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Abstract

A representation of a quiver I' over a commutative ring R assigns an R-module to each
vertex and an R-linear map to each arrow. In this dissertation, we consider R = k[t]/(t") and
all R-free representations of I' which assign a free R-module to each vertex. The category,
denoted by Repé(f‘), containing all such representations is not an abelian category, but
rather an exact category.

In this dissertation, we firstly study the Hall algebra of the category Repé(F), denote by
H(RT), for a loop-free quiver I'. A geometric realization of the composition subalgebra of
H(RT) is given under the framework of Lusztig’s geometric setting. Moreover, the canonical
basis and a monomial basis of this subalgebra are constructed by using perverse sheaves.
This generalizes Lusztig’s result about the geometric realization of quantum enveloping
algebra. As a byproduct, the relation between this subalgebra and quantum generalized
Kac-Moody algebras is obtained.

If ' is a Jordan quiver, which is a quiver with one vertex and one loop, each representation
in Repé(F) gives a matrix over R when we fix a basis of the free R-module. An interesting
case arises when considering invertible matrices. It then turns out that one is dealing
with representations of the group GL,,(k[t]/(t")). Character sheaf theory is a geometric
character theory of algebraic groups. In this dissertation, we secondly construct character
sheaves on GL,,(k[t]/(t*)). Then we define an induction functor and restriction functor on

these perverse sheaves.
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Chapter 1

Introduction

The first remarkable work in representation theory of quivers is due to Gabriel, see [15]. He
proves that a quiver has finite many isomorphism classes of indecomposable representations
if and only if its underlying graph is a Dynkin diagram. Such quivers are called of finite
type. In this case the dimension vector of an indecomposable representation is a positive
root of the semisimple Lie algebra sharing the same Dynkin diagram. Furthermore, the
isomorphism classes of indecomposable representations are in one to one correspondence to
positive roots of corresponding semisimple Lie algebra.

Gabriel’s theorem is generalized to the extended Dynkin diagrams by Donovan, Frieslich,
Nazarova, and finally to more general quivers by Kac, see [11, 22, 46]. The Lie algebra
corresponding to an extended Dynkin diagram is an affine Kac-Moody Lie algebra. In this
case, it has infinite many roots and its roots belong to two classes: real roots, obtained
from the simple roots by the Weyl group action, and the rest-imaginary roots. There is a
unique indecomposable representation corresponding to each positive real root. Moreover,
for each positive imaginary root, the isomorphism classes of indecomposable representations
are parametrized by the projective line together with finitely many points. An quiver is
called of tame type if the indecomposable representations of a given dimension may be
parametrized by a finite number of rational curves.

All other quivers are called wild type. Classifying all indecomposable representations of

wild type quivers is a so-called “hopeless” problem. The representation theory of wild type



quivers is as complicated as the representation theory of k(z,y), the non commutative free
associative algebra in two variables.

The representations of quivers over local rings R = k[t]/(t") have a close relation with the
representations over field k. For example, the category of R-free representations of Jordan
quiver over R is equivalent to the category of representations of algebra k[z,y|/(z™). On the
other hand, a k[t]/(t")-free representation of quivers is a deformation of a representation of
the same quiver over k.

Another remarkable work in representation theory of quivers is Ringel’s work about
Hall algebras. The Hall algebra H(.A) of an finitary abelian category A is defined to be
the C-vector space with a basis consisting of all isomorphism classes {[M]},/cop4)- The
multiplication between two basis elements [M] and [/N] is a linear combination of elements
[P] which runs through the set of extensions of M by N with coefficient counting the number
of certain submodules. This multiplication is called a Hall multiplication. The first example
of Hall algebra can be traced back to 1901. In [54], Steinitz described an idea of producing an
algebra from isomorphism classes of finite abelian p-groups. In [19], Phillip Hall rediscovered
the idea. The algebra is now called Hall-Steinitz algebra. Now many operations in algebra
can be thought of as Hall multiplications. For instance, the parabolic induction for modular
representations; the parabolic induction of Eisenstein series for function fields, see [26]; and
the multiplication for symmetric functions etc., see [43].

Ringel shows that Hall algebra, H(kT"), associated with a Dynkin quiver I' is generated
by simple representations. Moreover, after twisting by using the Euler character on the
Grothendick group, Ky(kI'), one may obtain the twisted Hall algebra H, (k') which is
isomorphic to Uq+ as an algebra, see [50, 51]. Here Uq+ is the positive part of the quantum
enveloping algebra of the Lie algebra corresponding to the given quiver. Later on, J.A.
Green, in [17], defined a coalgebraic structure on H, (kI'). Additionally Xiao, in [56], defined
the antipode of H,(kI"). This makes H,(kI') a Hopf algebra.

After Ringel’s work relating Hall algebras with quantum groups, the interest for Hall



algebras reaches to more general mathematics, including topics describing physics invariants.

Motivated by Ringel’s work, in [35], Lusztig gives a geometric realization of U, by using
perverse sheaves on moduli spaces of representations of quivers. Later on, Lusztig’s work
is generalized to affine case and more general quivers, see [29, 30, 37]. In [23], Kang and
Schiffmann give a geometric realization of the positive part of the quantized enveloping
algebra of a generalized Kac-Moody Lie algebra by using quivers with multiple loops. Via
relations between representations of quivers over a field k and representations of quivers
over the local rings k[t]/(t"), one may expect to approach Kang and Schiffimann’s result
through the representations of quiver over the local ring R = k[t]/(t"). This question is
partially answered in Chapter 4.

More recently, Hall algebras are defined for different categories. Here are some examples.
Hubery defines the Hall algebra over exact category, see [20]; Peng-Xiao, Téen and Kapra-
nov construct Hall algebras for some derived categories, see [4, 24, 47, 55, 57]; Caldero,
Chapoton and Keller build some relations between Hall algebra and cluster categories, see
[5, 6]; Joyce defines the Hall algebra as the algebra of constructible functions on moduli
stack of objects in an abelian category, see [21]. And more and more relations between Hall
algebra and other mathematical objects are discovered. Kontsevich and Soibelman defines
cohomological Hall algebra which is related to Donaldson-Thomas invariants, see [28, 49];
Kapranov, Schiffmann and Vasserot study the Hall algebras over the category of vector
bundles on smooth irreducible projective curves and give a purely Galois theoretic interpre-
tation of these Hall algebras by applying the Langlands correspondence for the groups GL,,
over functional fields, see [25, 52].

What is an geometric approach to Hall algebras good for? Firstly, Hall numbers, which
are structure constants of the Hall algebra, are numbers of rational points of certain varieties.
So one doesn’t need to prove the existence of Hall polynomials. Another generalization is
the motivic version of Hall algebra. If we consider representations of quivers over infinite

field, such as C. The Hall numbers, which counts numbers of filtration, are infinite numbers.



Instead of numbers of rational points of varieties, one uses motivic measures of varieties as
structure constants. The obtained Hall algebra is called motivic Hall algebra, see [27].

Secondly, it is easy to construct the canonical basis of Hall algebras through geometric
approach. Lusztig constructs the canonical basis of U, q+ by using simple perverse sheaves on
moduli spaces of representations of quivers. Kashiwara constructs independently such basis,
which is called the global crystal basis, by combinatorial methods. These bases provide a
uniform description of irreducible finite-dimensional modules. Moreover these bases have
many remarkable properties such as integrality and positivity of structure constants etc.
Lusztig’s construction can be thought of as a categorification of the Hall algebra (or U; ).
The category Q := @y Qy (see definition in section 2.2) is now called Hall category.

The isomorphic classes of representations of quivers give a natural basis of Hall algebra
associated to Dynkin quivers, which is a PBW type basis. Some entries of the transition
matrix between the canonical basis and a PBW type basis is Poincare polynomials at a
certain point in the representations varieties, see [34]. On the other hand, Lusztig’s sheaves
(see section 2.2) give a monomial basis of the Hall algebra.

In Chapter 4, we study the Hall algebra, H(RI'), of the category of R-free represen-
tations of a loops free quiver I' over R = k[t]/(t"). There is a certain relation between
the composition subalgebra of H(RI") and quantum generalized Kac-Moody algebras. Un-
der the framework of Lusztig’s geometric approach, we construct the canonical basis and a
monomial basis of the composition subalgebra of H(RT).

The geometry of conjugacy classes of m x m-matrices for various m is related the full
subcategory of category of representations of the Jordan quiver over k with a fixed dimension.
Green in [16] gives all irreducible complex characters of finite groups GL,,(F,), which are
complex valued class functions on GL,,(F,). Later on, different ways are used to approach to
the irreducible characters of GL,,(IF,). In [58], Zelevensky uses Hopf algebra (subalgebra of
Hall algebra associated the Jordan quiver) approach to the irreducible characters of GL,, (F,)

for all m. It is important to note that GL,,(FF,) is the fixed point set, usually denoted by



GL,,(F,)F, of Frobenius morphism F in GL,,(F,).

Motivated by Macdonald’s conjecture, which claims that there should be a map from
general position complex characters of F-stable maximal tori to irreducible complex repre-
sentations of G, Deligne and Lusztig in [10] construct Deligne-Lusztig characters for any
reductive algebraic group by using [-adic étale cohomology with compact support. Deligne-
Lusztig characters are certain virtual characters. Furthermore, every irreducible character
of GT' is a constituent of some Deligne-Lusztig characters.

Using [-adic cohomology to define the Deligne-Lusztig characters, Lusztig in [34] uses
intersection [-adic cohomology complexes, and introduces certain simple perverse sheaves
on connected reductive algebraic groups, which are called character sheaves. Character
sheaf theory provides a remarkable geometric interpretation for the complex characters of
finite groups of Lie type. The F-invariant character sheaves are closely related to the irre-
ducible characters of the group G¥'. Character sheaf theory allows us to study uniformly
representations of G¥ for various F. Later on, Lusztig generalizes his construction to dis-
connected reductive algebraic groups, parabolic and more general algebraic groups. In 2008,
Boyarchenko and Drinfeld construct character sheaves for unipotent algebraic group in [3].

In [39], Lusztig considers the representations of reductive groups over the finite ring
R =TF,[t]/(t") and gives some virtual characters of GL,,(R). Lusztig further constructs in
[40] some generalized character sheaves of G'L,,(F,[t]/(t")). It is called generalized char-
acter sheaves because they behave like character sheaves but it is not clear that they are
intersection complexes. And he conjectures that all these generalized character sheaves are
intersection cohomology complexes. Moreover, Lusztig mentions that the construction and
conjecture also make sense when GL,, is replaced by any reductive group. In the same
paper, he proves his conjecture for n =m = 2.

In this dissertation, we secondly consider GL,,(F[t]/(t")) = GL,(F) x H, where H
is a unipotent algebraic group. This is a mixed group. i.e. neither reductive nor solvable

group. The complete description of representations of an arbitrary mixed group is a hopeless



problem. In [12], Drozd treats such matrix problems in terms of representations of bocses.
In general, one may ask if we can construct character sheaves of G x H with knowing
information of character sheaves of G and H, such as structure of stabilizers of character
sheaves of H in GG. From algebraic point of view, little group method gives a way to list
irreducible characters of semidirect product of two finite groups. Little group method is a
special case of Clifford theory. The question turns out to be a geometric version of Clifford
theory. This question is partially answered in Chapter 5. In Chapter 5, we construct
character sheaves on GL,,(F,[t]/(t")). Then we define an induction functor and restriction
functor on them.

More generally, for any reductive algebraic group G or even more general algebraic
groups, there is a natural group homomorphism G(k[t]/(t")) = G(k). Then H := Ker(r) is
a unipotent algebraic group. If n = 2, H is a tangent space of G(k) and can be thought as
the Lie algebra of G(k). The approach in Chapter 5 should also apply to this case. This is
one of the questions we will work later. This dissertation opens a lot of interesting questions,
for example, character sheaves of algebraic group G(k[t]/(t")) for n > 2; character sheaves
of algebraic group G(k[t]) etc. The answer for the second question will be related to the

local Langlands program over function field.



Chapter 2

Perverse sheaves

In this chapter, we will quickly review the theory of perverse sheaves. For reference, we refer
to Chapter 8 in [41]. The reader can also find these in [1, 9, 13].
Let k be the algebraic closure of IF,, and let all algebraic varieties be over k and of finite

type separable.

2.1 Perverse sheaves

Let X be an algebraic variety. Denote by D(X) = D’ X) the bounded derived category
of Q,-constructible sheaves. Here [ is a fixed prime number which is invertible in k, and
@, is the algebraic closure of the field Q; of I-adic numbers. Objects of D(X) are referred
to as complexes. For a complex K € D(X), denote by H"(K) the n-th cohomology sheaf
of K. For any integer j, let [j] : D(X) — D(X) be the shift functor which satisfies
HM(K[j]) = H"(K).

Let f: X — Y be a morphism of algebraic varieties. There are functors f*: D(Y) —
D(X), f. : D(X)— DY), fi: D(X) — D(Y) (direct image with compact support), and
f DY) — D(X).

Let px : X — {pt} be the morphism from an algebraic variety X to a point. Denote by
1 = 1x the Qp-constant sheaf on X. The complex wx = (px)'(1y) is called the dualizing
complex on X. And DK = RHom(K,wx) € D(X) is called the Verdier dual of K € D(X).

In this dissertation, the perversity refers to the middle perversity. To define perverse

7



sheaves, we first introduce two full subcategories which define a ¢-structure on D(X). An
object K € D(X) is said to satisfy
(1) support condition if dim SuppH™(K) < —n,Vn;

{ (2) cosupport condition if dim SuppH"(DK) < —n, Vn.

Let D(X)= be the full subcategory of D(X) whose objects satisfy support condition.
In particular, H"(K) = 0 for n > 0. Let D(X)=" be the full subcategory of D(X) whose
objects satisfy cosupport condition. Then (D(X )=, D(X)=?) defines a t-structure on D(X).

Let M(X) be the full subcategory of D(X) whose objects are in D(X)<*(D(X)=". The
objects of M(X) are called perverse sheaves on X. M(X) is the heart of the t-structure
and is actually an abelian category in which all objects have finite length. The simple
objects of M(X) are given by the Deligne-Goresky-Macpherson intersection cohomology
complexes corresponding to various smooth irreducible subvarieties of X and to irreducible
local systems on them.

Let 7<p (resp. 7>0) : D(X) — D(X) be the truncation functor. Then we have a functor

PH? . D(X) — M(X)

K — TZOTSOK‘

Define the perverse cohomology functor PH" : D(X) — M(X) as PH"(K) = PH°(K|n)).

A complex K € D(X) is called semisimple if PH"(K) is semisimple in M(X) for all n
and K is isomorphic to @&,PH"(K)[—n| in D(X).

For any integer n, denote by M(X)[n] the full subcategory of D(X) whose objects are
of the form K|[n] for some K € M(X).

2.2 Properties of functors

Let f: X — Y be a morphism of algebraic varieties. The functors f*, fi, f', f., [j] and the

Verdier dual D satisfy the following properties.



2.2.1 Adjunction

If f: X =Y, then (f*, f,) and (fi, f') are adjoint pairs. i.e. for any A € D(X), B € D(Y),
(1) Hompx)(f*B, A) = Hompyy(B, f.A);
(2) Hompy(fiA, B) = Hompx)(A, f'B).

2.2.2 Pull back

If f: X — Y is smooth with connected fibers of dimension d, let f = f* o [d], then we have

the following properties,
(1) f' = f*[2d] and Df*(B) = f/(DB). (We will ignore the Tate twist.)
(2) K e DY) & fK € D(X)=".
(3) K e D(Y)2* & fK € D(X)2".
(4) K e M(Y) & [K € M(X).
(5) "H'(fK) = f(°*H'(K)).
(6) If K € DY< and K’ € DY2, then
Homp(y) (K, K') = Homp(x) (fK, fK').
(7) f: M) = M(X) is a fully faithful functor.

(8) If K € M(Y) and K’ € M(X) is a subquotient of fK € M(X), then K’ is isomorphic
to fK, for some K; € M(Y).

Lemma 1. If f : X — Y is smooth with connected fibers of dimension d, then ]7 sends

wrreducible perverse sheaves to irreducible perverse sheaves.

Proof. Let K € M(Y) be an irreducible perverse sheaf. Assume fK is not an irreducible
perverse sheaf. Let K’ be a proper subobject of fK. By (8), IK; € M(Y) such that

9



le ~ K'. There is a nonzero map ¢ € Hom(le, fK) By (6), there is a nonzero map
¢ € Hom(K7, K). But K is irreducible, so we have an exact sequence K 2 K — 0. Since f
is an exact functor, we have le LN fK — 0. Since le is a subobject of fK, le ~ fK.

This is an contradiction. O

2.2.3 Pushforward and decomposition
(1) If f: X — Y is a proper morphism, then f, = f; and fi(DA) = Df,(A).

(2) If f: X — Y is a proper morphism with X smooth, then f,(1) € D(Y) is a semisimple

complex.

(3) Let f: X — Y be amorphism of varieties. If there is a partition X = XoUX;U---UX,,
of locally closed subvarieties, such that X<; = XoU---UXj is closed for j = 0,--- ,m,
and for each j there are morphisms X; f—J> Z; SN Y;, such that Z; is smooth, f; is

a vector bundle, [’

7 is proper and f}f; = flx;, then fi(1) € D(Y) is a semisimple

complex. Additionally, for any n and j, there is a canonical exact sequence:
0 ——PH"(f;) 1 —="H"(f<j) 1 —="H"(f<j—1) 1 —=0,
where f<; and f; are the restrictions of f.

(4) Let X be an algebraic variety, U be an open subset of X, and Z be the complement
of Uin X. Let j: U — X and i : Z — X be the inclusions. For any K € D(X),

there is a canonical distinguished triangle in D(X),

G K — K —— it

If f: X — Y, then we have a canonical distinguished triangle in D(Y),

S K hK f!i!i*K& :

10



2.2.4 Base change

If
f

T T
7w

is a cartesian square and s is proper (resp. g is smooth), then
nf*=g"s: DY) — D(Z).

Usually it is called a proper (resp. smooth) base change.

2.2.5 Projection formula

Let f: X — Y be a morphism of varieties. C' € D(X) and K € D(Y) are constructible
complexes, then

K® fiC~fi(ffK®C).
2.2.6 Kiunneth formula

If f1: Xy — Y and fy : Xo — Y5 are morphisms over a variety S, let f := fi xXg fo :

X1 x5 Xo = Y] X5 Yy, then we have the following properties (see [42]).
(1) If A€ D*(X;) and B € D*(X,), then
filARg B) ~ f1ARg faB.
(2) If S is a point, and F € D°(Y;) and G € D*(Y3), then
F(FRG)~ fiFR f;G.
(3) If we further assume f; (resp. fo) is smooth of relative dimension d; (resp. dy), then
[f(FRG)~ fiFR [5G
(4) Under the same assumption as (3), we have

11



2.3 (G-equivariant complexes

Let m : Gx X — X be an action of a connected algebraic group Gon X and 7 : Gx X — X
be the second projection. Both maps are smooth with connected fiber of dim G. A perverse
sheaf K on X is said to be G-equivariant if the perverse sheaves 7* K [dimG] and m* K [dimG]
are isomorphic. More generally, a complex K € M(X)[n] is said to be G-equivariant if
the perverse sheaf K[—n| is G-equivariant. Denote by Mg(X) the full subcategory of
M(X) whose objects are the G-equivariant perverse sheaves on X. More generally, denote
by Mq(X)[n| the full subcategory of M(X)[n] whose objects are of the form K[n] with
K e Mg(X).

(1) If A e Mg(X), and B € M(X) is a subquotient of A, then B € Mg(X).

(2) Assume f: X — Y is a G-equivariant morphism. If K € Mg(Y), then PH"(f*K) €
Me(X) for all n. If K" € Mg(X), then PH"(fiK') € Mg(Y) for all n.

(3) Assume that f : X — Y is a locally trivial principal G-bundle. Let d = dim(G). If
K € M(Y)[n+d], then f*K € Mg(X)[n|. Furthermore, the functor f*: M(Y)[n +
d] = Mg(X)[n] defines an equivalence of categories. The inverse f, : Mqg(X)[n] —
M(Y)[n +d] is given by f,(K) = H " (f.K)[n +d].

2.4 Fourier Deligne transformations

The Artin-Schreier covering k — k sending x to 27 — = has [F, as a group of covering
transformations. Hence any non-trivial character ¢ : F, — @; gives rise to a Q; local
system, £, of rank 1 on k. Let T : X — k be any morphism of algebraic varieties. Then
Ly :=T*E is a local system of rank 1 on X.

Now let £ — X and E' — X be two vector bundles of constant fiber dimension d over

X. Let T: E xx E' — k be a bilinear map which defines a duality between the two vector
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bundles. Consider the following diagram,
E<* ExyE—‘~F,
where s, t are projection maps. Define

®: D(E) — D(E)

K t(s"K © Lr)[d).

This functor is called a Fourier-Deligne transform.

If we interchange the roles of E, E’, then we have another Fourier-Deligne transform,
by abuse of notation, which we still denote by ® : D(E’) — D(FE). Moreover, we have
O(P(K)) = j*K for any K € D(F), where j : E — E is multiplication by —1 on each fiber
of E.

If we restricts ® to perverse sheaves, then ®|ryp) : M(E) ~ M(E'). Moreover
PH"(®(K)) = ®(PH"K) for K € D(E).

We will use the following two properties in Chapter 4 (see [41]).

(1) Let A (resp. A’) be an object of D(E) (resp. D(E")). Let u (resp. u',w) be the map
of E (resp. E', E xx E’) to the point. Then we have

w(A ®(A") =w(s"At*A' @ Lr[d]) = uj(P(A) @ A).

(2) Let T : k™ — k be a non-constant affine linear function. Let u : k™ — {pt}. Then
u;(ET) =0.

2.5 Characteristic functions of complexes

For the definition of characteristic function and its properties, we refer to [13, 31].
Let X be an algebraic variety over k. Let I be a Frobenius morphism of X and X be
the set of fixed points by F. For any complex F € D*(X¥ Q,), such that F*F ~ F, we
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choose for each such F an isomorphism ¢r. The characteristic function of F with respect

to ¢z, denote by x4, can be defined as follows
XFor (@) =Tr(¢prs : Fo — Fp), Vo e X7,

where F, is the stalk of F at z.
If X = @ is an algebraic group, we will choose a unique isomorphism ¢ : F*F — F
which induces identity on the stalk at 1 € G. We will simply denote the characteristic

function by xr r. We list some properties of characteristic functions in the following.

(1) If f : X — Y is a morphism defined over F,, and F € D*(X¥ Q,), then for any
yevyr,

XpFr(y) = Z XFr(2).

zef -1y~
(2) If f: X — Y is a morphism defined over F,, and G € D*(Y¥ Q,), then for any
r e XF,

Xf-6,r () = xg,r(f(2))-
(3) For any F,G € D*(XF,Q,) and z € X¥', we have xreg.r(7) = x7.r(2)xe.r(z).
(4) For any F € D*(XF Q) and z € X¥', we have xzur(z) = (—1)xF,r(z).

(5) If F,G are semisimple complexes, then xrr(z) = xgr(z) for all x € X and all

Frobenius morphisms if and only if F ~ G.

(6) If (F,&,G) is a distinguished triangle in D(X), then for all z € XT',

xe.r(r) = xF,r(x) + Xg,r().
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Chapter 3

Preliminary

3.1 Ringel Hall algebra

A quiver I' = (I, H,s,t) consists of a set of vertices I, a set of arrows H and two maps
s,t + H — I, such that s(h) is the source and t(h) is the target of h € H. In order to
simplify the notation, denote s(h) = h/,t(h) = h". If h € H, s(h) =i, and t(h) = j, then
the arrow h is commonly presented as ¢ LN 7.

A representation (V,z) of I' = (I, H, s,t) over field k is an [-graded k vector space V
together with a set {3}, of linear transformations xj, : Viy — Vir. A homomorphism
from one representation (V,z) to another representation (W,y) is a collection {g;},.; of
linear maps g; : V; — W;, such that gprx, = ypgn for all h € H. If all g; are isomorphisms,
(V,x) and (W,y) are said to be isomorphic.

Let 2 be a finitary abelian category, where finitary means VM, N € ob(2(), | Hom(M, N)| <
o0, and |Ext'(M, N)| < co. Let x be the set of isomorphism classes [M] of objects M in
2. Set

Hay = EP z[M]
[M]ex
and define a multiplication on Hgy as

[M] ) [N] = E[E]exFJﬁ,N[EL

where F}j v = #{L is a subobject of E | L= N,E/L = M}. Hg is called the Hall algebra

of A and Fy; y is called a Hall number.
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If 2 is the category of finite dimensional representations of an algebra A over a finite
field, then the finiteness condition holds. In this case, we denote Hg by H(A).

Fix a Dynkin quiver I'. For given representations M, N, E, the Hall number F' ]\E4 N de-
pends on the cardinality, ¢, of k. Precisely, one may find polynomials of ¢ as structure
constants of the Hall algebra H(kI'). Such polynomials are called Hall polynomials, see
[50]. Thus the free Z[g]-module H,(kI"), regarding ¢ as indeterminant, is well defined and
is called the generic Hall algebra.

3.2 Lusztig’s geometric approach to Hall algebras

Fix a loop-free quiver I' = (I, H, s,t) and an I-graded k vector space V = @._; V;, where k

il
is the algebraic closure field of F,. Let

EV = @ I’IOII]I'C(‘/]L/7 Vh")

heH

and

Gy = @ GLi(V)).
iel
A flag of type (i, k) = ((i1, k1), , (im, km)) € (I x N)™ in V' is a sequence

f=(V=V'oV!Io...0oV"=0)

of I-graded vector spaces such that V=1 /V! ~ k%% concentrated at vertex i; for all [ =
1,2,--- ,m.

Let Fy,; i, be the variety of all flags of type (i, k) in V. Then Fy,  is a product of certain
Grassmannians.

Let Fyix = {(z,f) € By x Fyip | fis a-stable}, where z-stable means z,(V,) c Vi,
forallhe H, l=1,--- ,m.

The Gy-actions are defined as follows. Gy acts on Ey by conjugation. i.e. g- (zp)neg =

(ghuxhg;,l)heH fOl" any g - GV and (ZI}h)heH c Ev; GV acts on FV,;’,E by
g (Vo VIo. . .oVm=0)— (gV°DgV!D ... DgV™ =0),
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for any g € Gy and (VO D V! D .- D V™ =0) € Fy,x; and Gy acts diagonally on .7::\/,;',5,
ie, g-(z.f) = (92, gf).

Let Lygy = (myug)d[dimg(Frp)], where mygy © Frix — Ey is the first projection
map. Since 7y, is a Gy-equivariant map, Ly, is a Gy-equivariant perverse sheaf. By
decomposition theorem in [1], Ly, is semisimple since 7y, . is a proper map. Ly, is called
a Lusztig sheaf.

Let Qy be the full subcategory of DbGV (Eyv) whose objects are isomorphic to finite direct
sums of L[d] for various d € 7Z and various simple perverse sheaves L which are direct
summands of Ly, ; for some (i, k) € (I x N)™. Let Ky be the graded Grothendieck group of
the category Qy . Let My be the graded Grothendieck group of the category which consists
of all direct sums of Ly, ; up to shift for various (i, k) € (I x N)™. Let v be an indeterminate
and A = Z[v,v"!]. Define an A-action on D°(Ey) as v" - L = L[n]. Then My (resp. Ky)
is an A-module generated by Ly, (resp. simple direct summands of Ly, ;) for various
(i, k) € (I x N)™.

Fix an [-graded subspace W C V and let T'= V/W. Let P be the stabilizer of W in

Gy and U be the unipotent radical of P. Consider the following diagrams:
Er x EWLGV XUFAGV XPFLEv.

ETXEW'LF—L>Ev.

Here F = {z € Ev | ©;,(Wy) C Wy»,Vh € H}, and the maps are defined as follows.
m(g,x) = (zr, zw), where xw = x|y and z7 is the induced map z : V/W — V/W;
pa(g,2) = (g9,2); ps(g,x) = g(t(x)), where ¢ is the embedding F — Ey; and 7(z) =
(X7, Tw).
For any A € DY, . (Er x Ey), define Indy y, A := papy,pi Aldy — da), where d; (resp.
dy) is the dimension of fibers of p; (resp. py). Here pg, is well defined by proposition 2.3(3)
since ps is a principle G X Gy -bundle. The functor Ind%w Q1 X Qw — 9y is called an

induction functor.
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For any A € DY, (Ey), define Resy,y, := mi*Ald; — dy — 2dim G/ P, where dy,d, are
the same as ones in the inductive functor. The functor Res%w : Qv — Or x Qy is called
a restriction functor.

Now let K = @y Ky. Define a multiplication as follows.
Ind: KxK—=K
(A, B) = Indy,\y (AR B),

where A, B are homogenous elements with A € Kr and B € Ky, V is a I-graded vector
space such that W C V and V/W =T.

Define a comultiplication as follows.

Res : K - K® K
A= @7 Resyy (A),

where A are homogenous elements in Ky, .

Now define an algebraic structure on K ® K by

[(EHRD)
oy oy)=q 3 'y

for z,2’,y,y homogeneous, where the symmetric bilinear form (—,—) : Z! x ZI — Z is

defined by
(CL, b) =2 Z a;b; — Z(ah/bhn + ah”bh’)-

icl heH
Theorem 1 ([34, 36, 38, 41]). (1) If T is a quiver without loops, then K equipped multipli-

cation Ind is isomorphic to H,(I') (see Chapter 1) as an I-graded A algebra.

(2) Res : K —» K ® K is an A-algebra homomorphism. i.e. Res defines a coalgebra
structure on K.

(3) {Lv,y | for all V and (i,k)} are additive generators of KC. Hence { Ly} for various
V and (i,k) contains an A-basis of KC. This basis is called a monomial basis.

(4) All simple perverse sheaves which are direct summands of Ly, for various V' and

(i, k), form an A-basis of KC. This basis is called the canonical basis.
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3.3 Character sheaves

Roughly speaking, character sheaf theory is a geometric character theory of algebraic groups.
Constructions of character sheaves for different algebraic groups are different. In this sec-
tion, we will introduce characteristic functions of character sheaves which connect geometric
objects, character sheaves, to algebraic objects, class functions.

Let k be the algebraic closure of F,, and G be an algebraic group over k. An [F-structure
on G is given by a Frobenius map F : G — G. Let G be the fixed point set of G by F
which is a finite subgroup of G, see [7].

Character sheaves are some G-equivariant perverse sheaves F whose characteristic func-
tions are certain generalized characters of the group G¥". Here G acts on itself by conjugation.

Let C'S(G) be the set of character sheaves on G. Let CST(G) = {F € CS(G) | F*F ~ F}.
For any F € CS¥(G), choose an isomorphism ¢x : F*F — F. Here ¢x is unique up to
nonzero scalar. Characteristic functions, xr p, of F with respect to F' is defined by

XF,r(g9) = Z(—l)iTT(éﬁﬂ?’[;(}—))a
i

where H/ (F) is the stalk of the cohomology sheaf, #(F) of F at g € G". See more details

in [32]. Since F is a G-equivariant complex, the function yr r(g) : G — Q, satisfies

xrr(hgh™") = xrr(g), Yh € G".

i.e. xrr is a Q-valued class function of G¥',

For some algebraic groups, such as abelian groups and GL,,(k), the characteristic func-
tions of character sheaves are irreducible characters. For general reductive groups, one
cannot always get irreducible characters with value in Q; from character sheaves. How-
ever, characteristic functions of character sheaves are a linear combination of a “small”
number of irreducible characters of G, where “small” means the number is independent
of q := |k¥'|. Moreover, the characteristic functions form a basis of vector space of class

functions G¥ — Q.
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Chapter 4

Geometric approach to Hall algebras

In this chapter, we fix R = k[t]/(t") and consider R-free representations of loop-free quivers.
Denoted Rep};(l“) the category consisting of all R-free representations of I'. Repé(r) is not
an abelian category but rather an exact category. Hubery defines the Hall algebra over an
exact category in [20]. Let Hz(') be the Hall algebra on Rep}(I'). One can ask if there
exists a coalgebra structure on the Hall algebra over exact category. In general, this is not
true (even the homological dimension of the exact category is 1). The category Rep’,;(Q)
serves as a counterexample to that the Hall algebra on it has no coalgebra structure. We

will give a geometric realization of the composition subalgebra of Hg(I).

4.1 Hall algebra over an exact category
4.1.1 Exact category

Let A be an additive category which is a full subcategory of an abelian category B and

closed under extension in B. Let £ be a class of sequences

0 M —s M T M 0

in A which are exact in the abelian category B. A map f is called an inflation (resp. a
deflation ) if it occurs as the map i (resp. j ) of some members in £. Inflations and deflations

will be denoted by M’ — M and M — M" respectively. The pair M’ ~— M — M" is called
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a conflation. The following is Quillen’s definition of an exact category. See [4] for more

properties of an exact category.

Definition 1. [48] An exact category is the additive category A equipped with a family &£

of the short exact sequences of A, such that the following properties hold:

(i) Any sequence in 4 which is isomorphic to a sequence in £ is in &, and the split

sequences in A are in .

(ii) The class of deflations is closed under composition and under base change by an
arbitrary map in \A. Dually, the class of inflations is closed under composition and

base change by an arbitrary map in A.

(iii) Let M — M" be a map possessing a kernel in A. If there exists a map N — M in
A such that N — M — M" is a deflation, then M — M" is a deflation. Dually, let
M’ — M be a map possessing a cokernel in A. If there exists a map M — L in A

such that M’ — M — L is an inflation, then M’ — M is an inflation.

4.1.2 Representation of quivers over commutative rings

A representation (V,z) of I' = (I, H, s,t) over a commutative ring R is an I-graded R-module
V together with a set {xh}he g of R-linear transformations xp, : Vi — Vi

A homomorphism from one representation (V,z) to another representation (W,y) is a
collection {gi}ig of R-linear maps g; : V; — W;, such that gp»x), = ypgp for all h € H. If
all g; are R-isomorphisms, (V,z) and (W, y) are said to be isomorphic.

Let Repr(I') be the category of representations of I' over R. Repgr(I') is an abelian
category. If V' is an [-graded free R-module, then the representation (V,x) is called an R-
free representation. All such representations form a full subcategory Repé(F) of Repgr(T).
Unfortunately, this subcategory is not an abelian category anymore, but rather an exact
category. In the following, all representations are assumed to be free over R. In this case,

we can define the dimension vector |V| := (Rankg(V;))ier-
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Lemma 2. Repﬂ(l“) 15 an exact category with homological dimension 1.

Proof. 1t is easy to see Rep{%(f‘) is an additive category. Let £ be the set of all possible short
exact sequences in Reph('). Then Reph(I') with the class £ is an exact category. In this
case, an inflation is an injective map, such that the cokernel is an I-graded free R-module
and a deflation map is a surjective map, such that the kernel is an I-graded free R-module.

Let A = RI'. To show the homological dimension of Repé(f‘) is 1, it is enough to show

that sequence,
0—— @peHAepH QR ep/X f—> @ie[Aei KRR eiX _g) X —=0 (41)

is exact for any R-free left A-module X, where e; is the trivial path for the vertex 7, and
gla®z)=azr, fla®zx)=ap@r —a® pz.

In fact, the proof is the same as Crawley-Boevey’s proof for the stand resolution in [2].
Firstly, g is clearly onto, since for any x € X, g(®;e; ® e;x) = 1-2 = z. Secondly, go f = 0.
i.e. Im(f) C Ker(g). We will show the converse inclusion.

Any element £ € P,;crAe; @i €; X can be uniquely written into

E=Y. Y. a®uz,
i paths a with s(a)=i
where a € Ae; and z, € ey X.

Define degree(&) to be the length of the longest path a with =, # 0. If a is a non-trivial
path with s(a) = ¢, then a = a/p for some path a' and arrow p such that s(p) = i and
s(a’) = t(p). Since a’ @ x, € Bpepley Qr ey X, we have f(d' @ z,) = a® x4 — d' @ pa,.

Since degree(§ — f(32; D paths a with s(a)=i @ ®Ta)) < degree(§), by repeating this process,
¢ 4+ Im(f) always contains an element of degree 0.

Now for any & € Ker(g), let £ € £ + Im(f) has degree zero. Then
0=9(&)=9(&) =9 ei@a,)=> ..

So z, = 0 for all i. Therefore §' = 0. This shows Ker(g) C Im(f).
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We will next show Ker(f) = 0. Any element ¢ € Ker(f) can be written into

5:2 Z a®xp,au

pEH paths a with s(a)=t(p)

where z,, € €4,). Let a be a path with maximal length such that x,, # 0 for some p. Since

f<€> :Zzap@)‘xp,a_zza@pxp,m

the coefficient of ap in f(§) is x, 4, but the length of ap is one more than the length of a.

This is a contradiction. O

Here the homological dimension 1 refers to Ext" (X, Y") vanishing for alln > 2 and X, Y €

A. See Chapter 6 in [14] for the definition of Ext"(X,Y’) in an exact category.

4.1.3 Hall algebra over an exact category

In this section, we first deform Hubery’s definition of the Hall algebra over a finitary exact
category, then give a counterexample to show that a coalgebra structure of the Hall algebra
can not be obtained by twisting. We will always assume A is an exact category which is a

full subcategory of an abelian category B.
The algebra structure

Let A be a finitary and small exact category. Denote by W¥, the set of all conflations

Y — L — X. The group Aut(X) x Aut(Y) acts on Wk, via:

v 2. x

P

y 1.1 %X,

Denote by Vi the quotient set of W, by the group Aut(X) x Aut(Y). Since f is an

inflation and g is a deflation, this action is free. So

L . |\vL | —
FXY T |VXY - )




where ax = |Aut(X)|. The Ringle-Hall algebra H(.A) is defined as the free Z-module on the
set of isomorphism classes of objects. By abuse of notation, we will write X for the isomor-

phism classes [X], and use the numbers F%, as the structure constants of multiplication.

Define

XoY =) FiL
L

Theorem 2 ([20]). The Ringel-Hall algebra H(A) of a finitary and small exact category A

15 an associate, unital algebra.

If A= Repl(T), we want to deform the Ringel-Hall algebra H(Reph(T')). Firstly, for
a = (a;)ier, B = (bi)icr, define

<Oé, 5> = ZCLJ)Z — Z ah/bh//. (4.2)

It is easy to check this is a bilinear form on NZ,

For any X,Y € Repg(f‘), define a deformed multiplication as
XY =XV x oy,
Here | X| is the dimension vector of X which is defined in last section.

Theorem 3. H(Repg(F)) equipped with the deformed multiplication is an associate, unital

algebra.
Proof. By Theorem 2, it is enough to prove that for any o, 3,7 € N/,
(o, B) + (a+B,7) = (B,7) + (@, f +7).
From the bilinearity of (—, —), both sides are equal to (a, 3) + {(a,7) + (3, 7). O

The coalgebra structure

Let A: H(A) — H(A) @ H(A) be the map as following,

AE) = S gs MM pE ‘“g N M e N, (4.3)
M,N E
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where M, N run through all conflations M — E — N. If one defines the twisted multipli-
cation on H(A) ® H(A) to be

(A® B) - (C® D) := ¢2(BOOEB) AC @ BD, (4.4)

then as Green shows, in [17], the map A defined in (4.3) is an algebra homomorphism with
respect to this twisted multiplication on H(A) @ H(A) when A is a hereditary abelian cate-
gory. i.e. A gives a coalgebra structure on H(.A). Unfortunately, A is not a homomorphism
of algebras if A is an exact category. In the rest of this section, let’s focus on the case of
the exact category A = Reph(T).

The following counterexample shows that A : H(A) — H(A) ® H(A), defined in (4.3),

cannot be an algebra homomorphism under any twist in the case of A = Reph(T).

Example 1. Let T = Ay : 1 — 2, R = k[t]/(t") (n > 2), and M = N = (R 5 R).

If A is an algebra homomorphism, we must have
A(MN) = A(M)A(N). (4.5)

On the right hand side of (4.5), we have

N =T

o
|

Y

where the only possible choices for B and D are 0 RN R, R iR R, and 0 % 0. Thus, all

|

possible choices for X are 0 RN R?,0 9 R, 0 2 0, R iR R, R — R?, and R* R2,

where a € R.
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On the left hand side of (4.5), we have

3
}/

t a
) 0 ¢
-

Here £ ~ (R R?). If a € tR, then

b =l

If a is invertible in R, then
t al (1 0
0 t| [0 |

b b

Let By ~ (R*> —— R?) and Fy ~ (R* ——— R?). Then, MN = aFE, + 3F, for some
nonzero number « and S. It is clear that A(Es,) has a summand (R L R)® (R L R). This
term, however, never appears on the right hand side of (4.5). This shows A cannot be an

algebra homomorphism.

This counterexample shows that a coalgebra structure of H(RAy) cannot be defined by
(4.3) no matter how the multiplication of H(RAs) ® H(RAs) is twisted.
Let C'Hg(I") be the subalgebra of H(RI") generated by all S;, for i € I. We will give a

geometric approach of CHg(T") in the rest of this chapter.

4.2 Lusztig’s geometric setting

In this section, we will fix R = k[t]/(t"), a loop-free quiver I" = (I, H, s,t), and an [-graded
free R-module V' = @
define

se; Vi which can be thought of as an I-graded k-vector space. We

Ef = @D Homy(Viy, Vi), (4.6)

heH
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B! = @ Homp(Viy, Vi), (4.7)

heH
Gy = P GLu(V), (4.8)
el
and
G = P GLr(VA). (4.9)
i€l

GE (resp. G%) acts on B (resp. EF) by conjugation, i.e., gz = 2’ and z}, = gprapg;,' for
all h € H.

Given R-modules V; and V5, Homy(V3, V5) has an R-module structure as follows,
(rf)(v) = f(rv) —rf(v),
forallr € R, v € V] and f € Hom(V3,V3). Then
Hompg(V1,V2) = {f € Homy(V1,V2) | rf — fr =0, Vr € R}.

Since E¥ is an affine k-variety and rf — fr = 0 for different r € R are algebraic equations,

El is a closed k-subvariety of E. Similarly, GI is a closed algebraic k-subgroup of G¥..

4.2.1 Flags

A generalized k-flag of type (i,k) = ((41,k1), -, (bmy km)) € (I x N)™ in an [-graded

k-vector space V is a sequence
f=(V=V'2oVIo...0V"=0)

of I-graded vector spaces such that V=1 /V! ~ k% concentrated at vertex i; for all [ =
1,2, m.

Let f‘ljw be the k-variety of all generalized k-flags of type (¢,k) in V.

Let f"}w = {(z,f) € By x F{i;, | f is a-stable}, where § is a-stable if z,,(V},) C V., for
alhe Hil=1,--- ,m.

G¥ acts on F"ﬁ-w by g - § — gf, where
gf=@gV' o gV D gV™ =0)
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iff=V=V'>VI>...2>V™=0). And G, acts diagonally on .7?"31&, ie., g-(z,f) —

(92, gf).

An R-flag of type (i, k) = ((i1, k1), , (im, km)) € (I x N)™ in an I-graded R-module V' is
a sequence
f=(V=V'2oVIo...0V"=0)
of I-graded R-modules such that V=1 /V! ~ k®* as k-vector spaces concentrated at vertex
yforalll=1,2,--- . m.
Similarly, let ]:‘}/%,z‘,k be the k-variety of all R-flags of type (z,k) in V.
For any free R-module V', V/tV is a k vector space; we will denote it by V,. Moreover,

we can define the evaluation map as follows,

. R k
e Fvir = ik

f=(VoV' 2DV =0)meff) = (% DV D+ D V" =0).

Denote

fo=e(f)@rRi=(Vo@r ROV @ RD--- D V" @ R). (4.10)

Let .7?{}31& = {(z,§) € By x F{{;; | fo is a-stable}. Moreover, we can define Gi} actions on
]:5:@& and ]?‘I;zk in a similar way.

Note that if V' is an R-module, then a k-subspace W C V is an R-submodule if and
only if (1 +¢)W = W. This gives an algebraic equation. So .7-"‘1,1& (resp. ]?51&) is a closed

subvariety of ]:\1315 (resp. F \%E)

A R-free flag of type (i, k) = ((i1, k1), -+, (im, km)) € (I xN)™ in an I-graded free R-module
V' is a sequence

f=(V=V2oVIDo...0V"=0)
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of I-graded free R-modules such that V=1 /V! ~ R%% concentrated at vertex i; as R-modules
foralll=1,2,--- . m

Let }"‘Ifiﬁ C F}ini be the subvariety of all R-free flags of type (i,k), where (i,nk) =
(i1 mka) (s ) B (i B) = (i K)o (s o).

Let ]?Rf = .7?{}31 x N (B x F‘Iffk) and }"RNf (resp. ]—"RNf) be the complement of ]:\%E
(resp. .FV{ o) i Flf o (resp. ]f-zﬁwk) We can define G actions on these k-varieties in a

similar way.

Remark 1. Notice that .7-"‘%& is an (n—1)th-Jet scheme over F7; ; , (see [45]). So dimy, ‘FVz =
n dimy ]-""}072-& . Moreover, the dimension (resp. shift functors for perverse sheaves) argument
in Lusztig’s papers can be adapted here by multiplying by n. In the rest of this chapter, we

will skip the proof of the statements about dimension and shift degree.

To simplify the notations, for any (i,k) € (I x N)™ and each i € I, let N;(i,k) =
> e Krky04i 03,5 for each b € H, let Nu(i, k) = > ., kwk.Owi, Onmi,, where 6 is the
Kronecker delta. In the following, dimension always refers to k-dimension, so we will denote
it by dim instead of dimj. Rank always refers to the rank of free R-modules, and we will

therefore denote it by Rank.
Proposition 1. (1) Ff;, is a projective variety.

(2) ]:‘ffk is an open smooth subvariety of F{f; ., and .7: !is a closed subvariety of Flfs -

(3) The evaluation map e : .7:5‘1 & = Fiyin 18 a vector bundle with rank (n—1) 37, Ni(i, k).

0,4,/

Hence the dimension of ‘FV,{,E isny . Ni(i, k).

Proof. (1) Choose §f € Fy,,. Define P := Stabg (f), the stabilizer of f in GY. Pisa
parabolic subgroup, so F{,, = GY,/P is a projective variety. F{f;, is a closed subvariety,
so it is also a projective variety.

(2) To show ]-"‘IEZ £ C Fti ni 18 an open subset, let’s first consider the Grassmannian.
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Let Gi(sn,In) be the set of all sn-dimensional k-subspaces in V' with dim V' = In and
Gr(sn,ln) = {f € Gi(sn,In) | (1+1t)f = f}. Let Grs(s, 1) be the set of all free R-submodules
with Rank s in V, where Rank(V') = [. Clearly, Ggs(s,l) C Gg(sn,In) C Gy(sn,In).

Let Gr(sn,in) = {(W,bw) | W € Gg(sn,In) and by is a k-basis of W}

The first projection 7 : Gr(sn, In) — Ggr(sn,In) is a frame bundle.

Define

¢ : Gr(sn,in) — Mat(sn),

(W, bw) = M (bw, 1),

where Mat(sn) is the set of all sn x sn matrices and M (by,t) is the matrix of ¢ under the
basis by. Clearly, ¢ is a morphism of algebraic varieties.

In general, for any free R-module V' ~ R®", the R-module structure induces a nilpotent
k-linear map ¢ : V' — V where dim(Ker(t)) = r.

For any R-submodule W C V with k-dimension ns, W is a free R-module if and on-
ly if dim(Ker(t|w)) = s, ie., t|w has maximal rank (n — 1)s. Therefore, Ggs(s,l) =
(¢~ (Mat(sn)rk=sn—1))), where Mat(sn),,—s(n_1) is the set of all matrices with rank s(n—1).
¢ (Mat(sn)rgs(n—1)) is open in ¢~ (Mat(sn),r<smn-1)) = Gr(sn, In) since Mat(sn),k—sm—1)
is an open subset in Mat(sn)r<sm-1). Moreover, 7 is a principle G'Lg,(k)-bundle and
¢ (Mat(sn)rg=s(n—1)) is G Lg,(k)-stable, so Gry(s,1) is open in Gr(sn,In).

Now for any flag f = (VO D V! O ... D V™) € Ff, ., each entry V' gives an open
condition when it is a free R-module. So .7-"‘% ¢ 1s the intersection of m many such open
subsets. The smoothness follows from Remark 1 and the notes after Lemma 1.2 in [45].
This proves the first statement. The second statement follows from the first one.

(3) Recall for any R-free module V', we denote Vy = V/tV, then V ~ Vj ®, R. Without
loss of generality, we will simply assume V' = V;®;, R. For any element f = (V;, D Vi D -+ D
Vi) € FY, ;x> let PF(f) be its stabilizer in GY,. Let P(f) be the stabilizer of § @ R (see
(4.10)) in GE, where we identify V with V; ®; R. So F‘}/%,ik (resp. FY; ;) can be identified
with G{/PE(f) (vesp. G, /P*(f)) for a fixed f.
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Now consider the map ¢ : FE ik ]_-‘1;25@ f = f®k R. Since ¢ is an injective map, in the

0

rest of this chapter, we will identify F\ljo,z’,& with L(*F";o,z,k) and consider .7-"{3071-& as a subset of
.7:‘% o Similarly, we will consider GV, /P*(f) as a subset of G{}/P"(f) via the map ¢.

Now any element A € G can be written as A = h - Ay, where Ay € G"“/O and h €
H :={Id+tB|B € Endg(V)}. Then the evaluation map e sends h - Ay to Ag. Therefore,
Vo € GY,, wehave e (x) = H/(HNP®)-z. Asaset, H/(HNP®)-z is in 1-1 correspondence
to H/(H N P%), and H/(H N P®) is a direct sum of quasi-lower triangular matrices with
entries in tR for all ¢ € I, which is clearly a k-vector space of dimension (n—1)> ", N;(i, k).

Now for any open subset U C G¥, /P¥(f), define

ov U x H/(HN PR = e 1(U)

(x,a) — a-x.
It is easy to check this gives a vector bundle structure. O

Remark 2. From the above proof, we have F&ik ={gh-f|ge Gy, /P he H/(HNP"}
for a fixed f € Ff, ;, and e : }"‘}ZE — Fy. i sending gh - § to g - f. Since Gy, acts on Ffi ;.

transitively, we have Ff. ., = {g-f| g € GY,/P"(f)} for a fixed f € F; ;.

Proposition 2. (1) ]’-:5{& 1s a smooth irreducible variety, and the second projection ps :
‘%\IE{E — }"‘%ﬁ is a vector bundle of dimension n)_, Ny(i,k). So the k-dimension of ]?‘I/%ZE

(2) Let W{;w : .7?5& — B be the first projection map. Then (77{;717&)!1 is semisimple.

Proof. Let Fk = {(z,f) € B x F{ ;| fis © — stable}. Here we consider F, ; , as a sub-
set of ‘ngk' By using Lusztig’s argument for Lemma 1.6 in [36], we want to show the second
projection py : .7?}’% — ‘F\I;O,LE is a vector bundle. In fact, for any f= (V2O V! >... D V™ =
0) € ]:‘];071&’ let Z be the fiber of py. The first projection identifies Z with the set of all
r € Ef such that x;,(V},) € V)i, for all h € H and all [ = 0,1,---,m. This is a linear

subspace of E{! because we can choose a basis for each V; such that z;, are upper triangle
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matrices for each h € H. Hence its dimension is equal to
n Y (Rank(V},™') — Rank(V},))(Rank(Vy, ') — Rank(V;.,))
V<lL,heH

which is equal to n )", Ny (i, k). Since G} acts on Fy; ; , transitively, this is independent of
f but only dependent on (i, k). This shows that p, is a vector bundle.

Now consider the following cartesian square,

Frdy—=Fiiy (4.11)
lb Le
ﬁf]% L‘F‘%@E'

Since p, is a vector bundle with rank n)_, N,(i,k), p1 is a vector bundle with rank
n Yy, Nu(i, k). The smoothness and irreducibility follow Proposition 1. This proves the
first statement. The second statement follows from the first one.

(2) Consider cartesian square (4.11). By Proposition 1, e is a vector bundle, then b is

also a vector bundle. Now consider the following commutative diagram

]?x]/%fg S J‘Ezl?z : (4.12)

Here the first projection map, p, is a proper map. By Proposition 2.2.3(3), (71"];’1’&)!1 = pbl

is semisimple. Proposition follows. O]
Denote Z{/zh = (W&LE)!I € D(Ey). By Proposition 2, E{,M is semisimple.

Proposition 3. Let L{/zk = Z{/’M[d(v, i, k)+(n—1)> . N;(i,k)]. Then L{/M is a perverse

sheaf. In particular, ]D)(L{/w) = Lézk

Proof. From the proof of Proposition 2, we have 7T‘J; i1 — Pb, where p is a proper map and b

32



is a vector bundle with rank (n — 1) >, N;(¢, k). Therefore,

Ll = (o )1d(V,i k) + (n—1) ZN i k)]
= pb1[d(V,i k) + (n—1 ZN (i, k)]
= pbb Lz [d(V,i k) + (n 1) ZN i k)]
= plg[d(V,i k) - (n—1 ZN@k
= pzlflg[dimk(f}z)]
Since p is a proper map and 1 7 [dimk(f *)] is a perverse sheaf, L{/w is a perverse sheaf. [

Similarly, let 7f; , : }_\I/%@ « — E{} be the first projection. We define Lvl k= (W‘Iii&);lf&m.
Let Pv (resp. P{!) be the full subcategory of M(FE{) consisting of perverse shea\;;:s
which are direct sums of the simple perverse sheaves L that are the direct summands of
L{/m (resp. ka) up to shift for some (i,k) € (I x N)™. Let Q/, (resp. QF) be the full
subcategory of D(E{}) whose objects are isomorphic to finite direct sums of L[d] for various

simple perverse sheaves L € 77{; (resp. P) and various d € Z.

4.2.2 Restriction functor

To define the restriction functor, Lusztig considers the following diagram
ET X EW L F s Ev,

where ¢ is an embedding and x(z) = (zw,2zr). Recall zy = x|y and zr is the induced

map T : V/W — V/W. For any B € D(E¥), define %;WB = ki*B. However, it

is no longer true that %KWB € Q;J;W, even for B € Q{c/. In fact, given a free flag

f=WV'oVID>...D2V™m=0),and W C V, T = V/W being free R-modules, the induced
flags

fr o= ((VO+W)/W DV +W)/WD---D((V"+W)/W =0) (4.13)

fw = (VYW OV (\W--- DV (W =0) (4.14)
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are no longer free flags, since V! (W and (V!4 W)/W are no longer free modules in general.
Lemma 3. %;W(B) is semisimple in DYy .n (EF X Eff) for B € Ql.
’ T w

Proof. 1t is sufficient to prove that me*(z{/’ﬁ) is semisimple, that is, k* (W‘J;’M)!(1~ is

semisimple. Consider the following diagram,

where FF = (xf,, )7L (F).

Using base change, we have
K;L*(W{;’M)Il = rim*1 = (k)11 55.

We now prove that (k7’)11zx is semisimple.
Recall from the proof of Proposition 2(2), we have a vector bundle FR Y F * sending
(x, hfo) to (x,fo), where Fk = {(x,f) € F x F, ;| fis  — stable}.

For any k, and k, satistying k = k, + k,, we set

Fris by = {(x,f) e Fi | (xr.in) € Fhy ik, (@w.fw) € ]?5[/0,1,@2}7

where fr, and fy, are defined in (4.13), (4.14) by using Ty (resp. W) instead of T' (resp.
Ww). .7?371,&1,@2 is a locally closed subvariety of ]?1’3 For various (i,k;) and (3, k,), ]?R,g,@17@2
form a partition of Fjs. Then b~ (Fpx, x,) for various (i, k;) and (4, k,) form a partition of
FR.

Now define o j, k, : .7?371751&2 — .7-:113071-7@1 Xf‘l/CVO,LEQ’ which sends (z, f) to ((zr, f1,), (xw, fws,))-
It is easy to check that a;p, r, is a vector bundle.

Let D; = {(g’, ki ko) | dimk(ﬁRé’El’EQ) = j}. Let fllfzj be the disjoint union of j'v—R,z,El,Eg
for various (2, ky, ky) € Dj. ie. Fpy; = H(Lbhb)eDj FRik, k- Let Z; = H(Lkl,bg)eDj (]-"%0717&1 X
7

o,ik,)- Lhere is a well-defined map a; := H(L&,Eg)eDj ik, ky Fﬁj — Zj. Since these are
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disjoint union, «; is a vector bundle. Moreover, the composition map a;ob : b‘l(j-: ]’%) — 4

is a vector bundle. Therefore, we have the following diagram,

bU(FL,) 2 72, Bp x By,

where 7; := H(z,hl,EQ)eDj (WT,zl,El X 7TW,2'2,E2) 1S a proper map.

By Proposition 2.2.3(3), (k7')115z is semisimple. O

Since the objects in QF are semisimple complexes, every object A € Q¥ can be uniquely
written into A = Af @ AN/ such that Af € Q{/, ANT e QR \ Q{/ and Af is the maximal
subobject of A which is in Q{/. Therefore we can define a projection map Py : QF — Q{/

sending A to A/.
s 5=V =5V
Definition 2. Resyy (B) := Py(Respy, (B)).
—V
Proposition 4. Res;y, (B) € QQW if B e Qy.
—V
Proof. This follows directly from the definition of Resy ;. O
- —V
Proposition 5. If Er = 0, i.c., Ew =~ F, then Resyy, (B) = Respy (B) for all B € Q).

Proof. Since any simple object B € Q{, is a direct summand of Z{/M for some (i, k) up to
shift, it is enough to prove the proposition for B = Zf;l X

From the proof of Lemma 3 and Diagram (4.15), if Fy ~ F, k is an isomorphism, then

%;W(L{/,M) = /ﬁ;L*(W&LE)!l = (k") 1 = (k') 15 € Qéw.

Here Q;W is defined similarly as Q‘f/ for Er x By .

—V f —V ~f .. —V
So Resyy(Ly, ) = Respyy(Ly; ) by the definition of Resz . O

4.2.3 Induction functor

By abuse of notation, in the rest of this chapter, we will write Ey (resp. Gy ) instead of E{

(resp. GE) unless we specify. And ]?Vz& always means ]?5{ x unless we specify.
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Let W be an I-graded free R-submodule of V' such that T' = V/W is also a free R-
module. Let P be the stabilizer of W in GGy, and U be the unipotent radical of P. Consider

the following diagram:
Er x By <2—Gy xV F-2-Gy xP F-L25Ey. (4.16)

Here p1(g,z) = k(z), p2(g,x) = (g,x), and p3(g,x) = g(¢(x)), where k and ¢ are the maps
— v
introduced in Section 4.2.2. For any A € D, xay (Er X Ew), define Indy, y, A 1= paipa,pi A.

Here p9, is well defined since p, is a principle G x Gy -bundle.
" Y f o !
Proposition 6. IndTWA €9y ifAe QTW.

Proof. Since I/nvd;W is additive, it is enough to prove the proposition for A = ZT,;",E X
Ly n v, where (i, k') = (1, k1), -+, (ims k) and (7, K") = ((onrs Fomsr)s = (s Fomts)-
Let (i,k) = (¢, &), (0", k")) := (i, k1), - (s ) (et Kond) =+ (ks Bimees))-

Let FO,p = {(VODVID . D V™. V™ =0) € Fyyy, | V™ =W} and FY,
FrapNF x Foyp)-

EX

Now consider the following diagram,

FT&./,E/ X val.//7E// < GV XU }371’& e GV XP }".;;LE ﬁl ,FV&"E (417)

71'T,WL u’l lu lﬂ'V,i,k

Ep x EW 2 GV xU F P2 GV xPF P Ev.

Here the vertical maps are all projection maps and i is an identity map. The squares

and | 2| are both cartesian squares and p, is a principle G x Gy-bundle. It follows that
pi(mrwhl = upr™l = wpa"1 = pyul.

So

P31pPIA = pappi (trwhl = parwl = (my, )1 € Q{/.
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~V ~ ~ ~
Remark 3. The above proof also shows Indyy (Lyy x X Ly ) = Ly, where (i,k) =

(@, &), (", "))

Lemma 4. Letb: Y — X be a fiber bundle with d dimensional connected smooth irreducible

fiber. If B=1b*A for some A € D*(X), then DB = (bDB)[2d].
Proof. Since biB = bib*A = A[—2d|, we have
Db, B = D(A[-2d]) = (DA)[2d],

and

bDB = bDb* A = bp (DA) = bb*(DA)[2d] = DA.

O

Denote d; (resp. ds) the dimension of the fibers of p; (resp. p3), where p; and po
are the maps defined in Diagram (4.16). After simple calculations, do = dimP/U and
d1 = dlva/U +n ZhEH Rank(Th/)Rank(Whu).

Proposition 7. Let A be a direct summand of zT;E X ZW@!, then

D(Tndyy (A)) = Tndg.y (D(A))[2dy — 2d5 +2(n — 1)’ S Rank(T})Rank(17;)].

Proof. Since D is additive, it is enough to consider A = ZTM X ZW j1- From the proof of

Proposition 6, we have

—~V C o~
D(Indg - (A)) = D(paipapi (mr,w hi1) = D((7v,@5), .0 )1i1P2sP1 1)

From the proof of Proposition 2, 7y, k) 1) = p o b such that p is a proper map and b is

a vector bundle with rank (n —1) >, N;i((4,k), (j,1)). By Lemma 4,

D((7v, k), .0 iP2P1 1) = pibiiDpg,py1[2(n — 1) Z Ni((i, k), (4,1))]

= (Tv,ak).Go 0P (D1)[2d; — 2dy +2(n — 1) Z Ni((3, k), (7,1))]-
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On the other hand, by the similar reason,

— v
Indy (DA) = paipyp; (D(rr,w)hil)

= papupipbi(D1)2(n — 1) Y (Ni(i, k) + Ni(j, )]

i

= papupi(mrwh(D1)[2(n — 1) Y (Ni(i, k) + Ni(j, 1))]

= (Mvaw.G0) PP (DL)[2(n — 1) (Ni(i k) + Ni(4,1))].
i
Here we use a similar decomposition mpy = p' ot/ such that p’ is a proper map and V' is a

vector bundle with rank (n — 1) >, (Ni(4, k) + Ni(4,1)).
By the definition of N;(i, k), it is easy to check that

Ni((i, k), (4, 1)) = Ni(i, k) = Ni(4, 1) = > kylv6ii, 055, = Rank(T;)Rank(W;).  (4.18)

The proposition follows. O
Let
v ~V
Indy,yy A = Indgy Aldy — dp + (n — 1) ) _ Rank(T;)Rank(W;)], (4.19)
and

Resy y A = ResyyyAldy — dy — 2dimGy /P + (n — 1) Y Rank(Tj)Rank(W)].  (4.20)
Then we have the following corollary.
Corollary 1. D(Ind}y (A)) = Indy,, (D(A)).
Proof.
D(Ind}yy(4)) = D(IndyyAldy —ds + (n — 1)’ Rank(T;)Rank(17;)))
— D(IndyyA)[—(di — ds + (n = 1) 3 Rank(T;)Rank(1¥;))
— Tndpy (D(A))[d — ds + (n — 1)'S Rank(T)Rank(17;)

= Indy, (D(A)).
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Corollary 2. Ind}y (Lr. ® L) = Ly j) b-
Proof. Denote M :=d; — dy + (n — 1) >, Rank(7;)Rank(W;), then we have

Ind%W(LT,L@ X LW,J,L)

= Indqyy (Lrix X Ly ) [M]

= Tndy (L4 B Ly )T, i, k) + d(W, 4, 1) + (n = 1) Y (Ni(i, k) + Ni(4, 1)) + M]
= Lv ke pld(T 6, k) +d(W, §,0) + M + (n = 1) > _(Nii, k) + Ni(4, )]

i

= Ly jy.e p[(n = 1)) (Nili k) + Ni(j, 1) = Ni(@ ), (k 1)) + M — dy + do].

i

The last equality holds because
d(T,i,k) +d(W,j,0) +di — dy — d(V, (i j), (k1)) =0

which follows from Remark 1 and Lusztig’s argument in 9.2.7 in [41]. Therefore the propo-

sition follows from (4.18). O

4.2.4 Bilinear form

Let A and B be two G-equivariant semisimple complexes on algebraic variety X. Let’s
choose an integer m and a smooth irreducible algebraic variety I' with a free action of G

such that H(I',Q;) = 0 fori = 1,--- ,m. G acts diagonally on I' x X. Consider the diagram
X<TI'xX—-‘-G\(TxX)

with the obvious projection maps s and . We have s*A = t*(rA) and s*B = t*(r B) for well
defined semisimple complexes rA and rB on X =G\ (I' x X).
By the argument in [18, 33], if m is large enough, then

dim {7 +2dmG=2diml L ¥ LA @ 1 B) = dimH?( p X, rA[dim(G\T)] ® pB[dim(G \T)])

is independent of m and I'. Denote this by d;(X,G; A, B).
Suppose A, A" and B are semisimple G-equivariant complexes on X. Then we have the

following properties for d;(X, G; A, B) (see [18, 32, 33, 41]):
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(1) d;(X,G; A, B) = d;(X,G; B, A).
(2) dj(X,G; Aln], Blm]) = djynim(X, G; A, B) for any m,n € Z.
(3) d;(X,G;A® A, B) = d;(X,G; A, B) + d;(X, G; A", B).

(4) If A and B are perverse sheaves, then so are rA[dim(G \ I')] and rB[dim(G \ I')].
Moreover, we have d;(X,G; A, B) = 0 for all j > 0. If, in addition, A and B are simple
and B ~ DA, then do(X,G; A, B) is 1 and is zero otherwise.

(5) If A’ and B’ are in Q) and A” and B" are in Q},, then
dj(Er X Ew,Gr x Gyw; A @ A", B’ ® B")

= Sopiridy (Ep, Gps A', B)dn By, Gyy; A", B).
(6) Let K, K’ € Q. The following two conditions are equivalent:
(i) K ~ K,
(ii) d;(Bv,Gyv; K, B) = d;(Ev,Gy; K’, B) for all simple objects B € 77{; and j € Z.
Lemma 5 ([18]). Let A € Qéw and B € Ql,. Then for any j € Z,
d;(Er x Ew,Gr x Gyw: A, Resyy B) = dy(By, Gy Indyyy A, B),
where j' = j + 2dimGy /P.
Proposition 8. Let A € Q%W and B € Q{c/. Then for any j € 7Z,
dj(Er x Ew,Gr x Gw; A,Resyy, B) = d;(Ev,Gy;Indyy, A, B).
Proof. This follows directly from definitions (4.19), (4.20) and Lemma 5. O

Remark 4. The algebra structure of the composition subalgebra of the Hall algebra asso-
ciated quivers is independent of the orientation of the given quiver. To give a geometric

realization of this subalgebra, one must show that the algebra constructed by using perverse
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sheaves is also independent of the orientation. The Fourier Deligne transform, later denoted
by ®, is the tool used to prove this. Let O = @y Q{/, the functors Ind%w and Res%w give
an algebra and an coalgebra structure of @/. With this point of view, one needs to show ®

commutes with Ind¥7W and Res%w.

4.2.5 Fourier Deligne transform

In this section, let’s consider a new orientation of the given quiver. Denote the source of
the arrow h by s(h) = h and its target by t(h) = "h for the new orientation. Recall that
we denote the source of the arrow h by s(h) = h’ and its target by ¢(h) = h” for the old
orientation. Let Hy ={h € H|h=h,"h=h"} and Hy={h € H|'h=1","h=h'}. For a
given [-graded free R-module V', denote

By = @nen, Homp(Viy, Vi) ® @pen, Homp(Viy, Vi),

By = @hen, Homp(Viy, Vi) @ @nen, Homp(Vir, Vi),
and

Ey = @pen, Homp(Viy, Vi) @ @pem, Homp(Vir, Vi) @ Spepr, Homp (Vi Viv).
Then we have the natural projection maps
EV <S— EV t /Ev.
Consider Ef as a subset of B, then we can define a map Ty : Ey — k by

To(a,bye) = D tr(Vie 5 Vi 5 Vi), (4.21)

heHs

where tr is the trace function of the endomorphism of k-vector space. Clearly, Ty is a
bilinear map.

Define

D : D(Ev) — D(lEv)

A t(s*(A) @ Ly, [dy],
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where dy = dim(@nen, Hompg(Vir, Vi) = n Y ey, Rank(Viy)Rank (V).

Similarly, we have the projection maps
Er x EW<§_ET X E‘W_%>/ET X /EW

Define 7 : Er X Ew — k by T := Tr + T, Where%:ET%k(resp. TW:EW—>k) is

defined in (4.21) replacing V by T' (resp. W). In a similar fashion, one can define

P . D(ET X Ew) — D(/ET X /EW)

Proposition 9. For any B € Q{/, we have
=V =V
DResqy (B) = Resyy ©(B)[7],
where m = n¥pe g, (Rank (T, )Rank (W) — Rank(7}, ) Rank(W,»)).

Proof. The following proof is based on Lusztig’s proof for Proposition 10.1.2 in [41]. Consider

the following diagram,

Ep x By <2—F . Ey

R

ETXEW b w 4 F

{ |
/, F 7

p
'Er x IEW /

Here F = {x € By | xp,(Wy) C Wy, Yh € H};

F={ze€'Ey | zy(Wy) C Wy, Yh € H};

F= {(xl,xg,a:g) € By | (z1,22) € F, (x1,23) € ’F},Where x1 € ®pep, Hompg(Viy, Vi),
To € ®pepy, Hompg(Viy, Vi), 23 € Bpen, Hompg(Vyyr, Vis). Similarly, in the rest of proof, the
subscript 1, 2,3 always mean the first, second and third component in Ey or its subset

respectively and super-script 7' (resp. W) means the object is in Er (resp. Fyy).

E= {(ybyz,yza) € By | (y1,y3) € /F};
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o= {(ey"y") € Fx Brx By | 2" = (s ), o' = (¥, pd) | where a? = a0 =
xr and in the rest of proof, single prime always means restriction to W and double prime
means the induce map V/W — V/W. Maps are defined as follows.

s = F, (2,97, y") — x;

P — Brx By, (2,97, y") = (@, 41 2", y);

G2 F o, (1, 00,5) o (21, 2), (2], 2, 38), (a1, 2t 22);

i :Z — Ey is an embedding;

£ 2= F (Y192, 93) = (y1,93);

EF = Z, (y1,y2,93) = (Y1, 92, Y3).

Let Z = {(y1,y2,y3) € E | ys(Whr) = 0,y3(Tp) = 0,41 =y2 =0} and let ¢ : = — Z/Z
be the canonical projection map. Define T E—k sending z to Tyi(z). It is clear that
Tlz =0. Let Ty : £/Z — k be the induce map of T.

We are going to show 7 is constant if and only if tr(yszs) = 0 for all ys.

In fact, let =2+ y,x € =,y € Z, then

T@ = Tv(i(@)
= To((@+y)1, (@ + )2 (@ +y)3)
= Tv(zi +y1, 22 + Y2, 23 + Y3)
= Shemtr((zs +ys)(z2 + 1))
= Zhem,tr(xsre + x3y2 + Y32 + ysy2)

= Yhemtr(xsza) + tr(ysxs).

Since 7; is affine linear function, 7; is constant if and only if tr(yszs) = 0 for all ys.

Next we want to show that tr(yszy) = 0 for all y3 satisfying ys(Wpy») = 0, y3(Ty») = 0 if
and only if {z +y | Yy € Z} CE(F), ie. (z1,1) € F.

Since Vi, Wy and Ty are all free modules, we can fix a basis of Wj» and extend it to

} . Here

a basis of Vj». Under this basis, we have a block matrix decomposition y3 = [8 ;
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d
arbitrary matrix, this is true if and only if ¢ = 0. Therefore (zy,x9) € F.

* is any block. For any x5 = {Z b} , tr(ysxe) = 0 if and only if ¢r(xc) = 0. Since * is an

Now let = = Z — £(F). Denote ¢ = ¢|z and T/ = Tz Then the restriction of 77 to
any fibre of ¢ is a non-constant affine linear function. Hence by Section 2.4(2), the local
system L7 on =’ satisfies ¢j(L7) = 0.

Since £ : F — Z is a closed embedding, applying 2.2.3(4) to the partition = = Z' UE(F),

we have a distinguished triangle

o Ll (1]
ajg Ly alz a&(§Ly) —,

where j : Z — = is the open embedding. By the above argument, ¢jij*£5z = 0. Therefore
a&& Ly =als
Clearly the composition si : = — Ey, (21, 22, x3) — (21, 22) factors through Z/7 since

c:Z — Z/Z sends (x1,x9,x3) to (z1,x2,T3). Let si = gc, where g : Z2/Z — Ey. By

projection formula, we have
c;(f;f*ﬁ% ®cg*B) = C!égé*ﬁ% ®g'B=clz®g'B=ca(lsz®cg"B).
Therefore,
(&€ Lz @ "s*B) = a(Ls ® i*s*B). (4.22)
The composition pt : = — 'Ep x By, (21, T, x3) + (2, 24, 27, 24) also factor through
=/7Z. Because if Z3 = T3 € /7, then there exists y3 € Z such that x3 — z3 = y3. Hence
(x5 — 23) (W) = 0 and (z3 — 23)(Thr) = 0, ie. x3(a) = 23(a),Va € Wy and a € Ty
Therefore o = 2, x4 = z4. Let pt = hc for some h : Z/Z — 'Ep x 'Ey, then, by (4.22), we
have
hic (flg*L% X é*S*B) = h]C!([ﬁ- X L*S*B).
ie.
/]?ltl(é‘lf*ﬁﬁi X é*S*B) = /prtu(ﬁ% X L*S*B).
Since Ty i = T pg, we have ¢*p* L7 = &i* L, = £ L.
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Since ¢ is a vector bundle with rank m := n}_, , Rank(Tj/)Rank(W~), we have
@¢*L = L[—2m)] for all L € D()). Therefore,

®ResyyB) = WLy @5 puB)[dr + dw]
= 0(LF ® ps" B)[dr + dw]
= L(LF @ pigrg™ s B[2m])[dr + dw]
= tpG(§p (L7) ® ¢ B)[2m 4 dr + dw]
= Dph&(q P (Lr) ® £1i%s* B)[2m + dr + dy]
= (6§ Ly) ® i*s*B)[2m + dp + dw]
= Ph(&€ Lz ® i*s*B)[2m + dp + dw]

and

Resy (®(B)r] = prt*t(Ly @ " B)[r + dy]

= /j?lfgi*(ﬁT ® s*B)[r + dy]

= /p!f!(ﬁ% ® i*s*B)[m + dy].

Using Rank(V;) = Rank(T;) + Rank(W;), we have m + dy = 2m + dr + dy. This finishes
the proof. O

Lemma 6. (D(Z{/zk) = /Z{,M[M] for some M.

Proof. This proof is the same as Lusztig’s proof for 10.2.2 in [41]. Consider the following

diagram,
~f b - C =
‘Fvﬁi7E - ‘_‘,
| | \
EV u EV t EV .
Here

== {(;E,y,f) € By x'By x ]:X];z& | fo is an x — stable and y, = z,Vh € Hg},
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and

= = {(0.5) € Bv x Flyy | in(Vibo) € Vi, ¥ and h € Hy } .

Maps are defined as follows. b(x,y,f) = (z,f), c(x,y,§) = (y,f) and =, p, p are obvious pro-
jection maps. Then the left square is a cartesian square and the right square is commutative.

By the definition of E@w we have
O(L,,) = t(Lr @ s'ml)[dy] = t(Lr @ pilz)ldy].
By projection formula in Section 2.2.5,
t(Lr @ pl)[dv] = tip(p"Lr @ 1)[dy]| = pier(Lr)[dv].

The last equality follows from 77 = T'p and pc = tp.

Let Zy = {(z,y,f) € 2| fo is y — stable} and =, = = — =Zj. Clearly, T"|z, is not a
constant function. By Property 2.4(2), ¢(Lr|g,) = 0. Since j : Z; — Z is an open
embedding, ¢jij*Lr = 0. Applying 2.2.3(4) to the partition = = =Z; [[ =y, we have a
distinguish triangle,

1
C!j[j*ET/ CgET/ Cgigi*ﬁT/ L,

where 7 : =y — Z is the closed embedding. Then ¢ L7 = ciiyi* L.
For any (Ia y7f> S 507
T,(Jf,y,f) = T(I’,y) = Z tr(yhxh : Vh’ — Vh’)'
heHs
Let § = g;fo for some ¢; € H/(H (| P®) (see Remark 2). Since fy is stable under both z and
y, f is stable under both gf’l - x and g;l -y. Since (g;l ~y)h(gf’1 STy = (gf’l)h/yhxh(gf)h/,
tr(ynzn) = tr((g; ) wynaa(gr)w). Moreover, we have
tr((g; Dwynen (g = Vie = Vie) = > tr((g7 Iwynen(gew = Vi Vil = Vi V).
I
Since V=1 /V! concentrate on one vertex, for any [, at least one of Vhl,_ Y/V, and V,f,T LIV,

is zero. Therefore, tr(yyx, : Viy — Vi) = 0 for each h € Hy. ie. T'(x,y,f) = 0. Hence
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Lpi|z, = 1. ie. 4y1*Lq = 1. Therefore,

pei(Lr)|dy] = pierii* Lo [dy] = pi(c|z, )i 1[dv].

Since ¢(=Z) = .71:{;@ and c|z, is a vector bundle. Denote the rank of ¢|z, by M’. Then

pi(clzoh1[dy] = pi[dy — 2M'].

Since p|,z = 'm, where 7 : 7?‘];1 . — 'Ev is the first projection map,
Vik i
pd[dy —2M') =T}, ,[dv — 2M].
Let M = dy — 2M’. The proposition follows. H

Corollary 3. &(Resy.yy (B)) = Resy.yy (3(B))[r].

Proof. From Lemma 6, CID(Q{/) C ’Q{/, where ’Q(/ is defined similarly as Q{/ for 'Ey,. By
the same argument ®('Q},) ¢ Qf. Since ®(®(K)) = K (see 10.2.3 in [41]), for any K €
oY\ 9, if ®(K) € 'Ql,, then K = ®(®(K)) € QJ,. This is a contradiction. Therefore,
®(K) ¢ 'Qf, for any K € Oy \ 0f.

By definition of I/{c\@/s;W, the corollary follows from Proposition 9. [
Corollary 4. ®(Resy  (B)) = Resy,;; (®(B)).

Proof. From (4.20) and Corollary 3, it is enough to show 7+d; —d; = 0, where d; is defined
similarly as d; for the new orientation. Recall d; = dimGy /U+n ), . ;; Rank(T} )Rank(Wj,»).

Since dimGy /U has nothing to do with orientations and H = Hy |J Hs, it is enough to show

m=n Y  Rank(T},)Rank(Wyr) —n Y Rank(T))Rank(W»).

heH> h€'Hy
Here 'H, is the set of all arrows with opposite orientation of arrows in H,. The corollary

follows that 7, . Rank(Ty)Rank(Wyr) = 37, . Rank(Tyr )Rank(Wiy). O
Lemma 7. Let A € Qy, A’ € 'Qy, then for any j € Z, we have
0By, Gyi A, D(A) = d;(By, Gy: D(A), )
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Proof. Let u (resp. u/,4) be the map of rEy (resp. r'Ev, r(Ey x 'Ey)) to the point (see
Section 4.2.4 for notations). By definition of d;(Eyv,Gy; A, A’), we have

d;(By,Gy; A, ®(A')) = dim Fit2dm&=2dmling 0 (A @ 1d(A)).
The lemma follows from Section 2.4(1). O
Corollary 5. ®(Ind}y (B)) = Indy,y, (®(B))
Proof. By Proposition 4.2.4(6), it is enough to prove
03By, Gy (IndY, iy (B)), O(K)) = d;(Ey, Gy IndYy (9()), B(K)

for all simple objects K &€ 77‘]; and j € Z.
By Lemma 7 and Proposition 8,
d;(Ev, Gy; ®(Indy, iy (B)), ®(K))
= d;(Ev,Gy; (Indyw(B)), K)

=d;(Er x Ew,Gr X GW;B,ReSKW(K)).
By Proposition 8§,

d;(Ev, Gy; Indyy, (®(B)), ®(K))
= d;('Er x 'Ew,Gr x Gw; ®(B), Resy.yy (P(K)))
= d;(Er X Ew,Gr x Gw; B, ®(Resy,(®(K)))) (by Lemma 7)

= d;j(Er x Ew,Gr x Gw; B, Res%W(K)) (by Corollary 4).

4.2.6 Additive generators

In this section, we fix a vertex ¢ € [ and assume W is an [-grade free R-submodule of V

such that "= V/W is also a free R-module.
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Remark 5. By the Fourier-Deligne transform, we can assume W satisfy that W, =
Viv, Yh € H and by induction we can further assume Supp(7) = {i}. Hence, Er = 0,
and Ey ~ F.

Given any matrix X with entries in R, any k-th minor Dy of X can be written into
Dp(X) = fio(X) + fu(X)t + -+ + fi,(X)t". We will use super-script to distingue the
different k-th minors and their coefficients. For example, D (X) and f5(X). Note that we
take all minors with value in k[t] but not those in R since we are studying the coordinate
ring of the k-variety Ey .

If we fix an R-basis for each V;, then all x; can be written as a matrix, denoted by Xj,
with entries in R. Moreover, ),y v_; @5, corresponds to the matrix X; := (Xp,, Xpy, -+, Xp,),

where each subscript £; is an arrow with target vertex ¢. Given i € I, let
Byvix={r € Ey | Dj,(X;) =0 for all 7} .

Notice that X; depends on the choice of basis of V;, but By, doesn’t depend on the choice of
basis of V;. Because equivalent transformations of matrixes change a k-th minor into another
k-th minor which is obtained by multiplying by an invertible element in k. Moreover, By, x

is a closed subset of Ey. Given (k,l) € N x N, let
Cviy =17 € BEv | fiy(X;) =0for all r, and all s <1}.

By the same reason, this set doesn’t depend on the choice of basis of V; and it is a closed
subset of Ey .

Now define a total order on N x N by
(k,1) < (r,s)if and only if k <rork=rs <l.
Let Ev; <) = Cvii ey () Bvijgs1- This is a closed subset. It is clear that
Byix C - C Evi<gn C Evi<@i—1) C -+ C Byigq1 C--- C Ey. (4.23)

Furthermore, for « € Ey, there exists (k,l) such that x € Ev; <.
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Let v ki) = Evi<@n \ Ev,i<@+1)- This is a locally closed subset of Ey and its closure
Ev,i k1 = Evi<@k,. From linear algebra, Ev; 1, is stable under Gy -action.
Recall p : Gy x¥ By — Ey is a Gy-equivariant map sending (g, ) to gi(x), where

t: By — Ey is an embedding. Let py := p|GV><PEW,i,(k,l) Gy xP Ew,i ) = Eviik)-

Lemma 8. p is a vector bundle with rank dy = (v;—w;)(l4+n(w; —k)), where v; = Rank(V;)
and w; = Rank(Wj).

Proof. For any y € Ev, ), o (v) = {(g.2) | gu(x) =y}

If gie(x1) = got(ws) = y, then gy 'got(zs) = ¢(21). This implies that z; is equivalent
to xo. i.e. there exists ¢ € Gy such that gr; = x5. Hence there exists h € P such that
hi(z1) = t(zy). Then giu(x1) = goht(w1). This means that s := g; 'goh is in the stabilizer,
Stabay, (¢(z1)), in Gy of v(z1). ie. go = gish™! for some s € Stabg, (t(x1)) and h € P.
Hence (g1,71) € py'(y) if and only if (g1sh™, hay) € py'(y) for some s € Stabg, (¢(z1)).
Therefore, dim(p,*(y)) = dim(Stabg, (¢(z1))) — dim(P () Stabg, (¢(z1))).

If we fix a basis of W and extend it to a basis of V', then

s to = am{[¢ 4] 1 2 ] [5]- [

dim(PﬂswaV(L(xl)):dim{[g Z} | {3 Z} m _ m})

and

Therefore,

dim(pgl(y)) = dim({c € Homzr(W;, T;) | cx; = 0}) (4.24)
Given l - (j(]?jlu e 7jn—1)a 1et
M;; = {x € Ey | X; ~ Diag(1%%° ¢®/1 ... ("= 1)®m-1)}

If y € M;; for some j with |l| =, jr=~F Theny € Evi (ka()), Where )‘(l) = > Tjr

From the above argument,

dim(pal(y)) = (v; — wz)<)\(l) + n(w; — |l|))
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which only depends on A(j) and |[j].
On the other hand, from linear algebra, if y € Fv; x1), then y € M;; such that [j| =k
and )‘(l) = [. i.e. the dimension of fibers of any element in Fy; ;) only depends on %k and

[. By (4.24), po has a vector bundle structure. This finishes proof. O

Let ¢1 : By <, — Ev be the closed embedding. Applying base change formula to the
following cartesian square,
F Fvik (4.25)

I

L1
Evi <@y — Ev,

we have

tiLyip =1iml =m1.

Remark 6. For any simple perverse sheaf A € P{i (see Section 4.2.1), i.e. A is a direct
summand of sz for some (i, k) up to shift, (fA is a direct summand of LIZV@E =m1lup
to shift. By the same argument as we show Proposition 3, (;A[da] is a perverse sheaf on

EV,i,S(k:,l) for some dA.

Let 73{;71.7(&[) be the full subcategory of M(FEv,; <)) consisting of direct sums of perverse

sheaves 15 A up to shifts for some A € P/, Let

P‘];,Oi,(k,l) ={B¢€ P\];,i,(k,l) | Supp(B) ﬂ Evi ey # 0}

and
,P\J;}i,(k,l) = {B € PI];,L(k,l) | SUPP(B) ﬂ E\/,L(k,l) = (D}

Then any object A € P}, can be decomposed into A = A° @ A!, where A° € 73{;2’(

Vi, (k1) k.l

and A' € P\Jj,li,(m)' Furthermore, if we require A! is the maximal subobject of A in 73{;’11.7(,670,
then such decomposition is unique since A is a semisimple perverse sheaf.

One can similarly define Pt{m (k1) (TESD. 771;91. (k) and P{Vli kD)
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Now consider the following diagrams,

j 2 P
Bwi<wy <—Gv XY Ew,i <o)y —= Gv ¥ Ew; <ty — Evii <o) (4.26)
Ew,i<ten) — Evi <@ (4.27)

Here Gy ,U, P are the same as in Section 4.2.3 and the maps are defined similarly as
—~ Vv
in the Section 4.2.3 and 4.2.2. Define the functors Indgy; . n(A) = paph,pi"(4) and
—V
Resr ., py(B) = ¢*(B). This is the induction (resp. restriction ) functor defined on
Ew, <y (resp. Ev;<k,y) instead of Ey (resp. Ev).
Let
Ind¥,M/,i,(k7l) (A) = Indpyy; o (A)[dim(Gy / P) + dol, (4.28)
where dj is the dimension of fibers of py, and
—V .
Resg,WJ,(k,l)(A) = ReST,W,i,(k,l) (A)[do — dim(Gy /P)]. (4.29)
Lemma 9. Let 13 : Ew; <xg) — Ew be the closed embedding, then for any A € ng,i,(k,l):

—~ Vv —~ Vv
Indpy (t214) = culndg ;1 (A)-

Proof. Consider the following diagram:

D] 2 o
Ew,i <ty <~ Gv XY B, <oty — Gv X" Bwi <oty —> Bvi<(r) (4.30)
EW 2 GV xV EW P2 GV x P EW P Ev.

Here vertical maps are all closed embedding. Since the squares and are cartesian

squares and | 3| is commutative, we have

PrimA = 15 A = 1gply (A) = phea(A).

Here A is the unique complex such that pf*A = pg*g by Property 2.3(3).
Hence L41AV = poypitaA. Therefore,

—~— v ~ .~ —~ v
Indpyy (L214) = paiaA = tnpy A = tnlndg gy, ) (A).-
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Corollary 6. For any A € P‘fV’i’(k,l),
Ind¥,W(LZ!A) = tu Ind%W,z’,(k,l)(A)[N]a
where N = (n — 1) >, Rank(T;)Rank(W;) +n >, .,y Rank (T}, )Rank (W, ) — do.
Proof. By Lemma 9, (4.19) and (4.28). O

Lemma 10. Let b : Y — X be a fiber bundle with d dimensional connected smooth ir-
reducible fiber. If B = b*A is a perverse sheaf on Y, then bB[d] is a perverse sheaf on
X.

Proof. By the definition of perverse sheaves, B € D=°(Y) N D=°(Y). Then bB € D=%(X).
ie. bB[d) € DO(X).
On the other hand, by Lemma 4,

D(b:Bld]) = D(b,B)[~d) = (WDB)[d] € D=(X)[d] = D=(X).
This proves the lemma. O

Proposition 10. (1) Let A € 77{;21.7(,6,1 Then H™ Ind¥7mi7(k7l)(A) € Px];,li,(k,z) if n#0, and

)-
H° Ind%wﬂ-,(k’l)(A) € 73{27(,670 So one can define a functor
. plfo fo
& Pwikn — Praen

A (H Ind¥,W,i,(k,l) (A))°.

(2) Let B € L - Then H" Resyy; 4. (B) € Py, oy ifn # 0 and H Resy gy ) (B) €

P‘f[gi’(k,l). So one can define a functor

. pfo f0
P Puiwn = P

B (H° Resg,W,i,(k,l)(B))o'

(3) The functors & : /Plj/c[gi,(k,l) — 77{;27(,{71) and p : P‘];?i,(k,l) — P‘f[gi,(k’l) give an equivalence
of categories 77‘];? () and P{&MJ).

i,
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Proof. The proof is based on Lusztig’s idea for proving Proposition 9.3.3 in [41]. Consider

the following diagram,

Gv x¥ Ew,i e . Evi ) -~ Ew k0 (4.31)

SR S

P L
Gy X" BEwi <y — Evi<) =— Ewi <)

Here 19,1, j, jo and m are all inclusions, both squares are cartesian squares. Additionally,
both j and m are open embeddings.

(1) For any A € P{fvo,i,(k,z)v
KT v N AV A il pl*
J Indpw pr y A = 5 P52pY (A) = PorjoPapy (A).

By Property 2.3(3), py,pi(A)[dim(Gy/P)] is a perverse sheaf. j, is an open embedding,
S0 jopy, i (A)[dim(Gy /P)] is a perverse sheaf. Moreover jipsy, pif(A)[dim(Gy /P)] is a Gy-
equivariant perverse sheaf.

We claim that j5p, p7*(A) = piLosm* A.

By the following commutative diagram,

pll U p/2 P
Ewi<gn <=—Gv X" Ewi<kn—=Gv X" Ewi<w

]m Tﬁ ]jo
1! p//

Ewi i <~——Gv XY Ew, )y ——= Gv X Ew, ey

we have

/%

JopupY A = Py Jipy A = pypitm"A. (4.32)
We next consider the following commutative diagram,

GV xV EW,i,(kz,l) (433)

P

By <"—Gv x Ew, gy — By

e T

Gy X EV,i,(k,l)
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Here p (resp. qi,q2) is the projection map sending (g, x) to to(z) (resp. to(z),z ) and u
(resp. wi,us) is the Gy-action map sending (g,z) to geo(x) (resp. gio(z),gx ). 7 is the
quotient map and ¢ is the embedding. p is well-defined since U acts on Ey, trivially in this
case.

For any G'y-equivariant complex K, g3 K = u3K. Then
G K =g K =0uK =ulK.

Therefore 7*p* K = n*u* K which implies p* K = «* K since 7 is a principle U-bundle.

Now consider the following diagram,

Ewi (k1) - Gy xY Ewi (4.34)

e

EV,i,(k,l) A Gy x P EW,i,(k,l)

where p(g,2) = x; u(g,z) = gio(z) and p(g,x) = to(z). By commutativity, for any Gy -

equivariant complex K, we have
PolS = pyu" K = py,p K = po,py"igK (4.35)
Since o : Ew, k) — Ev k) is the inclusion of a locally closed subset, by [44], we have
LoLosm A =m*A (4.36)

By (4.32), (4.35) and (4.36), we have

/% /1 %k

jgpéb% A= PayDy LoLO*m*A = pébo*m*A-

This proves the claim.
—~ v
Therefore, by Lemma 10, j*Indy.y, pr , A[dim(Gy / P) + do] is a perverse sheaf on Ey; (4.

Since j is an open embedding, 7* is exact. if n # 0,
o =V . =V .
J (H"(Indg s . Aldim(Gy / P) + do])) = H" (7" Ind gy 5. Al[dim(Gv / P) + do]) = 0.
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i.e.

j*(Hn(Indg,W,i,(k,l) A)) =0.

Therefore, the support of H" Ind;,w,i,(k,n A is disjoint from Ey; (1.

(2) For any B € P\];g,(k,l)’ J*B is a perverse sheaf since j is an open embedding.

We claim that ¢f5*B[dy — dim(Gy /P)] is a perverse sheaf on Eyy; (1)

In Diagram (4.34), p is a fiber bundle of relative dimension dim(Gy /U) since Supp(7’) =
{i} and U acts on Ey trivially.

By the commutativity, we have

LS

Py e B =u'j*B = p*j*B = p*15j*B.

Then
1) Bldy — dim(Gy / P)] = p\py"pos* Bldo + dim(Gy /U) + dim(Gy / P)].

By Lemma 8, pi*pij*Bldy + dim(P/U)] is a perverse sheaf. From Lemma 10, ¢§j*B[dy —
dim(Gy/P)] is a perverse sheaf on Eyy; (). This proves the claim.

Since right hand square in Diagram (4.31) is commutative,
m*"* Bldy — dim(Gv/ P)] = 155" Bldo — dim(Gy / P)]
which is a perverse sheaf. Since m is open embedding,
m*(H""* Bldy — dim(Gy /P)]) = H"(m*/* Bldy — dim(Gy/ P)]).

If n # 0, support of H"/*B[dy — dim(Gy /P)] is disjoint form Ev; ).
(3) From the proof of (1), we have

7 E(A) = j py b, Aldim(Gy / P) + do] = porjopyp Aldim(Gy / P) + dy).

Hence
77 (&(p(B))) = porjopapy p(B)[dim(Gyv / P) + do] = porjopa,pyt”™ (B)[2do).
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Consider the following diagram,

Pll U
EW,i,g(k,l) ~—Gy X EW,i,g(k,l)

)

D3 P
Evi<gn<——Gv X" Ew,; <

Here u(g,z) = g//(x) and p(g,z) = to(x). By the same reason as above, p is well-defined.

By commutativity, we have
P5 B = phyu”B = ph,p" B = php\"t" B (4.37)
From Diagram (4.31), p{j*B = jip5 B. Then
Jorypit" (B) = jops B = pyj* B.

Therefore,
7" (€(p(B))) = papej* B[2do).

By Lemma 8, j*(&(p(B))) = j*B. Since B € 73{;27(,671) and By ) is open in Ey; <), we
have £(p(B)) = B.
On the other hand, from the proof of (1), we have

m*(p(B)) = 1" Bldy — dim(Gy / P)].

Hence,
m*(p(§(A))) = 155" E(A)ldo — dim(Gv /P)] = tgpoiopy, i Al2do].

From the proof of (1), we have
m*(p(£(A))) = typopylosm™ Al2dy] = tyLosm™ A = m* A.
Since A € P‘f[gi’(k’l) and Eyw; k) is open in Eyw; <k, we have p({(A)) = A. ]

Remark 7. By Proposition 5, if Ey ~ F', then Res%W,i,(k’l) send any element of P{; (k)

2

into 77{:[, (1) and the map p is well defined.

5y
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Let v be an indeterminate and A = Z[v,v™!]. Let My be the Grothendieck group of the
category which consists of all direct sums of Ly, ; for various (i, k) and their shifts. Define
an A-action on My by v" - L = Lin|. Then My is an A-module generated by Ly, ;. Let
KCy be the Grothendieck group of category Q{/ (see Section 4.2.1). Then under the same

A-action, Ky is an A-module generated by the simple perverse sheaves in 77{;.

Theorem 4. My ~ Ky as an A-module, i.e., {Ly,x | Y(i,k)} are the additive generators
Of ,Cv.

Proof. Clearly, My C Ky since Ly, j is a direct sum of simple perverse sheaves in 73{;. By
abuse of notation, we will denote by the same B the isomorphism class of B in Ky (resp.
My ). One only needs to show B € My for any simple perverse sheaf B € 73‘];.

We first use induction on Td(V') := >, , Rank(V;). If V' = 0, then Ey = {pt}. So there
is only one simple perverse sheaf and thus the theorem is true. Now assume the theorem is
true for any I-graded proper R-submodule W of V. We want to show the theorem is true
for V.

Suppose B is a simple direct summand of Ly, where (j,1) = ((i,k),(j’,')). Recall
Ly = Indy. vy (L X Ly, ). Since Supp(T) = {i}, Er = {pt}. We will simply write
Lr;r™ LWJIJ as LW,;”,L" By Fourier-Deligne transform, we can further assume ¢ is a sink.

By the definition of Ind%w, we have

Supp(B) C Supp(Lv,1) C Supp(Ind%W(LW@l)) C Evi<my

for some (m,l) € N x N. By (4.23), we can choose maximal (m,[) such that Supp(B) C
Ev; <(mgy and Supp(B) meets Ey; (.-

Recall v1 @ By <(my — Ey is the closed embedding. Since Supp(B) C Ey; <(myu), by
the definition of P‘Jjg,(ml), we have (B € 73‘];2.7(7”7”. Let p(¢iB) = A. By Proposition 10,
€(A) = iB. ie,

IndY ;A = (B & (®,C[4]) (4.38)
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for some C; satisfying Supp(C}) C Evy,; <(m,y and disjoint with Ey;; (,,,.1. Therefore Supp(C;) C
Ev; <@ with (r,s) < (m,l). By applying ¢1; to (4.38) and Corollary 6,

Indy y 1A = 11 Indy. y; () AIN] = 011 BIN] @ (80005 [N + j)),

m,l)

where 15 1 By <(m) < Ew is the closed embedding and N is defined in Corollary 6. Since
Supp(B) C Ev,i<(m,),
1y B = B’Ev,i,g(m,l) = B.

Now we want to show 19 A € My .
By the definition of p, in fact, 19 A is a direct summand of t9t*1] Bldy — dim(Gy /P)].

Applying base change formula to the following cartesian square,

L/
Ew,i,<(mp — Ev,i<m

.

Ew - Ey,

we have

—V
Lot 13 B = 1" 110i B = * B = Resyy B.

By Proposition 4, t9A € Ky. Since Td(W) < Td(V), by the assumption, tnA € Myy.
Therefore, Ind¥7W tyA € My by Corollary 2.

To show B € My, it is enough to show ¢1,C; € My,. Since ¢1,C; is a direct summand of
Ind%w oA and 19 A € Q{:V, by Proposition 6, t1/C; € Q(/.

To apply induction on (m, 1), it is enough to show C;[j] € My if Supp(C;[j]) C Ev,i<y)-

By a similar argument as above, there exists K &€ 771;9 £ <(0.) such that
Ind;,w(blmK) = L,1!L/1*Cj[M + j] = C;[M + j]

for some M, where ¢} and ¢, are the embedding maps. By induction on Td(V'), C;[j] € My
since 15, K € My, as we have shown above.

The theorem follows from the induction on (m, (). O
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4.3 Geometric approach to Hall algebras and quantum
generalization Kac-Moody algebras

4.3.1 The algebra (I, Ind)

Recall the dimension vector of an /-graded free R-module V' is defined as |V'| := (Rank(V;));es €
NI. It is important to notice that, given two different /-graded free R-modules V and V’
with the same dimension vector, Iy, ~ Ky since Ey and Ey. are isomorphism spaces. So
one may denote Ky by K. Moreover, the functors Ind%w and Resgjw can be rewritten
as Indiﬂj&,‘/‘(‘ and Resiﬂjv‘VVT‘ respectively. Now let K = @)y|enrKjv|. Define multiplication as

follows.

Ind: Lx K=K

(A,B) — Indz 1 (A ® B)

for homogenous elements A, B with A € K7 and B € K.

Theorem 5. (1) K equipped the multiplication Ind is an I-graded associated A-algebra.
(2) {Ly,x | for all V and (i, k)} contains an A-basis of IC. This basis is called a mono-
maal basis.
(3) All simple perverse sheaves in 73"; for various V' form an A-basis of K. This basis is

called the canonical basis.

Proof. (1) follows from Theorem 4, Corollary 2 and additivity of Ind. (2) follows from
Theorem 4. (3) follows from the definition of K. O

In the rest of this section we will give the relation among the Hall algebra CHpg (see

Section 4.1), the algebra IC, and the quantum generalized Kac-Moody algebra.

4.3.2 Relation between K and U,

Let I be a countable index set. A simply laced generalized root datum (see [23]) is a matrix

A = (a;j); jer satisfying the following conditions:
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(i) a; € {2,0,—2,—4,---}, and
(11) Q5 = Aj; € Zgo.

Such a matrix is a special case of Borcherds-Cartan matrix. Let [™ = {i € I | a;; = 2} and
I'™ =T\ I". A collection of positive integers m = (m;);e; with m; = 1 whenever i € I is
called the charge of A.

The quantum generalized Kac-Moody algebra (see [23]) associated with (A, m) is the Q(v)-
algebra U, (ga.m) generated by the elements K;, K; ', E;, and Fy fori € I,k =1,--- m;

subject to the following relations:

KiEijiil = ’UaijEjk, KiijKiil = Uﬁaiijk, (440)
K — K[!
EwFj — FuEy, = 5lk51]ma (4.41)
1—a;; 1
— Q5 —ai;—n n . re - . .
Yo (=1 { n ] By BBy, = 0,Yi€ I',j € 1i # ], (4.42)
n=0
1—a;; 1
- a/Z —Qa;i—n . . . .
> (= [ n } Fy " FyFy = 0,Yi € ", j € 1,i # j.and (4.43)
n=0
EikEjl — Eleik = Ekﬂl — EylEk == 0, if CLZ‘]‘ = 0. (444)

n

n n' n . Un7U7
Here [}] = o, o)t =TT, [i), and [n] = =2

In this dissertation, we only consider the case in which all m; = 1 and all indices are in
Irm.

Define a bilinear form on K as follows,
(A, B)x =Y _di(Ev,Gv; A, By ™.
J

Proposition 11. The bilinear form (—, —)x defined above is non-degenerate.
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Proof. Firstly, by the properties of d;(E, G; A, B) (see Section 4.2.4), this is a bilinear form.
Secondly, by Theorem 5, all simple perverse sheaves in 73‘]; for various V form a Z[v,v~1]-
basis of K. So, for any A € K, A can be written as A =Y, cx K for cx € Z[v,v!]. Now
for any A € IC, let B is a direct summand of A. Then by Property (3) of d;(E,G; A, B) in

Section 4.2.4, (A, B)x = cg # 0. Hence the bilinear form is non-degenerate. O

Let U, be the Z[v, v™!]-subalgebra of U,(ga.,) generated by all Fj;, with k =1,--- ,m,.
Because we only consider the case that the charge m; = 1 for all ¢+ € I, there is only one
generator [} ; for each 4, which we will simply denote by Fj. It is clear that U, only subjects
to one relation, namely F;F; = F;F; it a;; = 0.

Define a multiplication of U, ® U, as
(A® B)(C ® D) := v B (AC) @ (BD),
where |B] is the grading of B when B is a homogeneous element and
(1B 1CT) = (B[, [C1) +{IC], |B]),

where (|B],|C]) is defined in (4.2).

Let § be the free algebra generated by {F; | i € I}. Let ' : § — U, ® U, be the algebra
homomorphism sending F; to F; ® 1 +1® F;. Since r'(F;F;) = r'(F;F;) if a;; = 0, the map
7’ induces an algebra homomorphism r : U, — U, ® U, . This gives a coalgebra structure
on U, .

Define a map
f:U =K
Fyv— L.
It is easy to check that f(F;F;) = f(FjF;). So this map can be extended to an algebra
homomorphism. In addition, f preserves the grading, where the grading of B € K is

defined as dimension vector |W| when B is a homogeneous element in K. Now define a

bilinear form (—, —)y on U, as (A, B)y := (f(A), f(B))k.
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Theorem 6. Ker(f) = Rad(—,—)y =11, so U, /I, ~ K.

Proof. Obviously, Ker(f) C Z.
Let us pick any x € Z;. Then for any y € K, there exists z € U, such that f(z) =y due

to the fact that f is surjective. Therefore,

0=(z,2)v = (f(2), [(2))x = (f(2),y)x-

This means f(z) € Rad(—, —)k. Since the bilinear form (—, —)x is non-degenerate, f(z) =

0. i.e., z € Ker(f). Hence U, /7, ~ K. O

4.3.3 Relation between I and CHp

Let H(RT)* be the dual Hall algebra of H(RI), i.e., H(RT')* = @, H(RT')%. Here H(RT)%
is the set of all C-valued functions on the set of isomorphism classes of all representations
M of T over R with dimension vector |M| = v. The multiplication on H(RI")* is defined as

follows:

(fi- f2)(E) =) fi(E/N)f2(N).

NCE
See [31] for more information. Let CH3, be the subalgebra of H(RI')* generated by dg,, Vi €

I, where dg, is the characteristic function of S;. i.e.

0s,(w) = { 0 otherwise.

By the formular,
(On - ON)(E)=#{LCE|L~N,E/L~M}=Fy .

C'H}, is isomorphic to the algebra CHp.
Now define

xX:K— CHy
A XA,
where xa(z) =Tr(Fr: A, — A,) (see Section 2.5).

63



Lemma 11 (Theorem 4.1(b) in [31]). x : K — CH}, is an algebra homomorphism.
Theorem 7. Y is a surjective algebra homomorphism.

Proof. By Lemma 11, it is enough to show x, = dg, for any dg,. In fact,

XL (1) = Xma(@) = D xa(y) = xa(m (z)) = ds,.

yem; ' (z)
Here 7; is the obvious projection map. The penultimate equality is true because both

Ey and Fy contain a single point. O
Let us denote Zy = Ker(x). Then CHgr ~ K/Zs.

Remark 8. One may ask what the kernel Z; of the above map f is. For the field case, Lusztig
and Ringel show this is the ideal generated by the quantum Serre relations. However, for
the case where we have the local ring R = k[t]/(t"), the kernel Z; is much more complicated.

Let’s finish this chapter with the following example which gives some idea of what Z; is.

Example 2. Fix R = F,[t]/(t"), consider quiver Ay : 1 — 2. Then S; : R — 0 and
Sy : 0 — R are all simple objects. By computation, one has,

312 — qn/Q(qn 4 qn—l)(RQ N O),

t tn71

$18=q"*(R% R)+ (R R)+ (RS R)+--+ (R~ R)],

S8 =R SR,

(t,0) 0)

n—1
528, = ¢ 2(q" + g (RS R)+ (B2 Y% Ry« (R2 % Ry + - (2 0 Ry,

S15:51 = (q"+q" )R % R)+ (B &% B)+q(8 % Ry 4o (R ),
and

9,52 = ¢"2(q" + " ) (R* > R).

There is no quantum Serre relation at this time.
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Chapter 5
Character sheaves of GL,,(klt|/ (t2))

In this chapter, we will construct character sheaves of GL,,(k[t]/(t*)) and define induction
and restriction functors on them. It is an important observation that GL,,(k[t]/(t")) =
GL,,(k) x H, where H is a unipotent algebraic group (see Section 5.3). In the special case
that n = 2, H is an abelian group. Little group method gives a way to list irreducible
characters of semidirect product of two groups. We will give a weak version of geometric
little group method.

Throughout this chapter, all algebraic group are over k := Fq. F' is a Frobenius map
on the given algebraic group G, and G¥ is the finite subgroup of G consisting of all fixed

points by F'.

5.1 Character sheaves of abelian groups

In this section, we review the definition of character sheaves of abelian algebraic group. For
the construction, we refer to [40].

Let H be an abelian algebraic group over k and defined over finite field Fy, and L : H —
H be the Lang map sending x to F(x)z™!, where F is a Frobenius map on H. For any
y € H, the stalk of the local system E := L1y at y is the vector space F, consisting of all
functions f : L~ (y) — Q,. Then

Ly, = Dyetom(nr g; )E;j’ )
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where

Ef ={f€E, | f(zz)=0¢(2)f(z), forall z€ H" andx € L™'(y)} .

We have a decomposition E = @4E?, where E? is a local system of rank 1 on H whose
stalk at y € H is Ej’

For any y € H, and f € (F*E?), = EJ, , let

(y)?
) @
(I EF(y) — Ey

f@) = f'(@) = f(F(z)), Yo € L7 (y).

If y = 1 is the identity element in H, then F(z)z~! = 1 implies F(z) = x. So f' = f. ie.
1 is an identity map.

Now for any y € HF,

Xpo,p(y) =Tr(y : By, — ES) =Tr(y: E) = E7) =Tr({: f — f(F(x))).

By the construction of E?,

f(F(x) = f(yz) = ¢(y) f(x),Vz € L (y).

So 1 is a multiplication by ¢(y). Therefore, xpgs p(y) = ¢(y) which gives a irreducible
character of H.

For r € N, let L" : H — H be the map x — F"(z)z~! and E” = L{1. Similarly, the
stalk of E” at y € H is the vector space E consisting of all functions f': (L")~ (y) — Q.
Now define a map &, : £, — E; sending f to f o Npr p, where Ngr p: H — H is the map
v+ oF(x)-- F~Y(x). Tt is clear that N p((L") "' (y)) € L™ (y). So &, is well-defined.
Moreover, it gives an isomorphism E¢ ~ (E")?, where ¢/ = ¢ o Npr p € Hom(HF", Q).

The rank 1 local system E? on H for some (F,¢) is called a character sheaves on H.

Let C'S(H) be the set of isomorphism classes of character sheaves of H.

66



5.2 Little group method
5.2.1 Induced character for finite group

Given a finite group G, denote by Irr(G) the set of all isomorphism classes of irreducible
characters of G. Let H be a subgroup of G. For any f € Irr(H), the induced character of f
from H to GG, denoted it by Indg f, can be calculated by the following formula, more detail

of induced character can be found in [§].

1

n @ = —

> flgbg™)VbeG,

geG

where f(a) = { (J)C (a) i Z ; Z . By abuse of notation, we still denote f by f in the rest

of this chapter.

5.2.2 Algebraic little group method

Let G = A x H be a finite group such that H is an abelian group. The group G acts on
Irr(H) by

g-x(h) = x(9"hg),Vg € G,x € Irx(H), h € H.
Let (x;) be the set of representative of orbits of A in Irr(H). For each y;, let A; be the
stabilizer of x; in A, and G; = A; x H. Let p be an irreducible character of A;. We will

extend x; (resp. p) to G; as follows. By abuse of notation, we will use the same notation to

denote the extended functions.

xXi(9) = xi(p2(9)), plg) = p(pi(9)), Vg € Gi. (5.1)

Here p; : G; — A; (resp. py : G; — H) is the obvious projection map. It is easy to check

that p ® x; is an irreducible character of G;. Let 6; , = Indgi (p® xi)-

Proposition 12 (proposition 25 in [53]). (1) 6;, is an irreducible character of G.
(2) If 0, and 8,y are isomorphic, then i = j and p is isomorphic to p'.

(3) Ewvery irreducible character of G is isomorphic to one of 6; ,.
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5.2.3 Geometric little group method

Let G = A x H be an algebraic group such that H is an abelian algebraic group. We are
going to construct character sheaves of G. Let C'S(H) be the set of isomorphism classes of
character sheaves of H. There is a natural G-action on H. Hence, for any element g € G,
we can define a map g : H — H sending z to g 'zg. The following lemma shows that pull

back along g € G is compatible with g-action on Irr(HT).

Lemma 12. For any Frobenius map F on G, and F € CS(H), if g € G, then

Xg*F,F = 4 XF,F-

Proof. For any y € HY,

X7 r(Y) = xr.r(g 'vg) = (9 x7.r) ().
0

We want to define a G-action on C'S(H). Firstly, for any g € G, there exists r € Z such
that g € G, then (goFog™1)" = goF"og™! = F" where we consider g as an automorphism
of H as above. Now for any character sheaf 7 € C'S(H), by the construction in Section 5.1,
F = E? for some (F, ), then yzr = ¢. Moreover F ~ E? where ¢/ = ¢ o Npr p, then
Xrpr = ¢ . By Lemma 12, xpr pr = g- XFpr € Hom(HFT,@T). Therefore, we can define a
G-action on C'S(H) as following,

g-F=g*F, forallge G, Fe CS(H).

Let CS(H)/G be the set of orbits of G in C'S(H). For any representative F of an orbit
in CS(H)/G, let Ax be the stabilizer of F in A, and Gz = Az x H. Clearly, Gr is a
closed subgroup. Let C'S(G#) be the set of isomorphism classes of character sheaves of G£.

Consider the following diagram.
Gr—>G<"—GxG—"=G,
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where ¢ is the closed embedding; p is the first projection and u(g, h) = hgh™*.

The G-actions on the above diagram as follows. G acts on the second G as ¢'-g = ¢'gg’ ™ *;
G acts on Gz and the first G trivially and G acts on G x G as ¢' - (g, h) = (¢'gg’ "', hg'™1).
Then all maps in the above diagram are G-equivariant maps.

For any G € CS(Ar), define
Indg_(G X F) = pu*n(G R F).
Proposition 13. For any F € CS(H) and G € CS(Ar), we have

GF
Xmnd& _(98F),F ~ Indcg(Xg,F ® XF,F);

where xg.r (resp. Xr.r) is consider as the class function on G by trivial extension as in
(5.1).

Proof. By the definition of Indg . and properties of characteristic function, for any g € GF,

XIndE}_(Q@]—'),F(g) = Xp;u*u(Q&}'),F(g)
= Z Xuru(guF),F(9, )
heGF
= Z Xu(gmF),r(hgh™)
heGF
= Z X(g&;),F(hgh_l)
heGF

F
— Indg;(Xg,F ® xrr)(9)-

The penultimate equality holds because ¢ is a closed embedding and ¢ is just extension by

0. ]

5.3 Character sheaves of T' x H

Consider G := GL,,(k[t]/(t")) as an algebraic group over k. Let Gy = GL,,(k) which is a
subgroup of G. Denote by H the quotient group G/Gy. It is clear that H is a unipotent

group. In the case that n = 2, H is an abelian connected algebraic subgroup of G. Moreover,
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G = Gy x H. Let T be a maximal torus of GGg. In this section, we will construct character

sheaves of T x H for n = 2 as an example of semidirect product of groups.

5.3.1 Construction of character sheaves 7" x H

Let C'S(H) be the set of isomorphism classes of character sheaves of H. There is natural
T-action on H since H is a normal subgroup of G. Hence, each element g € T defines a

map ¢ : H — H sending h to g~ 'hg. For any F € CS(H), let
Tr={9eT|gF=7}.
On the other hand, there is an induced T*-action on Irr(H*) defined by
(g-X)(h) = x(¢""hg), Vx € r(H"), g€ T, h e H".

For each y € Trr(HT), let Tf = {g eTr | g'X:X}-

Consider the following diagram,
H<"-TxH-'~H—"~TxH. (5.2)

Here u(t,h) = t~'ht; p is the second projection and ¢ is the closed embedding. We define
T-actions and H-actions as follows. T" acts on the first H trivially; T" acts on the second H

ast' -h=tht'"'; T actson T x H as t' -th = tt'ht’"! and T acts on T x H as,
t(t,h) = {t't, 't N, v, €T, he H.
H acts on H and T x H trivially and acts on 7' x H as
R -th = R'thh'~" = t(t  h'thh/™).

T-actions and H-actions induce a T x H-actions on the above diagram. It is easy to check

that u, p and ¢+ are H-equivariant maps and T' X H-equivariant maps.

For any F € CS(H), define
Ind5? F = upu* F.
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Lemma 13. For any F € CS(H), we have

I d(TMH)F _
Wlpr ° XFF = Xmdl*¥ FF-

Proof. For any b € (T x H)F,

Xlndg'*H}',F(b) = XL!;D!U*]:F E : XP'U*]'—F
hew™

If b ¢ HY, this is just 0. If b € HY, then

Z Xpru* ]:F Xp!u*]:F ZXu*]-'F (t,b) ZX]:F tbt

he=1(b) teT teT
On the other hand,

) 1
(IndgF ) X]-',F)(b) = |HF‘

> xre(thbh 7).

the(TxH)¥

Since thbh='t~!' € HY if and only if b € HY. If b & HY, then
X F
(ndTx ™" 7 1) (b) = 0.

If b€ HY, then
(Ind ant XF.F)( Z xFr(tht™!

teT¥

Lemma 14. Given f € Trr(HY), let S =Ty, then for all g € Trr(S*) and ab € T x H,

(Ind(5 11 (9 ® £)(ab) = = (Ind%r g)(a)(Ind(f ™" £)(b).

|T7|
Proof.

(Ind(5 1 (9@ f))(ab)

1 -
~|SF||HT) the%:H)F(g ® f)(thabh™'t™1)
= e 2 0@ N(tar)((ta e iehiY)
the(TxH)¥
’SF,l, | Z g(tat_l)f((lfa_l)h(mf—l)t(bh—l)t_l)
the(TxH)F
] “Yh(at™? —1y,-1
_Wthe(TZ;H)Fg(a)f((t“ hat- o,
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If a € ST, both sides are 0. The lemma is true.

Since H is an abelian group, f is a group homomorphism. If a € S¥, then the left hand
side is

M Y0 alapf((ta et ) et o)

LS gl fa ekt a) febt ) F Y

ST

! SO gla)Feht ) F(tht ) f(th 1Y) (since a € SF)

~ QF(|JF
ST, iy

LS gl

F
|5 L P

SF| > gla)f(tbt™

teT¥

’SF’ (a) > fltbt™

teTF

L (dT} ) (@) md %" ).

T
[
Let CS(T') be the set of isomorphism classes of character sheaves of T. For any F €
CS(H), T is a closed subgroup of T. Let jr : T# < T be the inclusion map.
Let
P(Tx H)={jrjrGXpu*F | Fe CSH),GeCS(T)},
where p, u are the maps defined in Diagram (5.2).
Let
(P(Tx H)" ={AeP(T'x H) | F*A~ A}.
Definition 3. For any A € P(T x H), a simple constituent of PH(A) for some i is called a

character sheafon T x H.

Denote by C'S(T'x H) the set of representatives of isomorphism class of character sheaves

onT x H.
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Theorem 8. If A = jr.j5%G R pu*F € (P(T x H))" satisfies F*G ~ G and F*F ~ F,
then ﬁx,&p is an irreducible character of (T'x H)Y. Moreover, all irreducible characters
XFF

arise in this way.

Proof. Let p1 : T x H — T and py : T'x H — H be the first and second projection maps

respectively. Then, for any ab € T'x H,

X4,F(ab) = Xpjr. 50,7 (aD) Xpsprus 7,7 (aD) = Xjr. 20,7 (@) Xpur 7,7 (D).
If @ & T, the first term is O since jr.j7G is just the restriction of G to T’r.

If a € T'r, by Lemma 13,

1% F
Xar(ab) = X7 (@) Xppur 7,1 () = Xg,r (@) (IndS =™ x5 1) (D).

By the proof of Lemma 14 and Proposition 12, |TF—1\X A is an irreducible character
XF,F
of (T x H)F and all irreducible characters of (7' x H) arise in this way. The theorem

follows. O

5.3.2 Induction functor

Recall G = Gy x H with H a unipotent normal subgroup. Let p; : G — Gy, and p; : G — H
be the projection maps. For any Levi subgroup L of G, let P be a parabolic subgroup of G
containing L. Denote T'L =T X po(L) and TP = T x py(P). Using this notation, we also
have TG =T x H. We will define induction functor and restriction functor on C'S(TG).

Consider the following diagram,

TL<"—TV Lt~TG. (5.3)

Here TV = {(g9,h) € TG x TG | h™*gh € TP} and p is the first projection map. = :
(g,h) — m(h~tgh), where m; : TP — TL is the obvious map. We define T L-actions
and T'G-actions as follows.

TL acts on itself by conjugation, i.e. t-h = t~'ht; acts on T'G trivially; and acts on TV

ast-(g,h) = (g,ht). Then both 7 and p are T L-equivariant maps.
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TG acts on TL trivially; acts on TG by conjugation, i.e. t- g = tgt~!; and acts on TV
as t-(g,h) = (tgt~',th). Then both 7 and p are T'G-equivariant maps.
Define
IndZ¢ A = p.n*A,VA € CS(TL).

Lemma 15. Consider the following diagram,

1/ \Tm

TG x TG.

(5.4)

Then,

IndX¥ A = py,u*iymi A

Proof. The middle square is a cartesian square, so upiB = u*1;yB for any B € D(TP).
Therefore,

IndTGA Dol PITI A = posipim] A = pou™ iyl A.

5.3.3 Restriction functor

Using the same notation as last section, let 7% : p;(P) — p1(L) and 7! : pa(P) — po(L)
be the natural projection maps, and let ° : p;(P) — p1(G) and ! : po(P) — p2(G) be the

natural embedding. Consider the following diagram,

TL<"-TP—>TG, (5.5)

Here 7 = Id x 7! and ¢ = Id x '.
Define
RestS A = mu* A[2d,],

where d; is the dimension of fibers of 7.
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Proposition 14. Assume L is a Levi subgroup of M and M is a Levi subgroup of G. Then,
for any A € D(TG),

Rest& A = RestY (ReskS) A).

Proof. Denote TPy, (resp. T Py, TP) the parabolic subgroup of TM (resp. TG, TG) con-
taining T'L (resp. TM,TL). Consider the following diagram,

TL<"—TP——=TG

!

TP, —2~TM<"2-TPy,.

The middle square is a cartesian square, so
T Tty A = mmaiigts A = mut A.

Since the dimension of fibers of 7 is equal to the sum of the dimension of fibers of
m and the dimension of fibers of m,. The proposition follows the definition of restriction

functor. O]

5.3.4 Adjunction

Proposition 15. For any A € D5,(TG) and B € D5, (TL), we have
Hom(A, Ind%-¢ B) = Hom(Res-¢ A, B).

Proof. Consider Diagram (5.4). Let d; (resp. dy) be the dimesnsion of fibers of py (resp.
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7). By Lemma 15,

Hom(A,Ind2¢ B)

= Hom(A, py,u*iy i B)
Hom(p3 A, u*ty7] B)
= Hom(p3 A, p5eumi B) (Since vy B is a TG — equivariant complex)
= Hom(p3 A, phynt B[—2d4])
= Hom(pap3 A, 1y} B[—2d])
= Hom(A[—2d;], t1y7} B[—2d,]) (Since py is a vector bundle)
= Hom(A, ¢1ym] B)
= Hom(A, t1.77 B) (Since ¢ is a closed embedding)
= Hom(:]A, 7] B)
= Hom (i} A, B[—2dy))
= Hom(m 1A, B[—2d,))

(

= Hom(RestS A, B).

5.4 Character sheaves of GL,,(k[t]/(t?))
5.4.1 Character sheaves of reductive algebraic groups

In this section, we will review Lusztig’s construction for connected reductive algebraic group-
s. We refer to [32] for this section.

We fix a Borel subgroup B C Gy = GL,,,(k), a unipotent radical U and a maximal torus
T C B. Let W = Ng,(T)/T be the weyl group of Go. We will fix a representative w of w.
By abuse of notation, we still denote it by w.

Now any w € W can be regarded as an automorphism w : T — T sending ¢ to wtw™?
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For any £ € CS(T), let
We={weW |wL~L}.

Now consider the following diagram,

Ty, sy, G, (5.6)

Here

Y = {(g,hU) € Gy x (Go/U) | h*gh € BwB}.

and

Y, = {(g,hB) € Gy x Go/B | h™'gh € BwB}.

Maps are defined as follows. m,, is the first projection; pi(g, hU) = (g,hBh™!'); and
pa(g, hU) = pr(h~tgh), where pr : BwB — T sending ujwtus to t.

T actson T as a -t = wlawta™"; T acts on Yy, as t - (g, hU) = (g, ht 'U) and T acts
on Y, G trivially. Then py, ps, m, are all T-equivariant maps. Moreover, p; is a principle

T-bundle.

G acts on itself by conjugation, i.e. a-g = aga™*

: Gg acts on T trivially; Gy acts on Y,
as a- (g, hB) = (aga™',ahB); Gy acts on Yy, as a - (¢, hU) = (aga™",ahU). Then all maps
are (Gp-equivariant maps.

For any £ € CS(T) and w € Wy, define K5 = (7, )ip1,p3(L).

A simple constituent of PH(K~) for some w € Wy, i € Z and L € CS(T) is called a

character sheaf of Gy. Denote by C'S(Gy) the set of all character sheaves of Gy.

Now we want to construct character sheaves of G = GL,,(k[t]/(t?)).

Consider the following diagram
G<"—Gyx G—=G.
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Here u(g, (a,b)) = (gag™, gbg™') and p is the second projection.

Denote &7° = K ) F.
et € Z, L e CS(T) and
F € CS(H) is called a character sheaf of G. Denote by C'S(G) the set of all character

A simple constituent of PH*(pyu*&,*) for some w € W, =

sheaves of G.

5.4.2 Restriction

For any Levi subgroup L of GG, let P be the parabolic subgroup of G containing L. Recall
G =Gyx H, and p; : G — Gy and py : G — H are the projection maps respectively.
Denote LP = pi(L) x py(P). Similarly, we have PG, LG, TG, TP, TL. We also write
G=GG,P=PPand L=LL.

Recall that 7° : p1(P) — p1(L) and 7' : po(P) — po(L) are the natural projection maps,
and ° : py(P) — p1(G) and ! : po(P) — pa(G) are the natural embedding.

Consider the following diagram,

LL - LP 1 1a. (5.7)

Define
RestC A = (Id x n'),(Id x ')* A[dy],

where d; is the dimension of fibers of Id x 7.

Consider the following diagram,

GG. (5.8)

Define
RestS A = (7% x Id),(:° x Id)*Aldy),
where dy is the dimension of fibers of 7% x Id.

Consider the following diagram,

0 1 0 1

LL & pp Xy GG.
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Define

ResCC A = (70 x o), (L% x 1)* Ald],
where d is dimension of fibers of 7% x 7!.
Proposition 16. For any A € D(GG), we have
Res?¢ A = Rest¥ Res¥§ A.

Proof. Consider the following commutative diagram,

LTL}PP\GTG
LP2-1G<" Q.

Here 7; are obvious projection maps; ¢; are obvious embedding maps and the middle square

is a cartesian square. Therefore,
7T!L*A = 7T217T31L§L>{A = WQ!L;']T]_[LTA.

Since the dimension of fibers of 7% x 7! is the sum of dimension of fibers of Id x 7! and

dimension of fibers of 7° x Id. Proposition follows. n

Proposition 17. Let L (resp. M) be a Levi subgroup of M (resp. G), then, for any
A € D(GG), we have

ResH M Res§, A = Res§¢ A.
Proof. Consider the following diagram,

LL GG

s PP L
| 27 ]
) L1

PM —2> MM <"—QQ.

Here QQ (resp. PP, PM) is a parabolic subgroup of GG (resp. GG, M M) containing M M
(resp. LL,LL); m; are obvious projection maps; ¢; are obvious embedding maps and the

middle square is a cartesian square. Therefore,
m*A = Tz} A = Touaml] A.
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Since the dimension of fibers of 7 is the sum of the dimension of fibers of m; and the

dimension of fibers of m,. Proposition follows. O

5.4.3 Induction

The induction functor is defined by two steps. Namely, one is an induction on “unipotent”
part, another one is an induction on “reductive” part. Let P, L be the same as last section.

Consider the following diagram
LL<"—LV -2~ LG.

Here

LV ={(g,h) € LG x LG | h™*gh € LP}.

Maps are defined as follows. ¢ is the first projection and ¢1(g, h) = (Id x ©*)(h™'gh).

We define LL-actions as follows. LL acts on itself by conjugation, i.e. ¢’ - g = ¢ 'gg';
acts on LG trivially and acts on LV as ¢'-(g,h) = (g, hg'). Then all maps are L L-equivariant
maps.

We define LG-actions as follows. LG acts on LL trivially; acts on itself by conjugation,

Uand acts on LV as ¢ - (g,h) = (g'9g¢'"',g’h). Then all maps are

ile. ¢ g = 499"
LG-equivariant maps.
Define

Indff A = qa.qi Aldy],

where d; is the dimension of fibers of Id x 7! : LP — LL.

Consider the following diagram,

LG <" av, 2= GV, 2= Ga. (5.9)
Here
GVi = {(g9,h) € GG x GG | h™'gh € PG},
and

GVo={(g9,h) € GG x GG/PG | h™'gh € PG} .
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Maps are defined as follows. ps is the first projection; pa(g,h) = (g,h) and pi(g,h) =
(7% x Id)(h~tgh).

We define the LG-actions as follows. LG acts on itself by conjugation, i.e. a-g = a'ga;
acts on GV, and GG trivially and acts on GV; as a - (g,h) = (g, ha). Then all maps are
LG-equivariant maps.

We define the GG-actions as follows. GG acts on itself by conjugation, i.e. b-g = bgb™!;
acts on LG trivially; acts on GV} as b- (g, h) = (bgb~!,bh) and acts on GV; as b- (g,h) =
(bgb™!',bh). Then all maps are GG-equivariant maps. Moreover, p, is a principle PG-bundle.
p3 is a proper map.

Define

Indfg A = papypiAldy],

where dj is the dimension of fibers of map 7° x Id : PG — LG.
Define

nd?¢ A = Indf§ Ind:¢ A.

Lemma 16. Consider the following diagram,

T / \ T (5.10)
“ LG x LG.
Then
Ind“¢ A = pu* iy Aldy].
Proof. See proof of Lemma 15. n

5.4.4 Adjunction

Proposition 18. For any A € D4 (LG), B € D4, (LL), we have

Hom(A, Ind2¢ B) = Hom(Rest¢ A, B).
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Proof. Consider Diagram (5.10). Let dy (resp. dy) be the dimension of fibers m; (resp. p),
by Lemma 16,

Hom(A, Ind:¥ B)

= A, pout iy Bldy))
Hom(p* A, u* ity Bldy))

= Hom(p* A, p*t1 7] B[dy]) (Since ¢y B is a LG equivariant complex)

= Hom(p* A, p'uyymy Bldy — 2dy])

= Hom(A[—2dy], cymi Bldy — 2ds]) (Since p is a vector bundle)
= Hom(A, t1,m; B[d1]) (Since ¢; is a closed embedding)

= Hom

om(
(p
(
(
= Hom(pp* A, 17y Bldy — 2ds))
(
(
(134, m B[~d1])
(

= Hom(mt]Aldq], B).

O

For any algebraic variety X, given a stratification & of X, let p be a S-perversity function.
Then one can define a t-structure on D°(X). The category equipped with this t-structure
is denoted by PD°(X).

Lemma 17 ([42]). The functor X : PD*(X) x DY) — PHDY(X x Y) is t-exvact, where
(p+q)(SXT)=p(S)+q(T). In particular, if p,q both are middle perversity functions, i.e.
p(S) = —dim(S), this is true.

Lemma 18. For any A € CS(GG), Res?S A € D(LG)=°

Proof. Let A =CKX B, by Kiinneth formula,

RestS A = (. C) X Bldy] = (ResL C)X
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where Resfg is the restriction functor which Lusztig defines for the character sheaves on G
(see [32]) and d; is the dimension of fibers of PG — LG. Since Resfg C € D(Ly)=" and B
is a perverse sheaf, by Lemma 17, Res¢§ A € D(LG)=. O

Proposition 19. For any A € Mc(GG) and B € D7 (LG), then
Hom(A, IndSS B) = Hom(Res?S A, B).

Proof. This proof is based on Lusztig’s argument of proving theorem 4.4 in [32]. Consider

the following commutative diagram,

GV, —2 GG (5.11)

I

D GG x PG—— GG

N

D’ LG ~— PG.

Here D = GG x LG modulo the PG-action as
h-(x,1) = (:chfl, (7r0 X Id)(h)x(wo X Id)(hfl));

and D' = GG x LG. The maps are defined as follows. fy(g,7) = (z, (7° x Id)(z " gz));

p(z,p) = (zpz~',T);
o(x,p) = (z, (7% x Id)(p));
0

p3(9, @) = g;
§(x,p) = apr;
((z,p) =p;
0'(z,p) =p

Firstly, we claim that 5*fapiA = y*mi* A for any A € Mge(GG). In fact, it is easy to
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check the following two squares are cartesian squares.

GVy <L GG x PGV~ PG

R

D-—" p_ 7 _IG

By base change formula,
VA= @0 A=A
and

B* faps A = dip*ps A = g1 A.

Since A is a G-equivariant perverse sheaf, i.e. (*A = £*A, the claim follows.
Secondly, we claim that IndSS A = psi f58,7*A[dy], where dy is the dimension of fibers

of fo. This can be shown by the following commutative diagram,

D1 le P2 GVQ p3 fele.

LG
H lfs sz
LG<2—p—F

D.

In fact, by commutativity, we have
Pafa By A= 3B B A= 57 A=pA
The claim follows that the dimension of fibers of 7 is equal to the dimension of fibers of f5.
Therefore,
Hom(A, IndS B)
= Hom(A, ps.f; 6,7 Blds]) (Since ps is a proper map)
(P5A, f357" Blda])
(34, f387"Bl—da))
= Hom(fap3A4, B,7"B[—d>])
(
(
(

= Hom
= Hom
= Hom(B" fap3 A, v*B[—da))
= Hom(y*mi* A, v B[—dy])

= Hom(m¢*A[ds], B).
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The last equality holds because m*A[ds] € D=0 and B € D=° by Lemma 18. O

Proposition 20. For any A € M(GG) and B € D5 (LL), we have
Hom(A, IndS¢ B) = Hom(Res?¢ A, B).

Proof. Consider Diagram (5.10). By Lemma 16, Ind:¢ B = p,u*iyntB[d,]. Since B €
D7) (LL), tymiB[dy] € D2°. Hence u*iyn*Bld)] € D>?, where d = dim(LG). Therefore
peutiymiBldy] € DIS(LG). ie. IndsS B € D7 (LG).

By Propositions 18, 19, we have
Hom(A, Ind%S Ind2¢ B) = Hom(Rest¢ ResSS A, B).

Proposition follows the definition of Ind¥¢ and Proposition 16. ]
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Chapter 6

Conclusion

In Chapter 4, a geometric realization of the composition subalgebra of H(RI") is given. And
the canonical basis and a monomial basis of the composition subalgebra are constructed by
using perverse sheaves. This gives an example to indicate that perverse sheaves theory can
be used to study algebraic object. Character sheaf theory is another example.

In Chapter 5, we construct character sheaves, which are some perverse sheaves, on
GL,,(k[t]/(t?)). There are still many interesting problems to be investigated. Here we list

some of them.

(1) Do the characteristic functions of character sheaves form a basis of the vector space

of class functions: GL,,(k[t]/(t?)) — Q7

(2) The characteristic functions of character sheaves are only virtual characters. Which

irreducible characters will be direct summands of given character sheaves?
(3) What are the character sheaves of GL,,(k[t]/(t")) for n > 27

(4) More generally, the approach in Chapter 5 should also apply to any reductive algebraic
group G or even more general algebraic groups through the group homomorphism
G(k[t]/(t")) = G(k) induced from the k-algebraic homomorphism k[t]/(t") — k and
H := Ker() is a unipotent algebraic group. Can we use Boyarchenko-Drinfeld method

to characterize the character sheaves of H in term of geometric properties of G?
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