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1 INTRODUCTION

The purpose of this report is twofold: first, to summarize the
introductory theory of reliability of a composite system consisting
of multistages and multicomponents of various types, secondly, to
present results of the optimization study on the reliability of
life support systems by means of applying an integer programming
technique, namely, zero—-one integer programming.,

A life support system is defined as a system that creates,
maintains, and controls an environment adequate to permit the
personnel or life operating in the system to function at a maximum
efficiency for extended periods of time. The space enviromment is
not compatible for life., The vehicle containing the occupant must
provide a structurally adequate, hermetically sealed cabin encompassing
an atmosphere adequate for the needs of the astronauts. The importance
of the life support system demands a high reliability of the system
for safe and flawless completion of the project. Each subsystem of
the life support system must work properly,

Reliability is the probability of successful operation, Bazovsky [3]
defines it in the following way, "Reliability is the probability of a
device performing its purpose adequately for the period of timé in-
tended under the operating conditions encountered." When equipment
works well and works whenever it is called upon to do the job for which
it was designed, it is said to be reliable, The measure of the
reliability of equipment is determined by the frequency of failures
occurring during the operating time of the equipment., If there are

no failures, the equipment is one hundred percent reliable, if the



failure frequency is low, the reliability of the equipment is usually
still acceptable; however, if the failure frequency is high, the
equipment is unreliable,

The reliability of the system can always be increased by using
a large number of supporting units, but usually there are restrictions
on the size of the reserve that may be provided, A large reserve
involves increased cost, volume, weight etc.

A system can be made reliable by adding supporting components
as spares. This procedure adds weight and volume to the system, and
weight and volume of the space-craft are factors which must be kept
as low as possible. Addition of a component increases the weight
and volume but decreases the unreliability of the system; so here
is an optimization problem, The reliability level must be achieved
by adding a minimum to weight and/or volume to the system. Or the
reliability must be maximized by utilizing all the weight lift-up
capacity of the spacecraft. This is the problem considered in this
report,

An introduction to the theory of reliagbility is presented in
the second chapter. The first section describes the types of failure,
It is followed by the presentation of the gquantitative characteristics
of reliability and the dependence of reliability on time., The non-
replacement test for reliability estimation is introduced. The
need of achieving high reliability and the means for improving the
reliability are discussed. The expressions for reliability of systems
with components or subsystems in series, parallel, stand-by, and
systems with spares are derived. At the end of the chapter, the

problem considered in this report is described.



The third chapter covers integer programming methods and
indicates their application to optimization of system reliability. The
methods of solution of the integer programming problems are described
briefly, while an implicit enumeration techmnique is presented in
detail, A computer program based upon this algorithm was used to
obtain the optimal solutions for the problems in this report. Alsco
included is the review of the literature on the application of the
integer programming to the optimization of system reliability problems.

The fourth chapter presents optimum results of some circuits of
life support systems. The results obtained are compared with the
designs suggested by North American Rockwell Corp. [29]. A comparison
indicates that present system formulation resulted in a better ar-
rangement of spares, since the weight of the spares was less than that

presented in ref,. [29] to achieve the same level of reliability.



2 RELIABILITY

An introduction to the theory of reliability is presented in
this chapter. The first section describes the types of failure. It
is followed by the presentation of the quantitative characteristics
of reliability and the dependence of reliability on time, The non-
replacement test for reliability estimation is introduced. The
need of achieving high reliability and the means for improving the
reliability are discussed. The expressions for reliability of
systems with components or subsystems in series, parallel, stand-by,
and systems with spares are derived. At the end of this chapter
the problem of applying integer programming to determine the optimum

reliability of a life support system is introduced.

2.1 CONCEPTS OF RELIABILITY [3]

Reliability is the probability of the successful operation of
a system, Bazovsky [3] defines it in the following way, "Reliability
is the probability of a device performing its purpose adequately for
the period of time intended under the operating conditions encountered,"
When a piece of equipment functions whenever it is called upon to do
the job for which it was designed, it is said to be reliable. The
measure of the reliability is determined by the frequency of failures
occurring during the operating time of the equipment. If there are
no failures, the equipment is one hundred percent reliable, if the
failure frequency is low, the reliability of tﬁe equipment is usually
still acceptable; however, if the failure frequency is high, the

equipment is unreliable,



Well designed, well manufactured, thoroughly tested, and properly
maintained equipment should never fail in operation. However, practically,
we can not completely eliminate the occurrence of failures even though
the equipment is the well designed; and manufactured, and properly
maintained, There exist the following three characteristic types of
failures;

1. Early Failures - early failure of a component occurs early in the
life of the component. In most cases this kind of failure is a result
of poor manufacturing and poor quality control during the production
processes,

2. Wearout Failures - these are the symptom of component aging.

The age at which wearout occurs differs widely with components, ranging
from a few minutes to years. These failures are caused by the wearing
of thé parts if the equipment is not properly maintained or not
maintained at all,

3. Chance Failures - these are caused by sudden stress accumulations
beyond the design strength of the component. Chance failures occur

at random intervals, irregularly and unexpectedly, No one can predict
when the chance failures will occur; however, they obey certain rules
of collective behaviour so that the frequency of their occurrence during
sufficiently long periods is approximately constant.

Reliability is the probability that no failure of any kind will

occur in a given time interval of operation,

2.2 QUANTITATIVE CHARACTERISTICS OF RELIABILITY [36b]
Reliability as mentioned previously is the "probability of failure
free operation of equipment"; thus it is the probability of the event

that under definite operating conditions and within specified limits



of operating duration, no failure will occur, A typical probability
function, P(t), of a failure free operation of a system as a function
of time is shown in Fig. 1.

From the definition, the following characteristics of reliability
can be listed:

1. It is a decreasing function of time.

2. 03 Ple) <1

3. P(0) =1 and P(=) = 0.

EXPONENTIAL CHARACTERISTICS [36b]

Consider a population of N items with the same failure - time
distribution. The probability of success is R(t). The items fails
independently with probability of failure given by F(t) = 1 - R(t).
The number of units surviving at time t, N(t), is a random number
having p = R(t). The expected valve of the N(t), which is binomially
distributed is

n(t) = E[N(t)] = N R(t) {2.1)

which gives the reliability

]

R(t) “ét) (2.2)

and

1- R(r) = =28 (2.3)

I

F(t)

The failure density function, f(t), is defined as
_ dF(t)
f(r) = it (2.4)

Using equation (2.3), we have

1 dn(t)
N

n
dt

]

f(t)

n(t) - n(t + At)
N At

m

lim
At+0

(2.5)
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Defining hazard rate, A(t) as

n(t) - n(t + At)
n(t) A(t) *

A(t) = lim
At=+0

(2.6)

This is also called the failure intensity. The time dependent
nature of failure intensity for some components is shown in Fig. 2.
From equations (2.5) and (2.6) following relation can be obtained

N f(t) _ £(r)

From equations (2.4), (2.5) and (2,.,7) we o6btain
_ d F(r) N
;\(t) sl dt n n(t)
_1dn(®) _N
T 7N dt n(t)
-_4 4 2.8
- = E og n(t) ] ( . )

The solution to equation (2,8) becomes
t

‘5 A(t) dt
n(t) = AO e

where AO is constant of integration. Substituting the following

initial condition in the above equation.

n{0) = AO =N

Then we have t

-£ A(t) dt
n(t) =Ne
The expression for reliability, equation (2.2), then becomes

—étx(t) dt
R(t) = e

when failure intensity is constant, A, the reliability is given by
=2
R(t) = e k

Figure 3 shows this exponential function which represents the prob-

ability of failure free operation, i.e., the reliability of the equipment.
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The exponential function expressed in equation (2.4) for probability
of failure free operation is valid only for the interval between ty

and t, in Fig. 2. This is the interval when the failure intensity is
almost constant. The probability of failure is very small in this
interval. One should not use this equation to predict the reliability

of the equipment for any period beyond its useful life given by t2'

2.3 ESTIMATION OF THE FATLURE CHARACTERISTICS OF COMPONENTS [3,7]

To perform reliability calculations and to determine optimal
spare-parts provision, the distribution of chance failures and wearout
failures must be known separately., One should know as closely as
possible the true value of the mean time between failures, m, the
true value of the mean wearout life, M, and the standard deviation
of the wearout failures, o. The parameters M and ¢ enable one to
determine suitable replacement and overhaul schedules, and then the
parameter, m, may be used to calculate the probability of no chance
failures in the period between replacement and overhauls,

To determine the chance failure characteristics, one should,
therefore, determine the parameter, m, the mean time between failures.
It is estimated by measuring the times to failure of n specimens, ti’
i=1, 2, ..., n, then obtaining the mean time of these n observationms.
But these failures may however include some wearout failures, which
will contaminate the calculations, To exclude these wearout failures
the duration of the test must be so limited as to be reasonably
certain that no wearout failure will occur during the test period.

Epstein [7] has established that the maximum likelihood estimate

of m can be made by the "Non-replacement Test' method. When n components
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are originally placed under test and r of them fail at times

tl’ t2, cees tr which are counted from the beginning of the test,

and the test is discontinued at the time, tos of the occurence of

the r-th failure, so that the (n-r) components are still unfailed

at the end of the test. The optimum estimate for the mean time to

failure is given by the following formula.

5 t1+ t2 Fosew ¥ tr + (n—r)tr
m:
r
r
.z ti + (n--r)tr
- i=1
r

To avoid component wearout failures during a test, the test
truncation time, tr’ should be chosen to be as short as possible in
comparison with the wearout time of the components.

The sample size, n, for the test can be calculated. When the
available test time for a non-replacement experiment is t hours and
the expected mean failure rate is A, and the mean time between
failures, m, has to be measured with a precision corresponding to
r chance failures, the number of specimens is obtained by [3]

= T ='r
1 - exp (-At) Q(t)

n

where Q(t) is the expected unreliability of the component for an
operation time .

To find the mean and standard deviation of wearout failures, it is
essential to start the test with new components or with components
which have passed a burn-in procedure of a known number of hours to
weed out early failures. The sample is then submitted to test its

operation under simulated environmental conditions, and the test
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continues until either all or at least a substantial percentage of
these fails, The lives of these failed components are measured
separately, From this information the mean wearout life and its

standard deviation can be computed.

2.4 THE NEED OF HIGHER RELIABILITY

An unreliable or less-reliable equipment has more break down time,
higher cost of operations and lower productivity compared with that
of a more reliable equipment., The importance of problems which are
being solved by the modern automatic systems and the associated
high costs of these systems require that their relisbility be high.
Of course the technologv and methods of today enable one to design |
and fabricate automatic equipment and systems whose reliability
is as high as desired. However, such a system may be very heavy,
and its size and cost may be prohibitively large. Hence the systems
must be designed for feasibility as well as for optimal characteristics,
The systems must have the optimal reliability, established by proper
criteria of requirements. The criferia may be any characteristic,
for example cost, size, effectiveness, accuracy, and life etc. In
a typical industrial situation, the common criteria are cost and
productivity, in defence situations, combat effectiveness may be the
most important criterion and in scientific experimentation such
as space flights, etc., these may be dependability and éccuracy.

Highly reliable equipment has a smaller number of failures
than equipment which has a low reliability. This factor decreases
the forced down-time of the equipment and the necessary number of

spare parts and assemblies. When the reliability of any equipment



increases, the cost of designing and manufacturing increases, but
the cost of operation decreases; this situation justifies the need of

higher reliability.

2.5 METHODS FOR IMPROVING SYSTEM RELIABILITY

It is, therefore, desirable to have the system reliability as high
as possible within feasibility constraints. The following are ways to
increase system reliability,

1, Redesigning either the system as a whole or the system components for
better reliability.

2, Providing redundant systems in parallel,

3, Providing redundant units for weak components in the system,

4, Providing stand-by systems,

5. Providing stand-by components with failure sensing and switching
devices,

6. Supporting the system with spare parts, which can be used to
replace components that fail,

Any one of these methods can be used, or a combination of these
can be utilized depending upon the requirements of the system and the
failure characteristics of the components. The expressions for the
reliability of special system configurations are as follows,

(a) Reliability of System with Parallel Redundancy

When the additional upits to improve the system reliability are
placed in such a way that all the units will be working at the same
time and the failure of one or more units does not hinder the

operations, the configuration is called as parallel redundant system,



15

For example, in a four engine aeroplane, if two engines are
sufficient to pull it, the other two are simultaneously working so
that each is working at 50% load. The failure of one or two causes
the shift of the load to others, and the aeroplane can still fly,

The systems are working at underload but even then the
characteristics are taken to be unchanged. The aging of the system
is one of the factors which should be considered; the units which
are provided to support the system are being used and thus the
maximum duration of successful operation is equal to the life of the
unit which fails last. Whereas in the stand by system, the supporting
units are not working until the first unit fails and thus these are
preserved, so they do not age, and the duration of operation is
equal to the sum of the lives of the individual units.

For an N-stage series system, in which if one stage fails the

system fails, the system reliability is determined by
N

Rs = 1 Ri
i=1
where Ri is the reliability of the ith stage in the series system.
In some situations, several less reliable components are supported
by some redundant units, making the total number of componenfs qf that

type m Thus if the system has (mi - 1) parallel redundancies at

il
each stage, then the system reliability is
N m,
R = I (1-(L-R)D
s ; i
i=1
(b) Reliability of System with Stand-by Units [3]

Stand-by arrangements require failure sensing and switching

devices to put the next unit into operation (Fig. 4).
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As a first case let us assume that the standing-by units have
similar characteristics, i.e., the same constant failure rate, ).
If there is then one unit is required, and there are m units as
stand-by's, the system can be considered as a simple system having
A as the failure rate and m failures are allowed before the system
fails. Only the (mtl)th failure causes the system to fail; its

reliability is

(;\t)m)

| 2
N omie MR gk -

s 21

This equation is obtained using the Poisson's distribution
of errors, If the probability of no failure is R, then it can be

expressed as follows,

where x is the mean fraction of expected failures for the project

of given duration., Then using the Poisson's distribution one can

write
Prob, (exactly one failure) =x.e”
2
Prob. (exactly two failures) =-§7 cex
x" -X
Prob. (exactly n failures) =

Hence the reliability of a component having n stand-by's is

R
s

Prob. (at the most n failures)

Prob. (no failure) + Prob. (one failure)

+ Prob. (two failures) + ... + Prob., (n failures).

-X xz xn
= e [1+X+—2T'+...+ET]

where x, mean fraction of expected failures which is the product, At,

17



For a system shown in Fig. 4, the reliability of the first stage is

m

o 0,02 O
fy =@ [1“1”*"2“:'—) +T"‘)
1
of the second stage is
m
—Azt (Azt)2 (lzt) 2
R, =e [1 LY L e BEPRR hh;;j——i
2
and, in general, of the nth stage is
9 m
-x_t Q) G0 "
R ==¢g (l+lt+—-r-——+...+——'———r-—].
n - 'n 2. mn.

The system reliability for a N stages system in series, shown in

Fig, 4, can be written as

N
RS = 1 Ri
i=1
2 5

Nt 040 (8 *

=1 e 1+ Mt +—— o+,
. i 21 m,,
i=1 1

(e) Reliability of System with Spares [3]

When a standing-by unit can be used at more than one place, the
unit is called spare, (Fig. 5). For example a heat exchanger may have
5 similar control valves, each of which is necessary for successful
operation, and there are 3 valves of this type in stores, so we can
call these stand-by valves as spares which we can plug into use at
any of the five locations.

Consider a system having s similar components., There are n spare
components of this type in the reserve, The intensity of failure for

a component of this type is X; then the failure intensity for the

18
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whole group of components of this type in the system is (si). The
system can be operated until n components of this type fail; hence
the reliability of the system can be written as

R
s

n

Probability of n failures of a component having failure

intensity (s})

2 n
= g (828) [1 + (sAt) + ——-—-—-(S;f) + ... ¥+ -—-u-—-—(sif AN

For additional information on the theory of reliability, one

can refer to published books such as references [1,3,2%4a,30a,36a,36b].

2.6 THE PROBLEM CONSIDERED IN THIS REPORT

The subsystems of life support systems presented in details in the
later part of this report have been designed at the space division of
North American Rockwell Corporation [29] under the auspice of NASA,
They have used a graphical method, a summary of which is given in
Appendix A, to determine the number of spares required so that each
component is equally reliable in a subsystem, The weights of the
spares have been estimated to predict the total weight of the life
support systems. They have not tried to optimize the system subject
to some constraints of weight or the reliability, rather they have
determined a feasible solution to the problem. In this report amn
attempt is made to optimize the weight of spare components while
the system must have the reliability at least equal to the specified
value.

The approach used in the report is to determine the contribution

toward system reliability and the requirement of the resources by



each of the spare components allowed in the system. From the
feasible solutions, the optimum system is selected on the basis

of the reliability contribution and the resources used, The units
which consume minimum amounts of the resources and contribute
maximum effectiveness toward the reliability of the system are
included first in the system, The additional supporting units

are selected and added on the same basis one by one until the
specified value of reliability is achieved.

It is expected that one can maximize the reliability of the
system by allocating the available resources in a selective manner.
In like manner one can minimize the amount of the resources used
while maintaining a minimum acceptable level of reliability., The
technique of zero or one integer programming has been utilized
to allocate the resources in the best manner. This approach
guarantees that the solution will be obtained in terms of integers

or whole units.

21



3 INTEGER PROGRAMMING AND ITS APPLICATION TO

OPTIMIZATION OF SYSTEM RELIABILITY

This chapter discusses various integer programming approachs
and how these are applied to the optimization of system reliability.
The various integer programming methods are described briefly, while
an implicit enumeration technique is given in detail, A computer
program based upon this algorithm was used to obtain the optimal
solutions for the problems in this report,

A great deal of the work of finding the optimal number of sup-
porting units in reliability optimization has been carried out by
assuming the decision variables to be continuous and that they can
take any positive wvalue. The solution then is obtained by rounding
the variable values to the nearest integer. But as mentioned earlier,
there is no guarantee that such a solution is optimal. These
approximations may be quite acceptable when the variables assume
large values, but in reliability optimization problems the number of

supporting units usually falls below, say five units and in such

cases making 2.4 as 2 or 2.6 as 3 may result in a non-optimum solution.

Hence a method which would determine the integer values for the

22

decision variables is very desirable, For this purpose, the reliability

problem must be written in a form which is compatible with the

available methods of obtaining all-integers solution. The reliability

optimization problem is formulated in this form in this chapter. Also

included is a review of the literature on the application of the
integer programming to the optimization of system reliability

problems. This discussion is followed by the formulation of the



following problems as a integer programming and zero-one integer
programming problems:
(i) maximizing system reliability subject to cost constraints,
(ii) minimizing the cost of the system subject to constraints

on reliability and other resources.

3.1 INTEGER PROGRAMMING PROBLEMS

The integer programming problem possesses a characteristie
which differentiates it from a linear or nonlinear programming problem.
This is the requirement that all varigbles in the solution to be
integers. The integer programming technique has been applied to a
variety of the problems, namely, man or machine allocation, reli-
ability optimization, machine scheduling and the travelling salesman
problem.

One could simply solve a integer programming problem ignoring
the integer requirement and then round the values of the resulting
solution to the nearest integers satisfying the constraints. However,
this procedure may result in a non optimal solution. Hence a method
is needed which will find an optimal integral solution. The general
problem can be stated as follows [17]:

Find the positive integer values for a set of n variables xj
satisfying m linear inequalities or equalities of the form

dygly F Byl F wes B R 5 By
which minimize the objective function

Z = clxl+ c2x2 F e cnxn v

All a5 bi’ and Cj are assumed to be known constants, Mathematically

we can write

23



2l

+ + ... F
minimize clxl czxz Cnxn

subject to restraints

ayyBy Ky T e oA X, < By,

a21x1 + a22X2 + wws T aZan-i b2,

a .x. +a x,+ ... +a x <b_,
m m2° 2 m n — m

where

x, > 0, i=1, 2, ... n

j.—
xj is an integer
xj = the jth wvariable
Cj = unit cost of variable xj
bi = the constraint value on the ith resource
aij = the consumption of the ith resource by the jth

variable,

3.2 TECHNIQUES FOR SOLVING INTEGER PROGRAMMING PROBLEMS

The available techniques for solving integer programming problems
are presented in this section. The brief history of each group
of techniques is also included. The basic approach of each of the
techniques is also presented, The detail of implicit enumeration
technique, used for solution of the problems in this report, is
given in the next section of this chapter,

The available techniques for the solution of integer programming
problems may be classified into three major grbups depending upon the
basic approach employed in the techniques. The groups can be
identified as: Cutting Methods, Branch and Bound Methods and

Miscellaneous methods.



The basic approach of the cutting methods is that of successively
reducing the feasible solution space by deducing supplementary linear
constraints from the constraints of the original problem until an
optimal solution is obtained which satisfies the integer requirements.
The basic idea of the supplementary constraints was proposed by
Dantzig, Fulkerson, and Johnsen [5] in 1954 for the solution of
travelling salesman problem, In 1958 Gomory [l4] developed the idea
of new (or supplementary) constraints to obtain a systematic method
for solution of integer programming problems of general nature.

Gomory [15] also generalized the new constraints method to obtain a
method which requires only addition and substraction in computations
provided that the data of the problem is composed of only integer
value, In 1965 Young [42] proposed primal integer programming
algofithm. Eto [8] published a method in 1967 which develops an
additional restraint based on the objective function to reduce the
permissible combination of integer values of the variables so as to
make use of either the branch and bound or enumeration search methods
that are available.

Branch and bound methods are basically enumeration search. These

25

methods involve two steps, The first step definmes one or more subspaces

of the feasible solution space to which branching can be carried on,
while the second determines a bound on the value the objective
function can attain in each of these subspaces, These algorithms
consider the solution space as the space of all integer values., After
branching it is determined whether a better solution than the one

at the hand may be obtained. This procedure of alternatively dividng



and examining the solution continues till the whole solution space

is examined. The basic idea was proposed by Little et al, [26] for
solving the traveling salesmen's problem, which involves zero-one
integer programming problem, Land and Doig [24) published a method
with a similar approach for solving pure and mixed integer programming
problems. Most of the work on this approach has been done on zero-
one integer programming, To utilize these techniques an integer
programming problem must be reduced to zero-one integer programming
problem, The methods to effect this conversion are discussed in the
next section. In 1965 Balas [2] published the additive algorithm
which was modified by Glover [13]. The most successful technique

of this class was proposed by Lemke and Spielberg [25] in 1967.
Goeffrion [10] in 1965 presented an algorithm using enumeration and
imbedded linear programming. As far as computational efficiency is
concerned the implicit enumeration search program based upon the
algorithm of Lemke and Spielberg [25] appears to be very good, and it
- was used for the solution of problems in this report.

There exists a wide variety of techniques for integer programming
which are not included in the above two classes. One of the successful
approaches is the heuristic programming, which employs both simple
and sophisticated selection rules as well as partially corrective
trial and error procedures to produce a feasible, and hopefully near
optimal sclution. The method seem to be efficient for specific
problems. Kuehn and Hamburger [23] presented a method which is good
for warehouse location or transportation problems. Kaplan [20]
published a similar method which is applicable to a particular class

of problems. Rao [32] presented a algorithm and computer program for



solution of set covering problems which cover a very small class of
integer programming problems., A dynamic programming approach was

used by Glass [12] and improved by Rao [33].

3.3 REDUCTION OF INTEGER PROGRAMMING PROBLEM INTO ZERO - ONE INTEGER

PROGRAMMING PROBLEM

The reduction of the general integer programming problem into a
zero - one integer programming problem [39] will be discussed here,
It is only necessary to know the upper bound ﬁj on the value each
variable Xj can attain to effect this conversion. Most practical
problems meet this criterion. There are two techniques for converting
the integer programming problems into zero - one integer programming
problems., They are the expansion technique and Balas Binary method,
In the problem the objective is to find the positive integer values
for a set of n variables xj, which satisfy the m linear or nonlinear
but separable constraints

851%) T g%y oeee b x, < by
and which minimize the objective function

Z = clxl + czx2 + ... + cnxn

where the constants a bi’ and cj are known.

ij?

(i) Expansion Technique
Replace xj by m, new variables yjk’ which can take a value either
zero or one such that

x +yj2+ n-o+yjn_1.

J

Now the problem can be written in zero or one variables. A numerical

i Y31

example is given below.
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Find the value of wvariables x, and x_, which minimize the function

1 2
z=xl+2x2
subject to
=Sl + 2x2 < 5
4x1 - %, < 10
xj, j =1, 2 an positive integer
xl_i 5
Xy < 4

Introducing zero or one variables
Yio 1=1, 2, +ssy 9, such that
o Mk S e SR £ T ST
¥ =Y T Y7t ¥gt Yy
and the problem in zero - one integer variables becomes as follows:
Find the value of variables ¥y which minimize the function
z=yl+y2+y3+y4+y5+2(y6+y7+y8+y9)
subject to
— + r
Gyt y3ty, v yg) T2ty tygtyg) <5
+ + -
4yy +y, vzt y, +vo) (yg *v5 +ygtyg) <10

Yi=00rl, i=l,2, ...90

(ii) Balas Binary Method [2]
Each variable xj is replaced by new variable ij which satisfies

the following equation,

SR
X, = g 2 yjk

where yjk are zero - one variables and Pj is given by



P, = [log, m.] + 1
j [gZJ]

EG is the upper bound of the integer wvariable, xj, and the brackets
indicate the largest integer as not being greater than the quantity
within the brackets.

This technique uses the fact that any integer number can be
obtained by various combinations of the numbers which are generated
by 2" wheren =0, 1, 2, ..., i.e., 1, 2, 4, 8, 16, ... . And the
variable Xj can always be replaced by a proper combination of numbers
from this series. The quantity pj is the number of such numbers
required to represent a variable xj and Xj 5_5..

The same integer programming example given in the preceding

section is again considered

Pl = [log2 51+1=2+1=3
P2 = [1og2 41+ 1 =2+ 1 = 3,
The required substitutions are
_ 231 3-2 3-3
X) =20 Yt 2 Y, v 20 T,
=4yt oy Yy
3-1 3-2 3-3
X) T2 Yy T2y T2 Ty,

= 4yp1 t gy T Vg3
Here we need only 6 variables to replace Xy and Xy whereas by the
expansion technique 9 are required., After the substitution the

problem reduces to:

Find the value of wvariables yjk_which minimize the function

29
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Z = by + 2ygp v ygqt 2Whyy F 2yy, ty,yg)

subject to

does

Zero

3.4

A
L

—(hygy * 2905 ¥ yyq) F 204y, F 2yy, Fyyg) <

4rypy + 2995 Fypg) = Uyyy + 2,y +yyg) <10

yjk =0 or 1, § =1, 2

k

n
=
-
3%
-
w

Conversion by this method always result in fewer variables thamn
conversion by the simple expansion technique in the resulting

- one integer programming problem,

IMPLICIT ENUMERATION TECHNIQUE

Implicit enumeration technique has been used for the solution of

problems in this report, A summary of the algorithm of Adaptive Binary

Programming based upon the implicit enumeration is given in this

section, and a simple illustrative example is given in the next section.

Adaptive binary programming involving implicit enumeration

search technique has been developed by Salkin and Spielberg [36]. It

is basically an enumeration search scheme utilizing powerful tests

to eliminate and select the branches of total enumeration search tree.

This

seems to make this algorithm efficient from a computational point

of view. It uses tests so that nodes of the branching tree can be

discarded without their explicit appearance, thus explaining why the

scheme is called "Implicit Enumeration',

The brief statement of the algorithm and the general zero - one

integer programming problem to be solved are given below.



The problem is one in which it is necessary to find the values

of the variables yj, j=1, 2, ..., n, which can take value either

zero or one to

minimize

subject to

where C

y:

A=

b =

The total

T

z=Cy
Ay <D
Yj =0orl l<j<n

cost vector (n x 1)
variable vector (n x 1)
constraint matrix (m x n)
constant vector (m x 1)

n
possible enumeration search paths are 2,

A computer program entitled "DZLP" is available from IBM's New

York Scientific Center, 410 East 62nd Street, N.Y, [36].

is written in FORTRAN IV and can be used on IBM 360/50 systems,

minor modifications the program can be run on any sufficiently large

computer with a FORTRAN compiler.

A brief statement of the algorithm is as follows:

Step

1 Determine the initial search origin either on a priori
basis or by a linear programming round up procedure.
The linear programming problem is solved assuming the
variables Yj of the problem are continuous and un-
restricted (any value between 0 and =), The values of

the variables are then replaced by zero or one. Taking

a constant TAU, if the variable yj is less than TAU,

And this gives an

make it zero otherwise make it one.

initial origin to start the search,

The program

With
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Step 2 Retain the node which generates a node having a lower

value of objective function as the current origin for
the further search, Record the rounded up original
solution as the optimal solution at hand, and whenever

a better solution is found during the search record it.

Step 3 Forward step = Involving the fixing of an additional free

(1)

variable at 1, Pick up a variable from the preferred set
and force it to one. That in effect moves the search
from level k to (k+1). At the node which is being visited
for the first time, the search applies the following
tests.
Cancellation test on free variables - Determine which of the
variables not assigned any value can be cancelled, that
means, can be made equal to zero, If there is no variable
to be cancelled at this stage go to step 4.

If for any j, jell, and any i (1 < i < m)

[b, - ) a,, - max, aij] <0

1 oyem, 1 4 50
i ij

cancel j, and if j corresponds to a forced variable, take a
backward step, go to step 4., After cancelling j go to (ii),

where

I

1]

{jlyj is free, i < j < n}

I

M {j|jen, ajy < 0}

g = {j[yj =1, 1<3=x n}



(ii)

Step 4

Step 5

Step 6

33

Infeasibility Test — it is a check on the feasibility of
the constraints after some variables have been cancelled.

If for any constraint i (1 < i < m)

Ei<0 and [Ei—,z a,,] <0
jeM

go to step 4 and perform the backward step. Otherwise go to

step 5.

Backward step — Make the forced variable free, by setting it

to be zero again, thus moving from (k+l) to k. Find the

next variable from the preferred set and take a forward step

by going to step 3.

Solve the associated linear program to find the values for

free variables and the objective function, assuming the

variables to be continuous and unrestricted. Find the
rounded up solution by imposing the binary restriction on the

variable and the corresponding objective function value, z,

If z < z* record the new rounded solution, update z* and go
to step 4 for backward step and then further
branching.

If zrz z% use LP solution as a lower bound on the current
integer solution, and impose the constraint on all
free variables yj =0 or 1 (jell). Perform one
additional pivot step and go to step 6.

Cancel some of the free variables and determine some of the

variables, which must be forced to value one to insure im-

proved integer solution,



If there is any variable which must have value one to
insure improved integer solution, but has been cancelled,
take a backward step by going to step 4.

If there is no such variable go to step 7.

If there is no forced variable go to step 8 to determine
the next wvariable in the series of branching, and then
go to step 3 for further branching.

Step 7 Take the set of forced variables determined in step 6 as
the next series of branching and go to step 3 for
further branching.

Step 8 Generate (0,1) Gomory's cuts via complete reduction, and
take the smallest cut as the preferred set. Apply the
Balas test to this set and create the next branch. Then
go to step 3 to branch in the direction thus determined,
Gomory's cut:

Consider constraint t, for which

ol
"
Ca
I
g
)
A
=

Q
I

and {jlyj =1, 1<j<n}

This constraint can be rewritten as

z a,»y.,<b, <0
jem & T3

This implies a Gomory's cut for yj

where P is some subset of indices of II.

Balas Test - it selects a variable in a manner which
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drives towards the "natural" feasibility goal. That is,
for each variable in preferred set compute the Balas

value

I
—~
o

I
~—

v

3 ieQ

where Q {i|(Ei - aij) <0, b, <0, 1<4ic<m}.

i = &
The j, which maximizes vj, is denoted by j, and is

the next branching path,

3.5 A SIMPLE EXAMPLE

An integer programming problem is given below and has been solved
by the zero - one integer programming algorithm for the purpose of
illustration.

The problem is to find the value of variables Xy and X, which

minimize z = —3x1 - 4x2

A

subject to 3x1 + 2%, < 8

Xy + 4x2 < 10

where Xy and x, are positive intéger variables. This problem is

reduced to a zero - one programming problem by using the expansion
technique which is described in section 3.3 and employing the following
ceiling on the variables

X, = 2

1

xz_i 2

Now substituting the variables yj, j=1, 2, 3 and 4 for X, and X,

such that
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=y vy,
Xy = Y5 * Yy
where
v, =0o0r 1, io= 1, 2, 3, & ,

The problem in zero or one variables is to find the values for the

variables Yj which

minimize 7 = —3(yl + yz) - 4(y3 + YA)
subject to
3(yy +yy) +2yg+ty,) < 8
vy ty, ¥ 4(y3 sk y4) < 10
where
y; =0 or 1, i=1,2,3,4

The solution of this problem using the algorithm of implicit enumeration
search is given below and the search paths are shown on the search
tree in Fig. 6. This problem can be summarized in the following
manner,

n=4a,

m= 2,
the cost vector C = [-3, -3, -4, -4],
the variable vector yT = [yl, Y3 Yq» Ya].

3 3 2 2

the constraint matrix A i
1 1 4 4

and the constant vector b = [gol.

Total possible enumeration search paths = 24 = 16.
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[0,0,0,1] | :
[0,0,1,1]
Level k=0 1 B

Fig. 6 - Complete Search Tree for 4-Variables Zero-Or-One

Programming P'roblem.



Step 1.

Step 2.

Step 3.
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Finding the initial search origin:

The search origin can be determined on the priori basis
or by linear programming round up method. This example
was solved by linear programming round up method. For
that the problem was solved by simplex method assuming
the variables Yy i=1, 2, 3, 4 to be continuous
positive and taking any value between 0 and =. This

procedure yielded the following results after 3 iteratioms.

¥i1 7 1.2, Yo 5 0
y3 = 2.2, Y, = 0
z = =124

After replacing by zero-one variables it gives the

initial search origin as (taking TAU = 0.05)

¥y =¥y =1
Yy =¥y =0
and yields
z = =7

This is the point A in the search tree, Fig. 6.

Recording the solution and value of the objective

function, Retain it until a better solution is obtained,.
2k = =7

Forward step (move from A to B):

At this stage, no variable has been assigned any value

hence the set of free variables is = {yz, ya} out of these

variables, no variable has been cancelled, that is, the

set of cancelled variables = ¢ where ¢ is a empty set,
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(A variable which was made zero at any level of branching
is called cancelled at that level, it must remain zero

on all nodes successors to that node.) Preferred set is
the set of variables which are permissible, here it is

= lyys ¥4}

So far k = 2, now one of the variables in preferred set
is forced to value one, thus making k = 3, Now

Forced variable = Y,

ie., y, =1
Set of free variables = {Y4}

Sets Ml = ¢

M2=¢>

Now the tests will be applied to this node.
(i) Cancellation test

b

1 §-3-3-2=0

]

by

cancel j, jell for which

]

10-1-1-4=4

[Ei - ) a,, - max, ai.] <0, l<i<m

In this example for j = 4, i = 1
0-0-2=-2¢<0
that means cancel j = 4 or set 5, ™ 0

for j = 4 and i = 2

)

4-0-4=0
On the search tree this point is B at level, k = 3. It

is also the end of the branch of the search tree, since



Step 5.

Step 4.

Step 3.
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there is no other free variable. Go to (ii)
(ii) Infeasibility test

No Ei is negative. Go to step 5
Solve the associated linear programming problem and
determine the corresponding value of the objective
function, There is no more variable to be determined,
hence no need of solving any linear programming problem,
Current solution is [1,1,1,0]

z == 10 < z#
This is a better solution. Hence record the solution
as current optimal solution,

z¥ = - 10
Go to step 4
Backward step (move from B to A)
Go to level, k = 2, setting ¥y * 0. Find the next
variable in the preferred set and go to step 3.
Forward step (move from B to C)
Next variable in the preferred set = Y,
k=2
Indices of the free variables = {2,4}
Forced variable = Y40 that is,
¥y * 1 .
now k = 3
Free variable = Yy
set of indices of free variables I = {2}
sets M, = ¢

1

M2 =9
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set a = {1,3,4}
(i) Cancellation Test

by

8-3-2-2=1

B,=10-1-4-4=1

For j=2,1i=1

1-0-4=-3<20
that means cancel ¥qs OF set ¥y = 0
In search tree it is the point C.
(ii) Infeasibility test
All Ei are positive, go to step 5.

Step 5. There is no other free variable at this stage, hence no
more variables to be determined. Otherwise a linear
programming problem has to be solved to get the values
of free variables and objective function. Current
solution [1,0,1,1]

The corresponding value of the objective function
z=-11
Go to step 4
Step 4. Backward step (move from C to A)
Go back to k = 2 level, setting Yy = 0.
But there is no more variable in the preferred set, So
this is also the end of the search, the recorded soclution

and the value of the objective function are optimal.

3.6 REVIEW OF LITERATURE ON OPTIMIZATION OF SYSTEM RELIABILITY
In this section a review of the literature on optimization of

system reliability will be presented. In 1956 Ditoro [6] formulated



the problem of maximizing the reliability of a system subject to

single equality constraint., He used Lagrange multipliers to arrive

at a equation which must be satisfied for the syvstem to be optimal.

He presented a two component relay system in which the reliability
was to be maximized and spare weight was allocated using the graphical
method, In the same issue of IRE Transactions, Moskowitz and McLean [28]
solved the problem of determining the optimum distribution of elements
for maximum reliability at minimum cost using the classical differential
method., They solved a five-components problem taking decision variables
to be continuous and then rounding these to nearest integers.

In 1958 Bellman and Dreyfus [4] formulated the problem of maximizing
the multi-component system reliability subject to cost, size and weight
constraints, A five-stage problem has been solved where the two
constraints are weight and cost. The supporting units were identical
to original units and were placed as parallel redundancies. The
Lagrange-multiplier method was used. In the same paper they also
considered the problem of chosing the type and number of component in
a system,

Kettelle [21], in 1962, used dynamic programming, which was
suggested by Bellman and Dreyfus [4], to determine the number of stand-by
units for a system where the reliability requirements were specified
and the total cost was a minimum, The allocation of components to
stages of the system with (continuous) exponential availabilities
were considered. Availability, here, means that the component will
operate when it is needed. It was noted that if the unavailability
decreases exponentially the? so does the unreliability of the system,

Proschan and Bray [31], in 1965, modified this formulation to consider
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more than one constraint., They also programmed the algorithm and
indicated they have solved problems with 20 stages. There is a

problem with this formulation as is common to all dynamic programming
problems which is a requirement of a large storage as well as time
consuming calculations. An example has been presented im which the
reliability of a 4 stages system was maximized subject to 3 constraints,
weight, volume and money.

Kolesar [22] in 1967 used a linear programming formulation for the
reliability optimization problem and solved the problem by zero or one
programming methods of Balas [2] and Glover [13]. The problem considered
linear constraints of weight, cost and volume. In the first part of the
paper, the author formulated the maximization of the reliability of a
system dealing with a single type of failure, In the second part of
the problem of systems with two types of failure have been considered,
He solved the system of relays which have independent probability of
short circuiting and open circuiting,

In 1967, Tillman and Littschwager [38,39] presented an integer
programming formulation for optimization of system reliability subject
to linear and nonlinear separable constraints, Gomory's algorithm
[14,15] was used to obtain the solution of the problems. The problems
dealt with were (i) maximizing reliability for a parallel redundancy
system subject to multiple linear comstraints, (ii) minimizing cost
of a parallel redundancy system subject to multiple nonlinear and
separable restraint functions while maintaining an acceptable level
of reliability, and (iii) optimal choice of design for a parallel
redundancy system. The optimal solution appears in integer form as

required,
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In 1967, Fan, Wang, Tillman, and Hwang [9] used the discrete
maximum principle to obtain the optimum number of parallel redundancies
for a stagewise system, The authors assumed the variables to be
continuous which were rounded to the nearest integers., They maximized
the net profit, which is the gross profit from the system, if it
operates successfully, minus the construction costs.

In 1968 Tillman, Hwang, Fan, and Balbale [40] solved the optimization
of system reliability problem which has single and multiple, linear
and nonlinear constraints. The authors used a discrete version of the
maximum principle, The computer program was written and a logic flow
diagram was presented to solve the problems on an IBM 1620. The compu-
tational experience has been reported to be satisfactory. The results
obtained were non-integers, and the approximations were required to
obtain the optimum number of parallel redundancies,

Tillman, in 1969 [41], formulated the problem of optimizing a
constrained reliability problem where the components can fail in s modes.
The reliability expressions were presented., Integer programming was
used to solve the problems of (i) maximizing system reliability
subject to two nonlinear constraints and s modes of failures (ii)
minimizing the cost subject to nonlinear constraints while méintaining
an acceptable level of reliability subject to s modes of failure,

Again the optimal solution appears in integer form as required.

Ghare and Taylor [1la] formulated a problem similar to one
considered in this report, and optimized it usiﬁg zero-one programming
based upon branch and bound technique. They considered the problem
of parallel redundancy, rather their formulation can not handle any

other case, because the formulation includes an equation which is



45

valid only for a system having parallel redundancies.

Most of the work done so far involves either parallel or stand-by
redundancies as the means of increasing the system reliability. In
this report, the formulation imposes no restrictions on the con-

figurations used for redundancies.

3.7 FORMULATION OF THE PROBLEM

The system considered is a general system with N components,
each of which is essential for successful operation of the system
and this has a series logic diagram as shown in Fig. 7. There are
mj supporting units for each component, where j denotes the jth type
of component. The maximum number of supporting units of jth type is
restricted to be Mj. The failure characteristics and the cost of
the units in the system and the supporting units are assumed to be
known. The supporting units may have different reliability character-
istics. The system may have either parallel redundant units, stand-by
units or spare units.

There are r restrictions associated with each unit in the system,
which may represent money, weight and volume, The coefficients of the
ith restriction at the jth stage, Cij’ is a function of number of
supporting units (or spares) at jth stage mj.

The reliability of jth stage is a function of unit reliabiiity,
rj, and the number of supporting units (or spares) at jth stage. The
system reliability for a series system is the product of the reli-
abilities at each stage

RS = Rl . R2 “en RN

where
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Fig. 7 A System with Components of N Stages and

Supporting Units.



Rj=f(1‘j, mj), j=l’ 2, -on,N

Defining twe quantities, Mj, as the maximum number of supporting
units allowed at jth stage, and Es’ minimum acceptable reliability
of the system, the problem can be written as follows:

1, Maximize the reliability of a system with supporting units

subject to several separable nonlinear constraints.,

2, Minimize the cost of a complex system subject to several
separable nonlinear constraints while maintaining an
acceptable level of reliability of the system,

The formulations of the problems can be written as

1, Find the value of the variables 1:11;i which maximize

N
z = jzl Rj(mj)

subject to

I w2

) cij(mj) f-bi . =y 2y wesy T

j=1

2, Find the value of the variables mj which

N
minimize z = ] C__ (m,)
521 PIS

and subject to

il
-
[y

-»
-
.

baw)

I
'_I

-

o

+
[
-
L]
L]
.
=

g
e Am.Y £ b,, i
g1 ijt 3 i

N
and R = T R, > RS
s j=l |

where z is the objective function, and is is the minimum

acceptable value of the reliability of the system,



These formulations can not be used directly in a zero-one
integer programming algorithm because of product terms in
reliability inequality. This situation is handled by using
the sum of logarithms of various terms instead of the product
of those terms. This procedure is valid since the logarithm
is a monotonic function of the argument. This substitution
makes the following inequality separable.* The modified
formulations are

3. Find the values of the variables mjwhich maximize
N

z = z log R.{(r,, m,)
551 i3 3

subject to

N
.Z cij(ci, mj) i_bi, 1 =y 2y swey T
1=l
4, Find the values of the variables mj which
N
minimize z = z c i
=1 P

subject to

cij(ci’ mﬁ)_i bi’ f =1y 2y ey PEly Phly swey @

#p

and

N
log Rs = Z log R, > log R

These formulations must be further modified to put them
into the zero - one format. To do this, one has to introduce

*
Function f(xl, Ky ene xn) is said to be separable if it is possible

to express it as
£1000) + £,(x)) + £40x3) + oo0 + £ (x),

where fl(xl), fz(xz), SR fn(xn) are the functions of X;, X,, «.u X

respectively.
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new variables which take values of zero - one, Let this
variable be yjk’ which represents kth supporting unit of

jth type in the system, If this variable assumes a value

of 1, it means that the unit must be included in the optimal
system; on the other hand, if it has a zero value this indicates

that it is not included, This new variable is defined as

"
m, = ) Y. for all j's
I k=0 T3
and
yjk =0or 1l
where
.. =1 when k < m,
ik =
=0 k> m,
J

With the proper substitutions the problems can be stated as

Find the values of the variables Y ik which

maximize z

I
Il t~1t
[}
=
S i

Alo R =

§=1 k=0 gk Vi) < Py

1as 14 25 swnp T

Find the values of the variables yjk which

minimize z = Z z O e Y
j=1 =o Pk 73k

subject to
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N Y
j£1 kéo ik " Vi =Py
=1 2y wwes P=ly prly e T
#p
and
n _
e R T jzl kzo (#log 'R:i) BRATE Log By

where the k index denotes a particular supporting unit of the
jth type and
Alog Rjk = the increase in log Rjk due to addition of the kth

unit of jth type

Alog R,

log Rjk for k =0
"

for k =

|
[
-
=

log Rjk ~ log Rj(kﬁl)

where Rjk is the reliability of jth stage with k supporting
units

c = is the coefficient of ith restriction associated

ijk
with kth supporting unit of jth type.
The life support systems which are presented in the next chapter

are solved using this last formulatiom 6.

3.8 DETERMINATION OF COEFFICIENTS

The cost coefficients cijk are assumed to be known for all i's,
j's and k's. In most cases the supporting units are similar to the
original units and cijk for all k's are equal,

To determine the coefficients in the reliability expression
{Alog Rjk)’ it is necessary to calculate actually the value of reli-

ability of the jth stage with all the supporting units, First we must



find the values of Rjk

liability of jth stage with k supporting units. To find Rjk’ one

= 2 x 3 i o
for k=0, 1, 2, ... Jj’ where ij is the re
must use one of the methods for calculating the reliability as dis-
cussed in section 2,5, depending upon the type of system used. 1In
this report the reliability is improved by providing spare units.

Hence equation of section 2.5 (¢) was used to calculate R,, as follows:

jk
RjO = e—(mlt) = Pr (No failure)
le = e—mlt « {1+ E%% = Pr (One failure or less)
-mit (mlt)z
RjZ = le + e T = Pr (2 or less failures)
—mie (@)X
Rjk = Rj(k-l) + e e nO = Pr (k or less failures)

where t is the duration of the mission, A is the failure intensity,
and assumed to be a constant, and m is the number of units at jth
stage,

Now the coefficients (Alog Rjk) can be determined as follows.

I

Alog Rj log R,

0 j0
Alog le = log le - log Rjo
Alog RjZ = log R.j2 - log le
Alog R.jk = log Rjk - log Rj(k~l)
Alog R'M = log Rij - log Rj(Mj—l)
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With the above information, the problem can then be stated as a zero-
one integer programming problem. This approach for determining the
optimal configuration for a life support system is presented in the

next section.
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4 APPLICATION OF ZERO - ONE INTEGER PROGRAMMING TO LIFE SUPPORT SYSTEMS

The formulation presented in Chapter 3 was used to obtain the
spare allocations to achieve the specified system reliability and
minimize the weight of the spares. Some circuits of life support
systems were optimized. The results obtained are compared with the
designs suggested by North American Rockwell Corp. [29]. A comparison
indicates that present system formulation resulted in a better arrange-
ment of spares, the weight of the spares being less than that presented

in ref. [29] and the system has the same level of reliability.

4,1 PROBLEM OF LIFE SUPPORT SYSTEMS

Basically the life support system must support both men and
equipment for the mission by providing the required environmental
characteristics, It must provide the crew with an atmosphere controlled
in terms of both content, temperature and pressure for both the mission
module and the earth re-entry module. It must provide temperature
control for all temperature sensitiﬁe systems in both modules. The
system is called an integrated life support system, because it is
complete in itself and does not require any other supporting system.
A partially closed life support system is presented in Fig. 8
The principal subsystems have been marked. The aspects of constrained
reliability of integrated life support systems have been studied at
North American Rockwell Corporation under the auspices of NASA [29].
The systems are required to perform with a reliability of at least
0.999 for a project duration of 16,800 hours, that is, not more than

one failure in 1000 experiments, each has approximately 2 years
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duration. This required a very carefull study of the failure character-
istics of every component of the system. The study was conducted to
estimate the values of mean failure rates and the reliability of each
part, these estimated values were listed in a report [29]. In that
report an attempt was made to design the allocation scheme for spares
to achieve a reliability level such that all components would be
equally reliable,

Without any supporting parts, either as redundant components or
as spares, the system of life supporting equipments has the reliability
of 0,1041, that is, slightly more than 107% chance of safe project
completion., This is a very low value of reliability and thus the
system's reliability must be improved. As mentioned in the second
chapter, there are many methods by which to increase the system
reliability. In this report the weak components of the systems have
been assumed to be supported with the spare parts which can be placed
in operation as soon as the failure is sensed by a sensing device.
It has been assumed that the reliability of the failure sensing unit
is 1, It is also assumed that the time required to put the new part
into operating condition is very brief and that it is available for
the necessary switching and replacement,

The reliability estimates for the subsystems are listed in
Table 1. The reliability standards, which are the reliability levels
the subsystems are required to achieve, for each circuit have been
taken as those obtained in the report [29]. Thé problem is to minimize
the weight of the spares which will satisfy the minimum requirement

of system reliability. It is expected that the allocation of spares



Table 1. Integrated Life Support Systems

Subsystem Reliability Estimates [29]
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No. Subsysten Duty Cycle Estimated
in Hrs. Reliability

1 Radiator Circuit 16800 0.9316
2 Refrigerant Circuit 16800 0.7756
3 Atmospheric Circuit 16800 0.6149
4 Coolant Circuit 16800 0.8658
5 Humidity Circuit 16800 0.9243
6 Water Reclamation 16800 0.8929
7 Potable Water 16800 0.9838
8 Waste water 16800 0.9773
9 Carbonation Cell 16800 0.8612
10 Cryogenic Supply 16800 0.4583
11 High Pressure 02 16800 0.8560
12 Bosch Reactor 1680 0.9174
13 Electrolysis 1680 0.9809
System Reliability 0.1041

Q
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determined in the present report will satisfy the minimum reliability

requirements while the spare weight is minimized.
4,2 OPTIMUM SOLUTION OF THE REFRIGERANT CIRCUIT

A. STATEMENT OF THE PROBLEM

The refrigerant circuit of the life support systems given in [29]
has 14 components, which were studied and tested minutely. The
reliabilities of these components were estimated [29] and are listed
in Table 2. The reliability of the components varies from 0,946 to
0.999998. The system reliability without supporting components is
0.776. To achieve the required reliability of integrated life support
systems, this circuit must have the reliability of 0.99972 or better.
The reliability of the circuit can be increased by any of the methods
listed in Chapter 2. 1In this report the method of spares is used to
increase the reliability., The problem is how to minimize the weight
of spares while achieving the specified level of reliability.

The refrigerant circuit of the life support systems considered
here consists of 14 components, and all the 14 types of components
must operate properly to keep the refrigerant circuit in working
condition. This situation suggests that the components are in series
from a logic diagram and a reliability point of view. The spare units
are provided for each component separately, at the most five spares
are allowed for each component. This system is shown in Fig. 9. The

system reliability, RS, is given by



Table 2. Refrigerant Circuit Analysis [29]
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No. Component Type Duty Cycle Reliability
Weight
1 Pump 16,800 1.5 .987
2 Pump Control - 1.0 .9994
3 Ref, Evaporator Rl 10.0 .99998
4 Evap. back Pr. Control " 4.8 .9994
5 Evap. back Pr. valve L 10.0 .9999938
6 Coolant Heat Exch. " 10.0 .99998
7 Cabin Heat Exch. " 10.0 .99998
8 Cabin Temp. Control " 0.9 .987
9 Evap. water control " 1.0 .952
10 Heat exch. diverter " 1.0 .946
11 Ref. temp. con. valve " 0.75 .987
12 Ref. shutoff valve " 0.8 .963
13 Ref. check valve " 0.1 .963
14 Selector valve L 0.6 .963
Total 16,800 776

Note - Weight for component type 3,5,6, and 7 have been assumed.
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where Rj is the reliability of the jth component including the supporting
units if there are any.

With no spare units the system reliability is 0.776. This reli-
ability is to be improved to at least 0.99%972 by providing spare units
while minimizing the weight of the spares. It is assumed that the
spares are identical and have the characteristics identical to those
of the original units and that their weights are known.

If there are k spares (k < 5) of the jth component in the system,
the reliability of the jth component, Rjk' is

Rjk

Prob. (at most k failures)

Prob. (no failure)} + Prob. (one failure + ...

ess + Prob, (exactly k failures)

ALt (. £)2 (L o)k
=e 7 |14 at+—d—+ .+ —H—
i 2] ki
Now the following terms are defined
Alog RjO = log RjO
A
= log (e J )
= - A.t
h|
Alog le = log le - log RjO
=A.t =it

log (e 3o+ ljt)) - log (e 3

log (1 + kjt)

Alog Rj = log R,

- log R,
jk E %y

(k-1)



=i, t (A.t)k )
= log [e J (l+>‘jt+'“+_—¥‘7—)J

-t (Pt.t:)k-l
j )

_ J
log [e (L+x,t+ ...+ Gy

(e
k!
oLkt
GeD)?

1+x,t+ ...+

= log

1+Rjt+...+

We also define the binary variables ujk’ such that
ujk =1 if the unit represented by ujk’ that is, the kth
unit of the jth type, is in the system
= 0 if that unit is not in the system for 1 < j < 14

and 0 < k < 5,

we can rewrite the reliability constraint as follows;:

14
log R = Z log R

=

and
)
log R, = Alog R,, « u
I k=0 jk 3k

.

u,. ¢ Alog R, > log (0.99972).
j=1 k=0 3K ik

The objective function to be minimized can be written as

z = sum of weights of all the spare units

Il

}ou, . ()
Yol kmli AT J
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where Wj is weight of the jth type of unit,

To represent all the possible 14 x 6 units in the system 84 binary
variables are required. If the variables Yy (1 < i < 84) are intro-
duced, the indices of the ujk and v; will have the following relation-

ship.

1+ k+ 6(3-1)

[¥N
I

6j + k - 5.
The problem in terms of the variables vi becomes:

Determine the values of variables y; so that the objective function

§4
z = V. * W
g=1 1

is minimized subject to

84
) Y; * 8y > 10g(0.99972)
i=1
where
ajy = Alog Rjk’ i=6j+ k- 5.

R T T §
w0, Ly wwey 3
To ensure that one unit of each type (14 in all) appears in the

optimal system, following additional constraint is added

84
.z a21 ' yi > 14
i=1
where a,, = 1 for k = 0 and all j
that is, 1 = 1,7,13, ..., 79.
a,, =0 otherwise,
2i

The values of indices j, k and i are listed in Table 3, along with
the values of coefficients Wis 3145 and Ay The key for Table 3 is

given below.
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Column 1 index j
2 index k
3 index 1
4 cost coefficients W,
5 coefficients for reliability constraint ajy

6 coefficient for constraint ensuring one unit of

each type in the solution T

B. OPTIMUM SOLUTION AND DISCUSSION

The refrigerant circuit is considered in detail for which the data
are given in Table 2, The problem formulation is summarized in Table 3,
computer output is given in Appendix B, The optimal systems are
presented in Table 4 along with the system obtained in the report of
NARC [29] for comparison., In the NARC report it is indicated that
spares allocated to the system increase the systems reliability from
0.776 to 0.99972, and that the spares add a weight of 20,3 1b, . In
the system suggested in the present work the arrangement of spares
weighs 17.7 1b, and achieves the same reliability level of 0,99972,
The reduction in weight is achieved by extracting out those units
which cost more in terms of resources and contribute less to the
system's reliability. The reduction in the subsystem weight of 2,7
1b, appears to be very attractive. Similar reduction in all other
subsystems of the life support systems may reduce the total weight
by a considerable amount. It is worth mentioning here that the
approximate cost of lifting up of one pound in a space effort is in

the order of $10,000 at present.



66=67

Table 4. Comparison of Optimal Number of Spares for Refrigerant
Circuit of Life Support System
No. Components Spares Stage Solution  Stage
Allocation Reliability Obtained Reliability
by NARC [29]
1 Refrigerant 2 .9999996 .99991513
Pump
2  Pump Control 1 .99999981 .99999981
3 Refrigerant 0 .99998 .99998
Evaporator
4 Evap, back press. 1 .99999981 - .99999981
cont.
5 Evap. back press. 0 .999998 +999998
valve
6 Coolant heat exch. 0 .99998 .99998
7 Cabin heat exch. 0 .99998 .99998
8 Cabin Temp. cont. 2 .99999966 .99991513
9 Evap. water control 3 .99999976 .99999976
10 Heat exch. diverter -3 .99999962 .99997264
11  Ref. temp. cont. 2 .99999962 .99999962
valve
12 Ref. shutoff valve 1 .9994494 .9999938
13 Ref. check valve 2 .9999913 .9999913
14  Selector valve 2 .9999913 .9999913
System Weight 20.3 17.6
Reliability .999367927 .99971633

NARC - North American Rockwell Corporation, Space Division.
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4,3 OPTIMUM SOLUTION OF CRYOGENIC OXYGEN SUPPLY CIRCUIT

It is one of the two circuits, namely Cryogenic oxygen supply and
High-pressure oxygen supply, capable of supplying the oxygen to the
atmosphere of the cabin., The basic source of supply is the cryogenically
stored oxygen., The high pressure oxygen supply is provided for the.
emergency repressurization capability which the relatively slow gas
flow characteristics of cryogenic supply does not provide. The circuit
included sensors, regulators and valves etc,
A, STATEMENT OF THE PROBLEM

The cryogenic oxygen supply circuit has 11 components, which were
studied and tested minutely. The reliabilities of the components
presented in Table 5 were previously estimated in [29]. The reli-
abilities of the components vary from 0.7 to 0.9998. The system without
any supporting unit has a reliability of 0,458,

The problem formulated in integer programming has 11 decision
variables and one constraint which is the minimum system reliability
to be satisfied, A maximum number of supporting units allowed at each
stage is assumed to be 5. The problem is reduced to zero or one pro-
gramming problem. The size of the zero or one programming problem
becomes 11x6 = 66 variables and two constraints where the constraint
is added to ensure that there is one unit of each type (see section
4,2). The formulation of cryogenic oxygen supply circuit in the zero -
one integer programming is presented in Table 6.
B, OPTIMUM SOLUTION AND DISCUSSION

The solution obtained is presented in Table 7 along with that

suggested in ref. [29]. The method used to obtain allocation scheme
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. Table 5. Rcliability Analysis of Cryogenic Oxygen Supply Circuit of
Life Support Systems [29]

No. Component Duty Estimated Spare
Cycle Reliability keight
in Hrs, :

1 OzPartial Pressure 16,800 .9994 .8
Control
2 O_Partial Pressure 16,800 .9994 2
Sensor
3 Display 16,800 .9998 2,0
4 Regulator 16,800 .9994 1.0
S Check Valve 16,800 .987 .1
6 Shutoff Valve 16,800 .990 4
7 Selector Valve 16,800 .928 1.4
8 Heater Control 16,800 773 9
2 Relief Valve 16,800 .936 2.4
10 Pressure Transducer 16,800 .700 .5
11 Cryogenic 02 Tank 16,800 1.0 -
System Reliability

.458
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Table 7. Comparison of Optimal Number of Sparcs for Cryogenic Oxygen
Supply Circuit of Life Support System

No. Components Spares Stage Solution Stage
Allocation Reliability Obtained Reliability
by NARC [29]
1 02 Partial 1 .99999981 1 .999593981
Pressure Control
2 02 Partial 1 .99999981 1 . +939999981
Pressure Control
3 Display 1 .99999997 1 .99999997
4  Regulator 1 .99999981 1 .99959981
5 Check Valve z .99999963 2 +99999963
6 Shutoff Valve 2 .99999982 2 .99999982
7 Selector Valve 3 .99999987 3 .99999987
8 Heater Control 4 .9999924 4 .9999924
9 Relief Valve 3 .99999928 3 .99999928
10 Pressure Transducer 5 9999978 4 .99997422
11  Cryogenic 02 Tank - 1.00 - 1.00
System Weight 22.5 22.0
Reliability .9999882 .9999646

NARC - North American Rockwell Corporation, Space Division,



of spares is presented and illustrated in Appendix A. In the spare
allocation obtained by the method discussed in this report, the °
spares weigh 22 1b. The reference [29] suggests an allocation of
spares weighing 22,5 1b, to achieve the same level of reliability,
that is, 0.99996. There is no improvement in the weight of system

spares because the original design seems to quite near optimal.

4,4 OPTIMUM SOLUTION OF CARBONIZATION CELL CIRCUIT

It is the circuit which handles the 002 of the atmosphere of the
cabin, It is 002 concentrator, and an electrochemical device removes
the (:02 from cabin atmosphere. From the atmospheric gasesr 02 is removed
and recycled to the atmosphere and about 907% concentrated CO2 is
dumped overboard into the space. In the event of loss of access to the
02 source or an inadequate remaining supply, the cabin CO2 will then
become an input to the oxygen regeneration function.
A, STATEMENT Of THE PROBLEM

The circuit of carbonization cell has 17 types of components.
The estimated reliability characteristics are listed in Table 8. The
system has reliability of 0,861 without any supporting units. When
formulated in integer programming formulation the problem involved 17
decision variables and are reliability constraint, A maximum number
of supporting units allowed at each stage is assumed to be 5. The
problem was reduced to a zero or one programming problem, The size if
this problem was 17 x 6 = 102 variables and two constraints where the

constraint added is to ensure are unit of each type in the optimal system

(see section 4.2).
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Table 8§ . Carbonization Cell Analysis [29]
No. Components Duty Cycle Weight Reliability
Hrs.

1 Stage 1680 10.0 +999999
2 C02 Condenser o 10.0 +99998
3 Condenser " 10.0 .99998
4 Cationic Exchanger " 10,0 .99996
5 Anionic Exchanger " 10.0 .99996
6 Charcoal bed n 0.3 .999995
7 Filter " 10.0 .99986
8 Water Tank i 10.0 +999995
9 CO2 Tank " 10.0 .999999
10 Fan " 1.3 .987

11 Water Pump " 2,0 .987

12 Co, Pump " 5.0 .963

13 Relief Valve " 2.4 .936

14 Selector Valve " 0.6 .981

15 Water Meter = 10.0 .999996
16 Shutoff Valve " 10.0 +999999
17 Check Valve " 10.0 +999899

System Reliability .861
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B, OPTIMUM SOLUTION AND DISCUSSION

Table 9 presents the solutions obtained in report [29] along with
that by present work, In present work the weight of spares required
is 25.3 1b, whereas the report [29] suggests an allocation requiring
27.9 1b., of spares to achieve the system reliability of 0.99980.

The present system allocation achieves a higher level of reliability.

4.5 OPTIMUM SOLUTION OF WATER RECLAMATION LOOP

It is the circuit which reclaims water from the waste and used
water. The involved process is very simple, the water is evaporated
at a definite pressure an& is condensed. 1In case of emergency the

reserve stock of water is used,

A, STATEMENT OF THE PROBLEM

The water reclamation loop consists of 8 different type of
components, The weight and failure characteristics of the components are
listed in Table 10, These values were taken from ref, [29]. The
reliabilities of the components vary from 0.973 to 0,99999. The water
reclamation loop has a reliability of 0,838 without any supporting item.
The target is to increase the reliability of this loop to at least 0,9999.

The integer programming formulation of this problem consists of 8
decision variables and one constraint which is the minimum subsystem
reliability to be satisfied., A maximum number of supporting units
allowed at each stage is assumed to be 5. The problem is reduced to
zero or one programming problem, The size of the zero or one programming
problem becomes 8 x 6 = 48 variables and two constraints, where the
constraint added is to ensure one unit of each type in the optimal

system (see section 4.2).
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Table 9 . Comparison of Optimal Number of Spares for Carbonization
Cell of Life Support Systems

No. Components Spares Stage Solution  Stage
Allocation Reliability Obtained Reliability
by NARC [29]

1 Stage 0 »999999 .99999

2 co, Condenser 0 .99998 .99998

3 Condenser 0 .99998, .99998

4 Cationic Exchanger O .99996 .99996

5 Anionic Exchanger 0 99996 .99996

6 Charcoal bed 0 .999995 .999995

7 Filter 1 +9999999 +9999999

8 Water Tank 0 +999995 .999995

9 €O, Tank 0 .999999 .999999
10 Fan 2 +9999995 +9999995
11 Water Pump 2 ..9999995 .9999995
12 CO2 Pump 3 « 9999999 .999991316
13  Relief Valve 2 .9999541 .99999924
14 Selector Valve 2 .9999988 »9999988
15 VWater Meter 0 .999996 -.9999996
16 Shutoff Valve 0 «999999 .999999
17 Check Valve 0 .999999 .999999

System Weight 27.9
Reliability .99985036

NARC - North American Rockwell Corporation, Space Division.
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Table 10, Water Reclumation Loop Analysis [29]
No. Component Type Duty Cycle Weight Reliability
Hrs,
1 Condenser 16800 5.2 .994
2 Recuperator H 5.2 . 994
3 Pyro Reactor " . Lai?d 974
4 Evaporator % 5.2 .994
5 Pressure Regulator " 1.0 . 9994
6 Heater Control & 0.9 .973
7 02 Flow Control " 10.0 .99999
8 Check Valve " 0.1 .946
‘System Reliability 0.838

Note ~ Weight for item 7 has been assumed,



B, OPTIMUM SOLUTION AND DISCUSSION

The solution obtained is presented in Table 11 along with that
suggested in ref, [29]. The method used to obtain allocation
scheme of spares in ref., [29] is presented and illustrated in
Appendix A,

In present system the weight of the spares required is 22,57 1b.
whereas report [29] suggests an allocation system requiring 24.8 1b.
of spares to achieve the system reliability of 0.99992., The present
method of optimization of system reliability is a better one, it
resulted in a better arrangement of spares, the weight of spares being
less than that presented in reference [29] to achieve the same level

of reliability,
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Table 11. Comparison of Optimal Number of Spares for Water Reclamation

Circuit

No. Components Spares Stage Solution  Stage

Allocation Religbility Obtained Reliability
by NARC [29]

1 Condenser 1 .99998 1 +99998

2  Recuperator 1 « 29998 1 +99998

3 Pyro Reactor 3 .9999999 2 .999987

4  Evaporator 1 .99998 1 .99998

5 Pressure Regulator 1 .9999998 1 .9999998

6 Heater Control 3 «9999599 2 . 9999966

7 02 Flow Control 0 .99999 0 .99999

8 Check Valve. 3 +999999 3 +999999

System Weight 24,8 22,57
Reliability . 9999286 .9999224

NARC - North American Rockwell Corporation, Space Division.



5 PROPOSALS FOR FUTURE STUDIES

Problem 1,

The complete life support system should be optimized as a whole,
So far an attempt has been made to design optimum subsystems. To
optimize the life support systems as a whole, the reliability levels
for each subsystems must be assigned in a systematic way. In
reference [29] the reliability levels are assigned such as to make
each subsystem equally reliable. It is proposed here to use some
search technique to assign the reliability levels to subsystems
so that the overall system is optimized,

Consider an example of a system with two subsystems. The
system is required to have a reliability of at least 0.64, If an
equal reliability concept is used, as in ref, [29], the specifications
would be 0,8 for each of the subsystems. The objective function to
be minimized is the .total weight of the system, Now the specifications
for reliability of the subsystems can be altered to the following
combination which yields the relisbility of whole system equal to
0.64:

(i) 0.90 and .711
(ii) 0.85 and ,753
(iii) 0.75 and .853
(iv) 0.70 and .914

An overall minimum value of objective function can be achieved
by designing the each of the subsystems for these specifications.
Same search technique, for example, golden section for this example

can be used to determine the optimum specifications.
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Problem 2.

The formulation presented in this report will obtain a globaf
optimum only for convex objective functions. To incorporate the
capability of arriving at an optimum in a multimodal objective function
the following restrictions must be added. For a given j

%kiyﬂkﬂr .hrk=0,.u,M

-
This insures the inclusion in optimal solution of the kth unit at jth
stage before the (k+1)th unit,

The addition ofrthese constrains, [N - (Mj - 1)] in number,
increases the size of the problem, Hence these should be added when-
ever the nature of the objective function is not definitely convex.
When the system reliability is the objective function to be maximized
the function is certainly convex and these restrictions are redundant.
But after addition of these constraints the optimization method can

attain an optimum even for highly nonlinear functions, and the method

becomes much more general in nature,

Problem 3.

In this report it has been mentioned that the integer programming
solution will be better as compared to one obtained by rounding off
the continuous variables, It will be quite reasonable to find the
difference between the two solutions. The same problems may be solved
by conventional methods taking the decision variables continuous and
then comparing the solution with those obtained by the formulation
and program suggested in this report. A comparison of the two will
bring out the validity of the statement., It is a fact that integer
programming will come out with a better solution, but one can

determine in how many cases both obtain the similar solution.
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Thus arriving at a efficiency of the method.

Problem 4,

If the system can fail in more than one ways the problem becomes
more difficult to sélve. Such problems have been solved by a number
of people for exam see Tillman [41l]. They have used methods other
than zero — one integer programming. It is proposed here to solve
this problem using zero - one integer programming. It is expected
that it would be an efficient tool and can be used for larger and

more complicated problems than th.se solved so far,

Problem 5.

In this report spares have been considered as a method of
improving system reliability. A failure sensing device is used to
detect the component failure, the reliability of which has been assumed
to be one, which is not a very good assumption. If the actual
reliability of the failure sensing device can be estimated, it should
be considered in the formulation. Such a system can be compared to
a system having parallel redundancies without failure sensing devices.
A comparison will indicate which systems are more economical. It is
expected that in certain situations it would be economical to put
the supporting units as spares whereas in the others parallel

redundancy may prove to be a better means of improving system reliability.
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APPENDIX A

SPARES ALLOCATION PROCEDURE OF THE REPORT [29]

The work in the report [29] employs a prineciple of "Equal risk
within a function", which is stated as, 'Ideally, each item in a system
with its provided maintenance capability, should present the same risk
or probability of causing the subsystem to become non-functional by
virtue of its lack of supporting spares'. To illustrate the application
of this principle a example is given, which is summarized below.

Consider subsystem of four different kinds of items A,B,C and D,

shown in Fig. A-1. This will have the reliability

la-}
[}

2
< =By RB(l—(l-RA Re RD) . (l—(l-RB) 2]

2 2 3 2 .3

o
R, By = 2R, Ry + 2R, R, RyR.R, Ry + R, Ry R, R

If the concept of equalized risk is applied

-k Tk Tk e

é + ZR? + R7
i i i

La~]
]

Ri - ZRi - R
For a given PS = 0.8636, the item contribution must be Ri = 0,9870 or
better by solving the above equation.

A maintenance logic diagram was presented for determining the
number of supporting units which give the item reliability of 0.987.
The system can be represented by equivalent items as shown in Fig. A-2,

It is possible to simplify this diagram to Fig. A-3, since item Al

and A2 are physically identical, their failure rates are also equal
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to A Their duty cycle may be different but to put a equivalent

A
item for items Al and A2, the expected failure rate of.equivalent item
must be determined. Any spare of A type can be used at the place of
Al or A2,

To utilize the spares of type A the items Al and A2 are replaced

by item AA, as shown in Fig. A,4, To determine the spare requirements

for equivalent item AA, the following equation must be satisfied

‘aa Ban T a1t Y A tao
since
Mg ™
A Tan = 3, (tAl + tAZ)
similarly

‘g8 ms = *p (tp1 * tgy * tg3)

Thus a purely series diagram (Figs. A-3, A-4) may be developed
to represent the series parallel logic diagram of Fig. A-1. To
illustrate the procedure, consider the example with the characteristics

given below

Item Failure Rate Duty Cycle
Al 19,6 = 107° “10%
A2 18,5 % 100 102
Bl 30.0 x 10°° 10%
B2 30,0 x 107° : 10
B3 30.0 x 107° 10
e 90.0 x 107° 102

D 80.0 x 10°° 102
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This data gives the values for equivalent items as follows

Item A t At
AA 19.6 x 10°° 10100 0.200
BB 30.0 x 10°° 10020 0.300
c 90.0 x 107° 100 0.009
D 80.0 x 10°° 100 0.008

Now referring to Fig. A-5, one finds the broken horizontal line
represents the reliability level of 0,987 required for each item, The
product of failure itemsity and duty cycle duration for each equivalent
item has been plotted as a vertical line. Lines for the reliability
of spares have been plotted. An inspection of this diagram gives the

following observational conclusions:

Item Spare required reliability

Ai—AZ 1or 2 0.9823 or 0.9989
B1-B2-B3 lor 2 0.965 or 0.9967
c Oor1l 0.914 or 0,9963
D 0 orl 0.924 or 0.9969

The selection of a proper number of spare items involves a
judgement, but the list of value given above helps the designer to
make a reasonably correct décision. This simplification and the
determination of spares procedure camnot be termed as being exact, but
can be used to determine a near optimal allocation of available

resources.
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APPENDIX B

The appendix containts:

1. Listing of the input to the computer program for the optimization
of the system reliability of the refrigerant circuit of life
support systems.

2, Output of the program for the optimization of system reliability
of the refrigerant circuit of the life support systems.

The enclosed information is just sufficient for the problems
considered in the report. To become familiar with the input procedure
of zero - one integer programming computer program one should consult

the IBM publication "Adaptive Binary Programming' [36].
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ABSTRACT

The purpose of this report is twofold: first to summarize the
introductory theory of reliability of a multistages system, secondly,
to present the optimization of the reliability of life support systems
obtained by applying zero-one integer programming,

Integer programming methods and their application to optimization
of system reliability are described briefly; an implicit enumeration
technique is given in detail, The problems of maximizing the
reliability of a system with supporting units subject to several
separable nonlinear constraints and minimizing the cost of a certain
type for a complex system subject to several separable nonlinear
constraints while maintaining an acceptable level of reliability
of the system are considered, The zero - one integer programming is
used to optimize the above mentioned problems.

An example of the subsystems of a life support system which has
been designed by the Space Division of North American Rockwell
Corporation is presented., Four of these subsystems are considered
to investigate the feasibility of the integer programming approach.

The results obtained are compared with the design suggested by
North American Rockwell Corporation. The comparison indicates that
the use of integer programming for the optimization of reliability
resulted in a better arrangement of spares, The reason for this
is that the present system has less weight than that suggested and
at the same time achieves the same level of reliability.

Specifically the four subsystems of the life support systems
optimized are a refrigerant circuit, a cryogenic oxygen circuit, a

carbrnization cell, and a water reclamation unit., The refrigerant



circuit is required to have a reliability of 0.99970, the weight

of the spares is reduced from 20,3 1b. to 17.7 1b. The weight of

the spares for cryogenic oxygen supply circuit is reduced from 22,5 1b,
to 22,0, while maintaining a level of reliability of 0,99996. The
carbonization cell is designed with a reliability of 0,9998 and the
weight of the spares is reduced from 27,9 1b, to 25,3 1b. The weight
of the spares for water reclamation loop is reduced from 24,5 1b, to

22.57 1b, while maintaining a reliability of 0,99992,



