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Nomenclature of Terras

a Extrapolation dimension in the x direction, era.

a-| Physical radius of a control rod, era.

a
Q Physical radius of the control rod, era.

a Othogonality constants,
n

Aran Amplitude coefficient for the ran mode.

b Extrapolation dimension in the y direction, cm.

2 -2
B Buckling, cm

2 2
B Geometric buckling, cm" .

2 2
S^ Material buckling, era .

c Extrapolated height of a reactor, cm.

C~ End correction factor.

Cjj Harmonic and end correction factor.

d Linear extrapolation distance, cm.

d Linear extrapolation distance into the rod, cm.

D Thermal diffusion coefficient.

f Thermal utilization factor.

J Neutron current, n/sec-cm (n = neutrons).

Jmn The ran modal current, n/sec-cra .

ka Effective multiolication factor.

koo Infinite multiplication factor

ji* Thermal neutron lifetime, sec.

L Thermal diffusion length, cm.

M Migration area (= L2 + "C ) , cur.

M Matrix operator.
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n Neutron density, n/cirr.

p Resonance escape probability.

P Poison matrix operator.

r-j Outer radius of a control annulus, cm.

r Inner radius of a control annulus, cm.

R
c

Extrapolated critical reactor radius, cm.

R
Q

Equivalent subcritical reactor radius, cm.

S Thermal neutron source term, n/sec-cm-'.

Smn m, n modal source constant.

v Average neutron velocity, cm/sec.

Radial component of the buckling (cylindrical geometry),<*
2

cm

°^m x component of the buckling, cm.

(3 Effective delay neutron fraction.

2 2
{3 y component of the buckling, cm" .

•i

Xrtn m, n modal separation constant for the z direction, cm" .

€ Spacing between data points.

1\ Average number of fast fission neutrons emitted as a result
of the capture of one thermal neutron in the fuel material.

A Average decay constant for delay neutrons.

At* Transport mean free path.

•i

u> Reciprocal reactor period, sec" •

/U2 Major buckling (two group), cm"2 .

X> Minor buckling (two group), cm" .

£A
Macroscopic absorption cross section, cm" .

1< Macroscopic slowing down cross section, cm" .

o
-£ Fermi age, cm .



Vll

Y Neutron flux, n/ sec-cm2 .

0, Fast group neutron flux, n/sec-cm .

0£ Thermal group neutron flux, n/sec-cm .

V Laplacian operator.

Se (b) Error variance of the slope.

Sg (Yi) Error variance of the predicted least squares value of Yi,

o (xi.yi) Dirac delta function.

A ke Change in the effective multiplication factor.

Adjoint vector flux set.

Perturbed vector flux set.

vL Non-leakage probability.



1 .0 INTRODUCTION

The worth of a control rod in a given reactor system can be

determined experimentally by two methods. These experimental methods

are 1 ) a static method and 2) a kinetic method.

Several references (7,9,11,1^,17,23) discuss the theory of

calculating the worth of a control rod for a given reactor system by

the static method. The kinetic method is generally used to determine

control rod worth in a critical reactor system. There are many

references (2, 4-, 7, 8, 10, 11 ,13,1*1, 16,18,23) which discuss the experi-

mental and theoretical procedures used to find the worth of a control

rod in a critical reactor system by the kinetic method.

Very little experimental work has been performed to determine

control rod worth in a subcritical reactor system. It is the object

of this paper to present a study of the various mathematical models

which were used to calculate the control rod worth of a cadmium rod

in the K.S.U. graphite subcritical reactor.

Methods used to calculate the reactivity worth of a centrally

located poison rod were the following:

1 . The effective multiplication factor, ke , of the K.S.U.

graphite pile was calculated from experimental data by the

method presented by Kaiser (12). The effective multiplication

factor of the pile with the poison rod was calculated by

finding the theoretical increase in the geometric buckling

due to the presence of the poison rod.

2. The method which Wood (25) presented was revised and

extended to calculate the worth of a control rod in an



exponential assembly. This was done by experimentally measuring

the inverse relaxation lengths with and without the poison rod

present. The worth of the rod was calculated from this change in

inverse relaxation lengths.

3. A method presented by Murray and Niestlie (18) was revised and

extended to include a two group analysis for calculating the worth

of a control rod in an exponential assembly. The values calculated

for the infinite multiplication factor, ka> , by method one were used

in these calculations.

^. One group and two group perturbation calculations were made to

give an approximation to the reactivity worth of the control rod. In

order to better approximate the reactivity worth of a control rod

calculated by perturbation theory, the perturbed flux was estimated

more accurately by a variational method.

5. The theoretical approximation equations presented by Glasstone

and Edlund (7) were used to calculate the reactivity worth of the rod.

These calculations were based on one group, corrected one group, and

two group theories.

A kinetic study was attempted. Several hundred rod drops were

performed. The data were much too random for any clear cut conclusions.

A one delay group analog solution to the kinetics equations was attempted

for this work. However, problems, such as defining a true source con-

dition, arose which led this author to include the results for only

illustrative purposes.



2.0 THEORY

2.1 One Group Diffusion Models Used to Calculate
the Reactivity Worth of a Control Rod in a

Sub-critical Reactor System

2.1 .1 A Model Using Experimental Data to Find the Effective Mul-

ti-plication Factor of a Subcritical Reactor with No Control Rod. Thermal

neutron diffusion theory has been studied by many investigators (4,5.6.

7,12,14,17.21,23). The following paragraphs will serve as an outline

to the basic theory of neutron diffusion in a multiplying medium with

special emphasis on the assumptions involved in this theory.

The rate of change in neutron density in a volume element of a

multiplying medium is the result of (a) the net flow of neutrons through

the boundary of the element, (b) the number of neutrons absorbed by the

medium per unit time, and (c) the production of neutrons by sources within

the element. The neutron current, J, defined as the number of neutrons

per second flowing through a unit area normal to the direction of flow,

can be expressed, according to Fick's law, as

J = -D(r) grad $ (r,t) . (1 )

D(r) is the neutron diffusion coefficient and <p (r) is the neutron flux

which is equal to the average neutron velocity, v, times the neutron

density, n. Then the net flow of neutrons into a volume element can be

written in terms of the current as

- div J = div (D(r) grad <j> (r,t) ). (2)

When the diffusion coefficient, D(r), is independent of position, it is

also independent of the operator, div. The leakage term can then be

written as D* </)(r,t) where 7^>is equal to div (grad <p (r,t) ). The



neutron balance on the element of volume becomes

DV 2
</>(r,t) -2a

</?(r f t) + k^^Cr.t) + S = <)n(r,t)/ c)t. (3)

In general only steady state diffusion will be considered in this

work. In this case Eq.
. (3) becomes

D^ 2 ^(r,t) -fa </),r,t) +k„4^(r f t) +S = . (k)

Eq. (*0 will be solved subject to a point source boundary condition.

Dividing Eq. (4) by D and defining B2 as ^ a (ko» -1 )/D results in the

equation

V
2 ^(r) +Bg^(r) = . (5)

£ a is the averaged thermal neutron absorbance cross section and ko, is

the infinite multiplication factor.

The validity of elementary diffusion theory depends on several

important considerations which are listed below.

1 . There are no collisions between neutrons, which means that each

neutron diffuses independently of all other neutrons. The importance

of this assumption results in a convenient mathematical simplification

discussed by Weinberg and Wigner (23) and Hughes (11). This makes

superposition of solutions possible.

2. The neutrons diffuse with a constant (average) energy and no

energy is gained or lost (on the average) in a collision with a

nucleus. This assumption is supported by Hughes (11) who states that

experimental evidence indicates that the Kaxwellian distribution is

maintained reasonably well throughout the diffusion process, thus,

allowing the diffusion equation to be energy independent.

3. The flux is a slowly varying function throughout the pile with

no sharp dips or spikes. This assumption is essential to the validity



of Pick's law and means that diffusion theory is not applicable

in close proximity to concentrated sources, absorbers, or the

boundaries of the diffusing medium. It is also necessary that the

medium be only slightly absorbing, since a high ajasorption cross

-

section would cause the neutron density to vary substantially with-

in one mean-free path.

4. The neutron scattering is spherically symmetric or isotropic,

allowing the velocity vector to be treated as a scalar in the neutron

balance, Eq. (3). Since scattering is not isotropic near sources,

boundaries, and absorbers, this assumption necessitates restrictions

similar to those stated in condition (3).

5. The diffusion coefficient is independent of position. This

allows D to be extracted from the term for divergence of the current

in Eq. (2), leaving D 7
2
^>(r,t) for div(Dgrad (</> (r,t) ). Eq. (6) is

derived in Appendix (A). The result obtained for rectangular

geometry is

4> (x,y,z) = 2L Za -Aran cos(m7rx/a)cos(nTry/b) sinh ^mn (c-z) . (6)

m=1 n=1

The m and n are both odd, and a, b, and c are the extrapolated

dimensions of the pile in the x, y, and z directions. The variables

were assumed separable and the auxiliary separation constants

equation was found to be

where

C* m = m7r/a and
fi n = nrr/b .

In order to determine the quantity Amn , a source boundary condition



is needed. The source boundary condition used in this work consisted of

four point thermal sources, one located at each of the positions x=-+?:

and y=+y ^n ^e source layer in the z dimension. The source condition

was approximated by expanding in a series of cosine functions such that

S a(x,y) at z=o was written as

cO CO

So(x.y) =£ ^l ^nn cos(mtTx/a) cos(n"/7y/b) (8)

m=1 n=1

where m and n were both ocd.

The quantity S^ was regarded as the sources for each mn mode of the

flux. Sp^ was determined by virtue of the orthogonality property of the

cosines. Each member of So. (7) was multiplied by cos(l77"x/a) and

cos(h7Ty/b) and integrated over the interval of othogonality, from -a/2

to a/2 and -b/2 to b/2. From the property of the Dirac delta function,

the left member of Eq. (8) reduced to S cos(m77"Xi/a)cos (n^y^/b). 3y

virtue of the orthogonal properties, the right member of Eq. (3) was

found to be S^ times one-half the range of orthogonality in each of the

x and y directions. The result was determined to be
k

Smi = L__. (4S/ab)cos(m7TXj_/a)cos(nrry^/b) . (9)
i=1

The origin was located in the source plane so that only positive values

in the z direction were considered. The current density in any one mode

was assumed to be equal to only one half of the total source neutrons

emitted in that mode. Using Fick's law and the expression for thermal

flux which is given by Eq. (1 ), the mn modal current density was found

to be

Jmn
= -D [^inn/ ^z)=_D ^mn ^mn cos (m rrx/a)cos(n7Ty/b )cosh ^c^S^. (10)

z—

o



Substituting from Eq. (9) and solving for A^n, yields Eq. (11).

A
mn

= -2 2S cos(m7rxi/a)cos(n7ryi/b) / ab D If cosh V Tim c. (11)
i=1

Substituting this result back into Eq. (8), the expression for total

thermal neutron flux was found to be

~ te so

(£(x,y,z) =2l 2,. ^X2S cos(ra7Txi/a)cos(nTryi/b) / ab D ^ mn
i=1 m=i n=1

J

X ]_cos(m7rx/a)cos(mry/b) sinh JTmn (c-z) / cosh fc^cj, (12)

where m and n are both odd.

Expressing the hyperbolic functions in terras of exponentials and

rearranging Eq. (1 1 ) gives

T" <0 «0

<j>(x,y,z) = 2l £ £, [2S cos(mTTxi/a)cos(nTryi/b) / ab D Hmn cos(ra7rx/a)j

i=1 ra=1 n=1

x{cos(n7Ty/b) exp^-^ranz) [l -exp
"2 ^ran^c

-z
^] /[l + exp(-2 *mnc

)J.
(13)

In order to determine -\-\ easily, this equation was rearranged again in

order to express the flux simply in terms of an exponential decay in the

z direction.

4>(x,y, Z ) =CE C
H

exp ( - !r i1
z)

(14)

= [l.exp-
2 ^1 (c-a)

]/[l W-2 *11 0)
J

'H

where

and k CO CO

t y 5* v
CH

= 1 +4^i ^ j^-i 0-m cos(m"iTx/a)cos(nTry/b)cos(m7TXj_/a)cos(n7ryi/b)

X exp(-^ mnz)[l-exp(-2 tf^c-z)
)J / CE^ cos( tTx/a)cos( 7Ty/b)cos(7Txi/a)

X cosCiry^/b) exp(-X
,

11
z) [l + exp(-2 Jf^c)] .
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The m and n are odd but not simultaneously equal to unity. C- is called

the end correction factor and Cg is called the composite end and harmonic

correction fact r.

he iteration concept described by Kaiser (12) was used in an

effort to calculate ^
-i -i . the inverse relaxation length. The following

was the procedure used.

1 . Assuming C7C^ = 1.0, a least squares analysis was performed on

the vertical traverse data taken at x = y = 0. Tne value thus ob-

tained was used as an initial estimate for -m.

2. The values of Cg and Cjj were calculated using this initial

estimate of o - * .

3. The modified count rates were then calculated by dividing the

original count rates by C-Ctt.

k. A least squares analysis was then performed on the modified

count rates thus determining an improved estimate of
-i i .

5. The new value for o -i < was compared with the previous value.

When the change in the value of o* ^ between successive iterations

is considered negligible, the iteration process is complete. The

final value of {) i -i
was used in the calculation of the material

buckling and the effective multiplication factor. An IBM 1620

program designed to find -j-j by this method is discussed in

Appendix (E).

If the rectangular parallelepiped reactor were critical, with no

external source, the boundary conditions impressec on the solution for

ty (x,y,z) would be that the flux be zero at all extrapolated boundaries.



Thus, for a critical reactor at steady state, Eq. (6) becomes

4> (x,y,z) = A cos(77"x/a)cos(7/'y/b)cos(77*z/c) (15)

where a,b, and c are the extrapolated x, y, and z dimensions of the

critical assembly. Only one mode was considered because (1 ) criticality

can only be achieved in the first mode, and (2) after criticality has

been achieved, the higher modes decay out exponentially. The auxiliary

separation constants equation for the critical solution is

B| = (Tr/a)
2 + (7T/b)

2
+ (7f/c)

2
. 06)

Eq. (".6) is the definition for geometric buckling in a rectangular

parallelepiped reactor. Therefore, the condition for criticality is

B^ = B
2

= B
2

. (1?)

The effective multiplication factor, ke , is defined using the Fermi

slowing down model by Glas stone and Edlund (7) as

k
e

= k w exp(-B| T)/[l + L
2

B2 ] (18)

where the condition for criticality is kQ = 1 . Since criticality has

been assumed, Eq. (18) can be rearranged to yield koo . the infinite

2 ? 2
multiplication factor. Equating k = 1 , B T = Br; = B and rearranging

Eq. (18) becomes

ko, = (1 + L2 3
2

) exp(B
2T) . (19)

The best estimate of )f .. «. , found by the previously described iterative

technique, is used in Eq. (7) to find Bm . This value is then used in
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2c. (19) to find kw . "he infinite multiplication factor and the

geometric buckling for the sub-critical system under experimental

consideration, found from Bq. (16), are used in Bq. (18) to find kG .

2.1 .

"

A Definition of the Z;:trapolaticn Distance, of i_ Subcritic&l

Rectangular Pa rallelenioed Reactor . Kaiser (12) described an ex-

perimental method to determine the effective pile size of a sub-

critical rectangular parallelepiped reactor system. It was found that

the data were much too random for definite conclusions. For this reason,

he assumed that the linear extrapolation distance (0.71 A^ ) could be

used for determining the effective size in the x, y, and z directions.

The quantity At* represents the transport mean free path of the reactor

core medium.

A study of the extrapolation distance in the z direction was not

made by Kaiser (12). Therefore, a method of improving on the estimate

of the extrapolation distance in the z direction was sought and finally

the following technique for determining this distance was used. This

method involved a two parameter iterative procci-re.

Three count rate measurements, equally spaced in the z direction

and taken close to the top of the pile, were used. These points were

given z positions of z, z + € , and z + 2€ , where d was the spacing

between each measured count rate. These count rates and the extrapolated

height, c, were related by Glasstone and Edlund (?) by the equation

tanh Y^tc-z-e) = (^ +<f>3
) / (^ -<£

3
) tanh tf,

1
.(20)

Sq. (20) was incorporated with the iterative procedure for finding

V > 1 . An initial guess for c was used in the iterative technique to
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compute }f -I
-j

. This <T. . and the newly generated flux values were used

to calculate an improved value for c by using Eq. (20). This c was then

used to compute a corrected ^^ by the iterative procedure. This new

value of y^ was used in Eq. (20). A new value for c was determined.

This value for c was then used to find a new value for •] -j . VJhen the

change in the values for Q aa and c between successive iterations was

considered negligible, the iteration process was stopped.

2.1 .3 A One Group Calculations! Model for Finding the Effective

Multiplication Factor of a Subcritical Reactor with a Control Rod. Tc

find the change in ke due to the insertion of a cylindrical control rod

in a rectangular parallelepiped subcritical system, the rectangular

parallelepiped subcritical system is approximated by a cylindrical

system which has a k_ equal to the k for zhe rectangular parallelpiped
e e

system. Since k^ , L , and ~C are equal for both subcritical systems,

the geometric bucklings must be equal. In cylindrical geometry, the

geometric buckling is given by a similar auxiliary separation constants

equation as Eq. (16),

B^ = oc
2 + (rr/c) 2 (21)

where <X =(2.^048/Ro ) for the cylindrical reactor with no control rod, and

R_ is the extrapolated radius of the reactor system. Equating the right

members of Eq. (16) and (21), the equivalent radius for the cylindrical

system can be found and is given as

Ro = (2.^048) y^T/a) 2
+ (7T/b)

2
. (22)

In cylindrical geometry, the radial component of the solution to



Eq. (5) can be written as

R(r) = A J (<*r) + 5 Y (*r) (23)

where J and Y are Eessel functions of the first and second kind of

order zero.

For a system with no control rod, Eq. (23) is subject to the

following boundary conditions

i). the flux must be finite and non-negative

ii). R(r = R ) =0

Applying the first condition to Eq. (23 ), the constant, E, is found to

be equal to zero. The application of the second condition yields a

definition for # . The quantity CX is equal to (2.*K)48/R ). Therefore,

the auxiliary separation constants equation for a subcriticai system in

cylindrical geometry can be written as

b£ = u 2 _ x
2

, (24)

where % is the inverse relaxation length.

However, if a control rod is inserted, the necessary boundary

conditions are

i). [r(p = a) / ?.' (r =aj)=d

ii). R(p = R ) = 0,

where a is the physical boundary of the control rod and d is linear

extrapolation distance into the rod. If these two boundary conditions

are applied to Eq. (23) and the result rearranged, the following

equation is found.



J
o
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[V*1*o> + ^1 d
o
Y1^1 a

o)J (25)

where 0(, is the new radial component, of the buckling for the suj-

critical system with the control rod inserted.

Eq. (25) can be solved for O^ . This value of & ^
is then used in

Eq. (21 ) to determine the new geometric buckling of the subcritical system

with the control rod inserted. Using this geometric buckling and the one

determined for the system without the control rod from Eq. (18), the

change in ke due to the control rod can be calculated.

2.1 .h A Model Usin^ Experiments. . Data to Find the Effective

Multiplication Factor of a ! >ubcritica L Reactor with a Control Rod . A

method to predict the worth of a control rod in a critical reactor by

using data from an exponential assembly was developed by Wood (25). The

following method was based on a steady-state flux condition in a sub-

critical reactor system with an external source condition. A cylindrical

exponential assembly with a central control rod was considered. For the

2
assembly without the rod, the material buckling, B , was given by the

separation constants equation

w

t - * o -f (28)

here 0( is equal to 2.^(V-J-8/R for a cylindrical, steady-state reactor

with no control rod, q is the inverse relaxation length, and R is the

extrapolated radius of the reactor.

The control rod was treated as an internal boundary when it was

inserted, hence, the material buckling of the assembly was the same with



\k

or without the rod. With the control rod inserted, the radial leaka

was increased both inward toward the rod and outward through the boundary,

to this increased leakage, the radial component 02 the geometric

buckli ed. Therefore, from Eq. (23), the re ttion length

must also change. The material buckling of the assembly in terms of

quantities defined ivith the control rod present becomes

B§ = <X
2

- o
2

• (29)

where Q^ is the new radial component of the buckling and is the new

inverse relaxation length. The linear extrapolation distance at the

outer boundary is assumed to be unchanged when the control is inserted.

If Y and
S

q are calculated by using the iterative technique de-

scribed before, Oi can be calculated by using Eq. (28) and (29).

The calculated value for <X can then be used to find the change in

ke in a manner as described below. In cylindrical geometry and with no

control rod, the geometric buckling is given as

3
||

= a
l

+ (7r/° )2
' (3°>

However, if a control rod is inserted, the geometric buckling becomes

b
2
. = or + (sr/c)

2
(31)

fe2

where 9^ is the same quantity which appears in Eq. (29). Employing the

same definition for the effective multiplication factor, ke , as was used

previously, the change in ka due to the insertion of the rod is
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ak^k. [exp(-B|
2
Z) ft +L2B^) - exp(-3| r;/(l +L

2
b|

)j

(32)

where k is determined by the one group iterative method described

previously.

In brief review, this method consists of the following main points.

1 . Determine X and )f from the vertical traverse data taken

without and with the control rod inserted.

2. The material buckling, B~ , was determined from Eq. (28).

3. The change in the radial component of the buckling, o< , was

then determined from Eq. (29).

k. Eq's. (30) and (31 ) were then used to find the geometric

bucklings of the subcritical reactior system without and with the

control rod inserted.

2 2
5. These geometric bucklings, B_ and B^ , were then used in

Eq. (32) to find the change in the effective multiplication factor,

ke , due to the presence of the control rod.

.1 .5 A Method of Extending the Results of Reactivity Measurements

of a Control Rod in a Subcritical Reactor to a Critical Reactor of the

Same Core Material . It was stated before that in cylindrical geometry

the radial component of the general solution to Eq. (5) could be written

as

R(r) = A J (<Xr) + B Y
Q (*r) . (33)

Also the boundary conditions, which are necessary when the control rod

is inserted, were stated before as

= d,). fllCr) / R«(r) j
r=a



16

ii). R(r=R ) = .c

Eq. "C - ), however, states that the r component of the bud

~ . Applying the above boi conditions t the '-eve solut I

rearranging slightly, an expression for d is derived.

d
o " [V* R

o>
J
o
(oCa

1
) - V* a1> Jo<* R

o>] /

offo (^ ) J (0CR ) - Y (o(R ) ^ (ofa, )] . (3*0

Assuming that the linear thermal extrapolation distance into the

control rod is unchanged for a full-sized reactor, Eq. (3*0 can be

applied to the full-sized reactor. A measure of the worth of a control

roc in a critical reactor is then computed oy findin » the char, -e in

bucklin

If an identical control rod were inserted in the critical reactor, the

radius of the critical reactor, Rc , should be inserted in boundary con-

dition ii) for RQ and as a consequence, R
c

can be substituted into Eq.

(3*0. Therefore, Eq. (3*0 becoir.es

1- [yBRj J.Cfc, ) . Y^Ba, ) J <Mfc>] /

3 [t,(Bai ) Jo (3H ) - T (BRC ) Ji Cfe, ?] (35)

B~ is the new radial component of the buckling. Using the value obtained

for d from Eq, (3*0 1 Eq. [35) can oe solved for 3. Thus, the change in the

buckling due to the insertion of the control rod in a critical reactor is

A32 = 3
2

- (2.*;05/R
c )

2
. (36)

2.1 .6 A One Gro- .

'

.peroxidation Method for F - ictin ~ the Roactivi •-

Worth of a Control Rod - Scalettar). Glasstone ana Edlund (?)
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and Weinberg and Wigner (23) present a method attributed to Scalettar

and Nordhcim for predicting the approximate worth of a centrally

located control rod in a large, cylindrical, bare, homogeneous reactor,

Their solution is obtained by solving Eq. (5) in cylindrical geometry

subject to the following boundary conditions:

i). (p (r = R ) =

ii). (r = a ) = .

The assumptions made in the derivation of their final equation (Eq.

(11.12.1), Ref. 7)

AkQ
= 7.5 M2/R 2 [o.116 + In (R /2.4a )]

-1

are as follows

:

a. The control rod displaces an equivalent cylinder of the reactor

core and does not leave a hole upon being withdrawn.

b. The modified one-group critical equation is valid, i.e.

k^ = 1 + M232

where M2 = L2 + X. (migration area)

z>
2

3 = Buckling

c. The flux goes to zero x-jithin the control rod at an extrapolated

distance, d .

d. The diameter of the rod is much smaller than the radius of the

reactor. This allows for

inhere ZW is a small value. This is necessary to be able to use the

asymptotic expressions for the Bessel functions.
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2.2 Two Grou ed to Calcul
the :>rth of a C< -1 ?>od in a

Subcritic w Sys : .

2.2.1 A Two Gro nal Model f •«-. in

-::: • _ __ o c.v c. n _ ' .or .

reblii Lestlie (18) derj

group method for calculate rth of a centrally located control

rod in a dare, critical, cy] reactor. This method i
- .. a few

variations can bo used to sampute rorth of a control rod in a sub-

critical assembly.

A derivation of t' . s to the steady-state two group

diffusion equations, 2q. (30/ and (^0), is presented in ppendix 3.

D-
2 4,

* % - £r*1 ^co^92 = 09)

D
2 7 P 2 - £a*2 + ^R4>1 = ° •

^°)

The solutions were found to be

<jb
1

= AX(r) + CI(r) -1 )

p 2
= S,AX(r) + S f(p] . >)

The £(r) and Y(r) has permissible sol- A in cy] sal

e ; of

X(r) = AJoCc^r) + A^o^r)

=CIc (c:
2
r) + Vv'«( 2 r)

•
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For the cylindrical reactor with a centrally located control rod

inserted, the boundary conditions are

i). jte/Aj^ (r)| =0
r=a

ii). {(/) 2
(r)/9

2
'(r)) =0

r=a-j

iii).
<J) 1

(r=R
c ) = (j>

2
(r=Rc ) = .

The quantity a^ is the physical boundary of the control rod and Rc is the

extrapolated critical radius of the reactor. Since (p.(r), and (p2( r )

must vanish at the extrapolated radius of the reactor, X(r) and Y(r) must

vanish individually at r = R
Q . Therefore, applying boundary condition

iii) to Eq. (43) and (44), ratios of the constants A, AQ , C, and C can be

formed as

A
q
/A = - JoCtf-jKfc) / IqC^Rc) = - T (c*,R

c ) (45)

CQ/C
= - I (*

2
RC ) / KQ (^2Rc ) = _ Q (*2Rc ) . (46)

Boundary conditions i) and ii) were applied to Eq. (41) and (42). Using'

Eq. (45) and (46) and rearranging the result, was found to be

[1 - C, ToCw^c)]/ C
3

C<
1
T^CX^) = S2 [l - C2Q (^ 2RC )J /

s
1

C4 *2 Q (^2Rc) C^7)

where C-j =yQ (o<
1
a

1
) + o<

1
Y-jCof-jai)

C2
= K (c^ 2 a-| ) + oc 2 K-j (o<2a-j )

C
3
=Y

1
(^

1
a

1
)

C^ = K^ (o^a-j ) .



a bare react....: with no control re the

to Eq's. (43) and (44) a

and non-negative

ii) #h ) - &, :. : : .

Usin fire-- condition, A is -o by noting that Y
Q

(o6, r) :oe: to

a negative infinity at the origin. If the second boun

applied to Eq's. (43) and ( .-), the result is

o<7.
c

= 2.40 . (48)

Only the first ;::ode is used because [1 ) th - itor LU c - I

only the first mode a.::. (2) the or mo 11 decay out e:-:por.

In order to compute th- wortl of a centrally located ecr.trol roi

a cyl: .deal, bare, subcritieal reactor, the fol /-occdurc .:::

used. In this proj~„:ro the above two group analysis was u ly to

fi..d the in jreased buckling c€ the system con. L itrol :-o-.

The change in the effective multiplication factor is found

. r .i slowi . own mod

1. sritical reactor of the sane k*. calculate'

rroup .:oint thermal source rr.odel :-:r.z assumed. This assumption

allowed the cuartitic;. /x *" and x?~ to be calculate re,

M2

-d/r + i/L2)+ /o/r+i/L2
)

2
-r : ;:: --:,'r:

:

j .

1/

Usin^ these values of ju~ and 17^ bo calculate ca^ and ctfh (see

Appe ., critical radius, R , can be calcula

2. With the . .::or, a cor.

-rtci, known, - lial component of the ..trie

buck i can be calculated. Since the subcritical r:-ctor s;
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was unreflected, the minor two group buckling, 17 , was not

applicable and the major two group buckling, /A , was equal to

32.

3. Using the term 0( from above, the geometric buckling of the

equivalent cylindrical subcritical system used in this work can be

calculated. Use is made of the geometric buckling relation given

as

bL = « 2
+ U/c) 2

. (50)

The geometric buckling of the system without a control rod is given as

B
|,

= *o + C*V<0
2

. (51)

4. The change in k
@

is now calculated by using the Fermi slowing

down definition for k (Sq. 18). This change is given by

k
e

= k« {expC-B^ r ) l[\ + L2 BgjL exp(-3?
o
T)/[l +L

2
b|J(52)

2.2.2 A Method for- Extending the Results of Reactivity Measurements

of a Control Rod in a Subcritical Reactor to a Critical Reactor of the

Same Core Material . To treat the energy dependence of neutron absorption

more accurately, a two group analysis was derived by Wood (25). In

section 2.1 a method was described for calculating d£, the thermal

extrapolation distance into the control rod. If vertical traverses are

taken in the multiplying medium, a fast extrapolation distance, d-j , can

be found.

The solutions, Ec's. (43) and (44 )» to the two group diffusion

equations, Eq's. (39) and (40 ), are considered valid. A separation of
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variables technique is employee bo sol . the applicable wave equation .

These wave equations are given ir. ndix B as

V 2
X(r) + A 2 I(r) = (53)

V 2 X(r) - v 2 r(r) = . (54)

The auxiliary separation constants equations which apply to a suboritical

assembly are given by

*? = <X
2

- M2
(55)

*
2 = 0(| + V2

. (56)

The quantities , and o o are inverss relaxation lengths and are equal

if no internal boundaries exist in the reactor core medium. A relatic.

-

ship between >U and 17 ~ can be found by using Eq. (4°). This

relationship is

M 2
= V 2

_ (1/T +1/L2 ) . (57)

The radial flux components are of the same for:.: as shown in Eq's. (43)

and (44).

The two group boundary cor. ...: which are assumed consist of the

following

:

i). <t>, (r=R ) =
<t>z

(r=R ) =

ii).[4>
1

(r) /^/(r)] -d.
=a

1

.).{d>
2

(r) /4>
2
'

(r)j
"2 •

Applying boundary condition i) to Eq's. (43) and (44), equations ide.
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to Eq's. (^5) and (^6) are obtained. If boun ary conditions ii) and

iii) are applied to Eq's. (<V3) and (^4), the following transcendental

equation is obtained.

[Wt, *1> - Q
o

(*2V ^o'
a
2
a 1- dl)]/[Lo ( ^2a1' d2> " V°<2Ro)

X MoCo^g^, d
2
)]=[N

o
(^iar d,) - T (* 2

R ) O^cC^, ^ )} /

[^(O^a.,, d
2

) - T
o
(0{

2
R
o

) o (0f
1
a1l d2 )]. (59)

The quantities L , MQ , N , and
Q

are defined by

L (o(
2
a1f d± ) = I ((X 2

a
1

) - d
±

jjd/dr] I
Q ( tf2r)>

M
Q

(0( 2
a

1
,
d± ) = K (°<

2
a

1
} " di [td/drJ Ko< <?( 2r

>J

N_ (*«*,, d± ) = J (a1&1 ) - d± /[d/drjj^cX.jr) , i = 1,2
* J r=a-j

o (:/ iai , d± ) = Y (oi iai ) - di (jd/drjl^O^r)

Without -:he rod Eq. {$5) becomes

l^g = *,§ _ yU
2 (55')

where ^ A is the inverse relaxation length and (X i a is equal to

2,^-0^8/R . If the subcritical reactor is unreflected, Eq. (57) will not

apply when the rod is withdrawn. However, if the rod is inserted,

Eq. (55) and (56) are given as

ya-c^f-/* 2
,

(55")

t i = 1 ,2

r-=a-i

» i = 1 ,2

r =a
1

i = 1,2 .

r=a-|



2h

% 21
=0{

2?
+ V 2

• (56")
21

2
The quantity^ car. be deter.-nir.ed from Bq. \55 x

) if the inverse re-

laxation 1 . ;h measured in the multiplying medj Lth no control re -

present is used. T
.vith the control rod inserted, however, a no: . .-je

relaxation length, 6-1-1 = o- » can ,De measured. This value is usedY - w
11 ~ *

2

Eq. (5o") to determine 0i<£ . Also, 0( <^r can be calculated using V "

ar.d the measured value for fl 21 •

The values of & a-\ . cY?- t and d9 , determined in a previous section

.; measurements on the pure diffusing medium, are used in Bq, (59) to

solve for cL , Knox-D.ng d. , d
, /> and IP , 2q. (59) can be used to

1 1 2

solve for the bucklings C{..^ and O( 9 o of a critical reactor of radius

?>
c

. 7he change in major buddings is found to be

40Cif = 0^2 - (2.^SAc )

2
. (60)

This method can be extended to more groups by considering the appropriate

boundary conditions for each group.

2.2.3 2_ C-rou-p r.-ysroxlm ztion h'cthod for ?: --.dictir. : zhe

Reactivity '/fort: Control Rod Q.ordheim - Scalettar) . To improve

the value of A k obtained, using modified one group theory, Glasstone

and Edlund (7) present a i, based on a two group model, for pre-

dicting the worth of a centrally located rod in a large, cylindrical,

bare, homogeneous reactor. Their solution is obtained by solvi

Sq's. (39) and (^0) in cylindrical geometry subject to the following

boundary conditions

:

i). 4>
1

Cr - R ) = C

ia). J/d/drJ^Cr)? r=ai
=
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ii). <p
2

(r = R
Q

) =

iia). C<)
?

(r = aQ ) = .

The assumptions vj.ce in the derivation of their final equation, (Eq.

11.31.1) reference ?)

Ake
= 7.5 M2/R2

J

0.116 (1 -f r/L2 ) + r/L2 ln(L /F/Ma ) + ln(R /2.4aj~

are listed below.

a. The control rod displaces an equivalent cylinder of the reactor

core and when the control rod is withdrawn, a void is not left.

b. The thermal flux goes to zero within the control rod at an

extrapolated distance d. The first derivative of the fast flux is

aero at the surface of the control rod.

c. The diameter of the control rod is much smaller than the radius

of the reactor. This allows estimating A /A to be small, where fiij,

is written as

A^4= M- M •

This approximation is necessary to make the Bessel function

approximations

.

d. The value of k-1 is considered small. Therefore, the major

and minor bucklings can be conveniently approximated.

The modified one group approximation is derived by multiplying

Eq. (11.31.1) by L2/M2 . The result is Sq. (11.33) from Glasstone and

Edlund (7).

Ak = 7.5 L2/R2 (0.116 + In R/2.^aQ )

-1



2.3 Perturbation Models for Estii

the Reactivity Worth o: the Control

2.3.1 A Cue I row*) Ao" - -
" .-.tior. . Pertur ory can bo u

to estimate the worth of a control rod if the ion is

The resultant change in reciprocal reactor period, £>U? , derived from

perturbation theory in Appendix C, becomes

The quantity &U) is given as ( U)'-U* ), where U>' is the reciprocal

period of the perturbed reactor and u> is the reciprocal period of the

srturbed reactor. P is the matrix operator representing the per-

turbation inserted into the reactor system. The quantities <£r and

-t

<D are spatially dependent vector flux sets representing tne adjoint

fluxes and perturbed fluxes, respectively.

The reactivity, £ k /k , change due to a perturbation in a reactor

can be found by considering the time dependent diffusion equation in

which the delayed neutron groups have been neglected. This equation

was derived by Glasstone and Edlund (7), the result bed..

JAke /
i*)o =d9/dt. (62)

The quantity J{* is the thermal neutron lifetime and is given as

/ - ke/k. S. a v .

'

(63)

Substituting Eq. (63) into Eq. (62), the result is

(k«o ^ a
c

v A ke/ke] 9 = d ^' /dt . CW
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If
(f>

has a solution of the type

<f>'
= C^expCcat) (65)

where y is dependent only on space, Eq. (6k) can be re ritten as

{*• ^a
c
v ^k /k

e
]c/)

r
'= a; Q . (66)

Since the perturbation in the reactor is small, the unperturbed flux,

cp , will be approximately equal to the perturbed flux, y . leaking

use of this approximation, multiplying Eq. (66) by (u , and integrating

over the entire reactor volume, an equation relating A

k

e /ke to the

reciprocal reactor period, CU , is obtained as

k /k = tvL (t> dV / /,. k Z., v Q dV. (67)

Considering Eq. (61 ) ; if a one group calculation is to be performed,

the matrix operator M, is self adjoint, i.e. the flux functions %r ,

will form a complete orthogonal set. Therefore, the term £r is equal

to <p . Also for small perturbations, y) is approximately equal to

Q . Suppose further that a pure thermal absorption change is made

in the reactor system. This change is due to the insertion of a centrally

located control rod into the reactor system. This means that P can be

given oj

[v £a (r>] .P = - Ai v £ a (r) . (68)

Therefore, for the one group approximation with a pure absorption per-

turbation, Eq. (61 ) becomes

Auj= uj'-U>= - JY
A[v ^a (r)] <£

r

2
dV / Jv (jf/dV. (69)



If a fictitious critical reactor, U> = 0, is .it of as being

a reference reactor, Eq. (69) will yield the AW for the equivale]

cylindrical subcritical reactor system under consideration in this

Therefore, Auo„ is defined as the c. in reciprocal reactor period

due to the unperturbed reactor system being subcritical by an amount

k,=n - 1 ( = k_ ). The tern k is the effective multiplication factore 1
1

e
1

for the unperturbed, equivalent, cylindrical, subcritical reactor systc .-..

With the control rod inserted, a new ^^o can
*

De £°un<^ T*hich is thou

of as the change in the reciprocal reactor period cue "co the reactor

being subcritical and to the addition of the absorber. The change in

the effective multiplication factor of the reactor caused by the insertion

of the control rod is ka - 1 ( = Ak. ).e2 e
2

The quantity AlO.. ( = 10.. - 0) contains a fictitious A[_v £a (r) J, ,

which can be thought of as the amount of absorber which makes t.

reference reactor subcritical by the amount &k e . Tr^e term AU>
?

cc .-

tains this same £iy<a (r)J plus the absorption term due to the

presence of the control rod Ap Z& (?) J . Therefore, ^Ul)
1
and ^U>2Altr / fv.^ I Tliav.o^v.fl Alt)

can be written as

^Ui=W
1

= - Jy ^[v^Cr)]^? dV / Jy^dV (70)

JV ^r dV - (71)

Substituting Eq. (70) and (71) into Eq. (67) and subtracting the quantity

(ke - 1 ) / ke is found to be
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(ke£ - D / k
Q2 = ^^ - 1) / k^ - /v 4^)] r ^r dV /

v k^f^ /v
*| dV . (72)

In the one group model v is a constant representing the average

neutron velocity and can be factored. Thus, Eq. (72) can be rewritten as

(ke2 - 1 ) / l<e
2

= tee1 - 1 ) / kei - /v A[ ia(r)]
r
<|>2 dV /

For a hollow cylindrical annulus control rod, the value of

£,
j ^ a Cr ) / will be zero for r < r and r > r., , where rQ and r.. are

the inner and outer radii, respectively. The quantity ^[c a (r) J^

will be equal to the value of the absorption cross section of the

control rod material if the control rod is inserted in a hole initially

containing only air. Therefore, Sq. (73) can be written as

(ke2 - D/k = (k
61

- D/k - (^^ a ) r )r ^r r dr / koofa

UX J^ r dr . (74)

Using an average value for k obtained from the method explained

in section 2.1 , the quantity (ke - 1 ) / k can be calculated.

2.3.2 A
|

[wo Group Approximation . As in the one group model, assume

the critical reference reactor to exist so that the equation for

becomes

auj= oj' = /v ^r p#r dv / S7 §*r §v dv

.

(75)

Here the quanities, <£> and CD, represent matrix operators, in order
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to express 3q. (75) in terms of Ake / ke , consider a pertur

reactor Hhlch has been perturbed by only a change in 7| , the aver

of fast fission neutrons emitted as a result of the c • of

or.. al neutron in fuel material , a factor in the infinite

multiplication factor. Thus, the ? operator in za. (75) for this

reactor becomes

v^fiac^

. :-e f is the thermal utilization factor and pe. has been assumed to

be equal to unity. Substituting 2q. (76) into 2q. (75). and peri or.- I

the necessary matrix multiplication, the following is the result,

P =

w' = V2 &V jv 4>\ (f>2
dV / JYfr §r dV . (77)

Here 9 1 is ^ne adjoint fast flux while ^ i s ^ne thermal flux.

The effective multiplication factor is given by

ke
= 7|e P f oi. (73)

•e &Cis the non-leakage probability. Therefore, a uniform change

in ?^ results in an expression such that

^ke / ke = atj/ti • (79)

From the previous section, it is found that Ake / ke is equal to J( UJ
,

so that the thermal neutron lifetime, X , can be rjiven by

X* = ATt/;;^'. (SO)
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Substituting Eq. (77) for UJ into Eq. (30) produces

/ = JY $l 9r dV / v, n f iaQ ij<t>\ <p
2

dV . (31 )

Using Eq. (81 ), the reactivity, Ak / k . can be expressed as

* k
e / k

e
= K ^ p ^r dV / v

1 ^ f ^ac /V ^1 ^2 ^ . (32)

Consider now a perturbed reactor, in which the perturbation is a

purely absorption change. Thus, the P operator in two group theory can

be written as

1° °
I

i|0 . - *[v
2 fa (r)] • 03)

" P =

The reactivity associated with subcritic^.1 reactor is given by

Eq. (82) where the P operator has been replaced by Eq. (83) and the

necessary matrix: multiplication has been performed.

Ak
e1

/k
ei
=-J>; 4v

2 âCr)]^ 2 dV / Vl 7Jf£ao

*
X<J>* ^2

dV . (3f )

After the control rod is inserted, Eq. (82) becomes

*\ ' \ '--{^ Pz A[^& (r) ]^ 2
dV - J>; ^[v

2 â (r)] r

- 4> 2
dV] / v^f^ Jy <P* 4>

z
dV . (85)

Subtracting Eq. (8^-) from (85), produces the desired result of

Ake2 / k
62

= Ak
91 / k

s1 - J>'2 ^Lv2 ^(r)] r
4,

2
dV I

v^f4
o yv 4>; 9 2

dV . (86)



32

The steady-state two group adjoint diffusion equations for a bare

reactor can be written as

v., D, V
2

<p
f

- v, i
3,§\ + v

2
£ ? ^ 2 7)

v
2

D
2 ^

2
<^2 " V

2 <' a ^2 + v
1 1 f ^a ^1 = ° ' ( ~

Zr's. (37) and (S3) have solutions of the form

(J)*
= sf A' X(r) + S* C* Y(r) (89)

<j>* = A* X(r) + C
+

Y(r) (90)

re X(r) and Y(r) are given by Sq's. (~3) and (^*4). 3y a similar

method as was used in Appendix 5 to determine S. and S2, the adjoint

coupling coefficients, 5.. and Sp , can be determined to be

K =
{
v2 / v

lJ / I
1 + M 2

t} (91)

For a bare subcritical reactor, there will be no Y(r) component uo

the fluxes. Therefore, after substituting Eq's. (89), (90), (91), a.

(92) into Eq. (36), an expression for the reactivity of the centrally

located control rod is given as

Ake , / ::e2 = ak
ei

/ k
ei

. ( 1 + M 2

g
> U 4i,(')] y-

2M -' I

r
l
f i^ /v XZ (r) dV . (93)

Since a two group model is being studied, the effective multiplication

factor, ke , can be written as
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ke = k„ (1 + i
9

- r ) ( 1 + bI l 2
) . (9ir)

2
The geometric buckling, 3^, for the one group reactor, is eaual to the

a
o

/Up , the geometric buckling for the two group reactor, since the

reactor core is bare. Therefore, Eq. ( >3) is identical with Eq. (74)

if p 1 is assumed to be unity. No new information is gained from a two

group perturbation analysis on a bare reactor.

2 , 3 »
3 An Improvement for the Perturbation Models by

;
Variational

Technique . Both one group and two group perturbation theory yield

identical results for the reactivity worth of a control rod in a bare

reactor. In order to improve these results, the assumption that the

perturbed flux is equal to the unperturbed flux must be improved. The

following method is proposed to make this improvement (3,1^).

In section 2.0, the neutron diffusion equation for a multiplying

medium was written as

-D V 2
</> (r) + 4° <f>

(r) = 17 £f <£
Q
(r) (95)

where the superscript o indicates an unperturbed system. Replacing

( V^
f

- J^ a ) / D
Q
by Bq, Eq. (95) becomes

V
2

(|> (r) +B
9

;
<£ (r) = (96)

where ($> {r) Is t1ne flux corresponding to the lowest mode of the set of

eigenfunctions <jpn (r). If all the eigenfunctions are considered, Eq. (96)

can be written as

V
2

</> n (r) + B2 </>n (r ) = , (97)



^ro the functions <p ^ .. 11 be assumed to be or actions,

For the system under consideration, the perturbati

the thermal neutron absorption cross section. For the pe]

this cross section ca:. .as

£a (r) =±l + *£„(r)

re ^^a (r] is the spatially dependent absorption cross section

change. With this change in cross section, the reactor flux cecorr.es

<£(r) = <£ (r) + A^>(r)

:-3 A0(r) is flux change iue to the absorption cross section change.

In crdsr to naintain a steady-state operation, a hypothetical change in

U rast be assur;. .

X? —" I? + £\X?

With these changes Eg.. (95) beeones

-2 ^^(r) + A^a (r) <£ (r) +£? A<£(r) = V$f A<f>(r) +

AU^
Q
(r) , (100)

if the products of differentials are ignored and the terms contained in

-q. (95) are factored and replaced by sere.

Usin • all the eigenfunctions, <p (r) can be expanded such that

CO «°

4>{t) = £ an <J>n (r) = 9Q
(r) + 2 ^ 4\» (101)

n=0

where the a
Q constant has been de: bo be unity. Note that the

second term of the ri member of . (1 01 ) is the <£<p^r)
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presented in Eq. (100).

To evaluate the constants an , Eq. (101 ) should be multiplied by

^n (r) where n ^ 0, and the result integrated over the whole reactor

volume, V. This results in an expression such as

/y fa*) ^ dV = ^V ^n<r > ^o^ dV + K ^n^) A0M dV.(l02)

Since the eigenfunctions 9n (r ) are orthogonal and n ^ in Sq. (102),

the first term of the right hand member is equal to zero. Also by-

virtue of orthogonality principals, the left hand member becomes

An expression for A (p (r) in terms cf y Q
(?) is obtained from

Eq. (100)

4<£(r) = (j>
c
(r) [<^if - a£J / -D <7

2 +[£a
- Z^].<103>

In Eq. (103) the V 2 can be replaced by (-B
2

) from Eq. (97) and

f £° - v£f1 can be replaced by (-D
Q
3 2

). Therefore, Eq. (103) becomes

A(p(v) = (|> (r) [av£f - ^fa (r)J / D
Q

(2
2

- B§) . (104)

Substituting for A<£(r) in Eq. (104), the following is the result

an
= _ /v C^

n
(r) A£a (r) <£ (r) dV / D

Q
(B
2

- 32 ) J v tf>

2
(r) dV .(105)

The expression for the perturbed flux, found by using Eq's. (1 01 ) and

(105), can now be used in the one group perturbation model, Eq. (?4)

for the perturbed flux and a better estimate of the worth of the rod is

obtained (3 )

.



3.0 :.
. : cties

3.1 General Pile Description

... Kansas State University graphite pile, shown in Fig. (5),

consisted of a rectangular parallelepiped, 63 in. square, and 100 In.

., resting on a concrete foundation. The pile was constructed of

machined R-IHLM Nuclear Grade Graphite blocks k- +0.01 inches in cross

sectia.-. and of specified lengths. In stackin , the Ion:: dimension of

the blocks was alternated 90° from layer to layer. As seen in Fig. (5),

holes were drilled through "-he entire len ;th of certain graphite bloc

to accommodate fuel slugs in an eight inch lattice formation. These

holes were approximately 1 .75 inch in diameter. The Nuclear Grade

Graphite used Gor this pile has a thermal neutron absorption cross

section between 3-7 and 2i-.5 millibarns.

For a portion of this work, each of the drilled fuel ports were

filled with graphite cylinders. These graphite cylinders -ere made out

of the same material as the graphite blocks and were 1 .625 inches in

diameter and 22.68 inches in len . Jcice the cylinders were of a

smaller ia leter than the fuel ports, small crescent shaped air ^aps

of 0.125 inches were left between the tops of the graphite cylinders t

the tops of the fuel ports.

The blocks alon~ the central vertical axis of the pile contai:

horizontal slots, shown in Fig. (5), with a cross section of 1 .251 incG.cs

by 0\ 3^-3 inches. These slots were used in this work to accommodate a

BFo probe. The density of the solid i blocks was 1 .683 r/cc.
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Fip. 1 . Schematic Diagram of KSU pile.



Steichen (21 ) calculated the percentage air void to be appr. ly

0.3 per cent giving a corrected density i'or the pile of 1 . 67C
c
'/cc.

raphite pile contain 3 a squ of

1.0625 inches extending from the top of the assembly to a distance

20 inches above the concrete foundation. This hole, as can be se^r. by

Fi . (l), was positioned 2.0 inches in the >: dimension fro- the cc

of the pile. This hole was used to accommodate a 0.75 inch outside

diameter aluminum tube filled with rolled sheet cadimum.

3.2 Non-Multiplying Confi juration

Table 1 . Summary of Physical Specifications of Plutonl
sutron Sources

Source Grams Pu Gra.T.s 3e Neutron Emission
nuir.ber rate (n/sec)

365 7.3? 15.99 (1.64+0.115)10

366 7.87 16.01 (1.735>. 121 ) 1 °
6

36? 7.86 15.39 (1.325). 127)10°

300 7.86 15.88 (1.69+0.118)10°

369 7.86 1 .09 (1.71+0.120)10
6

For this portion of the work, experimentation was carried out in a

diffusing medium with a: ..out the poison rod inserted,

source configuration was used with the sources located in the source

plane at positions 2, 4, 10, and 12 as shown in Fl . (2). ] I con-

figuration, each of the four sources was located 22 inches fro- the
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C.v£ OF 13 POSSIBLE SOURCE LOCATiO.

1

1

1

/
I i /

-0- -20- J0-
> ! 1
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I
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,-s0-i _L i

-©- ^0-7©-'©- ie _
1

j 1-30-1 j 1

1

1
III

-1'0- -*0- ^0- J
1

1 I '

|

Fig. 2. Source locations in KSU pile.



canter of the pile. The sc --o located in a pla os

above t'.-.e concrete foundation ^see Fig. (1 ) ),

inner container of each source is C.S5 i .or, 0.

inch in height, and is ma . :sidc con of

•. source- is 1 .02 inches in dior.eter, 1 .30 inches in height, and is

le of 18-8 stainless steel. All sources are sealed by we]

3.3 Multi • Configuration

For this portion of the work, the fuel ports c, . d aluminum

tubes 68 inches long and 1.312 inches outside diameter. Each tube v:as

supported in the fuel port by three aluminum 1 J , one fixe

titer, and two removable rings at the c~.iz. Each al\ tube

accommodated eight Savannah River Type MK VHa fuel element rejects.

. (5) illustrates a portion of the leaded pile. In order that

: poison rod would extend thro " total length of the fuel

region, the top three layers of the pile were left without fuel,

physical characteristics of the fuel are shown in rigs. (3) and (^O

3.^ Neutron Detection System

le (2) contains a listing of the various electronic cor.poneui.s

used thro_ tout this T.:ork.

The l-'odel NC-202 3?^ probe's active volume, a length of 0.50 inches

and a diair.eter of 0.1 3?5 inches, contained 3 F«a gas at a pressure of

70 en Hg and an enrichment of 96 per cent. The model (:.:i-
J

050^) 37,

probe's active volune of 12 inches and a eer of

1 ^
, inch, contained - as at a pressure of 12 cr. B an
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1.20-0.0!
:0.50±0.0I

Ai JACKET
(0.0415 ± 0.0015)

NAT. URANIUM CORE
(3.S -0.2 lb.)

wold

1 -L ._.« J

'

CROSS SECTION

HOLLOW SLUG

The physical dimensions of the fuel slugs.
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. . Fuel elements for KSU pile
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Fig. 5. KSU exponential pile.
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Fable 2. A List of the Electronic Equipment used

4-7

Component 3 and Model Nuclear Engr.

Inventory No.

BF Probe

3

Pre Amplifier

Count Rate Meter

Scaler

High Voltage
Power Supply

Timer

Traversing Mechanism

Nuclear-Chicago
Model NC-202

Radiation Counting
Lab. RCL-105C4

Nuclear-Chicago
Model 1062

B.J. Electronics
Model DM1 -D

Baird Atomics
Model 132

John Fluke
Model 4-00 3DA

Baird Atomic
Model 960

K.S.U. Nuclear Engr,

No. 97

No. 320

No. 210

No. 363

No. 144

No. 183

No. 14-7

No. 568

enrichment of 96 per cent. The Model NC-202 BF„ probe with the

associated counting system is shown in Fig. (7). Fig. (6) shows a

block diagram of the neutron detection system.

The traversing mechanism, shown in Fig. (8), was capable of sup-

porting the Model NC-202 BFo probe in a variety of positions in the

pile. This mechanism was designed and built at Kansas State

rersity and a detailed description of it is provided by L.R. Foulke

(5).
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3.5 Cadmium Poison Rod

Fig. (9) is an illustration of the poison .rod used in this work.

The O.625 inch inside dia - c aluminum tube contained a total of Z.k

:r.dz of 0.03 inch thick sheet cadmium. The sheet cadmium was shaped

into a cylindrical annulus with a thickness of 0,09 inch. Thus, the

actual poison element was a cylindrical annulus of dimensions 0.4'!-

5

inch inside diameter, 0.625 inch outside diameter and 52 inches in

length. Aluminum was used for the containing tube so that as little poison

ether than the actual cadmi - was added to the reactor system as possible.

k.O EXPERIMENTAL Pr.OCFBURl"

Vertical Traverse Measurements

All data were collected using the Model r!C-2C2 BFQ probe and

associated counting equipment which was previously described. The counter

was operated at 1400 volts with a pulse height sensitivity of 0.8.

Two separate vertical traverses were made, one without, the poison

rod and one with the poison rod. For the traverse without the poison

rod, the 3Fo probe was positioned horizontally with its active volume

:ered on the vertical or z axis. The vertijal traverse was made with

the BFo -erode in this position in order to obtain a maximum count rate.

0, a mathematical simplification in the iterative analysis procedure

resulted from data obtained in this position.

For a mathematical simplification, the poison rod \>ras assumed to

be located at the center of the reactor system. All the models used in



the analysis of

this posit .. , ,

1 .5 inc Lon from t

Ls. This . (1 ). In or -
.

possible to a count rate and

the data collected with t] Lson rod inserted were taken ion

2.5 inch • the c • of the pi- x iired L

ich count rate measure lent was so that approxj

counts were collected at each z position. This ".:as done :o that each

data point would have -appro.
'

Lance. T3 positic

.. collectin a are shown ir. Fig. (1 ).

5.0 DATA PR .. ..
' SIS

5.1 Presentation of Raw Data

... data taker, for each of the vertical traverses were correct

for background counts. The data for each traverse, both with

_r.d witho t the red, arc presented in radios (5 ). ..

deviation reported is th ion of each mea oremen .

5.2 A is of the Vertical Traverse Data

ie data, presented in revious .re analysed so tha

the best esti of Q > - jy a least squares fit of the

modified count . — I M 1 620 code, presented in Appendix E, as

used to cale late these slope values.

•or va. ; of these calculated using a

Mickley, et. al. (15). -- ---ce of the slope is iv .



?able 3a. The Actual Data (Corrected for Background) Collected With
No Poison Rod

Distance
From
Source

Set No. 1 Set No. 2

1

Set ,To. 3

Inche s C/m. C/m. C/m.

42 . 1 56 638.5+6.3 641 .1+6.3 643.7+5.7

5C-.156 401 .2+3.7 394.4+3.6 393.0+3.6

58.156 250.1+2.0 252.6+2.1 250.7+2.1

66.156 101 .0+1 .6 161 .1+1 .6 156.7+1 .6

74.150 103.2+0.91 101 .0+0.39 100.5+0.37

Table 3 a. (continued)

Distance Set No. 4 Set No. 5 Set No. 6

rrom
Source

Inches C/m. C/m. C/m.

42.156 638.7+5.6 640.3+5.7 634.6+6.5

50.156 397.8+3.3 394.9+3.8 342.4^3.8

58.156 249.3+2.2 249.9+2.0 247.5+2.3

66 A 56 159-8+1.5 160.9+1.1 156.6+1 .2

74.156 90.8+O.73 ;9.0+0.69 100.2+0.84



'able 3b. The Actual C

the Poison Rod Inserted

ance
Frc

Source

Set No. 1 No. 2 No. 3

Ir.c I 2/ra. C/m. .

42.156 500.8+4.1 n .3+^.9 • __3-3

.156 291.5+2.5 291 .7+2.7 294.4+2.7

53.156 173.5+1.7 175.1+1.8 175.9+1 .?

66.1 56 114.4+0.96 107.7+0. 108.9+0.4

74.156 68.7+0.68 68.3+3.27 67.I+O.7I

Table Jo (continued)

Distance
From

Source

Set Ko. 4 Set No. 5 Set Xo. 6

inches C/m. C/m. C/m.

42.156 530.4+5.3 500.5+5.O 486 . 6+2

.

50
.

'. 56 301.0+2.9 290.0+2.8 304.4+2.3

53.156 188.7+1.9 171.6+1.7 176.8+1 .8

.156 113.7+1.1 105.7+O.81 107.9+1.0

74.156 69.2+0.33 60.3+O.66 67.3+0.77
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2Se(b)=2 ai- yi )
Z

/ (Hi -2)2 sj . (106)
i=1 i=1

This equation was formulated on the basis that the data could be fit

by a linear plot. In the present problem, the quantit;/ y* is the

logarithm of the modified count-rate corresponding to position z*,

Yi is calculated by
Ti = a + b z± (107)

where a and b are the least squares intercept and slope, respectively.

Mickley, et. al. (15) also present a method for finding the

confidence limit envelope for a set of data. The estimate of the

error variance of Yj_ caused by a variance of y± is given by

S
e C*±> =

[§ &1 ~ 7±* I ^i - 2)]-[l/n
±

+ zj £ z\

Using the t test, the confidence limits of Y^ are given as

Confidence limits of Y± - ( + t) S
e
(Yi ).

The term (n-j_ - z) represents the number of degrees of freedom

9
associated with SQ (Y. ) . The number of degrees of freedom in this

e i

work was 3» giving a value of t = 3.1-82 corresponding to a 95 per cent

confidence limit.

All the data, both with the rod and without the rod, are plotted

in Figs. (10-17). The values given for were calculated from the

least squares technique; error variances of the o values and the

95 per cent confidence limits are presented on these plots.

(108)
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6.0 FI5U1TS AND CONCLUSIONS

S.1 Defining the Effective Pile Size and
Equivalent Cylindrical Pile Radius

In most reactor calculations a convenient boundary condition and

that is often used is that the neutron flux vanishes at an ex-

trapolation distance past the physical boundary of the reactor. This

assumes that the negative neutron current, Jx_, equals zero at the

physical boundary of the reactor. For the case of a semi-infinite

I.O -

0-8 —

|

x^z-cos ax

0/ C.6

%
- -

0.4 - -

0.2 .

o
0.5a

X >
VvnXj,.

Fir 13. A representative flux plot in the x direction
for a cylindrical or rectangular parallelepiped
reactor.

slab, the flux shape in the x direction is a cosine function (see Fig.

(18) ). The flux is also a cosine function in the x and y and r

directions for the rectangular parallelepiped and cylindrical geometries,

However, in the z direction for a cylindrical or rectangular

parallelepiped subcritical reactor, the flux shape. is an exponential
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. _ i of ...
. near

Ice. to a cost.

could actually be extrapol* ro. K iser (12) cor.siu at

3 data were much too random for any iefinite coj . . His

calculation.;: she hat the pile looked like an inverted 11.

he escd 0.71 At\ for "Lie sxtr ion

the x and y dimensions.

... . 's conclusions, 0.71 AkWas used for tl .
-

trapolatio] ance, 1, in "ehe :-: and y dimensions in

value use A^ ".:as 2. - 0.C9 cm. This was the _h

Foulke (5) and Kaiser (12) usee. Thus, the effective x and y

of the rectan • pile are ^9 - 315 inches I . is.

A study ef the c::trapeiatel height, c, vac not made t

, a technique to make this stu s developed. Th;

for det rmini ie extrapolate , c, c si ,ed of a two

meter, )£ * * ar.d c, iters procedure. This i.

consisted of using Eq. (20) to calculat polated hei ;ht, c,

the IBM 1620 iterative technique (12) to find the q* * paramet

s method, an extrapolated of 10?. s de-

termined.

analysis was perfc . 1 1 that -1 source

itionii used in th :ve for
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parameter, i , , will yield a better estimate of this parameter

in the value obtained when using 0.71 At*, plus the physical

ndary of the pile for the extrapolated height, c. Table (4) shows

the results of this analysis.

The source positions used in this ivork were one source located

at each of the following four positions in the source layer;

1 . x = -h 22 inches, y = inches

2. x = inches, y = + 22 inches.

These positions were approximately one half the distance between the

pile's origin and outside boundaries. For this reason, the harmonic

content of the parameter,
-i -t » whould be negligible and consequently

both the Cg and Cp factors should be very nearly unity.

Table 4. The Results of the Extrapolated Height Analysis

z, in. Count Count Cj? Cg Count CT C„
Rates Rates Rates

Sxtrap. Ex-crap. Extrap. 0.71 Xw 0.71 X^ 0.71 \ 6

Height Height Height

42.156 638.5 615.4 0.9992 1.033 619.8 0.9960 1.034

50.156 401.2 394.4 0.9982 1.019 393.2 0.9907 1.01

7

58,156 250.1 248.8 0.9957 1 .009 253.4 0.9785 1.008

66.156 161.0 161.9 0.9894 1.005 168.7 0.9503 1.004

74.156 103.2 105.7 0.9744 1.002 116.4 1.8848 1.002



It can t ?.?1 Au i for th

jlatic. • ite

different frc Ihen the i ive

procedure described previously ..'... q^ and Eq. (20) is

lated cur\ -. rersus z position is nearly

original data points arc po tied very close to the calculated cur-. .

Also, simple least squares fits c L • curves to the data points

j plots yield slopes very close to the values

o tained for u i -t from the iterative technique. However, 0.71 Au.

r eolation distance, the calculated curve is quj

differ the linear plot expected because of the source positioning

As described in section 2.1 .3, the equivalent cylindrical radius

was calculated from Eq. (22). The value found for this radius was

3 .55 inches.

6.2 Calculation of the Control Rod Worth
of a Centrally Located Control Hod

r. a Subcritical Reactor Syste.r. by One Group Models

6.2.1 he Result of the Ser.i-Z::r,-erir.:cntal Calcl'-tienrl

od for Findin ~ the Ch in the li ":.' riplication rector .

The results of using the IBM 1 620 pre hich are presented in

pendix E, to calculate the effective plication factor of th

K.S.U. graphite subcritical assembly are presented 3j le (5).

ective multiplication factor of the ;raphite pile with a central

located control rod T.:as calculated by Eq's. (13) and (2*0.

I!he values of Ak
e
presented in (5) were calculated fr

Tcrent sets of count rate versus Z position dat . he can
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Table 5. One Group Effective Multiplication Factors

Set

Number
ke

No . Rod . ith Rod

-4ke $ Dev.

From the
Average

1 0.532^ 0.5377 . QW? +1.36

2 0.5787 0.53^4 0.0443 -0.45

3 0.57^-0 0.5302 . 0438 -0.68

4 0.5729 0.5293 0.0^36 -1 .13

5 0.5757 0.5316 0.0441

6 0.5767 0.5325 0.0^42 +0.23

Average 0.0441

Tables (3a and 3 D )» section 5.1 » the lowest data point was taken at a

z position of 42.156 inches from the source and the highest data point

T-.as taken at a z position of 74.156 inches..

6.2.2 '"
- 'esuits of Calculate: •- the Chance in the Effective

'"v.ltii-lication Factor by Exoerimentally Measuring the Inverse .elaxation

Lengths . The results of finding the change in the effective multiplication

factor, £ke , by measuring the change in relaxation length due to the

presence of the control rod, are presented in Table (6). Six sets of

count ra \ /ersus z position both with and without the control rod were

analyzed to find the Ake .

The first portion of the IBM 1 620 program presented in Appendix E

was used to analyze each set of data to find the parameter, -|
-j

.



suits

^o- u cm.
4

c. .. - Per

1 0.0217J 0.023^5 c. . 506 O.c; - .74

2 0. 021 390 0.02362 0.5' . 0.0: - .

3 0.0221 01 0.5 0.5: • 353 -3-

if C . 0221 60 . : : 0.5729 0.5367 0.0; .

5 c. 022030 0.02335 0.5?57 0.5 3^0 _

6 321 930 0.02385 0.5?c^ 0.5 0.:

- .

.

'_

i: .or. "

in the effective r.uitiplicatio:'. factor vras calculat an

apprc>:i:r.at . :.so:yted by Glasstcr.c and Ed] .. re-

sults of these one 'roue calc ulations are presented in Table (7).

values ere also plotted in Fig. (20).

It can be sc Jable (7) that this approximate method ylel

Lte high values for ^ ke cc i
to the results of the other .-.odels

used here. These results she:; that erroneous a ie

... j a poor calculationa] 1.
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Table ?. The Calculated Results of the Approximate Methods

a /R -Ak
e

-Ak
e

_Ak
s

x 10 One Group Two Group One Group

5 0.1350 0.06S0 O.O8365

10 0.1503 0.0985 0.09303

20 0.1095 0.1119 0.1049

30 0.1331 0.1215 0.1133

40 0.1941 0.1294 0.1202

50 0.2037 O.I363 0.1261

60 0.2122 0.1425 0.1314

70 0.2200 0.1432 0.1 362

SO 0.2272 0.1525 0.1407

85 0.2304 0.1560 0.1423

90 0.2340 0.1535 0.1449

100 0.2404 0.1633 0.1488

6.3 Calculation of Control Rod Worth of a Centrally
Located Control Rod in a Subcritical Reactor System

by Using the Two Group Models

6.3.1 The Results of the Two Group Calculational Method for

Findin--
;
the Change in the Effective Multiplication Factor . The change

in the effective multiplication factor ".-.as calculated by first finding

the increase in the radial buckling due to the control rod. This in-

creased buckling was then used in Eq. (33) to give Ake . The results

of these calculations are presented in Table (8).
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s -^"c .

;>o -

1 C.532^ 0.5525 o.c '

1 . 5787 c- 0.0302 +0.

3 . -J?kO 0.5'
. - .

0.5729 c.5^32 . -1 .00

5 - 0.5 0.02 -0.33

0.576? 0.5^3 . c

:

+1.33

.

The values of k were foun k^ ! s ea~
^2

hod of section 2.1. k^ wer to calculate t]

2 2
major ; grc Lings,

fj*. I? z^zzti-

was 1 to calculate the radius of a fictitious critical reactc .

This radius was used to calculate the increase 3

of t] tig. 1 ometric buckling of t the control

rod was calculated usi r suits. . [52) was ussd to fi] —
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'
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'
"- ^_2 [_£ : bion ._.___ or

:' bive V :iplication Factor. ?ho two

up approximate and corrected one group approximate equations deriv

3 by Gladstone {','] -core employed to calculate Ake ,

1 toretically. These results are presented in Table (?}„ Also a cor:-

-aK

40 60

R;/Ro x l0
4 9-

00

Fig. 20. The results of the approximate methods,

values Tor -Al;_. versus the ratio of the control rod radius to reactor

radius is presented in Fig. (20).

he results show the values for Ake
to be quite high. This would

: to indicate that erroneous assumptions had been made in the derivation.
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6,k Perturbation Calculations

The change in the effective multiplication factor due to the

insertion of the cadmium annulus was calculated by usin
;

- Eq. (7'0,

section 2.3. As was explained in section 2.3, a one ~roup or

multigroup calculation yields identical results for the case of a

bare reactor. Since the cadmium annulus was in excess of 0.03 inch

thick, the inner radius, r , in Eq. (7^) was varied for calculational

purposes. The average value of k calculated by the method of section
e

1

2.1 was also used. Therefore, a plot of Ak ( = k -k ) versus
e e

2
ei

Ar ( = r - r ) was made. This plot is presented in Fig. (21).

It can be seen that from the first order perturbation assumption

(the perturbed and unperturbed fluxes are approximately equal) Ak is

linear with respect to the cadmium thickness. This means that the last

1 mil increment of cadmium is just as effective as the first 1 mil in-

crement. However, most references (7, 1^, and 17) state that 0.03

inch is "black" or acts as an absolute sink to thermal neutrons. This

means that the A\<. versus Ar plot should reach a constant value for

a A r of 0.03 inch. Because the first order perturbation calculations

don't yield these results, another method of analysis was sought and

is presented belo'.:.

In section 2.3 there is presented a method for cvaluatin.- tho constants

of a flux function synthesized from orthogonal functions. This method

will yield a better approximation to the perturbed flux. Therefore, a

better value for k can be calculated. Eq. (105) was used to evaluate
2

the ortho.-onality constants. The orthogonal functions used wore zero-

order Bessel functions of the first kind with ar.mments such as o< r,
n
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6.5 General Comparisons

Table (?) is a comparison of the Ak
e
values of the cadmium

annulus in the K.S.U. graphite, calculated by using experimental data

from three models.

-able 9. Comparison of Three Semi-Experimental Methods

Set -£ke

C-roup

Sec. 2.1.3

- Ak

Relaxation
Length
Sec. 2.1 .4

Two Group
Sec. 2.2.1

1

2

3

4

5

6

0.0447

. 0443

0.0438

. 0436

0.0441

0.0442

0.031

3

0.0323

0.0353

O.O362

0.0340

0.0349

0.0299

0.0302

0.029S

0.0297

0.0299

0.0304

Avera :e 0.0441 0.0341 0.0300

It can be seen from Table (9) that the one group model yields higher

values than the relaxation length model. The two group model gives

A ke values lower than both the one group and relaxation length models.

Since the one group and relaxation length models assume all neutrons

are of thermal energy, these models should yield higher values for Ake

than the two group model. However, the two group model accounts for the



itron ...
calcula •. accurate. The on

uses a 'etical method to fa

ice, th Ak - . ~?'r.c re .

exp« .tally . to calculate tl

value of the cadmium poison in t K.S.U. gr

s relaxation . - yields a more accurate value for AkQ t

;-roup model.

xLained in the perturbation section, i ct sol . -

for £k„ could be calculated if the

exactly. It can be seen fr . (21 ) that the series r

of th r r id flux yields a — . value which is less than th

roup £l. value. If an infinite series "ere used to represent the

perturbed flux, ar. exact value for Ak could be calcu! sed or.

the improved pe lodel. By c; . (21 ) and fable (
"

. ,

it can be seen that fro two group nodv.1 an- - .ion

model yields similar values for the Akg of the cadmium poison in 1

Kansas state rsity graphit I critical reactor sy
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7.0 SUGGESTIONS FOR FURTHER INVESTIGATION

'This work has served as a good introduction to the theory and

_\ lents involving control rod statics and kinetics in subcritical

ssemblies. All of this work can possibly be extended to a different

reactor system, such as the water moderated, natural uranium system

ilable at Kansas State University.

In addition to the static methods presented in this work, further

refinements could be developed if transport theory calculations were

used to determine Ake . Different functions could be used for the

series representation of the perturbed flux and Ake could be calcu-

lated using the series representation in the perturbation calculations.

The two kinetic methods presented by Hogan (10) and the method

.'eloped by Kimel, et. al. (13) should be investigated further for

possible extension to the subcritical reactor. Absorbers ranging from

_-y
!1 to "black" could be inserted into the reactor. The methods

presented above could be aoolied to these absorbing rods.
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APPENDICES



ion tc ation

..-.o sol; :

shown in 1 1 •. (A-1 , . Th s.: to

V ?
Q - - <$> = 0. .-',

Fig. A-1 . ...

bion is subject to th« lary c.

<p ,
a"- ~I ] it boundaries. Thes< itior.s

.ay bo stated math ~ as

<p(±
'

: , ) = 0(:: . ;) = C ,c) =

•: a, b, oiid c are the extrapolated ::, y, and „ dimensions of

• (A-1 ) may
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(«)
2
/c)x

2
-i- c) /c)y + c)

2
/c)z

2
) + B

2 =0. (A-.2)

Ass ling trie- variables are separable, a solution of Eq. (A-2)

should exist such that

cj>(x,y,z) = X(x) Y(y) Z(z) . (A-3)

>stitutf is solution into Eq. (A-2), the diffusion equation becorr.es

YZX" + XZY" + XYZ" + 3
2

XIZ ^ 0. (A-^)

Dividing both sides of this equation by XYZ gives

X»/X + Y»/Y + Z»/Z + 3.2 = 0. (A-5)

In order to meet the boundary conditions let each term of Sq. (A-5)

be equal to a constant as follows

X»/X = -0(1 (A-6)

Y"/Y = -/3: (A-?)

Z"/Z = !Tm
2

. (A-3)

Rewriting Eq. (A-6) gives

X" + 0(
2

X = . (A-9)

A solution of this equation is

X(x) = A
ra

cos Q(mx.
(A-^ N

To meet the boundary condition that X(a/2) = 0, Q(n
must be given by



..-
, ....

co tha is

Sini! for Y(y)

Y(y) = An eos -Try/.: , n = 1,3,5, ...

res

z" _ jfjj z = o .

a solution given by

z(z ) = c jr .= . CA.15)

function may be m :o fit the bo conditj

Z(z) = C si.:. tf ,
(c-s) . -c)

.0 solu i Lux, 4> , is the

solutions .'or X(x), i , Z(z> 'oduct solution.

cs co

Cp(x,y,z) = f. cL* rniTx/a cc w /a sinh /

:itios yver

iliary

is obtained and can be written as

O _ 9
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n mr/a. and mrr/b can bo substituted for /3 r,
and c^ . The result is

B^ + c^n - (n7T/a)
2

- (mTT/b)
2

= 0. (A-18)

2
3^ is the material buckling of the pile.



Solution to the - . L< Lons

is uo bo s .

.-

D
2 ^

2
4)

.:
- £a 4> 2

+ ^R <£l = ° CB-

_'o y>„ _s bhe thermal flux

0„ io p times the fast flux vrlthout resonance ca

; fash and thermal sion coefficients

Cp is a slowing doT
..Ti cross sootier, for the fast neutro]

^£"„ is the thermal neutron absor cross section

k^ is the infinite mu] Lcation iV.ctor.

. ,ous parts of he's. {?:-". ) i. . - 111 ssui r.ior.s of

type

v
2
4>< + b2 <^>

1

=

e

V
2
<£ 2

- b
2 6

2
= o .

used in botl '

. .
- .

- _ .: sar:e r .

To illustrate the validity of this st .-.t, Eq. (B-2) may ho solv

for Cp. i is of <2>^ cud this result sub-shit Lnto Bq. (1-2).

first of those results in an express p
ar.d the second equation is one involving only <$> A . Ir. both equatior

,

the operator parts are identic: .

Eq's. (3-3) - - - O. .. _ ,-,

Eq»s, (3-1) s - \ for y~§- end y
2

<fi
, respectively.

The results after r
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-(^32 +^R)4> 1
4-k£

a
6

2
= o (b-5)

^R^ - (D
2

B
2

+ £j V 2
- 0. (B-6)

Since Eq's. (3-5) and (3-6) ar simultaneous equations, both equal to

zero, the determinant of their coefficients must be equal to zero, if

a non-trivial solution exists. Setting this determinant equal to zero,

expanding the determinant, and rearranging the result, the folloi-Jing

2
quadratic equation in 3 is obtained.

[b2 J
2
+ (1 /r + 1 /l

2
) 32 _[k -i /r L°j = (B-7)

The quantities L and IT are the thermal diffusion length (Dp/£ a ) and

Fermi age (D^/tZ.-?), respectively.

Using the quadratic formula, Eq. (3-7) can be solved for the two

9 2
roots of 3~ . These two roots of 5 are given by the following expression

B2 = (£
2
J
= i [-d It + 1 /l

2
) ± /0/r + 1/L2 ) + Mkw -l)/rL2)(3-3)

Using these quantities for 3 in Eq's. (B-3) and (3-^) and defining X(r)

2 2
and Y(r) to be the flux components corresponding to ju and 17 ,

respectively, these equations become

V
2

X(r) +ju Z x (r) = . (3-9)

V
2

Y(r) - Z7
2 Y(r) = . (3-10)

The solutions to Eq's. (3-1 ) and (3-2) are linear combinations of

X(r) and Y(r). The permissible solutions for X(r) and Y(r) in cylindrical

geometry are



.

[ - •:

,; = C [l (eC2r)
+ WK (*2r)J . -12)

For a critical cylindrical ' tor of finit< , te auxiliary

paration constants equations define &
^ ar.a o(

9 ac

oi 2 = /A
2

- (rr/o)
2

(3-13)

cxV? = l72 + (rr/c)
2

. (3-1 -'0

. and (j> « arc linear combinations of X(r) and Y(r), th

expressions for 0. and 9 can be written as

1

= AX(r) + C Y(r) -15)

(f> z
= A'X(r) + C« Y(r) . -16)

•s. (2-15) and (5-1 6) represent the most general solutions t.o Eq f s. (B-1 )

and (3-2). However, pemissible solutions exist such that <p J. = AX(j

(p o
= A'X(r). If solutions arc substituted into either Eq.

(3-1) or (2-2), a relationship between A and A 1 can be shown. Usi

only Eq. (3-1 ) and rcarr the result, the ratio '-'/A, the coupli.

coefficient S. , is given as

S
1

= A' Ik = ^vJ^2M
2 + £j. (3-1?)

if only
<£>i

= CY and 4> = C'Y arc substituted into Eq. (2-1), a

second coupling coefficient, 3^ , is i

s
2 = c/c = £

7Jl ẑ--~ v \1
- -' 8)
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refore, the general solutions of Eq's. (13-1 ) c:id (B-2) are

^-1 = AJ (^r) + A Y (c*,r) + CI (^ 2r) + CJL^otf) (3-1 S

)

4>2 = s
1

AJ (^r) 4- A Y (^r) + S,, [ (I (<*
2r) + ^(^rJJ. (3-20)
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. VTill be fol] . [Uite clc Telle-.

1. - - .

Li L, the diffusion equations can b

ct .. Lon, as

::o= (2$/<H (C-1)

.'. is the matrix operator and Cp is a vector set of flu: . If

af neutrons is conside G> bee

:

:: = r[s7 2
+ £a/E (1^.-1)]

$ = 4>(r,t) • -3;

reas, if two groups c is arc cc. , these quantities arc

.ten as

••' =

# =

VD2*
2
-^a>-'"

I^Cr.t)!

!^ 2 (^t)li .

(CJO

(c-5)
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Consider a solution of Eq. (C_1 ) of the type

§ = exp(oit) •', (C-6)

T
- e Or is a vector flux set depend: ng only on space and u> is the

sar.e for every rroup since the groups are coupled by the fission chain

. Lotion. Using Eq. (C-6), Eq. (C-1 ) can be written as

M $r
= coj)

r . (C-7)

The quantity UJ is actually the reciprocal of the reactor period.

Eq, (C-7) will yield a' series of eigenvalues, a/,,, and a set of

corresponding eigenfunctions, <? v ( r )» The eigenvalues will have only

one positive value corresponding to the stable reactor period, and

all the others will be negative. All the negative eigenvalues represent

transients which decay out with tine. Therefore, only the positive

eigenvalue is of interest here.

If the reactor is perturbed a snail amount, Eq. (C-7) can be written

as

CM +P) §1 = "*'&' (C-8)

where ? is the matrix operator due to the change in the reactor system.

Due to this change, Q
r

becomes cp and u> becomes uj' . Based on

these considerations, a general equation for uj
4 - oj can now be derived.

This equation can then be used to find the worth of a control rod in

a particular reactor system.

Consider two particular eigenfunctions, CD. and CD, so that

Eq. (C-7) can be written as



, - ) by o
;p

aj . -10) by &
r ,

reactor vol ......

pe

X <A
n

M &
k
dV - /.. o ;: £ = (w^) h &. &/'• (W

r
nfunctions, o , ere orthogonal, i, .

v .

= 1

.. it follows that

JL —

this case the matrix operator Mi to self-adjoint.

Consider now the case . "unctions, b , do not fc

: .• lc anal set. For this case an adjoint operator BT" can be

.-. that

X <&**& = X ^«+

&J
dV - (C"13)

r+
J s are called the adjoint function; .he ei

of the ad. equation

j U> is the complex co.., of u>. The adjoint matrix operator

is, in •

, lent oi rix operator
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M by its complex conjugate and interchanging rove and columns. Since

. the elements of M are real for a reactor system, M is formed

(ely by interchanging the rows and columns of M.

A similar proof can be performed to illustrate the validity of

- (C-13) as was performed to show Eq. (C-12). Consider now Eq's.

(C-8) and (C-14). Multiply Eq. (C-8) by & +
and Eq. (C-1^) by £ ,

integrate the resulting equations over the whole reactor volume, and

subtract the results. The final result will be in a form such as

(u/-w) J^ $$&V (C-15)

where u/'~ is equal toU. Using Eq. (C-13), Eq. (C-15) can be put

into a form such as

tia> = /y C P &' dV / J^ i>
+
$' dV (C-1 6

)

-..here 4w is equal to uj'-u). Eq. (C_";6) is then used in the particular

group model to find the worth of a change in the reactor system, denoted

by the ? matrix operator.
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2
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le D-1 . Data Loading Sequence

Card Number Symbol .ta Position Forau

1 B Extrapolated
x dimension

1 H Extrapolated
a dimension

1 W Effective Dif-
fusion Length

1 TAU Fermi Age

1 A Source Position
in x direction

1 WY Effective Fuel 6 E10.4
Height

2-6 Z(I) Z position 1 E10.4

7-11 C(I) Count rate. 1 E10.4
Corresponding to
Z position

1 E10.4

2 E10.4

3 E10.4

4 El 0.4

5 El 0.4

The input data were loaded in the following manner after the object

and subroutine decks had been loaded.

The output will be written out by the typewriter and all output

will be labeled. Sense switches 1 and 2 in the on position will give

all of the correction factor values used to correct the count rate data.
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>0P i

DIMENSION
ANC
FORMAT

READ
CONS .. TS

£, H,W, Tcu,

A, V.'Y

ls|

SET
SUMLN=O.SUMZ2=0

- I2=O.SUM2L=0

Z =0.

CAL.CULATE
1 SUMLM =ElnC

= Z(li -.

SUMZ2 = 2Z*
SML 2 SUMZLs ^Z(!r C)

SUMZ i = i-Z

LCULATE

SLOPE : -Y,,

"X. = FIRS

CALC.
1 CCRR. CGI FF

CALCULA1

:T\2 2

1=1

CALCULATE
cz =

|_ e71i(C-Z)

LOO? 5

Ch = i

CC.\ST =

p e r,

C£COS— COS
D̂

m - j

LOC?i
CALCULATE

LC OP 2
CALCULATE

T5=cos 2g&

C/-CLLATE

[TWff-S

-

eTfr"'- z

CALC.

CH =

CALCULATE

C *!>CHxCC

CALCULATE

CO
CCU)

(CE)x(Cn)
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SET
S.V.LA=0 SMZ2=0

SMLA2sO ZSLA=Oj
SUMZ =

CALCULATE
3MLA = 2lnC SiV.Z2=2:Z

2

SMLA2= 2-ClnC}
2

ZSl_A=£Z(lnC)

SUMZ=tZ

B
2
FIRS

CALCULATE

CALCULATE

•<o» e (l+Lr t,,\)

CALCULATE

CALCUI TE

k eo e"
5G T

PRINT
2 2

k e, k», B3) Bm



: d

DI

1 . . . . .- .
.'•)

2 . , I5.8)

/)

1 61 /

)

• . /)

/)

/)

166 - FT /)

1 5.8, - /)

1 , E, --, W,

INT 1,

DO 113 ~ = 1 ,5,1

112

114 DO 5 I = 1 ,

. C(I)

235 .T( 16H C(I) C/M, 17H Z(l) CM /)

30 231 I = 1,5,1
231 PRINT 3> C(I),Z(I)

: = 1

IN = 1

SUMLN = C.

s:z::2 = 0.

= 0.

= 0.

:l = 0.

10 t::2 = log(c(i))
23.22 = TM2**2
sumln = + TM2

= SMLN2 -;- TM22
Z = 3:22 +2(1)

t::3 = z(i)* !

.

MZ2 = 32322 + 2

.
= z(i)*tm2

sumzl = sumzl + tm4
1-5

15,20,20
151 = 1+1

GO TO 10

20 BET(IN) = ( )-(5.*SUMZL))/((SDMZ**2.)-(5.*SDMZ2))
RT = SMI 22
IRT = SQRT(SRT)

RT

, bet.':

II IN)) 100,105,105
100 (in) = , bet(]

105 1 = 1
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. FIRJ = BET (IN)
2 = 2.*(3.1^16/B)**2.-FIRS**2.

2? TRMA = -2.*FIRS*(H-Z(l))
MB = -2.*FIRS*H

trmc = e
SXP(TRMB)

- 1
. -TRMC

= 1 . n
ce = trme/trmf
tee: = firs*z(i)

. :: = EXP(TRMG)
TRMI = TRMH/CE
TERA = TRMI*FIRS
- -. = 3.141 6*A/B
TERE = COS(ARGA)
TERC - TER3*2.
AM = 3.

u\
T = 1.

BCH = 0.

30 ARGB = AM*3.1416*A/B
"ED = COS(ARGB)
lE(TRD) 520,521 ,521

520 TRD = -TRD
521 ARGC = AN*3.1*H6*A/B

TEET = COS(ARGC)
IF(TERE) 522,523,523

522 TERE = -TERS
523 7ERF = TRD + TSRE

EET:2 = (AM*3.1^16/B>**2.+(AN*3.1^16/B)**2.-BM2
[BATM2) 90,150,150

90 EETE2 = -BETM2
GC TO 150

150 TRIE-: = SQRT(3ETM2)
TM = TRMM*Z(l)
TRM = EXP(TM)

= 1./TI
TRMO = -2.*TRMM*(H-Z(I))
TRMP = EXP (TRMO)
TRMQ = 1 . -TRl EP

TRIG?. = -2 *TRMM*H
TRE5 = EXP(TRMR)
TRMT = 1 . +TRMS
? = TREE/TRET
EC" = BCK+TERA*TRMN*TERF*F/(TRMM*TERC)

[ = EI-7.

IF(TESI) 50,51,51
50 AM = AM+2.

GO TO 30

51 TESJ = AE-7.
lE(TESj) 52,53,53

52 AM = 1 .

" = AN+2.
GO TO 30



-

,53
00

...

•

-J =

) 61 ,201

Z(l),CC(l) t CH,

2c: . - :.

I = 0.

2=0.
Z2 = 0.

A = 0.

6k- tmi = ] ::))

LA2 = SMLA2+T]
- Z(I)

:c = z(i)**2.
= SMZ2+TMIC

::

. :::e

ST = 1-5
3T) 65,

65 I = 1+1

66 ::: = in+1

.

..-
. la)/(sdmz**2.-5.*smz2)

-1 )

IF(

kOt IN) = - ET(I
410 DIFF =

'0,910
90. - -DI

.

'05,62,62
62 = 2.*(3.1 •- 3 '-

3>(ERM)

.

)

= 2.*(3.1 )**2.+(3.1M
-

l)

..:: 3) 100c
ioc" _;:)
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PRINT 161 , 31-12

PRINT 1 2,

1001 print i63.akinf
iff

IF(!3 117,173,173
11? M N+1

:o 114
173 e::d
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1 . .

critic 'or as . .. -

1 ; on tl ter.

r a critical reactor were d ).

jdified to :iv

.. -/?: i } j
:t) - n(t)/jf* + a c(t) + s

r

dt ={k
e /3 /j?*Jn(t) - Xc(t)

-

-

... - ,

c(t) - precursor density

ka = effecti1
' cation co.

c

[3 = effective lelay neutron :rac;.i

^ = the- ] .. ;ron life li

A = averaged dc!

e ~ co'-'.i'c j term

The only modification to obtain 3q's.

the critical kinetic equations is the a - the source term, -, in

. -
. . For a nca^ critica] neutrons

ligible and the source term is from Eq. (E-1). Tor

-

• lied in thi . low,

to sustai

. ;c rra was not J2:c- cc andent. However, -

'

.
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(2-1 ) - )-2) are spatially independent. Therefore, a spatial

source ter t be approximated in order that a solution

may bo found for Eq's. (2-1 ) and (E-2).

The approximation made was to co:.: ider an idealized avcra ;e ur.it

id writing a neutr ba! mce en this unit volume. In the

rsical system, the source neutrons enter the system from the lower

ndary. Thus, the source term actually is spatial dependent. The

unit volume on which the neutron balance was written was assumed to

have a r of source neutrons equal to the total number of source

trons entering the system divided by the total reactor core volume,

Eq's, (2-1 ) and (2-2) can be applied to a critical reactor system

in which a step insertion of reactivity was made. 2or a critical system

A

k

e was defined to be

Ak
e

= ke - 1 (2-3)

where k
e

is the value of the effective multiplication factor for the

system the step change in reactivity. The effective multiplication

factor for the initially critical system is defined to be unity. If the

sical zyz J

Lc:,. :rhioh was considered in this work, was thought of as a

critical system containing control elements of enough reactivity value

to give the system an initial effective multiplication factor of ke ;

the actual system under consideration was one in which a negative re-

activity was "built-in". After dropping the poison rod into this system,

the effective multiplication factor was lowered still further to a

\Talue of kQ . Three A k ' s can now be' defined.

Ak_ = ke - 1 (E-*0
e

1
e

i



Aka = Ak + Ak : - 1 .

:....-.
.

. -

i as

dn/dt = /[(1-/3) k
e

-l] //} n(t) + Xc(t) + [l -A)/Jt )

-

#IJC\ n(t) + f^ke £ /Jf*\ n(t) - >c : . -

To derive :i >ns ..'.

ition, of -II the variab] r^ cjl_ . rice

, ras operated levels,

lue could bo as.
'

be its w - . VJitl

;ss of aU Les were cal-

ls ~J:.z use of the following boui I conditions.

a. t < (0-) b. t —» °°

3/dt = = ''it = =0
e
2

n(t) = r.
Q

c(t) = c
Q

n(t) = n^ c(t) = c^ .

: boundary cc. itions to IV 0. [1-°) - ),

following relations were obtain

c =

f/3::
, /Aij \ . (S-10)

;ters (y3 > X » A! . The value I

k , -ted by usj .leal traverse data,
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c rrect. The en roximations for L k lue to the poison rod
* *

"

2

: vc an • i for- Ak . A series of curves of the flux versus
"2

tine with —1:. as a parameter was found.

The problem of Tj3.i-c-.etov and time scaling is discussed in the ne :

2. Derivation of the Machine Equations
for the Anal 0.7 Solution

As ireviously derived, the following are the modified spatially

independent reactor kinetic equations which apply to a subcritical

reactor system with a homogenous source, 5*

dn/dt ={al%
p
/je*}n +[(1-/3) Ak^/iln + XC + S (E-11)

dc/dt =[k /2 /Jf*]n +[dke /9 //}n - XC (E-12)

- -

'-j boundary condition at (t = G-) was applied, the following two

Lnin equations resulted

T? A O >C =/k
e /3 /Xfj» (3-

S = -fak^ //]V (B.1I0

Table (E-1 ) contains the nuclear parameters used in deriving the machine

equations. Hughes' data for delayed neutron fractions were used. The

value taken for thermal neutron lifetime is a typical value for a

graphite moderated thermal reactor.



- .

/.

fi
.

1-/8 0.

&o 0.(

0.5?;?

"
e
2

. ?57
<

£k
e

-0.4243

2
-0.10

sec'

ccc

./r./cc

constants, the following two equations were calc i.

(dn/ :
.::. = -0.099245 :: 1

3 n
Q

-'5;

(dc/dt)raax. = -0.755
c

wit] o equations and the constants of Table (E-1), th of

seal (22) ear. to followed to deriv

following machine equatic

[2. ]
= -(0.4286) (10) [25:-]- . : [ -] +(0.0501) (

- (0.42 3)[iqj (I-
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] = (0.5216)(10) [25C:-] - (0.906) £250rJ - (0.601)

'< (10) [.4c] (E-18)

[250-j = /[2.5dt] & +(OCl0] (E-19)

r - .-
-

r _

U+cj =(1.33*10-*) j (3CC;. \ ir + (0.8672) [10] (2-20)

-2
t =10 ~C and T is the machine time. A possible program for

. PACE TR-10 analog computer is presented in Fir. (22). In Table (S-2),

a listing of the potentiometer settings is presented.

Table E-2. Analog Potentiometer Settings

-Ak,

0.1

0.055

0.04

0.015

Potentiometer Potentiometer
No. 2 No. 4

. 992 0.906

0.79^ 0.725

0.545 0.499

0.397 0.362

0.149 0.136

3. Results of the Analog Solution

The one delayed neutron group analog solution was worked on the

PACE TR-10 analog computer. Values for control rod worth, Ake , were

varied from -0.1 to -0.01 5. A series of transient response curves

to the step insertion of these 6 k values were obtained. These curves
e

are presented in Fig. (E-2).
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The objectives of this thesis were to make reactivity determinations

and control rod worth calculations for a neutron poison, a hollow

cadmium cylinder, in the Kansas State University graphite subcritical

assembly.

To carry out these objectives, several mathematical models were

used. The reactivity determinations were made by using the following

three methods to analyze the data taken in the graphite subcritical

assembly. These methods were: 1. a one group analysis, 2. a re-

laxation length analysis, and 2>. a two group analysis. The theoretical

control rod worth calculations were made through the use of the

following three methods: 1. an approximate one and two group technique,

2. a perturbation technique, and 3* an improved perturbation technique.

These methods were all developed for a subcritical reactor system.

A comparison of the results of the calculations showed that the

two group analysis and the improved perturbation technique yielded

similar values for the reactivity of the control rod.
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