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Abstract

A representation of a quiver Γ over a commutative ring R assigns an R-module to each

vertex and an R-linear map to each arrow. In this dissertation, we consider R = k[t]/(tn) and

all R-free representations of Γ which assign a free R-module to each vertex. The category,

denoted by RepfR(Γ), containing all such representations is not an abelian category, but

rather an exact category.

In this dissertation, we firstly study the Hall algebra of the category RepfR(Γ), denote by

H(RΓ), for a loop-free quiver Γ. A geometric realization of the composition subalgebra of

H(RΓ) is given under the framework of Lusztig’s geometric setting. Moreover, the canonical

basis and a monomial basis of this subalgebra are constructed by using perverse sheaves.

This generalizes Lusztig’s result about the geometric realization of quantum enveloping

algebra. As a byproduct, the relation between this subalgebra and quantum generalized

Kac-Moody algebras is obtained.

If Γ is a Jordan quiver, which is a quiver with one vertex and one loop, each representation

in RepfR(Γ) gives a matrix over R when we fix a basis of the free R-module. An interesting

case arises when considering invertible matrices. It then turns out that one is dealing

with representations of the group GLm(k[t]/(tn)). Character sheaf theory is a geometric

character theory of algebraic groups. In this dissertation, we secondly construct character

sheaves on GLm(k[t]/(t2)). Then we define an induction functor and restriction functor on

these perverse sheaves.
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Chapter 1

Introduction

The first remarkable work in representation theory of quivers is due to Gabriel, see [15]. He

proves that a quiver has finite many isomorphism classes of indecomposable representations

if and only if its underlying graph is a Dynkin diagram. Such quivers are called of finite

type. In this case the dimension vector of an indecomposable representation is a positive

root of the semisimple Lie algebra sharing the same Dynkin diagram. Furthermore, the

isomorphism classes of indecomposable representations are in one to one correspondence to

positive roots of corresponding semisimple Lie algebra.

Gabriel’s theorem is generalized to the extended Dynkin diagrams by Donovan, Frieslich,

Nazarova, and finally to more general quivers by Kac, see [11, 22, 46]. The Lie algebra

corresponding to an extended Dynkin diagram is an affine Kac-Moody Lie algebra. In this

case, it has infinite many roots and its roots belong to two classes: real roots, obtained

from the simple roots by the Weyl group action, and the rest–imaginary roots. There is a

unique indecomposable representation corresponding to each positive real root. Moreover,

for each positive imaginary root, the isomorphism classes of indecomposable representations

are parametrized by the projective line together with finitely many points. An quiver is

called of tame type if the indecomposable representations of a given dimension may be

parametrized by a finite number of rational curves.

All other quivers are called wild type. Classifying all indecomposable representations of

wild type quivers is a so-called “hopeless” problem. The representation theory of wild type
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quivers is as complicated as the representation theory of k〈x, y〉, the non commutative free

associative algebra in two variables.

The representations of quivers over local rings R = k[t]/(tn) have a close relation with the

representations over field k. For example, the category of R-free representations of Jordan

quiver over R is equivalent to the category of representations of algebra k[x, y]/(xn). On the

other hand, a k[t]/(tn)-free representation of quivers is a deformation of a representation of

the same quiver over k.

Another remarkable work in representation theory of quivers is Ringel’s work about

Hall algebras. The Hall algebra H(A) of an finitary abelian category A is defined to be

the C-vector space with a basis consisting of all isomorphism classes {[M ]}M∈Ob(A). The

multiplication between two basis elements [M ] and [N ] is a linear combination of elements

[P ] which runs through the set of extensions of M by N with coefficient counting the number

of certain submodules. This multiplication is called a Hall multiplication. The first example

of Hall algebra can be traced back to 1901. In [54], Steinitz described an idea of producing an

algebra from isomorphism classes of finite abelian p-groups. In [19], Phillip Hall rediscovered

the idea. The algebra is now called Hall-Steinitz algebra. Now many operations in algebra

can be thought of as Hall multiplications. For instance, the parabolic induction for modular

representations; the parabolic induction of Eisenstein series for function fields, see [26]; and

the multiplication for symmetric functions etc., see [43].

Ringel shows that Hall algebra, H(kΓ), associated with a Dynkin quiver Γ is generated

by simple representations. Moreover, after twisting by using the Euler character on the

Grothendick group, K0(kΓ), one may obtain the twisted Hall algebra H?(kΓ) which is

isomorphic to U+
q as an algebra, see [50, 51]. Here U+

q is the positive part of the quantum

enveloping algebra of the Lie algebra corresponding to the given quiver. Later on, J.A.

Green, in [17], defined a coalgebraic structure on H?(kΓ). Additionally Xiao, in [56], defined

the antipode of H?(kΓ). This makes H?(kΓ) a Hopf algebra.

After Ringel’s work relating Hall algebras with quantum groups, the interest for Hall
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algebras reaches to more general mathematics, including topics describing physics invariants.

Motivated by Ringel’s work, in [35], Lusztig gives a geometric realization of U+
q by using

perverse sheaves on moduli spaces of representations of quivers. Later on, Lusztig’s work

is generalized to affine case and more general quivers, see [29, 30, 37]. In [23], Kang and

Schiffmann give a geometric realization of the positive part of the quantized enveloping

algebra of a generalized Kac-Moody Lie algebra by using quivers with multiple loops. Via

relations between representations of quivers over a field k and representations of quivers

over the local rings k[t]/(tn), one may expect to approach Kang and Schiffimann’s result

through the representations of quiver over the local ring R = k[t]/(tn). This question is

partially answered in Chapter 4.

More recently, Hall algebras are defined for different categories. Here are some examples.

Hubery defines the Hall algebra over exact category, see [20]; Peng-Xiao, Töen and Kapra-

nov construct Hall algebras for some derived categories, see [4, 24, 47, 55, 57]; Caldero,

Chapoton and Keller build some relations between Hall algebra and cluster categories, see

[5, 6]; Joyce defines the Hall algebra as the algebra of constructible functions on moduli

stack of objects in an abelian category, see [21]. And more and more relations between Hall

algebra and other mathematical objects are discovered. Kontsevich and Soibelman defines

cohomological Hall algebra which is related to Donaldson-Thomas invariants, see [28, 49];

Kapranov, Schiffmann and Vasserot study the Hall algebras over the category of vector

bundles on smooth irreducible projective curves and give a purely Galois theoretic interpre-

tation of these Hall algebras by applying the Langlands correspondence for the groups GLm

over functional fields, see [25, 52].

What is an geometric approach to Hall algebras good for? Firstly, Hall numbers, which

are structure constants of the Hall algebra, are numbers of rational points of certain varieties.

So one doesn’t need to prove the existence of Hall polynomials. Another generalization is

the motivic version of Hall algebra. If we consider representations of quivers over infinite

field, such as C. The Hall numbers, which counts numbers of filtration, are infinite numbers.
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Instead of numbers of rational points of varieties, one uses motivic measures of varieties as

structure constants. The obtained Hall algebra is called motivic Hall algebra, see [27].

Secondly, it is easy to construct the canonical basis of Hall algebras through geometric

approach. Lusztig constructs the canonical basis of U+
q by using simple perverse sheaves on

moduli spaces of representations of quivers. Kashiwara constructs independently such basis,

which is called the global crystal basis, by combinatorial methods. These bases provide a

uniform description of irreducible finite-dimensional modules. Moreover these bases have

many remarkable properties such as integrality and positivity of structure constants etc.

Lusztig’s construction can be thought of as a categorification of the Hall algebra (or U+
q ).

The category Q := ⊕VQV (see definition in section 2.2) is now called Hall category.

The isomorphic classes of representations of quivers give a natural basis of Hall algebra

associated to Dynkin quivers, which is a PBW type basis. Some entries of the transition

matrix between the canonical basis and a PBW type basis is Poincare polynomials at a

certain point in the representations varieties, see [34]. On the other hand, Lusztig’s sheaves

(see section 2.2) give a monomial basis of the Hall algebra.

In Chapter 4, we study the Hall algebra, H(RΓ), of the category of R-free represen-

tations of a loops free quiver Γ over R = k[t]/(tn). There is a certain relation between

the composition subalgebra of H(RΓ) and quantum generalized Kac-Moody algebras. Un-

der the framework of Lusztig’s geometric approach, we construct the canonical basis and a

monomial basis of the composition subalgebra of H(RΓ).

The geometry of conjugacy classes of m ×m-matrices for various m is related the full

subcategory of category of representations of the Jordan quiver over k with a fixed dimension.

Green in [16] gives all irreducible complex characters of finite groups GLm(Fq), which are

complex valued class functions on GLm(Fq). Later on, different ways are used to approach to

the irreducible characters of GLm(Fq). In [58], Zelevensky uses Hopf algebra (subalgebra of

Hall algebra associated the Jordan quiver) approach to the irreducible characters of GLm(Fq)

for all m. It is important to note that GLm(Fq) is the fixed point set, usually denoted by
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GLm(Fq)F , of Frobenius morphism F in GLm(Fq).

Motivated by Macdonald’s conjecture, which claims that there should be a map from

general position complex characters of F -stable maximal tori to irreducible complex repre-

sentations of GF , Deligne and Lusztig in [10] construct Deligne-Lusztig characters for any

reductive algebraic group by using l-adic étale cohomology with compact support. Deligne-

Lusztig characters are certain virtual characters. Furthermore, every irreducible character

of GF is a constituent of some Deligne-Lusztig characters.

Using l-adic cohomology to define the Deligne-Lusztig characters, Lusztig in [34] uses

intersection l-adic cohomology complexes, and introduces certain simple perverse sheaves

on connected reductive algebraic groups, which are called character sheaves. Character

sheaf theory provides a remarkable geometric interpretation for the complex characters of

finite groups of Lie type. The F -invariant character sheaves are closely related to the irre-

ducible characters of the group GF . Character sheaf theory allows us to study uniformly

representations of GF for various F . Later on, Lusztig generalizes his construction to dis-

connected reductive algebraic groups, parabolic and more general algebraic groups. In 2008,

Boyarchenko and Drinfeld construct character sheaves for unipotent algebraic group in [3].

In [39], Lusztig considers the representations of reductive groups over the finite ring

R = Fq[t]/(tn) and gives some virtual characters of GLm(R). Lusztig further constructs in

[40] some generalized character sheaves of GLm(Fq[t]/(tn)). It is called generalized char-

acter sheaves because they behave like character sheaves but it is not clear that they are

intersection complexes. And he conjectures that all these generalized character sheaves are

intersection cohomology complexes. Moreover, Lusztig mentions that the construction and

conjecture also make sense when GLm is replaced by any reductive group. In the same

paper, he proves his conjecture for n = m = 2.

In this dissertation, we secondly consider GLm(F[t]/(tn)) = GLm(F) n H, where H

is a unipotent algebraic group. This is a mixed group. i.e. neither reductive nor solvable

group. The complete description of representations of an arbitrary mixed group is a hopeless
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problem. In [12], Drozd treats such matrix problems in terms of representations of bocses.

In general, one may ask if we can construct character sheaves of G n H with knowing

information of character sheaves of G and H, such as structure of stabilizers of character

sheaves of H in G. From algebraic point of view, little group method gives a way to list

irreducible characters of semidirect product of two finite groups. Little group method is a

special case of Clifford theory. The question turns out to be a geometric version of Clifford

theory. This question is partially answered in Chapter 5. In Chapter 5, we construct

character sheaves on GLm(Fq[t]/(tn)). Then we define an induction functor and restriction

functor on them.

More generally, for any reductive algebraic group G or even more general algebraic

groups, there is a natural group homomorphism G(k[t]/(tn))
π−→ G(k). Then H := Ker(π) is

a unipotent algebraic group. If n = 2, H is a tangent space of G(k) and can be thought as

the Lie algebra of G(k). The approach in Chapter 5 should also apply to this case. This is

one of the questions we will work later. This dissertation opens a lot of interesting questions,

for example, character sheaves of algebraic group G(k[t]/(tn)) for n > 2; character sheaves

of algebraic group G(k[t]) etc. The answer for the second question will be related to the

local Langlands program over function field.
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Chapter 2

Perverse sheaves

In this chapter, we will quickly review the theory of perverse sheaves. For reference, we refer

to Chapter 8 in [41]. The reader can also find these in [1, 9, 13].

Let k be the algebraic closure of Fq, and let all algebraic varieties be over k and of finite

type separable.

2.1 Perverse sheaves

Let X be an algebraic variety. Denote by D(X) = Dbc(X) the bounded derived category

of Ql-constructible sheaves. Here l is a fixed prime number which is invertible in k, and

Ql is the algebraic closure of the field Ql of l-adic numbers. Objects of D(X) are referred

to as complexes. For a complex K ∈ D(X), denote by Hn(K) the n-th cohomology sheaf

of K. For any integer j, let [j] : D(X) → D(X) be the shift functor which satisfies

Hn(K[j]) = Hn+j(K).

Let f : X → Y be a morphism of algebraic varieties. There are functors f ∗ : D(Y ) →

D(X), f∗ : D(X) → D(Y ), f! : D(X) → D(Y ) (direct image with compact support), and

f ! : D(Y )→ D(X).

Let pX : X → {pt} be the morphism from an algebraic variety X to a point. Denote by

1 = 1X the Ql-constant sheaf on X. The complex ω̇X = (pX)!(1pt) is called the dualizing

complex on X. And DK = RHom(K, ω̇X) ∈ D(X) is called the Verdier dual of K ∈ D(X).

In this dissertation, the perversity refers to the middle perversity. To define perverse
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sheaves, we first introduce two full subcategories which define a t-structure on D(X). An

object K ∈ D(X) is said to satisfy{
(1) support condition if dim SuppHn(K) ≤ −n,∀n;

(2) cosupport condition if dim SuppHn(DK) ≤ −n,∀n.

Let D(X)≤0 be the full subcategory of D(X) whose objects satisfy support condition.

In particular, Hn(K) = 0 for n > 0. Let D(X)≥0 be the full subcategory of D(X) whose

objects satisfy cosupport condition. Then (D(X)≤0,D(X)≥0) defines a t-structure on D(X).

LetM(X) be the full subcategory of D(X) whose objects are in D(X)≤0
⋂
D(X)≥0. The

objects of M(X) are called perverse sheaves on X. M(X) is the heart of the t-structure

and is actually an abelian category in which all objects have finite length. The simple

objects of M(X) are given by the Deligne-Goresky-Macpherson intersection cohomology

complexes corresponding to various smooth irreducible subvarieties of X and to irreducible

local systems on them.

Let τ≤0 (resp. τ≥0) : D(X)→ D(X) be the truncation functor. Then we have a functor

pH0 : D(X)→M(X)

K 7→ τ≥0τ≤0K.

Define the perverse cohomology functor pHn : D(X)→M(X) as pHn(K) = pH0(K[n]).

A complex K ∈ D(X) is called semisimple if pHn(K) is semisimple in M(X) for all n

and K is isomorphic to ⊕npHn(K)[−n] in D(X).

For any integer n, denote by M(X)[n] the full subcategory of D(X) whose objects are

of the form K[n] for some K ∈M(X).

2.2 Properties of functors

Let f : X → Y be a morphism of algebraic varieties. The functors f ∗, f!, f
!, f∗, [j] and the

Verdier dual D satisfy the following properties.
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2.2.1 Adjunction

If f : X → Y , then (f ∗, f∗) and (f!, f
!) are adjoint pairs. i.e. for any A ∈ D(X), B ∈ D(Y ),

(1) HomD(X)(f
∗B,A) = HomD(Y )(B, f∗A);

(2) HomD(Y )(f!A,B) = HomD(X)(A, f
!B).

2.2.2 Pull back

If f : X → Y is smooth with connected fibers of dimension d, let f̃ = f ∗ ◦ [d], then we have

the following properties,

(1) f ! = f ∗[2d] and Df ∗(B) = f !(DB). (We will ignore the Tate twist.)

(2) K ∈ D(Y )≤0 ⇔ f̃K ∈ D(X)≤0.

(3) K ∈ D(Y )≥0 ⇔ f̃K ∈ D(X)≥0.

(4) K ∈M(Y )⇔ f̃K ∈M(X).

(5) pH i(f̃K) = f̃(pH i(K)).

(6) If K ∈ DY ≤0 and K ′ ∈ DY ≥0, then

HomD(Y )(K,K
′) = HomD(X)(f̃K, f̃K

′).

(7) f̃ :M(Y )→M(X) is a fully faithful functor.

(8) If K ∈M(Y ) and K ′ ∈M(X) is a subquotient of f̃K ∈M(X), then K ′ is isomorphic

to f̃K1 for some K1 ∈M(Y ).

Lemma 1. If f : X → Y is smooth with connected fibers of dimension d, then f̃ sends

irreducible perverse sheaves to irreducible perverse sheaves.

Proof. Let K ∈ M(Y ) be an irreducible perverse sheaf. Assume f̃K is not an irreducible

perverse sheaf. Let K ′ be a proper subobject of f̃K. By (8), ∃K1 ∈ M(Y ) such that
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f̃K1 ' K ′. There is a nonzero map φ ∈ Hom(f̃K1, f̃K). By (6), there is a nonzero map

φ ∈ Hom(K1, K). But K is irreducible, so we have an exact sequence K1
φ−→ K → 0. Since f̃

is an exact functor, we have f̃K1
φ−→ f̃K → 0. Since f̃K1 is a subobject of f̃K, f̃K1 ' f̃K.

This is an contradiction.

2.2.3 Pushforward and decomposition

(1) If f : X → Y is a proper morphism, then f∗ = f! and f!(DA) = Df!(A).

(2) If f : X → Y is a proper morphism with X smooth, then f!(1) ∈ D(Y ) is a semisimple

complex.

(3) Let f : X → Y be a morphism of varieties. If there is a partition X = X0∪X1∪· · ·∪Xm

of locally closed subvarieties, such that X≤j = X0∪· · ·∪Xj is closed for j = 0, · · · ,m,

and for each j there are morphisms Xj
fj−→ Zj

f ′j−→ Yj, such that Zj is smooth, fj is

a vector bundle, f ′j is proper and f ′jfj = f |Xj , then f!(1) ∈ D(Y ) is a semisimple

complex. Additionally, for any n and j, there is a canonical exact sequence:

0 // pHn(fj)!1 // pHn(f≤j)!1 // pHn(f≤j−1)!1 // 0,

where f≤j and fj are the restrictions of f .

(4) Let X be an algebraic variety, U be an open subset of X, and Z be the complement

of U in X. Let j : U ↪→ X and i : Z ↪→ X be the inclusions. For any K ∈ D(X),

there is a canonical distinguished triangle in D(X),

j!j
∗K // K // i!i

∗K
[1] // .

If f : X → Y , then we have a canonical distinguished triangle in D(Y ),

f!j!j
∗K // f!K // f!i!i

∗K
[1] // .
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2.2.4 Base change

If

X
f //

r
��

Y

s
��

Z
g //W

is a cartesian square and s is proper (resp. g is smooth), then

r!f
∗ = g∗s! : D(Y )→ D(Z).

Usually it is called a proper (resp. smooth) base change.

2.2.5 Projection formula

Let f : X → Y be a morphism of varieties. C ∈ D(X) and K ∈ D(Y ) are constructible

complexes, then

K ⊗ f!C ' f!(f
∗K ⊗ C).

2.2.6 Künneth formula

If f1 : X1 → Y1 and f2 : X2 → Y2 are morphisms over a variety S, let f := f1 ×S f2 :

X1 ×S X2 → Y1 ×S Y2, then we have the following properties (see [42]).

(1) If A ∈ Db(X1) and B ∈ Db(X2), then

f!(A�S B) ' f1!A�S f2!B.

(2) If S is a point, and F ∈ Db(Y1) and G ∈ Db(Y2), then

f !(F �G) ' f !
1F � f !

2G.

(3) If we further assume f1 (resp. f2) is smooth of relative dimension d1 (resp. d2), then

f ∗(F �G) ' f ∗1F � f ∗2G.

(4) Under the same assumption as (3), we have

f∗(F �G) ' f1∗F � f2∗G.

11



2.3 G-equivariant complexes

Let m : G×X → X be an action of a connected algebraic group G on X and π : G×X → X

be the second projection. Both maps are smooth with connected fiber of dimG. A perverse

sheaf K on X is said to be G-equivariant if the perverse sheaves π∗K[dimG] and m∗K[dimG]

are isomorphic. More generally, a complex K ∈ M(X)[n] is said to be G-equivariant if

the perverse sheaf K[−n] is G-equivariant. Denote by MG(X) the full subcategory of

M(X) whose objects are the G-equivariant perverse sheaves on X. More generally, denote

by MG(X)[n] the full subcategory of M(X)[n] whose objects are of the form K[n] with

K ∈MG(X).

(1) If A ∈MG(X), and B ∈M(X) is a subquotient of A, then B ∈MG(X).

(2) Assume f : X → Y is a G-equivariant morphism. If K ∈ MG(Y ), then pHn(f ∗K) ∈

MG(X) for all n. If K ′ ∈MG(X), then pHn(f!K
′) ∈MG(Y ) for all n.

(3) Assume that f : X → Y is a locally trivial principal G-bundle. Let d = dim(G). If

K ∈ M(Y )[n+ d], then f ∗K ∈ MG(X)[n]. Furthermore, the functor f ∗ :M(Y )[n+

d] → MG(X)[n] defines an equivalence of categories. The inverse f[ : MG(X)[n] →

M(Y )[n+ d] is given by f[(K) = H−n−d(f∗K)[n+ d].

2.4 Fourier Deligne transformations

The Artin-Schreier covering k → k sending x to xp − x has Fp as a group of covering

transformations. Hence any non-trivial character φ : Fp → Q∗l gives rise to a Ql local

system, E , of rank 1 on k. Let T : X → k be any morphism of algebraic varieties. Then

LT := T ∗E is a local system of rank 1 on X.

Now let E → X and E ′ → X be two vector bundles of constant fiber dimension d over

X. Let T : E ×X E ′ → k be a bilinear map which defines a duality between the two vector

12



bundles. Consider the following diagram,

E E ×X E ′soo t // E ′ ,

where s, t are projection maps. Define

Φ : D(E)→ D(E ′)

K 7→ t!(s
∗K ⊗ LT )[d].

This functor is called a Fourier-Deligne transform.

If we interchange the roles of E,E ′, then we have another Fourier-Deligne transform,

by abuse of notation, which we still denote by Φ : D(E ′) → D(E). Moreover, we have

Φ(Φ(K)) = j∗K for any K ∈ D(E), where j : E → E is multiplication by −1 on each fiber

of E.

If we restricts Φ to perverse sheaves, then Φ|M(E) : M(E) ' M(E ′). Moreover

pHn(Φ(K)) = Φ(pHnK) for K ∈ D(E).

We will use the following two properties in Chapter 4 (see [41]).

(1) Let A (resp. A′) be an object of D(E) (resp. D(E ′)). Let u (resp. u′, u̇) be the map

of E (resp. E ′, E ×X E ′) to the point. Then we have

u!(A⊗ Φ(A′)) = u̇!(s
∗A⊗ t∗A′ ⊗ LT [d]) = u′!(Φ(A)⊗ A′).

(2) Let T : kn → k be a non-constant affine linear function. Let u : kn → {pt}. Then

u!(LT ) = 0.

2.5 Characteristic functions of complexes

For the definition of characteristic function and its properties, we refer to [13, 31].

Let X be an algebraic variety over k. Let F be a Frobenius morphism of X and XF be

the set of fixed points by F . For any complex F ∈ Db(XF ,Ql), such that F ∗F ' F , we
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choose for each such F an isomorphism φF . The characteristic function of F with respect

to φF , denote by χF ,φF can be defined as follows

χF ,φF (x) = Tr(φF ,x : Fx → Fx), ∀ x ∈ XF ,

where Fx is the stalk of F at x.

If X = G is an algebraic group, we will choose a unique isomorphism φ : F ∗F → F

which induces identity on the stalk at 1 ∈ G. We will simply denote the characteristic

function by χF ,F . We list some properties of characteristic functions in the following.

(1) If f : X → Y is a morphism defined over Fq, and F ∈ Db(XF ,Ql), then for any

y ∈ Y F ,

χf!F ,F (y) =
∑

x∈f−1(y)F

χF ,F (x).

(2) If f : X → Y is a morphism defined over Fq, and G ∈ Db(Y F ,Ql), then for any

x ∈ XF ,

χf∗G,F (x) = χG,F (f(x)).

(3) For any F ,G ∈ Db(XF ,Ql) and x ∈ XF , we have χF⊗G,F (x) = χF ,F (x)χG,F (x).

(4) For any F ∈ Db(XF ,Ql) and x ∈ XF , we have χF [1],F (x) = (−1)χF ,F (x).

(5) If F ,G are semisimple complexes, then χF ,F (x) = χG,F (x) for all x ∈ XF and all

Frobenius morphisms if and only if F ' G.

(6) If (F , E ,G) is a distinguished triangle in D(X), then for all x ∈ XF ,

χE,F (x) = χF ,F (x) + χG,F (x).
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Chapter 3

Preliminary

3.1 Ringel Hall algebra

A quiver Γ = (I,H, s, t) consists of a set of vertices I, a set of arrows H and two maps

s, t : H → I, such that s(h) is the source and t(h) is the target of h ∈ H. In order to

simplify the notation, denote s(h) = h′, t(h) = h′′. If h ∈ H, s(h) = i, and t(h) = j, then

the arrow h is commonly presented as i
h−→ j.

A representation (V, x) of Γ = (I,H, s, t) over field k is an I-graded k vector space V

together with a set {xh}h∈H of linear transformations xh : Vh′ → Vh′′ . A homomorphism

from one representation (V, x) to another representation (W, y) is a collection {gi}i∈I of

linear maps gi : Vi → Wi, such that gh′′xh = yhgh′ for all h ∈ H. If all gi are isomorphisms,

(V, x) and (W, y) are said to be isomorphic.

Let A be a finitary abelian category, where finitary means ∀M,N ∈ ob(A), |Hom(M,N)| <

∞, and |Ext1(M,N)| < ∞. Let χ be the set of isomorphism classes [M ] of objects M in

A. Set

HA =
⊕

[M ]∈χ

Z[M ]

and define a multiplication on HA as

[M ] · [N ] = Σ[E]∈χF
E
M,N [E],

where FE
M,N = ] {L is a subobject of E | L ∼= N,E/L ∼= M}. HA is called the Hall algebra

of A and FE
M,N is called a Hall number.
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If A is the category of finite dimensional representations of an algebra Λ over a finite

field, then the finiteness condition holds. In this case, we denote HA by H(Λ).

Fix a Dynkin quiver Γ. For given representations M,N,E, the Hall number FE
M,N de-

pends on the cardinality, q, of k. Precisely, one may find polynomials of q as structure

constants of the Hall algebra H(kΓ). Such polynomials are called Hall polynomials, see

[50]. Thus the free Z[q]-module Hq(kΓ), regarding q as indeterminant, is well defined and

is called the generic Hall algebra.

3.2 Lusztig’s geometric approach to Hall algebras

Fix a loop-free quiver Γ = (I,H, s, t) and an I-graded k vector space V =
⊕

i∈I Vi, where k

is the algebraic closure field of Fq. Let

EV =
⊕
h∈H

Homk(Vh′ , Vh′′)

and

GV =
⊕
i∈I

GLk(Vi).

A flag of type (i, k) = ((i1, k1), · · · , (im, km)) ∈ (I × N)m in V is a sequence

f = (V = V 0 ⊃ V 1 ⊃ · · · ⊃ V m = 0)

of I-graded vector spaces such that V l−1/V l ' k⊕kl concentrated at vertex il for all l =

1, 2, · · · ,m.

Let FV,i,k be the variety of all flags of type (i, k) in V . Then FV,i,k is a product of certain

Grassmannians.

Let F̃V,i,k = {(x, f) ∈ EV ×FV,i,k | f is x-stable}, where x-stable means xh(V
l
h′) ⊂ V l

h′′ ,

for all h ∈ H, l = 1, · · · ,m.

The GV -actions are defined as follows. GV acts on EV by conjugation. i.e. g · (xh)h∈H =

(gh′′xhg
−1
h′ )h∈H for any g ∈ GV and (xh)h∈H ∈ EV ; GV acts on FV,i,k by

g · (V 0 ⊃ V 1 ⊃ · · · ⊃ V m = 0) 7→ (gV 0 ⊃ gV 1 ⊃ · · · ⊃ gV m = 0),
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for any g ∈ GV and (V 0 ⊃ V 1 ⊃ · · · ⊃ V m = 0) ∈ FV,i,k; and GV acts diagonally on F̃V,i,k,

i.e., g · (x, f) 7→ (gx, gf).

Let LV,i,k = (πV,i,k)!1[dimk(F̃V,i,k)], where πV,i,k : F̃V,i,k → EV is the first projection

map. Since πV,i,k is a GV -equivariant map, LV,i,k is a GV -equivariant perverse sheaf. By

decomposition theorem in [1], LV,i,k is semisimple since πV,i,k is a proper map. LV,i,k is called

a Lusztig sheaf.

Let QV be the full subcategory of DbGV (EV ) whose objects are isomorphic to finite direct

sums of L[d] for various d ∈ Z and various simple perverse sheaves L which are direct

summands of LV,i,k for some (i, k) ∈ (I×N)m. Let KV be the graded Grothendieck group of

the category QV . LetMV be the graded Grothendieck group of the category which consists

of all direct sums of LV,i,k up to shift for various (i, k) ∈ (I×N)m. Let v be an indeterminate

and A = Z[v, v−1]. Define an A-action on Db(EV ) as vn · L = L[n]. Then MV (resp. KV )

is an A-module generated by LV,i,k (resp. simple direct summands of LV,i,k) for various

(i, k) ∈ (I × N)m.

Fix an I-graded subspace W ⊂ V and let T = V/W . Let P be the stabilizer of W in

GV and U be the unipotent radical of P . Consider the following diagrams:

ET × EW GV ×U F
p1oo p2 // GV ×P F

p3 // EV .

ET × EW F
πoo ι // EV .

Here F = {x ∈ EV | xh(Wh′) ⊂ Wh′′ , ∀h ∈ H}, and the maps are defined as follows.

p1(g, x) = (xT , xW ), where xW = x|W and xT is the induced map x : V/W → V/W ;

p2(g, x) = (g, x); p3(g, x) = g(ι(x)), where ι is the embedding F ↪→ EV ; and π(x) =

(xT , xW ).

For any A ∈ DbGT×GW (ET × EW ), define IndVT,W A := p3!p2[p
∗
1A[d1 − d2], where d1 (resp.

d2) is the dimension of fibers of p1 (resp. p2). Here p2[ is well defined by proposition 2.3(3)

since p2 is a principle GT ×GW -bundle. The functor IndVT,W : QT ×QW → QV is called an

induction functor.
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For any A ∈ DbGV (EV ), define ResVT,W := π!ι
∗A[d1 − d2 − 2 dimG/P ], where d1, d2 are

the same as ones in the inductive functor. The functor ResVT,W : QV → QT ×QW is called

a restriction functor.

Now let K = ⊕VKV . Define a multiplication as follows.

Ind : K ×K → K

(A,B) 7→ IndVT,W (A�B),

where A,B are homogenous elements with A ∈ KT and B ∈ KW , V is a I-graded vector

space such that W ⊂ V and V/W = T .

Define a comultiplication as follows.

Res : K → K⊗K

A 7→ ⊕T,W ResVT,W (A),

where A are homogenous elements in KV .

Now define an algebraic structure on K ⊗K by

(x⊗ y)(x′ ⊗ y′) = q−
(|x′|,|y|)

2 xx′ ⊗ yy′

for x, x′, y, y′ homogeneous, where the symmetric bilinear form (−,−) : ZI × ZI → Z is

defined by

(a, b) = 2
∑
i∈I

aibi −
∑
h∈H

(ah′bh′′ + ah′′bh′).

Theorem 1 ([34, 36, 38, 41]). (1) If Γ is a quiver without loops, then K equipped multipli-

cation Ind is isomorphic to H?(Γ) (see Chapter 1) as an I-graded A algebra.

(2) Res : K → K ⊗ K is an A-algebra homomorphism. i.e. Res defines a coalgebra

structure on K.

(3) {LV,i,k | for all V and (i, k)} are additive generators of K. Hence {LV,i,k} for various

V and (i, k) contains an A-basis of K. This basis is called a monomial basis.

(4) All simple perverse sheaves which are direct summands of LV,i,k for various V and

(i, k), form an A-basis of K. This basis is called the canonical basis.
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3.3 Character sheaves

Roughly speaking, character sheaf theory is a geometric character theory of algebraic groups.

Constructions of character sheaves for different algebraic groups are different. In this sec-

tion, we will introduce characteristic functions of character sheaves which connect geometric

objects, character sheaves, to algebraic objects, class functions.

Let k be the algebraic closure of Fq, and G be an algebraic group over k. An Fq-structure

on G is given by a Frobenius map F : G → G. Let GF be the fixed point set of G by F

which is a finite subgroup of G, see [7].

Character sheaves are some G-equivariant perverse sheaves F whose characteristic func-

tions are certain generalized characters of the groupGF . HereG acts on itself by conjugation.

Let CS(G) be the set of character sheaves onG. Let CSF (G) = {F ∈ CS(G) | F ∗F ' F}.

For any F ∈ CSF (G), choose an isomorphism φF : F ∗F → F . Here φF is unique up to

nonzero scalar. Characteristic functions, χF ,F , of F with respect to F is defined by

χF ,F (g) =
∑
i

(−1)iTr(φF ,Hi
g(F)),

where Hi
g(F) is the stalk of the cohomology sheaf, Hi(F) of F at g ∈ GF . See more details

in [32]. Since F is a G-equivariant complex, the function χF ,F (g) : GF → Ql satisfies

χF ,F (hgh−1) = χF ,F (g), ∀h ∈ GF .

i.e. χF ,F is a Ql-valued class function of GF .

For some algebraic groups, such as abelian groups and GLm(k), the characteristic func-

tions of character sheaves are irreducible characters. For general reductive groups, one

cannot always get irreducible characters with value in Ql from character sheaves. How-

ever, characteristic functions of character sheaves are a linear combination of a “small”

number of irreducible characters of GF , where “small” means the number is independent

of q := |kF |. Moreover, the characteristic functions form a basis of vector space of class

functions GF → Ql.
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Chapter 4

Geometric approach to Hall algebras

In this chapter, we fix R = k[t]/(tn) and consider R-free representations of loop-free quivers.

Denoted RepfR(Γ) the category consisting of all R-free representations of Γ. RepfR(Γ) is not

an abelian category but rather an exact category. Hubery defines the Hall algebra over an

exact category in [20]. Let HR(Γ) be the Hall algebra on RepfR(Γ). One can ask if there

exists a coalgebra structure on the Hall algebra over exact category. In general, this is not

true (even the homological dimension of the exact category is 1). The category RepfR(Q)

serves as a counterexample to that the Hall algebra on it has no coalgebra structure. We

will give a geometric realization of the composition subalgebra of HR(Γ).

4.1 Hall algebra over an exact category

4.1.1 Exact category

Let A be an additive category which is a full subcategory of an abelian category B and

closed under extension in B. Let E be a class of sequences

0 //M ′ i //M
j //M ′′ // 0

in A which are exact in the abelian category B. A map f is called an inflation (resp. a

deflation ) if it occurs as the map i (resp. j ) of some members in E . Inflations and deflations

will be denoted by M ′ �M and M �M ′′ respectively. The pair M ′ �M �M ′′ is called
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a conflation. The following is Quillen’s definition of an exact category. See [4] for more

properties of an exact category.

Definition 1. [48] An exact category is the additive category A equipped with a family E

of the short exact sequences of A, such that the following properties hold:

(i) Any sequence in A which is isomorphic to a sequence in E is in E , and the split

sequences in A are in E .

(ii) The class of deflations is closed under composition and under base change by an

arbitrary map in A. Dually, the class of inflations is closed under composition and

base change by an arbitrary map in A.

(iii) Let M → M ′′ be a map possessing a kernel in A. If there exists a map N → M in

A such that N → M → M ′′ is a deflation, then M → M ′′ is a deflation. Dually, let

M ′ → M be a map possessing a cokernel in A. If there exists a map M → L in A

such that M ′ →M → L is an inflation, then M ′ →M is an inflation.

4.1.2 Representation of quivers over commutative rings

A representation (V, x) of Γ = (I,H, s, t) over a commutative ring R is an I-graded R-module

V together with a set {xh}h∈H of R-linear transformations xh : Vh′ → Vh′′ .

A homomorphism from one representation (V, x) to another representation (W, y) is a

collection {gi}i∈I of R-linear maps gi : Vi → Wi, such that gh′′xh = yhgh′ for all h ∈ H. If

all gi are R-isomorphisms, (V, x) and (W, y) are said to be isomorphic.

Let RepR(Γ) be the category of representations of Γ over R. RepR(Γ) is an abelian

category. If V is an I-graded free R-module, then the representation (V, x) is called an R-

free representation. All such representations form a full subcategory RepfR(Γ) of RepR(Γ).

Unfortunately, this subcategory is not an abelian category anymore, but rather an exact

category. In the following, all representations are assumed to be free over R. In this case,

we can define the dimension vector |V | := (RankR(Vi))i∈I .
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Lemma 2. RepfR(Γ) is an exact category with homological dimension 1.

Proof. It is easy to see RepfR(Γ) is an additive category. Let E be the set of all possible short

exact sequences in RepfR(Γ). Then RepfR(Γ) with the class E is an exact category. In this

case, an inflation is an injective map, such that the cokernel is an I-graded free R-module

and a deflation map is a surjective map, such that the kernel is an I-graded free R-module.

Let A = RΓ. To show the homological dimension of RepfR(Γ) is 1, it is enough to show

that sequence,

0 // ⊕ρ∈HAeρ′′ ⊗R eρ′X
f // ⊕i∈IAei ⊗R eiX

g // X // 0 (4.1)

is exact for any R-free left A-module X, where ei is the trivial path for the vertex i, and

g(a⊗ x) = ax, f(a⊗ x) = aρ⊗ x− a⊗ ρx.

In fact, the proof is the same as Crawley-Boevey’s proof for the stand resolution in [2].

Firstly, g is clearly onto, since for any x ∈ X, g(⊕iei⊗ eix) = 1 · x = x. Secondly, g ◦ f = 0.

i.e. Im(f) ⊂ Ker(g). We will show the converse inclusion.

Any element ξ ∈ ⊕i∈IAei ⊗R eiX can be uniquely written into

ξ =
∑
i

∑
paths a with s(a)=i

a⊗ xa,

where a ∈ Aei and xa ∈ es(a)X.

Define degree(ξ) to be the length of the longest path a with xa 6= 0. If a is a non-trivial

path with s(a) = i, then a = a′ρ for some path a′ and arrow ρ such that s(ρ) = i and

s(a′) = t(ρ). Since a′ ⊗ xa ∈ ⊕ρ∈HAeρ′′ ⊗R eρ′X, we have f(a′ ⊗ xa) = a⊗ xa − a′ ⊗ ρxa.

Since degree(ξ−f(
∑

i

∑
paths a with s(a)=i a

′⊗xa)) < degree(ξ), by repeating this process,

ξ + Im(f) always contains an element of degree 0.

Now for any ξ ∈ Ker(g), let ξ′ ∈ ξ + Im(f) has degree zero. Then

0 = g(ξ) = g(ξ′) = g(
∑
i

ei ⊗ x′ei) =
∑

x′ei .

So x′ei = 0 for all i. Therefore ξ′ = 0. This shows Ker(g) ⊂ Im(f).
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We will next show Ker(f) = 0. Any element ξ ∈ Ker(f) can be written into

ξ =
∑
ρ∈H

∑
paths a with s(a)=t(ρ)

a⊗ xρ,a,

where xρ,a ∈ es(ρ). Let a be a path with maximal length such that xρ,a 6= 0 for some ρ. Since

f(ξ) =
∑
ρ

∑
a

aρ⊗ xρ,a −
∑
ρ

∑
a

a⊗ ρxρ,a,

the coefficient of aρ in f(ξ) is xρ,a, but the length of aρ is one more than the length of a.

This is a contradiction.

Here the homological dimension 1 refers to Extn(X, Y ) vanishing for all n ≥ 2 and X, Y ∈

A. See Chapter 6 in [14] for the definition of Extn(X, Y ) in an exact category.

4.1.3 Hall algebra over an exact category

In this section, we first deform Hubery’s definition of the Hall algebra over a finitary exact

category, then give a counterexample to show that a coalgebra structure of the Hall algebra

can not be obtained by twisting. We will always assume A is an exact category which is a

full subcategory of an abelian category B.

The algebra structure

Let A be a finitary and small exact category. Denote by WL
XY the set of all conflations

Y � L� X. The group Aut(X)× Aut(Y ) acts on WL
XY via:

Y
f //

η
��

L
g // X

ε
��

Y
f // L

g // X.

Denote by V L
XY the quotient set of WL

XY by the group Aut(X) × Aut(Y ). Since f is an

inflation and g is a deflation, this action is free. So

FL
XY := |V L

XY | =
|WL

XY |
aXaY

,
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where aX = |Aut(X)|. The Ringle-Hall algebra H(A) is defined as the free Z-module on the

set of isomorphism classes of objects. By abuse of notation, we will write X for the isomor-

phism classes [X], and use the numbers FL
XY as the structure constants of multiplication.

Define

X ◦ Y :=
∑
L

FL
XYL,

Theorem 2 ([20]). The Ringel-Hall algebra H(A) of a finitary and small exact category A

is an associate, unital algebra.

If A = RepfR(Γ), we want to deform the Ringel-Hall algebra H(RepfR(Γ)). Firstly, for

α = (ai)i∈I , β = (bi)i∈I , define

〈α, β〉 :=
∑
i∈I

aibi −
∑
h∈H

ah′bh′′ . (4.2)

It is easy to check this is a bilinear form on NI .

For any X, Y ∈ RepfR(Γ), define a deformed multiplication as

XY := qn〈|X|,|Y |〉X ◦ Y.

Here |X| is the dimension vector of X which is defined in last section.

Theorem 3. H(RepfR(Γ)) equipped with the deformed multiplication is an associate, unital

algebra.

Proof. By Theorem 2, it is enough to prove that for any α, β, γ ∈ NI ,

〈α, β〉+ 〈α + β, γ〉 = 〈β, γ〉+ 〈α, β + γ〉.

From the bilinearity of 〈−,−〉, both sides are equal to 〈α, β) + 〈α, γ〉+ 〈β, γ〉.

The coalgebra structure

Let ∆ : H(A)→ H(A)⊗H(A) be the map as following,

∆(E) :=
∑
M,N

q
n
2
〈M,N〉FE

MN

aMaN
aE

M ⊗N, (4.3)

24



where M,N run through all conflations M � E � N . If one defines the twisted multipli-

cation on H(A)⊗H(A) to be

(A⊗B) · (C ⊗D) := q
n
2

(〈B,C〉+〈C,B〉)AC ⊗BD, (4.4)

then as Green shows, in [17], the map ∆ defined in (4.3) is an algebra homomorphism with

respect to this twisted multiplication on H(A)⊗H(A) when A is a hereditary abelian cate-

gory. i.e. ∆ gives a coalgebra structure on H(A). Unfortunately, ∆ is not a homomorphism

of algebras if A is an exact category. In the rest of this section, let’s focus on the case of

the exact category A = RepfR(Γ).

The following counterexample shows that ∆ : H(A) → H(A) ⊗H(A), defined in (4.3),

cannot be an algebra homomorphism under any twist in the case of A = RepfR(Γ).

Example 1. Let Γ = A2 : 1→ 2, R = k[t]/(tn) (n > 2), and M = N = (R
t−→ R).

If ∆ is an algebra homomorphism, we must have

∆(MN) = ∆(M)∆(N). (4.5)

On the right hand side of (4.5), we have

D // //
��

��

X // // B��

��
M

����

N

����
C // // Y // // A,

where the only possible choices for B and D are 0
0−→ R, R

t−→ R, and 0
0−→ 0. Thus, all

possible choices for X are 0
0−→ R2, 0

0−→ R, 0
0−→ 0, R

t−→ R, R

t
0


−−→ R2, and R2

t a
0 t


−−−−−→ R2,

where a ∈ R.
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On the left hand side of (4.5), we have

X��

��
M // // E // //

����

N

Y

Here E ' (R2

t a
0 t


−−−−−→ R2). If a ∈ tR, then[

t a
0 t

]
'
[
t 0
0 t

]
.

If a is invertible in R, then [
t a
0 t

]
'
[
1 0
0 t2

]
.

Let E1 ' (R2

t 0
0 t


−−−−−→ R2) and E2 ' (R2

1 0
0 t2


−−−−−→ R2). Then, MN = αE1 + βE2 for some

nonzero number α and β. It is clear that ∆(E2) has a summand (R
1−→ R)⊗ (R

t2−→ R). This

term, however, never appears on the right hand side of (4.5). This shows ∆ cannot be an

algebra homomorphism.

This counterexample shows that a coalgebra structure of H(RA2) cannot be defined by

(4.3) no matter how the multiplication of H(RA2)⊗H(RA2) is twisted.

Let CHR(Γ) be the subalgebra of H(RΓ) generated by all Si, for i ∈ I. We will give a

geometric approach of CHR(Γ) in the rest of this chapter.

4.2 Lusztig’s geometric setting

In this section, we will fix R = k[t]/(tn), a loop-free quiver Γ = (I,H, s, t), and an I-graded

free R-module V =
⊕

i∈I Vi which can be thought of as an I-graded k-vector space. We

define

Ek
V =

⊕
h∈H

Homk(Vh′ , Vh′′), (4.6)
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ER
V =

⊕
h∈H

HomR(Vh′ , Vh′′), (4.7)

Gk
V =

⊕
i∈I

GLk(Vi), (4.8)

and

GR
V =

⊕
i∈I

GLR(Vi). (4.9)

GR
V (resp. Gk

V ) acts on ER
V (resp. Ek

V ) by conjugation, i.e., gx = x′ and x′h = gh′′xhg
−1
h′ for

all h ∈ H.

Given R-modules V1 and V2, Homk(V1, V2) has an R-module structure as follows,

(rf)(v) = f(rv)− rf(v),

for all r ∈ R, v ∈ V1 and f ∈ Homk(V1, V2). Then

HomR(V1, V2) = {f ∈ Homk(V1, V2) | rf − fr = 0, ∀r ∈ R} .

Since Ek
V is an affine k-variety and rf − fr = 0 for different r ∈ R are algebraic equations,

ER
V is a closed k-subvariety of Ek

V . Similarly, GR
V is a closed algebraic k-subgroup of Gk

V .

4.2.1 Flags

A generalized k-flag of type (i, k) = ((i1, k1), · · · , (im, km)) ∈ (I × N)m in an I-graded

k-vector space V is a sequence

f = (V = V 0 ⊃ V 1 ⊃ · · · ⊃ V m = 0)

of I-graded vector spaces such that V l−1/V l ' k⊕kl concentrated at vertex il for all l =

1, 2, · · · ,m.

Let FkV,i,k be the k-variety of all generalized k-flags of type (i, k) in V .

Let F̃kV,i,k = {(x, f) ∈ Ek
V ×FkV,i,k | f is x-stable}, where f is x-stable if xh(V

l
h′) ⊂ V l

h′′ , for

all h ∈ H, l = 1, · · · ,m.

Gk
V acts on FkV,i,k by g · f 7→ gf, where

gf = (gV 0 ⊃ gV 1 ⊃ · · · ⊃ gV m = 0)
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if f = (V = V 0 ⊃ V 1 ⊃ · · · ⊃ V m = 0). And Gk
V acts diagonally on F̃kV,i,k, i.e., g · (x, f) 7→

(gx, gf).

An R-flag of type (i, k) = ((i1, k1), · · · , (im, km)) ∈ (I × N)m in an I-graded R-module V is

a sequence

f = (V = V 0 ⊃ V 1 ⊃ · · · ⊃ V m = 0)

of I-graded R-modules such that V l−1/V l ' k⊕kl as k-vector spaces concentrated at vertex

il for all l = 1, 2, · · · ,m.

Similarly, let FRV,i,k be the k-variety of all R-flags of type (i, k) in V .

For any free R-module V , V/tV is a k vector space; we will denote it by V0. Moreover,

we can define the evaluation map as follows,

e : FRV,i,k → FkV0,i,k

f = (V ⊃ V 1 ⊃ · · · ⊃ V m = 0) 7→ e(f) = (V0 ⊃ V 1
0 ⊃ · · · ⊃ V m

0 = 0).

Denote

f0 = e(f)⊗k R := (V0 ⊗k R ⊃ V 1
0 ⊗k R ⊃ · · · ⊃ V m

0 ⊗k R). (4.10)

Let F̃RV,i,k = {(x, f) ∈ Ek
V × FRV,i,k | f0 is x-stable}. Moreover, we can define GR

V actions on

FRV,i,k and F̃RV,i,k in a similar way.

Note that if V is an R-module, then a k-subspace W ⊂ V is an R-submodule if and

only if (1 + t)W = W . This gives an algebraic equation. So FRV,i,k (resp. F̃RV,i,k) is a closed

subvariety of FkV,i,k (resp. F̃kV,i,k).

A R-free flag of type (i, k) = ((i1, k1), · · · , (im, km)) ∈ (I×N)m in an I-graded free R-module

V is a sequence

f = (V = V 0 ⊃ V 1 ⊃ · · · ⊃ V m = 0)
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of I-graded free R-modules such that V l−1/V l ' R⊕kl concentrated at vertex il as R-modules

for all l = 1, 2, · · · ,m.

Let FRfV,i,k ⊂ FRV,i,nk be the subvariety of all R-free flags of type (i, k), where (i, nk) =

((i1, nk1), · · · , (im, nkm)) if (i, k) = ((i1, k1), · · · , (im, km)).

Let F̃RfV,i,k = F̃RV,i,k ∩ (ER
V × F

Rf
V,i,k) and FRNfV,i,k (resp. F̃RNfV,i,k ) be the complement of FRfV,i,k

(resp. F̃RfV,i,k) in FRV,i,nk (resp. F̃RV,i,nk). We can define GR
V actions on these k-varieties in a

similar way.

Remark 1. Notice that FRfV,i,k is an (n−1)th-Jet scheme over FkV0,i,k (see [45]). So dimk FRfV,i,k =

n dimk FkV0,i,k. Moreover, the dimension (resp. shift functors for perverse sheaves) argument

in Lusztig’s papers can be adapted here by multiplying by n. In the rest of this chapter, we

will skip the proof of the statements about dimension and shift degree.

To simplify the notations, for any (i, k) ∈ (I × N)m and each i ∈ I, let Ni(i,k) =∑
r<r′ krkr′δiirδiir′ ; for each h ∈ H, let Nh(i, k) =

∑
r′<r kr′krδh′ir′δh′′ir , where δ is the

Kronecker delta. In the following, dimension always refers to k-dimension, so we will denote

it by dim instead of dimk. Rank always refers to the rank of free R-modules, and we will

therefore denote it by Rank.

Proposition 1. (1) FRV,i,k is a projective variety.

(2) FRfV,i,k is an open smooth subvariety of FRV,i,nk and FRNfV,i,k is a closed subvariety of FRV,i,nk.

(3) The evaluation map e : FRfV,i,k → FkV0,i,k is a vector bundle with rank (n−1)
∑

iNi(i, k).

Hence the dimension of FRfV,i,k is n
∑

iNi(i, k).

Proof. (1) Choose f ∈ FkV,i,k. Define P := StabGkV (f), the stabilizer of f in Gk
V . P is a

parabolic subgroup, so FkV,i,k = Gk
V /P is a projective variety. FRV,i,k is a closed subvariety,

so it is also a projective variety.

(2) To show FRfV,i,k ⊂ FRV,i,nk is an open subset, let’s first consider the Grassmannian.
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Let Gk(sn, ln) be the set of all sn-dimensional k-subspaces in V with dimV = ln and

GR(sn, ln) = {f ∈ Gk(sn, ln) | (1+t)f = f}. Let GRf (s, l) be the set of all free R-submodules

with Rank s in V , where Rank(V ) = l. Clearly, GRf (s, l) ⊂ GR(sn, ln) ⊂ Gk(sn, ln).

Let G̃R(sn, ln) = {(W, bW ) | W ∈ GR(sn, ln) and bW is a k-basis of W}.

The first projection π : G̃R(sn, ln)→ GR(sn, ln) is a frame bundle.

Define

φ : G̃R(sn, ln)→ Mat(sn),

(W, bW ) 7→M(bW , t),

where Mat(sn) is the set of all sn× sn matrices and M(bW , t) is the matrix of t under the

basis bW . Clearly, φ is a morphism of algebraic varieties.

In general, for any free R-module V ' R⊕r, the R-module structure induces a nilpotent

k-linear map t : V → V where dim(Ker(t)) = r.

For any R-submodule W ⊂ V with k-dimension ns, W is a free R-module if and on-

ly if dim(Ker(t|W )) = s, i.e., t|W has maximal rank (n − 1)s. Therefore, GRf (s, l) =

π(φ−1(Mat(sn)rk=s(n−1))), where Mat(sn)rk=s(n−1) is the set of all matrices with rank s(n−1).

φ−1(Mat(sn)rk=s(n−1)) is open in φ−1(Mat(sn)rk≤s(n−1)) = G̃R(sn, ln) since Mat(sn)rk=s(n−1)

is an open subset in Mat(sn)rk≤s(n−1). Moreover, π is a principle GLsn(k)-bundle and

φ−1(Mat(sn)rk=s(n−1)) is GLsn(k)-stable, so GRf (s, l) is open in GR(sn, ln).

Now for any flag f = (V 0 ⊃ V 1 ⊃ · · · ⊃ V m) ∈ FRV,i,nk, each entry V l gives an open

condition when it is a free R-module. So FRfV,i,k is the intersection of m many such open

subsets. The smoothness follows from Remark 1 and the notes after Lemma 1.2 in [45].

This proves the first statement. The second statement follows from the first one.

(3) Recall for any R-free module V , we denote V0 = V/tV , then V ' V0 ⊗k R. Without

loss of generality, we will simply assume V = V0⊗kR. For any element f = (V0 ⊃ V 1
0 ⊃ · · · ⊃

V m
0 ) ∈ FkV0,i,k, let P k(f) be its stabilizer in Gk

V0
. Let PR(f) be the stabilizer of f ⊗k R (see

(4.10)) in GR
V , where we identify V with V0 ⊗k R. So FRfV,i,k (resp. FkV0,i,k) can be identified

with GR
V /P

R(f) (resp. Gk
V0
/P k(f)) for a fixed f.
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Now consider the map ι : FkV0,i,k → F
Rf
V,i,k, f 7→ f⊗k R. Since ι is an injective map, in the

rest of this chapter, we will identify FkV0,i,k with ι(FkV0,i,k) and consider FkV0,i,k as a subset of

FRfV,i,k. Similarly, we will consider Gk
V0
/P k(f) as a subset of GR

V /P
R(f) via the map ι.

Now any element A ∈ GR
V can be written as A = h · A0, where A0 ∈ Gk

V0
and h ∈

H := {Id+ tB|B ∈ EndR(V )}. Then the evaluation map e sends h · A0 to A0. Therefore,

∀x ∈ Gk
V0

, we have e−1(x) = H/(H∩PR)·x. As a set, H/(H∩PR)·x is in 1-1 correspondence

to H/(H ∩ PR), and H/(H ∩ PR) is a direct sum of quasi-lower triangular matrices with

entries in tR for all i ∈ I, which is clearly a k-vector space of dimension (n− 1)
∑

iNi(i, k).

Now for any open subset U ⊂ Gk
V0
/P k(f), define

φU : U ×H/(H ∩ PR)→ e−1(U)

(x, a) 7→ a · x.

It is easy to check this gives a vector bundle structure.

Remark 2. From the above proof, we have FRfV,i,k =
{
gh · f | g ∈ Gk

V0
/P k, h ∈ H/(H

⋂
PR)

}
for a fixed f ∈ FkV0,i,k and e : FRfV,i,k → FkV0,i,k sending gh · f to g · f. Since Gk

V0
acts on FkV0,i,k

transitively, we have FkV0,i,k =
{
g · f | g ∈ Gk

V0
/P k(f)

}
for a fixed f ∈ FkV0,i,k.

Proposition 2. (1) F̃RfV,i,k is a smooth irreducible variety, and the second projection p2 :

F̃RfV,i,k → F
Rf
V,i,k is a vector bundle of dimension n

∑
hNh(i, k). So the k-dimension of F̃RfV,i,k

is d(V, i, k) := n
∑

iNi(i, k) + n
∑

hNh(i, k).

(2) Let πfV,i,k : F̃RfV,i,k → ER
V be the first projection map. Then (πfV,i,k)!1 is semisimple.

Proof. Let F̃kR =
{

(x, f) ∈ ER
V ×FkV0,i,k | f is x− stable

}
. Here we consider FkV0,i,k as a sub-

set of FRfV,i,k. By using Lusztig’s argument for Lemma 1.6 in [36], we want to show the second

projection p2 : F̃kR → FkV0,i,k is a vector bundle. In fact, for any f = (V ⊃ V 1 ⊃ · · · ⊃ V m =

0) ∈ FkV0,i,k, let Z be the fiber of p2. The first projection identifies Z with the set of all

x ∈ ER
V such that xh(V

l
h′) ⊂ V l

h′′ for all h ∈ H and all l = 0, 1, · · · ,m. This is a linear

subspace of ER
V because we can choose a basis for each Vi such that xh are upper triangle

31



matrices for each h ∈ H. Hence its dimension is equal to

n
∑

l′≤l,h∈H

(Rank(V l′−1
h′ )− Rank(V l′

h′))(Rank(V l′−1
h′′ )− Rank(V l′

h′′))

which is equal to n
∑

hNh(i, k). Since GR
V acts on FkV0,i,k transitively, this is independent of

f but only dependent on (i, k). This shows that p2 is a vector bundle.

Now consider the following cartesian square,

F̃RfV,i,k
p1 //

b
��

FRfV,i,k
e

��
F̃kR

p2 // FkV0,i,k.

(4.11)

Since p2 is a vector bundle with rank n
∑

hNh(i, k), p1 is a vector bundle with rank

n
∑

hNh(i, k). The smoothness and irreducibility follow Proposition 1. This proves the

first statement. The second statement follows from the first one.

(2) Consider cartesian square (4.11). By Proposition 1, e is a vector bundle, then b is

also a vector bundle. Now consider the following commutative diagram

F̃RfV,i,k
b //

πfV,i,k !!

F̃kR
p

��
ER
V

. (4.12)

Here the first projection map, p, is a proper map. By Proposition 2.2.3(3), (πfV,i,k)!1 = p!b!1

is semisimple. Proposition follows.

Denote L̃fV,i,k := (πfV,i,k)!1 ∈ D(EV ). By Proposition 2, L̃fV,i,k is semisimple.

Proposition 3. Let LfV,i,k = L̃fV,i,k[d(V, i, k) + (n− 1)
∑

iNi(i, k)]. Then LfV,i,k is a perverse

sheaf. In particular, D(LfV,i,k) = LfV,i,k.

Proof. From the proof of Proposition 2, we have πfV,i,k = pb, where p is a proper map and b
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is a vector bundle with rank (n− 1)
∑

iNi(i, k). Therefore,

LfV,i,k = (πfV,i,k)!1[d(V, i, k) + (n− 1)
∑
i

Ni(i, k)]

= p!b!1[d(V, i, k) + (n− 1)
∑
i

Ni(i, k)]

= p!b!b
∗1F̃kR

[d(V, i, k) + (n− 1)
∑
i

Ni(i, k)]

= p!1F̃kR
[d(V, i, k)− (n− 1)

∑
i

Ni(i, k)]

= p!1F̃kR
[dimk(F̃kR)].

Since p is a proper map and 1F̃kR
[dimk(F̃kR)] is a perverse sheaf, LfV,i,k is a perverse sheaf.

Similarly, let πRV,i,k : F̃RV,i,k → ER
V be the first projection. We define L̃RV,i,k = (πRV,i,k)!1F̃RV,i,k

.

Let PfV (resp. PRV ) be the full subcategory of M(ER
V ) consisting of perverse sheaves

which are direct sums of the simple perverse sheaves L that are the direct summands of

L̃fV,i,k (resp. L̃RV,i,k) up to shift for some (i, k) ∈ (I × N)m. Let QfV (resp. QRV ) be the full

subcategory of D(ER
V ) whose objects are isomorphic to finite direct sums of L[d] for various

simple perverse sheaves L ∈ PfV (resp. PRV ) and various d ∈ Z.

4.2.2 Restriction functor

To define the restriction functor, Lusztig considers the following diagram

ET × EW F
κoo ι // EV ,

where ι is an embedding and κ(x) = (xW , xT ). Recall xW = x|W and xT is the induced

map x : V/W → V/W . For any B ∈ D(ER
V ), define Res

V

T,WB := κ!ι
∗B. However, it

is no longer true that Res
V

T,WB ∈ Q
f
T,W , even for B ∈ QfV . In fact, given a free flag

f = (V 0 ⊃ V 1 ⊃ · · · ⊃ V m = 0), and W ⊂ V, T = V/W being free R-modules, the induced

flags

fT := ((V 0 +W )/W ⊃ (V 1 +W )/W ⊃ · · · ⊃ (V m +W )/W = 0) (4.13)

fW := (V 0
⋂

W ⊃ V 1
⋂

W · · · ⊃ V m
⋂

W = 0) (4.14)
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are no longer free flags, since V l
⋂
W and (V l+W )/W are no longer free modules in general.

Lemma 3. Res
V

T,W (B) is semisimple in Db
GRT×G

R
W

(ER
T × ER

W ) for B ∈ QfV .

Proof. It is sufficient to prove that κ!ι
∗(L̃fV,i,k) is semisimple, that is, k!ι

∗(πfV,i,k)!(1F̃RfV,i,k
) is

semisimple. Consider the following diagram,

F̃R ι′ //

π′

��

κπ′

zz

F̃RfV,i,k
πfV,i,k
��

ET × EW F
κoo ι // EV ,

(4.15)

where F̃R = (πfV,i,k)
−1(F ).

Using base change, we have

κ!ι
∗(πfV,i,k)!1 = κ!π

′
!ι
′∗1 = (κπ′)!1F̃R .

We now prove that (κπ′)!1F̃R is semisimple.

Recall from the proof of Proposition 2(2), we have a vector bundle F̃R b−→ F̃kR sending

(x, hf0) to (x, f0), where F̃kR =
{

(x, f) ∈ F ×FkV0,i,k | f is x− stable
}

.

For any k1 and k2 satisfying k = k1 + k2, we set

F̃R,i,k1,k2 =
{

(x, f) ∈ F̃kR | (xT , fT0) ∈ F̃kT0,i,k1 , (xW , fW0) ∈ F̃kW0,i,k2

}
,

where fT0 and fW0 are defined in (4.13), (4.14) by using T0 (resp. W0) instead of T (resp.

W ). F̃R,i,k1,k2 is a locally closed subvariety of F̃kR. For various (i, k1) and (i, k2), F̃R,i,k1,k2
form a partition of F̃kR. Then b−1(F̃R,i,k1,k2) for various (i, k1) and (i, k2) form a partition of

F̃R.

Now define αi,k1,k2 : F̃R,i,k1,k2 → F̃
k
T0,i,k1

×F̃kW0,i,k2
, which sends (x, f) to ((xT , fT0), (xW , fW0)).

It is easy to check that αi,k1,k2 is a vector bundle.

Let Dj =
{

(i, k1, k2) | dimk(F̃R,i,k1,k2) = j
}

. Let F̃kRj be the disjoint union of F̃R,i,k1,k2
for various (i, k1, k2) ∈ Dj. i.e. F̃kRj =

∐
(i,k1,k2)∈Dj F̃R,i,k1,k2 . Let Zj =

∐
(i,k1,k2)∈Dj(F̃

k
T0,i,k1

×

F̃kW0,i,k2
). There is a well-defined map αj :=

∐
(i,k1,k2)∈Dj αi,k1,k2 : F̃kRj → Zj. Since these are
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disjoint union, αj is a vector bundle. Moreover, the composition map αj ◦ b : b−1(F̃kRj)→ Zj

is a vector bundle. Therefore, we have the following diagram,

b−1(F̃kRj)
αj◦b // Zj

πj // ET × EW ,

where πj :=
∐

(i,k1,k2)∈Dj(πT,i1,k1 × πW,i2,k2) is a proper map.

By Proposition 2.2.3(3), (κπ′)!1F̃R is semisimple.

Since the objects in QRV are semisimple complexes, every object A ∈ QRV can be uniquely

written into A = Af ⊕ ANf such that Af ∈ QfV , ANf ∈ QRV \ Q
f
V and Af is the maximal

subobject of A which is in QfV . Therefore we can define a projection map Pf : QRV → Q
f
V

sending A to Af .

Definition 2. R̃es
V

T,W (B) := Pf (Res
V

T,W (B)).

Proposition 4. R̃es
V

T,W (B) ∈ QfT,W if B ∈ QV .

Proof. This follows directly from the definition of R̃es
V

T,W .

Proposition 5. If ET = 0, i.e., EW ' F , then Res
V

T,W (B) = R̃es
V

T,W (B) for all B ∈ QfV .

Proof. Since any simple object B ∈ QfV is a direct summand of L̃fV,i,k for some (i, k) up to

shift, it is enough to prove the proposition for B = L̃fV,i,k.

From the proof of Lemma 3 and Diagram (4.15), if EW ' F , κ is an isomorphism, then

Res
V

T,W (L̃fV,i,k) = κ!ι
∗(πfV,i,k)!1 = (κπ′)!ι

′∗1 = (κπ′)!1F̃R ∈ Q
f
T,W .

Here QfT,W is defined similarly as QfV for ET × EW .

So Res
V

T,W (L̃fV,i,k) = R̃es
V

T,W (L̃fV,i,k) by the definition of R̃es
V

T,W .

4.2.3 Induction functor

By abuse of notation, in the rest of this chapter, we will write EV (resp. GV ) instead of ER
V

(resp. GR
V ) unless we specify. And F̃V,i,k always means F̃RfV,i,k unless we specify.
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Let W be an I-graded free R-submodule of V such that T = V/W is also a free R-

module. Let P be the stabilizer of W in GV and U be the unipotent radical of P . Consider

the following diagram:

ET × EW GV ×U F
p1oo p2 // GV ×P F

p3 // EV . (4.16)

Here p1(g, x) = κ(x), p2(g, x) = (g, x), and p3(g, x) = g(ι(x)), where κ and ι are the maps

introduced in Section 4.2.2. For any A ∈ DGT×GW (ET ×EW ), define Ĩnd
V

T,WA := p3!p2[p
∗
1A.

Here p2[ is well defined since p2 is a principle GT ×GW -bundle.

Proposition 6. Ĩnd
V

T,WA ∈ Q
f
V if A ∈ QfT,W .

Proof. Since Ĩnd
V

T,W is additive, it is enough to prove the proposition for A = L̃T,i′,k′ �

L̃W,i′′,k′′ , where (i′, k′) = ((i1, k1), · · · , (im, km)) and (i′′, k′′) = ((im+1, km+1), · · · , (im+s, km+s)).

Let (i, k) = ((i′, k′), (i′′, k′′)) := ((i1, k1), · · · , (im, km), (im+1, km+1), · · · , (im+s, km+s)).

Let F0
V,i,k = {(V 0 ⊃ V 1 ⊃ · · · ⊃ V m · · · ⊃ V m+s = 0) ∈ FV,i,k | V m = W} and F̃0

V,i,k =

F̃V,i,k
⋂

(F ×F0
V,i,k).

Now consider the following diagram,

F̃T,i′,k′ × F̃W,i′′,k′′

πT,W

��
1

GV ×U F̃0
V,i,k

p̃1oo

u′

��

p̃2 //

2

GV ×P F̃0
V,i,k

i //

u
��

F̃V,i,k
πV,i,k

��
ET × EW GV ×U F

p1oo p2 // GV ×P F
p3 // EV .

(4.17)

Here the vertical maps are all projection maps and i is an identity map. The squares 1

and 2 are both cartesian squares and p̃2 is a principle GT ×GW -bundle. It follows that

p∗1(πT,W )!1 = u′!p̃1
∗1 = u′!p̃2

∗1 = p∗2u!1.

So

p3!p2[p
∗
1A = p3!p2[p

∗
1(πT,W )!1 = p3!u!1 = (πV,i,k)!1 ∈ QfV .
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Remark 3. The above proof also shows Ĩnd
V

T,W (L̃T,i′,k′ � L̃W,i′′,k′′) = L̃V,i,k, where (i, k) =

((i′, k′), (i′′, k′′)).

Lemma 4. Let b : Y → X be a fiber bundle with d dimensional connected smooth irreducible

fiber. If B = b∗A for some A ∈ Db(X), then Db!B = (b!DB)[2d].

Proof. Since b!B = b!b
∗A = A[−2d], we have

Db!B = D(A[−2d]) = (DA)[2d],

and

b!DB = b!Db∗A = b!b
!(DA) = b!b

∗(DA)[2d] = DA.

Denote d1 (resp. d2) the dimension of the fibers of p1 (resp. p2), where p1 and p2

are the maps defined in Diagram (4.16). After simple calculations, d2 = dimP/U and

d1 = dimGV /U + n
∑

h∈H Rank(Th′)Rank(Wh′′).

Proposition 7. Let A be a direct summand of L̃T,i,k � L̃W,j,l, then

D(Ĩnd
V

T,W (A)) = Ĩnd
V

T,W (D(A))[2d1 − 2d2 + 2(n− 1)
∑
i

Rank(Ti)Rank(Wi)].

Proof. Since D is additive, it is enough to consider A = L̃T,i,k � L̃W,j,l. From the proof of

Proposition 6, we have

D(Ĩnd
V

T,W (A)) = D(p3!p2[p
∗
1(πT,W )!1) = D((πV,(i,k),(j,l))!i!p̃2[p̃

∗
11).

From the proof of Proposition 2, πV,(i,k),(j,l) = p ◦ b such that p is a proper map and b is

a vector bundle with rank (n− 1)
∑

iNi((i, k), (j, l)). By Lemma 4,

D((πV,(i,k),(j,l))!i!p̃2[p̃
∗
11) = p!b!i!Dp̃2[p̃

∗
11[2(n− 1)

∑
i

Ni((i, k), (j, l))]

= (πV,(i,k),(j,l))!i!p̃2[p̃
∗
1(D1)[2d1 − 2d2 + 2(n− 1)

∑
i

Ni((i, k), (j, l))].
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On the other hand, by the similar reason,

Ĩnd
V

T,W (DA) = p3!p2[p
∗
1(D(πT,W )!1)

= p3!p2[p
∗
1p
′
!b
′
!(D1)[2(n− 1)

∑
i

(Ni(i, k) +Ni(j, l))]

= p3!p2[p
∗
1(πT,W )!(D1)[2(n− 1)

∑
i

(Ni(i, k) +Ni(j, l))]

= (πV,(i,k),(j,l))!i!p̃2[p̃
∗
1(D1)[2(n− 1)

∑
i

(Ni(i, k) +Ni(j, l))].

Here we use a similar decomposition πT,W = p′ ◦ b′ such that p′ is a proper map and b′ is a

vector bundle with rank (n− 1)
∑

i(Ni(i, k) +Ni(j, l)).

By the definition of Ni(i, k), it is easy to check that

Ni((i, k), (j, l))−Ni(i, k)−Ni(j, l) =
∑
r,r′

krlr′δiirδijr′ = Rank(Ti)Rank(Wi). (4.18)

The proposition follows.

Let

IndVT,W A = Ĩnd
V

T,WA[d1 − d2 + (n− 1)
∑
i

Rank(Ti)Rank(Wi)], (4.19)

and

ResVT,W A = Res
V

T,WA[d1 − d2 − 2dimGV /P + (n− 1)
∑
i

Rank(Ti)Rank(Wi)]. (4.20)

Then we have the following corollary.

Corollary 1. D(IndVT,W (A)) = IndVT,W (D(A)).

Proof.

D(IndVT,W (A)) = D(Ĩnd
V

T,WA[d1 − d2 + (n− 1)
∑
i

Rank(Ti)Rank(Wi)])

= D(Ĩnd
V

T,WA)[−(d1 − d2 + (n− 1)
∑
i

Rank(Ti)Rank(Wi))]

= Ĩnd
V

T,W (D(A))[d1 − d2 + (n− 1)
∑
i

Rank(Ti)Rank(Wi)]

= IndVT,W (D(A)).
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Corollary 2. IndVT,W (LT,i,k � LW,j,l) = LV,(i j),(k l).

Proof. Denote M := d1 − d2 + (n− 1)
∑

i Rank(Ti)Rank(Wi), then we have

IndVT,W (LT,i,k � LW,j,l)

= Ĩnd
V

T,W (LT,i,k � LW,j,l)[M ]

= Ĩnd
V

T,W (L̃T,i,k � L̃W,j,l)[d(T, i, k) + d(W, j, l) + (n− 1)
∑
i

(Ni(i, k) +Ni(j, l)) +M ]

= L̃V,(i j),(k l)[d(T, i, k) + d(W, j, l) +M + (n− 1)
∑
i

(Ni(i, k) +Ni(j, l))]

= LV,(i j),(k l)[(n− 1)
∑
i

(Ni(i, k) +Ni(j, l)−Ni((i j), (k l))) +M − d1 + d2].

The last equality holds because

d(T, i, k) + d(W, j, l) + d1 − d2 − d(V, (i j), (k l)) = 0

which follows from Remark 1 and Lusztig’s argument in 9.2.7 in [41]. Therefore the propo-

sition follows from (4.18).

4.2.4 Bilinear form

Let A and B be two G-equivariant semisimple complexes on algebraic variety X. Let’s

choose an integer m and a smooth irreducible algebraic variety Γ with a free action of G

such that H i(Γ,Ql) = 0 for i = 1, · · · ,m. G acts diagonally on Γ×X. Consider the diagram

X Γ×Xsoo t // G \ (Γ×X)

with the obvious projection maps s and t. We have s∗A = t∗(ΓA) and s∗B = t∗(ΓB) for well

defined semisimple complexes ΓA and ΓB on ΓX := G \ (Γ×X).

By the argument in [18, 33], if m is large enough, then

dimHj+2dimG−2dimΓ
c ( ΓX, ΓA⊗ ΓB) = dimHj

c ( ΓX, ΓA[dim(G \ Γ)]⊗ ΓB[dim(G \ Γ)])

is independent of m and Γ. Denote this by dj(X,G;A,B).

Suppose A,A′ and B are semisimple G-equivariant complexes on X. Then we have the

following properties for dj(X,G;A,B) (see [18, 32, 33, 41]):
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(1) dj(X,G;A,B) = dj(X,G;B,A).

(2) dj(X,G;A[n], B[m]) = dj+n+m(X,G;A,B) for any m,n ∈ Z.

(3) dj(X,G;A⊕ A′, B) = dj(X,G;A,B) + dj(X,G;A′, B).

(4) If A and B are perverse sheaves, then so are ΓA[dim(G \ Γ)] and ΓB[dim(G \ Γ)].

Moreover, we have dj(X,G;A,B) = 0 for all j > 0. If, in addition, A and B are simple

and B ' DA, then d0(X,G;A,B) is 1 and is zero otherwise.

(5) If A′ and B′ are in QfT and A′′ and B′′ are in QfW , then

dj(ET × EW , GT ×GW ;A′ ⊗ A′′, B′ ⊗B′′)

= Σj′+j′′=jdj′(ET , GT ;A′, B′)dj′′(EW , GW ;A′′, B′′).

(6) Let K,K ′ ∈ QfV . The following two conditions are equivalent:

(i) K ' K ′;

(ii) dj(EV , GV ;K,B) = dj(EV , GV ;K ′, B) for all simple objects B ∈ PfV and j ∈ Z.

Lemma 5 ([18]). Let A ∈ QfT,W and B ∈ QfV . Then for any j ∈ Z,

dj(ET × EW , GT ×GW ;A,Res
V

T,WB) = dj′(EV , GV ; Ĩnd
V

T,WA,B),

where j′ = j + 2dimGV /P .

Proposition 8. Let A ∈ QfT,W and B ∈ QfV . Then for any j ∈ Z,

dj(ET × EW , GT ×GW ;A,ResVT,W B) = dj(EV , GV ; IndVT,W A,B).

Proof. This follows directly from definitions (4.19), (4.20) and Lemma 5.

Remark 4. The algebra structure of the composition subalgebra of the Hall algebra asso-

ciated quivers is independent of the orientation of the given quiver. To give a geometric

realization of this subalgebra, one must show that the algebra constructed by using perverse
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sheaves is also independent of the orientation. The Fourier Deligne transform, later denoted

by Φ, is the tool used to prove this. Let Qf = ⊕VQfV , the functors IndVT,W and ResVT,W give

an algebra and an coalgebra structure of Qf . With this point of view, one needs to show Φ

commutes with IndVT,W and ResVT,W .

4.2.5 Fourier Deligne transform

In this section, let’s consider a new orientation of the given quiver. Denote the source of

the arrow h by s(h) = ′h and its target by t(h) = ′′h for the new orientation. Recall that

we denote the source of the arrow h by s(h) = h′ and its target by t(h) = h′′ for the old

orientation. Let H1 = {h ∈ H | ′h = h′, ′′h = h′′} and H2 = {h ∈ H | ′h = h′′, ′′h = h′}. For a

given I-graded free R-module V , denote

EV = ⊕h∈H1 HomR(Vh′ , Vh′′)⊕⊕h∈H2 HomR(Vh′ , Vh′′),

′EV = ⊕h∈H1 HomR(Vh′ , Vh′′)⊕⊕h∈H2 HomR(Vh′′ , Vh′),

and

ĖV = ⊕h∈H1 HomR(Vh′ , Vh′′)⊕⊕h∈H2 HomR(Vh′ , Vh′′)⊕⊕h∈H2 HomR(Vh′′ , Vh′).

Then we have the natural projection maps

EV ĖV
soo t // ′EV .

Consider ER
V as a subset of Ek

V , then we can define a map TV : ĖV → k by

TV (a, b, c) =
∑
h∈H2

tr(Vh′
b−→ Vh′′

c−→ Vh′), (4.21)

where tr is the trace function of the endomorphism of k-vector space. Clearly, TV is a

bilinear map.

Define

Φ : D(EV )→ D(′EV )

A 7→ t!(s
∗(A)⊗ LTV )[dV ],
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where dV = dim(⊕h∈H2 HomR(Vh′ , Vh′′)) = n
∑

h∈H2
Rank(Vh′)Rank(Vh′′).

Similarly, we have the projection maps

ET × EW ĖT × ĖWsoo t // ′ET × ′EW .

Define T : ĖT × ĖW → k by T := TT + TW , where TT : ĖT → k (resp. TW : ĖW → k) is

defined in (4.21) replacing V by T (resp. W ). In a similar fashion, one can define

Φ : D(ET × EW )→ D(′ET × ′EW )

A 7→ t!(s
∗(A)⊗ LT )[dT + dW ].

Proposition 9. For any B ∈ QfV , we have

ΦRes
V

T,W (B) = Res
V

T,WΦ(B)[π],

where π = nΣh∈H2(Rank(Th′′)Rank(Wh′)− Rank(Th′)Rank(Wh′′)).

Proof. The following proof is based on Lusztig’s proof for Proposition 10.1.2 in [41]. Consider

the following diagram,

ET × EW F
poo ι // EV

ĖT × ĖW

s

OO

t
��

ψ

ṡ

OO

ṗoo Ḟ
q̇oo ξ̇ // Ξ ι̇ //

ṫ
��

ĖV

s

OO

t
��

′ET × ′EW ′F
′poo

′ι // ′EV .

Here F = {x ∈ EV | xh(Wh′) ⊂ Wh′′ , ∀h ∈ H};
′F = {x ∈ ′EV | xh(W′h) ⊂ W′′h, ∀h ∈ H};

Ḟ =
{

(x1, x2, x3) ∈ ĖV | (x1, x2) ∈ F, (x1, x3) ∈ ′F
}
, where x1 ∈ ⊕h∈H1 HomR(Vh′ , Vh′′),

x2 ∈ ⊕h∈H2 HomR(Vh′ , Vh′′), x3 ∈ ⊕h∈H2 HomR(Vh′′ , Vh′). Similarly, in the rest of proof, the

subscript 1, 2, 3 always mean the first, second and third component in ĖV or its subset

respectively and super-script T (resp. W ) means the object is in ĖT (resp. ĖW ).

Ξ =
{

(y1, y2, y3) ∈ ĖV | (y1, y3) ∈ ′F
}

;
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ψ =
{

(x, yT , yW ) ∈ F × ĖT × ĖW | x′′ = (yT1 , y
T
2 ), x′ = (yW1 , y

W
2 )
}
, where x′ = xW , x

′′ =

xT and in the rest of proof, single prime always means restriction to W and double prime

means the induce map V/W → V/W . Maps are defined as follows.

ṡ : ψ → F, (x, yT , yW ) 7→ x;

ṗ : ψ → ĖT × ĖW , (x, yT , yW ) 7→ (x′, yT3 , x
′′, yW3 );

q̇ : Ḟ → ψ, (x1, x2, x3) 7→ ((x1, x2), (x′1, x
′
2, x
′
3), (x′′1, x

′′
2, x

′′
3);

ι̇ : Ξ→ ĖV is an embedding;

ṫ : Ξ→ ′F, (y1, y2, y3) 7→ (y1, y3);

ξ̇ : Ḟ → Ξ, (y1, y2, y3) 7→ (y1, y2, y3).

Let Z = {(y1, y2, y3) ∈ Ξ | y3(Wh′′) = 0, y3(Th′′) = 0, y1 = y2 = 0} and let c : Ξ → Ξ/Z

be the canonical projection map. Define T̃ : Ξ → k sending x to TV ι̇(x). It is clear that

T̃ |Z = 0. Let T̃1 : Ξ/Z → k be the induce map of T̃ .

We are going to show T̃1 is constant if and only if tr(y3x2) = 0 for all y3.

In fact, let x = x+ y, x ∈ Ξ, y ∈ Z, then

T̃ (x) = TV (ι̇(x))

= TV ((x+ y)1, (x+ y)2, (x+ y)3)

= TV (x1 + y1, x2 + y2, x3 + y3)

= Σh∈H2tr((x3 + y3)(x2 + y2))

= Σh∈H2tr(x3x2 + x3y2 + y3x2 + y3y2)

= Σh∈H2tr(x3x2) + tr(y3x2).

Since T̃1 is affine linear function, T̃1 is constant if and only if tr(y3x2) = 0 for all y3.

Next we want to show that tr(y3x2) = 0 for all y3 satisfying y3(Wh′′) = 0, y3(Th′′) = 0 if

and only if {x+ y | ∀y ∈ Z} ⊆ ξ̇(Ḟ ), i.e. (x1, x2) ∈ F .

Since Vh′′ ,Wh′′ and Th′′ are all free modules, we can fix a basis of Wh′′ and extend it to

a basis of Vh′′ . Under this basis, we have a block matrix decomposition y3 =

[
0 ∗
0 0

]
. Here
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∗ is any block. For any x2 =

[
a b
c d

]
, tr(y3x2) = 0 if and only if tr(∗c) = 0. Since ∗ is an

arbitrary matrix, this is true if and only if c = 0. Therefore (x1, x2) ∈ F .

Now let Ξ′ = Ξ − ξ̇(Ḟ ). Denote c′ = c|Ξ′ and T ′ = T̃ |Ξ′ . Then the restriction of T ′ to

any fibre of c′ is a non-constant affine linear function. Hence by Section 2.4(2), the local

system LT ′ on Ξ′ satisfies c′!(LT ′) = 0.

Since ξ̇ : Ḟ → Ξ is a closed embedding, applying 2.2.3(4) to the partition Ξ = Ξ′ ∪ ξ̇(Ḟ ),

we have a distinguished triangle

c!j!j
∗LT̃ // c!LT̃ // c!ξ̇!(ξ̇

∗LT̃ )
[1] // ,

where j : Ξ′ → Ξ is the open embedding. By the above argument, c!j!j
∗LT̃ = 0. Therefore

c!ξ̇!ξ̇
∗LT̃ = c!LT̃

Clearly the composition sι̇ : Ξ → EV , (x1, x2, x3) 7→ (x1, x2) factors through Ξ/Z since

c : Ξ → Ξ/Z sends (x1, x2, x3) to (x1, x2, x3). Let sι̇ = gc, where g : Ξ/Z → EV . By

projection formula, we have

c!(ξ̇!ξ̇
∗LT̃ ⊗ c

∗g∗B) = c!ξ̇!ξ̇
∗LT̃ ⊗ g

∗B = c!LT̃ ⊗ g
∗B = c!(LT̃ ⊗ c

∗g∗B).

Therefore,

c!(ξ̇!ξ̇
∗LT̃ ⊗ ι̇

∗s∗B) = c!(LT̃ ⊗ ι̇
∗s∗B). (4.22)

The composition ′pṫ : Ξ → ′ET × ′EW , (x1, x2, x3) 7→ (x′1, x
′
3, x
′′
1, x

′′
3) also factor through

Ξ/Z. Because if z3 = x3 ∈ Ξ/Z, then there exists y3 ∈ Z such that x3 − z3 = y3. Hence

(x3 − z3)(Wh′′) = 0 and (x3 − z3)(Th′′) = 0, i.e. x3(a) = z3(a),∀a ∈ Wh′′ and a ∈ Th′′ .

Therefore x′′3 = z′′3 , x
′
3 = z′3. Let ′pṫ = hc for some h : Ξ/Z → ′ET × ′EW , then, by (4.22), we

have

h!c!(ξ̇!ξ̇
∗LT̃ ⊗ ι̇

∗s∗B) = h!c!(LT̃ ⊗ ι̇
∗s∗B).

i.e.

′p!ṫ!(ξ̇!ξ̇
∗LT̃ ⊗ ι̇

∗s∗B) = ′p!ṫ!(LT̃ ⊗ ι̇
∗s∗B).

Since TV ι̇ξ̇ = T ṗq̇, we have q̇∗ṗ∗LT = ξ̇∗ι̇∗LTV = ξ̇∗LT̃ .
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Since q̇ is a vector bundle with rank m := n
∑

h∈H2
Rank(Th′)Rank(Wh′′), we have

q̇!q̇
∗L = L[−2m] for all L ∈ D(ψ). Therefore,

Φ(Res
V

T,WB) = t!(LT ⊗ s∗p!ι
∗B)[dT + dW ]

= t!(LT ⊗ ṗ!ṡ
∗ι∗B)[dT + dW ]

= t!(LT ⊗ ṗ!q̇!q̇
∗ṡ∗ι∗B[2m])[dT + dW ]

= t!ṗ!q̇!(q̇
∗ṗ∗(LT )⊗ q̇∗ṡ∗ι∗B)[2m+ dT + dW ]

= ′p!ṫ!ξ̇!(q̇
∗ṗ∗(LT )⊗ ξ̇∗ι̇∗s∗B)[2m+ dT + dW ]

= ′p!ṫ!(ξ̇!(q̇
∗ṗ∗LT )⊗ ι̇∗s∗B)[2m+ dT + dW ]

= ′p!ṫ!(ξ̇!ξ̇
∗LT̃ ⊗ ι̇

∗s∗B)[2m+ dT + dW ]

= ′p!ṫ!(LT̃ ⊗ ι̇
∗s∗B)[2m+ dT + dW ]

and

Res
V

T,W (Φ(B))[π] = ′p!
′ι∗t!(LT ⊗ s∗B)[π + dV ]

= ′p!ṫ!ι̇
∗(LT ⊗ s∗B)[π + dV ]

= ′p!ṫ!(LT̃ ⊗ ι̇
∗s∗B)[π + dV ].

Using Rank(Vi) = Rank(Ti) + Rank(Wi), we have π + dV = 2m + dT + dW . This finishes

the proof.

Lemma 6. Φ(L̃fV,i,k) = ′̃LfV,i,k[M ] for some M .

Proof. This proof is the same as Lusztig’s proof for 10.2.2 in [41]. Consider the following

diagram,

F̃fV,i,k
π

��

Ξboo c //

ρ

��

Ξ′

p

��
EV ĖV

soo t // ′EV .

Here

Ξ =
{

(x, y, f) ∈ EV × ′EV ×FfV,i,k | f0 is an x− stable and yh = xh, ∀h ∈ H2

}
,

45



and

Ξ′ =
{

(y, f) ∈ ′EV ×FfV,i,k | yh(V
l
h′0) ⊂ V l

h′′0,∀l and h ∈ H1

}
.

Maps are defined as follows. b(x, y, f) = (x, f), c(x, y, f) = (y, f) and π, ρ, p are obvious pro-

jection maps. Then the left square is a cartesian square and the right square is commutative.

By the definition of L̃fV,i,k, we have

Φ(L̃fV,i,k) = t!(LT ⊗ s∗π!1)[dV ] = t!(LT ⊗ ρ!1Ξ)[dV ].

By projection formula in Section 2.2.5,

t!(LT ⊗ ρ!1)[dV ] = t!ρ!(ρ
∗LT ⊗ 1)[dV ] = p!c!(LT ′)[dV ].

The last equality follows from T ′ = Tρ and pc = tρ.

Let Ξ0 = {(x, y, f) ∈ Ξ | f0 is y − stable} and Ξ1 = Ξ − Ξ0. Clearly, T ′|Ξ1 is not a

constant function. By Property 2.4(2), c!(LT ′ |Ξ1) = 0. Since j : Ξ1 → Ξ is an open

embedding, c!j!j
∗LT ′ = 0. Applying 2.2.3(4) to the partition Ξ = Ξ1

∐
Ξ0, we have a

distinguish triangle,

c!j!j
∗LT ′ // c!LT ′ // c!i!i

∗LT ′
[1] // ,

where i : Ξ0 → Ξ is the closed embedding. Then c!LT ′ = c!i!i
∗LT ′ .

For any (x, y, f) ∈ Ξ0,

T ′(x, y, f) = T (x, y) =
∑
h∈H2

tr(yhxh : Vh′ → Vh′).

Let f = gff0 for some gf ∈ H/(H
⋂
PR) (see Remark 2). Since f0 is stable under both x and

y, f is stable under both g−1
f · x and g−1

f · y. Since (g−1
f · y)h(g

−1
f · x)h = (g−1

f )h′yhxh(gf)h′ ,

tr(yhxh) = tr((g−1
f )h′yhxh(gf)h′). Moreover, we have

tr((g−1
f )h′yhxh(gf)h′ : Vh′ → Vh′) =

∑
l

tr((g−1
f )h′yhxh(gf)h′ : V l−1

h′ /V l
h′ → V l−1

h′ /V l
h′).

Since V l−1/V l concentrate on one vertex, for any l, at least one of V l−1
h′ /V l

h′ and V l−1
h′′ /V

l
h′′

is zero. Therefore, tr(yhxh : Vh′ → Vh′) = 0 for each h ∈ H2. i.e. T ′(x, y, f) = 0. Hence
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LT ′ |Ξ0 = 1. i.e. i!i
∗LT ′ = 1. Therefore,

p!c!(LT ′)[dV ] = p!c!i!i
∗LT ′ [dV ] = p!(c|Ξ0)!1[dV ].

Since c(Ξ0) = F̃fV,i,k and c|Ξ0 is a vector bundle. Denote the rank of c|Ξ0 by M ′. Then

p!(c|Ξ0)!1[dV ] = p!1[dV − 2M ′].

Since p|′F̃fV,i,k = ′π, where ′π : ′F̃fV,i,k → ′EV is the first projection map,

p!1[dV − 2M ′] = ′̃LfV,i,k[dV − 2M ′].

Let M = dV − 2M ′. The proposition follows.

Corollary 3. Φ(R̃es
V

T,W (B)) = R̃es
V

T,W (Φ(B))[π].

Proof. From Lemma 6, Φ(QfV ) ⊂ ′QfV , where ′QfV is defined similarly as QfV for ′EV . By

the same argument Φ(′QfV ) ⊂ QfV . Since Φ(Φ(K)) = K (see 10.2.3 in [41]), for any K ∈

QNfV \ Q
f
V , if Φ(K) ∈ ′QfV , then K = Φ(Φ(K)) ∈ QfV . This is a contradiction. Therefore,

Φ(K) 6∈ ′QfV for any K ∈ QNfV \ Q
f
V .

By definition of R̃es
V

T,W , the corollary follows from Proposition 9.

Corollary 4. Φ(ResVT,W (B)) = ResVT,W (Φ(B)).

Proof. From (4.20) and Corollary 3, it is enough to show π+d1− ′d1 = 0, where ′d1 is defined

similarly as d1 for the new orientation. Recall d1 = dimGV /U+n
∑

h∈H Rank(Th′)Rank(Wh′′).

Since dimGV /U has nothing to do with orientations and H = H1

⋃
H2, it is enough to show

π = n
∑
h∈H2

Rank(Th′)Rank(Wh′′)− n
∑
h∈′H2

Rank(Th′)Rank(Wh′′).

Here ′H2 is the set of all arrows with opposite orientation of arrows in H2. The corollary

follows that
∑

h∈′H2
Rank(Th′)Rank(Wh′′) =

∑
h∈H2

Rank(Th′′)Rank(Wh′).

Lemma 7. Let A ∈ QV , A′ ∈ ′QV , then for any j ∈ Z, we have

dj(EV , GV ;A,Φ(A′)) = dj(
′EV , GV ; Φ(A), A′).
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Proof. Let u (resp. u′, u̇) be the map of ΓEV (resp. Γ
′EV , Γ(EV × ′EV )) to the point (see

Section 4.2.4 for notations). By definition of dj(EV , GV ;A,A′), we have

dj(EV , GV ;A,Φ(A′)) = dimHj+2 dimG−2 dim Γ(pt, u!(ΓA⊗ ΓΦ(A′))).

The lemma follows from Section 2.4(1).

Corollary 5. Φ(IndVT,W (B)) = IndVT,W (Φ(B))

Proof. By Proposition 4.2.4(6), it is enough to prove

dj(
′EV , GV ; Φ(IndVT,W (B)),Φ(K)) = dj(

′EV , GV ; IndVT,W (Φ(B)),Φ(K))

for all simple objects K ∈ PfV and j ∈ Z.

By Lemma 7 and Proposition 8,

dj(
′EV , GV ; Φ(IndVT,W (B)),Φ(K))

= dj(EV , GV ; (IndVT,W (B)), K)

= dj(ET × EW , GT ×GW ;B,ResVT,W (K)).

By Proposition 8,

dj(
′EV , GV ; IndVT,W (Φ(B)),Φ(K))

= dj(
′ET × ′EW , GT ×GW ; Φ(B),ResVT,W (Φ(K)))

= dj(ET × EW , GT ×GW ;B,Φ(ResVT,W (Φ(K)))) (by Lemma 7)

= dj(ET × EW , GT ×GW ;B,ResVT,W (K)) (by Corollary 4).

4.2.6 Additive generators

In this section, we fix a vertex i ∈ I and assume W is an I-grade free R-submodule of V

such that T = V/W is also a free R-module.

48



Remark 5. By the Fourier-Deligne transform, we can assume W satisfy that Wh′ =

Vh′ , ∀h ∈ H and by induction we can further assume Supp(T ) = {i}. Hence, ET = 0,

and EW ' F .

Given any matrix X with entries in R, any k-th minor Dk of X can be written into

Dk(X) = fi0(X) + fi1(X)t + · · · + fir(X)tr. We will use super-script to distingue the

different k-th minors and their coefficients. For example, Ds
k(X) and f skl(X). Note that we

take all minors with value in k[t] but not those in R since we are studying the coordinate

ring of the k-variety EV .

If we fix an R-basis for each Vi, then all xh can be written as a matrix, denoted by Xh,

with entries inR. Moreover,
∑

h∈H,h′′=i xh corresponds to the matrixXi := (Xh1 , Xh2 , · · · , Xhs),

where each subscript hj is an arrow with target vertex i. Given i ∈ I, let

BV,i,k = {x ∈ EV | Dr
k(Xi) = 0 for all r} .

Notice that Xi depends on the choice of basis of Vi, but BV,i,k doesn’t depend on the choice of

basis of Vi. Because equivalent transformations of matrixes change a k-th minor into another

k-th minor which is obtained by multiplying by an invertible element in R. Moreover, BV,i,k

is a closed subset of EV . Given (k, l) ∈ N× N, let

CV,i,(k,l) = {x ∈ EV | f rks(Xi) = 0 for all r, and all s ≤ l} .

By the same reason, this set doesn’t depend on the choice of basis of Vi and it is a closed

subset of EV .

Now define a total order on N× N by

(k, l) < (r, s) if and only if k < r or k = r, s < l.

Let EV,i,≤(k,l) = CV,i,(k,l)
⋂
BV,i,k+1. This is a closed subset. It is clear that

BV,i,k ⊂ · · · ⊂ EV,i,≤(k,l) ⊂ EV,i,≤(k,l−1) ⊂ · · · ⊂ BV,i,k+1 ⊂ · · · ⊂ EV . (4.23)

Furthermore, for x ∈ EV , there exists (k, l) such that x ∈ EV,i,≤(k,l).
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Let EV,i,(k,l) = EV,i,≤(k,l) \EV,i,≤(k,l+1). This is a locally closed subset of EV and its closure

EV,i,(k,l) = EV,i,≤(k,l). From linear algebra, EV,i,(k,l) is stable under GV -action.

Recall p : GV ×P EW → EV is a GV -equivariant map sending (g, x) to gι(x), where

ι : EW → EV is an embedding. Let p0 := p|GV ×PEW,i,(k,l) : GV ×P EW,i,(k,l) → EV,i,(k,l).

Lemma 8. p0 is a vector bundle with rank d0 = (vi−wi)(l+n(wi−k)), where vi = Rank(Vi)

and wi = Rank(Wi).

Proof. For any y ∈ EV,i,(k,l), p−1
0 (y) = {(g, x) | gι(x) = y}.

If g1ι(x1) = g2ι(x2) = y, then g−1
1 g2ι(x2) = ι(x1). This implies that x1 is equivalent

to x2. i.e. there exists g ∈ GW such that gx1 = x2. Hence there exists h ∈ P such that

hι(x1) = ι(x2). Then g1ι(x1) = g2hι(x1). This means that s := g−1
1 g2h is in the stabilizer,

StabGV (ι(x1)), in GV of ι(x1). i.e. g2 = g1sh
−1 for some s ∈ StabGV (ι(x1)) and h ∈ P .

Hence (g1, x1) ∈ p−1
0 (y) if and only if (g1sh

−1, hx1) ∈ p−1
0 (y) for some s ∈ StabGV (ι(x1)).

Therefore, dim(p−1
0 (y)) = dim(StabGV (ι(x1)))− dim(P

⋂
StabGV (ι(x1))).

If we fix a basis of W and extend it to a basis of V , then

dim(StabGV (ι(x1)) = dim

{[
a b
c d

]
|
[
a b
c d

] [
x1

0

]
=

[
x1

0

]}
),

and

dim(P
⋂

StabGV (ι(x1)) = dim

{[
a b
0 d

]
|
[
a b
0 d

] [
x1

0

]
=

[
x1

0

]}
).

Therefore,

dim(p−1
0 (y)) = dim({c ∈ HomR(Wi, Ti) | cx1 = 0}) (4.24)

Given j = (j0, j1, · · · , jn−1), let

Mi,j =
{
x ∈ EV | Xi ' Diag(1⊕j0 , t⊕j1 , · · · , (tn−1)⊕jn−1)

}
.

If y ∈ Mi,j for some j with |j| :=
∑

r jr = k. Then y ∈ EV,i,(k,λ(j)), where λ(j) =
∑

r rjr.

From the above argument,

dim(p−1
0 (y)) = (vi − wi)(λ(j) + n(wi − |j|))
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which only depends on λ(j) and |j|.

On the other hand, from linear algebra, if y ∈ EV,i,(k,l), then y ∈ Mi,j such that |j| = k

and λ(j) = l. i.e. the dimension of fibers of any element in EV,i,(k,l) only depends on k and

l. By (4.24), p0 has a vector bundle structure. This finishes proof.

Let ι1 : EV,i,≤(k,l) → EV be the closed embedding. Applying base change formula to the

following cartesian square,

F̃ ′ //

π′

��

F̃V,i,k
π

��
EV,i,≤(k,l)

ι1 // EV ,

(4.25)

we have

ι∗1L̃V,i,k = ι∗1π!1 = π′!1.

Remark 6. For any simple perverse sheaf A ∈ PfV (see Section 4.2.1), i.e. A is a direct

summand of L̃V,i,k for some (i, k) up to shift, ι∗1A is a direct summand of ι∗1L̃V,i,k = π′!1 up

to shift. By the same argument as we show Proposition 3, ι∗1A[dA] is a perverse sheaf on

EV,i,≤(k,l) for some dA.

Let PfV,i,(k,l) be the full subcategory ofM(EV,i,≤(k,l)) consisting of direct sums of perverse

sheaves ι∗1A up to shifts for some A ∈ PfV . Let

Pf0
V,i,(k,l) = {B ∈ PfV,i,(k,l) | Supp(B)

⋂
EV,i,(k,l) 6= ∅}

and

Pf1
V,i,(k,l) = {B ∈ PfV,i,(k,l) | Supp(B)

⋂
EV,i,(k,l) = ∅}.

Then any object A ∈ PfV,i,(k,l) can be decomposed into A = A0 ⊕ A1, where A0 ∈ Pf0
V,i,(k,l)

and A1 ∈ Pf1
V,i,(k,l). Furthermore, if we require A1 is the maximal subobject of A in Pf1

V,i,(k,l),

then such decomposition is unique since A is a semisimple perverse sheaf.

One can similarly define PfW,i,(k,l) (resp. Pf0
W,i,(k,l) and Pf1

W,i,(k,l)).
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Now consider the following diagrams,

EW,i,≤(k,l) GV ×U EW,i,≤(k,l)

p′1oo
p′2 // GV ×P EW,i,≤(k,l)

p′3 // EV,i,≤(k,l) (4.26)

EW,i,≤(k,l)
ι′ // EV,i,≤(k,l). (4.27)

Here GV , U, P are the same as in Section 4.2.3 and the maps are defined similarly as

in the Section 4.2.3 and 4.2.2. Define the functors Ĩnd
V

T,W,i,(k,l)(A) = p′3!p
′
2[p
′∗
1 (A) and

R̃es
V

T,W.i,(k,l)(B) = ι′∗(B). This is the induction (resp. restriction ) functor defined on

EW,i,≤(k,l) (resp. EV,i,≤(k,l)) instead of EW (resp. EV ).

Let

IndVT,W,i,(k,l)(A) = Ĩnd
V

T,W,i,(k,l)(A)[dim(GV /P ) + d0], (4.28)

where d0 is the dimension of fibers of p0, and

ResVT,W,i,(k,l)(A) = R̃es
V

T,W,i,(k,l)(A)[d0 − dim(GV /P )]. (4.29)

Lemma 9. Let ι2 : EW,i,≤(k,l) → EW be the closed embedding, then for any A ∈ PfW,i,(k,l),

Ĩnd
V

T,W (ι2!A) = ι1!Ĩnd
V

T,W,i,(k,l)(A).

Proof. Consider the following diagram:

EW,i,≤(k,l)

ι2

��
1

GV ×U EW,i,≤(k,l)

p′1oo
p′2 //

ι3
��

2

GV ×P EW,i,≤(k,l)

p′3 //

ι4
��

3

EV,i,≤(k,l)

ι1

��
EW GV ×U EW

p1oo p2 // GV ×P EW
p3 // EV .

(4.30)

Here vertical maps are all closed embedding. Since the squares 1 and 2 are cartesian

squares and 3 is commutative, we have

p∗1ι2!A = ι3!p
′∗
1 A = ι3!p

′∗
2 (Ã) = p∗2ι4!(Ã).

Here Ã is the unique complex such that p′∗1 A = p′∗2 Ã by Property 2.3(3).

Hence ι4!Ã = p2[p
∗
1ι2!A. Therefore,

Ĩnd
V

T,W (ι2!A) = p3!ι4!Ã = ι1!p
′
3!Ã = ι1!Ĩnd

V

T,W,i,(k,l)(A).
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Corollary 6. For any A ∈ PfW,i,(k,l),

IndVT,W (ι2!A) = ι1! IndVT,W,i,(k,l)(A)[N ],

where N = (n− 1)
∑

i Rank(Ti)Rank(Wi) + n
∑

h∈H Rank(Th′)Rank(Wh′′)− d0.

Proof. By Lemma 9, (4.19) and (4.28).

Lemma 10. Let b : Y → X be a fiber bundle with d dimensional connected smooth ir-

reducible fiber. If B = b∗A is a perverse sheaf on Y , then b!B[d] is a perverse sheaf on

X.

Proof. By the definition of perverse sheaves, B ∈ D≥0(Y )
⋂
D≤0(Y ). Then b!B ∈ D≤d(X).

i.e. b!B[d] ∈ D≤0(X).

On the other hand, by Lemma 4,

D(b!B[d]) = D(b!B)[−d] = (b!DB)[d] ∈ D≤d(X)[d] = D≤0(X).

This proves the lemma.

Proposition 10. (1) Let A ∈ Pf0
W,i,(k,l). Then Hn IndVT,W,i,(k,l)(A) ∈ Pf1

V,i,(k,l) if n 6= 0, and

H0 IndVT,W,i,(k,l)(A) ∈ Pf0
V,i,(k,l) So one can define a functor

ξ : Pf0
W,i,(k,l) → P

f0
V,i,(k,l)

A 7→ (H0 IndVT,W,i,(k,l)(A))0.

(2) Let B ∈ Pf0
V,i,(k,l). Then Hn ResVT,W,i,(k,l)(B) ∈ Pf1

W,i,(k,l) if n 6= 0 and H0 ResVT,W,i,(k,l)(B) ∈

Pf0
W,i,(k,l). So one can define a functor

ρ : Pf0
V,i,(k,l) → P

f0
W,i,(k,l)

B 7→ (H0 ResVT,W,i,(k,l)(B))0.

(3) The functors ξ : Pf0
W,i,(k,l) → P

f0
V,i,(k,l) and ρ : Pf0

V,i,(k,l) → P
f0
W,i,(k,l) give an equivalence

of categories Pf0
V,i,(k,l) and Pf0

W,i,(k,l).
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Proof. The proof is based on Lusztig’s idea for proving Proposition 9.3.3 in [41]. Consider

the following diagram,

GV ×P EW,i,(k,l)
p0 //

j0
��

EV,i,(k,l)

j

��

EW,i,(k,l)
ι0oo

m

��
GV ×P EW,i,≤(k,l)

p′3 // EV,i,≤(k,l) EW,i,≤(k,l).
ι′oo

(4.31)

Here ι0, ι
′, j, j0 and m are all inclusions, both squares are cartesian squares. Additionally,

both j and m are open embeddings.

(1) For any A ∈ Pf0
W,i,(k,l),

j∗Ĩnd
V

T,W,I′,ηA = j∗p′3!p
′
2[p
′∗
1 (A) = p0!j

∗
0p
′
2[p
′∗
1 (A).

By Property 2.3(3), p′2[p
′∗
1 (A)[dim(GV /P )] is a perverse sheaf. j0 is an open embedding,

so j∗0p
′
2[p
′∗
1 (A)[dim(GV /P )] is a perverse sheaf. Moreover j∗0p

′
2[p
′∗
1 (A)[dim(GV /P )] is a GV -

equivariant perverse sheaf.

We claim that j∗0p
′
2[p
′∗
1 (A) = p∗0ι0∗m

∗A.

By the following commutative diagram,

EW,i,≤(k,l) GV ×U EW,i,≤(k,l)

p′1oo
p′2 // GV ×P EW,i,≤(k,l)

EW,i,(k,l)

m

OO

GV ×U EW,i,(k,l)

j1

OO

p′′1oo
p′′2 // GV ×P EW,i,(k,l)

j0

OO

we have

j∗0p
′
2[p
′∗
1 A = p′′2[j

∗
1p
′∗
1 A = p′′2[p

′′∗
1 m

∗A. (4.32)

We next consider the following commutative diagram,

GV ×U EW,i,(k,l)
p

xx

u

&&
EV GV × EW,i,(k,l)

π

OO

q1oo u1 //

ι

��

EV

GV × EV,i,(k,l)

q2

ff
u2

88

(4.33)
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Here p (resp. q1, q2) is the projection map sending (g, x) to ι0(x) (resp. ι0(x), x ) and u

(resp. u1, u2) is the GV -action map sending (g, x) to gι0(x) (resp. gι0(x), gx ). π is the

quotient map and ι is the embedding. p is well-defined since U acts on EW trivially in this

case.

For any GV -equivariant complex K, q∗2K = u∗2K. Then

q∗1K = ι∗q∗2K = ι∗u∗2K = u∗1K.

Therefore π∗p∗K = π∗u∗K which implies p∗K = u∗K since π is a principle U -bundle.

Now consider the following diagram,

EW,i,(k,l)

ι0

��

GV ×U EW,i,(k,l)
p′′1oo

p′′2
��

u

p

ww
EV,i,(k,l) GV ×P EW,i,(k,l)

p0oo

(4.34)

where p′′1(g, x) = x; u(g, x) = gι0(x) and p(g, x) = ι0(x). By commutativity, for any GV -

equivariant complex K, we have

p∗0K = p′′2[u
∗K = p′′2[p

∗K = p′′2[p
′′∗
1 ι
∗
0K (4.35)

Since ι0 : EW,i,(k,l) → EV,i,(k,l) is the inclusion of a locally closed subset, by [44], we have

ι∗0ι0∗m
∗A = m∗A (4.36)

By (4.32), (4.35) and (4.36), we have

j∗0p
′
2[p
′∗
1 A = p′′2[p

′′∗
1 ι
∗
0ι0∗m

∗A = p∗0ι0∗m
∗A.

This proves the claim.

Therefore, by Lemma 10, j∗Ĩnd
V

T,W,I′,ηA[dim(GV /P ) + d0] is a perverse sheaf on EV,i,(k,l).

Since j is an open embedding, j∗ is exact. if n 6= 0,

j∗(Hn(Ĩnd
V

T,W,i,(k,l)A[dim(GV /P ) + d0])) = Hn(j∗Ĩnd
V

T,W,i,(k,l)A[dim(GV /P ) + d0]) = 0.
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i.e.

j∗(Hn(IndVT,W,i,(k,l) A)) = 0.

Therefore, the support of Hn IndVT,W,i,(k,l) A is disjoint from EV,i,(k,l).

(2) For any B ∈ Pf0
V,i,(k,l), j

∗B is a perverse sheaf since j is an open embedding.

We claim that ι∗0j
∗B[d0 − dim(GV /P )] is a perverse sheaf on EW,i,(k,l).

In Diagram (4.34), p′′1 is a fiber bundle of relative dimension dim(GV /U) since Supp(T ) =

{i} and U acts on EW trivially.

By the commutativity, we have

p′′∗2 p
∗
0j
∗B = u∗j∗B = p∗j∗B = p′′∗1 ι

∗
0j
∗B.

Then

ι∗0j
∗B[d0 − dim(GV /P )] = p′′1!p

′′∗
2 p
∗
0j
∗B[d0 + dim(GV /U) + dim(GV /P )].

By Lemma 8, p′′∗2 p
∗
0j
∗B[d0 + dim(P/U)] is a perverse sheaf. From Lemma 10, ι∗0j

∗B[d0 −

dim(GV /P )] is a perverse sheaf on EW,i,(k,l). This proves the claim.

Since right hand square in Diagram (4.31) is commutative,

m∗ι′∗B[d0 − dim(GV /P )] = ι∗0j
∗B[d0 − dim(GV /P )]

which is a perverse sheaf. Since m is open embedding,

m∗(Hnι′∗B[d0 − dim(GV /P )]) = Hn(m∗ι′∗B[d0 − dim(GV /P )]).

If n 6= 0, support of Hnι′∗B[d0 − dim(GV /P )] is disjoint form EV,i,(k,l).

(3) From the proof of (1), we have

j∗ξ(A) = j∗p′3!p
′
2[p
′∗
1 A[dim(GV /P ) + d0] = p0!j

∗
0p
′
2[p
′∗
1 A[dim(GV /P ) + d0].

Hence

j∗(ξ(ρ(B))) = p0!j
∗
0p
′
2[p
′∗
1 ρ(B)[dim(GV /P ) + d0] = p0!j

∗
0p
′
2[p
′∗
1 ι
′∗(B)[2d0].
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Consider the following diagram,

EW,i,≤(k,l)

ι′

��

GV ×U EW,i,≤(k,l)

p′1oo

p′2
��

u

p

vv
EV,i,≤(k,l) GV ×P EW,i,≤(k,l).

p′3oo

Here u(g, x) = gι′(x) and p(g, x) = ι0(x). By the same reason as above, p is well-defined.

By commutativity, we have

p′∗3 B = p′2[u
∗B = p′2[p

∗B = p′2[p
′∗
1 ι
′∗B (4.37)

From Diagram (4.31), p∗0j
∗B = j∗0p

′∗
3 B. Then

j∗0p
′
2[p
′∗
1 ι
′∗(B) = j∗0p

′∗
3 B = p∗0j

∗B.

Therefore,

j∗(ξ(ρ(B))) = p0!p
∗
0j
∗B[2d0].

By Lemma 8, j∗(ξ(ρ(B))) = j∗B. Since B ∈ Pf0
V,i,(k,l) and EV,i,(k,l) is open in EV,i,≤(k,l), we

have ξ(ρ(B)) = B.

On the other hand, from the proof of (1), we have

m∗(ρ(B)) = ι∗0j
∗B[d0 − dim(GV /P )].

Hence,

m∗(ρ(ξ(A))) = ι∗0j
∗ξ(A)[d0 − dim(GV /P )] = ι∗0p0!j

∗
0p
′
2[p
′∗
1 A[2d0].

From the proof of (1), we have

m∗(ρ(ξ(A))) = ι∗0p0!p
∗
0ι0∗m

∗A[2d0] = ι∗0ι0∗m
∗A = m∗A.

Since A ∈ Pf0
W,i,(k,l) and EW,i,(k,l) is open in EW,i,≤(k,l), we have ρ(ξ(A)) = A.

Remark 7. By Proposition 5, if EW ' F , then ResVT,W,i,(k,l) send any element of PfV,i,(k,l)
into PfW,i,(k,l), and the map ρ is well defined.
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Let v be an indeterminate and A = Z[v, v−1]. LetMV be the Grothendieck group of the

category which consists of all direct sums of LV,i,k for various (i, k) and their shifts. Define

an A-action on MV by vn · L = L[n]. Then MV is an A-module generated by LV,i,k. Let

KV be the Grothendieck group of category QfV (see Section 4.2.1). Then under the same

A-action, KV is an A-module generated by the simple perverse sheaves in PfV .

Theorem 4. MV ' KV as an A-module, i.e., {LV,i,k | ∀(i, k)} are the additive generators

of KV .

Proof. Clearly, MV ⊆ KV since LV,i,k is a direct sum of simple perverse sheaves in PfV . By

abuse of notation, we will denote by the same B the isomorphism class of B in KV (resp.

MV ). One only needs to show B ∈MV for any simple perverse sheaf B ∈ PfV .

We first use induction on Td(V ) :=
∑

i∈I Rank(Vi). If V = 0, then EV = {pt}. So there

is only one simple perverse sheaf and thus the theorem is true. Now assume the theorem is

true for any I-graded proper R-submodule W of V . We want to show the theorem is true

for V .

Suppose B is a simple direct summand of LV,j,l, where (j, l) = ((i, k), (j′, l′)). Recall

LV,j,l = IndVT,W (LT,i,k � LW,j′,l′). Since Supp(T ) = {i}, ET = {pt}. We will simply write

LT,i,k � LW,j′,l′ as LW,j′,l′ . By Fourier-Deligne transform, we can further assume i is a sink.

By the definition of IndVT,W , we have

Supp(B) ⊂ Supp(LV,j,l) ⊂ Supp(IndVT,W (LW,j′,l′)) ⊂ EV,i,≤(m,l)

for some (m, l) ∈ N × N. By (4.23), we can choose maximal (m, l) such that Supp(B) ⊂

EV,i,≤(m,l) and Supp(B) meets EV,i,(m,l).

Recall ι1 : EV,i,≤(m,l) ↪→ EV is the closed embedding. Since Supp(B) ⊂ EV,i,≤(m,l), by

the definition of Pf0
V,i,(m,l), we have ι∗1B ∈ P

f0
V,i,(m,l). Let ρ(ι∗1B) = A. By Proposition 10,

ξ(A) = ι∗1B. i.e.,

IndVT,W,i,mA = ι∗1B ⊕ (⊕jCj[j]) (4.38)
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for some Cj satisfying Supp(Cj) ⊂ EV,i,≤(m,l) and disjoint withEV,i,(m,l). Therefore Supp(Cj) ⊂

EV,i,≤(r,s) with (r, s) < (m, l). By applying ι1! to (4.38) and Corollary 6,

IndVT,W ι2!A = ι1! IndVT,W,i,(m,l) A[N ] = ι1!ι
∗
1B[N ]⊕ (⊕jι1!Cj[N + j]),

where ι2 : EW,i,≤(m,l) ↪→ EW is the closed embedding and N is defined in Corollary 6. Since

Supp(B) ⊂ EV,i,≤(m,l),

ι1!ι
∗
1B = B|EV,i,≤(m,l)

= B.

Now we want to show ι2!A ∈MW .

By the definition of ρ, in fact, ι2!A is a direct summand of ι2!ι
′∗ι∗1B[d0 − dim(GV /P )].

Applying base change formula to the following cartesian square,

EW,i,≤(m,l)
ι′ //

ι2

��

EV,i,≤(m,l)

ι1

��
EW

ι // EV ,

we have

ι2!ι
′∗ι∗1B = ι∗ι1!ι

∗
1B = ι∗B = R̃es

V

T,WB.

By Proposition 4, ι2!A ∈ KW . Since Td(W ) < Td(V ), by the assumption, ι2!A ∈ MW .

Therefore, IndVT,W ι2!A ∈MV by Corollary 2.

To show B ∈MV , it is enough to show ι1!Cj ∈MV . Since ι1!Cj is a direct summand of

IndVT,W ι2!A and ι2!A ∈ QfW , by Proposition 6, ι1!Cj ∈ QfV .

To apply induction on (m, l), it is enough to show Cj[j] ∈MV if Supp(Cj[j]) ⊂ EV,i,≤(0,l).

By a similar argument as above, there exists K ∈ Pf0
W,i,≤(0,l) such that

IndVT,W (ι′2!K) = ι′1!ι
′∗
1 Cj[M + j] = Cj[M + j]

for some M , where ι′1 and ι′2 are the embedding maps. By induction on Td(V ), Cj[j] ∈MV

since ι′2!K ∈MW as we have shown above.

The theorem follows from the induction on (m, l).
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4.3 Geometric approach to Hall algebras and quantum

generalization Kac-Moody algebras

4.3.1 The algebra (K, Ind)

Recall the dimension vector of an I-graded freeR-module V is defined as |V | := (Rank(Vi))i∈I ∈

NI. It is important to notice that, given two different I-graded free R-modules V and V ′

with the same dimension vector, KV ' KV ′ since EV and EV ′ are isomorphism spaces. So

one may denote KV by K|V |. Moreover, the functors IndVT,W and ResVT,W can be rewritten

as Ind
|T |+|W |
|T |,|W | and Res

|T |+|W |
|T |,|W | respectively. Now let K = ⊕|V |∈NIK|V |. Define multiplication as

follows.

Ind : K ×K → K

(A,B) 7→ Ind
|T |+|W |
|T |,|W | (A⊗B)

for homogenous elements A,B with A ∈ K|T | and B ∈ K|W |.

Theorem 5. (1) K equipped the multiplication Ind is an I-graded associated A-algebra.

(2) {LV,i,k | for all V and (i, k)} contains an A-basis of K. This basis is called a mono-

mial basis.

(3) All simple perverse sheaves in PfV for various V form an A-basis of K. This basis is

called the canonical basis.

Proof. (1) follows from Theorem 4, Corollary 2 and additivity of Ind. (2) follows from

Theorem 4. (3) follows from the definition of K.

In the rest of this section we will give the relation among the Hall algebra CHR (see

Section 4.1), the algebra K, and the quantum generalized Kac-Moody algebra.

4.3.2 Relation between K and U−v

Let I be a countable index set. A simply laced generalized root datum (see [23]) is a matrix

A = (aij)i,j∈I satisfying the following conditions:
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(i) aii ∈ {2, 0,−2,−4, · · · }, and

(ii) aij = aji ∈ Z≤0.

Such a matrix is a special case of Borcherds-Cartan matrix. Let Ire = {i ∈ I | aii = 2} and

I im = I \ Ire. A collection of positive integers m = (mi)i∈I with mi = 1 whenever i ∈ Ire is

called the charge of A.

The quantum generalized Kac-Moody algebra (see [23]) associated with (A,m) is the Q(v)-

algebra Uv(gA,m) generated by the elements Ki, K
−1
i , Ei,k, and Fi,k for i ∈ I, k = 1, · · · ,mi

subject to the following relations:

KiK
−1
i = K−1

i Ki = 1, KiKj = KjKi, (4.39)

KiEjkK
−1
i = vaijEjk, KiFjkK

−1
i = v−aijFjk, (4.40)

EikFjl − FjlEik = δlkδij
Ki −K−1

i

v − v−1
, (4.41)

1−aij∑
n=0

(−1)n
[

1− aij
n

]
E

1−aij−n
ik EjlE

n
ik = 0, ∀i ∈ Ire, j ∈ I, i 6= j, (4.42)

1−aij∑
n=0

(−1)n
[

1− aij
n

]
F

1−aij−n
ik FjlF

n
ik = 0,∀i ∈ Ire, j ∈ I, i 6= j, and (4.43)

EikEjl − EjlEik = FikFjl − FjlFik = 0, if aij = 0. (4.44)

Here
[
n
k

]
= [n]!

[n−k]![k]!
, [n]! =

∏n
i=1[i], and [n] = vn−v−n

v−v−1 .

In this dissertation, we only consider the case in which all mi = 1 and all indices are in

I im.

Define a bilinear form on K as follows,

(A,B)K =
∑
j

dj(EV , GV ;A,B)v−j.

Proposition 11. The bilinear form (−,−)K defined above is non-degenerate.
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Proof. Firstly, by the properties of dj(E,G;A,B) (see Section 4.2.4), this is a bilinear form.

Secondly, by Theorem 5, all simple perverse sheaves in PfV for various V form a Z[v, v−1]-

basis of K. So, for any A ∈ K, A can be written as A =
∑

K cKK for cK ∈ Z[v, v−1]. Now

for any A ∈ K, let B is a direct summand of A. Then by Property (3) of dj(E,G;A,B) in

Section 4.2.4, (A,B)K = cB 6= 0. Hence the bilinear form is non-degenerate.

Let U−v be the Z[v, v−1]-subalgebra of Uv(gA,m) generated by all Fi,k with k = 1, · · · ,mi.

Because we only consider the case that the charge mi = 1 for all i ∈ I, there is only one

generator Fi,1 for each i, which we will simply denote by Fi. It is clear that U−v only subjects

to one relation, namely FiFj = FjFi if aij = 0.

Define a multiplication of U−v ⊗ U−v as

(A⊗B)(C ⊗D) := v−n(|B|,|C|)(AC)⊗ (BD),

where |B| is the grading of B when B is a homogeneous element and

(|B|, |C|) = 〈|B|, |C|〉+ 〈|C|, |B|〉,

where 〈|B|, |C|〉 is defined in (4.2).

Let F be the free algebra generated by {Fi | i ∈ I}. Let r′ : F→ U−v ⊗U−v be the algebra

homomorphism sending Fi to Fi ⊗ 1 + 1⊗ Fi. Since r′(FiFj) = r′(FjFi) if aij = 0, the map

r′ induces an algebra homomorphism r : U−v → U−v ⊗ U−v . This gives a coalgebra structure

on U−v .

Define a map

f : U−v → K

Fi 7→ Li,1.

It is easy to check that f(FiFj) = f(FjFi). So this map can be extended to an algebra

homomorphism. In addition, f preserves the grading, where the grading of B ∈ K is

defined as dimension vector |W | when B is a homogeneous element in KW . Now define a

bilinear form (−,−)U on U−v as (A,B)U := (f(A), f(B))K.
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Theorem 6. Ker(f) = Rad(−,−)U =: I1, so U−v /I1 ' K.

Proof. Obviously, Ker(f) ⊂ I1.

Let us pick any x ∈ I1. Then for any y ∈ K, there exists z ∈ U−v such that f(z) = y due

to the fact that f is surjective. Therefore,

0 = (x, z)U = (f(x), f(z))K = (f(x), y)K.

This means f(x) ∈ Rad(−,−)K. Since the bilinear form (−,−)K is non-degenerate, f(x) =

0. i.e., x ∈ Ker(f). Hence U−v /I1 ' K.

4.3.3 Relation between K and CHR

Let H(RΓ)∗ be the dual Hall algebra of H(RΓ), i.e., H(RΓ)∗ = ⊕νH(RΓ)∗ν . Here H(RΓ)∗ν

is the set of all C-valued functions on the set of isomorphism classes of all representations

M of Γ over R with dimension vector |M | = ν. The multiplication on H(RΓ)∗ is defined as

follows:

(f1 · f2)(E) =
∑
N⊂E

f1(E/N)f2(N).

See [31] for more information. Let CH∗R be the subalgebra of H(RΓ)∗ generated by δSi , ∀i ∈

I, where δSi is the characteristic function of Si. i.e.

δSi(x) =

{
1 if x = Si
0 otherwise.

By the formular,

(δM · δN)(E) = # {L ⊂ E | L ' N,E/L 'M} = FE
M,N .

CH∗R is isomorphic to the algebra CHR.

Now define

χ : K → CH∗R

A 7→ χA,

where χA(x) = Tr(Fr : A·x → A·x) (see Section 2.5).

63



Lemma 11 (Theorem 4.1(b) in [31]). χ : K → CH∗R is an algebra homomorphism.

Theorem 7. χ is a surjective algebra homomorphism.

Proof. By Lemma 11, it is enough to show χLi = δSi for any δSi . In fact,

χLi(x) = χπi!1(x) =
∑

y∈π−1
i (x)

χ1(y) = χ1(π−1
i (x)) = δSi .

Here πi is the obvious projection map. The penultimate equality is true because both

EV and F̃V contain a single point.

Let us denote I2 = Ker(χ). Then CHR ' K/I2.

Remark 8. One may ask what the kernel I1 of the above map f is. For the field case, Lusztig

and Ringel show this is the ideal generated by the quantum Serre relations. However, for

the case where we have the local ring R = k[t]/(tn), the kernel I1 is much more complicated.

Let’s finish this chapter with the following example which gives some idea of what I1 is.

Example 2. Fix R = Fq[t]/(tn), consider quiver A2 : 1 → 2. Then S1 : R → 0 and

S2 : 0→ R are all simple objects. By computation, one has,

S2
1 = qn/2(qn + qn−1)(R2 → 0),

S1S2 = q−n/2[(R
0−→ R) + (R

1−→ R) + (R
t−→ R) + · · ·+ (R

tn−1

−−→ R)],

S2S1 = R
0−→ R,

S2
1S2 = q−n/2(qn + qn−1)[(R2 0−→ R) + (R2 (1,0)−−→ R) + (R2 (t,0)−−→ R) + · · ·+ (R2 (tn−1,0)−−−−→ R)],

S1S2S1 = (qn+qn−1)(R2 0−→ R)+(R2 (1,0)−−→ R)+q(R2 (t,0)−−→ R)+ · · ·+qn−1(R2 (tn−1,0)−−−−→ R),

and

S2S
2
1 = qn/2(qn + qn−1)(R2 0−→ R).

There is no quantum Serre relation at this time.
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Chapter 5

Character sheaves of GLm(k[t]/(t2))

In this chapter, we will construct character sheaves of GLm(k[t]/(t2)) and define induction

and restriction functors on them. It is an important observation that GLm(k[t]/(tn)) =

GLm(k) nH, where H is a unipotent algebraic group (see Section 5.3). In the special case

that n = 2, H is an abelian group. Little group method gives a way to list irreducible

characters of semidirect product of two groups. We will give a weak version of geometric

little group method.

Throughout this chapter, all algebraic group are over k := Fq. F is a Frobenius map

on the given algebraic group G, and GF is the finite subgroup of G consisting of all fixed

points by F .

5.1 Character sheaves of abelian groups

In this section, we review the definition of character sheaves of abelian algebraic group. For

the construction, we refer to [40].

Let H be an abelian algebraic group over k and defined over finite field Fq, and L : H →

H be the Lang map sending x to F (x)x−1, where F is a Frobenius map on H. For any

y ∈ H, the stalk of the local system E := L!1H at y is the vector space Ey consisting of all

functions f : L−1(y)→ Ql. Then

Ey = ⊕φ∈Hom(HF ,Q∗l )E
φ
y ,
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where

Eφ
y =

{
f ∈ Ey | f(zx) = φ(z)f(x), for all z ∈ HF and x ∈ L−1(y)

}
.

We have a decomposition E = ⊕φEφ, where Eφ is a local system of rank 1 on H whose

stalk at y ∈ H is Eφ
y .

For any y ∈ H, and f ∈ (F ∗Eφ)y = Eφ
F (y), let

ψ : Eφ
F (y) → Eφ

y

f(x) 7→ f ′(x) := f(F (x)), ∀x ∈ L−1(y).

If y = 1 is the identity element in H, then F (x)x−1 = 1 implies F (x) = x. So f ′ = f . i.e.

ψ is an identity map.

Now for any y ∈ HF ,

χEφ,F (y) = Tr(ψ : Eφ
F (y) → Eφ

y ) = Tr(ψ : Eφ
y → Eφ

y ) = Tr(ψ : f 7→ f(F (x))).

By the construction of Eφ,

f(F (x)) = f(yx) = φ(y)f(x),∀x ∈ L−1(y).

So ψ is a multiplication by φ(y). Therefore, χEφ,F (y) = φ(y) which gives a irreducible

character of H.

For r ∈ N, let Lr : H → H be the map x 7→ F r(x)x−1 and Er = Lr! 1. Similarly, the

stalk of Er at y ∈ H is the vector space Er
y consisting of all functions f ′ : (Lr)−1(y)→ Ql.

Now define a map ξy : Ey → Er
y sending f to f ◦NF r,F , where NF r,F : H → H is the map

x 7→ xF (x) · · ·F r−1(x). It is clear that NF r,F ((Lr)−1(y)) ⊂ L−1(y). So ξy is well-defined.

Moreover, it gives an isomorphism Eφ ' (Er)φ
′
, where φ′ = φ ◦NF r,F ∈ Hom(HF r ,Q∗l ).

The rank 1 local system Eφ on H for some (F, φ) is called a character sheaves on H.

Let CS(H) be the set of isomorphism classes of character sheaves of H.
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5.2 Little group method

5.2.1 Induced character for finite group

Given a finite group G, denote by Irr(G) the set of all isomorphism classes of irreducible

characters of G. Let H be a subgroup of G. For any f ∈ Irr(H), the induced character of f

from H to G, denoted it by IndGH f , can be calculated by the following formula, more detail

of induced character can be found in [8].

(IndGH f)(b) =
1

|H|
∑
g∈G

f̃(gbg−1),∀ b ∈ G,

where f̃(a) =

{
f(a) if a ∈ H
0 if a 6∈ H . By abuse of notation, we still denote f̃ by f in the rest

of this chapter.

5.2.2 Algebraic little group method

Let G = A n H be a finite group such that H is an abelian group. The group G acts on

Irr(H) by

g · χ(h) = χ(g−1hg),∀g ∈ G,χ ∈ Irr(H), h ∈ H.

Let (χi) be the set of representative of orbits of A in Irr(H). For each χi, let Ai be the

stabilizer of χi in A, and Gi = Ai n H. Let ρ be an irreducible character of Ai. We will

extend χi (resp. ρ) to Gi as follows. By abuse of notation, we will use the same notation to

denote the extended functions.

χi(g) = χi(p2(g)), ρ(g) = ρ(p1(g)),∀g ∈ Gi. (5.1)

Here p1 : Gi → Ai (resp. p2 : Gi → H) is the obvious projection map. It is easy to check

that ρ⊗ χi is an irreducible character of Gi. Let θi,ρ = IndGGi(ρ⊗ χi).

Proposition 12 (proposition 25 in [53]). (1) θi,ρ is an irreducible character of G.

(2) If θi,ρ and θj,ρ′ are isomorphic, then i = j and ρ is isomorphic to ρ′.

(3) Every irreducible character of G is isomorphic to one of θi,ρ.
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5.2.3 Geometric little group method

Let G = A n H be an algebraic group such that H is an abelian algebraic group. We are

going to construct character sheaves of G. Let CS(H) be the set of isomorphism classes of

character sheaves of H. There is a natural G-action on H. Hence, for any element g ∈ G,

we can define a map g : H → H sending x to g−1xg. The following lemma shows that pull

back along g ∈ GF is compatible with g-action on Irr(HF ).

Lemma 12. For any Frobenius map F on G, and F ∈ CS(H), if g ∈ GF , then

χg∗F ,F = g · χF ,F .

Proof. For any y ∈ HF ,

χg∗F ,F (y) = χF ,F (g−1yg) = (g · χF ,F )(y).

We want to define a G-action on CS(H). Firstly, for any g ∈ G, there exists r ∈ Z such

that g ∈ GF r , then (g◦F ◦g−1)r = g◦F r◦g−1 = F r, where we consider g as an automorphism

of H as above. Now for any character sheaf F ∈ CS(H), by the construction in Section 5.1,

F = Eφ for some (F, φ), then χF ,F = φ. Moreover F ' Eφ′ , where φ′ = φ ◦ NF r,F , then

χF ,F r = φ′. By Lemma 12, χg∗F ,F r = g · χF ,F r ∈ Hom(HF r ,Q∗l ). Therefore, we can define a

G-action on CS(H) as following,

g · F = g∗F , for all g ∈ G, F ∈ CS(H).

Let CS(H)/G be the set of orbits of G in CS(H). For any representative F of an orbit

in CS(H)/G, let AF be the stabilizer of F in A, and GF = AF n H. Clearly, GF is a

closed subgroup. Let CS(GF) be the set of isomorphism classes of character sheaves of GF .

Consider the following diagram.

GF
ι // G G×Guoo p // G,
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where ι is the closed embedding; p is the first projection and u(g, h) = hgh−1.

The G-actions on the above diagram as follows. G acts on the second G as g′ ·g = g′gg′−1;

G acts on GF and the first G trivially and G acts on G×G as g′ · (g, h) = (g′gg′−1, hg′−1).

Then all maps in the above diagram are G-equivariant maps.

For any G ∈ CS(AF), define

IndGGF (G � F) = p!u
∗ι!(G � F).

Proposition 13. For any F ∈ CS(H) and G ∈ CS(AF), we have

χIndGGF
(G�F),F = IndG

F

GFF
(χG,F ⊗ χF ,F ),

where χG,F (resp. χF ,F ) is consider as the class function on GF
F by trivial extension as in

(5.1).

Proof. By the definition of IndGGF and properties of characteristic function, for any g ∈ GF ,

χIndGGF
(G�F),F (g) = χp!u∗ι!(G�F),F (g)

=
∑
h∈GF

χu∗ι!(G�F),F (g, h)

=
∑
h∈GF

χι!(G�F),F (hgh−1)

=
∑
h∈GF

χ(G�F),F (hgh−1)

= IndG
F

GFF
(χG,F ⊗ χF ,F )(g).

The penultimate equality holds because ι is a closed embedding and ι! is just extension by

0.

5.3 Character sheaves of T nH

Consider G := GLm(k[t]/(tn)) as an algebraic group over k. Let G0 = GLm(k) which is a

subgroup of G. Denote by H the quotient group G/G0. It is clear that H is a unipotent

group. In the case that n = 2, H is an abelian connected algebraic subgroup of G. Moreover,
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G = G0 nH. Let T be a maximal torus of G0. In this section, we will construct character

sheaves of T nH for n = 2 as an example of semidirect product of groups.

5.3.1 Construction of character sheaves T nH

Let CS(H) be the set of isomorphism classes of character sheaves of H. There is natural

T -action on H since H is a normal subgroup of G. Hence, each element g ∈ T defines a

map g : H → H sending h to g−1hg. For any F ∈ CS(H), let

TF = {g ∈ T | g∗F = F} .

On the other hand, there is an induced T F -action on Irr(HF ) defined by

(g · χ)(h) = χ(g−1hg), ∀χ ∈ Irr(HF ), g ∈ T F , h ∈ HF .

For each χ ∈ Irr(HF ), let T Fχ =
{
g ∈ T F | g · χ = χ

}
.

Consider the following diagram,

H T ×Huoo p // H
ι // T nH. (5.2)

Here u(t, h) = t−1ht; p is the second projection and ι is the closed embedding. We define

T -actions and H-actions as follows. T acts on the first H trivially; T acts on the second H

as t′ · h = t′ht′−1; T acts on T nH as t′ · th = tt′ht′−1 and T acts on T ×H as,

t′ · (t, h) = (t′t, t′ht′−1),∀t, t′ ∈ T, h ∈ H.

H acts on H and T ×H trivially and acts on T nH as

h′ · th = h′thh′−1 = t(t−1h′thh′−1).

T -actions and H-actions induce a T nH-actions on the above diagram. It is easy to check

that u, p and ι are H-equivariant maps and T nH-equivariant maps.

For any F ∈ CS(H), define

IndTnHH F = ι!p!u
∗F .
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Lemma 13. For any F ∈ CS(H), we have

Ind
(TnH)F

HF χF ,F = χIndTnH
H F ,F .

Proof. For any b ∈ (T nH)F ,

χIndTnH
H F ,F (b) = χι!p!u∗F ,F (b) =

∑
h∈ι−1(b)

χp!u∗F ,F (h).

If b 6∈ HF , this is just 0. If b ∈ HF , then∑
h∈ι−1(b)

χp!u∗F ,F (h) = χp!u∗F ,F (b) =
∑
t∈T

χu∗F ,F (t, b) =
∑
t∈T

χF ,F (tbt−1).

On the other hand,

(Ind
(TnH)F

HF χF ,F )(b) =
1

|HF |
∑

th∈(TnH)F

χF ,F (thbh−1t−1).

Since thbh−1t−1 ∈ HF if and only if b ∈ HF . If b 6∈ HF , then

(Ind
(TnH)F

HF χF ,F )(b) = 0.

If b ∈ HF , then

(Ind
(TnH)F

HF χF ,F )(b) =
∑
t∈TF

χF ,F (tbt−1).

Lemma 14. Given f ∈ Irr(HF ), let S = Tf , then for all g ∈ Irr(SF ) and ab ∈ T nH,

(Ind
(TnH)F

(SnH)F
(g ⊗ f))(ab) =

1

|T F |
(IndT

F

SF g)(a)(Ind
(TnH)F

HF f)(b).

Proof.

(Ind
(TnH)F

(SnH)F
(g ⊗ f))(ab)

=
1

|SF ||HF |
∑

th∈(TnH)F

(g ⊗ f)(thabh−1t−1)

=
1

|SF ||HF |
∑

th∈(TnH)F

(g ⊗ f)((tat−1)((ta−1)h(at−1)t(bh−1)t−1))

=
1

|SF ||HF |
∑

th∈(TnH)F

g(tat−1)f((ta−1)h(at−1)t(bh−1)t−1)

=
1

|SF ||HF |
∑

th∈(TnH)F

g(a)f((ta−1)h(at−1)t(bh−1)t−1).
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If a 6∈ SF , both sides are 0. The lemma is true.

Since H is an abelian group, f is a group homomorphism. If a ∈ SF , then the left hand

side is

1

|SF ||HF |
∑

th∈(TnH)F

g(a)f((ta−1)h(at−1))f(tbt−1)f(th−1t−1)

=
1

|SF ||HF |
∑

th∈(TnH)F

g(a)f(a−1(tht−1)a)f(tbt−1)f(th−1t−1)

=
1

|SF ||HF |
∑

th∈(TnH)F

g(a)f(tht−1)f(tbt−1)f(th−1t−1) (since a ∈ SF )

=
1

|SF ||HF |
∑

th∈(TnH)F

g(a)f(tbt−1)

=
1

|SF |
∑
t∈TF

g(a)f(tbt−1)

=
1

|SF |
g(a)

∑
t∈TF

f(tbt−1)

=
1

|T F |
(IndT

F

SF g)(a)(Ind
(TnH)F

HF f)(b).

Let CS(T ) be the set of isomorphism classes of character sheaves of T . For any F ∈

CS(H), TF is a closed subgroup of T . Let jF : TF ↪→ T be the inclusion map.

Let

P(T nH) = {jF∗j∗FG � p!u
∗F | F ∈ CS(H),G ∈ CS(T )} ,

where p, u are the maps defined in Diagram (5.2).

Let

(P(T nH))F = {A ∈ P(T nH) | F ∗A ' A} .

Definition 3. For any A ∈ P(T nH), a simple constituent of pH i(A) for some i is called a

character sheaf on T nH.

Denote by CS(TnH) the set of representatives of isomorphism class of character sheaves

on T nH.
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Theorem 8. If A = jF∗j
∗
FG � p!u

∗F ∈ (P(T n H))F satisfies F ∗G ' G and F ∗F ' F ,

then 1
|TFχF,F |

χA,F is an irreducible character of (TnH)F . Moreover, all irreducible characters

arise in this way.

Proof. Let p1 : T nH → T and p2 : T nH → H be the first and second projection maps

respectively. Then, for any ab ∈ T nH,

χA,F (ab) = χp∗1jF∗j∗FG,F (ab)χp∗2p!u∗F ,F (ab) = χjF∗j∗FG,F (a)χp!u∗F ,F (b).

If a 6∈ TF , the first term is 0 since jF∗j
∗
FG is just the restriction of G to TF .

If a ∈ TF , by Lemma 13,

χA,F (ab) = χG,F (a)χp!u∗F ,F (b) = χG,F (a)(Ind
(TnH)F

HF χF ,F )(b).

By the proof of Lemma 14 and Proposition 12, 1
|TFχF,F |

χA,F is an irreducible character

of (T n H)F and all irreducible characters of (T n H)F arise in this way. The theorem

follows.

5.3.2 Induction functor

Recall G = G0nH with H a unipotent normal subgroup. Let p1 : G→ G0, and p2 : G→ H

be the projection maps. For any Levi subgroup L of G, let P be a parabolic subgroup of G

containing L. Denote TL = T n p2(L) and TP = T n p2(P ). Using this notation, we also

have TG = T nH. We will define induction functor and restriction functor on CS(TG).

Consider the following diagram,

TL TV
πoo p // TG. (5.3)

Here TV = {(g, h) ∈ TG× TG | h−1gh ∈ TP} and p is the first projection map. π :

(g, h) 7→ π1(h−1gh), where π1 : TP → TL is the obvious map. We define TL-actions

and TG-actions as follows.

TL acts on itself by conjugation, i.e. t · h = t−1ht; acts on TG trivially; and acts on TV

as t · (g, h) = (g, ht). Then both π and p are TL-equivariant maps.
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TG acts on TL trivially; acts on TG by conjugation, i.e. t · g = tgt−1; and acts on TV

as t · (g, h) = (tgt−1, th). Then both π and p are TG-equivariant maps.

Define

IndTGTL A = p∗π
∗A, ∀A ∈ CS(TL).

Lemma 15. Consider the following diagram,

TL TVπoo p //

p1||

ι

&&

TG

TP

π1

OO

ι1 // TG TG× TG.

p2

OO

uoo

(5.4)

Then,

IndTGTL A = p2∗u
∗ι1!π

∗
1A.

Proof. The middle square is a cartesian square, so ι!p
∗
1B = u∗ι1!B for any B ∈ D(TP ).

Therefore,

IndTGTL A = p2∗ι∗p
∗
1π
∗
1A = p2∗ι!p

∗
1π
∗
1A = p2∗u

∗ι1!π
∗
1A.

5.3.3 Restriction functor

Using the same notation as last section, let π0 : p1(P ) → p1(L) and π1 : p2(P ) → p2(L)

be the natural projection maps, and let ι0 : p1(P ) → p1(G) and ι1 : p2(P ) → p2(G) be the

natural embedding. Consider the following diagram,

TL TP
πoo ι // TG. (5.5)

Here π = Id× π1 and ι = Id× ι1.

Define

ResTGTL A = π!ι
∗A[2d1],

where d1 is the dimension of fibers of π.

74



Proposition 14. Assume L is a Levi subgroup of M and M is a Levi subgroup of G. Then,

for any A ∈ D(TG),

ResTGTL A = ResTMTL (ResTGTM A).

Proof. Denote TPL (resp. TPM , TP ) the parabolic subgroup of TM (resp. TG, TG) con-

taining TL (resp. TM, TL). Consider the following diagram,

TL TPπoo ι //

π3{{

ι3

$$

TG

TPL

π1

OO

ι1 // TM TPM .

ι2

OO

π2oo

The middle square is a cartesian square, so

π1!ι
∗
1π2!ι

∗
2A = π1!π3!ι

∗
3ι
∗
2A = π!ι

∗A.

Since the dimension of fibers of π is equal to the sum of the dimension of fibers of

π1 and the dimension of fibers of π2. The proposition follows the definition of restriction

functor.

5.3.4 Adjunction

Proposition 15. For any A ∈ Db
TG(TG) and B ∈ Db

TL(TL), we have

Hom(A, IndTGTL B) = Hom(ResTGTL A,B).

Proof. Consider Diagram (5.4). Let d1 (resp. d2) be the dimesnsion of fibers of p2 (resp.
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π1). By Lemma 15,

Hom(A, IndTGTL B)

= Hom(A, p2∗u
∗ι1!π

∗
1B)

= Hom(p∗2A, u
∗ι1!π

∗
1B)

= Hom(p∗2A, p
∗
2ι1!π

∗
1B) (Since ι1!π

∗
1B is a TG− equivariant complex)

= Hom(p∗2A, p
!
2ι1!π

∗
1B[−2d1])

= Hom(p2!p
∗
2A, ι1!π

∗
1B[−2d1])

= Hom(A[−2d1], ι1!π
∗
1B[−2d1]) (Since p2 is a vector bundle)

= Hom(A, ι1!π
∗
1B)

= Hom(A, ι1∗π
∗
1B) (Since ι1 is a closed embedding)

= Hom(ι∗1A, π
∗
1B)

= Hom(ι∗1A, π
!
1B[−2d2])

= Hom(π1!ι
∗
1A,B[−2d2])

= Hom(ResTGTL A,B).

5.4 Character sheaves of GLm(k[t]/(t2))

5.4.1 Character sheaves of reductive algebraic groups

In this section, we will review Lusztig’s construction for connected reductive algebraic group-

s. We refer to [32] for this section.

We fix a Borel subgroup B ⊂ G0 = GLm(k), a unipotent radical U and a maximal torus

T ⊂ B. Let W = NG0(T )/T be the weyl group of G0. We will fix a representative ẇ of w.

By abuse of notation, we still denote it by w.

Now any w ∈ W can be regarded as an automorphism w : T → T sending t to wtw−1.
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For any L ∈ CS(T ), let

WL = {w ∈ W | w∗L ' L} .

Now consider the following diagram,

T Ẏw
p1 //p2oo Yw

πw // G0. (5.6)

Here

Ẏw =
{

(g, hU) ∈ G0 × (G0/U) | h−1gh ∈ BwB
}
.

and

Yw =
{

(g, hB) ∈ G0 ×G0/B | h−1gh ∈ BwB
}
.

Maps are defined as follows. πw is the first projection; p1(g, hU) = (g, hBh−1); and

p2(g, hU) = pr(h−1gh), where pr : BwB → T sending u1wtu2 to t.

T acts on T as a · t = w−1awta−1; T acts on Ẏw as t · (g, hU) = (g, ht−1U) and T acts

on Yw, G trivially. Then p1, p2, πw are all T -equivariant maps. Moreover, p1 is a principle

T -bundle.

G0 acts on itself by conjugation, i.e. a · g = aga−1; G0 acts on T trivially; G0 acts on Yw

as a · (g, hB) = (aga−1, ahB); G0 acts on Ẏw as a · (g, hU) = (aga−1, ahU). Then all maps

are G0-equivariant maps.

For any L ∈ CS(T ) and w ∈ WL, define KLw = (πw)!p1[p
∗
2(L).

A simple constituent of pH i(KLw) for some w ∈ WL, i ∈ Z and L ∈ CS(T ) is called a

character sheaf of G0. Denote by CS(G0) the set of all character sheaves of G0.

Now we want to construct character sheaves of G = GLm(k[t]/(t2)).

Consider the following diagram

G G0 ×Guoo p // G.
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Here u(g, (a, b)) = (gag−1, gbg−1) and p is the second projection.

Denote KF ,Lw = KjF∗j
∗
FL

w � F .

A simple constituent of pH i(p!u
∗KF ,Lw ) for some w ∈ WjF∗j

∗
FL, i ∈ Z, L ∈ CS(T ) and

F ∈ CS(H) is called a character sheaf of G. Denote by CS(G) the set of all character

sheaves of G.

5.4.2 Restriction

For any Levi subgroup L of G, let P be the parabolic subgroup of G containing L. Recall

G = G0 n H, and p1 : G → G0 and p2 : G → H are the projection maps respectively.

Denote LP = p1(L) n p2(P ). Similarly, we have PG,LG, TG, TP, TL. We also write

G = GG, P = PP and L = LL.

Recall that π0 : p1(P )→ p1(L) and π1 : p2(P )→ p2(L) are the natural projection maps,

and ι0 : p1(P )→ p1(G) and ι1 : p2(P )→ p2(G) are the natural embedding.

Consider the following diagram,

LL
Id×π1

←−−− LP
Id×ι1−−−→ LG. (5.7)

Define

ResLGLL A = (Id× π1)!(Id× ι1)∗A[d1],

where d1 is the dimension of fibers of Id× π1.

Consider the following diagram,

LG
π0×Id←−−− PG

ι0×Id−−−→ GG. (5.8)

Define

ResGGLG A = (π0 × Id)!(ι
0 × Id)∗A[d2],

where d2 is the dimension of fibers of π0 × Id.

Consider the following diagram,

LL
π0×π1

←−−− PP
ι0×ι1−−−→ GG.
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Define

ResGGLL A = (π0 × π1)!(ι
0 × ι1)∗A[d],

where d is dimension of fibers of π0 × π1.

Proposition 16. For any A ∈ D(GG), we have

ResGGLL A = ResLGLL ResGGLG A.

Proof. Consider the following commutative diagram,

LL PPπoo ι //

π3

||

ι3

##

GG

LP

π2

OO

ι2 // LG LG.

ι1

OO

π1oo

Here πi are obvious projection maps; ιi are obvious embedding maps and the middle square

is a cartesian square. Therefore,

π!ι
∗A = π2!π3!ι

∗
3ι
∗
1A = π2!ι

∗
2π1!ι

∗
1A.

Since the dimension of fibers of π0 × π1 is the sum of dimension of fibers of Id× π1 and

dimension of fibers of π0 × Id. Proposition follows.

Proposition 17. Let L (resp. M) be a Levi subgroup of M (resp. G), then, for any

A ∈ D(GG), we have

ResMM
LL ResGGMM A = ResGGLL A.

Proof. Consider the following diagram,

LL PP
πoo ι //

π3

{{

ι3

##

GG

PM

π2

OO

ι2 //MM QQ.

ι1

OO

π1oo

Here QQ (resp. PP, PM) is a parabolic subgroup of GG (resp. GG,MM) containing MM

(resp. LL,LL); πi are obvious projection maps; ιi are obvious embedding maps and the

middle square is a cartesian square. Therefore,

π!ι
∗A = π2!π3!ι

∗
3ι
∗
1A = π2!ι

∗
2π1!ι

∗
1A.
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Since the dimension of fibers of π is the sum of the dimension of fibers of π1 and the

dimension of fibers of π2. Proposition follows.

5.4.3 Induction

The induction functor is defined by two steps. Namely, one is an induction on “unipotent”

part, another one is an induction on “reductive” part. Let P,L be the same as last section.

Consider the following diagram

LL LV
q1oo q2 // LG.

Here

LV = {(g, h) ∈ LG× LG | h−1gh ∈ LP}.

Maps are defined as follows. q2 is the first projection and q1(g, h) = (Id× π1)(h−1gh).

We define LL-actions as follows. LL acts on itself by conjugation, i.e. g′ · g = g′−1gg′;

acts on LG trivially and acts on LV as g′ ·(g, h) = (g, hg′). Then all maps are LL-equivariant

maps.

We define LG-actions as follows. LG acts on LL trivially; acts on itself by conjugation,

i.e. g′ · g = g′gg′−1 and acts on LV as g′ · (g, h) = (g′gg′−1, g′h). Then all maps are

LG-equivariant maps.

Define

IndLGLL A = q2∗q
∗
1A[d1],

where d1 is the dimension of fibers of Id× π1 : LP → LL.

Consider the following diagram,

LG GV1
p1oo p2 // GV2

p3 // GG. (5.9)

Here

GV1 =
{

(g, h) ∈ GG×GG | h−1gh ∈ PG
}
,

and

GV2 =
{

(g, h) ∈ GG×GG/PG | h−1gh ∈ PG
}
.
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Maps are defined as follows. p3 is the first projection; p2(g, h) = (g, h) and p1(g, h) =

(π0 × Id)(h−1gh).

We define the LG-actions as follows. LG acts on itself by conjugation, i.e. a · g = a−1ga;

acts on GV2 and GG trivially and acts on GV1 as a · (g, h) = (g, ha). Then all maps are

LG-equivariant maps.

We define the GG-actions as follows. GG acts on itself by conjugation, i.e. b · g = bgb−1;

acts on LG trivially; acts on GV1 as b · (g, h) = (bgb−1, bh) and acts on GV2 as b · (g, h) =

(bgb−1, bh). Then all maps are GG-equivariant maps. Moreover, p2 is a principle PG-bundle.

p3 is a proper map.

Define

IndGGLG A = p3!p2[p
∗
1A[d2],

where d2 is the dimension of fibers of map π0 × Id : PG→ LG.

Define

IndGGLL A = IndGGLG IndLGLL A.

Lemma 16. Consider the following diagram,

LL LV
q1oo q2 //

q

||

ι

%%

LG

LP

π1

OO

ι1 // LG LG× LG.

p

OO

uoo

(5.10)

Then

IndLGLL A = p∗u
∗ι1!π

∗
1A[d1].

Proof. See proof of Lemma 15.

5.4.4 Adjunction

Proposition 18. For any A ∈ Db
LG(LG), B ∈ Db

LL(LL), we have

Hom(A, IndLGLL B) = Hom(ResLGLL A,B).
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Proof. Consider Diagram (5.10). Let d1 (resp. d2) be the dimension of fibers π1 (resp. p),

by Lemma 16,

Hom(A, IndLGLL B)

= Hom(A, p∗u
∗ι1!π

∗
1B[d1])

= Hom(p∗A, u∗ι1!π
∗
1B[d1])

= Hom(p∗A, p∗ι1!π
∗
1B[d1]) (Since ι1!π

∗
1B is a LG equivariant complex)

= Hom(p∗A, p!ι1!π
∗
1B[d1 − 2d2])

= Hom(p!p
∗A, ι1!π

∗
1B[d1 − 2d2])

= Hom(A[−2d2], ι1!π
∗
1B[d1 − 2d2]) (Since p is a vector bundle)

= Hom(A, ι1∗π
∗
1B[d1]) (Since ι1 is a closed embedding)

= Hom(ι∗1A, π
!
1B[−d1])

= Hom(π1!ι
∗
1A[d1], B).

For any algebraic variety X, given a stratification S of X, let p be a S-perversity function.

Then one can define a t-structure on Db(X). The category equipped with this t-structure

is denoted by pDb(X).

Lemma 17 ([42]). The functor � : pDb(X) × qDb(Y ) → p+qDb(X × Y ) is t-exact, where

(p+ q)(S×T ) = p(S) + q(T ). In particular, if p, q both are middle perversity functions, i.e.

p(S) = − dim(S), this is true.

Lemma 18. For any A ∈ CS(GG), ResGGLG A ∈ D(LG)≤0.

Proof. Let A = C �B, by Künneth formula,

ResGGLG A = (π0
! ι

0∗C) �B[d1] = (ResG0
L0
C) �B,
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where ResG0
L0

is the restriction functor which Lusztig defines for the character sheaves on G0

(see [32]) and d1 is the dimension of fibers of PG → LG. Since ResG0
L0
C ∈ D(L0)≤0 and B

is a perverse sheaf, by Lemma 17, ResGGLG A ∈ D(LG)≤0.

Proposition 19. For any A ∈MGG(GG) and B ∈ D≥0
LG(LG), then

Hom(A, IndGGLG B) = Hom(ResGGLG A,B).

Proof. This proof is based on Lusztig’s argument of proving theorem 4.4 in [32]. Consider

the following commutative diagram,

GV2
p3 //

f2
��

GG

D GG× PG
ρ

ee

ζ

OO

ξ //

φ

xx
θ
��

θ′

&&

GG

D′

β

OO

γ // LG PG.

ι

OO

πoo

(5.11)

Here D = GG× LG modulo the PG-action as

h · (x, l) = (xh−1, (π0 × Id)(h)x(π0 × Id)(h−1));

and D′ = GG× LG. The maps are defined as follows. f2(g, x) = (x, (π0 × Id)(x−1gx));

ρ(x, p) = (xpx−1, x);

φ(x, p) = (x, (π0 × Id)(p));

θ(x, p) = (π0 × Id)(p);

γ(x, l) = l;

p3(g, x) = g;

ξ(x, p) = xpx−1;

ζ(x, p) = p;

θ′(x, p) = p.

Firstly, we claim that β∗f2!p
∗
3A = γ∗π!ι

∗A for any A ∈ MGG(GG). In fact, it is easy to
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check the following two squares are cartesian squares.

GV2

f2
��

GG× PGρoo θ′ //

φ
��

PG

π
��

D D′
βoo γ // LG

By base change formula,

γ∗π!ι
∗A = φ!θ

′∗ι∗A = φ!ξ
∗A

and

β∗f2!p
∗
3A = φ!ρ

∗p∗3A = φ!ζ
∗A.

Since A is a G-equivariant perverse sheaf, i.e. ζ∗A = ξ∗A, the claim follows.

Secondly, we claim that IndGGLG A = p3!f
∗
2β[γ

∗A[d2], where d2 is the dimension of fibers

of f2. This can be shown by the following commutative diagram,

LG GV1
p1oo p2 //

f3
��

GV2
p3 //

f2
��

GG

LG D′
γoo β // D.

In fact, by commutativity, we have

p∗2f
∗
2β[γ

∗A = f ∗3β
∗β[γ

∗A = f ∗3γ
∗A = p∗1A.

The claim follows that the dimension of fibers of π is equal to the dimension of fibers of f2.

Therefore,

Hom(A, IndGGLG B)

= Hom(A, p3∗f
∗
2β[γ

∗B[d2]) (Since p3 is a proper map)

= Hom(p∗3A, f
∗
2β[γ

∗B[d2])

= Hom(p∗3A, f
!
2β[γ

∗B[−d2])

= Hom(f2!p
∗
3A, β[γ

∗B[−d2])

= Hom(β∗f2!p
∗
3A, γ

∗B[−d2])

= Hom(γ∗π!ι
∗A, γ∗B[−d2])

= Hom(π!ι
∗A[d2], B).
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The last equality holds because π!ι
∗A[d2] ∈ D≤0 and B ∈ D≥0 by Lemma 18.

Proposition 20. For any A ∈MGG(GG) and B ∈ D≥0
LL(LL), we have

Hom(A, IndGGLL B) = Hom(ResGGLL A,B).

Proof. Consider Diagram (5.10). By Lemma 16, IndLGLL B = p∗u
∗ι1!π

∗
1B[d1]. Since B ∈

D≥0
LL(LL), ι1!π

∗
1B[d1] ∈ D≥0. Hence u∗ι1!π

∗
1B[d1] ∈ D≥d, where d = dim(LG). Therefore

p∗u
∗ι1!π

∗
1B[d1] ∈ D≥0

LG(LG). i.e. IndLGLL B ∈ D
≥0
LG(LG).

By Propositions 18, 19, we have

Hom(A, IndGGLG IndLGLL B) = Hom(ResLGLL ResGGLG A,B).

Proposition follows the definition of IndGGLL and Proposition 16.
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Chapter 6

Conclusion

In Chapter 4, a geometric realization of the composition subalgebra of H(RΓ) is given. And

the canonical basis and a monomial basis of the composition subalgebra are constructed by

using perverse sheaves. This gives an example to indicate that perverse sheaves theory can

be used to study algebraic object. Character sheaf theory is another example.

In Chapter 5, we construct character sheaves, which are some perverse sheaves, on

GLm(k[t]/(t2)). There are still many interesting problems to be investigated. Here we list

some of them.

(1) Do the characteristic functions of character sheaves form a basis of the vector space

of class functions: GLm(k[t]/(t2))→ Q̄l?

(2) The characteristic functions of character sheaves are only virtual characters. Which

irreducible characters will be direct summands of given character sheaves?

(3) What are the character sheaves of GLm(k[t]/(tn)) for n > 2?

(4) More generally, the approach in Chapter 5 should also apply to any reductive algebraic

group G or even more general algebraic groups through the group homomorphism

G(k[t]/(tn))
π−→ G(k) induced from the k-algebraic homomorphism k[t]/(tn) → k and

H := Ker(π) is a unipotent algebraic group. Can we use Boyarchenko-Drinfeld method

to characterize the character sheaves of H in term of geometric properties of G?
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