
ENGINEERING ENHANCEMENTS FOR MOVIE

RECOMMENDER SYSTEMS

by

SANDEEP SOLANKI

B.E., Pune University, India, 2007

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2012

Approved by:

Major Professor
Doina Caragea



Copyright

Sandeep Solanki

2012



Abstract

The evolution of the World Wide Web has resulted in extremely large amounts of infor-

mation. As a consequence, users are faced with the problem of information overload: they

have difficulty in identifying and selecting items of interest to them, such as books, movies,

blogs, bookmarks, etc. Recommender systems can be used to address the information over-

load problem by suggesting potentially interesting or useful items to users. Many existing

recommender systems rely on the collaborative filtering technology. Among other domains,

collaborative filtering systems have been widely used in e-commerce and they have proven

to be very successful. However, in recent years the number of users and items available in

e-commerce has grown tremendously, challenging recommender systems with scalability is-

sues. To address such issues, we use canopy/clustering techniques and Hadoop MapReduce

distributed framework to implement user-based and item-based recommender systems. We

evaluate our implementations in the context of movie recommendation. Generally, standard

rating prediction schemes work by identifying similar users/items. We propose a novel rating

prediction scheme, which makes use of dissimilar users/items, in addition to the similar ones,

and experimentally show that the new prediction scheme produces better results than the

standard prediction scheme. Finally, we engineer two new approaches for clustering-based

collaborative filtering that can make use of movie synopsis and user information. Specifi-

cally, in the first approach, we perform user-based clustering using movie synopsis, together

with user demographic data. In the second approach, we perform item-based clustering

using movie synopsis, together with user quotes about movies. Experimental results show

that the movie synopsis and user demographic data can be effectively used to improve the

rating predictions made by a recommender system. However, user quotes are too vague and

do not produce better predictions.



Table of Contents

Table of Contents iv

List of Figures vi

List of Tables vii

Acknowledgements viii

1 Introduction 1
1.1 Motivation and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of the Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Background on Recommender Systems . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Formulation of Recommendation Problem . . . . . . . . . . . . . . . 5
2.2 Types of Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Collaborative Filtering Methods . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Content Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Hybrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Similarity Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Problem Definition and Approaches 17
3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Approches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 K-means Algorithm for Clustering . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Prediction Computation . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.4 Clustering Using Movie Synopsis, Demograhic Data of User and User

Quotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Hadoop MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Experimental Setup 32
4.1 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.1 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Error Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Experiments Performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iv



5 Results 39
5.1 User-based vs Item-based Clustering . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 User-based Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.2 Item-based Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.3 Pearson Correlation vs Adjusted Cosine . . . . . . . . . . . . . . . . 40
5.1.4 User-based vs Item-based Clustering . . . . . . . . . . . . . . . . . . 41

5.2 Item-based Clustering using Modified Weighted Sum Method . . . . . . . . . 41
5.3 Clustering using Movie Synopsis, Demographic Data of User and User Quotes 42

5.3.1 User-based Clustering Using Movie Synopsis and Demographic Data
of User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.2 Item-based Clustering Using Movie Synopsis and User Quotes . . . . 43

6 Related Work 45
6.1 Works Addressing the Scalability Issues . . . . . . . . . . . . . . . . . . . . . 45
6.2 Works that Use Movie Synopsis, Demographic Data of Users and User Quotes 46
6.3 Works that Compare Different Collaborative Filtering Approaches . . . . . . 47

7 Conclusions and Future Work 48

Bibliography 54

v



List of Figures

2.1 Item-Item similarity computation . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 User-User similarity computation . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Item-based clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 User-based clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 User representation using movie synopsis . . . . . . . . . . . . . . . . . . . . 29
3.4 Item representation using movie synopsis . . . . . . . . . . . . . . . . . . . . 30

4.1 Weak generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Strong seneralization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vi



List of Tables

2.1 User-Item rating matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 K-means algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Actual rating versus predicted rating . . . . . . . . . . . . . . . . . . . . . . 35

5.1 NMAE error measure for user-based clustering . . . . . . . . . . . . . . . . . 40
5.2 NMAE error measure for item based clustering . . . . . . . . . . . . . . . . . 40
5.3 NMAE error measure for item based clustering using modified weighted sum

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 NMAE error measure for user-based clustering using movie synopsis and users

profile information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 NMAE error measure for item-based clustering using movie synopsis and user

quotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



Acknowledgments

This dissertation would not have been possible without the guidance and the help of

several individuals who in one way or another contributed and extended their valuable

assistance in the preparation and completion of this study. First and foremost, my utmost

gratitude to Dr. Doina Caragea, whose encouragement, guidance and support from the

initial to the final level enabled me to complete my thesis and Masters. I would sincerely

like to thank my committee members for their support and guidance received timely during

my thesis work. My deepest gratitude goes to my parents, Mr. Prakash Solanki and Mrs.

Devi Solanki for their support and love at every stage of life. Lastly, I offer my regards

and blessings to all of those who supported me in any respect during the completion of the

thesis.

viii



Chapter 1

Introduction

1.1 Motivation and Problem Statement

In the past two decades, the Web has evolved from a technical framework for information

dissemination to a widely accessible forum for social media. The advent of Web 2.0 has

made it possible for the internet users to interact with each other in a virtual community,

through the means of social networking sites, instant messaging, internet forums, blogs,

wikis, bookmark sharing services, podcasts, etc. The social media dialog in which users

participate has had as effect the accumulation of user-generated web content. Thus, users

have become both producers and consumers of information. As a consequence, both the

amount and complexity of the data available online have increased dramatically. At the

same time, the value of the information hidden in this data has increased accordingly.

Traditionally, web data has been used by search engines to retrieve information relevant to

particular user queries. However, social media data can be useful for tasks that go beyond

simple keyword search. Among others, it can be employed to guide users in the decision

making process (e.g., making decisions about buying a car, reading a book, watching a

movie, etc.), by examining decisions made by other similar users. Unfortunately, the scale

of the Web and the diversity of the sources of information (including technical articles,

news articles, web pages, blogs, tweets) make it very difficult for users to identify and use

information that can benefit them, a problem known as information overload. Systems that

1



can assist users with the information overload problem are greatly needed.

To address the need for such systems, many companies have entered the online market.

In particular, we have witnessed a significant increase in the number of e-commerce sites

that can guide users in the decision making process. In addition to benefiting users, e-

commerce sites benefit companies as well, by giving them access to information about user

interests and choices, and ultimately increasing their sales and profits. Given the large

number of products/items available online, the big challenge that these e-commerce sites

face today is how to effectively identify items that users might be interested in purchasing

and to recommend such items to users. Recommender systems can help here. They make

use of previous user likes and dislikes and statistical methods to extract patterns about

users and items. These patterns can be then employed to suggest items of interest to users.

Given the advantages that recommender systems offer, they have become an integral part

of many business models and are being used very extensively in many e-commerce websites

such as Amazon.com1, eBay2, Reel.com3, etc. In particular, movie recommender systems,

which will be at the core of this work, have also become popular. Netflix4 and IMDB5 have

grown quickly and have become very successful due to their usage of effective recommender

systems which recommend movies to users based on user profiles and statistical information.

Movie recommender systems are still part of a very active research area because they exhibit

many open-ended problems with need for solutions. To address some of these problems, in

this work, we engineer several enhancements for movie recommender systems, as briefly

described below. We will focus on recommender systems based on collaborative filtering

techniques, as these systems have been very successful in the e-commerce domain.

Collaborative filtering techniques make use of ratings that users assign to items to find

similar users or similar items. The similar users/items are further used to make new rating

1http://www.amazon.com/
2http://www.ebay.com/
3http://reel.com/
4https://www.netflix.com/
5http://www.imdb.com/

2



predictions. Finally, recommendations are made based on the predicted ratings. While very

popular and successful, collaborative filtering systems suffer from the drawback of scalability

as their time and space complexity increases quickly with the number of users and items.

Clustering techniques (combined with canopy identification techniques, which are quick

methods for identifying initial cluster centers) have been used to alleviate this problem. In

this work, we study both user-based and item-based clustering in the context of movie rec-

ommender systems (specifically, collaborative filtering systems). To alleviate the scalability

problem further, we implement user-based and item-based clustering techniques using the

Hadoop MapReduce distributed computing framework. As mentioned above, standard rat-

ing prediction schemes work by identifying similar users/items. As a new enhancement to

recommender system, we propose a modified rating prediction schemes that exploits both

similar users and items, as well as dissimilar users and items. Finally, we investigate the use-

fulness of incorporating movie synopsis and user information (e.g., demographic user data

and user quotes about movies) in the user-based and item-based clustering approaches. The

next sections summarizes the contributions of our work.

1.2 Overview of the Contributions

The work in this thesis is focused on collaborative filtering methods for building movie

recommender systems. Specifically, we make the following contributions in the area of

movie recommender systems:

1. We implement scalable collaborative filtering approaches using canopy/clustering tech-

niques and Hadoop MapReduce distributed framework. Specifically, user-based and

item-based clustering techniques are implemented. Their performance is compared us-

ing the MovieLens dataset, which is commonly used to evaluate movie recommender

systems. The standard user-based and item-based clustering approaches will be used

as baselines for evaluating the new methods that we propose.

3



2. We propose a new prediction scheme for collaborative filtering approaches. The new

scheme is an extension of the existing weighted sum prediction scheme and uses infor-

mation about both similar and dissimilar users and items when making predictions.

We study the usefulness of the new prediction scheme in the context of user-based and

item-based clustering methods.

3. We also propose new user-based and item-based clustering approaches to collaborative

filtering. The new user-based approach makes use of additional information about

movie synopsis and user demographic data to identify similar users. The new item-

based approach makes use of information about movie synopsis and user quotes about

movies. We compare the new approaches to standard approaches that make use of

user/item ratings only.

This thesis is organized as follows: In Chapter 2, we discuss background on recommender

system and general conepts. We also compare in brief different recommendation techniques

along with discussing their advantages and disadvantages. In Chapter 3, we give an overview

of the problem addressed in this thesis and the approach we have used to address it. In

Chapter 4, we discuss the experimental setup and protocol used to evaluate our recommender

system, data set used, experiments performed and complexity analysis of the implemented

recommender system. In Chapter 5, we discuss the results of the experiments performed

and analyze them in context of the problem addressed. In Chapter 6, we discuss the related

work relevant to our work. Finally in Chapter 7, we conclude with the findings of this thesis

and discuss the relevant future work.

4



Chapter 2

Background

Section 2.1 provides background and general concepts on recommender systems. Section

2.2 makes a brief introduction to the major recommendation techniques and gives examples

of the drawbacks suffered by these techniques. In the Section 2.2, we make a comparison

between the recommendation techniques in terms of problems suffered. And then discuss

about the similarity metrics used for evaluation in Section 2.3.

2.1 Background on Recommender Systems

The history of recommender systems relates back to cognitive science [Rich, 1979], ap-

proximation theory [Powell, 1981], information retrieval [Salton, 1989] and forecasting the-

ories [Armstrong, 2001]. Additionally, recommender systems have links to management

science [Murthi and Sarkar, 2003] and consumer choice modeling in marketing [Lilien et al.,

1992]. Recommender systems are part of active research area from the midst 1990 when

researchers started to focus on recommendation problems that explicitly rely on the user

rating structure.

2.1.1 Formulation of Recommendation Problem

The problem of recommendation can be seen as the problem of predicting ratings for items

that user has not observed yet. Recommender system generally consists of three main

elements items, users and ratings. Examples of items are book, song, movie, news, blog,

5



procedure etc. To have a better understanding of recommender systems, we will describe

the user-item rating matrix with an example.

User/Movie Lost World Titanic Hangover
Robby 4 3
Larry 2 5
Dan 4 3 2
Cory 4 3
Nick 3 3

Table 2.1: User-Item rating matrix

User-Item Rating Matrix

A user-item rating matrix is a matrix where the rows correspond to the users of the dataset

and the columns correspond to the items of dataset in consideration. The values of the

matrix correspond to the ratings given by users to the corresponding items. Table 2.1 shows

an example user-item rating matrix. As we can see in Table 2.1, the items are the movies

”Lost World”, ”Titanic” and ”Hangover” and the users are ”Robby” and ”Lary”. User

”Lary” has rated the movies ”Titanic” and ”Hangover”, 2 and 5 respectively. User ”Lary”

has not rated the movie ”Lost World” so the corresponding value in the matrix is empty.

A particular user in the system can be represented by a vector of ratings corresponding to

the items in the system. We use this vector representation to find similar user as explained

in more detail in the following sections.

Now after having an idea of user-item rating matrix, we try to formalize a recommender

system as follows:

• S: The set of all users in the system.

• I: The set of all items that can be recommended.

• u: A utility function that measures usefulness of a specific item i ∈ I to user s ∈ S,

i.e., u :S × I ⇒ R, where R is a set of integers with a specific range.

6



The number of user and items in a given system can be very large. The goal is to

maximize the utility function for each user s ∈ S by selecting the best item t ∈ I, i.e

t = arg max
i∈I

u(s, i) (2.1)

to be recommended [Gediminas and Tuzhilin, 2004].

In the context of recommender systems, the utility function for an item is represented by

the rating given to the item by a particular user. And the problem of recommendation system

can be seen as the problem of estimating the unknown ratings. According to Equation (2.1)

the unknown ratings are estimated and then recommendations are made.

2.2 Types of Recommender Systems

Estimation of the ratings for the non-rated items can be done with many different meth-

ods according to which the recommender systems are classified. There are mainly three

approaches to build a recommender system:

1. Collaborative filtering methods

2. Content-based filtering methods

3. Hybrid methods

2.2.1 Collaborative Filtering Methods

Collaborative filtering systems work by maintaining a database of many users ratings of a

variety of items. For a given user, the recommender system finds other similar users whose

ratings strongly correlate with the current user. Then, based on the rating given by these

similar users, the recommender system suggests items to the current user who is under

consideration. Currently, many commercial applications using recommender systems use

this approach. (e.g. Amazon, Netflix) To build a collaborative filtering system one needs to

use both user and item data.

7



We now discuss general concepts involved in collaborative filtering systems along with

examples of collaborative filtering based recommender systems.

Recommender Systems Based on Collaborative filtering

This section focuses on recommender systems which are based on the collaborative filtering

approach. Collaborative filtering methods are a general class of algorithms that seek to

learn patterns in the data. Collaborative filtering approaches can be categorized based on

whether the filtering is performed on users to find similar users or the filtering is performed

on items to find similar items. Based on this, they are categorized as User-based collaborative

filtering or Item-based collaborative filtering.

User-based Collaborative Filtering

Collaborative filtering systems make predictions based on ratings from similar users. Gold-

berg et al. [1992] in their design of Tapestry are often credited with the genesis of computer-

based collaborative filtering systems. User-based collaborative filtering involves two tasks:

1. Determine a set of similar users.

2. Combine the similar user’s predictions to come up with a prediction for a given user.

Item-based Collaborative Filtering

In this approach similarity betweens items is used to compute a prediction for a user. The

Item-based approach involves the following steps to come up with a recommendation for a

user:

1. Determine a set of similar items to the item for which a rating is to be predicted.

2. Select those items from the set obtained in step 1, which the target user has rated.

3. Prediction is computed by taking average of target user’s rating on these similar items

obtained from step 2.

8



There are several variations to the above described method to improve the quality of

prediction. Some of the commonly used techniques are:

1. Consider only those users that have rated both items and then use these users to

compute similarities between items.

2. Computing prediction using weighted average over the target user’s rating on the

similar items.

3. Use the k most similar items and compute an unweighted average.

Some of the techniques mentioned above have been studied and discussed in detail by Sar-

war et al. [2001].

After a brief overview of different collaborative filtering approaches, it is worth men-

tioning some traditional recommendation systems based purely on collaborative filtering

approach like [Herlocker et al., 2000]. The well-known film recommender MovieLens 1 is

provided by the GroupLens research project. It is based on collaborative filtering, which

requires a sufficiently large number of ratings in order to achieve an appropriate recommen-

dation. Recommender systems based purely on the collaborative systems tend to fail when

little is known about a user, or when he or she has uncommon interests [Alexandrin et al.,

2001]. However, a big advantage of the collaborative filtering technology is that it can offer

recommendations even when there is lack of knowledge of the contents of recommended

items [Chen and Aickelin, 2004].

We now discuss the advantages and disadvantages of the collaborative filtering approach.

Collaborative filtering has the following advantages:

1. Collaborative filtering can perform well in cases where there is not much data or

content associated with the items. It also performs well in cases where the data

associated with items is hard to analyze or have inconsistencies- like in ideas, opinions

etc.
1http://movielens.umn.edu

9



2. Recommender systems built solely on collaborative filtering approach have the ability

to provide recommendations that are relevant to the user, but do not contain content

from the user’s profile.

Because of these reasons, collaborative filtering systems have been an integral part of

many successful recommender systems in various domains.

However, collaborative filtering has the following set of well-known disadvantages:

1. Cold Start: There needs to be enough other users already in the system to find a

match for a particular user.

2. Sparsity: Most users do not rate most items and hence the user-item matrix is typically

very sparse. Because the user-ratings matrix is sparse, it is hard to find users that

have rated the same items.

3. First Rater: It is not possible to recommend an item that has not been previously

rated. This problem comes for new items mostly. An obscure item also may face this

problem.

4. Popularity Bias: Collaborative filtering cannot recommend items to someone with

unique tastes. In that case, there is a tendency to recommend the popular items.

2.2.2 Content Based Methods

The content based approach provides recommendations which are based on information

on the content of items rather than on other user’s opinions. It uses a machine learning

algorithm to induce the profile of the user preferences from examples based on a feature

description of the content. The content of an item can be structured or unstructured. For

structured content extracting features is straightforward. If we consider the content of a

movie as director, writer, cast etc., then each of these attribute can be considered as a

feature. But in the case of unstructured items such as text data, deciding on the feature set

is more difficult.

10



We now discuss general concepts involved in content based systems along with examples

of content based recommender systems.

Recommendation Systems Based on Pure Content Based Filtering

In content-based recommender systems, an item i is recommended to user u, based on

similarity of content of item i and contents of prior items preferred or liked by user u. For

example, in a movie recommendation system, in order to recommend a movie to a user u, we

analyze the contents of the movies user u has liked in the past. The content in this scenario

can be actors, director, genre, movie plot etc. We then predict movies to user u based on

the content analyzed. In particular, we strive to recommend movies with similar content to

the content of movies user u likes. Depending on the similarities, only movies that have a

high degree of similarity to a particular users preferences would get recommended.

One of the reasons that gave rise to content-based recommender systems is the significant

and early improvements made in the field of information retrieval. The active research done

in the field of text classification has helped the cause of content-based recommender systems

as many content-based systems use textual information to recommend items. Learning from

the user profiles that contain information about their tastes, preferences and requirements

and coupling it with the traditional recommendation systems helps in improving the quality

of prediction.

As mentioned earlier, as most of the content-based recommender systems use the textual

information to recommend items, the content in these systems is usually described by the

keywords about the items. Some example content based recommender systems using key-

words to make recommendations are the systems described in [Balabanovic and Shoham,

1997], [Salton, 1989].

The keywords in the field of information retrieval can be also addressed as features.

Also, these features can be assigned weights to capture their importance and degree of

informativeness. Pazzani and Billsus [1997] introduced the term frequency/inverse document

frequency (TF-IDF) measure for feature weighting. TF-IDF is a very popular method for

11



feature weighting and is also used very widely.

TF-IDF can be calculated using the following process. Assume that we have a corpus

of N documents. In addition, assume that the term ti appears in ni of the documents and

assume that fi,j is the frequency of appearance of the term ti in the document dj. Then,

the frequency of the term ti in the document dj is calculated as follows:

TFi,j =
fi,j∑
z

fz,j
(2.2)

where fi,j is the number of occurrences of the considered term ti in document dj, and the

denominator is the sum of all the terms in document dj, that is, the size of the document

|dj|.

However, terms that appear very frequently in many documents are not useful as they

don’t help the cause of classifying the document. Therefore, the measure of inverse document

frequency (IDFi) is often used in combination with simple term frequency TFi,j. The inverse

document frequency is a measure of general importance of the term.

The inverse document frequency for term ti is usually defined as:

IDFi = log
N

ni

(2.3)

Then, the TF-IDF weight for term ti in document dj is defined as

wi,j = TFi,j × IDFi (2.4)

The content of the document dj can be defined using the weights calculated above.

There are several other ways to calculate the weight of a particular feature or key-

word. Given a set of training data, we can use machine learning algorithms to learn the

weights. Zhang et al. [2002] compute the weight by calculating a best fit line, which can

be done by computing a least squares linear regression. Zhang et al. [2002] describes sev-

eral other possible methodologies to calculate these weights. Sarwar et al. [2001] describes

12



content-based approach based on a nearest neighbor approach or nearest k-neighbors ap-

proach. In K-NN approaches, they calculate the similarity of a previously rated item to

the item in query and then take a weighted (by the similarity) average of the ratings in the

training data.

After a brief overview of content based filtering, it is worth mentioning some recom-

mender system which are based purely on Content Based filtering. It is worth discussing

the work done of [Debnath et al., 2008a], which is based on feature weighting in content-

based recommender. Content-based recommender system works well even in constrained

domains where there is not much data available about the users and even for user which

have unique tastes.

We now discuss the advantages and disadvantages of content based approach:

1. Content based approach does not need data on other users.

2. It can recommend to users with unique tastes. It can recommend new and unpopular

items.

But it also has its own constraints such as:

1. It requires content that can be characterized as meaningful features. User liking should

be in the form of a learn-able function of content features.

2. It is hard to judge, the quality judgments of other users. It is hard for the system to

predict to what extent a user has liking for the movie. For example, on a scale of 1 to

5, the user may like a movie by rating it 5 on 5 or may like it by rating 4 on 5.

2.2.3 Hybrid Methods

A hybrid recommender system is the combination of content based system and collaborative

based system. Hybrid recommender system is built with the aim to combine the recom-

mendation techniques to improve the quality of predictions by reducing the shortcomings

13



of any individual technique. There have been several attempts to combine content informa-

tion with collaborative filtering. One simple approach is to allow both content-based and

collaborative filtering methods to produce separate recommendations, and then to directly

combine their predictions [Smyth and Cotter, 2000], [Claypool et al., 1999]. Another hybrid

movie recommender system [Basu et al., 1998], presents an inductive learning approach to

recommendation using both ratings information and other forms of information about each

movie in predicting user preferences.

2.3 Similarity Metrics

In this thesis, we use clustering techniques and while clustering, a key step is to compute

similarity between items or users using a distance metric. Then, we select the most similar

items or users to compute prediction. While computing similarity between any two given

item, say Item1 and Item2, we use only those users who have rated these two items.

Figure 2.1 illustrates this process.

Figure 2.1: Item-Item similarity computation

Similarly, while computing similarity between any two given users, say User5 and User6,

we use only those items that have been rated by both users. Figure 2.2 illustrates this

process. There are several similarity metrics to calculate similarity, but three commonly

used similarity metrics are: cosine similarity, adjusted cosine and Pearson correlation. We

14



define these similarity metrics in context of item-item similarity computation. Similarly,

these metrics can be used to calculate similarity between two users.

Figure 2.2: User-User similarity computation

Pearson Correlation

In this approach, we calculate the similarity between two items i and j by first isolating

the the common users for items i and j, i.e. cases where users have rated both item i and

j. Let us denote the common users for items i and j by U . Pearson correlation similarity

metric is defined as follows:

sim(i, j) =

∑
u∈U

(Ru,i − R̄i)(Ru,j − R̄j)√∑
u∈U

(Ru,i − R̄i)2
∑
u∈U

(Ru,j − R̄j)2
(2.5)

Here Ru,i denotes the rating of user u on item i and R̄i is the average rating of the ith

item. This formula has been adapted from [Sarwar et al., 2001].

15



Cosine Similarity

In this approach, we calculate the similarity between two items i and j by first isolating the

the common users for items i and j, i.e. cases where users have rated both item i and j.

Let us denote the common users for items i and j by U . Cosine similarity metric is defined

as follows:

sim(i, j) =

∑
u∈U

(Ru,i)(Ru,j)√∑
u∈U

(Ru,i)2
∑
u∈U

(Ru,j)2
(2.6)

Here Ru,i denotes the rating of user u on item i.

Adjusted Cosine Similarity

This method was first proposed by [Sarwar et al., 2001]. We use the adjusted cosine similarity

metric for our algorithm instead of basic cosine similarity, because the basic cosine similarity

measure, as a distance metric for item-based clustering, has a very important drawback. It

doesn’t take into account the difference in the rating scale between different users. This

drawback is countered by first calculating users average ratings, which are calculated by

summing all the rating for a user divided by the number of items that the user has rated.

Then, subtract the corresponding user average from each co-rated pair. Mathematically,

the similarity between items i and j is represented by:

sim(i, j) =

∑
u∈U

(Ru,i − R̄u)(Ru,j − R̄u)√∑
u∈U

(Ru,i − R̄u)2
∑
u∈U

(Ru,j − R̄u)2
(2.7)

Here Ru,i denotes the rating of user u on item i and R̄u is the average rating of the uth

user’s rating.

16



Chapter 3

Problem Definition and Approaches

In this chapter, we first provide a formal definition of the problem addressed in Section 3.1.

We then provide an overview of clustering, with focus on types of clustering. Then, we dis-

cuss the k-means algorithm and also provide its implementation details in SubSection 3.2.2.

Then, we discuss the proposed prediction scheme in SubSection 3.2.3 and the proposed

cluster based collaborative filtering approaches in SubSection 3.2.4. Finally, we analyze the

complexity of our system in Section 3.3.

3.1 Problem Definition

This thesis deals with the problem of building a movie recommender system and evaluating

its performance. We specifically focus on the following issues:

1. Investigation of scalable collaborative filtering methods: Generally, accurate recom-

mender systems make use of large amounts of data. Processing these data efficiently

can be a challenge. To address this challenge, we focus on recommender systems that

rely a technique which is known to improve scalability. Specifically, the technique

that we use first identifies canopies and, then, performs k-means clustering on top

of canopies. To further improve scalability, we use a distributed Hadoop MapRe-

duce implementation for the canopy/clustering technique. We also discuss the details

of k-means algorithm implemented using Hadoop MapReduce framework. Using the

17



distributed implementation of the canopy/clustering technique, we first compare two

collaborative filtering clustering approaches in the context of movie recommendation,

using a standard prediction scheme. Specifically, we compare user-based clustering and

item-based clustering using the weighted sum method. Here, both users and items are

considered to be vectors of ratings. Two similarity measures are used to computer

similarity: Pearson correlation coefficient and adjusted cosine similarity. Then, we

experimentally evaluate the results of these cluster based collaborative filtering algo-

rithms and finally analyze and compare these methods based on the results obtained.

The results of these basic methods will serve as baselines for the new approaches

proposed in this work, as described below.

2. Proposal of a new prediction scheme for collaborative filtering approaches: We initially

discuss about an existing technique for prediction computation that is the weighted

sum method. We then propose a new method for prediction computation that dif-

fers from the existing approach as it also considers dissimilar users while computing

prediction. Dissimilar users are ignored by the existing weighted sum method. We

also study the usefulness of the proposed approach in the context of user-based and

item-based clustering approaches. Finally, we compare the results of the proposed

technique against the results of existing technique for prediction computation using

cluster based collaborative filtering methods.

3. Proposal of new clustering-based collaborative filtering approaches: We explore variants

of the traditional rating based clustering, by designing new user-based and item-based

approaches that make use of movie synopsis, together with user demographics or

user quotes, respectively. We first perform user-based clustering using only movie

synopsis and then perform another experiment combining the demographic data of

users with the movie synopsis. Similarly, we first perform item-based clustering using

only movie synopsis and then perform another experiment combining user quotes with

the movie synopsis. Finally, we evaluate and analyze the results for all the different

18



combinations of experiments performed using movie synopsis and demographic data

of users in context of clustering based algorithms.

3.2 Approches

In this section, we discuss the approaches followed in this thesis.

3.2.1 Clustering

The aim of clustering is to group similar input vectors together, given a set of X dimensional

input vectors xi. There are many well known clustering algorithms in machine learning such

as k-means, k-medians and related algorithms. A key point in all clustering methods is to

come up with an efficient distance metric. Some example distance metrics are cosine simi-

larity, correlation coefficient, hamming distance, absolute distance, and squared distance.

Clustering has been applied to collaborative filtering mainly in two basics ways:

• Item-based clustering: In this approach, similar items are clustered to reduce the

dimension of the item space. And then, sophisticated rating prediction methods are

used to come up with missing ratings. The process of item-based clustering is depicted

in Figure 3.1

• User-based clustering: In this approach, similar users are clustered using the correla-

tion between their rating habbits. Then, missing ratings are predicted from the model

learned on user rating distribution. The process of user-based clustering is depicted

in Figure 3.2

3.2.2 K-means Algorithm for Clustering

K-means clustering is one of the simplest unsupervised machine learning algorithms. It was

first proposed by MacQueen [1967]. Given a set of elements, k-means clustering algorithm

is used to group or classify the elements based on some features into k number of clusters.

K-means algorithm pseudo code is described in Table 3.1.

19



Figure 3.1: Item-based clustering

Figure 3.2: User-based clustering

20



Table 3.1: K-means algorithm

1. Randomly guess k points into space represented by elements

that are being clustered. Assign these points as centers of k
clusters.

2. For each element calculate the closest center to it using a

distance metric and assign that element to the closest center.

3. Once all the elements have been assigned to k centers,

recalculate the k centroids points.

4. Repeat the steps 2 and 3, untill the k centroids converge.

Canopy clustering

We use the technique of canopy clustering [McCallum et al., 2000] while implementing k-

means algorithm. Canopy clustering is a simple clustering algorithm that cheaply partitions

the large set of data into overlapping groups or sets called as canopies. Using canopies helps

in improving the scalability of the system by reducing the number of calculations. The

reduction in number of calculations is achieved by measuring exact distances only between

elements that occur in the same canopy. Using this method we find the initial seed centers

for the k-means clustering algorithm.

Hadoop Implementation of K-means

We now discuss an implementation of k-means algorithms on a distributed framework

Hadoop MapReduce. This discussion and implementation of k-means algorithm on Hadoop

MapReduce framework has been adapted from a class assignment available online 1.

The algorithm is explained in the following steps:

Step1. Aggregate Rating Data

1http://www.docstoc.com/docs/40647325/Clustering-Algorithms-And-Netflix

21



In this step, the given rating data, which is in the form [userid,movieid,rating,date] is

converted to a <key,value> pair, where the key is the movie id and the value consists of

tuples of<userid,rating>. The mappers read lines of the form [userid,movid,rating,date]

and emit output as <movieid,tuple>. The reducer in this step gathers all the rating

records for a single movie and outputs a <key,value> pair where the key is a movie id

and the value is the list of <userid,rating> tuples. To internally store and move the

movie data between the mappers and reducers, proprietary data structures are used

to store list of rating records for the movies.

Step2. Choosing Canopy Centers

In this step, a set of canopies is generated from the user rating data aggregated in the

previous step. Canopies are created using a very cheap greedy distance metric. The

metric used in this step is the number of common users that rated the two movies

being compared. If the number of common users in equal to or greater than 8, then

the movies being compared are in one canopy. The threshold value is chosen based on

experimentation with the data. The input of this step is the data from previous step,

i.e. <movieid,tuple>. The mapper then checks if the movie falls in some existing

canopies by checking the number of users in common. If the movie doesn’t fall in any

of the existing clusters, then this movie will be the center of a new canopy. If the

movie is a new center of a new canopy then it is emitted to the reducer or else it is

not. This step uses only one reducer. The reducer also does the same thing as the

mapper. It tries to remove any overlapping canopy centers. The reducer does not go

over the whole rating data but analyses only that data emitted by the mapper.

Step3. Mapping Movies To Canopies

In this step, the movies are mapped to canopies generated in the previous step. The

same distance metric is used as before to assign a movie to its corresponding canopy.

The list of canopies is loaded into memory by mapper. The map function checks if the

22



movie and the canopy center are close enough, by checking the number of common

users. In this step the reducer is an identity reducer. It just outputs whatever is sent

to it by the mapper.

Step4. K-means Iteration

This step is iterated over a number of times until the clusters do not converge. The

map and reduce phases in this step, combined together, get the mean average of all the

movie vectors in one cluster and output the new k-mean center for that cluster. Also,

the closeness of two movies is calculated using the adjusted cosine distance metric

explained in Section 2.3. The mapper loads the list of canopies and the list of k-mean

centers from the previous iteration of this step. For the first iteration of this step the

mapper uses the canopy centers as the seed k-mean centers. The mapper maps the

movies to the mean centers forming clusters. The mapper outputs the k-mean center

id as the key and all movies falling in the cluster as the values. The reducer performs

the function of averaging the movie vector and coming up with a new average center

for that cluster which is used in the next iteration of this step. After the k centers

converge, we stop the iteration process and obtain the final k clusters.

3.2.3 Prediction Computation

We now discuss rating prediction methods, which are used to come up with ratings from

the formed clusters. Here, we consider the weighted sum technique introduced in [Sarwar

et al., 2001] and the proposed modified weighted sum method.

Weighted Sum

This method computes the prediction on a movie i for a user u by computing the sum of

the ratings given by the user on the movies similar to i. Movies similar to a corresponding

movie i are discovered using adjusted cosine similarity metric. Each rating is weighted by

the corresponding similarity si,j between movies i and j, which is the value obtained from

23



the adjusted cosine similarity. Formally, we can compute the prediction by:

Pu,i =

∑
L,N

Si,n ∗Ru,n∑
L,N

|Si,n|
(3.1)

where L is list of all the similar movies to movie i, si,j is the similarity between movies

i and j, Ru,N is the rating given by user u to the N movies. This formula was introduced

by [Sarwar et al., 2001]. In this approach, the key idea is to take into consideration how an

active user has rated the similar movies. For example, consider an active user u for which

we intend to predict rating for a movie m. Let m1 and m2 be two movies similar to movie

m, such that movie m1 is more similar then movie m2 to movie m. Intuitively, movie m1

should have more weight-age while calculating rating for movie m for the active user u, as

m1 is more similar to movie m. To make sure the predicted rating is within the predefined

range the weighted sum is scaled by the sum of the similarity terms.

Modified Weighted Sum

We propose a novel approach for prediction computation. We modify the weighted sum

method to consider even movies which are dissimilar to the movie in consideration for

which we intend to predict rating for a particular user. The modified weighted sum method

is based on the assumption that, a user will prefer those movies which are liked by similar

users and also those movies which are not like by dissimilar users. Unlike the weighted sum

method where we only consider similar movies, here we also consider the dissimilar movies

while predicting rating. The following steps list the modification done to the weighted sum

method to incorporate the dissimilarity idea:

1. In this method, we also maintain the list of dissimilar movies D1 to movie i for which

we intend to compute prediction for the active user u, along with the list of similar

movies D2.

24



2. Suppose movie m is one such dissimilar movie to movie i such that m 6= i and m ∈

D1.

3. Now we consider two cases, one where active user u likes the movie m and second

where active user u dislikes the movie m. Note that user u likes the movie m if he has

rated the movie above 3 (i.e. 4, 5) and dislikes the movie if he has rated it below 4

(i.e. 1, 2, 3).

4. In the first case, where user u likes (i.e. has rated more than 3) the movie m, we

should subtract a constant α (correction measure) which is evaluated by the system

from the predicted rating.

5. In the second case, where user u does not like (i.e has rated less than 4) the movie m,

we should add a constant β (correction measure) which is evaluated by the system to

the predicted rating.

6. For the list of similar movies D2, the modified weighted sum method equates to the

weighted sum method.

Formally, we compute the prediction using this formula:

Pu,i =

∑
D,N

Si,n ∗Ru,n∑
D,N

|Si,n|
− α ·D1 + β ·D2 (3.2)

where D is the list similar movies to movie i, D1 is list of dissimilar movies to movie i,

which user u liked and D2 is list of dissimilar movies to movie i, which user u has not liked.

The key idea is that when the active user u likes a movie m which is dissimilar to the

movie i for which we compute prediction, there is possibility that the active user u may

not like the movie i as it likes a movie m which is dissimilar to movie i. So, we subtract a

constant α from the predicted rating for a movie i. And similarly we add a constant β to

the predicted rating for a movie i, when the active user u does not like the movie m which

25



is dissimilar to movie i. The constants α and β are estimated using a validation set. We

estimate the constants using an objective function which minimizes the Normalized Mean

Square Error (NMAE).

3.2.4 Clustering Using Movie Synopsis, Demograhic Data of User
and User Quotes

Movie synopsis, demographic data of user and user quotes have been used as content feature

previously in various studies for movie recommender systems. Movie synopsis has been used

as one of many features to learn a user profile in the work done by Balabanovic and Shoham

[1997]. Mak et al. [2007] is a web-based movie recommender that makes suggestions by using

text categorization (TC) to learn from movie synopses. We propose a naive approach to use

movie synopses, demographic data of user and user quotes for collaborative

ltering using clustering algorithm.

Movie Synopsis Representation

For every movie we have collected three movie synopsis from three anonymous users from

IMDB dataset. We combine these three movie synopses for each movie to form one movie

synopsis for that movie. The idea behind combining three movie synopses of three anony-

mous users to one movie synopsis is that each anonymous user would cover a different

perspective of that movie and would reduce the biasness in-case that user likes the movie.

So, in our studies movie synopsis for a single movie is represented as a combination of three

movies synopses from three anonymous users. An important point to be noted here is that

the movie synopses by anonymous users consist of general description about movie plot and

hence it is very unlikely to have biased opinion.

Preprocessing the Documents

The first step to construct a clustering system based on movie synopsis is to transform

the movie synopsis into a representation suitable for the learning algorithms. This involves

26



representing each movie synopsis as a feature vector by representing them with weights.

Here, we discuss about preprocessing of movie synopsis, feature representation and feature

weighting.

Stemming and Stop-Words Removal

All unique words in the entire movie synopsis corpora were first identified and then stemming

and stop words removal were applied. Stemming is the removal of suffixes from words to

generate word stems. It maps several morphological forms of one stem to a common feature.

For example, ”validate” can have many morphological forms like ”validation”, ”validated”

etc. We used the Porter stemming algorithm. Stop-words are the words which we frequently

encounter in a sentence. Stop-words are not distinctive or discriminative features and hence

add no value (e.g. prepositions, conjunctions, etc.). Stemming and stop-words removal

significantly reduce the number of less informative features. Stemming and stop-words

removal also help in reducing the time complexity of learning a model and hence making

the algorithm computationally more feasible.

Feature Representation

After identifying all unique words in the training corpora (and applying stemming and

stopwords removal as described above), each movie synopsis is represented by a vector that

contains weighting for every word. Bag of words is the simplest and most frequently used

feature representation in information retrieval. We use the bag of the words approach in

our research work.

Feature Weighting

The two most popular feature weighting mechanisms are: binary, and term frequency in-

verted document frequency (TF-IDF). The first method involves assigning weights of 0 or

1 depending on the absence or presence of a feature in the movie synopsis. The second

method, known as TF-IDF [Sebastiani, 2002], tries to capture the idea of how frequently a

27



feature appears in a given movie synopsis. But we also balance the fact that if a feature ap-

pears in many movie synopsis (i.e they are less discriminating), then we reduce the weight

of that feature. TF-IDF is known to perform better then binary weighting mechanism.

Hence, we use TF-IDF feature weighting mechanism for our research work. We have not

performed any kind of well known feature selection methods like Information Gain, Mutual

Information etc although feature selection can be considered for future work.

User Based Clustering Using Movie Synopsis and Demographic Data of User

In this approach, we create a document for every user. We call a positive document. For

every user u, the positive document consists of all the movie synopsis of movies which user

u has liked. That is, it contains all movie synopses collectively of the movies for which user

u has rated more than 3 (i.e. 4, 5). This process is illustrated in Figure 3.3. Then, we

run the k-means clustering algorithm over the positive documents for each user. We then

use the modified weighted sum method for rating prediction, as described in Section 3.2.3.

So, for every user u we have rating prediction for a given movie m, from the set of positive

document clustering. We also run another experiment on clustering, where we add more

information to the positive document for every user. The additional information consists of

the occupation, age and gender of each user. We form 5 different age groups 10-13, 14-18,

19-27, 27-40, 40 - above years. The formation of age group is based purely on intuition

and would be part of our future work to experiment with different age groups to increase

prediction accuracy. The motive behind adding more information about user is based on

the assumption that users of same gender, age and occupation may have similar preference

for movies. So, adding this information to each users positive document would help similar

users to fall in the same cluster because each users positive document would be more similar

than before if our assumption holds true. This in turn would help improve the prediction

accuracy.

28



Figure 3.3: User representation using movie synopsis

Item-based Clustering using Movie Synopsis and User Quotes

In this approach, first every movie is represented by their movie synopses. This process is

illustrated in Figure 3.4. Then, we perform clustering on movies using their movie synopses.

The key idea is based on the assumption that similar movies would have similar kind of movie

plots and keywords. Here, also we use k-means algorithm with adjusted cosine similarity as

distance metric. We then, use the modified weighted sum method for rating prediction as

described in 3.2.3. We, then also run another experiment combining the movie synopses and

user quotes. The reason behind combining user quotes with movie synopsis is that similar

movies would have similar kind of user quotes and hence it would help similar movies to fall

in the same cluster. This in turn would help improve the prediction accuracy.

3.3 Complexity Analysis

In the following section, we describe briely the Hadoop MapReduce framework and then

analyze the time complexity of our system.

29



Figure 3.4: Item representation using movie synopsis

3.3.1 Hadoop MapReduce

MapReduce is a software framework for processing and generating huge amounts of data. It

is a programming model that makes it easy to write parallel applications for processing vast

amounts of data stored either in the form of files on a file system or structured databases.

MapReduce framework works on the basic principle of divide and conquer algorithm, with

parallelizing the divide and conquer process. MapReduce framework was introduced by

Google to simplify coding for distributed computing over clusters. The distribution of data,

parallel processing, failure handling and fault tolerance is handled by the framework itself

making life easy for the programmers. Hadoop is the free open source implementation

in Java of the MapReduce framework. We have used the Hadoop 0.20.1 version coding

framework and library for this project.

It basically has two steps:

1. ”Map” step: The division of a large problem into sub-problems is done in this step.

The master method divides the data into small chunks and passes them on to the

worker machines that work as mappers performing cleaning, formatting and logical

operations towards solving the sub-problem. The output of each sub-problem is again

30



passed back to the master node.

2. ”Reduce” step: Combining the solutions of the sub-problems into the final solution

for the original larger problem is done in this step. The master node collects all the

answers to the sub-problems and passes them to the worker machines called reducers.

The input to the reducers is the output generated from mappers and then the reducer

combines these sub-solution generated from mappers to form the final solution for the

original problem.

The advantage of using MapReduce is that all the map and the reduce operations are

done in parallel, provided we have a distributed environment and all map and reduce oper-

ations are independent of each other. In practice, the parallelization depends on location of

the data and the number of free processing units available near that data source. There is

a similar requirement on the reducers, asking that all outputs of the map operation which

share the same key are presented to the same reducer, at the same time.

We have implemented the k-means clustering algorithm [MacQueen, 1967], along with

the canopy clustering [McCallum et al., 2000] method that helps to find seed centers for

the k-mean algorithm, using the Hadoop MapReduce framework. Hadoop MapReduce rep-

resents a natural choice for implementing k-means algorithm in a distributed framework,

because k-means algorithm can be successfully implemented having independent mapping

and reducing operations. The important independent operations are calculating distances

between elements and assigning elements to clusters.

Let N be the number of users, M the number of items and K a model size parameter. The

complexity of learning the k-means cluster prototypes depends on the number of iterations

needed to reach convergence and number of nodes . Assuming it takes I iterations to reach

convergence, k-means implementation on a single node would have the time complexity

O(INMK). K-means implementation on Hadoop MapReduce with X nodes (computing re-

source) has the total time complexity O(INMK/X). As we can see, k-means implementation

on Hadoop reduces the complexity by an order of X, i.e number of computing units.

31



Chapter 4

Experimental Setup

In this chapter we introduce the background material that is required for computing rating

predictions and analyze experiments performed in the collaborative filtering domain. We

describe the experimental protocols used to obtain rating prediction performance results in

Section 4.1. We discuss the various error measures that are commonly used in collaborative

filtering research in Section 4.1.2. We also introduce the IMDB and MovieLens data sets,

and describe their main features in Section 4.2. Finally, we list the experiments performed

in this thesis in Section 4.3.

4.1 Experimentation

In this section we describe the experimental methodology followed in this thesis. This section

has been adapted from Marlin’s thesis.

4.1.1 Experimental Protocol

Weak Generalization

Until recently, most rating prediction experiments found in the literature followed an eval-

uation protocol proposed by Breese et al. [1998a]. According to this protocol, the available

data was divided into two sets, the observed set used as the training set and the held out

set used as the test set. The test set is used to evaluate the performance of the method.

This process is illustrated in Figure 4.1.

32



Figure 4.1: Weak generalization

As part of the standard procedure, if a validation set is needed, the training set is further

divided to form a validation set. Marlin [2005] pointed out the drawbacks of this protocol,

mainly the fact that it is restrictive and doesn’t offer a complete basis for evaluation. This

is because the protocol only measures the ability of a method to generalize to other items

rated by the same users who were used for training the method. Marlin [2005] calls this

weak generalization. We follow his nomenclature and approach for experimentation as his

experimental protocol have become de-facto standard for evaluating recommender systems.

Strong Generalization

Strong generalization is a more appropriate protocol for evaluating recommender systems.

This protocol was proposed by Marlin [2005]. The intention behind introducing the strong

generalization is that weak generalization does not evaluate performance for novel user

profiles. Strong generalization is used to evaluate how the system performs in case of novel

user profiles, which is a more practical scenario in the real world. In strong generalization,

the data set containing the user records is divided into training and test user data sets.

33



Figure 4.2: Strong seneralization

The training data set is used in the learning process. If a validation set is required then

it is extracted from training data set. The test data is split into observed and held out set.

Then, the observed set is provided to the system and used to predict rating of the held out

set. This process is illustrated in Figure 4.2. In both forms of generalization, the test data

is divided into observed items and a set of held out items for performing tests. There are

various ways to partition the data. If the data set is divided in such a manner, that k items

are considered in the observed set and the rest is the held out set, this type of partitioning

protocol is called Given-K. Another type of protocol is called all-but-1 type, where all of the

records in the test data are observed except one. We adopt the all-but-1 protocol approach

for both weak and strong generalization. As the number of observed ratings varies in the

data set used, all-but-1 approach fits well in the system. Error rates are taken over the held

out ratings data used for testing rather than on the set of observed rating data for training.

Calculating error rates over held out ratings set is important because it ensures there is

unbiasedness while evaluating the performance of the system.

34



Movie Predicted Rating Actual Rating
M1 1 3
M2 4 4
M3 2 3
M4 3 5

Table 4.1: Actual rating versus predicted rating

4.1.2 Error Measures

There have been two widely used forms of error measure for evaluating the performance of

collaborative filtering methods. Breese et al. [1998a] shows a detailed study and analysis

on first form of evaluation metric. The first form looks at the average absolute deviation

between the predicted rating and the actual rating. The study of recent recommendation

systems show that these methods are not used much as their accuracy estimates are not

reliable when the rating data set is sparse. The second form is usually used to evaluate

the prediction accuracy of collaborative filtering methods. There are popular variations

of this form of error measurement. We discuss in brief about three such popular error

measures: Mean Squared Error (MSE), Mean Absolute Error (MAE) and Mean Prediction

Error (MPE).

MSE = 1
N

∑N
u=1(r̂

u
yu − ruyu)2

MAE = 1
N

∑N
u=1

∣∣r̂uyu − ruyu∣∣
MPE = 1

N

∑N
u=1[r̂

u
yu 6= ruyu ]

where N is the number of user, r̂uyu is the actual rating, ruyu is the predicted rating and

assuming that we use ”all-but-1” protocol.

As an illustrative example, Figure 4.1 provides some actual ratings given by user u to

different movies along with the sample predicted rating.

By using the numeric values provided in Table 4.1, MAE of the ratings produced by the

system can be calculated as follows:

1
4
[|1− 3|+ |4− 4|+ |2− 3|+ |3− 5|] = 5

4
= 1.25

35



In the evaluation of some earlier recommender systems, these metrics have been used

by Basu et al. [1998], Pazzani and Billsus [1997] and Sarwar et al. [2001] etc.

We have adopted normalized mean absolute error (NMAE) as the evaluation metric was

proposed by Marlin [2005]. The reasons behind using NMAE as the evaluation metric for

our recommender system are: Firstly, as different data sets have different numbers of rating

values, NMAE enables comparison across different data sets. Secondly, as we compare our

results with the work done in [Marlin, 2005], who has also used NMAE as evaluation metric,

it offers a common platform for comparison. Marlin [2005] defines NMAE error measure as

the ratio of MAE and E[MAE], where MAE is the mean absolute error as defined above

and E[MAE] is the expected value of MAE assuming that observed and predicted rating

values are uniformly distributed. As NMAE is an error measure, the smaller value, the

better is the quality of prediction, and the higher value, the lower the quality of prediction.

Also, smaller NMAE error means that the system is performing better than the random

guess, while higher error means the system is performing worse than the random guess.

Ideally, the NMAE error value should be less then one and close to zero.

4.2 Data Set

The availability of large, dense data sets is one of the important aspects of empirical research

on rating prediction algorithms. There are many rating data sets available freely for use

in research. In this thesis, we use MovieLens (ML) data set and Internet Movie Database

(IMDB) data set. These two data sets have been very widely used for many recent rec-

ommender systems. MovieLens data set contains movie rating data and is collected from

the MovieLens Project which is part of ongoing research work carried out by GroupLens

1 research team. This MovieLens data set is distributed by the GroupLens Research at

University of Minnesota. The data set contains 6040 users, 3900 movies and 1000209 user

ratings. The ratings are on a numeric scale from 1 to 5 with 1,2 and 3 being negative

1http://www.grouplens.org/node/73

36



rating and 4 and 5 being the positive ratings. The MovieLens dataset is 95.7% sparse which

signifies that rating data set is relatively dense.

We clean the base data set to have a minimum of twenty ratings per user. The reason

behind using twenty ratings as a threshold for eliminating movies is that it gives basis of

common platform for comparison with Marlin’s result as he has also used twenty rating

as the threshold for eliminating movies. As mentioned in the read-me file of the dataset,

a number of movieIDs do not correspond to any movie, due to some accidental duplicate

entries and inconsistencies. After eliminating those records from the MovieLens data set,

we have a clean and consistent data set with 6000 users and 3500 movies. We follow the

evaluation procedure mentioned by Marlin [2005]. So, following this paper we randomly

select 5000 users for the weak generalization set and 1000 users for the strong generalization

set.

The selection of users for weak and strong generalization is performed randomly ten

times, thus creating a total of twenty data sets. As mentioned earlier we follow the 10-fold

cross validation measure for evaluation. The reason behind using 10-fold cross validation

measure is that it gives an accurate measure of performance ruling out any kind of fortunate

or unfortunate cases. We use the IMDB dataset to collect the movie synopsis and user

quotes corresponding to the 3500 movies of MovieLens data set. Note that the users quotes

obtained from IMDB don’t correspond to users of MovieLens dataset. Also, the user quotes

are ambiguous and consists of user sentiments about the movie. We also use the MovieLens

data set to extract several more features like age, occupation and gender of 6000 users. We

preprocess these features to remove duplicate entries and maintain consistency.

4.3 Experiments Performed

In this section, we discuss the list of experiments carried out in this thesis. We have

performed 7 experiments as follows:

1. Performed user-based clustering using Pearson correlation and adjusted cosine simi-

37



larity metrics for weak and strong generalization protocols on MovieLens dataset. For

this experiment, we used weighted sum method for prediction computation.

2. Performed item-based clustering using Pearson correlation and adjusted cosine simi-

larity metrics for weak and strong generalization protocols on MovieLens dataset. For

this experiment, we used weighted sum method for prediction computation.

3. Performed item-based clustering using adjusted cosine similarity metric for weak and

strong generalization protocols on MovieLens dataset. For this experiment, we used

the proposed modified weighted sum method for prediction computation.

4. Performed user-based clustering using movie synopsis for weak and strong generaliza-

tion on MovieLens and IMDB data set. For this experiment, we used adjusted cosine

similarity metric for clustering and modified weighted sum method for prediction com-

putation.

5. Performed user-based clustering using movie synopsis and demographic data of user for

weak and strong generalization on MovieLens and IMDB data set. For this experiment,

we used adjusted cosine similarity metric for clustering and modified weighted sum

method for prediction computation.

6. Performed item-based clustering using movie synopsis for weak and strong generaliza-

tion on MovieLens and IMDB data set. For this experiment, we used adjusted cosine

similarity metric for clustering and modified weighted sum method for prediction com-

putation.

7. Performed item-based clustering using movie synopsis and user quotes for weak and

strong generalization on MovieLens and IMDB data set. For this experiment, we used

adjusted cosine similarity metric for clustering and modified weighted sum method for

prediction computation.

38



Chapter 5

Results

In this chapter, we discuss the results obtained by running the experiments described in

Chapter 4.

5.1 User-based vs Item-based Clustering

We use the k-means algorithm for clustering, which is implemented using the Hadoop

MapReduce framework. In this first sub-section, we first compare the results of user-based

clustering against the item-based clustering. We have implemented two different similarity

metrics: adjusted cosine and Pearson correlation. We aim to investigate the effectiveness

of using user-based clustering against the use of item-based clustering. We also investigate

the effectiveness of using adjusted cosine and Pearson correlation similarity measure on the

quality of prediction. Note that in this section for rating prediction we use weighted sum

method for prediction computation. These results will be used as the baselines for the work

proposed in this thesis.

5.1.1 User-based Clustering

We here cluster the 6000 users of MovieLens dataset who have rated 3500 movies using

1 millions rating. The k-means method was run on the MovieLens dataset and evaluated

using the weak generalization and strong generalization protocol. We have used two simi-

larity measures: adjusted cosine and Pearson correlation. The corresponding NMAE values

39



Weak Generalization Strong Generalization
Pearson Correlation 0.4827± 0.0021 0.503± 0.037

Adjusted Cosine 0.4891± 0.0031 0.491± 0.027

Table 5.1: NMAE error measure for user-based clustering

Weak Generalization Strong Generalization
Pearson Correlation 0.4723± 0.0015 0.495± 0.025

Adjusted Cosine 0.4615± 0.0027 0.483± 0.033

Table 5.2: NMAE error measure for item based clustering

calculated are shown in Table 5.1.

As seen in the Table 5.1, for weak generalization both similarity measures Pearson corre-

lation and adjusted cosine perform comparable to each other. But for strong generalization,

the adjusted cosine method performs better than the Pearson correlation method.

5.1.2 Item-based Clustering

We here cluster the 3500 movies of MovieLens dataset who have been rated by 6000 users

using 1 millions rating. The k-means method was run on the MovieLens dataset and evalu-

ated using the weak generalization and strong generalization protocols. We have used two

similarity measures: adjusted cosine and Pearson correlation. The corresponding NMAE

values calculated are shown in Table 5.2.

As seen in the Table 5.2, for both weak generalization and strong generalization, the

adjusted cosine method performs better than the Pearson correlation method.

5.1.3 Pearson Correlation vs Adjusted Cosine

We run the k-means algorithm on weak and strong generalization protocols using Pearson

Correlation and Adjusted Cosine similarity measures. As we can see in Tables 5.1 and 5.2,

using adjusted cosine similarity yields lower NMAE compared to using Pearson’s correla-

40



tion similarity measure. This clearly shows that adjusted cosine similarity has advantage

over the Pearson’s correlation similarity measure. The reason behind adjusted cosine sim-

ilarity measure performing better than the Pearson correlation similarity measure is that

adjusted cosine similarity measure also accounts for differences in the rating scales of differ-

ent users. So, considering the above factor, we use the adjusted cosine similarity for rest of

the experiments.

5.1.4 User-based vs Item-based Clustering

As we can see in Tables 5.1 and 5.2, item-based clustering provides better quality of predic-

tion than user-based clustering for both similarity measures, adjusted cosine and Pearson

correlation. Specifically, for adjusted cosine similarity method and weak generalization pro-

tocol, the item-based clustering performs better than the user-based clustering. For strong

generalization protocol, using Pearson correlation similarity measure doesn’t yield large

improvement in the quality of prediction for item-based clustering when compared with

user-based clustering. So considering the above discussion, we will be using item-based

clustering for the rest of the experiments. Also, one more noticeable point is that for both

weak and strong generalization protocols the variance observed is relatively low.

5.2 Item-based Clustering using Modified Weighted

Sum Method

Instead of using weighted sum prediction computation method, in this experiment, we use

the item-based clustering approach with modified weighted sum method for prediction com-

putation. Also, we run the experiments using adjusted cosine similarity method as we know

from previous experiments that adjusted cosine similarity method performs better than

Pearson correlation similarity method. The results are displayed in Table 5.3.

As seen in Table 5.3, for both weak and strong generalization protocols using modified

weighted sum prediction computation method performs significantly better than using the

41



Weak Generalization Strong Generalization
Adjusted Cosine 0.4417± 0.0022 0.462± 0.017

Table 5.3: NMAE error measure for item based clustering using modified weighted sum
method

traditional weighted sum method for prediction computation. The reason behind lower

NMAE using modified weighted sum method is that it also considers dissimilar items while

computing prediction, information ignored by weighted sum method. So, we use modified

weighted sum method for prediction computation for rest of the experiments.

5.3 Clustering using Movie Synopsis, Demographic Data

of User and User Quotes

In this section, firstly we discuss the results of user-based clustering using movie synopsis,

together with the demographic data of user and then discuss the results of the item-based

clustering using movie synopsis, together with the use of user quotes. We use adjusted

cosine similarity and modified weighted sum method for prediction computation. We aim

to investigate how movie synopsis can be used for collaborative filtering using clustering. We

also aim to investigate the quality of prediction and compare the performance of user-based

clustering and item-based clustering using movie synopsis, demographic data of user and

user quotes.

5.3.1 User-based Clustering Using Movie Synopsis and Demo-
graphic Data of User

In this subsection, we first discuss the results of user-based clustering using only the movie

synopsis and then later discuss the results of user-based clustering using movie synopsis and

the user profile’s additional information such as gender, occupation and age. We also study

the effectives of using additional user profile information such as gender, occupation and

age on clustering and its effect on quality of prediction. We use the k-means algorithm for

42



Weak Generalization Strong Generalization
Only movie synopsis 0.48± 0.021 0.517± 0.042

Movie synopsis with user profile 0.466± 0.046 0.481± 0.036

Table 5.4: NMAE error measure for user-based clustering using movie synopsis and users
profile information

clustering using adjusted cosine similarity with modified weighted sum method for prediction

computation.

Table 5.4 shows the result for weak and strong generalization protocols for user-based

clustering using both approaches mentioned above.

As can be seen in the Table 5.4, the result for the user-based clustering using movie

synopsis and user’s profile information is better than the result of user-based clustering

using only movie synopsis. The result clearly shows that using additional information about

user like age, occupation and gender has an advantage over just using movie synopsis for

clustering. For both weak and strong generalization protocols, the user-based clustering

using movie synopsis and user’s profile information outperforms the user-based clustering

using only movie synopsis. This results proves that bringing in more information related to

user helps in better clustering of users and also increase the prediction accuracy.

5.3.2 Item-based Clustering Using Movie Synopsis and User Quotes

In this sub-section, we first discuss the results of item-based clustering using only the movie

synopsis and then later discuss the results of item-based clustering using movie synopsis and

the user quotes. We also study the effect of using additional user quotes about movies and its

effect on clustering and quality of prediction. We use the k-means algorithm for clustering

using adjusted cosine similarity and modified weighted sum for prediction computation.

Table 5.5 shows the result for weak and strong generalization protocols for item-based

clustering using both approaches mentioned above.

As can be see in the 5.5, the result for the item-based clustering using movie synopsis is

43



Weak Generalization Strong Generalization
Only movie synopsis 0.61± 0.062 0.653± 0.022

Movie synopsis with user quotes 0.60± 0.041 0.651± 0.037

Table 5.5: NMAE error measure for item-based clustering using movie synopsis and user
quotes

comparable to the result of the item-based clustering using movie synopsis and user quotes

for movies. The result clearly shows that using additional information about movie like

user quotes doesn’t improve the result. For both weak and strong generalization protocols,

the mentioned approaches have comparable result. From this result we can conclude that

user quotes about movies do not help in better clustering of movies and neither do they

increase prediction accuracy. The reason being user quotes are very vague and have random

sentiments which doesn’t help in clustering of the movies.

44



Chapter 6

Related Work

In this chapter we discuss related work for the problem addressed in this thesis. We provide

examples of previous movie recommender systems along with an evaluation of their positive

and negative characteristics. In this chapter, we particularly focus on previous recommender

system that:

1. Address scalability issues.

2. Use movie synopsis, demographic data of users and user quotes.

3. Compare different collaborative filtering approaches.

As we have also build our recommender system to address the above issues, we discuss

previous work concerning the above issues.

6.1 Works Addressing the Scalability Issues

There have been several recommender systems that have addressed the issue of scalabil-

ity. We discuss here in brief some of the work done in this area. Ungar and Foster [1998]

present a formal statistical model of collaborative filtering and compare different algorithms

for estimating the model parameters including variations of k-means clustering and Gibbs

Sampling. Ungar and Foster [1998] mainly focus on experimenting with variations of k-means

45



algorithm and the model parameters, attempting to make the system more scalable. Sar-

war et al. [2001] address the performance issues by scaling up the neighborhood formation

process through the use of clustering techniques. Chee et al. [2001] developed an efficient

collaborative filtering method, called RecTree that addresses the scalability problem with

a divide and conquer approach. In this thesis we also address the issue of scalability by

implementing the k-means algorithm using Hadoop MapReduce distributed framework. We

also use the technique of canopy clustering McCallum et al. [2000] in our approach. Using

canopy clustering helps in reducing the computation complexity and as a result improving

the scalability of the system.

6.2 Works that Use Movie Synopsis, Demographic Data

of Users and User Quotes

There have been previous attempts at using movie synopsis, demographic data of user and

user quotes for movie recommendation process. It is worth mentioning the work done in

INTIMATE [Mak et al., 2007], which is a web-based movie recommender that makes sug-

gestions by using text categorization to learn from movie synopsis. The work done in this

thesis differs from the work done by Mak et al. [2007], as we explore the usage of movie syn-

opsis in clustering-based collaborative filtering approaches rather than using movie synopsis

directly for text-categorization. Ahn and Shi [2009] present a simple recommender system

using cultural meta-data about user and movies such as user comments, gender, movie syn-

opsis, plot keywords etc. Debnath et al. [2008b] propose a recommender systems using user

attributes with weight assigned to them depending on their importance to users. Eyrun

et al. [2008] introduce MovieGen, a movie recommender system that uses machine learning

and cluster analysis based recommender system. Their system takes in the user’s preference

and personal information to predict movie preferences using SVM models.

46



6.3 Works that Compare Different Collaborative Fil-

tering Approaches

There have been previous attempts at comparing different collaborative filtering such as [Manos

and Dimitris, 2005], that compare several prediction algorithms and also introduce a new

approach for combining user-based and item-based similarity measures. Similarly, [Breese

et al., 1998b] also describes several algorithms for collaborative filtering that include tech-

niques based on correlation coefficients, vector-based similarity calculations, and statistical

Bayesian methods. But the most relevant related work here is [Marlin, 2005] which aimed

at performing a comparison between different collaborative filtering methods. In his the-

sis, Marlin has performed a comprehensive study on recommender systems based purely on

collaborative filtering methods. He showed that many existing proposed methods of collab-

orative filtering can be derived from simple modifications to the standard machine learning

methods for classification, regression, clustering, dimensionality reduction and density esti-

mation. Marlin also proposed a new evaluation approach for recommender systems called

strong generalization and contrasted it to the existing weak evaluation approach. In this

thesis, we follow Marlin’s experimental setup and procedure as it has become de-facto stan-

dard for testing recommender systems. He implemented several prediction methods and

carried out a large number of experiments to compare the performance of these prediction

methods. He also analyzed the various rating prediction methods implemented in terms of

learning complexity, prediction complexity, time and space complexity and prediction accu-

racy. In contrast to work done in [Marlin, 2005] thesis, where he has done extensive study

of different collaborative filtering approaches, this thesis deals with specifically comparing

and analyzing cluster-based collaborative filtering approaches. We analyze existing meth-

ods for the task of rating prediction and propose a new approach of rating prediction that

consider even dissimilar items while computing prediction, information which is ignored in

traditional rating prediction methods.

47



Chapter 7

Conclusions and Future Work

Recommender systems use customer databases to extract valuable information for business

need. Recommender systems help people to find items of interest and hence are being very

widely used in commercial websites. Recommender systems help achieve a two way benefit,

firstly by enabling customer to find products of interests and secondly helping business by

generating more sales. Hence, recommender systems have become integral part of many

business models. There have been many recommender systems that employ collaborative

filtering technology, which has been one of the most successful techniques in recommender

systems over the past few years.

With considerable increase in the number of customers and products, the amount of

data to be processed by recommender systems has increased tremendously. Because of this

huge volume of data, recommender systems today face scalability issues. Hence, new tech-

niques are required to address the issue of scalability. In this thesis, we have investigated

scalable collaborative filtering approaches to address the issue of scalability by implement-

ing k-means algorithms using distributed frameworks like Hadoop MapReduce and using

canopy/clustering techniques. We have shown that k-means algorithm can be efficiently im-

plemented using Hadoop MapReduce framework by exploiting potential parallelism inherent

in the algorithm.

In this thesis, we investigate different clustered based collaborative filtering approaches.

We have performed traditional user-based and item-based clustering and used those as the

48



baselines for the work done in this thesis. The results demonstrate that item-based clus-

tering performs better than the user-based clustering for traditional collaborative filtering

approaches as already mentioned by Sarwar et al. [2001]. We have provided an elegant

way of exploring movie synopsis and demographic data of user using collaborative filtering

approach. We have shown that user-based collaborative filtering using movie synopsis and

demographic data of user gives comparable performance when faired against the traditional

user-based collaborative filtering methods. This result provide basis for future work where

it would be worth trying to combine the traditional user based and the proposed user based

collaborative filtering methods to improve results. We could also conclude that using movie

synopsis and user quotes doesn’t yield satisfactory results for item-based collaborative fil-

tering. The results show that movies don’t cluster well using the movie synopsis data and

that we need more effective data for movies to cluster well.

We have also shown that our proposed approach for prediction computation of ratings

yields better results than the traditional rating prediction methods. Our results show that

using dissimilarity between user and items helps in reducing the Normalized Mean Absolute

Error (NMAE).

As mentioned earlier we have not used any kind of well known feature selection methods

like Information gain, Mutual Information etc on movie synopsis data and demographic

data of users. We would like to evaluate the performance of the cluster-based collaborative

filtering using these feature selection methods as part of our future work. In addition, we

would also like to incorporate better feature weighting methods based on regression into the

system which may improve the prediction accuracy. Although these are proven techniques to

improve results, we aim to see how these techniques would perform in context of our problem.

As part of future work, the prediction accuracy can be increased by better formulation of

age group based on statistical information, using geographical distance between zip codes

to relate locations and grouping the related occupations. One of the reasons in the current

approach user quotes about movies don’t help in improving the quality of prediction is that

49



they are ambiguous and as a part of future work we would like to develop a more robust

system that can handle the user quotes ambiguity problem. Also, the system proposed in

this thesis mainly uses a cluster-based collaborative filtering approach and would like to

integrate the system with content-based methods to form a hybrid recommender system.

We could use simple methods like linear combination to integrate the systems or can use

more complex methods proposed recently. Another interesting aspect inspired from Marlin

and Zemel [2009] work, would be to investigate and integrate such methods to cope with

non-randomness of missing data into the current system.

50



Bibliography

S. Ahn and C. Shi. Exploring movie recommendation system using cultural metadata.

Transactions on edutainment, 5660:431–438, 2009.

P. Alexandrin, U. Lyle, and P. David. Probabilistic models for unified collaborative and

content-based recommendation in sparse-data environments. In In Proceedings of 17th

Conference in Uncertainty in Artificial Intelligence, November 2001.

J. Armstrong. Principles of forecasting a handbook for researchers and practitioners. Jour-

nal of Marketing Research, pages 498–499, November 2001.

M. Balabanovic and Y. Shoham. Content-based, collaborative recommendation. Commu-

nications of the ACM, vol.40, no.3, pp. 62-72, 1997.

C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification: Using social and

content-based information in recommendation. In In Proceedings of the 15th National

Conference on Artificial Intelligence, 1998.

J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms

for collaborative filtering. In In Proceedings of the Fourteenth Annual Conference on

Uncertainty in Artificial Intelligence, Microsoft Research, 1998a.

J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms

for collaborative filtering. In In Proceedings of the Fourteenth Annual Conference on

Uncertainty in Artificial Intelligence, Microsoft Research, 1998b.

S. Chee, J. Han, and K. Wang. Rectree: An efficient collaborative filtering method. In

Proceedings of the 3rd International Conference on Data Warehousing, Springer, 2001.

51



Q. Chen and U. Aickelin. Movie recommendation systems using an artificial immune system.

In In Poster Proceedings of ACDM 2004 Engineers, University of Nottingham, UK, 2004.

M. Claypool, A. Gokhale, and T. Miranda. Combining content-based and collaborative

filters in an online newspaper. In Proceedings of the SIGIR Workshop on Recommender

Systems: Algorithms and Evaluation, 1999.

S. Debnath, N. Ganguly, and P. Mitra. Feature weighting in content based recommendation

system using social network analysis. In WWW ’08 Proceeding of the 17th international

conference on World Wide Web, Beijing, China, April 2008a.

S. Debnath, N. Ganguly, and P. Mitra. Feature weighting in content based recommendation

system using social network analysis. In WWW ’08 Proceeding of the 17th international

conference on World Wide Web, Beijing, China, April 2008b.

A. Eyrun, T. Gaurangi, and L. Nan. Moviegen: A movie recommendation system. Hewlett-

Packard, August 2008.

A. Gediminas and A. Tuzhilin. Recommendation technologies: Survey of current meth-

ods and possible extensions. New York University (NYU) - Leonard N. Stern School of

Business, 2004.

D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Commun. acm. Using collaborative

filtering to weave an information tapestry, 35(12):61–70, 1992.

J. Herlocker, J. Konstan, and J. Riedl. Explaining collaborative filtering recommendations.

In In Proceedings of the ACM Conference on Computer Supported Cooperative Work,

2000.

G. Lilien, P. Kotler, and K. Moorthy. Marketing models. Prentice-Hall, 1992.

52



J. MacQueen. Some methods for classification and analysis of multivariate observations, pro-

ceedings of 5-th berkeley symposium on mathematical statistics and probability. Berkeley,

University of California Press, March 1967.

H. Mak, I. Koprinska, and J. Poon. Intimate: A web-based movie recommender using text

categorization. In In Proceedings of the IEEE/WIC International Conference on Web

Intelligence, October 2007.

P. Manos and P. Dimitris. Qualitative analysis of user-based and item-based prediction

algorithms for recommendation agents. Engineering Applications of Articial Intelligence,

18:781–789, 2005.

B. Marlin. Collaborative filtering: A machine learning perspective. In In Proceedings of the

22nd International Conference on Machine Learning, 2005.

B. Marlin and R. Zemel. Collaborative prediction and ranking with non-random missing

data. In Proceedings of the 3rd ACM Conference on Recommender Systems, 2009.

A. McCallum, K. Nigam, and L. Ungar. Efficient clustering of high-dimensional data sets

with application to reference matching. KDD ’00 Proceedings of the sixth ACM SIGKDD

international conference on Knowledge discovery and data mining, 2000.

B. Murthi and S. Sarkar. Management science. The Role of the Management Sciences in

Research on Personalization, 49(10):1344–1362, 2003.

M. Pazzani and D. Billsus. Learning and revising user profiles: The identification of inter-

esting web sites. Soringer, 27(3):313–331, 1997.

D. Powell. Approximation theory and methods. Cambridge University Press, 1981.

E. Rich. User Modeling via Stereotypes. Cognitive Science. Elsevier, 1979.

G. Salton. G. Automatic Text Processing. Addison-Wesley, 1989.

53



M. Sarwar, G. Karypis, J. A. Konstan, and J. Reidl. Item-based collaborative filtering

recommendation algorithms. In In Proceedings of the 10th International World Wide

Web Conference, 2001.

F. Sebastiani. Machine learning in automated text categorization. ACM Trans. Information

Systems, 34(1):1–47, 2002.

B. Smyth and P. Cotter. Personalized electronic program guides for digital tv. In Proceedings

of the 19th International Conference on Knowledge-Based Systems and Applied Artificial

Intelligence., 2000.

L. H. Ungar and D. P. Foster. Clustering methods for collaborative filtering. In 10th

international World wide web Conference, 1998.

T. Zhang, V. S. Iyengar, and P. Kaelbling. Recommender system using linear classifiers.

Journal of Machine Learning Research, pages 313–334, 2002.

54


	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Motivation and Problem Statement
	Overview of the Contributions

	Background
	Background on Recommender Systems
	Formulation of Recommendation Problem

	Types of Recommender Systems
	Collaborative Filtering Methods
	Content Based Methods
	Hybrid Methods

	Similarity Metrics

	Problem Definition and Approaches
	Problem Definition
	Approches
	Clustering
	K-means Algorithm for Clustering
	Prediction Computation
	Clustering Using Movie Synopsis, Demograhic Data of User and User Quotes

	Complexity Analysis
	Hadoop MapReduce


	Experimental Setup
	Experimentation
	Experimental Protocol
	Error Measures

	Data Set
	Experiments Performed

	Results
	User-based vs Item-based Clustering
	User-based Clustering
	Item-based Clustering
	Pearson Correlation vs Adjusted Cosine
	User-based vs Item-based Clustering

	Item-based Clustering using Modified Weighted Sum Method
	Clustering using Movie Synopsis, Demographic Data of User and User Quotes
	User-based Clustering Using Movie Synopsis and Demographic Data of User
	Item-based Clustering Using Movie Synopsis and User Quotes


	Related Work
	Works Addressing the Scalability Issues
	Works that Use Movie Synopsis, Demographic Data of Users and User Quotes
	Works that Compare Different Collaborative Filtering Approaches

	Conclusions and Future Work
	Bibliography

