexibility. For an
interpreted interface, the binding time of the variables in
the request ocan be delayed until execution; for a compiled
interface, the binding occurs during compilation. Delaying
the binding allows the C/EQUEL programmer to alter the
domain and relation names at execution time, while the SQL
programmer must rewrite source code to effect the same
changes, because domain and relation names cannot be

variables in SQL.

As mentioned in Section 2.3.1 of Chapter 2, SQL does -
provide the capability to execute interactive queries from

the program; these queries expect a string argument that is

interpreted at run time. However, this is still more

complicated than EQUEL's method.

2.3.4 Variables

This section discusses the host-language variables used with
BEQUEL and SQL. Topics discussed include compilation-time
versus execution-time binding of variables, type-checking
and conversion, and restrictions on variables. As in the
previous section, the discussion of each item Dbegins with
the SQL approach, and continues with a comparison of QL to

EQUEL.

2.3.4,1 Variable Restrictions

For SQL, wvariables represent data values, but may not
replace table names or field names, In INGERES' EBEQUEL,
variables may represent relation names, domain names, target

list elements, or domain values.

2.3.4.2 Tuple Variables

A tuple variable is one which applies to all rows of a
relation, and indicates a specific row at any particular
time. In SQL, tuple variables are only present when needed
to resolve ambiguous names, while in EQUEL tuple variables
are always present. Tuple variables add scme minor
complexity to easy queries, but they enhance the readability

of complicated queries.

2-9

2.3.4.3 Type-Checking and Conversion

For both SQL and EQUEL, variable type-checkirg and
conversion are implicit; that is, the programmer dces not
specify anything to cause the checking and/or conversioﬁ to

ocour.

2.3.4.4 Copying Variables
For both EQUEL and SQL, values from a database record must
be copied individually; that is, the programmer cannot copy

an entire record with just one statement,

2.3.5 Side Effects #

This section discusses the side effects associated with SQL
and EQUEL. First the section contains a general ciscussion
of side effects' advantages and disacvantages, then it

compares the side effects of SQL and EQLEL.

The guestion of whether a system or language ought to have
side effects is a source of controversy. Eaving side
effects relieves the user from Laving to specify as wmany
data manipulation commands; however, a system having side
effects can be more difficult to debug. In addition,
transactions are less easily understood when everything is

not stated explicitly.

SQL has database procecures called "triggers"[13] wkhich
produce side effects. These "triggers" are present for

queries involving READ, INSERT, DELETE, and UFDATE. The

trigger 13 executed once for each tuple, and it may in turn
force additional updates, based on the dependencies of the

transaction.
EQUEL has no side effects.

2.3.6 Error Handling

When using SQL, the programmer must explicitly test a return
code to determine whether an error has occurred. EQUEL,
meanwhile, provides automatic notification when errors are

encountered.

-

2.4 Choosing EQUEL For LISP

After surveying the literature and comparing existing
embedded query languages, the author decided to base the
LISP embedded interface on EQUEL. Several factors

influenced this decision:

- FQUEL allows more extensive use of variables, and more

explicit error-handling.

- EQUEL runs on Berkeley UNIX systems, and is available

here at Kansas State University.

- There are defined mechanisms for communicating between
C routines and Framz LISP routines [2] [3]. Therefore,
there is an underlying compatibility between Franz LISP

and EQUEL, since Franz LiSP's kernel is written in C,

2-11

and EQUEL is written in and for C.

= The syntax of EQUEL statements can be adapted to a
LISP-compatible format with only minor alterations,
thus maintaining the INGKES philosophy of providing a

consistent database interface,

2=12

3. CHAPTER THREE - IMPLEMENTATION SECTION

This chapter discusses the implementation of the LISP
Embedded Query Language (L~-EQLEL). L-EQUEL provides
features of the INGRES database's EQUEL for Franz LISP

programs.

The chapter begins with a description of the goals and
requirements for L-EQUEL. It continues by discussing the
assumptions made, then describes the interfaces between L=
EQUEL and INGHES and between L-EQUEL and the LISP programmer
(L-BEQUEL wuser)., Finally, the high-level design and

detailed-level design of L-EQUEL are discussed.
3.1 Implementation Goals and hequirements
The goals of the implementation are:

= The L=-FQUEL coumands will be embedded within Franz

LISP programs.
= L-EQUEL will allow general-purpose gueries.

- L-BQUEL will interact with the existing INGRES database

Just as EQUEL does.

- l=-FQUEL syntax will be consistent with EQUEL syntax.
The syntax differences between the two languages will
be limited to those changes required for LISP

coupatibility.

3-1

3.1.1 Choice of Command Set
The command set for the initial version of L-EQUEL should

meet the following criteria:

= Together, ihe conmands allow the programmer to perform
basic INGLES database capabilities. The basic

capabilities consiz=t of:

® Opening a database,

® Creating database tables,

® Appending items to database tables,

® Deleting items frow tables,

® Removing database tables,

€ Changing items' values in tables,

® Retrieving information from tables,

€ Printing information to the terminal or to a

file,

® Closing a databasze.

- These commands are likely to be performed regularly.

= These commands are likely to require information found

within the LISP program.

The following set of EQUEL comnmands is intendec for the
initial version of L-EQUEL. The commands are listed in
alphabetical order. For a description of these commands!

capabilities and EQUEL syntax, see references [Li] and [5].

Append

= Create

= Delete

- Destroy

- BExit

- Ingres

= Print

- Range

~ Replace

Retrieve

The following set of EQUEL commands should be added for a
second version of L-EQUEL. While these commands are not
necessary for the basic feature list, they provide

additional convenience.

- Copy

3~3

= Integrity

- Set

3.2 Assumptions

In designing and implementing L-EQUEL, the author made the

following assumptions:

= L-BEQUEL will be implemented for and in Franz L.SP,

= L-FQUEL assumes that the database to be manijulated has
already been created. This is an assumition made by
BQUEL as well; EQUEL does not allow the embedding of
the INGHES QUEL ‘"ecreatedb"™ command to create a

database.

= Similarly, L-EQUEL will not allow the programmer to
embed the command for destroying a database
(destroydb). The "destroy" command 1listed above
pertains to destroying tables (relations) within a

da tabase.

= The version of INGKES / EQUEL with whict. L=EQUEL
interfaces will be compatible with version 7.10, dated
October 27, 1981. This is the version of INGRES in
operation at Kansas State University at the time this

report was written.

3.3 Interfaces
This section provides detalls of the interfaces of L-EQUEL.

3.3.1 User (Programmer) Interface - Commands

As mentioned in the goals and requirements above, L-EQUEL
command syntax will basically be the same as the syntax for
EQUEL. The only syntactic changes will be made for LISP

syntax compatibility.

Appendix One 1lists the syntax of eact. of the L-EQUEL
commands. Descriptions of the EQUEL commands on which they

are based can be found in reference [4].

3.3.2 User Interface - Invoking L-EQUEL

Figure One illustrates the progression from the input file,
containing both LISF and L-EQUEL statements, through the
preprocessor to the output file, whichh contains Jjust L:iSE

source code,

LISP and L-EQUEL ==~-=> L-EQUEL Preprocessor -=--» LISE
(nfile.1lq) - (nfile. 1)

Figure 1

L-EQUEL Input File to Qutput File

To invoke L-EQUEL, the LISF programmer executes the command
"lequel™ The command "lequel" takes one argument: the name

of the Franz LISF source file containing the embedded L=

EQUEL statements. The command produces e file containing
the Franz LISP source, with the L=-EQUEL statements replaced
by ocalls to the C language subroutines that conprise the I",
EQUEL/INGKES interface. The resulting Franz L.SP file ean-
then be compiled and loaced into LI1SP, Appendix 1I contains

the manual page for "lequel™.

The file-naming conventions required by leguel are 1listed

below:

® the name of the input file containing both the Franz

LISP and the L-FQUEL statemehts must end in ".1lq".

® The name of the output file produced by L-EQUEL will be
the same as the name of the input file, except that a

P, 1" will replace the ".1q" of the input file name.

Example A:
The file namec "fred.lq" is a Franz LISP source file
containing embedded L-BEQUEL statments. The following

command produces an output file named "fred.1":
lequel fred.lq
3.3.3 Software (INGRES) Interface
The L-EQUEL system interface to IIGHKES i: modeled after the

EQUEL / INGHEES interface rather than the C / EQUEL

interface. The C / EQUEL interface is advertised as

3-6

supported, so that future versions of the C / EQUEL
interface are likely to be compatible with the current
interface, The EQUEL / INGRES interface is not advertised

as supported.

Consideration was given to meeting the C / EQUEL interface
with L-EQUEL. However, passing pieces of L-EQUEL through
BQUEL would have required rewriting LISP statements in C.
This would be necessary since related L-EQUEL statements may
enclose a section of host-language code. For example, {if
several tuples are to be retrieved, often there is a set of
statements to be executed for eact tuple. These statements
appear between the beginning L-EQUEL retrieve command and
the part of the L-EQUEL vretrieve command that ends the

retrieval.

The decision was made not to pursue meeting the C / EQUEL

interface.

The EQUEL / INGIES interface consists of a series of C
language routines. Franz LISP provides the capability to
load compiled C language routines directly into a LISP
program enviromnment, using the LISP "cfasl"™ and "getaddress"
routines. The L-EQUEL preprocessor will replace the L-EQUEL
statements with calls to EQUEL / INGKES interface routines.
The calls to C language routines in LISP paintain the L1SF

syntax style; that is, the function name is listed first,

followed by the function's parameters.
3.4 The Design Of L-EQUEL

This section describes the,design of L-EQUEL, The section
begins by specifying the high-level architecture of L-EQUEL.
It continues by discussing individual modul'es in greater

detaill, and specifies what data structures are reguired.

3.4.1 Modules of L-EQUEL
The design of L=-EQUEL is composed of several software

modules, as illustrated by Figure 2.

3-8

| Initialize
| L-PBQUEL
1

— emam wwem &

| Utilities |

— e A S T ——

I5 !
| Parse the |
| Input File |
|2
|
|
|
|)
| |
| # }
| Process | | Process '
Non-l-EQUEL		L-EQUEL
LISP		LISP
S-expressions		S-expressions
I3 i 14]
Eigure 2

The L-EQUEL Modules

First, L-EQUEL must perform initialization functions, such
as verifying the existence of the source file and setting up
tables. Next, L=-EQUEL must parse the source file, 1looking
for occurrences of the special "##" symbol. Third, L-EQUEL
must process the non-l-EQUFL s-expressions, and finally, L=
EQUEL must process the L-FQUEL s-expressions. 4 £ifth
module, the wutility module, contains routines used
throughout the L-EQUEL program. The following paragraphs

discuss each of these modules in greater detail.

3.4.1,1 Initialization

Figure 3 illustrates the initialization section.

| Initialize |

| L=-EQUEL |
| R
|
i
|
. | .
| ! i
| | i
| ' i
| ' i
| Set Up ! | Fi1l Ir | | Open {
| Global | | Keyworc | | Input and Gutput |
| Variables | | Table | | Ports !
111 } (1.2 bo11.3 !
Eigure 3

L-EQUEL Initialization Module

First, the global variables are initialized. One set of
globals pertains to error messages. To enable these
messages to be consistent throughout the code, global
strings are defined for specific error messages. See the
section on error handling for the list of error types for

which messages are specified.

A second category of global variable is intendeg for
debugging L-EQUEL during develcpment. By setting the
variable "lequeldebug" to a specific value, the printing of

a series of debugging statements is controlled. For details

3-10

regarding this, see the "Utilities" design section.

Next, the keyword table is initialized. This table's

contents are discussed in section 3.4.3 of this chapter.

Finally, the ports for the input and output files are

opened,

3.4.,1.2 Parsing The Input File
As shown in Figure 4, the parsing module reads the input
file, one s-expression at a time, and determines whether the
expression contains any L-EQUEL commands.

| Parse The

| Input File
f2_

— e S ®

I
|
|
!
!
!
|
I

. —

—— i E——

| Read Hext ! { Determine If | | Call
| S-expression | | 1t's Ar L~-EQUEL | | Appropriate
| ! | Command ! | Processing
f2.1 | 2.2 I12.3

Eigure 4

L-EQUEL Parsing Module

The parser is recursive; that is, s-expressions may be

nested. When a new s-expression is read, its first member

is examinec:

= If the first member is "$%", the parser sends the ==

expression t¢ "Processing L-EQUEL Commands".

= If the first member is some other atom, the entire list
is sent to &a separate "atom=parsing" routine, called
"parseatom”. (This routine is part of the "parsing"

module.)

- If the first member of the s-expression is an s=-
expression, then the "parse s-expression" (parseexp)

routine calls itself.

The "atom-parsirg" routine examines the‘ first member of the
list it receives., If the first member is an atom, "parse-
aton™ writes it to the output file. (If the first member is
not an atom, it is an error.) Then "parse_atom" examines the
next member of the list it received. If this member is an
atom, then "parse-atom™ calls itself with the "cdr"® of the
original list. If the second member of the original list is
an s-expression, then "parse-atom™ calls "parse s-

expression" with the "edr"™ of the original list.

The "s=expression parsing® routine examines the first member
of the 1ist. If the first nember is an atom, then the
entire 1ist is sent to the "atom-parsing” routine. If the

first member is an s-expression, "parse s-expression" calls

3-12

itself with the first member of the original s-expression..

Then the second member of the original list is examined. If
this member is an atom, then "parse-atom"™ is called with the
"odr®™ of the original list. If the second member of the
"original expression is a list, then "parse-expression” calls

a second expression-parsing routine, "parseZexp'.

ParseZexp calls "parse-atom” or Pparse=expression”,
depending on the first member of the list it receives.
Parse2exp should only be called if the "car®™ of the original

s=expression was a list. =

3.4.1.3 Processing Non-l-EQUEL Commands
This module, illustrated in Figure 5, simply copies all

non-L~-EQUEL s-expressions directly to the output file,

Process
Non=L-EQUEL
S-expressions

— — — — —— —

| Copy S~expressions
| To Output File
|
13.1

e Bt o —— W

Figure 5

=

1=-EQUEL "Process Non-l-BEQUEL S-Expressions" Module

This step is best consicered as a separate module for future
expandability; however, for simplicity it can be implemented

as 8 direct extension of the parsing step.

3.4.1.4 Processing L-EQUEL Commands
This module contains more levels of information than the

previous modules. Its top level is shown in Figure 6.

3=14

| Process }
| L-EQUEL)
| S-expressions!
14
|
!
|
{
!
|
} !
! |
| Determine ! | |
| Which L-EQUEL | | Execute Appropriate |
| Command It Is | | L-EQUEL Function]
14,1 | 4.2 ' !
Eigure 6

L-EQUEL "Process L-EQUEL S-Expressions™ Module

First, the module locates the L-EQUEL command in the keyword
table to determine what function to call. Then, the

corresponding command function is called.

| Execute The

| L-BEQUEL Command
|

|

Function
y,2
|
|
|
i
L] I L]
| i |
Verify !	Format Call		Write INGRES	
Command		To INGKES		Call To
Arguments		Routine		Output File
		!		
14,2.1 | |4.2.2] 14,2.3 i
Figure 7

L-EQUEL "Execute The L-EQUEL Command Function" Sub-Module

As seen in figure 7, the command's arguments are verified,
and the call to the appropriate C-language INGRES interface
routine is formated into an s-expression. Finally, the s-
expression containing the call to the INGKES interface

routire is written to the output file.

3.4.1.,5 Utilities
The design of L-EQUEL includes several utilities. Figure 8

illustrates them, and the following sections discuss their

functions.

| Utilities |
I |
e |

15
| Control ! | Initialize | | Initialize
| Debug Stmts | | Error Messages| | Keyword Table
| | | | |
5.1 l 5.2 | 5.3

Figure 8

The L-EQUEL Utilities Module

Figure 8 does not have connecting lines as in the earlier
figures because the utilities together have no notion of
time-ordering. The utilities are grouped into a module
because they perform specific, lower=level tasks, and may

relate to more than one of the other modules.

3.4.1.5.1 Debugging Statements

The first set of utilities controls the printing of
debugging statements on the user's terminal., If the value
of the variable "legueldebug" is zero, these utilities are
defined to do nothing., When "lequeldetug" has a value of
one, these utilities call normal LISP printing routines.
This allows the debugging statements to remain in the source

code without greatly affecting the running L-EQUEL program.

3.4.1.5.2 Error Messages
Another utility routine sets up the global variables for the

error message strings. As mentioned earlier, these error

e — — W

message strings are global to promote consistency of error

messages throughout L-BEQUEL,

3.4.1.5.3 Keyword Iable
One utility is responsible for initializing the table of

valid keywords. The format and use of this table are

explained in section 3.4.3 of this chapter.

3.4.2 The Lequel Command - Internal Viewpoint

The command "lequel™ is created using the LISP compiler's
f-r®" optiocn. This TMautorun" option allows the resulting
LISP program to be run separately, instead of requiring the

Franz LISP compiler or interpreter to be invoked.

3.4.3 The Keyword Table

To recognize the L=-BEQUEL commands, a keyword table is
maintained in the form of a LISP list. Each keyword name is
an item on the list, and each item lkas a property called
"op function®™ associated with @ it. The op_function
property's value contains the name of the function that is
to be called when the associated keyworc name is encountered

in the source file.

3.4.4 Treatment of Variables

Where possible, the ™Mtype" (character string, integer,
floating-point number) of the input variable will be
verified for correctness. Type conversion will not be done

for the initial version of L-EQUEL.

3.4.5 Use Of INGHES Library

To call the INGHES library routines from inside the "lequel™
program, those routines' object files must be loaded into
"lequel™ using the "cfasl™ and "getaddress™ functions. The
source program that contains embedded L-BQUEL statements

must load in the appropriate INGRES interface routines.

3.5 Detailed Design 0Of L-EQUEL Command Functions

This section presents the detailec design of the functions
for processing the specific L-EQUEL commands. ~ The~
information presented for each function consists of the
function's parameters, the return value, the tasks performed
by the function, the algorithm used, and what unexpected

events are handled by this function.

The commented code appears as Appendix IV,

3.5.1 Common Design Features
This section discusses the detailec design items that are

common across several L-FEQUEL command routines.

3.5.1.1 INGRES Interface

Each of the L-BEQUEL command functions places in the output
file a call to one of the EQUEL / INGEES interface routines.
The names of all the interface routines begin with "II", and
the desecription for each command specifies what interface

routine call is appropriate for that command.

3.5.1.2 Command Options

Each L-EQUEL command has a (possibly null) set of valid
options, To analyze those options, eech L-EQUEL command
function meintains a LISP 1list of the valid options.
Currently these lists just contain the opticns' formats, but
they could be expanded to include properties for each of the

options.

3.5.1.3 Error Handling

If a function determines that an error has occurred, it
writes a message to the terminal and writes the erroneous
s-expression to the output file with a short message
explaining the error, The error message formats are

globally defined strings, so that the error messages will be

consistent throughout the code.

The following types of error conditions are handled:

Illegal Keywords

Missing Table Name

Invalid Parameters

General Syntax Errors

3.5.2 The LEAPPEND Command
The "f_leappend" function writes a call to "IIwrite" to the

output file, followed by a call to "IIsyne". The syntax-

3=-20

checldng consists of:

= Verifying the presence of the table name,

= Verifying that there is a target-list of columns and

values to be appended,

= Verifying that there is a value field corresponding to
each name field.

All other checking will be performed by INGRES,

3.5.3 The LECREATE Command
The function "f_lecreate” writes a call to "IIwrite" to the
output file, followed by a call to "IIsyne". The function

makes the following syntax checks:

= The presence of a tablename field is checked,

= The presence of the list of field names and formats is

verified,

= There must be an equal number of field names and

formats in the 1list,

- The proposed field formats in the command's parameters
are checked against the INGKES limits for field types
and widths.,

The field names are assumed to be valid.

3=21

3,5.4 The LEDELETE Command
The function "f_ledelete" writes to the output file s call
to "IIwrite", followed by a call to "llIsync."™ The parameters

to the command are assumed to be correct.

3.5.5 The LEDESTROYCommand"
The function "f_ledestroy" writes a call to "IIwrite" to the
output file, followed by a call to "IIsync". The function

verifies that at lecast one table name field is present.

3.5 .6 The LEEXIT Command sz o e

The "f_leexit" function writes a call to "Ilexit" to the
output file. Since no arguments to dbexit are expected, no

parameter-checking is performed by "f_leexit™.

3.5.7 The LEINGRES Command

The "f_leingres" function writes & call to "IIingres" to the
output file. The "lelngres" from the command line is
replaced with "IIingres". The validity of each option is
verified by searching the 1list created during
initialization. This routine does not check the options'

argument values; it assumes that they are valid,

3.5.8 The LEPRINT Command

The function "f_leprint" writes a call to "IIurite" to the
output file, followed by a call to "IIsyne". The function
assumes that all arguments are valid INGRES table names, so

its only syntax checking is to verify that at least one

3=22

table name is present.

3.5.9 The LERANGE Command

The function "f_lerange" writes a call to "IIwrite™ to the
output file, followed by a call to "IIsync". The function
verifies that the words "of" and "is" appear in the proper
order, and that the range velue and table name fields are

also present.

3.5.10 The LEREPLACE Command
The "f_lereplace" function writes a call to "IIwrite" to the
output file, followed by a call to "IIsync". The syntax-

checking consists of:

Verifying the presence of a range variable,

Checking that the range variable is an atom,

Verifying the presence of a target-list of column names

and values to replace,

Checking that the quantity of names matches the

quantity of values in the target list.

3.5.11 The LERETRIEVE Command

The "leretrieve" command is the most complex of the initial
set of L-EQUEL functions, because it is possible to have
embedded LISP statements that are to be executed for each

tuple retrieved, As a result, the retrieval depends on

3=-23

three separate L-BEQUEL statements: "%% leretrieve", "%}

leretrbgn", and "§% leretrdone".

The "f_leretrieve®™ is called when the "%$% leretrieve" is
encountered. It takes care of the initial processing of the
retrieval. It places calls to niIwrite", "IIsetup”,
"IIn get®, "IIn_ret", and "llerrtest" in the output file.
The "f_leretrieve® function alsc begins creation of the
"orog" loop that is necessary to implement the looping
feature of the retrieve. For syntax-checking,
" leretrieve®™ verifies that all variables used in the

" eretrieve® statement have been declared.

The "f_leretrbgn® is called when the "§% leretrbgn" is
encountered, The "§% leretrbgn™ must precede the embedded

LISF code for the retrieval.

When the “%¥% leretrdone™ is encountered, "f_leretrdone" is
executed. This routine adds the final piece of looping code
to the retrieval., The embedded LISP statements are placed
between the "%% leretrbgn” and the "%% leretrdone”. Since
the embedded statements are not L-EQUEL statements, they are

copled directly to the output file.

3-24

4, CHAPTER FOUR - IMPLEMENTATION RESULTS

This chapter discusses the results of the initial
implementation of L-EQUEL. Af'ter specifying whether the
goals and requirements were achieved, the chapter discusses
the design issues and difficulties encountered. A
description of possible extensions and changes completes the

chapter.

4,1 Evaluation of Requirements

This section specifies whether the goals discussed in
chapter three of this report were realized. Each goal
stated 1in section 3.1 of that chapter is discussed

separately.

The first goal is "The L-EQUEL commands will be embedded
within Franz LISP programs™ This goal has been satisfied,
in that & set of basic INGRES capabilities is available from

within Franz LISP,

The second goal is P"L-EQUEL will =zallow general-purpose
queries”, This goal also was satisfied, since the INGRES

database is a general-purpose, relational database.

The third goal is "L-FQUEL will interact with the existing
INGRES database just as EQUEL does". Since the decision was
made to meet the EQUEL/INGRES interface rather than the

C/EQUEL interface, this goal has also been met,

The fourth goal is that "L-EQUEL syntax will be consistent
with EQUEL syntax™. This goal has also been achieved.
There are two types of syntax differences, but they do not
interfere with this goal. One set of differences occurs to
enable L-EQUEL syntax to be consistent with LISP syntax.
The second set of differences results from EQUEL options

that are not implemented in the initial version of L-EQUEL.
4,2 Design Issues and Difficulties

This section evaluates the design issues and. difficulties

encountered in developing L-EQUEL.

4.2.1 Internal EQUEL Documentation

There was sufficient user-level documentation for INGHES and
for EQUEL, However, the author was not able to find
internal documentation for EQUEL; that is, documentation of
BQUEL's interface to INGRES. As a result, the author
determined this interface by reading the existing EQUEL code

(which consisted of YACC, and fairly well-commented C).

A complication that arose as a result of this issue was that
it was difficult to determine whick INGHES interface

routines should be called for eaci. unigue situation.

The author ran an example of each command through EQUEL, and
looked at the resulting ".c" files to determine the proper

INGRES interface routines. For the more complex commands,

y-2

the author ran EQUEL on several examples, in an attempt to

include examples of the different options.

4,2.2 Retrieve Command

The EQUEL ‘"retrieve®™ command ("leretrieve™ in L-EQLEL)
proved to be the most complicated of the command set for the
initial implementation of L-EQUEL. It is the c¢nly cormand
that contains & block of related Lost-language code that is
to be executed for éach tuple, In addition, it vrequires

more handling of host-language variables.

To implement the "looping" of the host language code, it was
necessary to insert a LISF "prog" construet in the L-EQUEL

output file.
4,3 Extensions and Suggested Changes

Each of the following subsections ciscusses a separate
possible extension to this iritial implementation of L=

EQUEL.

4.3.1 Additional Ltility Fhoutire

Since the INGLES C-language library routines need to be
loaded in whenever LIS! code resulting from L-EQLEL is to be
executed, it would be convenient to provide a LISP utility
routine to load them. This would simplify the procecure for
using L-EQUEL, because the L=EQUEL user would no lcnger have

to be concerned with remembering the correct "cfasl" and

"getaddress" calls.

4.3.2 Method Of Invoking The Command

Currently, "lequel™ is executed as a separate command.
There is an alternative method of invoking "leguel® One
could load "lequel" inte the current LISF compiler
environment. In that situation, the "$%" becomes the 'main"

macro that causes the L-EQUEL routines to be executed.

One disadvantage to this alternative method of invceation is
that debugging L-EQUEL would become more difficult. Since
L-EQUEL is embedded into the LISF compiler, one could not
always determine whether a bug results from L-EQUEL problems

or fron: the compiler.

4.3.3 Additional EQUEL Command Capabilities
An obvious set of extensions would be to add acditional
EQUEL command command capabilities, as discussed in section

3.1.1 of Chapter Three of this report,

5. CHAPTER FIVE - SUMMARY

This report has described the implementation of L-EQUEL, a
set of Framz LISP access routines to INGEES, a general=-

r

purpose, relational database. the implementation has
adapted EQUEL, INGRES' embedded query language for programs
written irn C, for use inside Franz LISP programs. The
implementation takes advantage of existing L1SF functions

designed to allow access to C language routines from within

a Franz LISP program.

The L-BEQUEL access routines provide an alternative to Franz
LISP program developers who need to maintain data. Whereas
t-hese program developers previously were limited to
maintaining an internal database for their applications,
they now have the opportunity to access an existing,
general-purpose, relational database. A program developer
could choose to use both the internal LISP features and the
L-EQUEL access routines for different phases of the same

application.

6. CHAPTER SIX - ACKNOWLEDGEMENTS

I want to extend thanks to Dr. FRoger Hartley, my major
professor, for his support, and to the other members of my
graduate committee, Dr. Elizabeth Unger and Dr. Virgil
Wallentine, for their contributions. In addition, I want to
thank all the participants, faculty, and staff of the AT&T
Summer-on-Campus program at Kansas State Uriversity for

helping to make my experiences here worthwhile,

6-1

[11

[2]

[3]

[4)

[5]

[6]

BIBLIOGFAPHY

Wilensky, Robert. (1984). LISPoraft. W. W. Norton &

Company, Inc., New York, N.¥., ec. 1984,

Andreson, Fred P, (1984), "™The Framz Lisp - C
Interface”., Computer Vision Laboratory Center for
Automation Research, University of Maryland, College

Park, Maryland. June, 1984.

Foderaro, John K. and Sklower, Keith L. (April 1982).
"The FRANZ Lisp Manual, A document in four movements™.
c. Regents of the University of California, 1980,

1981,

"INGRES Reference Manual (Version 2.0, VAX/UNIX, June
1983)". Rel ational Technol ogy Inc., Berkeley,

California, c. 1983,

"EQUEL/C User's Guide (Version 2.0, VAX/UNIX, June,
1983)n, Relational Technol ogy, Inc., Berkeley,

Californis, c. 1983.

"An Introduction To INGHKES (Version 2.1, VAX/VMS,
September, 19683) - Preliminary Version)". Relational

Technology Inc., Berkeley, California, c. 1983.

(7]

[8]

[9l

[10]

[11]

[12]

Stonebraker, Michael, Wong, Fugene, Kreps, Peter, and
Held, Gerald. (1976). "The Design and Implementation
of INGRES™, Department of Electrical Engineering and
Compute.r Science, University of California, Berkeley,
California and Tandem Computers, Inc., Cupertino,

California.

Rowe, Lawrence A., "The INGRES Relational Database
Management System", Relational Techonology, Inc.,

Berkeley, California.

Stonebraker, Michael. (1980). ™Retrospection on a
Database System™. AQM Transactions on Database

Systems, Vol. 5, No. 2, June 1980, pages 225-240.

Allman, Eric and Stonebraker, Michael. (1982).
"Observations on the Evolution of a Software System”.

Computer, June 1982.

Deering, Michael, Faletti, Josephk, and Wilensky,
Robert. (1982). ™Using the PEARL AI Package (Package
for Efficient Access to Representations 4in Lisp)".
Computer Science Division, Department of EECS,
University of California, Berkeley, Berkeley,

California, February 1982.

"UNIX(tm) System V, Release 2.0 - Support Tools Guide

307-108, 1Issue 2, April 1984", c. AT&T Technologies,

[13]

[14]

[15]

[16]

1984,

Chamberlin, D.D., Astrahan, M.M, Eswaran, K. P.,
Griffiths, P,P., Lorie, R.A,, Mehl, J.W., Reisner, P.,
Wade, B.W. (1976). "SEQUEL 2: A Unified Approach to
Data Definition, Manipulation, and Control". IBM
Journal of Research and Development, Volume 20, No. 6,

November 1976.

Chamberlin, D,D., Astrahan, M.M., King, W.F., Lorie,
R.A,, Mehl, J.W., Price, T.G., Schkolnick, M.,

Griffiths Selinger, P., Slutz, D.R., Wade, B.W., Yost,

R.A. (1981). ™Support for Repetitive Transactions and

Ad Hoc Queries in System R", AM Transactions on

Database Systems, Vol. 6, No. 1, March 1981.

Chamberlin, Donald D., Gilbert, Arthur M., Yost,
Robert A, (1981). IBM Research Laboratory, San Jose,
California and IBM Programming Center, Endicott, New
York. "A History Of System F and SQL/DATA System".
Seventh International Conference on Very Large Data

Bases, Cannes, France, September, 1981. [AO]

Stonebraker, Michael and Rowe, Lawrence 4. (1977).
Department of Electrical Engineering and Computer
Sciences Electronic Research Laboratory, University of
California, Berkeley, California. "Observations On

Data Manipulation Languages and Their Embedding In

7-3

General Purpose Programming Languages". Third
International Conference on Very Large Data Bases,

Tokyo, Japan, October, 197T. [AN]

APPENDIX I - L-BQUEL Command Syntax

This appendix summarizes the general syntax rules of L-EQUEL
as they differ from the syntax rules of EQUEL. Following
that, each L-EQUEL command is stated with its parameters!

valid ranges and value types.
I.1 General Syntax Statements

The syntax of the L-EQUEL (LISP language Embedded QUEry
Language) commands is similar to the syntax of the EQUEL
conmands. All of the L-EQUEL commands adhere to the

following syntax guidelines:
1. They begin with "%%" instead of with "##",
2. The command is enclosed in a LISP list (s-expression).

3. The L-EQUEL ocommand is always the first symbol

following the "$%".

4., The name of an L-EQUEL command consists of the name of

the corresponding EQUEL command, prefixed by "le".

5. Where EQUEL would state "param=pvalue", L-EQUEL will
state "param pvalue" (separated by spaces instead of
by an equals sign). This is consistent with LISF
syntax, and eliminates the complication of parsing the
"param=pvalue”™ construct. (The Pparam=pvalue®

construct could contain one LISP atom or more than one

I-1

LISP atom, and the L-EQUEL parser would have to be

sophisticated enough to handle both cases.)
As in EQUEL, all the keywords are reservec.

As in EQUEL, all the QUEL keywcrds are reservec.

I.2 L-EQUEL Command List

The following list contains the EQUEL and L-EQLEL versions
of the commands present in the initial version of L-EQUEL.

The L-BEQUEL command syntax appears first on eaci. line,

followed by the EQUEL syntax.

Leappend == Append

- Lecreate -- Create
= Ledelete -- Delete
~ Ledestroy -~ Destroy
- Leexit_-- Exit

= Leingres == Ingres
- Leprint =~ Print

- Lerange -- Range

= Lereplace == Replace

I-2

~ Leretrieve ==~ Retrieve

I.3 Notation

This section contains the key to the notation used in the

syntax specifications below.

- The curly brackets ({}) enclose a construct that may

appear zero or more times.

- The square brackets ([]) enclose a construect that nay

appear zero or ocne time.

=

= When nothing surrounds a construct, it is mandatory.
I.4 Individual L-EQUEL Command iyntax

For each L-EQUEL command, the syntax and explanation of
parameters appears below. The EQUEL syntax for the coumand

is included for reference,

The majority of the information regarding the counmand

parameters is taken from reference [4].

I.4.1 LEAPPEND

I.4.1.1 HName

LEAPPEND - Append nev rows to an existirg table."

I.4.1.2 Calling Syntax

L=-EQUEL:

(%% leappend [to] tallename (colname colvalue
{colname colvalue}) [where quall)

EQUEL:

append [to] tablename (colname=colvalue

f, colname=colvalue}) [where quall

I.4.1.3 Description and Parameters
The dbappend command adds rows satisfying the "qual®

qualifications to the currently active table,

The colname specifies which column names will have new

values appendecd., The columns may be listed in any orcer.

The golvalue specifies what new value to append for that

column,

One difference from the EQUEL version i=s that this
implementation of L-BEQUEL reguires =single values for the
column values, rather than allowing expressions that

evaluate to a single value.

For more information concerning LEAPPEND permissions, see

reference [U]'s deseription of the ZPPEND command.

I-Y

I.4U.1.4 [Examples

To eppend a new class to the "class" database:

(%% leappend "class" (cnurber 755 csubject "Computer_Science"
clocation "Nichols 125"))

I-5

I.4.2 LECREATE

I.4,.2.1 Name

LECREATE - create a database.

I.4.2.2 Calling Syntax
L=EQUEL
(%% lecreate tablename (columname format
{columname format}) [with lcggirgl)

EQUEL:

create tablename (columname = format)
{,columname = format} [with logging]

I.4.2.3 Description and Parameters

Thi=s command enters a new table into the currently active

database.

The fablename is the name of the table, and the golumname(s)

are the names of the columns.

The formats may be one of the following: "e1" to M"e255"
(character formats), "i1", "i2", "i4" (integer formats),
ey o me8" (floating-poirnt formats), "date", or "money".
Formats are described in Chapter 1, section 1.2.6 of

reference [4].

Table limits, column limits, and table expiration

information can alsc be found in reference [4].

I-6

I.4.2.4 Examples
To create a database callea "class", with columns

"csubject", "cnumber™ and "clocation":

(%% lecreate "class" (csubject ¢20 cnumber il
clocation 20,)

I.4.3 LEDELETE

I.4.3.1 Name

LEDELETE = delete rows from an existing table.

I.4.3.2 Calling Syntax
L=BQUEL

(%% ledelete range_var [where qual]l)

EQUEL:

delete range_var [where guall

I.4.3.3 Description and Parameters
The Jedelete command removes rows that meet the gqual

qualifications from the table associated with rapge var in

the currently active database.

The range var must either already exist, or it must be the

default value for that table.

Note: __

This is one case in which the LISF version still requires
the EQUEL format for the qualification. This occurs because
the qualification may include additional arithmetic

operations besides the equals sign.

For additicnal caveats and permission information, see

reference [4].

I-8

I.u-3.'4 W

To remove a particular class from the database:

(%% lerange of "c" is "class")
(%% ledelete "c" where c.subjectz

I-9

I.4.4 LEDESTROY

I.4.4.1 Name

LEDESTROY - Destroy existing tables.

I.4.4.2 Calling Syntax
L=EQUEL:

($% ledestroy tablename)

EQUEL:

destroy tablename L

I.4.4:3 Description and Parameters

The ledestroy command removes tables from the database.

This command differs from ledelete in that ledelete deletes

tuples from the tables, and ledestroy deletes the entire

table.

I.4.4.4 Examples

To destroy a table named "class":

(%% ledestroy "class")

I-10

I.4,5 LEEXIT

I.4,5.1 Name

LEEXIT - terminate access to the current INGRES Database.

I.4,5.2 Calling Syntax
L=-BEQUEL:

(%% leexit)

EQUEL:

exit o

I.4.5.3 Description and Parameters
This command terminates access to the currently active

INGRES database, Cnece this command is given, another

database may be made active by using the leingres command.
This command has no parameters.

1.4.5.4 Examples

To finish accessing the current database:

(2% leexit)

I-11

I.4,6 LEINGKES

I.4.6.1 Name
LEINGRES = allow access to an INGRES database by invoking

the INGRES database system.

L.4.6.2 QCalling Syntax
L-EQUEL:

(%% leingres [flags] dbname)

EQUEL :

#¢# ingres [flags] dbname

I.4.6.3 Description and Parameters
The ingres command invokes the INGRES database system. The

dbname must be the name of a currently existing database.
See reference [4] for the flags options.

I.4.6.4 [Examples

To invoke INGRES on the "academia" database:
- (%% leingres "academia")
To invoke INGHES using flags for the "academia" database:

(%% leingres "=cB" "—i4B8" Macademia”)

I-12

L.4.7 LEPRINT

L4.7.1 Name

LEPRINT = print information for one or more tables.

L.4.7.2 (Lalling Syntax
L-BQUEL:

(%% leprint tablename {tablename})

EQUEL:

print tablename, {tablename} , -

I.4.7.3 Description and Parameters

This command prints table information for the tables
specified by tablename on the user's terminal, or on the

standard coutput device. The format used for the printing

may be set by the flags to the ingres command.

For restrictions on printing, see reference [4].

LYy.7.4 Examples
To print the information from the ®"class" table:

(%% leprint "class")

I-13

I.4.8 LERANGE

I.4.8.1 Name

LERANGE - Declare a variable to refer to specific rows in a

specific copy of a table.

I.4.8.2 Calling Syntax
L-BQUEL :

(%% lerange of range var is tablename)

EQUEL :

range of range_var is tablename
I.4.8.3 Descriptiop and Parameters

This command declares a range variable that can be used in
later INGRES statements. The range var is associated with
tablename and refers to a specific copy of that table. The
range variable remains in effect for the entire IKGRES

session, unless it is redeclared or the table is removed.

Note: in L-EQUEL, as in EQUEL, only one range Jyarisble can
be specified per Jlerange statement. From QUEL, however,

more than one range yvarisble can be specified per czall.

L 4.8.4 [Examples

To define a range variable for the “class™ table:

(%% lerange of "¢" is "class")

I-14

I.4.9 LEREPLACE

I.4.9.1 HName

LEREPLACE = replace column values in a table,

I.4.9.2 Calling Syntax
L-BEQUEL:

(%% lereplace range_var (target_list) [where quall)

EQUEL:

replace range_var (target_list) [where qual]

I.4.9.3 Description and Parameters

The lereplace command replaces values in the table specified
by range var for rows that meet the gual qualification. The
Xarget list contains those columns and values that are to be

replaced,

Note:
This is another case in which the EQUEL syntax is
maintained, rather than the LISP syntax, for the gual

portion of the command.

1.4.9.4 Examples
To replace the class nunber of Computer Science class "755"

with a class number of "8607;

I-15

(%% lerange of "c" is "class")

(%% lereplace ¢ {cnumber 860) where
¢, esubject=
¢. cnumber=755)

1-16

I.4,10 LERETRIEVE

I,4.10.1 Hame

LERETRIEVE - retrieve rows from a table.

I.4.10.2 QCalling Syntax
L-EQUEL:

(%% leretrieve (target_list) [where quall)

EQUEL :

retrieve (target_list) [where quall

I.4.10.3 Description and Parameters
This command retrieves all rows that satisfy the gual
qualification and places them in a file or displays them on

the standard output device.

Note:
this is another case in which the EQUEL format including the

equals sign is used for gqual.

For additional information, see reference [4].

I-17

I.4.10.4 [Examples
To retrieve all classes that belong to the Computer Science

department:

(%% lerange of "e" is "class")
(2% leretrieve (c.cnumber) where c.subject=

I-18

APPENDIX II - Manual Page for L-EQUEL Command

Command Syntax:

lequel <infile>

Description

This command invokes the L-EQUEL preprocessor on the
file infile. The name of infile must end in ".1q".

The lequel command produces as its output a file
. having the same name as infile without the ®"g" on the
end of the name. (The file name ends in ".1".)

The infile is assumed to consist of LISP s-expressions
and L=EQUEL commands. The output file consists
entirely of LISP s-expressions; the L-BEQUEL commands
are translated into LISP-format calls to the
appropriate INGRES interface routines.

Laveats:

The preprocessor changes the format of the input file,
so that spacing and carriage returns will probably not
be as they were in the initial source file. The
semantics of the file remain intact.

II-1

APPENDIX 111 - Example of L-BEQUEL Use
I11,1 Introduction

This appendix presents an example of the use of L-EQUEL for
a sample academic database. The example is arranged in
three sections. First, the L-BQUEL input is illustrated and
discussed, Next, the output from the L-EQUEL preprocessor
is presented. Finally, the output from running the program
is included. For each of the sections, the information is
organized by L-EQUEL command; that is, all the information
pertaining to a specific L-BQUEL command is discussed

together.
I11.2 Background Information

'i‘he example uses a very small portion of a hypothetical
academic database. The functions of the academic database
might include determining where and when courses should be
held, who is available to teach them, how many students are

enrclled for each course, etc.

The database is namec "academia", and the table used
extensively in the examples is named "class". The example
assumes that the "academia" databzase already exists, but

that the "class" tabl‘e does not exist.

The example executes each of the L-FQUEL commands that will

be present in the initial implementation of L-EQUEL.

II1I-1

III.3 L-EQUEL Source Code

The source code consists of a "main®™ routine that calls one
smaller routine for each L=-BEQUEL command to be included.
The examples present the source code, with embedded

comment s.

IIl-2

I11.3.1 legexample

Function Name:
leqgexample

Calling Syntax:
(leqexample)

Parameters:
none

;

)

H

i

H

)

H

i

H

)

H

i Effects:

s This function begins the "example L-EQUEL"
3 program. For each L-EQUEL command to be executed,

H a separate function is called.

H The sample database used is a hypothetical

3 P"academia®™ database. Within the database, a "class'
: Pelass" table will be created, and data within the
: table will be appended, manipulated, and deleted.

]

|

H

)

(

Returns:
none

defun legexample ()
(ex_ingres Macademia") This initiates access to

the Macademia" database.

This creates the "class"

table within the "academia®

database.

This appends new tuples to

the "class" tatle.

hetrieve and display tuples.

keplace the values of som

some of the tuples.

Delete tuples.

Destroy the relation.

Terminate access to the

database.

{(ex_create "class")

(ex_append "class"™)

(ex_retrieve "class")
(ex_replace "class")

(ex_delete "class")
(ex_destroy "class")
(ex_exit)

e WE WE WA ags WO WE e WO e we WS g W

II1I-3

II1.3.2 ex_ingres

Function Name:
ex_ingres

Calling Syntax:
(ex_ingres dbname)

Parameters:_
dbname - name of the database that will be
"opened® for INGHRES access.

Effects:
Enables access to the "dbname" database.

Returns:
none
defun ex_ingres (dbname)
(%% leingres dbname)
t

FTNME M WME WS We WE WE Wy Ve e we We Wwe We We W we

III-Y

III.3.3 ex_create

Function Name:
ex_create

Calling Syntax:
(ex_create tname)

Parameters:
tname - the name of the table to be created in
the currently active INGEES database.

Effects:
This routine creates the "tblname™ talle in the
currently active INGLES database.

Returns:
none

TR M MR WE W We W W WE e We WE B W We We WE WP We we

defun ex_create (tname)

%% lestring tname)

$% lecreate tname (csubject ¢20 cnumber i}
clocation 20))

to illustrate that this worked, print the table.

%% leprint tname)

~~

t e

III-5

III.3.4 ex_append

Function hkame:
€Xx_append

Calling Syntax:
(ex_append tblname)

Parameters:
tblname - name of the table to which the tuples
will be appended.

Effects:
This routine appends a previously chosen set of
tuples to the "tblname" table in the currently
active INGHRES database.

Returns:
none

SRS W WE WS WE WE WE W WE WS W WE W we Wwe We WE W We ws

defun ex_append (tblname)
(9% leappend tblname (ecsubject

clocation
(% leappend tblname (ecsubject
clocation
(¥% leappend tblname (csubject
clocation
(% leappend tblname (csubject
clocation
($% leappend tblname (csubject
clocation
(% leappend tblname (esubject
clocation

To illustrate what just took place, the table is printed
% leprint tblname)

~~ e

II1-6

I11.3.5 ex_retrieve

Function Name:
ex _retrieve

Calling Syntax:
(ex_retrieve tblname)

Parameters:
tblname - the name of the table for which values
are to be retrieved.

Effects:
This routine retrieves specific tuples from the
"tblname" table of the currently active INGERES
database. Each tuple's fields are placed into
Peloe®, "os", and "cnum™ and the values are
printed.

Returns:
none

defun ex_retrieve (tblrame)

(setq cloe nil)

(setq cs nil)

(setq cnum nil)

(%% lestring cs)

(%% lestring cloe)

($% leint cnum)

(%% lerange of "¢" is tblname)

(%% leretrieve (cs c.csubject cloc c.clocation
cnun: ¢.cnucber) where
c. clocations

(%% leretrbgn)

(patom "Current tuple: ")

(patom (sprintf "$s, %s, %s" cs cnum cloc))

(terpri)

(%% leretrdone)

t

III-7

II1.3.6 ex_replace

Function Name:
ex_replace

Calling Syntax:
(ex_replace tblname)

Parameters:
tblname - name of table in which values are
to be replaced

Effects:
This routine replaces values in the
"tblname™ table with new values.

Returns:
none

e WS WME e we We WY WE We W WE WE g WP WP We WE W we

defun ex_replace (tblname)
(%% lerange of "c" is tblname)
(%% lereplace "c" (clocation
c.clocations
(%% leprint tblname)
t

I11-8

III.3.T ex_delete

; ----------

H

: Function Name:

H ex_delete

H

H Calling Syntax:

: (ex_delete tblname)

H

- Parameters:

H tblname ~ the table name for which tuples are
: to be deleted.

H

: Effects:

3 This routine deletes a set of tuples from
: the "tblname" tatle.

H

H Returns:

$ none

H

(defun ex_delete (tblname)

{%% lerange of "s™ is tblname)

; print contents of the table before deletions
(%% leprint tblname)

(%% ledelete "s" where s.csubject=

; print contents of the table after deletions
(%% leprint tblname)

t

III-9

I11.3.8 ex_destroy

Function Name:
ex_destroy

Calling Syntax:
(ex_destroy thtlname)

H

H

H

H

H

;

H

i

H Parameters:

H tblname - the name of the table that is to be
- destroyed.
H

H

H

;

H

H

H

H

(

Effects:
This routine removes the table "tblname" from
the database.

Returns:
none

defun ex_destroy (tblname)
; print contents of the table before destroying it
(%% leprint tblnpame)
(%% ledestroy tblname)

now the print should fail, since the table has been

H
; destroyed.

{$% leprint tblname)
t

I1I1-10

II1.3.9 ex exit

Function Name:
ex_exit

Calling Syntax:
(ex_exit)

Parameters:
none

Effects:
This routine terminates access to the
currently active INGRES database.

Returns:
none

FTRWe WE WE WE WE WS WE W We WS WE Wwe We we We Wi We we

defun ex exit ()
(%% leexit)
t %
)

IT1I.4 Output From L-EQUEL

This section illustrates the output from running L-EQUEL on
the routines of the previous section. As in the earlier

section, each routine is shown separately.

The L-EQUEL preprccessor changes the spacing of the program;
in the examples below, the spacing has been altered to mateh
the L-EQUEL source programs, but the program content matches

the L-EQUEL preprocessor output.

III-11

II1.4.1 Legexample
Since this source program contains no L-EQUEL source
commands, the program is unchanged, except that the

parameter notation of () is changed to "nil".

(defun leqexample nil
(ex_ingres "academia")
(ex_create "class™)
(ex_append "class")
(ex_retrieve "class")
(ex_replace "class")
(ex_delete "class")
(ex_destroy "class")

) (ex_exit)

III.4.2 ex_ingres
In this routine, the "$% leingres" s-expression was changed
to the call to IIingres.
(defun ex_ingres (dbname)
(IIingres (sprintf "§s" dbname) nil)

t
)

III.4.3 ex create
In this program, the "$% lecreate" and "3% leprint" were
changed to be calls to IIwrite, followed by calls to Ilsyne.
(defun ex_create (tname)

(IIwrite (sprintf "3s %s (%s)" 'create tname

""osubject=c20,cnurber=il,clocation=c20"))
(IIsyne nil)
(Ilurite (sprintf "$s %s" 'print tname))

(IIsyne nil)
t

III-12

III.4.4 ex_append

In this routine,

all occurrences of

replaced with calls to IIwrite and IIsync.

(defun ex_append (tblname)

)

(IIwrite (sprintf

"Mesubject=
clocations=

(IXsync nil)

(IIwrite (sprintf

"fosubject=
clocation=

(IIsyne nil)

(IIwrite (sprintf

tMesubject=
clocations=

(IIsync nil)

{IIwrite (sprintf

""eosubject=
clocation=

(IIsyne nil)

(IIwrite (sprintf

tRcsubjects=
clocation=

(IIsync nil)

(ITwrite (sprintf

"Masubjects=
clocation=

(IIsyne nil)

(IIwrite (sprintf
(IIsyne nil)

III.4.5 ex_retrieve

In this routine, the 'leretrieve" irnfcrmation is replacec by
a call to "IIwrite", followed by calls to several routines

to set up the variable information and the embedded code.

"fs 3s (%s)"

"gs Is (¥s)"

"gs %s (%s)"

s %5 (%s)"

ngs %= (%s)"

"gs %3 (Fs)"

'append tblname

‘append ttlname

'append tblname

‘append tblname

‘append tltlname

'append ttlname

"gs %s" 'print ttlname))

IT1-13

"%% leappend"

(defun ex_retrieve (tblname)
(setq cloc nil)
(setq c8 nil)
(setq cnum nil)
(IIwrite (sprintf "§s %s %$s" 'range 'of
(concat "¢ "z=" tblname)))(IIsyne nil)
(IIwrite (sprintf "%s (%s) %s %s" 'retrieve
'"es=c. csubject, cloe=c. elocation, cnun=c. cnucber"
"where" "c,clocation=
(IIsetup)
(prog()
loop
(cond ((IIn_get nil)
(IIn_ret 'es 3)
(IIn_ret 'cloc 3)
(IIn_ret 'cnun 6)
)
(t (IIflushtup O) (return t)

)
)
(cond ((greaterp (Ilerrtest) O,
(go loop)
)
{ %
(patom "Current tuple: ")
(patom (sprintf "¥s, %s, %s"
cs cnum cloe))
(terpri)
(go loop)
)
)
t

)

III.4.6 ex_replace

In this routine, the "%} lerange" information, the "%%
lereplace™ information, and the "$% leprint" information are

replaced by calls to IIwrite and IIsynec.

ITI-14

(defun ex_replace (tblname)

(IIwrite (sprintf "%s %= %s" 'range 'of
(concat "e¢" "=" tilname)))(Ilsync nil)

(ITwrite (sprintf "%s %= (%s) %s %¥s" ‘'replace
fgh thol ocations
"c, clocation=

)

(IIsyne nil)

(IIwrite (sprintf "$s %s" 'print tblname))
(IIsync nil)
t

)

I1I.4.T ex delete
This routine replaces the "$% ledelete" with calls to
Ilwrite and IIsync.
(defun ex_delete (tblname)
(IIwrite (sprintf "§s %s %s" 'range 'of
{concat "s" "=" tblname)))

(IIsyne nil)

(Ilwrite (sprintf "§s $s" 'print ttlname))
(IIsyne nil)

(IIwrite (sprintf "§s $§s %s 3" 'delete "s"
"where" "s.csubjects
(IIsyne nil)
(IIwrite (sprintf "§s %s" 'print tblname))
(IIsync nil)
t
)
III.4.8 ex_destroy
This routine replaces the "%% ledestroy" with calls to

Ilwrite and IIsynec.

III-15

(defun ex_destroy (tblname)
(IIwrite (sprintf "§s %s" 'print tblname))
(IIsyne nil)

(IIwrite (sprintf "%s %s" 'destroy tblrame))
(IIsyne nil)

(IIwrite (sprintf "§s %s" 'print tblname))
(IIsyne nil)
t

)

II1.,5 Output From Running the trogram

This section illustrates the output from running the
original source program. Couments are inserted to relate

the ocutput to a specific source routine.

I11.5.1 ex_ingres
The "leirgres" coumand doesn't produce any output on the

screen.

1I11.5.2 ex_create
The ex_create routine, including the "%% leprint", causes

the empty "class" table to appear, as follows:

class relation

lesubject lenumber lclocation !
e e T R ISR i

e e P R R |

II1.5.3 ex_append
The ex_append routine, including the "%% leprint", causes

the following to appear:

I11-16

class relation

lesubject

|Computer_Science
|Computer_Science
|Computer_Science
|Bioclogy

|Botany

|English

{enumber

| S SRR :

III.5.4 ex _retrieve
The ex_retrieve routine
Current tuple: Computer

Current tuple: Computer
Current tuple: Computer

II1.5.5

The ex_replace routine, including the "§%

the following to appear:

class relation

lesubject

ex_replace

lelocation

761|Fairct:11d4208
690|Fairct.114203
890}Fairchild208
670}Ackert112
840 {Unberger240
550|Eisenhower15

—— e — — —

causes the fcllowing to appear:

Science
Science
Science

) -
|Computer Science
|Computer Science
|IComputer Science
|Bioclogy
|Botany
|Engldsh

I11.5.6 ex_delete

The ex delete routine produces the following output:

s T61, Fairehild208
s 690, Fairehilg203
y 890, Fairchild208

lelocation

761iNichols

690 |Nichols

890 Nichols
670!Ackerti112
840 |Umberger240
550 |Eisenhower1b

I1I-17

leprint™",

causes

................... ————

class relation

lesubject |enumber lelocation !
' - - S - - e e G S I I
|Computer Science | 761}Nichols]
|Computer Science | 690 }Nichols |
|Computer Science] 890{Nichols |
| |

! |

|

|Botany 840 {Umberger240
|Engl ish 550 |Eisenhoweri15

[i i i s i s o . e e e
II1.5.7 ex_destroy

The ex_destroy routine causes the following output to appear
(The INGRES error is expected, since ex _destroy tries to

print the relation after it deleted it):

class relation

lesubject {enumber felocation
| e e e e e e e e !
IComputer tcience i 7611Nichols ;
IComputer Science | 690{Nichols !
IComputer Science ! 890 {kichols i
! i

i i

1

|Botany 840 |Unberger240
{Engl ish 550 |Eisenhoweris

D S R L e A i, !

INGRES ERROR: 5001: PRINT: bac relation name class
I11.5.8 ex exit

The ex_exit routine produces no specific output.

III-1§&

APPENLIX IV - L=-EQUEL Source Code

This appendix contains the working L-EQUEL source code at
the time of publication of this master's report. The source
code is divided into four files: 1_equel.l, f{_ingres.l,
tbls.l, and tools.l. The code for eaci of the files is

ineluded.

File Description:
This file contains the high-level routines
to implement the L-EQUEL system.

Anne R, rachsel, Summer 1985. -

H

]

H

’

’

: Author:

H

H

; L ——
(declare
(special rawfile cookfile)

(special Stringvars Intvars Floatvars)
(special err_nokey err_notbl err_param)
(special err_syntax err_novar err_pqty)
(special err_pnodecl err_retrbgn) '
(special lequeldebug)

(special Kwrdtab)

(®*arginfo (1_equel 1 1))

(®*arginfo (parseatom 1 1))

(®!arginfo (parseexp 1 1))

(%arginfo (parse2exp 1 1))

(*arginfo (specproc 1 1))

Iv-1

Ay EE We W We WE W W we Wé WE We Wwe W WE mg W We W

)

Function Name:
(lequel _top _level)

Calling Syntax:
(lequel _top _level)

Parameters:
none g

Effects:
This routine starts off the whole process
when 1_equel has been "dur.plisp-ed".

Returns:
t

defun lequel_top_level ()
(1_equel (sprintf "fs" (argy 1)))

Iv-2

FTRASE W WA WE W W W W We W wE we We W we WE WS wa WE We We

- e e

Function Name:
(1_equel)

Calling Syntax:
(1_equel inframe)

Parameters:
infname - rname of file containirg LISP
and L-EQUEL stmts.

Effects:
This is the "main" routine of 1_equel,
It calls "bgnproc" to process the file after
it initializes some of the global variables
and opens the irput and output files.

Returns:
Always returns t.

defun 1_equel (infname)

(dbg_patom "before opens") (dbg_ terpri)

$ Setting up global error message strings:

(init_errs)

(setq Stringvars nil)

(setq Intvars nil)

(setq Floatvars nil)

(setq rawfile (infile infname))

(setq cookfile (outfile (substring inframe 1
(sub1 (pntlen infrname)))))

(dbg_patom M™before bgnproc") (dbg_terpri)

(bgnproe)

(dbg_patom "before closes")(dbg_terpri)

(close rawfile)

(drain cookfile)

(close cookfile)

(patom "L-BQUEL processing finished") (terpri)

t

Iv-3

- - - - - -

Function Name:
(bgnproc)

Calling Syntax:
(bgnproce)

Parameters:
none

Effects:
bgnproc processes the LISP statements that
are not to be interpreted by L-EQUEL. If
the statement i= not to be processed by
L-BEQUEL, then it is written out to the
output file just as it was read in.
If the statement is to be processed by
L-EQUEL, then bgnproc passes the statement,
ineludirng the initial "$%", to the -
"specproc® routine.

Returns:
Returns t if completes successfully.
Returns nil otherwise.

FTLAE WS WS WS WS MA WS WS WS WS WE WO We W W We W WE WE We WE WE Ws We We we W

defun bgnproc ()
(dbg_patom "Now in bgnproc”) (dbg_terpri)
(prog (next_exp)

;$ next_exp -~ The 5 expression that is read

H from the input file.

loop

(setq next_exp (read rawfile))

(cond ((null next_exp)

(return t)
)

) =
(dbg_patom "send to parseexp: ")
(dbg_patom next_exp) (dbg terpri)
(parseexp next_exp)

(terpri cookfile)
(go loop)

FTRS WE WE WA W WS W W W We WE We WE WE we We WO we W We s W

Function Name:

(parseatom)

Calling Syntax:

(parseatom inlist)

Parameters:

inlist - a 1ist that may contain atoms
and lists.

Effects:

parseatom is a recursive routine.

It expects (car inlist) to be an atom. If
(cadr inlist) is a list, the (cdr inlist)
is sent to parseexp. If (cacr inlist) is
an atom, then {edr inlist) is sent to
parseatom.

Returns:

Returns nil if (ear inlist) is not an atom.
Returns t otherwise. £

defun parseatom (inlist)

(dbg_patom "Got to parseatom™)
{dbg_terpri)

(cond (

(
)
(eond (
(
(
)
t

(not (atom (car inlist)))
(patom
"Errorc - parseatom expects car to be an atom")
(terpri) nil)
t (print (car inlist) cookfile)
(patom ™ " cookfile))

(null (edr inlist))

(patom ') cookfile) t)
(atom (cacr inlist))
(parseatom (cdr inlist)) ¢)
(listp (cacr inlist))
(parseexp (cdr inlist)) t)

SRS e we wme We WE Wwe ws we Ve We WE We W W W WE WE Mg WE WA B WE WE Wa

Funection Name:

(parseexp)

Calling Syntax:

(parseexp inlist)

Parameters:

inlist - the next s-expression to be
parsed.

Effects:

parseexp is a recursive routine.

parseexp determines whether (car inlist)
is a list or an atom. If it is an atom
and it is "§¥%", inlist is sent to
Pspecproc®. If it is another atom, inlist
is sent to parseatom, and if (car inlist)
is a list, parseexp calls itself with
(car inlist). #

Returns:

always returns t

defun parseexp (inlist)

(dbg_patom "Got to parseexp") (dbg_terpri)

(cond (

)
(

o T

s

(and (atom (car inlist))

(equal (ear inlist) '%%))
(specproc inlist)
t

(atom (car inlist))
(patom "(" cookfile)
(parseatom inlist) t
(listp (car inlist))
(parseexp (car inlist))
(parse2exp (cdr inlist))

t (patom "Errora - should not reach here")

Iv-6

- g et - = -

Function Name:
(parse2exp)

Calling Syntax:
(parse2exp inlist)

Parameters:
inlist - the pext s-expression to be parsed.

Effects:
parse2exp determines whether (car inlist) is
a list or an atom. If it is an atom and it
is "$%¥", inlist is sent to "specproc". If it
is another atom, inlist is sent to parseatom,
and if (car inlist) is a list,
parse2exp calls parseexp with (car inlist).
parse2exp should only be called if the
car of parseexp's inlist is a list.

Returns:
always returns t

FTANNE WE W WE WS W WO WE WS W W WP Wy WE W W WE wp WE WE W WE We we

defun parse2exp (inlist)
(dbg_patom "Got to parse2exp™) (dbg_terpri)
{(cond ((null (car inlist))
(patom ")" cookfile) t)
((atom (car inlist))
(parseatom imlist) t)
((listp (car inlist))
(parseexp inlist) t)
(t (patom "Errorb - should not reach here"))

T

P e W BE WE WE WE W WE WE WE WE W W WE WE WE WE WE WA We W WE We we WE W we We Wi we W Be we We

Function Name:

(specproe)

Calling Syntax:

(specproc next_exp)

Parameters:

next_exp - the s-expression to be processed
by L-EQUEL, including the initial
n’zn.

Effects:

Determines whether the first token is a valid
keyword, by moving down the keyword list, cne
keyword at & time.

If the token i1s a valid keyword, then the
s-expression is sent to the sp901al—proeessing
routine that is referenced in

the "'op_function™ property of the keyword.
The keywords and their properties are stored
in the EKwrdtab.

If the token is not a valid keyworc, then an
error message is printed, and the routine
returns.

Returns:

e W W we we

If successful, returns the value of the
function that is called. If not successful,
returns nil.

defun specproc (next_exp)

While still more keywords, compare car of
next_exp with the car of the Keys.

(car keys??)

When there is a match, call the function
associated with the keyword.

(dbg_patom "Now in specproc") (dbg_terpri)

(prog

we we We

(Keys fnet)

Keys = allows us to search down the Kwrdtab

list without disrupting that list.

fnet - the function to execute when the

L-EQUEL function is identified.

(sebq Keys Kwrdtab)

(dbg_patom "Cadr of next_exp is ")
(dbg_patom (cadr next_exp))
{dbg_terpri)

loop

Iv-8

(setq fnet nil)
(dbg_patom "Car of keys is ")
(dbg_patom (car Keys)) (dbg_terpri)
(cond
((null Keys)
(patom err_nokey) (patom next_exp)
(terpri)
(patom err_nokey cookfile)
(patom next_exp cookfile)
(terpri cookfile) (return nil))
((eqgstr (cadr next_exp) (car Keys))
(dbg_patom "Going to function ")
(dbg_patom (car Keys))
(dbg_terpri)
(setq fnet (get (car Eeys)
top_function))
(return (fnet (ecdr next_exp))))
(t (setqg Keys (cdr Keys))
(dbg_patom "Reset keys to ")
(dbg_patom Keys) (dbg_terpri)
(go loop))

Iv-9

TN WE We WM WE W WE WE W WME WE WE we WE We we W W we

Function Name:
(init_errs)

Calling Syntax:
(init_errs)

Parameters:
none

Effects:
This routine initializes the global variables
that contain the text for the 1_equel
error messages,

Returns:
always returns t

defun init_errs ()

(setq err_nokey
"Error##® Not a legal keyword: ")
(setq err_notbl
"Error**® No table name specified: ")
(setq err_param
"Error##% Invalid parameter: ")
(setq err_syntax
"Error®##% Syntax error: ")
(setq err_novar
"Error##® Expected a list of variables: ")
(setq err_pqty
"Error®##® Incomplete parameter list: ")
(setg err_pnodecl
"Error®#% Variable parameter used but not
declared: ")
(setg err_retrbgn
"Error##8 Expected $§ leretrbgn: ")
t

IvV-10

File Description:
This file contains all the functions that
pertain to specific L-EQUEL commands.

Author:
Anne R. Trachsel, Summer 1985

B W W WE W WE We W

Stringvars lntvars Floatvars)

err_nokey err_notbl err_param)

err_syntax err_novar err_pqty)

err_pnodecl err_retrbgn)

Kwrdtab)

(special lequeldebug)

(special rawfile cookfile)

(lambda f_leappend f_lecreate f_ledelete
f_ledestroy)

(lambda f_leexit f_leingres f_leprint
f_lerange)

declare (special
(special
(special
(special
(special

{lambda f_
(lzmbda f_

lereplace f_leretrieve f_lestring)
leint f£_lefloat f_leretrbgn

f_leretrdone)
(lambda chk_crop conlist retr_wfmt)

(®*arginfo
(®arginfo
(®arginfo
(®arginfo
(®arginfo
(®arginfo
(®arginfo
(®*arginfo
(®arginfo
(®*arginfo
(®*arginfo
(®*arginfo
(*arginfo
(®*arginfo
(®arginfo
(®arginfo
(®arginfo
(®arginfo

(f_leappend 1 1))
(f_lecreate 1 1))
(f_ledelete 1 1))
(f_ledestroy 1 1))
(f_ledestroy 1 1))
(f_lefloat 1 1))
(f_leingres 1 1))
(£ leint 1 1))
(f_leprint 1 1))
(f_lerange 1 1))
(f_leretrbgn 1 1))
(f_leretrdone 1 1))
(f_leretrieve 1 1))
(f_lereplace 1 1))
(f_lestring 1 1))
(ehk_crop 1 1))
(conlist 1 1))
(retr_wfmt 1 1))

IV-11

Function Name:
(f_lecreate)

Calling Syntax:
(f_lecreate lecreate_line)

Parameters:
lecreate_line - the line beginning with
"lecreate” - it should
contain the name of the
tabtle to be created and a
list of format fields for
the table.

Effects:
Places a call to iIwrite and a call to 1llIsyne
in the L=-EQUEL output file.
The call to lIwrite contains the parameters
as they are passed to f_lecreate. Ilsync -
contains a zero parameter.

Returns:
returns t if successful; otherwise, returns
nil.

e BE WE WE WE WD WE We WE W We We W We W We We we Ve WA wme We We we W We We

defun f_lecreate (create_line)
(dbg_patom "Got to f_lecreate") (dbg _terpri)
(prog (input_info infields var_atom tblname)
input_info - used to preserve create_line
infields -~ used to parse the list of
fields to create
var_atom - formats the fields to create as
Iiwrite expects them.
tblname - name of table mentioned in the
create command
(set.q input_info create line)
(setqg infields nil) (setq var_atom nil)
(setq tblname nil)
s Check for presence of "to'.
(cond ((equal 'to {cadr input_info))
(setq tblname (cacdr input_irfo))
, (setq input_info (edddr input_info))
(t (setq tblname (cadr input_irfo))
) (setq input_info (eddr input_info))

)
- Check for tablename
(cond ((null tblname)

WA WE WE We We ws

Iv=-12

Soae WT s

(print err_notbl cookfile)

(print create_line cookfile)

(terpri cookfile)

(patom err_notbl) (patom create_line)
(terpri) (return nil)

The next parameter exists but is not
a table name.

(not (atom tblname))

(print err_notbl cookfile)

(print create_line cookfile)

(terpri cookfile)

(patom err_notbl) (patom create_line)
(terpri) (return nil)

t)

Now input_info should start with a list
having the format (name value name value ...)
(setq infields (car input_info)) g
(dbg_patom (list ™infields:" infields))
(dbg_terpri)

(cond ((or (null infields) (not (listp infields)))

e W e

loop

)

(print err_param cookfile)

(print create_line cookfile)

(terpri cookfile)

(patom err_param) (patom create line)
(terpri) (return nil)

Handle the first "name value" pair,
then to into the loop.

cond ((null (cacr infields))

(patom err_pqty cookfile)
(patom create_line cookfile)
(terpri cookfile) '
(patom err_pqty) (patom create_line)
(terpri)
) (return nil)
(t
(ehk_crop (cacr infields))
(setq var_atom
(concat (car infields) "="
(cadr infields)))
(setq infields (ecddr infields))

V=13

(cond ((null infields)
; this task is finished, so write
; the call to Ilwrite to the output file.
(terpri cookfile)
(setq var_atom (sprintf "§s" var_atom))
(print (append (list 'IIwrite
*(sprintf "§s s)"
(quote create)
,tblname (quote ,var_atom))))
cookfile)
(terpri cookfile)
(print (list 'IIsync nil) cookfile)
(terpri cookfile) (return t)
)
((null (edr infields))
(patom err_pqty cookfile)
(patom create_line cookfile)
(terpri cookfile)
(patom err_pqty)
{patom create _line) (terpri)
(return nil)
)
(t
: Create the atom that consists
i of "var=ztvar,var=tvar,..."
(setq var_atom (concat var_atom
" " (car infields)
"zM (cadr infields)))
(setq infields (cddr infields))
(go loop)

Iv-14

FTRNE WM WA Me WM W W Wy W W WE We WE WE wa we We WE W WEe

Function Lame:
chk_crop

Calling Syntax:
(ehk_crop crop)

Parameters:
crop = the current option to be verified

Effects:
This routine verifies that the field
definition for the current "lecreate"
field is a valid option.

Returns:
Returns t if the option is valid, and
returns nil otherwise.

defun chk_crop (crop)
(dbg_patom "Got to chk_crop")
(prog (croplist numpart)
(setq croplist (list "e™ mi1n mi2n mjym
neyn nEgn Mdate™ "money "))

(cond { (equal (car croplist)
(substring crop 1 1))
; it is a character string field - for
; now no more checking is done.
(return t)

loop

(cond ((equal crop (car croplist))
; match found - we're finished.
(return t)

((null croplist)
; no matet and we're at the end
; of croplist. Error.
(patom err_param cookfile)
(patom crop cookfile)
(terpri cookfile)
(patom err_param)
(patom crop) (terpri)

(t ; no mateh yet.

(setq croplist (ecdr croplist))
(go loop)

IvV-15

IV-16

FTNASS We WY WE WE WS WE W NI WE WE WE WE WME W W WE WE e We WE wa We We we

Function Name:

(f_leappend)

Calling Syntax:

(f_leappend append_line)

Parameters:

append_line - the line beginning with
"leappend" - it should
contain the information
to be appended to the
table.

Effects:

Places a call to IIwrite and a call to
IIsync irn the L-EQUEL output file.

The call to IIwrite contains the parameters
as they are passed to f_leappend. IIsync
contains a zero parameter.

Returns:

Always returns t.

defun f_leappend (append_line)

(dbg_patom "Got to f_leappend")
(dbg_terpri)
(prog (input_irfo infields var_atom tblname

® We Wwe ws Wwe We we

(
(
(

?

(

)
(

var_fmt rest_line)
input_info = used to preserve append_line
infields - used to parse the list of
fields to append
var_atom - formats the fields to append as
IIwrite expects them.
tblname - name of table mentioned in the
append command
setq input_info append line)
setq infields nil) (setq var_atom nil)
setq tblname nil)
Check for presence of "to".
cond ((equal 'to (eadr input_info))
(setq tblname (caddr input_info))
: (setq input_info (edddr input_info))
(t (setq tblname (ecadr input_info))
(setq input_info (eddr input_info))
)

Check for tablename
cond ((null tblname)

Iv-17

(print err_notbl cookfile)

(print append_line cookfile)

(terpri cookfile)

(patom err_notbl) (patom append_line)
(terpri) (return nil)

The next parameter exists but is
not a table name.
(not (atom tblname))
(print err_notbl coockfile)
(print append_line cookfile)
(terpri cookfile)
(patom err_notbl)
(patom append_line) (terpri)
(return nil)
)
(t)

Fme WE

Now input_info should start with a list having
the format (name value name value ...)

(setq infields (car input_info))

(dbg_patom (list "infields:"™ infields))

(cond ((or (null infields) (not (listp infields)))
(print err_param cookfile)
(print append_line cookfile)
(terpri cookfile)
(patom err_param) {patom append_line)
(terpri) (return nil)
)

Handle the first "name value" pair,
then go into the loop.
cond ((null (cadr infields))
(patom err_paty cookfile)
(patom append_line cookfile)
(terpri cookfile)
(patom err_pqty)
(patom append_line) (terpri)
(return nil)
)
(t (setq var_atom
(concat (car infields) "="
(cadr infields)))
(setqg var_fmt "§s %s ")
(setq rest _line nil)
(setq infields (ecddr infields))

Fnage Wa u

loop

Iv-18

(cond

(setq
(setq
loop2
{cond

((and (null infields)
(null (edr input_info)))
; this task is finished, so write the
; call to Ilwrite to the output file.
(terpri cookfile)
(setq var_atom (sprintf "$s® var_atom))
(print (append (list 'Ilwrite
*(sprintf ,var_fmt (quote append)
s tblname
(quote ,var_atom)))) cookfile)
{terpri coockfile)
(print (list 'IIsync nil) cookfile)
(terpri cookfile) (return t)
)
((null infields)
; We're not completely finished, but
; we will leave this loop.
t
)
((null (edr infields))
(patom err_pqty cookfile)
(patom append_line cookfile)
(terpri cookfile) (patom err_pqty)
(patom append_line) (terpri)
(return nil)

)
(t
: Create the atom that consists of
H Uvar=tvar,varz=tvar,..."
(setq var_atom (concat var_atom ", "
(car infields)
"z (cadr infields)))
(setq infields (cddr infields))
(go loop)
)

rest_line '())
input_info (edr input_info))

((pull input_info)
; Nothing more in the line, so write the
; proper conmand to the output file.
(setq var_fmt (sprintf "§s" var_fmt))
{setq var_atom (sprintf "%s® var_atom))
(print (append (list 'Ilurite
(append *(sprintf ,var_fmt
(quote append) ,tblname
{quote ,var_atom))
rest_line))) cookfile)
(print (list 'IIsync nil) cookfile)
(terpri cookfile)

IV-19

(return t)
)
(t
; Add this atom to the list.
(setq var_fmt (concat var_fmt " %s"))
(setq rest_line (append rest_line

(1ist (sprintf "g§s"

(car input_info)))}))

(setq input_info (edr input_info))
(go loop2)

IV=20

t

FTNEE We WMa WE WS WE Me WE WE WE WE WE 9e wes We We We wWe wa

- S -

Effects:
This routine places a call to llwrite
and to Ilsyne in the cutput file.

Returns:

Function Name:
f_ledelete

Calling Syntax:
(f_ledelete delete line)

Parameters:
delete _line - the line of information

to be deleted.

defun f_ledelete {delete _line)

(prog (dline var_fmt sline rng_var)

(setq
(setqg
(setq
(setq
loop

(cond

rng_var (cadr delete_line))
dline (eddr delete_line))
var_fmt "%s %s")

slire '())

((null dline)

3 finished, so print the information
; to the output file,
(setq var_fmt (sprintf "§s" var_fmt))
(terpri cookfile)
(print (append (list 'IIwrite

(append ‘(sprintf ,var_fmt

(quote delete))

(1ist rog_var) sline))) cookfile)
(print (list 'IIsync nil) cookfile)
(terpri cookfile)

t 4 still more atoms on the dline, =o
; add to var_fmt and to sline
(setq var_fmt (concat var_fmt " %s"))
(setq sline (append sline
(list (sprintf "%s" (car dline)))))
(setq dline (cdr dline))
(go loop)

=21

- e - -

Function Name:
(f_leexit)

Calling Syntax:
(f_leexit exit_line)

Parameters:
exit_line = is nil. This parameter is
included so that the interface
to the function routines is
consistent.

Effects:
f _leexit places a call to the llexit
routine in the L-BEQUEL output file.
Ilexit is written in C.

Returns:
always returns t

defun f_leexit (exit_line)
(dbg_patom "Got to f_leexit")
(terpri cookfile)
(print '(IIexit) cookfile) (terpri cookfile)
t

AN WE WE WE WE WS WE WE WE WE WS W We WE WE pe WE WE We We Ve wWe

Funotion Name:
(£_leingres)

Calling Syntax:
(f_leingres ingres_line)

H

H

H

H

H

H

H

H

’ Parameters:

3 ingres_lire = the line beginning with
$ "ingres® - it should

: contain any INGRES options
H and the name of the database.
H

3

’

H

H

H

H

H

H

H

H

(

Effects:
Places a call to Ilingres in the L-EQUEL
output file, 1he call to Ilirngres contains
the parameters as they are passed to
f_leingres. A zero parameter is acded
to the end of the list.

Returns:
Always returns t.

defun f_leingres (ingres line)
(dbg_patom "Got to f_leingres") (dbg_terpri)
(setq Stringvars '())
(prog (nextopt ingres ops ingops ingout fmt_var)
: Setting up option string for ingres
(setq ingres ops (list "=u" "—g® M_jif P_fn
H_vﬂ ﬂ_nll ll+all ll_"l ll+dll
nogn mggh n_gny)
(setq ingops ingres_ops)
(setq ingout nil)
(setq fmf_var "W)

; First, check whether there are any options
; at all. If not, we're finished.
(cond ((null (ecddr ingres line))
(print (append (list 'Ilingres
*(sprintf "gs"
y(cadr ingres line)) nil))

cookf'ile)
(terpri cookfile)
(return t)
)
)
loop

(eond ((null (cddr ingres line))
4 Only thing left on command line is the database name

v-23

; B0 we can write the call to the output file.
(setq fmt_var (sprintf "§s"
(concat fmt_var '" %s")))
(setq ingout
(append (list 'sprintf fmt_var)
ingout (cadr ingres_line)))
(print (append (list 'IIingres
ingout)) cookfile)
(terpri cookfile)
(return t)
)
)
(setq nextopt (cadr ingres line))
(cond ((null ingops) sinvalid option
(print (cons err_param ingout)
cookfile)
{terpri cookfile)
(patom (cons err_param ingout))
(terpri)
(setq ingres _line {(cdr ingres line))
(setq ingops ingres ops)
(go 1loop)
)
{ (equal (substring nextopt 1 2)
(car ingops)) ;valid option
(setq fmt_var (concat fmt_var '" %s"))
(setq ingout (append ingout
(list nextopt)))
(setq ingres_line (cdr ingres_line))
(setq ingops ingres_ops)
(go loop)
)
(t (setq ingops (cdr ingops))
(go loop) ;not found yet
)

Iv-24

- - - -

Function Name:
(f£_leprint)

Calling Syntax:
(f_leprint print_line)

Parameters:
print_line - The arguments tc the leprint
conmand,
Effects:

Writes a Ilwrite call to the output file.

Returns:
Returns t if the syntax is correct,
returns nil otherwise.

N E el WS NS WS WE Ve ME WE W W WS We WE WS e We wWe we

defun f_leprint (print_line)
(prog (printname inline var_fmt plist)
(setq var_fmt "%¥s %s")
(setq plist '())
(setq inline print_line)
(cond ((null (ecdr inline))
(patom err_syntax cookfile)
(patom print_line cookfile)
(terpri cookfile)
(patom err_syntax)
(patom print_line) (terpri)
(return nil)
)

Get past the "leprint" and set printname to
the first table name.

Handle the first table name separately,
then go into the loop.

(setq inline (edr inline))

(setq printname (car inline))

- W Wy W

(cond ((pull (ecdr inline))

(setq var_fmt (sprintf "%s" var_fmt))

(terpri cookfile)

(print (append (list 'IIwrite
*(sprintf ,var_fmt

(quote print) ,printname)))

cookfile)

(terpri cookfile)

(print (list 'IIsync nil) cookfile)

(terpri cookfile)

(return t)

Iv-25

If we
; table
loop

(cond (

got here, there must be more than one
name in the "leprint" statement.

(null (edr inline))

(setq var_fmt (sprintf "$s" var_fmt))

(setq plist (append plist

(1ist printname)))

(terpri cookfile)

(print (append (list 'IIwrite
(append *(sprintf ,var_fmt

(quote print)) plist)))

cookfile)

(terpri cookfile)

(print (list 'IXsync nil) cookfile)

(terpri cookfile)

(return t)

t (setq var_fmt (concat var_fmt ",%s"))
{setqg plist {append plist
(list printname)))
(setq inline (cdr inline))
(setq printname (car inline))
(go loop)

Iv-26

S WE e WE WA WE We W We we WM WE iee we ws we We W We

Function Name:
f_lerange

Calling Syntax:
(f_lerange range_line)

Parameters:
range_line - the information pertaining to the

lerange command,

Effeects:
This command sends a call to IIwrite and to
IIsync to the output file.

Returns:
If no error, returns t. Otherwise, returns nil

defun f_lerange (range_line)

(prog (outline rline)
(cond ((not {equal (car range line) 'lerange))

)
)

(patom err_syntax cookfile)
(patom range_line cookfile)
(terpri cookfile)

(patom err_syntax)

(patom range_line)
(terpri)

(return nil)

{not (equal (cadr range line) ‘of))
(patom err_syntax cockfile)

(patom range_line cookfile)

(terpri cookfile)

(patom err_syntax) (patom range_line)
(terpri)

(return nil)

(setq rline (cddr range _line))

(cond ((null rlipe)

(terpri cookfile)
(patom err_param coockfile)
(patom range_line cookfile)
(terpri cookfile)

(patom err_param) (patom range_line)
(terpri) (return nil)

(null (eddr rline))
; error = not enough arguments to make

V=27

3 the next range stmt
(patom err_param cookfile)
(patom range_line cookfile)
(terpri cookfile)
(patom err_param) (patom range_line)
(terpri) (return nil)
)
((not (equal 'is (cadr rline)))
$ error = the middle argucent of the
; three should be "is™
(patom err_param cookfile)
(patom range_line cookfile)
(terpri cookfile)
(patom err_param) (patom range_line)
(terpri) (return nil)
)
(t
(terpri cookfile)
(print (append (list 'IIwrite
“(sprintf "f§s %s %s"
(quote range) (quote of)
(concat ,(car rline) "="
, (caddr riine)))))
cookfile)
(print (list 'IIsync nil) cookfile)
(terpri cookfile)

Iv-28

Function Name:
f_lereplace

Calling Syntax:
(f_lereplace replace_line)

Parameters:
replace_line = the line of information that
specifies the INGRES replace
command.

Effects:
Sends calls to llwrite and iIsync to the
output file,

Returns:
t

FUNe W WE wa WY WE W WM WE WS We We WP We we we We WE wWE we

defun f_lereplace (rpla_line)
(dbg_patom "Got to f_lereplace™) (dbg_terpri)
(prog (input_info infields var_atom rngname
var_fmt rest_line)
input_info = used to preserve append_line
infields - used to parse the list of fields
to append
var_atom - formats the fields to append
as IIwrite expects them.
rngname = name of range variable
(setq input_irfo rple_line)
(setg infields nil) (setq var_atom nil)
(setg rngname (cacr input_irfo))
(setq input_info (eddr irput_irnfo))
; Check rngname
(cond ((null rngname)
‘ (print err_notbl cookfile)
(print rple_line cookfile)
(terpri cookfile)
(patom err_notbl)
(patom rplc_line) (terpri)
(return nil)

we we we we WE B

The next parameter exists but
i= not a range name.
(not (atom rngrame))
(print err_notbl cookfile)
(print rplc_line cookfile)
(terpri cookfile)
(patom err_notbl) (patom rplc lire)
(terpri) (return ril)

Lol THE LI S

Iv-29

- we WS

nme W N

)
loop

)
(

t)

Now input_info should start with a list
having the ' ’

format (pame value name value ...)
(setq infields (car input_iifo))

(dbg_patom (list "infields:" irfields))
(dbg_terpri)

(cond ((or (null infields)

)

(not (listp infields)))
(print err_param cookfile)
(print rplq_line cookfile)
{(terpri cookfile)
(patom err_param) (patom rplcg_line)
(terpri) (return nil)

Handle the first "name value" pair,
then to inte the lcop.

cond ((null (cacr infields))

(patom err_pgty cookfile)
(patom rple_line cookfile)
(terpri cookfile)
(patom err_pqgty)
(patom rple_line) (terpri)
(return nil)
)
(t (setq var_atom
(concat (car irfields)
"=" (cacr infields)))
(setq int'ields (cddr infields))
(setq var_fmt "$s %z)")

(cond ((and (null infields)

(null (edr input_irfo)))
; thi=s task is finizned, so write the
3 call to 1Iwrite to the output file.
(terpri cookfile)
(setq var_atom (sprintf "$s" var_atom))
(print (append (list 'IIwrite
*{sprintf ,var_fmt
(quote replace) ,rngname
(quote ,var_atom)))) cookfile)
(terpri cookfile)
(print (list 'IIsyrc nil) cookfile)
(terpri cookfile) (return t)

Iv=-30

(setq
(setq
loop2

(cond

F

)
(

)

(null infields)

; We're not conjletely finished, but
; we will leave this loop.

t

(null (edr infields))

(patom err_pqty cookfile)

(patom rplc_line cookfile)
(terpri cookfile) (patom err_pgty)
(patom rple line) (terpri)
(return nil)

t
: Create the atom that consists of
. Pyar=tvar,var=tvary..."
(setq var_atom (concat var_atom
" " (car infields)
=" (gacur infields)))
(setq infields (cddr infields))
(go lcop)

rest_lire '())
input_irfo (ed: input_info))

(

(null input_info)

; Nothing more in the line, so write the

{ write the proper coumand to

; the output file,

(setq var_fmt (sprintf "§s" var_fmt))

(setq var_atom (sprintf "%s" var_atom))

{print (append (list 'IIwrite
(append " (sprintf ,var_fmt
(quote replace) ,rngname
(guote , var_atom))
rest_line))) cookfile)

(print (list 'IIsync nil) cookfile)

(terpri cookfile)

(return t)

t
;§ Add this atom to the list,
(setq var_fmt (concat var_fmt " %s"))
(setq rest_line (append rest_line
(list (sprintf "gs"

(car input_info)))))
(setq input_info (edr input_info))
(go loop2)

Iv-31

Iv-32

Function lame:
(conlist)

Calling Syntax:
(conlist inparams)

Parameters:
inparams - a list containing input parameters
to be connected into one string.

Effects:
This routine coubines all its irput parameters
into one string. The atoms of the input
parameters are separated by commas ir the
output string.

Returns:
The string formed by concatenating all the
input parameters, and separating them Ly
commas.

defun conlist (inparams)
(prog {nextopt outlist)

(setq nextopt inparams) (setq outlist nil)
(cond ((null inparams)

; nothing left to do.

(return outlist)

)
)
(setq outlist (car nextopt))
loop

(cond ((null (cdr nextopt))
(return outlist)
)
(t (setq outlist (concat outlist
*],! (cacr nextopt)))
(setg nextopt (edr nextopt))
(go loop)

Iv-33

Function Name:
f_lestring

Calling Syntax:
(f_lestring lestring line)

Parameters:
lestring line - the line for the
string declaration

Effects:
This is the routine callec when the
"2% lestring” function is encounterec.
It adds the variable's name to a list of
variables that are declared to have
type "string".
The list is callec "Stringvars".

Returns:
Returns "“t" if it can acd the variable
name to the li=st;
returns "nil" if the variable name is
invalid (i.e. not an atom).

P s WE We e We we WE W We We WE WE WE We WA WS W W4 WE Wi wWe wWwe We W We wWe

defun f_lestring (lestring line)
(cond ((atom (cacr lestring line))
(setq Stringvars (append
(list (cacr lestring line)) Stringvars))
t
)
{ t (patom err_param cookfile)
(patom lestring lire cookfile)
(terpri cookfile)
(patom err_param) (patom lestring line)
(terpri) t

S

IV-34

Function lame:
f leint

Calling Syntax:
(f_leint leint_line)

Parameters:
leint_line - the line for the integer
declaration
Effects:

This is the routine called when the
"g% leint" function is encounterec.
It adds the variable's name to a list of
variables that are declared to have type
"integer™ . The list is callec "Intvars™.

Returns:
Returns "t" if it can add the variable
name to the list;returns "nil" if the
variable name is invalid (i.e., not
an atom).

Py W We We W Wwe WEe WE W WE WE Wi We We Wa wme WE WP wWe we Wwe we Wi WE We

defun f_leint (leint_line)
(cond ((atom (cacr leirnt _line))
(setq Intvars (cons
{(caor leint_line) Intvars))
)
(t (patom err_param cookfile)
(patom leint_lire cookfile)
(terpri cookfile)
(patom err_param)
(patom leint_line) (terpri)

IV-35

RS WS WE WM WM W WE WE WE WS WE WE W W WA W BT W e @e W We W WE we WY

Function Name:

f_lefloat

Calling Syntax:

(f_lefloat lefloat_line)

Parameters:

lefloat_line = the line for the flcat
declaration.

Effects:

This is the routine called when the

"% lefloat™ function i= encountered.

It adds the variable's name to a list of
variables that are declared to have type
"floath, lhe list is called "Floatvarsh,

Returns:

Returns "t" if it can acd the varialle
name to the list;

returns *nil" if the variable name is
invalic (i.e. not an atom).

defun f_lefloat (leflcat_line)

(cond ((atom (cacr lefloat_line})

S

)
(

(setq Floatvars (cons
(cadr lefloat_line) Flcatvars))

t (patom err_param cookfile)
{patom lefloat_line cookfile)
(terpri cookfile)

(patom err_param)
(patom lefloat_line) (terpri)

IV-36

AN WA WE WE WE W WS W W Wi WE WE WE WE Wa W Wy WE We We W wWe B

(prog

e i - -

Funection heame:

f leretrieve

Calling Syntax:

(f_leretrieve retrieve_line)

Parameters:

retrieve_line - the g expression associated
with the 'retrieve" call,
including the "leretrieve".

Effects:

This is the top-level routine for the
"¢% leretrieve" function. It calls
several other functions that handle
specific pieces of the coumand. The
end result is that the appropriate
calls appear in the L-EQLEL output file.

Returns:

Always returns t.

defun f_leretrieve (retrieve_line)

(var_list curr_var)
var_list = the list of variables used
in the commmand.
curr_var = the current variabtle being
considered.
{curr_var is a member of var_list)
First, format the lIwrite command and place
it in the ocutput file:

(setq var_list (retr_wfmt retrieve_line))

Add the “"fixec" calls to the output file:

(print (list 'IIsetup) cookfile)

(terpri cookfile)

(patom "og cookfile)

(terpri cookfile)

{print 'loop cookfile) (terpri cookfile)
(patom "(C)nd r_get nil)" cookfile)
{terpri cockfile)

Next, acd the calls to IIn ret that depend
on the variable names and types:

loop
(setq curr_var (car var_list))
(cond ((null var_list)

t ; that is all for this section,
; continue on to the next section.
)

((member curr_var Stringvars)

Iv-37

N

)

(print (list 'IIr_ret (list

‘quote curr_var)} 3} cookfile)
(setq var_list (cdr var_list))
(go loop)

((member curr_var intvars)
(print (1ist 'IIn_ret (list
'quote curr_var) 6) cookfile)
(setq var_list (edr var_list))
(go loop)

((member curr_var Floatvars)
(print (list 'IIn ret
{list fquote curr_var) 2) cookfile)
(setq var_list (cdr var_list))
{go loop)
)
(t (patom err_pnodecl coockfile)
(patom curr_var cookfile)
(patom retrieve_line cookfile)
(terpri cookfile)
(patom err_pnodecl) (patom curr_var)
(patom retrieve line) (terpri)

- Next, acud some more "“fixed" information

: to cookfile.

(terpri cockfile)

(patom ")" cookfile) (terpri cookfile)

(patom ™ flushtup 0) turn t)"
cookfile)

(terpri cookfile)

(patom "™)" cookfile)

(patom ")" cookfile)

(patom

"(C)nd “Eaterperrtest) 0, lcop)"
cookfile)

(patom ")" cookfile) (terpri cookfile)

(patom " cookfile)

That is all that this routine can do.
The next $% function encountered should
be "4% leretrbgn"

we ws We

Iv-38

Funetion Name:
retr_wfmt

Calling Syntax:
(retr_wfmt retr_line)

Parameters:
retr_line - the s expression associated with
the *$% leretrieve" command. It
inecludes the ‘leretrieve™ but
not the "%%",

Effects:
This routine formats the "Ilwrite" call and
writes the call to the output file,

Returns:
Returns the list of variables associated with
the "leretrieve® command if the command is
successful; if there is an error, this routine
returns "nil".

M W WE WE WE WS WE WE W WE WE W Ws Wé Wi WE W WE we we Ws Wy wa W

defun retr_wfmt (retr_line)
(prog (var_list inlist var_atom var_fmt rest_line
input_info)
var_list - the list of variables used by the
retrieval (var_list is extracted
from inlist)
inlist = the list of variables and their
tuple fields
var_atom = the format of
var=value, var=value, etc.
expected by iIwrite. The
; var=value are extracted from inlist
(setq var_atom nil)
(setg var_list nil)
(setq input_irnfo (edr retr_line))
(setq inlist (car input_irfo))
; The inlist should be a list containing
; variables and their corresponding tuple field.
(cond ((not (listp inlist))
(patom err_novar cookfile)
(patom retr_line cookfile)
(terpri cookfile)
(patom err_novar) (patom retr_line)
(terpri)
(return nil)

4 We We We We W W We W

Iv-39

(eond

loop
(cond

(

(

(not (null (cacr iniist)))

(setq var_fmt "$s)")

(setq var_atom (concat (car inlist)
nz=® (cacr inlist)))

(setq var_list (list (car inlist)))

(setq inlist (eddr inlist))

t (patom err_pgty cookfile)
(patom retr_line cookfile)
(terpri cookfile)
(patom err_pqty) (patom retr_line)
(terpri)
(return nil)

(and (null inlist)
(null (edr input_info)))}

; this task i= finished, s0 write the
; call to llwrite to the output file.
(terpri cookfile)
(setq var_atom (sprintf "#s" var_atom))
(print (append (list 'IIwrite

*(sprintf ,var_fmt

(quote retrieve)

(quote ,var_atom)})) cookfile)
(terpri cookfile)
(terpri cookfile)} (return var_list)

(null inlist)

; We're not conpletely finished, but we
; will leave this loop.

t

(null (edr inlist))

(patom err_pgty cookfile)
(patom retr_line cookfile)
(terpri cookfile)

(patom err_pgty)

{patom retr_line) (terpri)
(return nil)

t

H Create the atom that consists of

- "var=tvar,var=tvary..."

(setq var_atom (concat var_atom ", "
(car inlist) "=" (cacr inltist)))

(setg var_list (append var_list
(1ist (ecar inlist))))

(setq inlist (eddr inlist))

IV=-40

(go loop)
)
)
(setq rest_lire '())
(setq input_irnfo (edr input_info))
loop2
(cond ((null input_info)
; Nothing more in the line, =0 wWrite the
; proper coomand to the output file,
(setq var_fmt (sprintf "%s" var_fmt))
(setq var_atom (sprintf "$s" var_atom))
(print (append (list 'llwrite
(append " (sprintf
yvar_fmt (quote retrieve)
(quote ,var_atom)) rest_line)})
cookfile)
(terpri cookfile)
(return var_list)

I

t
; Add this atom to the list.
{setq var_fmt (concat var_fmt " %s"))
(setq rest_line (append rest_line
(1ist (sprintf "gs"

(car input_irnfo)))))
(setq ipput_irnfo (edr input_info))
(go loop2)

Iv-41

Function lame:
f_leretrbgn

Calling Syntax:
(f_leretrbgn bgn_line)

Parameters:
bgrn_line - This parameter is null; it is
ineludea for consistency with the
format of calls to "%%" functions.

H

H

H

;

’

H

i

H

H

H

;

H

H

; Effects:

H This function currently does nothing, but is
: included as a placeholder. In the future, a
H global variable should be added to L-EQUEL to
3 keep track of the last "§%" function

s encountered. When that is implemented,

; this function can verify that the last

3 function encountered was "$% leretrieve".

H

H

H

’

(

Returns:
- Always returns t

defun f_leretrbgn (bgn_line)
t

V=42

- -

Function Name:
f_leretrdone

Calling Syntax:
(f_leretrdone done_line)

Parameters:
done_line - This parameter is null; it is
included for consistency with
the format of §% function calls.

Effects:
This routine adds the last section of "fixed"
code for the "leretrieve” command to the
output file.

Returns:
Always returnos t.

FUNME WA WA WMo WE WS WS W WME WE W We WA WE We We We We WE WS W

defun f_leretrdone (done_line)
. Add the final bit of "fixed" code for the
i "§{%-leretreive" commmand.
(patom " loop)" cookfile)
(terpri cookfile)
(patom ")" cookfile)
(patom ")" cookfile)
(patom ")" cookfile) (terpri cookfile)
t

Iv-43

Funotion Name:
(f_ledestroy)

Calling Syntax:
(f_destroy dstry_line)

Parameters:
dstry_line - The arguments to the ledestroy
command.
Effects:

Writes a IIwrite call to the output file,
followed by a IIsync call.

Returns:
Returns ¢t if the syntax is correct,
returns nil otherwise

SN WE WE WMe W B W Wy WE WE WE We WE wa WS BE we W We B

defun £ _ledestroy (dstry_line)
(prog (dstryname inline ver_fmt plist)
(setq var_fmt "§s %s")
(setq plist '())
(setq inline dstry_line)
(cond ((null (edr inline))
(patom err_syntax cookfile)
(patom cstry_line cookfile)
(terpri cookfile)
(patom err_syntax)
(patom dstry_line) (terpri)
(return nil)
) ’

Get past the "ledestroy” and set dstryname to
the first table name,

Handle the first table name separately, then
go into the loop.

{setq inline (ecdr inline))

(setq dstryname (car inline))

we wa WS ‘We A

{econd ((null (ecdr inline))
(setg var_fmt (sprintf "$s" var_fmt))
(terpri cookfile)
(print (append (list 'IIwrite
“(sprintf ,var_fmt
(quote destroy) ,dstryname)))
cookfile)
(terpri cookfile)
(print (list 'IIsync nil) cookfile)
(terpri cookfile)

IV-44

(return t)
)
)

; If we got here, there must be more than
; one table name in the "ledstroy" statement.
loop
{cond ((null (edr inline))
(setq var_fmt (sprintf "§s" var_fmt))
(setq plist (append plist
(1ist dstryname)))
(terpri cookfile)
(print (append (list 'lIwrite
(append “(sprintf ,var_fmt
(quote print)) plist)}))
cookfile)
(terpri cookfile)
(print (list 'IIsyne nil) cookfile)
(terpri cookfile)
(return t)

(t (setq var_fmt (conecat var_fmt ",%s"))
(setq plist (append plist
(list dstryname)))
(setq inline (edr inline))
(setq dstryname (car inline))
(go loop)

IV-45

File Desceription:
This file contains the routines that are called
to load information into the L-EQUEL keyworc
table and operator tables.

Author:
Anne R, lracisel, Summer 1985.

declare (lambda add _kwrc add_op)
{(special Kwrdtab Optab)
(*arginfo (add_kwrd 2 2))

IV-46

Function KName:
add_kwrd

Calling Syntax:
{add_kwrd op_name op_function)

H

H

;

H

H

}

H

$ Parameters:

; op_name - name of the token
3 op_function - the function to be
: called when this token
3 is encountered.
H

H

}

H

H

H

H

H

H

(

Effects:
This routine sets the op_function properties
of the token known as op_name. It then adds
the op_name token to the lLwrdtab list.

Returns:
the value of op_name

defun add_kwrd (op_name op_function)
(putprop op_name op_function 'op_function)
(setq Kwrdtab (cons op_name Kwrctab))
op_name

IV-47

File Description:
This file contains tool= used by
the L=-BQUEL preprocessor.

Author:
Anne R. Tractsel, Summer 1985

declare (lambda dbg patom dbg terpri kw_populate)

(lambda add_kwrd add_op)

(lambda loadit set_debug)

(special Kwrdtab Optab)

(special legueldetug)

(*arginfo (add_kwrd 2 2))

(*arginfo (dbg_patom 1 1))

(*arginfo (set_detug 1 1))

WS WM wE WwE We WE We W e

Iv-48

Function Name:
(dbg_patom)

Calling Syntax:
(dbg_patom dbg_stmt)

Parameters:
dbg_stmt -~ the debugging information
to be printed (patom'd}

Effects:
If the global variable "lequeldebug"” is
set to zero, then this routine is null.
If "lequeldetug® is set to one, then
this routine patom's its argument.
This allows debugging print statements
to remain in completed code without
affecting normal running of the program.

Returns:
always returns t

'
S ngS WA WA WS WE WE WA WE WE WS W Wr W Wl We Ve BE ws WE We We We W B

defun dbg_patom (dbg_stmt)
{cond ((zerop lequeldebug) t)
{ (onep lequeldebug) (patom cbg _stmt) t)

IV-49

- - - -

Function Name:
(dbg_terpri)

Calling Syntax:
(dbg_terpri)

Parameters:
None.

Effects:
If the glcbal variable "lequeldetug" is
set to zero, then this routine is null.
If ™egueldebug” is set to one, then
this routine performs a "terpri".
This allows debugging print statements to
remain in conmpleted code without affecting
normal running of the program.

Returns:
always returns t

PR W We WE WM We We WE WE WE WE WS We We WE WE gy We W ws We W e

defun dbg_terpri ()
(cond ((zerop lequeldebug) t)
((onep lequeldebug) (terpri) t)

Iv-50

FTREE WS We we W We WE W WE We We We We WE WA pe WE W we W W wWe

- S S e - - - -

Function Name:
(kw_populate)

Calling Syntax:
(kw_popul ate)

Parameters:
none

Effects:
Populates the Kwratab table for testing.
At the beginning of the routine, Kwrdtab
i1s set to nil, For this routine to wcerk,
the file tbls.l must have already been
loaded in, since this uses the routine
"add_kwrd",

Returns:
Always returns true.

defun kw_populate ()

{setq Kwrdtab nil)

(add_kwrd
(add_kwrd
(add_kwrd
(add_lwrd
(add_kwrd
(add_kwrd
(add_kwrd
(add_kwrd
(add_kwrd
(add_kwra
(add_kwrd
(add_lwrd
(add_kwrd
(add_kwrd
(add_kwrd
t

'leappend 'f_leappend)
'lecreate 'f_lecreate)
'ledelete 'f _ledelete)
'ledestroy 'f_ledestroy)
Tleexit 'f_leexit)
'lefloat 'f_lefloat)
tleingres 'f_leingres)
Yleint 'f_leint)

"leprint 'f _leprint)
tlerange 'f_lerange)
'lereplace 'f_lereplace)
'leretrieve 'f_leretrieve)
'leretrbgn 'f_leretrbgn)
'leretrdone ‘'f_leretrdone)
'lestring 'f_lestring)

V=51

Function Name:
(loadit)

Calling Syntax:
(loadit)

Parameters:
none

Effects:
loads in the LISP files necessary
to run 1_equel, and populates the Kwrctab.
Also initializes the value of the
debugging variable "lequeldebug".

Returns:
t

defun loadit ()

(load 'f_ingres) (load 'l_equel)

(load *'tbls) {kw_populate)

(set_debug 0) :

(efasl 'Ilingres.o '_Ilingres 'Ilingres
"integer-function" "=1g")

(cfasl 'IIwrite.o' _IIwrite 'IIwrite
"integer-function" "=1q")

(cfasl 'Ilcvar.o '_llcvar 'llcvar
"{nteger=-function” "-lgq"

(cfasl 'IIexit.o '_Ilexit 'Ilexit
" nteger=-function® "-1q")

(cfasl 'IIflushtup.o '_IIflushtup *'IIflushtup
"integer-function” "-lq")

(cfasl 'IIgettup.o '_Ilgettup 'IIgettup
"integer=function® "=1g")

(cfasl 'IIn get.o '_IIn get 'IIn get
"integer=-function” "-1q")

(efasl 'IIn ret.o '_IIn ret 'IIn ret
"integer-function® "-1q")

(efasl 'IIsetup.o '_IIsetup 'IIsetup
"integer-function" "-1lq")

(cfasl 'IIsync.o '_IIsyne 'Ilsyne
"integer-function" "=1q")}

(efasl 'IIuy_left.o '_IIw_left 'IIw_left
"integer-function® "-1q" ;

(ofasl 'IIw_right.o '_IIw_right 'IIw_right
"integer-function® "-1lgq")

(getaddress '_IIcvar 'Ilcvar "integer-function™)

(getaddress '_Ilerrtest 'llerrtest
Pinteger=function")

Iv-52

(getaddress
(getaddress

'_JIlexit 'Ilexit "integer-function®)
'_IIflushtup 'IIflushtup

"i nteger-function")

(getaddress

' _IIgettup 'Ilgettup

"integer=-function")

{getaddress

' _Ilingres 'Ilingres

"integer-function")

(getaddress
(getaddress
(getaddress
(getaddress
(getaddress
(getaddress

'_IIn get 'IIn_get "integer-function")
'_IIn ret '1In_ret "integer-function")
'_IIsetup '"IIsetup "integer=-function")
'_IIsyne 'IIsync "integer-function")
'_IIw_left 'IIw_left "integer-function")
'\ ILw_right '"IIu_right

*i nteger-function")

(getaddress

' _Ilwrite 'IIwrite "integer-function")

IV-53

P EE W WE We WE WE WE WE W We We We WE We we WE W ws WE WE Ye WE WE We

- - - - —

Function Name:
(set_debug)

Calling Syntax:
(set_debug debug flag)

Parameters:
debug_flag - if it equals zero, the
debugging stmts are turned
off; if it equals one, the
stmts are turned on.

Effects:
Sets or clears the debugging variable,
"lequeldebug™.
This variable controls whether or not
debugging statements are printed.

Returns:
Returns t if legqueldebug can be set to a
valid value; returns nil otherwise.

defun set_debug (debug_flag)
(cond ((or (zerop debug flag)

(onep debug_flag))
(setq lequeldebug debug flag) t
)

(t (patom

"Invalid value for lequeldebug0)
(terpri)
)

IV-54

L-EQUEL: AN EMBEDDED QUERY LANGUAGE
FOR FRANZ LISP

by

ANNE ROBERTA TRACHSEL

B.S., The Ohio State University, 1979

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

ABSTRACT

This master's report describes the design and implementation
of the LISP-Embedded Query Language, L-EQUEL, EQUEL,
Embedded Query Language, enables the C language programmer
to embed INGRES queries within a C language program. L~
EQUEL, & set of EQUEL-based database access routines for
LISP, enables the Franz LISP programmer to embed INGKES

database queries within a Franz LISP program.

Current LISP databases depend on features unique to LISP;
the information stored in-them is not accessible to programs
written in other languages, because the databases are
enclosed within the program's storage area. By allowing
access to the INGRES database from within a LISP program,
L-EQUEL provides a facility for data sharing between
programs written in Franz LISP and programs written in other

languages.

