‘4HE SYSTEMS RESOURCE DlCTIONARV{
A SYNERGISM OF ARTIFICIAL INTELLIGENCE, DATABASE MANAGEMENT
AND SOFTWARE ENGINEERING METHODOLOGIES.-

by
RANDALL N. EALBERG o
B. S., Kansas State Universlity, 1978

A MASTER'S REPORT
submltted tn partial fulfilliment of the
requirements for the degree
MASTER OF SCIENCE

Department of Computer Sclence

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

Lot

Majorn \Professor

. —— Page 1l

LD

2668 | A11202 9k470k
’ 'l £52

!;%; Table of Contents

Sa¢

Flgures C.Q/. - o L] L * . L] L] L] 'v

1) Introduction " 1
2) Literature Review i . 4
2.1) Artifictal Intelllgence 4
2.1.1) Knowledge-Based Expert Systems . . . 4

2.1.2) Knowledge Representatlion Systems . . o 12

2.1.2.1) Predicate Loglc 13

2.1.2.2) Semantic Networks 15

2.1.2.3) Productlion Systems, 18

2.1.2.4) Frames and Scripts . . . e 21

2.2) Database Management Systems 24
2.2.1) Database ModelIng " . 26

2.2.1.1) Relatlional Model. 26

2,2,1.2) Network Model 28

2,2.1.3) Hlerarchlcal Model 29

2.2.1.4) Data DeflInition Languages . . . 3

2.2.1.5) Data Manlpulation Languages . . 31

2.2.1.6) Methodologtes 35

2.2.2) Data Dictlonarlies « b
2.2.3) Related toplcs 46
2.2.3.1) Extenslon and Intenslion . . . 47

2,.2.3.2) The Unlversal Relatlonshlip . . 48

2.3) Software Englneering 48
2.3.1) The Software Development Process . . . 50

2.3.2) Tools and Methodologles« 58

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

Page

3) An Overview of Al, DBMS, and SE simlitarities and cross

applications ‘ ¥ 5 ‘ . . . i i
3.1) Al 1n DBMS " "
3.2) Al in Software Englineering
3.3) Database Management In Software Englneering . i

4) The Systems Resource Dictlonary, a Toocl for Managling

Databases and Supporting Software Development Systems .
4.,1) Introduction
4.2) The Dynamic Data Dicflonary
4.,3) The Systems Resource Dictlonary

4.3.1) Using Frames In the SRD

4,3.2) A Methodology for Software development
Support . . . E

4,3.3) An Example of the Use of Frames In

Software Development . . . ¥ ’
5) Concluslon . " -]
Blb“ogr’ﬂphy L] [] L] L] L] - [] L] L] *

Appendix F

111

74
74
80
g4

87
87
88
93
96

100

108
115
117
123

Page lv

Figures:
Number Title Page
1) A Semantic Network 17
2) A Semantic Network Example « 17
3) Example of Frame . . % . i 23
4) Example of a Script 23
5) A general frame representation as used In NUDGE . « 23
6) The data seen by an appllication program . . . « 33
7) Zahran's Data Dictlonary System 89
8) Phillp's Dynamic Data Dictlonary system 91
9) Resource Management System 94

10) A frame representation of the data dictlonary data object 97

11) A frame representation for data object corporallty . . 97
12) A Loglcal output structure : . 123
13) Loglcal data structure for the required output . . 123
14) The Ideal Input flle structure 124
15) Actual Input flles 124
16) A partlial loglical process structure . . . ! « 128
17) The frame converslion of the Warnler/Orr dlagrams . . 126

18) A sample of frames showing relationships to the frames

in the conversion example « 132

Page v

ACKNOWLEDGEMENTS

There are a number of people who deserve mentlon for thelr help
In making thls report possible. First, | would Ilke to thank my
wife Deborah for her support and patlence durlng the productlon
of this report. | @also wish to +thank Professor Roger Hartley,
without whom +thls report may not have been finished, for hls
encouragement and suggestions. Lastly | thank the other members
of my committee, Professors E. Unger and D. Gustafson for +thelr
comments and suggestlions, and Professor V. Wallentine for fllling

in for Professor Hartley.

Chapter 1

Introduc+tion

In the course of +the past flve years [t has become
increasingly evident +that <there 1Is a profound need for the
various branches of Computer Sclence 106 communicate thelr
achlevements to each other. What follows Is an attempt to bring
together developments achleved in +t+hree areas, Artificlal
Intelllgence, Database Management and Software Engineering, 1In
order to achleve advances In the areas of software engineering
and database management.

The first objective 1is +to present the findings of a
| Iterature search which encompassed selected toplics within +the
three chosen research areas.

Within the area of artifliclal Intelllgence expert systenms,
what they are, how +they are used and a few examples will be
examlned. Included In thls examination wll| be a discussion of
methodologles for representing knowledge and how this knowledge
Is used In expert systems.

The model Ing of data and data dictionarles and thelr use In
a database environment willl be of primary Interest in the area of
database management, Iin date modeling brlef deflnitlons and
examples of the three types of database models, these belng the
hlerarchical, network and relational models, willl be gliven. The

data dictionary wlil|l be defined and a +typlcal data dictlionary

page 2
described. In additlon some ways In which the data dictlionary
could be Improved are examlned.

Turning to software englineering various means of shortening
the software development cycle wlill be Investigated. Thlis
discussion wlll Include a look at varlous +tools currently
avallable or proposed for wuse |In software development. In
addition the baslic steps requlired of any software development
methodology for successful software development will be reviewed.

The second step will then be to draw these |lnes of research
together to show how they are similar, how they complement each
other, and how developments 1In one area can be used tfo enhance
methodologles used I[n other areas. Ways In which this
Information can be used to develop a means of producling software
within a database environment will then be shown. The manner In
which thls methodology is more efficlent In all areas of major
concern to the software developer and how It provides a bullt In
means of documenting +the development and expansion of the
database system for the database adminlstrator wlil also be
shown.

The methodology proposed Is essentially an enhanced data
dictlionary. The last sectlon of +thls paper wlll present +thls
enhanced data dlictlionary, henceforth referred to as the Systems
Resource Dictlionary (SRD), as a means of achleving the
developments proposed earl ler.

In proposing +thls Systems Resource Dictlonary a8 data
dictlionary model proposed by Rob Phllips, called the Dynamic Data
Dictionary wlll be used. This dictlionary model provides the base

upon which to expand to achleve the stated goals. The definltion

page 3
of the Systems Resource Dictlionary will be given along with an
explanation of why this methodology Is wuseful. This wlll be
followed by a description of how the SRD could be wused In
software development and database management. The requlred
techniques for the successful completlion of the SRD and a |ist of
requirements for the Systems Resource Dictlonary will then be set
down. Through out +this dlscussion ways In which artificial
Intel I Igence techniques could be used to enhance the operation
and usefulness of +the SRD wlll be examined. Flnally possible
problems in the development of the Systems Resource Dictlionary

will be dliscussed.

Page 4

Chapter 2

Literature Revliew

2.1 Artificlial Intelllgence

The concept of artiflicial Intelllgence Is an 1|l deflned
concept. There are, however, a number of tools or concepts that
have proven to be of use In varlous dlscipllines both Inside and
outslide the discipline of computer science. These toplcs Include
expert systems and the assoclated concept of know ledge

representation systems.

2.1.1 Knowledge-Based Expert Systems

A precise definltion of an expert system has not been glven.
An explanation as glven by Hayes-Roth [9], to explaln what an
expert system [s, what It Isn't and how +to recognize one, willl
therefore be used.

According to Hayes=-Roth, an expert system 1Is a knowledge
Intensive program that solves problems normally requliring human
expertise. Secondary functions normally performed by the expert
such as asking relevant questions and explalning Its reasconing
are performed by the expert system. Examinlng what expert
systems do can determine thelr common characteristics. These
characteristics as given by Hayes-Roth [9] are:

"They solve very difflicult problems.

Page 5

They reason heuristically, using what experts conslder

effective rules of thumb.

They Interact with humans In approprliate ways,

Including the use of natural language.

They manlpulate and reason about symbollc descriptlions.

They functlon with erronecus data and uncertaln

Judgmental rules.

They contemplate multiple competing hypotheses

simul taneously.

They explaln why they're asking a question.

They Justify thelr conclusions.”

Current expert systems are shallow, brittie, narrow, and
lack the breadth of knowledge and understanding of fundamental
principles shown by the human expert. The expert system Is only ,
a gross simulation, of the human experts thinklng processes, that
explalns relevant criteria and makes educated guesses, much | Ilke
a human expert does for the purpose of making major decisions,
It does not however percelve significance, Jjump to conclusions
intfultively, or examine an Issue from different perspectives as
the human expert does. Nor does the expert system reason from
first principles, draw analogles, rely on common sense, or learn
from experlence.

Examining the current state of automatic data processing
systems shows that they are designed to amass and process |arge
volumes of data algorithmically, In order to automate time
consumling clerlical functions. On the other hand, expert systems
usually address smal| tasks performed by professionals In mlnutes
or hours. These tasks Include Interpreting, dlagnosing,
planning, schedulling, etcetera. An expert system makes judiclous
use of deta and reasons with It to accomplIsh tasks. Unllke +the
algorithmic data processing approach the expert system examlnes a

large number of possliblilitlies or constructs a solution

dynamically.

Page 6

An expert system can be recognfzed by looking at the +task
performed by the system [9]. |If the functlon performed Is one
that was previously done by a human expert; I f the system has a
knowledge base In which the knowledge Is accessible, that Is It
can be read, you can ask for explanations requiring It and
Justlifications valldating [+, and 11 can be modifled; 1f the
system stores a8 substantlial body of knowledge +that It reasons
with In flexlble ways; and If the system employs heurlstlics or
Judgmental knowledge then It Is an expert system.

Now that how to recognize an expert system Is known, some of
the tasks they perform can be examined. The easiest way to do
thls s to briefly descr!be some generlc expert tasks [11]. This
description will alsoc give an ldea of what makes expert reasoning
so difflcult. As these tasks are examined you wlll notice that
several |Issues appear repeatedly. These Issues &are large
solution spaces, tentative reasoning, time-varylng data and nolsy
data.

Interpretation, the flirst of t+he expert +tasks +to be
examined, 1s the analysis of datea to determine thelr meaning. It
requlres that conslstent and correct Interpretations of the data
be found. Analysls systems that are as rligorously complete as
possible are also necessary. The key problem In Interpretation
Is nolsy and errorful data, Jl.e., missing, erroneous or
extraneous data values. Onty partial Information may be
avallable for the Interpreter and data for a gliven problem may
seem contradlictory. This requires the Interpreter to hypothesize
which data are bellievable. Unrellable data brings about

unrellable Interpretations and requlres the Identiflication of

Page 7
where uncertaln or Incomplete Information and assumptions are
used. Lastly, Ilong and compllicated reasoning chalins requlre
explanations of how the Interpretation |[Is supported by the
evidence.

The requlirements of the next task, dlagnosis, includes those
of Interpretation. Diagnosis 1Is the analysls of +the cause or
nature of a problem or sltuation based on the Interpretation of
potentially nolsy data. An understanding of +the systems
organlzation, and the |Interactions and relationships between
subsystems Is required of +the dlagnosticlian. Some key problems
here are: faults can be masked by the symptoms of other feults;
faults can be Intermittent; fallure of dlagnostics equipment;
system data may be Inaccessible, expensive, or dangerous to
retrleve; may need to combine several partial models due to a
lack of understanding of the anatomy of natural systems.

Monitoring, the third tesk, 1s the continuous Interpretation
of slignals for the purposes of systems Intervention when the
approprlate alarm signal 1s recelved. A monltoring system Is a
partlial dlagnostics system with real time recognitlion of alarm
conditions and avoldance of false alarms required. The key
problem with a monltoring system Is that signal expectations have
to vary wlith time and situation due to the context-dependent
nature of alarm conditions.

Prediction, the use of a model of the past and present +to
forecast the course of the future, Is the fourth task.)
requires reasoning about time. Predictors must be able to refer
to events that are ordered In +tIme and to the transformation of

things over time. Predictlon also requires +that the manner In

Page 8
which varlous actlions change the state of the mode!ed environment
over time be adequately modeled. Key problems In prediction are:
the integration of Incomplete Information Is required; multiple
possible futures should be accounted for and sensitivity to
varlatlions In the Input data should be indicated; Indlicators of
the future can be found In many places requiring the use of
diverse data; nearer but unpredictable events may effect the
I Tkel lhood of distant futures so predictive theory may need to be
contlingent, 1l.e., condl tional, dependent for occurrencs,
exIstence, character, etc., on something not yet certaln.

A program of actlon that Is carrled out to achleve stated
goals Is a plan. Planning, the creation of plans, Is the fI1fth
task. |t requlires that the constructed plan achleve Its goals
without +the use of excesslve resources or vlieclation of
constralnts. The plen must avold goal conflicts through
establ iIshment of prioritles and must also prepare for
contingencles. Planning alse has the same requirements as
prediction. Some problems with planning are: J|arge and
complicated problems requlre tentative actlion +hat enables
exploration of possible plans; +the overwhelming detalls require
that the planner be able to focus on +the most Important
conslderations; must cope with goal interactlions and
relationshlips between plans for dlfferent subgoals 1In large
complex problems; the planning context Is often only
approximately known requiring the planner to operate In the face
of uncertalnty; coordination Is required when multiple agents are

needed to carry out the plan.

Page 9

The last task, design, Is the making of specliflcations +o
create objects that satlisfy particular requlrements. Design has
many of the same requlrements as planning. Key design problems
are: the consequences of design decislons are not Immediately
assessable to the desligner In large problems; tentative
exploration of design possiblllities |Is required; there are many
sources of deslign constralnts with the result that a
comprehensive theory for +the Integration of constralnts with
deslign cholces 1Is usually lacking; system complexity must be
coped wlth by factoring +the design Into subproblems, +thus
requiring the desligner +to cope wlth Interactions between
subproblems since +they are seldom Independent; I+'s hard +to
assess the iImpact and easy to forget the reason for design
declsions or changes In design when the design Is large; one must
be able to reconsider design possibilities when modifylng the
design In order +to avold what are only locally optimal design
spaces; the methodology necessary to reason approximately or
qualitatively about shape and spatial relationships 1Is not
avallable.

In surveylng the current state of expert system +technology
we should understand a few key polnts:

Knowledge systems transform book knowledge, and

"private" or distributed knowledge Into an active,

Inspectable form capable of performing high-value work.

Knowledge takes many dlfferent forms, necessitating a

variety of tools or Instruments for know | edge

englneering.

Know|edge systems must Integrate with conventlonal data

processing systems, but knowledge englneering work 1Is
different from conventional software work. [9

Page 10

Knowledge system technology conslists of two basic
Ingredients: symbollc programming and knowledge englneering.
Symbollc programming +technology consists of the fundamental
sclence of symbollc computation, practical technliques for
constructing symbollc programming systems and techniques for
bullding Incremental programming environments. The +three key
Ingredients added by knowledge englineering are, problem solving
engines, knowledge bases and knowledge base malntenance.

In a knowledge system the activity of problem solving |Is
organized by the problem sclving englne. In order to understeand
the problem solving engine one must relate Its design and
Intended purpose to Its Implementation. The alm of +today's
knowledge systems (s to solve speclific problems. The knowiedge
englneer analyzes a problem and adopts an overall approach. This
approach consists of: (1) &a problem solutlon paradigm (top-down
refinement, multidirectional opportunistic search); (2) a general
knowledge system archltecture that reflects specific cholces
about system design; cholces Include: kinds of knowledge to
represent, using what formalIsm, for what kinds of Inference and
allow what kind of flexiblllty; and (3) a speclfic problem
solving strategy, that determines which knowledge to apply, and
In what order +to apply It. Currently the knowledge englneer's
choices are Implemented by specliflc devices provided by the
problem solving englne.

A problem solving engine provides a knowledge representation
formalism and related Interpreter, a high=level control
archlitecture and executive, and an Inference procedure and

related Inference engine. Weys to descrlbe conceptual taxonomles

Page 11
and conditional heuristic rules may be Included 1In +the the
know ledge-representation formal ism. Conceptual taxonomles
Include relationships among classes, Individuals, and types of
objects and determines how propertles of one relationship apply
to another.

Conceptual heurlstic rules represent Judgmental knowledge
and are represented In many current problem solving engines by
styllzed "|IF=-THEN" formallsms. Many kinds of formallsms and
heurlstics can be supported by current englnes.

A knowledge system's problem solving work is structured and
carried out by the high-level control archlitecture and executive,
and an Inference procedure and related Inference englne. Several
archlitectures are used today to determine a solution.

The most frequentiy used archlitecture Is a goal-directed
backward-chalning system. Thls system has worked well for
selectlon, diagnosls, and consultation appllications. Two other
architectures are the data-driven or forward-chalning system and
the hear~say-llke or "blackboard"” system.

The forward-chaining system Is useful for modelling cognitive
processes and for solving diverse problems requiring very broad,
but shallow knowledge. The problem solving engine functions by
choosing one satisflable rule to execute at a time.

Muitiple cooperating subexpert systems, or speclallsts are
used by hear-say-|llke systems. This type of system has proved
useful for complex probiems 1In design, planning, speech and
vision.

Once a particular problem solving engine has been chosen, by

the knowledge englineers, and before starting +the application,

Page 12

It's knowledge base must be created. The knowledge base s
general ly made up of conceptual taxonomlc relations and rules.
Hayes-Roth has |Isted some generally valld heurlstic rules about
know ledge bases. Some of these rules are:

Only 50 rules are needed +to provide an Interesting

demonstration of the technology.

Two hundred and flfty rules provide a convincing

demonstration of a knowledge systems power.
Five hundred to 1000 rules are required for an expert

level of competence In a narrow area.
Ten thousand plus rules are required for expertise In a

profession. [9]

Automated alds for amassing and malntalning these rules are
provided by most research and commerclal knowledge-engineering
tools. These tools generally Include token completion, spelling
correction, llne of reasoning traces, knowledge base browsing,
and automated system testing and valldation.

Knowledge systems address problems arising from difflculties
in retalning, transmitting and applylng know-how by providing a
means to employ know-how when and where It Is needed at great
speed. They address the need to distribute, preserve and reason
about knowledge electronically. There are numerous knowledge
system appllication archlitectures and representation schemes
because knowledge 1Is varled and resists efforts to apply or

represent [t In a standard way.

2.1.2 Knowledge Representation Systems
Of the many knowledge representation schemes only four wlill
be dlscussed. These four consist of predicate loglc, semantic

networks, productlion systems and frames.

Page 13
2.1.2.1 Predlcate Logic/Calculus

The ablllty to express true or false propositions, as |In
propositional loglc, Is not adequate for capturlng a formallsm of
one's knowledge of the world. 1t ls also necessary to be able to
speak of objects, +to postulate relationships between these
ocbjects, and to generallze these relationships over classes of
obJects [1]. Predicate calculus Is an attempt to achleve these
goals through an extension of +the notions of propositional
calculus.

In predicate calculus the focus of the logic [Is changed
while the meanings of the loglc connectlves are retalned.
Predicate calculus, rather than belng Interested merely In +the
truth value of statements, Is used to represent statements about
Indlvidual or speclflc obJects.

Predicates are statements about individuals. When a
speclflic number of Individuals are used as the arguments to which
a predicate Is applled, the result of the predicate has a2 value
of elther true or false. Some other attrlbutes of predicates are
that they can have more than one argument and each one-place
predicate defines what Is called a set or sort, That Is, for any
one-place predicate P, all Indlviduals X can be sorted Into two
disjoint groups, one whose objects satisfy P (P(X) Is true) and
one whose objects don't satisfy P [1].

Two notlons have been Introduced to refer to facts that are
known to be true of all or some of a sort's members. The flirst
notion Is that of the varlable. It [s a place holder that Is +o
be fllled In by some constant. The second notion [Is that of

quantiflers. There are two quantiflers, one meaning there exlsts

Page 14
+es, the other meaning for all Uslng syntactically allowed
combinations of the constants, varlables, quantliflers, predicates
and connectives compllicated expressions can be created.

The [ntroduction of four more Inference rules Is Implled by
the use of the quantifiers [1]. These conslist of rules for +the
Introductlion and e!liImination of each of the +two quantifliers.
Predicate calculus Is the result of the extenslion of the rules of
propositional calculus by predicates, quantification, and the
Inference rules for quantiflers.

As described predicate calculus can be clumsy and is very
general. There are two additlons which can be made to the loglc
making some things easlier to say, while not really extending the
range of what can be expressed. Functions or operators are the
first addition. Some attributes of functions are: they have a
fixed number of arguments |lke predicates; unllke predicates they
do not have Just +true or false values, but they return objJects
related to thelr arguments. The predicate equals Is the second
additlon. Informally It means that +two Individuals X and Y are
equai It and only [If +hey are Indistinguishable under all
predicates and functlons.

With these additions a varliety of flrst order logic |Is

obtained and one no longer has a pure predicate calculus.
First order loglcs allow quantification over individuals but not
over functlions and predicates. It is Impossible to prove a false
statement and any <true statement has a proof In a flrst order
leglc.,

The Al problem can be divided 1Into +two parts, the

epistemologlical and +he heurlstic. Using this distinctlion

Page 15
several reasons for loglc's usefulness as & means of exploring
eplstemological problems can be seen. FIrst the expression of
certaln notlons In loglc often seem natural. Three other reasons
for logic's wusefulness are that It 1Is precise, flexlble, and
modul ar. However this separation of processing and
representation 1s also a major dlsadvantage of logic In Al. 1t
is the heuristic part of +the system, deciding how +o use the
facts stored In the system's data structures not decliding how +to
store them, that Is currently causing probiems., Addressing that
problem Is merely postponed by separating the +two aspects and

concentrating on the eplstemological questions.

2.1.2,2 Semantic Networks

Semantic Networks are one means of systematizing the
structure of knowledge. The majJor thrust behind thls approach Is
that knowledge and the sorts of +things that can be done with It
are reflected In ones use of language. The use +to which the
knowledge Is put can never be entirely forgotten. The structure
and use of knowledge Is over and above the structure and use of
language. Subservlient to ones knowledge, desires, and bellefs
are the pragmatic and semantlic aspects of language. The
assumption of some prlor eplstemological theory 1Is requlred
before an analysis of Ilanguage can proceed beyond the purely
syntactical level. A plausible theory of +the structure of
knowledge can be generated through a process of drawling analogles
from the analysis of +the use of language. When elucldated

through a model, such a theory Is called a semantic network.

Page 16
The formulatlion of all semantic network models falls wunder
the methodology outllned above. The basic form of all networks
Is the same, It Is a collection of nodes, Jolned together by
directional arcs l.e. |llnes with an arrow on them (see figure 1).
Directed graph 1s the term wused In mathematics for a semantic
network model. A node may In general have any number of arcs
goling out of or coming Into 1t. Thls characteristic accounts for
the use of the network as opposed to hlerarchy, tree, etcetera.
Semantlic objects (atomlic units of meanling) are represented
by +the nodes In semantic networks. The arcs represent
relationshlips between the nodes. By showing how semantic objects
are related and how they particlipate In |arger structures a
network can glve a plcture of a +theory of the structure of
knowledge. The network Is glven greater expressive power by
allowing both nodes and arcs to be of dlfferent types. Type
differentlation Is accompl ished through plctorlally
differentlating the nodes or by labeling the nodes and arcs In
different ways. I+ 1s common +to use a mixture of the two
methods.
There are many different types of semantlic objJects (nodes),.
Four baslic types of nodes are:
EVENT analogous to a verb, e.g., throwling
ENTITY analogous to a noun, e.g., Paul, ball
ATTRIBUTE analogous to a modifler or quallfier,
e.g., sweet, swlft
MODAL ITY reflecting second-order concepts | lke

definitlons, bel lefs, abstractions

Figure 1: Semantic network.

person

VAR
student

_ -/lech:rer ‘//\

\\.MAN

Page 17

RTH-lecturing-to PG's sfuden+-a+19ndlng—lecfure

TYP

PG-talllng-asleep .

Flgure 2: semantlc network example.

Page 18

There are three maln categorles for the many and various
relationships between +the object +types. These categories are
propositional representation, propositional connection, and
classification. Each of +these categorles may have a number of
different types. Figure 2 shows an example using some of the
above terminclogy.

Semantic networks work best In sltuations where there Is a
need for a large body of slowly changing assertlonal sort of
know ledge. By using a fixed set of procedures which traverse
this network many wuseful forms of database 1Inquliry can be
generated. The network methodology seems to be Impractical for
model Ing behavlor where parts of the network are subject to rapld
changes which effect other parts of the network. The network
approach is one way of theorlzing about the relationships between
language, loglc and human actlon, and with |[ts plctorlal

presentation, It Is easy on the brain and eye at the very |east.

2.1.2.3 Production Systems

Productlion systems are systems based on one very general
underlyling 1dea. That ldea 1[Is the notlion of conditlion-action
palrs, called production rules [1]. There are three parts to =a
production system. These perts are: (1) a set of production
rules composing a rule base; (2) the context, which Is a speclal
buf fer-1lke data structure; and (3) a systems activity controller
called an Interpreter.

Production rules take the general form:

Page 19
IF Assertion 1 and
Assertion 2 and ...
THEN Actlon 1,
Actlon 2, ...
Most systems consider the +two sides of +the rules +to be
Independent. The IF part of the rule sjafas the conditions to be
tested agalnst current context and 1s called the condition part
or left-hand slde (LHS). The THEN part of +the rule 1Is the
actlon(s) to be carrlied out 1f the condition(s) are meet, It |Is
called the action part or right-hand side (RHS). A production
rule whose LHS 1s satisfled can have 1Its RHS executed by +the
Interpreter during executfon of the productlon system. A typlcal
production system may contaln hundreds of these productlons In
tThelr rule bases.

The focus of attentlon of +the production rule Is +the
context, sometimes called the short-term memory or data buffer.
Before the action slde of a productlion Iin +the rule base can be
executed Its condlitlon slde must be present In the context data
structure. The context can be changed by actlon parts of +the
production rules so that the condltion parts of other rulies are
satisfled. Usually the context data structure is a medlum-sized
buffer with some Internal structure of its own, it may however be
a simple list or a very large array.

Lastly there Is the Interpreter, which Ilke an interpreter
In any other computer system, Is a program whose task It Is to
decide what +to do next. In productlion systems [t 1Is the
Interpreter's job +to decide which production rule to execute

next.

Page 20

Production systems operate I[In cycles. The Interpreter
specifles the manner In which the production rules are to be
examined In each cycle to determine which productlions are
approprliate and can execute. A single production Is selected
from among those that are found appropriate and It Is flred.
These steps, matching, confllct resolution and actlion, are the
three phases of each cycle.

Certain features of +the productlion system formalism, both
good and bad, can be generallzed. These features are: Modularity
- the formallsm allows the addition, deletlon, or change of
Individual productions In the rule base; Uniformity = knowledge
In the rule base hes a unlform structure Imposed on 1I%;
Naturalness - certaln kinds of Important knowledge can be
expressed wlth ease; Inefflclency - a high overhead results from
the use of strongly modular and un!form production rules In
problem solving; Opacity - the flow of control In problem solving
Is hard to follow because algorfthmic knowledge Is not expressed
naturally.

Characterlzing the domalns for which production rules might
be a useful knowledge representation scheme 1Is a more frultful
method of evaluating the wutility of production systems +than
evaluating thelr features. The approprlate domain for production
systems can be characterized as consisting of tasks which can be
viewed as a sequence of transltions from one state to another In
a problem space [1]. Since each +translition can be effectively
represented by the executlon of one or more productions, tasks

displaylng this behavlor can be modeled with productlon systems.

Page 21
2.1.2.4-Frames and Scripts

Representing knowiedge about objJects and events typlcal to
speclflc sltuations Is the focus of the Al know ledge
representation ldeas called frames and scripts. Frames and
scripts refer to methods of organlzing the know ledge
representation so as to direct attentlion and facllltate recall
and Inference [1].

New data are Interpreted In terms of concepts acqulred
through previous experlence wlthin a structure, a framework,
provided by frames. Expectation drliven processing, looking for
expected outcomes based on the context of the sltuation you are
In, Is faclllitated by this organization of knowledge. This kind
of reasoning |[s made possible by a representational mechanism
called a slot. The slot Is the place within the larger context
created by the frame where knowledge flts (see flgure 3). The
slot mechanlism permits reasoning based on seeking conflrmation of
expectations, "fllling [n slots"™, by supplylng a place for
knowledge, and creating the possibiilty of missling or
Incompletely specifled knowledge.

Slots can be used to represent many different kinds of
knowledge and in some systems can have @ complex frame-|ike
structure, referred to as subslots, of thelr own. A few examples
(the terminology used Is Intended only to glve a sense of the
structure of knowledge In a frame) of different kinds of slots
are [1]: Spectallzation-of sliot, allows Information about the
parent frame to be Inherited by Its chlldren by establishing a
property Inherlitance hlerarchy among the frames; |f-Needed slot,

a procedure attached to thls slot can be used to determine +the

Page 22
slot's value If necessary; Default slot, an Important slot type
which, unless there Is contradictory evidence, suggests a value
for the slot; Event-Sequence slot, allows the use of a script +to
represent knowledge about what +typlically happens [In a given
sltuation (see fligure 4); and Range slot, provides an expectatlion
about the what kinds of things a slot might be (an example of a
subslot). Fligure 5, Is an example of a frame using a dlfferent
terminology that 1Is stlil| quite simlilar to the previous two
examples.

The Events-sequence slot Indicates that knowledge about what
typlcally happens in a given situation might be represented In a
script. A normal or default sequence of events as well as
exceptions and possible error situation are specified by the
script. A few static descriptlions, such as Roles and Props +that
refer to other frames, are also required by the script.

An Important dynamlic or procedural aspect of frame-based
systems underiles +the declarative structure of frames and
scripts. As mentlioned above, In order to drive the reasoning or
problem solving behavior of +the system, procedures can be
attached to the slots [1]. Attached procedures can be the
primary mechanism for directing the reasoning process. They are
activated to f111 In slots or triggered when a siot Is filled.

The primary process In a frame-based reasoning system, after
8 certain frame or script has been selected to represent the
current sttuation or context, Is often flllIng In the detalls
calied for by the slots. The +two methods of fllling in slots
accounting for most of the power of frames are default and

Inherited values [1]. They are relatively Inexpensive and don't

Page 23

CHAIR Frame
Speclallzation_of: FURNITURE
Number_of_legs: an Integer (defaul t=4)
Style_of_back: stralght, cushloned, ...
Number_of_arms: 0, 1, or 2

Figure 3: Example of a frame [1].

EAT_AT_RESTAURANT Script

Props: (Restaurant, Money, Food, Menu, Tables, Chalrs)
Roles: (Hungry_Persons, Wal+t_persons, Chef_persons)
Polnt_of_Vliew: Hungry_Persons
Time_of_Occurrence: (TIime_of_Operation of Restaurant)
Place_of_Occurrence: (Location of Restaurant)
Event_Sequence:
first: Enter_Restaurant Script
then: 1f (Walt_To_Be_Seated_Sign or
reservations)
Get_Maltre-d's_attentlion Script
then: Please_Be_Seated Scrlipt
then: Order_Food Script
then: Eat_Food Script unless (Long_Walt) then
ExIt_Restaurant_Angry Script
then: If (Food_Quallty was better then
Palatable) then
Compl iments_To_The_Chef Script
then: Pay_For_It Script
Finally: Leave_Restaurant Script

Flgure 4: Example of a script [1].

THING
AKO $IF-ADDED (ADD-INSTANCE)
$ |F-REMOVED (REMOYE-INSTANCE)
INSTANCE $IF-NEEDED (INSTANTIATE=-FRAME)
$IF~ADDED (ADD=-AKO)
$ IF=-REMOVED (REMOVE=-AKO)

Figure 5: A general frame representatlon as used In NUDGE [6].

Page 24
requlre powerful reasonling processes. They allow the
augmentation of general problem solving methods by
domaln-speclflc knowledge about how +to accompllish specific,
slot-slzed goals.

Procedural attachment routines, that take over control only
when certain events or data occur, Impiement event or data-driven
processing. When the value of a slot is found or changed +these
"trigger" procedures are actlvated. Some systems use “these
trigger procedures to declde how to proceed In the event that the
frame, to which they are attached by speclal slots, Is found not
to match the current situation.

Large amounts of knowledge are needed to perform cognltive
tasks. Frames and scrlpts are recent attempts to provide a
method for organlzing +thlis knowledge. Some of the domains and
problems that researchers In +thls area address Inciude: medlical
dlagnosis, natural [anguage understanding, management schedulling
requests, and physlcs. Researchers have also addressed the
development of frame-based programming and representation
languages. Lastly the understanding of sequences of events and

the notlon of causallty have been addressed using scripts.

2.2 Database Management Systems

Data management Is a majJor task 1In the operation of any
large computer system. As systems have grown the amount of data
processed has grown as well. To cope with this data explosion,
database management systems were developed. A database Is a
collection of data that 1s Integrated, sharable and nonredundant.

The software that allows one or more persons to use and/or modify

Page 25

a database Is the database management system, a computer system
that provides for the storage and retrieval of information about
some domaln.
A database management system (DBMS) conslists of:

An organlzed collection of data about some subject, the

database.

A data manipulation language, for queryling and alterling

the data.

A data deflnition language, for developling a

description of the organlzation of the data called the

database schema.

Database subschemas (vliews) for presenting customlzed

verslions of the database schema to users. Constructed

using a data definltion |language.

Constralnts for ensuring the Integrity of the database.

Provislions for concurrency, backup, and securilty [2].
and may contaln:

A data dictlionary contalnling the data definitions and

other useful Information about the date.

Rather than deal with the data as the computer stores It the
DBMS allows the wuser to deal with the data 1In abstract terms.
There are many levels of abstraction between the wuser and the
computer. A viewpoint of data abstraction +that 1Is fairly
standard consists of & single database wlth +three different
levels of abstraction (the database may be one of many using the
same DBMS). The abstraction levels are the users view(s), the

logical database and the physlcal database. Each user view Is an

Page 26
abstraction of a portion of the loglcal database which Is [Itself

an abstract representation of the physlical database.

2.2.1 Database Model Ing

I+ Is at the loglical level of abstraction that databases are
defined. There are three alternate models for viewing and
manlpulating data at this level regardless of the underlying and
supporting physlical data structure. These models are the
hierarchical model, the network model, and the relational model.
Using any of these three models, any loglcal database structure,

called the loglical scheme, can be deflned.

2.2.1.1 Relational Model

The relational model Is a mathematically derived methodology
of data management. Simply defined, 1t Is a database model In
which the database Is made up of & set of flat +tables or
relatlions, In which relationshlps are expressed by the fact +that
two relatlions have a fleld or domaln In common and In which *the
relationships can be 1:N or M:N [12].

The set +theoretlic relation Is the mathematical concept
underlying the retational model. A relation Is a subset of +the
carteslan product of a |ist of domains. A domaln |Is a set of
values and D1 x D2 x ... x Dk, the cartesian product of domains
p1, b2, ..., Dk, Is the set of all k-tuples (vi,v2,...,vk) such
that v! Is In D1, v2 Is In D2, etcetera.

Any subset of the cartesian product of one or more domalns

Is a relation. Each relation has members called tuples and each

Page 27
relation that ls & subset of a given carteslan product Is sald to
have arfty k. A tuple (vl, v2, ..., vk) has k components [26].

As stated above 2 relation can be viewed as a flat +table,
each row 1s a +tuple and each column, often gliven names, called
attributes, corresponds to one component. The order of the
columns becomes unimportant when attribute names are attached +o
the columns. The +tuples are viewed, In mathematical terms, as
mapping from attributes' names +o values In +the domains of the
attributes. Certaln relations are made equal by thls change In
viewpolnt +that were not equal wusing the more traditlonal
definition of a relation.

It 1s sometimes necessary and fortunately eesy to convert
from one relation definition to another. Glven a set-of-mapplngs
view of a relation, +the conversion to & set-of-lists view Is
achleved by simply fixing an order for +the attributes.
Conversely, starting wlith a set-of-llsts, conversion *to a
set-of-mapping Is done by glving arbitrary attribute names to tThe
relations columns,

Taking the set-of-mapping view of relations as standard
allows the relation scheme to be defined as the |ist of attribute
names for a relatlion. The relation scheme Is analogous fto &
record format. Similar analogles can be seen between a relation
and 8 flle, and between a tuple and a record. These analoglies
show that one possible Implementation for a8 relation Is as a flle
of records with a record format equal to the IIst of attributes
In the relation scheme and with one record for each tuple.

The relational dafabase scheme [s made up of a collection of

relation schemes used to represent Information. The relatlional

Page 28
database 1s the current values of +the corresponding relations,
Any Interpretation can be placed on tuples and relatlions can be

created with any set of attributes for a relation scheme.

2.2.1.2 Network model

The network model <can be deflined as a8 model for defining
databases In which any record fype can be related elther as a
chlld or as a parent record type to any number of other record
types; for each parent record occurrence there may be one or many
related chlld record occurrences [12]. Ullman [26] also
restricts relationships In the network model to be binary many to
one relatlionships. More general deflinitions allow many to many
relatlonships requlring only that they be binary. The
restriction to many to one relatlonships In the network model
allows the use of a simple dlirected graph model for data, and
makes Implementation of relationships simpler.

In discussing the network mode! UlIman's terminology shall
be used. Ullman In dlscussing the network model refers to
loglcal record types whlich are deflined as essentlally a relation,
that Is, a named set of tuples. The possiblllty of the existence
of two identlical records of the same record type, distingulshable
only by thelr relationship to records of another loglical type, Is
admitted. The term logical record 1[s wused In place of the
relational term tuple, and loglcal record format Is used In place
of relation scheme. The term fleld 1Is used +to refer +to the
component names in a loglical record format.

Uliman uses the term lInk to dliscuss binary, many to one

relatlionships. To represent record types and thelr |Ilnks a

Page 29
directed graph called a network Is drawn. The nodes of a graph
correspond to record types. When there are two record types TI
and T2 that are Iinked In a many to one relationship from T1 to
T2 then a directed arc Is drawn from the node for T1 to that for
T2. This link Is sald to be from T1 to T2. The arcs and nodes
of the directed graph are |abeled by the names of thelr |inks and
record types.

Only relationships that are binary and many to one (one to
one as a speclial case) can be represented dlirectly by 1lnks.
Arbltrary relatlonships, such as many to many, can be represented
using the followling +trick. Glven loglcal record types E1, E2,
«osy EK wlth a relationship R, & new loglical record +type T,
representing k-tuples (el, e2,..., ek) of entities that stand 1In
relationship R, can be created. Thls record types format might
conslst of one fleld that |Is a serlal number identifying logical
records of that type. The new record type T may have other
Iinformation carrylng flelds In its format when It Is convenlent.
Links L1, L2, ..., Lk are then created where IInk L1 [s from
record type T to record type Tl for entity set Ei. The Intentlion
Is that record type T for (el, e2,..., ek) is |inked to the

record type T1 for el, so each Ilink Is many to one [26].

2.2.1.3 Hlerarchlcal model

A hlerarchy Is a network, & coliectlon of trees or a forest,
whose llnks all point from chlld to parent. The hlerarchical
model Is a model or data structure for definlng databases In
which a parent record type can have one or more chlild record

types, but which does not allow (1) a chlld record type to have

Page 30
more than one parent record type, nor (2) an M:N relatlonship of
I[nstances between +two record types [12]. In talking about
hlerarchles the same +terminology as was used 1In talking about
networks willl be useds The virtual loglical record, a polinter *to
a record of @a given |loglcal +type, Is a wuseful concept that |Is
added to the discussion. When it Is intultively useful to place
a record type In two or more +rees of & hlerarchy or In several
places In the same tree the virtual record type Is used. The use
of the virtual record type means each logical record type appears
only once In the hlerarchy while other Instances of that record
are glven virtual records Instead.

Any network can be converted Into a hierarchy, perhaps using
virtual record types. The root of the tree starts with a logical
record type R. R Is chosen to have no links leaving [f possible.
Any types having Iinks entering R are Its chlldren and thelr
children are found by following |Inks backwards from them. Upon
finding a type that Is already placed In the hlerarchy a virtual
record type Is created and placed In the hlerarchy in place of
the loglcal record encountered and that virtual records chlldren
are not added. When no more chlldren can be added to the tree
under construction a loglical record type not already placed 1In
the hlerarchy Is looked for. Using a previously unplaced logical
record type the tree constructlion process Is repeated.
Constructlon Is done If none can be found.

Zero or more nodes, representing a logical record type
present In the hlerarchy, will be present In the database. A

dummy root wlith chlld record occurrences of the root record tfype

Page 31
Is sometimes useful as a +tool for drawing +the trees 1In the

database.

2.2.1.4 Data Deflinltlon languages

Data definitlion languages (DDL) are provided by the DBMS +to
speclfy the Jlogical scheme and some of +the detalis of the
Implementation of the loglical scheme by the physlcal scheme. The
DDL Is a high-level language that enables the description of the
loglcal scheme In +term of a data model. Rather than belng a
procedural l|anguage, It Is a notation for describling the types of
entlitles, and relatlonshlps among entitlies In terms of a
particular date model [26].

The DDL 1s used when the database |[s designed or modified
not when +the data [Itself 1Is belng obtained or modlified. I+
usually has statements that describe In somewhat abstract terms
what shpuld be the physical layout of the destabase. The DDL
statements are processed by DBMS routines that produce & detalled
design of the physical database.

Data definltlon languages exlist for the definition of both
the loglcal scheme and subschemes. The subscheme DDL is needed
to descrlibe the subschemes or users' views and thelr
correspondence to the loglcal scheme. The subschema DDL can be
quite similar to the DDL. However, 1[It can use a data model
different from that of the DDL and 1t Is possible to have several

dl fferent subschema DDLs, sach using a dlifferent data model.

2.2.1.5 Data Manipulation Languages

Specliallzed languages for the manipulation of the database

Page 32
are called data manipulation or query |languages (DML or QL).
They are used +to express commands for the manlipulation of +the
data In the database. DMLs are usually 1Invoked by a host
language such as COBOL or PL/1.

DML commands are Invoked in elther of two ways depending on
characteristics of the DBMS. One way is for commands *to be
Invoked by calls to procedures provided by the DBMS. These
procedures are glven access to the subscheme and loglcal scheme
definltion. In the second way, command statements are provided
by an extenslion to the host language. The appllication program Is
written In the extended host language and the commands of the DML
result In calls to procedures provided by the DBMS.

An application program's view of the data can be seen |In
flgure 6. The flgure's solld |Ines represent manipulation and
transfer of data and the dashed |1nes represent causation. Data
manlfpulation commands cause data transfers between the program's
work area and the database; data manipuliation commands are
Invoked by the applications program; as In any ordlnary
programming sltuation, statements of +the appllication program
cause data transfer and calculation within the program's
workspace.

A data manipulation |anguage al lows four baslic operations:

(1) Insert - place a new record In an exlsting database

(2) Delete - remove an existing record from the database

(3) modify - change a fleld or flelds of an an exlistling

record

caused by data
manlpulation

data area for
varlables de-
clared by the

Page 33

application
(::‘j:ogram
®

ordinary™

references®

to variables
\

appllcation
program

language
commands view of
the
el A -)-| datebase
|
|
|
!
|
|
data manip-
- ———e - ——-~———=-=»lulation language
procedure commmands
calls

Figure 6: The data seen by an application program [26].

Page 34

{4) Lookup or search, l[.e., flnd a record with a particular

value In a particular fleld or a combination of values In a

comblination of flelds.

The Implementation of these four functlons depends on how
the flle Implementation strategy used for data storage [s done
and Is outside the scope of thlis paper.

A brlef description of DMLs for +the relatlional model will
glve a better Idea of what a DML does. The notatlon for
expressing querlfes Is usually the most significant part of a DML.
A relational DML's or QL's nonquery aspects are often stralight
forward concerned with the Insertion, deletlion, and modification
of tuples, while Its querles, [n the most general case, are
arbitrary functlions applled to relations often using a rich hligh
level language for thelr expression.

Relational mode! QLs can be broken down Into two broad
classes:

(1) Algebralc |languages, where speclallzed operators are

applled to relatlions to express queries and

(2) Relational calculus languages based upon predicate

calculus, where querlies descrlbe a deslired set of tuples by

specifylng a predicate the tuples must satisfy [26].

Calculus based |languages are further divided Into +two
classes, depending on whether the primitive objects are tuples or
are efements of the domaln of some attribute, glving a total of
three distinct kinds of QLs.

The three types of abstract (QLs are relatlional algebra,
tuple relational calculus, and domain relational calculus. They

serve as bench marks for evaluating exIsting systems as they are

Page 35
not themselves Implemented. Real QLs wusually provide the
capabllitles of the abstract languages along wlth additlional
capablillties.

The three notations are equlivalent |In thelr expressive
power. Whlle almost all modern QLs embed one of these notations
within themselves, some are best viewed as having a combination
of these notatlons embedded In themselves.

As mentioned earller all DML Include commands for Insertion,
deletlion, and modlficatlon. Other features which are frequently
avallable Include:

(1) arlthmetic capablliity. Allows atoms In calculus

expressions or selectlions |In algebralc expressions +to

Involve arithmetic computation as well as comparlisons.

(2) assignment and print commands. Permlt the printing

of the relation constructed by a DML expresslion or +the

assignment of a computed relation to be the value of &

relatlon name.

(3) aggregate functlions. Allow a single quantity to be

obtained from a relatlon's columns by applylng such

cperations as average, sum, minimum, or maximum. [26]

These features make most Implemented DMLs more than complete.
That Is, +they are able to compute functlions +that have no

counterpart In relational algebra or calculus.

2.2.1.6 Sample of Methodologles
Two tools that are of Interest In thls discusslon are SDM, a
semantic database mode! for database description, developed by M.

Hammer and D. McLeod, and TAXiS, a language faclilty for

Page 36
designing database-Intensive applfcations developed by J.
Mylopoulos, P. Bernsteln and H. Wong.

SDM, a Semantic Database Model [17] Is a high level database
mode! based on semantics. It Is desligned to capture more of the
meaning of an application environment than contemporary database
models do by describing, the kinds, <classifications and
groupings, and the structural Interconnections among the entitles
that exlst In the applications environment through the use of
high-level modeling primitives +to capture the semantics of +the
appllcations environment.

TAXIS was developed as a language for +the deslign of
Interactive Information systems. |t Includes facliltles for the
management of relational databases, a means for the speciflication
of semantic Integrity constralnts and a mechanism for exception
handling. Usling the concepts of class, property, and the [S-A
relationship, these faclliltles are Integrated Into a single

language.

2.2.2 Data Dictlionarles

Consliderable improvements have been made In the discipllined
way In which we design and code application programs. However
these galins have been primarily In the area of program or process
definition. A disciplined way +to effectively wutillze the raw
materlals for our processes, the raw material of data, Is still
lacking [13].

When It comes +to understanding the characteristics and
relationships of the data I[tself we are stlll relative novices.

We find ourselves attempting to bulld high quality systems while

Page 37
Ignoring the characteristics of our data. (high quality systems
are deflned here as systems that are well structured, user
friendiy, and easlly maintalned and expanded.) Only recently
have attempts been made to deflne and document Informatlion about
data, and concentrate on ways to use this data efficlently,
effectively, and consistently.

The data dictlonary has been defined by A. F. Cardenas [12]
as "a centrallzed repository of data about data. I+ 1s In fact a
database about +the databases managed by the data dictionary
software package and/or +the generallzed Database Management
System (GDBMS)."™ Cardenas goes on to say that +the term "data
dictlonary” has evolved wlth database development as a repository
of data for direct use by the datebase administrator and users,
as well as the GDBMS itself.

The typlcal data dictlonary package contalns a language for
deflning entries to the dictionary called a deflnitlon language;
a language for Inserting, modifylng and deleting entries called a
manipulation language; a means for vallidating the Inputs to +the
dictlonary; and a report program generator for preparling reports,

There Is no Industry-wide standard for data dictionaries.
They have been Implemented In two basic forms. The first form
conslists of those data dictionaries developed +to nearly stand
alone. That 1Is, the organization +that uses +this +type of
dictlonary does not necessarily have to use-l+ with a GDBMS.
These products have at the same +tIime been provided with
Interfaces for use wlith the most popular GDBMS avallable.
The second form of data dictlionary consists of those

dictlonaries developed for wuse wlth a speciflc GDBMS as an

Page 38
Integral part of that GDBMS. The cholce then [Is to use a data
dictlonary designed as an Iintegral part of +he GDBMS or one
developed as an add-on for use with a specific GDBMS or wlith
Interfaces to work with your GDBMS.

Data dictlonarles can contaln Information about and malintaln
relationships between I[ts entries In most of +the followling
categorlies:

fleld or data |tems
file or record type
database schema
subschema

physical database

transaction
source document

report
program
system
user [12]
Reports can be produced on any or all of +the entries 1In a

category by the report generator In the data dictionary package.
These reports, whilch are a direct help to the database
administrator, systems analyst, user, and programmer, can show an
entries relatlonshlip both across and between categorles. Here
are descriptions of a few of the reports that can be produced by
a typlcal data dictlonary:

1. Listing of database names and all flle names or
record names making up each database.

2. Listing of flle or record names and all data fleld
names contained In each flle.

3. Listing of fleld names and all attributes (e.g.,
data type, format) of each fleld.

4. Listing of fleld names and all allas names
(synonyms) of each fleld.

5. Listing of flelid or record names and the passwords
assigned to each record or fleld.

6. Listing of fleld names and names of all application
programs which use each fleld.

7. Listing of system names and all application programs
which make up each system. [12]

Page 39

In general a llist of all the other entrles In each category
to which a glven entry Is related may be made. |In this way the
data dlctionary provides and manages a database about databases
and rej{ated categorles (e.g.,appllcation programs).

All data definltion entitles are bullt on the foundation of
the element definition. The entity definition provides the
followling iInformation about a plece of data:

What the data element's name Is. (ELEMENT NAME)

Who created the definitlon. (OWNED BY)

When the definltion was created. (ENCODED)

The data element's allases or synonyms. (ALIAS)

How you find the data element In the DD. (CATALOGED AS)

Relatlonshlip of the data element to other data. (NOTE)

The valld values for the element (VALID VALUES)

How the data element Is stored. (FORMAT) [13]

The compiliatlion of all the above Information wlll obviously
require conslderable time spent In management, research and data
entry. A number of beneflts are derlived from this expendlture of
time and money.

First, by storing such knowledge In a data dictionary, and
providing adequate backup and recovery to the dlctionary a
company can be safeguarded from the dlsaster of data
documentation destruction. The data & company compliles about
itself Is an important company asset. Therefore all sensible
data centers take precautions to safeguard that data. Should not
the same precautlions be taken with the Information about a
business's data? Could a company survive the catastrophe of
having 1ts documentation |Ibrarles destroyed?

Second, by providing "publlc access"™ to one's knowledge via

the data dictionary, tIme and money can be saved that would

otherwise be consumed 1In question and answer sesslons. A

Page 40
programmer's or system analyst's knowledge has tended to be the
private property of each Individual!. Thls knowledge should not
be Inaccessible +to others., It should be placed In a data
dictlonary where It can be wused by all members of an
organization.

Third, the date dictlonary can be a communicatlions tool. |In
the past organlzations have lacked a central poo! of Information
that could be shared by 2ll Its members. The data dictlonary can
act as a central repository of Information that can be accessed
by all departments of a company.

Fourth, the data dictlionary can reduce and guard agalnst
data redundancy. In +the process of fl|ltering and loading data
from existing systems Into a date dictlonary [+ has been found
that on the average +there are 20 different data names for each
unique data element In a system [13]. This Is known as reference
redundancy. Through the Inclusion of automated dictlonary search
capabliitles the data dictlonary can be used as a tool to enforce
standards of naming conslistency +thus restricting the admittance
of redundant names Into a system.

A second form of redundancy Is format redundancy which
occurs when there are varlations of the format and length of &
data element. Through the use of +the data dlctlonary +tThese
format varlations on a glven data element can be exposed and
catalogued.

Group redundancy Is a third form of data redundancy. I+
occurs when a non-essential data name [s created to Identlify one
or more data elements. Such names only add to the number of data

entries In a system and Increase data deflinlition complexity. Why

Page 41
add these entrles when a comment Inserted Into +the data
definitlon would serve better?

When repetitlious data names are used +to ldentify multiple
generatlions of +the same data elements you have occurrence
redundancy. Data element names contalning numerlic constants,
such as "pay-Increase-1-amount"” are |lkely candidates for
occurrence redundancy.

A fltth form of redundancy Is definlitlon redundancy. It
occurs when a data element Is used for more than one purpose.
This form of redundancy creates excessive |inkage between data
stores and processes &and compllcates the design of the system.
Data should be designed with a single functlon and purpose.

One last form of redundancy Is storage redundancy, which
occurs when the same data element is stored In more than one
place. Storage redundancy can be Justifled 1In some Instances.
The most common such Instance 1Is when you are deallng wlith
distributed processing environments or distributed databases.
Unjustifled redundancy [s a |lability fo any system. Multiple
defInltions of a plece of data requlire multiple processes to
update and safeguard thls data to ensure conslstency through all
data stores. The date resource can not be worn out or depleted
so why not recycle data by using the same element Iin multiple
processes?

Data redundancy will not, however, be prohliblted by the data
dictlionary Itself. The dictionary can In fact accommodate data
varjations through the use of aliases and data element versions.

The tools the dictionary supplles however can detect and publish

Page 42
Inconslistencies In data and this [tself helps Inhiblt unnecessary
data varlations.

The data dictlonary can make the systems easier to malntaln,
more compact, and less expensive by allowing more effective use
of the data.

The data dlictlionary can be thought of as a glossary of
definltions. A date dictionary Is not unllke an English language
dictlonary; 1t contalns a glossary of terms about a company or
project. As such It can be an Invaluable tool In the tralining of
new employees In the data processing and user areas,

In the areas of system development and maintenance the data
dictlonary can be used to centrallze the control of program data
definitions (e.g., flle, record, and segment deflnitions for
various programming languages). Thls helps to ensure conslistency
of data use and Inhlblt data redundancy. Used 1In this way the
dictlonary becomes an effective tool In change control
management. Thls makes the data dictlionary very effective as a
tool to support structured analysis and design. Furthermore by
enforcing consistency |[In data naming and format variation,
program malintenance costs can be signiflcantly reduced.

System documentation has historically tended to be
Iinadequate because I|ittle or no +Iime Is allocated to this
Important +task durling project development, and often the
documentation that exists does not accurately reflect how the
system actually works. For these reasons little falth Is glven
to the documentation of programs by analysts and programmers.

The data dictlonary provides "|[ving", perpetual

documentation that Is avallable to anyone who has access to a

Page 43
computer terminal. Through the use of the data dictionary!s
automated search and cross-referencing tools the user can span
systems, multiple programs, report definitions, datebases and any
other entlity type.

Because the data dictlonary contalns documentation about the
data deflnlitlions, the rellablllity of documentatlion concerning the
data used In a system can be greatly [mproved. By generating the
source program's data definitlions wusing the dictionary +the
analyst actually derlves the data portion of the program from the
documentation. The accuracy of the data documentation Is thus
guaranteed by the direct |Ink between the documentation and the
system deflnitlon.

Recently technliques have been developed to utillze the end
user staff In helping data processing employees In the
development of automated systems. These techniques I[nclude
fourth generation I[anguages, and user friendly inquiry and
reporting tools. The data dictlonary Is another tool which can
Increase user effectiveness In system development. The process
of system development stlll relles heavily on |IImlited data
processing resources. By utlililzing the data dictlonary along wlith
other modern development alds the DP/user staff workload can be
brought Into balance. A development process, suggested by Durell
[13], would work as follows:

"1. With the assistance of the data admlinistration

statt, the user deflnes the data elements used to

perform thelr day-to-day business functlons. These

data elements would be collected from all of the Input

forms and reports used In the end-users dally

operations. These data elements would, In fact,
compromise the majority of all +the data processing

system data elements. The only other data elements
needed would be those necessary to deflne the system

Page 44
and program controls. These data elements would |ater

be defined by the data processing staff during the
deslign phase.

2. Using the data characterlstics and relatlonshlps
defined In the data dictlonary, a loglical database
model Is created.

3. Using the loglical database model, and applyling to It

the physlical constralints of the hardware and operating

system, the database admiInistration staff bullds a

physlcal database.

4, Depending upon the complexlty of the process and the

Interface of thls process with +he existing systems,

each process Is coded by elther the wuser or data

processing staff. The coding process may use

traditional languages or wuser-friendly procedureless
languages."

The user, by defining the characteristics, relatlionships and
edlting criterla of +the data, becomes dlirectly Involved In the
design of +the system. This saves DP statf +time 1In data
definition and gives +the user more control over system deslign.
This makes the data dictlionary a tool to more effectively utillze
the talents of both the user and data processing personnel.

A means of using a data dlictlonary to assist In enterprise
analysls, which 1Is related to and c¢ould extend Qurell's
development process, |s presented by Sakamoto and Ball [22]. The
use of |IBM's DB/DC Data Dictlionary as a means of provliding
computer asslistance to the Business Systems Planning (BSP)
methodology was shown to provide the necessary requlrements for
capturing and subsequently reporting of BSP study data.

BSP provides a structured means of assisting a business in
the establishment of an Information systems plan that satisfles
both near and long term Information needs. Technliques used I[n
BSP Include bottom-up systems Implementation, top-down analysls
and planning, managing data as a corporate resource, and

orlentatlion around business activities. A study team to collect

Page 45
and analyse the data required to run the business Is the center
of the BSP, This study team collects documented facts about the
business and then organlzes, abstracts, and analyzes these facts,
Members of +top management enhance these facts explalning the
business and adding those polnts net wusually documented. The
study then progresses to Identlifylng the major activitlies and
declision processes In the busliness. Management then assists In
validating and enlarging upon the facts gathered and analyzed.
The consolldatlion and comparison of +the data from all sources
ends the analysls.

It was determined that +the use of a data dictionary would
provide a number of benefits +to this process. Speclflically +the
use of the data dictionary: (1) allows +the storage of large
quantities of data making the manlpulation and analysls of
complex relationships manageable, (2) allows each plece of
Information to be stored only once helplng to reduce errors and
maintaln analysls conslstency, (3) lessens the possibillity of
information |oss, (4) provides a connectlon between the end of a
BSP study and subsequent data management and Information systems
activities, and (5) ongoling BSP~llke studles are faclil|itated.

Sakamoto and Ball [22] 1ist the minimum requirements for
this tool as:

A means of describing different kinds of Information

related enterprise phenomena,

A means of storing the descriptions In a database In a

form that 1s computer processable.

A means of changing, adding, and deleting the

descriptive data In the database.

Page 46

A means to analyze and query the study data In the

database.

A well desligned data dictlonary such as the |BM DB/DC Data
Dictlonary was found to supply most of these requlrements and the
1t should be possible to provide the remalnder.

The above beneflts are Just some of the ways that the data
dictlonary can help In system design and management. The data
dictlonary Is not however the answer to a2ll the Information Ills
of a company. Rlgorous data administration standards must be
appl led when data 1Is deflned. Otherwlse +the dictlonary Itself
will reflect the same Inefficlencies and [nconsistencies as the
data that Is to be Improved.

As the dictlonary Increases In slize It also Increases |In
value. The data dictionary Information pool Increases In value
as [ts abillity to do global cross-referencing and multiple
systems Inquirfies |Increases. The maln advantage of the data
dictionary lies In |Its ablllty +to assist In +the disclplline of
data deslign. I+ |Increases the efficlent and proflcient use of

data.

2.2.3 Related Toplcs

There are two toplcs that are Important to the understanding
and success of thls report. These topics are the extension and
Intenslion of the database model, and +the unliversal relation
assumption as It relates +to the database or "busliness world"

model .

Page 47

2.2.3.1 Extension and Intension

in the course of reading and discussing database theory and
database management systems 1t Is often found that +there |Is
confuslon over Just what an Individual means when talking about
some particular point Invelving the database scheme or model.
Often the writer(s) or speaker(s) wlll confuse infension wlth
extension and spend a great deal of time worryling over problems
that are often purely semantic In nature. They will silip Dback
and forth between the two without ever clarifying whether they
are discussing the Intension or the extension of the database.
Thls can lead t¢ +the Implementation of a databases extenslion
before the wusers Intentions have been fully ascertalned and
verified.

To hopefully avold any such confuslon here, the two “terms
(Intenslfon and extension) are defined and thelr meanings as they
apply to and are Implemented In a database are glven.

The Random House College Dictionary defines Intension and

extenslon, for the purposes of this paper, as fol lows:
Extenslon: 9. Also called extent. Logic. The class of
things to which a term Is applicable
Intension: 5. Loglc. the set of attributes belonging to .
anything to which a glven term |Is correctiy applled;
connotation; comprehension.
With these definitlons &8s a base, | have deflned the database
extension and Intension as follows:
Database Extension ~ an Instance of the physical database
which obeys the Intenslon of the database as set down by the

database administrator.

Page 48

Database Intension - a mode! of +the relatlions, data

dependencies and uses of the user's data based on the user's
descriptions and purpose.

Keeping these deflinlitions for the database extension and

Intension In mind should alleviate some o¢f the problems that

occur when discussing databases and thelr models.

2.2.3.2 The Unliversal Relation Assumption

The second toplc necessary for a solution of the problems,
to be discussed |ater, Is the unlversal relatlion assumption. The
unlversal relatlion assumption as given by W. Kent [18] states
that for a given set § of relatlions under consideration, there
exlsts In princliple a single universal relation U such that each
relatifon In the set § Is a projection of U.

This means, of course, that each column name In U Is unique
and ildentical column names occurrling In several relatlons of set
S are proJections of the same column In U and mean the same
thing. In other words, every occurrence of a glven column name

across a set of relations refers fo the same set of data.

2.3 Software Englneering

Software Englineering can be defined as +the the practical
application of sclientiflc knowledge In the planning, design, and
construction of computer programs and the assoclated
documentation requlired +o develop, operate, and malntaln them
[31]. D. Ross, et al., [44], states that software engineering
clearly Impllies at least +the disciplined and skillful use of

suitable software development tools and methods, as well as a

Page 49
sound understanding of certaln princliples. Ross goes on +to
discuss certaln Issues of software englineering In terms of four
fundamental goals. These goals are:

®¥Modifliabllity > Able to change or evolve easlly.
®Understandablil ity > Easily understood by others who
did not have any Involvement 1[In developing the
appllcatlion originally.
*Rellablllty > Must work as Intended.
¥Efflclency > Easy +to use, efflclent operation (must
meet other goals flirst). [44]
The process of attaining these goals Is affected by seven
principles. These princlples consist of :
®*Abstractlion > Ident! fy essentlial propertlies;
characterlistics common to superficlally di fferent
entities.
*H1ding > Making the Inessential [Inaccessible or
unavallable. |
¥Modularlity > Dividing +things Into modules, Iloglcal
functional units, typlcally some sort of structure and
purpose to divislons.
¥Locallzation > Simller things together.
*Conflrmablillty > Yerity that something Is happening;
want to see what Is golng on. Bulld In abllity to see
what has been produced.
¥Completeness > Providing complete (whole) set of
Items, with ablllty to change same.
*Uniformlity > Standardizatlion, data entered In a

standard form, standard Interface with user. [44]

Page 50
The process of plannling, designing, constructing, operating, and
malntainlng software Is known as the software development |lfe
cycle or process. The software development process when properly
Implemented wlli help achleve the above goals In terms of the

seven principles listed.

2,3.1 The Software Development Process

There are many dlfferent descriptions of +the software
development process. Two typlical descriptions are glven by M.
Zelkowltz [52] and K. Orr [42]. Zelkowlitz describes the software
development process as conslsting of the followlng stages: (1)
requirements anatysls, (2) requirements speclfication, (3)
design, (4) codling, (5) testing, and (6) operation and
malntenance. Orr defines The development process as consistlng
of the following elght steps: (1) plan, (2) deflne, (3) design,
(4) construct and test, (5) Install, (6) operate, (7) use, and
(8) evaluate.

The process here Is based malnly on the process as descrlibed
by Orr for hls systems development methodology. To Orr's
description, certaln explanations of process steps, as descrlibed
by Zelkowltz [52], have been added to help glive a better
understanding of +the process. In additlon, Orr's process |Is
shortened to five steps with the last four steps (Install through
evaluate) comblined Into one final step.

Orr stresses structure In +the development process, calilng
1t structured systems development., An appllication or Information
system Is deflned as a collection of related entitles and

transactions that makeup an essentlal, feasible, functional,

Page 51
workable, correct, and operational model within an organization.
Each term Indlcates the most Important characteristic of a phase

of the systems I|ife cycle.
The first step In the software engineering process Is often

referred to as requirements analysis. The Random House College

Dictlonary defines @analysis as the separating of an abstract

entlty Into Its constituent elements; a method of studying the
nature of something or of determining I¥+s essentlal features and
thelr relations. Determining the essentlal features of @ system
Is certalinly necessary for the development of a2 complete and
accurate system that meets all| Its requirements.

Zelkowltz defines thls first step as the definltlion of the
requirements for an acceptable solutlion to the problem. He goes
on to state that this step focuses on the Interface between +the
too! and the people who need to use 1It. |t contributes to the
best solutlon by alding In understanding the problem and the
trade-offs among conflicting constralints. It alseo should
distingulish hard requirements and optlional features, and
determines the resources needed to Implement the system.

Orr divides this phase of systems development Inteo loglcal
and physical subphases. Logical systems planning is
characterlized by the essentlality of the problenm. Essentlal Ity
[42] 1s defined In terms of Identifylng: problems, users, uses,
and the appllcations context. The key question at thls stage Is:
Is this application really necessary? In other words, an
essential appllicatlon Is one that |Is necessary to the operation

of the organization, enables the exploltation of major

Page 52
opportunities or solves major problems, and from the
organizational standpolnt 1s a major priority.

The second half of the planning phase Is physical systems
planning. It Is <characterized by application feasibillity. An
application Is feaslible 1f, glven the organizational environment,
It Is judged economically, +technlically, and organizationally
possible. When analyzed many appllications prove to be deficlient
In one or more of the areas of possiblillity. Feasiblillty, In
Orr's structured systems development process [s defined In term
of economic, technologlical, and organlzatlional risk (benefit).

The primary focus of the systems planning process Is
determining which of +the many appllications +that could be
developed are actually carrled forward to the requlrements
definltion phase. Orr suggests that the document that results
from thlis phase should answer at least the following three
questions:

¥What are the real (as opposed to apparent) problems or

opportunities the system Is supposed to affect?

¥Who are the users and what wlll the primary uses of

the system be?

*What Is the context and prellminary scope of the

system? [42]

In addition, at least preliminary answers should be provided for
two other questlions. They are:

*What resources are needed to Implement the proposed

system?

*How wlill progress +towards systems completion be

control led and monltored? [52]

Page 53
The document that results from +thls systems planning phase
represents the Input for the next step In the software
development process.

The second step In the process 1Is termed requirements
speclflication or definitlion. Requlirements definlition deals wlth
the definition of what the system Is supposed to do and what |Its
Inputs and outputs are. Here agalin, Orr dlvides the task Into
two subphases. The flrst phase of +thls step s loglical
requl rements definition. |t deals with the functlonallty of the
appl Ication. An application Is functlonal If 1t does what [t |Is
supposed to do and no more. |If It works well and operates In a
consistent manner for a varlety of operators, managers and users,
It 1s a functlonal system. |In |Its fullest sense, functlional
means Ignorlng the Internal procedures and organization
structure. Functions, In Orr's structured systems development
process, are deflined I[In term of functlional flow and steps,
context, cycles, decliston control feedback, scope, and outputs.

The second phase of requirements definltion 1Is physical
requlrements deflinition. The maln characteristic I+ Is concerned
with 1s workabllity [42]. An application that Is workable can be
supported economlically, technically and operationally, and can be
operated by personnel of the organization. A workable system Is
concerned with such factors as response +time, human factors
englneering, volumes, and many physlcal constralnts.
Workabllity, In structured systems development, Is defined In
terms of alternative solutlons, constralnts, recommended

solutlons and beneflts/risks.

Page 54

In order to produce a system that will be used within the
organization, requlirements definlitlon concentrates upon applyling
physical constralints to the functlonal requlrements. The
document that results from +this step represents a functional,
workable appllication deflinition, and Is +the Input to the design
phase of the systems development process.

Zelkow!ltz defines the design phase as the stage at whlich the
algorithms <called for In the requlirements deflinitlion are
developed, and the over all structure of the system takes shape.
Modularity of design Is stressed.

In Orr's structured systems development process design |Is
divided, |lke the two prevlious phases, Into two subphases. These
subphases consist of a |oglcal design stage, which exhlbits
correctness as I1ts malin characteristic, and a physical design
stage, which exhlblits operationallty as Its maln characteristic.

Orr states that "the test of loglcal design Is at all time
the abillty +to prove correctness"™ [42]. An application that
produces, at +the requlred +times, according +to +the requlired
calculations and decislon rules, the correct results is a correct
appl tcation. ¥hether +the appllication produces +the correct
answers all| the time 1s the first and foremost technlical Issue In
design. A strong emphaslis Is placed upon defining the loglcal
correctness of systems, based on the results of the requlrements
definltlion phase, In structured systems development. The
correctness of an appllcation Is defined In terms of It+s loglical
speciflications.

Physical deslign deals with the Incorporation Into a system

of those features that will make the system efficlent to operate,

Page 55
easy to run, capable of recovery, etc. These application
features, that make the appllication flexlible, robust, efficlent
to operate, and malntalnable, glve an appllcation the
characterlstic of operationallty +that Orr sfresses for the
physical deslign subphase. This characterlistic of operationallty
Is defined In terms of a set of physical specifications. The
logical and physical specliflcations provide what can be thought
of as a blueprint for system construction and testing, the fourth
phase of systems development.

The Implementation of the set of speclflcations or
blueprints from the design phase 1Is carried out 1In the fourth
phase of the systems development process. Thls fourth phase |Is
called varlously constructlon and testing (orr), codlng
(ZelkowlItz), or Implementation and testing. Testing should
proceed concurrently with system constructlon. In fact,
preparation for +Yesting should start In +the design phase and
possibly earller.

Construction 1Is +the process of actually producing the
software satisfying the speclflcations or blueprints produced 1In
the deslign phase. The software 1Is produced using a speclifled
programming |anguage. It Is I!mportant to produce a program that
ls structured and modular so structured programming technliques
should be stressed In system construction. The use of high level
languages and structured programming techniques wlill help
simplify +the construction and +testing of the system. The
Implementation of a modular program will be Important in |ater
stages of the systems |lfe cycle as It will make malntenance and

modl flcatlion easlier.

Page 56

As emphasized above, testing should proceed concurrently
with the construction of the system. Zelkowltz suggests that a
plan for +testing the system should be designed early 1In the
development process and that the data used to test the system
should be specifled during the design phase of the project. The
actual testing of the system under constructlion should start wlth
the production of the first systems modules.

Zelkowltz suggests dividing testing 1Into +three distinct
operatlions. This divislion alds In the Implementation of test
procedures early in the construction process.

The flirst stage of testing wlll consist of testing
Individual modules for correctness and Is called module or wunit
testing. The second stage of testing conslists of testing groups
of modules together and eventually produces a completely tested
system. Thls operation Is called Integration testing. The iast
stage of testing before the system 1s ready for operation and use
Involves an out slide group testing +the completed systenm. This
operatlion Is known as systems testing.

The result of this fourth stage of the systems development
process Is the completed and tested system software along wlith
documentation of the software explaining the use and workings of
the system, and the tests done and thelr results.

Once the system has finlished the testing process It Is ready
for the next phase of the systems development process. Zelkowltz
call this phase operation and malntenance. Orr dlvides *thls
phase into four separate steps, Installation, operation, use, and

evaluatlon.

Page 57

Orr's four steps are contalned In the phase which, as
Zelkowlitz does, shall be referred *to as operation and
maintenance. The operatlion and maintenance of & system occurs
sIimul taneously. For +thls reason Orr's last +three steps are
concurrent. That 1Is +they occur at the same tlime. The
installation of the system occurs at the start of this phase and
may not be required In the future of the system.

Installation Is +the process of bringing the the system
"on-IlTne", making It avallable for use by the wusers. This s
followed by systems operation and wuse whlich should occur
concurrently wlth the evaluation of the system.

As the system Is used It should be evaluated to uncover any
system faults or shortcomings. Thls process [Is part of system
malntenance. It ends when the evaluations carrled out determine
that +the program Is no longer needed or that further
modlficatlons or corrections are not economically feaslible and a
complete new system should be developed.

When a fault or shortcoming 1In the system Is uncovered, by
the evaluation, the system Is repalred or updated (modifled) +to
correct the problem. Updating and repaliring the system Is,
therefore, the process of modifying the system to meet requested
changes In the dellvered system, and the correction of errors
missed In systems testing,

Modificatlion of the system should be handled 1In the same
manner as the development of a2 new system. That 1Is, the
modlfication should go +through all the steps of systems

development from planning through operations and malntenance. |t

Page 58
has been suggested [40] that thls last phase could be renamed the
evolutlon phase.

The systems development process outllIned above consists of
filve phases: systems planning or requlrements analysls,
requirements deflinlitlon, design, construction and testing, and
cperation and malntenance. Following this process and wusing
selected software engineering tools should ald In the attalnment
of the four goals of software engineering outllined at the

beginning of thls discusslon.

2.3.2 Tools and Methodologles

Me+hodolpgles exIst that can ald all of +the phases of the
scftware development process. Methodologles and tools exist to
help In requirements analysis, requlrements definltion, design,
construction and testing, and operation and malntenance. They
are highly Important In reachling the goals of software system
development. Not all these methods or tools were orliglnally
developed for software development, never-the-less they can be of
direct help In the development process and wlll| be discussed In
the following chapter. At thls time certeln methods that pertaln
to software engineering shall be examined. The methodologlies and
tools +to be examined Include development support systems,
requirements definitlion languages, program |ibraries and guldes,
reuse of old code or program modules, structured programming
technlques, and tools to develop and Improve tools.

Even the use of a set of well constructed tools (a toolbox)
and adherence to a few basic methodologles such as reuse of old

code wlll not guarantee the successful development of a system.

Page 59
They must be wused In connectlion with or patterned after a
standardlzed structured software development process such as the
one out|Ined earller. The methodology and software tools that
are developed for use with It are together a development support
system [40].

This development support system consists of two parts: (1) a
model representing a particular view of the development process,
and a methodology for proceeding with system development, and (2)
software tools based on the model, and supporting the development
process according to the methodology used [40].

The logical place to begin +the discussion of tools and
methodologles used In supporting the development process Is with
planning, the flirst step In the development process. Structured
planning Is a current area of research that holds great promlse.
It deals with the careful planning of systems before appllications
development. Systems planning 1In software development Involves
the analysls of the business' functions, the data these functions
need, and the Information processes needed to maintaln the data
of an organlzatlion. Thls overlaps with what has +tradltionally
been management or enterprise analysls and services as a vehicle
for communicating information requirements from the end user +o
the data processing function. Enterprise analysls, as used here,
Is the analysis of a businesses goals and pollicles to determline
l1ts Information requirements. An example of a tool that serves
this functlon Is +the Busliness Information Control Study (BICS)
and an extenslion to 1t called REQGEN [38].

BICS Is an enterprise analysis methodology That has been

Implemented In EAS-E, which 1s an appllication development system

Page 60
based on the wentity, attribute, and set (EAS) view of systems
model Ing. An extenslon to BICS called REQGEN produces
requirements definltions for all of the data processing
requlrements of an organization for which an analysls [s made.
It generates speclifications for the processes required to
maintain the data, lIlsts the events that trigger each process and
generates the data definitlons,

Other enterprise or management analysls methodologles exlst.
Some of them have been used In the data processing effort outside
software development others, have yet +to be explolted In +thls
manner. The use of enterprise analysls methodologles, such as
BICS, In software development should enhance the ablillty of users
to communicate thelr needs to the systems analysts and at the
same time enhance the analysts' ablllty to produce systems that
are essential, feaslble, functlonal, workable, correct, and
operational.

The main tool In the requirements definltlion phase Is the
Requlrements Definition Language (RDL), which Is used for the
specification or definltlon of data or aigorithmic structures. A
good RDL, according to Orr [42], should exhlblts the following
princlple characteristics:

Simple > Contaln a minimum of baslc structured

representations.

Loglcal > Notation must be directly related to basic

loglcal primitives.

Complete > The vast majority of Important relationships

and structures may be described by the notation's set

of structures.

Page 61

Graphical > The solutlon s "pictured" by the

definttion language as much as possible. The RDL

del Ineates the context as clearly as possible providing

a signiticant step In Improving communicatlions between

the user and the vendor.

According to Orr, If the definitional language Is to model
the real world adequately It must be capable of representing the
followling logical structures: sequence, alternation (selectlon),
repetition, hlerarchy, concurrency, and recursion. Some wuseful
extenslons to these |oglical structures can be added Yo the
language. These extensions Include: conventions for arlthmetic
operators, names, labels, keys, and the use of operators wlith
repetitive sets. |t also wuseful If the language Is capable of
representing both processes and data. That 1[s [+ [s able *to
define the flow of control and fha flow of access respectively
[a42].

Some examples of requlirement definition languages are
PSL/PSA [46], SA [43], SREM [29], REQGEN [38], Warnier/Orr
Diagrams [42], and a framework for requlirements models (RMF)
[36]. These languages provide +the Input for the next stage of
systems development. A well structured requlirements definition
will ease the system desligners task by making the use of certaln
design technliques simpler.

In design, tThe next phase of the software development
process, there are a number of technliques and tools that can help
produce a correct and operational design. Some toplcs In +thls
area that are of Importance *to thls paper are structured or

modular design and the reuse of old code.

Page 62

There are many reasons for using structured deslign
techniques In the software development process. The more
Important reasons are +that it allows the appllication to be
developed one functlon or procedure at a time, makes system
constructlon and testing easler, and makes systems maintenance
easler as well. One more reascn for using modular design s that
it mekes possible or at least easler the reuse of old code.

In database management one key 1Issue Is +the reduction of
data redundancy. The redundancy 1Issue shoulid be no less
Iimportant 1In system development. In systems development
redundancy refers to the redesigning and relimplementation of
processes that have been developed before. The solution for thls
Is to reuse old code. The keys to the reuse of old code or
processes are some method of keeping track of the +tools and
programs developed and used by an organlization, and a set of well
structured and complete requirements definitions. The latter Is
provided by a structured requlirements definition language and one
way of providing the former Is the |Ilbrary reference guide and
program |lbrary.

The use of a |lbrary of programming tools and routines can
help reduce programming redundancy and Increase systems
development efficlency. The effective wuse of +this |lbrary
requlres knowledge of the |lbrary's contents and how to use those
contents. This I|lbrary should also be easy +to use. A Llibrary
Reference Guide (LRG) can help attaln these goals.

A LRG can consist of an on-line query program, a tradltional
manual or a comblinatlion of the two. |If the LRG Is up to date and

well designed It will be easy to use and will help programmers

Page 63
save tIme. The LRG has two functlons: (1) help system developers
find and (2) use a routine. I+ should be Indexed by the toecl or
routine's name, and the task or function performed. Each entry
should Include a functlional description of +the routine. This
functlional description should Include:

what 1+ does

setup required [f any

Inputs and outputs

data altered or destroyed

data routine entered or last time altered. [47]

Each routine's description should Include all +that the system
developers need to know about that routine and should be complete
in and of Itself. By providing thls Information In the LRG the
systems desligner can use It to 1ldentify those functlons or
processes deflined In +the requirements definltion document that
have already been developed and Incorporate them Into the systems
deslign.

The guide should be organized according to the functions
performed by the routines (group search routines, stack routines
etc., together). All entrles should be cross referenced by name,
function(s) performed, and subject (flle, flag, stack, etc.)
C47]. A search method that Is fast, flexible and easy to use
should be provided. Facllitles for searching on the entrles
function(s), name, and subject should be Included at the very
least. It Is deslrable to have +the abillty to search on more
than one key word at 2 time.

The llbrary gulde should be +task orlented. For complex

routines give a general description flrst then detall each option

Page 64
separately. The gulide should be strictly functlional. I f
explanatlons on how to use a routine are needed the programmer
should be referred to a wusers guide that wlll explaln the
routines In more detall. [t should be easy to update and add new
routine descriptions to the LRG.

As the progrem llbrary 1Is dynamic, the LRGC should also be
dynamlc. This will require a clear |Iine of communication between
the LRG manager and users |f entrles are to be kept up to date.
When the LRG [Is updated any wuser manual affected should be
updated at the same time.

The Library Reference Gulde, as described, glves systems
developers quick access to the Information they need thus helplng
Increase thelr efflclency and at the same tIme reduce programmling
redundancy. The gulide can be a valuable software development
tool when properly Implemented and can help reduce the cost of
software development.

Related to the reuse of code are two tools called adaptable
applications software and foundation software. Adaptable
appl lcatlons software conslsts of a8 set of software that can be
Installed and customlzed to provide a complete system that when
finished meets an organizations unique requlirements [51].
Foundation software consists of an Integrated environment of
standard packages and custom modules +that provides common
services to the development and operation of appl!lcations
software [33].

Often the use of off-the-shelf software requires major
undesirable and traumatic business and operational concesslions.

The use of adaptable applications software can allevliate +hese

Page 65
problems by provliding |low risk, low cost, fully functlional and
customlized software. As Its name Impllies this software should be
adaptive and easy to work with allowing all desired functlons,
features, and requirements to be accommodated. Some of the
beneflts of using adaptive software are as fol lows:

1. The need to relnvent the wheel Is eliminated.

2. The organlization's unique requirements can be met.

3. The risks are low.

4, The costs are a fraction of what they otherwlse

would be.

5. The time required Is simllarly reduced. [51]

Appllcations software as well as adaptable software |is
provided a structured, standardized, and simplifled view of +the
outside world by foundation software [33]. The economics of
development, operation, and malntenance of large systems |Is
dramatically Improved and the risk of development is reduced by
the use of foundatlion software.

Foundation software Isoletes a=applications software from
changes In the computer systems technlical environment and makes
the technical components easler +to use, thus increasing
productivity throughout +he appllication softwares |ife cycle.
Besldes the technlcal environment Curtis [33] divides large scale
systems Into +two other archltectural levels, appl icatlions
software and foundatlion software. The technlcal environment Is
at the core of the system. Around It Is the foundation software
which Is between the technical environment and the applications

software. The system can be +thought of as an onlon with the

Page 66
technical environment at the core and the appllications software
as its outer-most layer.

The technical envirconment consists of the operating systenm,
DBMS, network architecture, etc. The applilicatlion software level,
which Includes adaptable appllcations software, contains all +the
speclflc substantive functlions that relate to +the appllication
problem at hand and 1Is the functlional core of the appllicatlions
system. An Interface, between the detalled conslderations
required by each component of +the technlical environment and +the
appllcations software, 1Is provided by the foundation software
level. The control, communications, and standard programming
services of the technical environment are dlrectly used by the
foundation software.

Foundatlion software consists of three types of components:
custom Interface modules which provide efficlent standardized
utlillzation of the technical environment's more complex
components, packaged software such as report generators, enqulry
packages, etc., which are usually Integrated Into the foundatlion
software with custom modules, and common modules which are
processing functions required frequentiy throughout the
appl icatlons software.

The functions +to be provided by the foundation software
should be determined within the context of the application deslign
characteristics, the organlizatlional environment of +the system
development effort, and the constralints of the t+echnical
environment. Some of the functlions and features provided by the
foundation software ere: on-line user management, Input and

ocutput management, application data management, network

Page 67
management, system management, offlce automation facllitlies, and
technical-environment enhancements [33].

Foundatlion software can provide beneflts +throughout the
system development process. The major beneflits begln with system
design and extend through system support. Within system design
foundation software can be viewed as an extenslon of structured
design methodology as 1t results In a high level of
modularization. Standard, reuseable software provlides many
functions and common functlons are designed only once.

During system development and I[mplementation foundation
software allows senlor technlcal staff to concentrate +thelr
efforts In high-payoff areas and allows less sophisticated staff
to develop technlically sophlisticated applications. |In addition
foundation software Isolates application programmers from changes
In the technlcal environment.

Using foundation software, appllications programs are
lsolated, during system support, from the effects of raplid
changes In technology. Because new appllications functions can be
added with minimal affect on the exlisting system, the appllication
can be changed to meet evolving user requirements more easily and
cost effectively.

Through the use of adaptable applications software, for tThe
appl lcatlion speclflic functlons, and foundation software, for the
Interface to the technical environment and to provide common
tasks, system development risk, time, and cost could be greatly
reduced. Furthermore, as stated the use of +these techniques
enhances the use of structured design and Implementation

methodologlies and can ald in system malntenance.

Page 68

Some other technlques or tools that ald In the
Implementation and testing of structured or modular programs are
structured programming languages, preprocessors and as mentloned
earller modular design.

Structured languages, such as Pascal and Modula 2 +that
provide strong data typing and subprograms provide the means +to
Implement an appllication design as a set of modules. These
modules are often referred to as procedures, subroutines or
functions. Belng able +to Implement each module Individually
allows +the system developers +to test each module first
Individually then In related groups. When +he design phase of
the development process uses structured or modular techniques the
use of structured Ilanguages 1Is further enhanced and systems
Implementation |Is made easler.

Preprocessors are programs designed +o ald In systems
testing and Implementation (an example Is described in 49). They
allow the programmer to do such tasks as check a program module's
syntax, or support data encapsulation and modular system
development before actually compllling or Interpreting, or even
coding the program or its Individual modules.

Some beslic software development tools and methodologles have
been presented here. In additlon, two methods for developing
software development tools can be added to them. The two methods
are: 'A Forms Based Approach to Human Englineering Methodologies®
[39] and 'Speciflication Meta Systems! [34].

Software englineering methodologlies can be Improved through
the use of a forms based Interface. By using a forms based

Interface, standardized methodologles may be enforced and

Page 69
software quallty Increased. The advantages of using a forms
based Interface for a software englineering environment can be
shown by focusing on the design of forms, on the Iimpact of forms
on the software englneering process, and the Improved tool
support faclllitated by the standardization achleved by forms.

By using blank forms @and help forms software development
methodologles can be preclisely described. The syntax concepts of
a methodology are enforced by the blank forms and the help forms
provide the programmer with Information on how to fill In +the
forms. Forms standardize the documentation of deslgn declslons
and the placement of documentation. Usling forms to standardize
the enforcement of a methodology faclllitates the design of
semlautomatic tool support. Finally the design of a customizabie
environment which evo|ves as the programmer's needs to
continually provide optimum support for themselves evolves Is
facllltated by the forms based approach as well.

Forms have certaln general properties. A form wusually
contalns headings that describe what 1s +o0 be entered in the
blanks. Underneath each blank are annotations which provlde
Information on how +to fIl] In +the blank. These annotations
provide help Information and If they get too long a separate help
form may be provlded.

The notation that must be used to flll In a blank form may
be formal or (Informal, programmer or programmlng language
oriented. |In addition graphical symbols and a text other +than
Engl ish text may be used.

A varlety of headings, some requlirlng machine orlented

detall 1n some programming |anguage, may be contalned on a form.

Page 70
Two general heading types are the programming orlented heading or
p-heading, mentloned above, and the documentation or d-headling
which provlides for headings where human oriented design declisions
may be recorded.

The proper designing of forms for enforcing a methodology
requires that the designer conslider the content and placement of
the d-headings and p-headlings, and the contents of the help
Information. The ratlonale for the design of forms Is to provide
a layered collection of modules, make relevant documentation
visible and hide Irrelevant detall, highlight relevant
documentation, and provide for the deslign of data abstractlions
[39].

Tools and methodologles are two complementary ways for
supporting the software l1fe cycle [39]. Tools can be developed
to support a methodology @as [t becomes preclse. Syntactic
concepts which may be presented +to the programmer by means of
forms are present In methodologles. These forms serve +to
precisely Identlfy the techniques for fllling In the bltank forms,
thus using the syntactic concepts of the methodology. The early
identificatlon of module propertles +that are externally visible
Is emphasized by forms. Through +the wuse of speclification
techniques forms provide support for the design of data
abstractions, and forms provide a techniques for programming In
the large by enforcling a layered archltecture.

The form-based approach «can be wused In all phases of the
software |Ife cycle ranging from the requirements phase to the

coding phase [39]. The unlformity +that results from the use of

Page 71
forms In recording soffw;re related Information facil|Itates more
powerful tool support.

The actual use of forms has produced two major conclusions,
These concluslons are +that forms stendardize documentation and
secondly that forms encourage the use of modules [39].

A number of concluslons can be drawn about the use of forms.
First, an Interface based on forms facll|liltates the standardl!zed
enforcement of methodologlies. Second, by carefully designling
these forms, a programmer's behavior may be altered In deslirable
ways. Lastly, better tcol support can be provided by organizling
software related Information using forms.

Specification meta systems are a practical method for the
constructlion of general purpose computer alds for speclfication,
analysis, and documentation In software systems development [34].
Meta systems consist of +two levels, +these are +the designer's
level, called the meta level, which requires speclal training +to
use, and the target level or user level which Is Intended to be
usable by an untralned individual. Two level meta systems glve
the effectiveness and power of a narrow target domaln (level one)
while providing flexibll ity through the abstractlon and
man!pulation of the target level {(level two).

Meta approaches are general purpose methods with language
definition faclllitles that have become feaslble with respect to
computer alded speclflcation systems, Problem orlented
specliflcation languages are effective only In falrly restricted
areas and specliflication tools tend to have very similar
structures and underlying principles, thus gliving Impetus +toward

meta drlven systems,.

Page 72

In applying a glven computer alded methodology, It Is often
hard to match +the predeflined concepts of a particular |language
with those that derlive from the problem +to be solved. However
since It turns out that +the varlious software tools supporting
partlcular descriptive |languages have essentlally the same
structure, It Is possible +to construct a set of computer alded
tools, Independentiy of the appllication language, that can then
be supplemented by mechanlsms that ald language definition [34].

The same capabilities as provided by conventlonal computer
alded methodologles can be bullt Into meta systems In this way.
Meta systems, belng free of the |language restrictions of a
particular descriptive language, allow the user to designate hlis
own conceptual world and |anguage terms. The language
Independent set of tools should be bullt wupon a general scheme
onto which each potential descrliptive language can be mapped.

The second maln component of @a meta system Is the meta
Interpreter. The generatlion of +the meta database that controls
the operation of +the Ilanguage Independent part durlng the
consumption of specliflcatlions Is Its major functlon [34]. It can
also have additlional functlons such as generating user manuals
describing the language gliven at the meta level.

The foundation of meta systems have been well developed
recently In both semantlc processing and data abstractions. The
foundations of +two level meta systems are theoretically much
deeper than those of problem oriented |anguages [34].

This chapter has examined a number of computer sclence
toplcs that are pertinent to +the goal of this paper. These

toplcs Included:

Page 73

Artificial Intelllgence. & description of expert systems,
and knowledge bases, and a look at some generlic expert tasks,

Database management systems. a brlef description of what a
database management system Is, a look at the three major database
data models and what data deflinition and manipulation Ilanguage
are, and a descriptlion of the data dictlionary and It beneflits,

Software englneering. a descrlption of tThe software
development process and a survey of some methodologles and +tools
used In software development.

The next chapter wlll dliscuss the similarities of +these
three main areas and the ways In which varlicus methodologles and
tools from +the different areas can be wused +to enhance

methodologles and toeols In the other areas.

Page 74

Chapter 3
An Overview of Al, DBMS, and SE

SImllarlties and Cross Appllcations

All +three of +the areas under Jlscuss]on have certain
characteristics In common. They are all Involved In systems
development, and all fhree deal wlIth +the processing of data
(Information or knowledge). |In fact all of data processing and
computer sclience Is concerned with the manipulation of data In
one way or another. What Is Intended here Is +to show how the
technliques or methodologles of one area could be or are belng
used In the other +wo areas +o. support or enhance systems

development and the processing of data.

3.1 Al In DBMS
The application of artificlial Intelligence to database
management has been done In three ways:
Al techniques employed to improve the user Interface,
Al techniques have made 1t possible +to Increase the
effliclency of the DBMS,
Similarities between Al and DBMS may be explolited <o
extend the capabillities of the DBMS allowing 1t +to
“answer dlfferent kinds of questlions about the data and

about Itself [2].

Page 75
Improvements In the user Interface provide for greater data
Independence. It Is not necessary for the user to be aware of
the actual organlization of the database when Interacting with the
system. The data manipulation or query |language for accessing
the database Is the domlnate feature of the user Interface. By
developing natural language Interfaces for query languages the
usefulness of a DBMS to users can be enhanced.

Natural language processing fs a majJor subarea of Al. Its
use in DBMS Iintroduces new problems. Posslible problems Include:
Users of DBMS tend to use abbreviated of ten
ungrammatical requests for Information as they become

famillar with the system.

Misspel ling of words by users cause problems.

As the Information In +the database 1Is constantl|y
changing the DBMS's parser may not have a complete
lexlcon of the words the user might use In his querles.
The user 1Is often unaware of the structure of the
database and 1Its connectlion +to the structure of the
appl Icatlion domain [2]. (In a properly desligned system
the user should not need +to know about the database's
structure, or Its connectlon to the structure of hls
appl ication domaln. This knowledge should reside
within the scope of the systems responsibilitles, l.e.,
the system 1Is responsible for keepling track of the
connection between the structure of the user's

appl Icatlion domaln and the structure of the database.)

Page 76

Some natural language systems for database access that have
been Implemented are, LADDER (Sacerdotl, 1977), PLANES (Waltz,
1978), ROBOT (Harrlis, 1977), and TQA (Damerau,1979) [2].

Some of the features explored by these systems Include,
abll 1ty to handle elliptic Input, correct spelling errors, handie
pronouns, and use the database to look up unknown terms In the
query. These systems function In different ways. However al! of
the systems use a grammar of the particular |anguage and a parser
to process the [nput In terms of the grammar. (See Handbook of Al
vol. 1 chap. VIl pg. 163-73 for further Information.)

Automatic derlvation of a natural language:

DBMSs have been designed to explore +the usefulness of
speclflc NL features In the natural language front end. In one
such systenm, TED, developed by Hendrix and Lewls, the
semiautomatical ly derived NL front end makes use of the database
schema and a dlalogue It conducts with the user to produce the NL
Interface rather than requiring extenslive programming. This
process results In a grammar for the particular language.

Questlons about the EnglIsh expression of concepts from the
database, connections between flles In the database, ranges of
certaln attributes, and so forth, may be Included 1In +the
dlalogue. Thls process produces a language capability that Is In
general sl|ightly more restricted than a manually created one.
Cooperative responses:

Natural language querles that are answered using a direct
Itteral Interpretation of the query may not result In the correct
answer and coulid be misleading. If the system could Infer from

the users query that +the state of +the database viclates the

FPage 77
user's presumptlions +the system could formulate a corrective,
Indlrect response that Is more Informative than the formally
correct response. Thls Is called cooperative response. The COOP
system (Kaplan, 1979), was designed to provide such a response.

In Incremental query formulation +the system helps the user
to formulate hls query by asking directed questions of the user
that help the system +to generate an approprlate flinal form for
the user's Inltial query. A system accompllishes +this task by
accepting a partlially specifled query In somewhat rough form
which It +then attempts +to complete by (1) entering Into a
clarlflication dlalogue with +the user to clarlfy ambiguities In
the query and (2) attempts to flll in "gaps" In the Inltlial query
speciflcation by Initlating a dlialogue with the user.

More sophisticated interfaces:

The DBMS user should be able to interact with the system not
only in terms of the concepts and terminology covered by the
database per se but also |In terms of +the enterprise belng
modeled. The wuser should be able to ask question about the
database, such as what kinds of Information are stored In 'I*.
This system could provide an Interface between the user's needs
and the resources of the computer system. The KLAUS system,
currently under development at SRl |International, (Haas and
Hendrix 1980) Is an example of such a system (Handbook of Al wvol
1 pg 169-70 for more Info.).

Query Optimization:

Two methods +to Improve +the execution of querles are

syntactic query optimization and semantic query optimization.

Syntactic query optimization uses heurlistics referring only +to

Page 78
the structure of the database while semantic query optimlization
uses Informatlon (such as value constralnts on attributes or
IImitations on entity relatlionships) about the actual contents of
the database. (Handbook of Al vol. 1 pg 170-71)

Artificlal Intellligence and Database Management are both
concerned with tThe representation, retrieval and use of
Information. Extenslions of the data model, which describe +the
structure of the database In the database scheme, and the use of
formal loglc to reveal restrictlions on the ablllty of database
systems to represent certaln kinds of Information or to perform
certaln operations are of particular Interest.

Data models capable of representing aspects such as semantic
constraints, generallized Inference for query processing, and
Inheritance of propertlies between classes of objects In DBMSs
have been developed based on the semantic network knowledge
representation formalism. Speclfying the data mode! and stating
querles can be done wusing the network notatfon. An example of
thlis is Sowa's conceptual graph model.

Two languages for designing databases that were dlscussed In
the prevlious chapter, TAXIS and SDM, also make use of technlques
for the speclflicatlion of semantic data. TAXIS (see chap. 2) uses
tThe semantic net representation formallism and also Implements the
principles of exception handling and data abstraction from
programming language research. SDM, (semantic data model) was
infended to factilitate +he representation of information about
the domaln of application as well as database Informatlon. In

particular relatlionships of abstraction aggregation and

Page 79
restrictlion could be used to characterize +the relatlionshlips
between the entlitles In a domaln.

There are a2 number of restrictions present In DBMSs as
compared to Al systems. Two of +these restrictlions are +that
current databases are typlcally Incapable of representing many
kinds of quantlfled Information and disjunctive Information, and
second databases usually do not have extenslive capabllities for
Inference. Quantifled and disjunctive Information can be handled
in the query language but they can not be represented In the
database. Using constralnts and views certaln forms of deduction
can be pafformed but general Inferencing capablilities are not
avallable In current databases although there have been proposals
to Incorporate +thls capablility for such purposes as query
processing [2].

The purpose of the database data dlctlonary Is to provlide
Information to the DBMS users sbout +the characteristics and
relationshlps of the the data stored In the DBMS's database(s).
The typlcal data dictlonary contalns Information only about the
entities tn the dlfferent database schemes, such as what the data
element's name 1Is, and nothing about what the relationships
befﬁeen these entltles are, or what processes use the different
entitlies. By Incorporating this mlssing Information Into the
data &Icf!onary and provliding an easlly used Interface capable of
making use of the Information provided, the data dictlonary can
make the DBMS easier to maintaln and allow greater and more
efflclent use of the Information [t contalins. One possible way

In which this might be done Is by implementing the DD database as

Page 80
a knowledge base. Thls could be done using, for example, frames
and scripts.

DBMS usually have the abllilty +o use virtual data, that |Is
data that 1s not physlically present In the database and must be
calculated or derlved. Frames allow the attachment of a
procedure tfo a frame slot for +the purpose of calculating +the
value of that siot. Additionally frames can Inherit Informatlion
about thelr parent frames and show relatlonships betwsen frames.,

A great many possibllitles could be opened up by wusling
frames In Implementing a DD database. Making the DDDB a
knowledge base could Increase the efficlency and power of the DML
or query language. The generalfzatlon levels possible wusing
frames make possible easier division of the knowledge base Iinto
varlious user views, having varying levels of details and still
showing the relatlonshlips between the different user vliews. The
use of frames could make +the data dlictlonary a knowledge
representation system, and the baslis of a DBM expert system.
Using thls method of Implementing the data dictionary would go a
long way towards overcoming the restrictions, such as Inferencing

capablilities, that currently hamper existing DBMSs.

3.2 Al In Software Englineering

The maln focus of software englneering Is the development of
software systems or appllications programs. One of the maln tasks
of artiflclial Intelligence Is the develcpment of expert systems.
An expert system Is, of course, flrst a program, a software
system. The software development process, of software

englineering, Is not concerned with developling a particular type

-Page 81
of system (l.e., a business appllication such as accounts
recelvable), [t Is concerned with providing 8 standard
methodo!logy fhrough which any software system can be developed
and malintalned. It seeks to help +the computer sclentist,
programmer or analyst plan, design, construct, test, operate and
malntaln the sYs?em that the Individual 1s +tryling to develop.
Obvlously software engineerling plays or should play a large role
in The development of Al systems. At the same time Al can have a
role In the software development process.

What kind of role can Al have In SE? Artifliclal
intelllgence can be used In SE in many of the same ways It s
used In DBMSs. Thls Includes the use of Al technliques to Improve
the wuser Interface +to development +tools, and Increase the
efficlency or ease-of-use of +the +tools and +the development
process,

Natural language Interfaces could be developed +to allow
Incremental speclfication development. The tool user could enter
Iinformatlion In English and the system would Interrogate the wuser
about the the Information It has been glven asking such questions
as what Is +hls Information for, how 1Is It wused, etcetera In
order to clarlfy the user's intentlions.

In the last chapter a number of generlic expert tasks were
discussed. These tasks conslist of I[nterpretation, dlagnosis,
monlitorling, predictlion, planning, and design. Looking back at
those tasks, It Is easy to see that some of them are contalned In
the software development process. It 1Is only a short step +to
envisioning how these tasks could be used In software

development,

Page 82

One of the generlic tasks |Isted above (s planning, which
Includes the task of prediction. The flrst step of systems
development Is requirements analysls or planning. Alsoc mentioned
above Is the use of natural |I|anguage Interfaces, which requlire
the Interpretation of user Input. Analyzing an organizatlion's
operations and goals should be the flrst step In systems
planning. The use of a natural language Interface to Interrogate
an organlzations employees would Increase the efficlency of the
planning process. By Implementing the p!ahnlng process as an
expert system, efflclency could be further enhanced and more
Information could be made readily and easily avallable to systems
developers.

The second phase of systems development, requirements
definition, can be Incorporated Into +the planning phase. It s
properly the last half of what Is usually considered the planning
process and produces the end results of the planning process the
requlrements definlitions. An expert system could be developed to
process the Information produced from the Interrogation of
employees of the organization wusing a well defined, proven
requirements definltlion language as a base. The Interface to the
plannling process would provide a means of checkling the
requirements produced by the system and of fllling In or changing

missing or erroneous data.

Design, as & task, has many of the same requlirements as
planning. By Implementing the design process as an expert system
the burden of coping wlth the complexity of the system belng
developed, and of coplng with the Interactions between systems

modules Is removed from the developer's responsibillty. The

Page 83
expert system could be able to consider dilfferent design
possibllities, and avold polnts In the design space that are only
locally optimal when modifylng +the deslgn. The expert design
system could also help assess the consequences of design
declslions, explore dlifferent design posslibilities and help In the
integration of systems constralints with design cholces.

With the ablllity +to develop a workable, functional set of
requirements definitions and a correct, operational design, the
next step Is to construct or Implement the system. There already
ex|/st automatic program generators <that work for narrow problem
domalns. WIth more work In understanding the flrst three phases
of the software development process and corresponding work In
developing expert systems to handle these tasks the scope of
these program generators can be widened.

The last phases of the development process requlire dlagnosls
and monltoring. A monltoring system should be developed +to
analyze the results of a system's use and report any errors or
faults In the system and ald In thelr correction. In fact Orr
states that 2 systems methodology 1Is really a system to bulld
systems. As such, It contalns all the characteristics of any
other system. It should therefore be monltored and evaluated
perlodicallily Just llke any other system. This means, of course,
thet the development process should be monitored, and the results
of this process put through a dlagnosls procedure to uncover any
problems and correct them. Thls procedure could be Implemented
as an expert system, both Interactlive and automatic, to ailow
systems developers +to check speclflc systems functlions or run

complete systems checks as the system Is belng used.

Page 84
3.3 Database Management In Software Englneering

In software engineering you have requlirements definltion
languages that define a proposed systems data and programming
(l.e. functlons, activities, procedures) requlrements. In
database management systems you have data definltion languages,
that define the database scheme and subschemes (data models).

The major difference here Is that data definlition languages
do not usually deflne Information about +the processes that
manlpulate the data +they defline, while requirements definlition
languages do. By recognlizling thls simlilarity, and Including this
Information In the database schemes &a great deal of knowledge
previously wunavallable +to the database wuser can be made
avallable. At the same tIime, thls added Information can glive the
database administrator better control over the database by glving
added Information on what processes use a glven entity +type,
which one produces It, etcetera.

In the discussion of software englneering tools the [(Ibrary
reference gulde was discussed.)f +the tasks and functions of
this guide are compared with those of the data dictlionary It
becomes apparent +that there Is a conslderabie overlap 1In the
functlons that theses two tools preform.

Data deflInftlion languages provide the Inputs +o the data
dictlonary. These Inputs define only the systems data.
Requlrements deflInition |languages can provide Inputs for the LRG,.
That Is, +the RDL can provide +the process or program module
descrliptions that the LRG uses as entrles. The RDL also provlides
data definitions. |In the discusslion of data dictlionarles, [+ was

mentioned that the data dictlonary could be used as a reposltory

Page 85
for program descriptions, as well as data definitlions. Qulte
clearly the DDL and the RDL perform the same baslc task for
essentlally the same purpose. That 1s, to define the data and
program modules to the system, whether It be a software
development system and Its LRG or a DBMS.

Further similarities between these two tools [s that they
both: can ald In reducing redundancy (both programming and data),
are a communlcations tool provlding a central Information pool,
can help traln new employees, provide central control of data and
program module deflnitlons thus ensuring consistency of use and
InhlbltIng redundancy, and can help In system documentatlion by
Improving Its rellabllity. This 11st of simlilar .functlons
performed by these tools shows that the maln advantage of both
tools Is +that they both assist In the disclpline of systems
development.

These simllaritlies alone suggest that It could be
advantageous to provide one tool to fulflll both tasks. There
are however other reason for dolng thls. The date dlictlonary
provides addlitional functions. Among these are & entry
val ldatlon process, through which new entrles can be evaluated to
determine whether they are new or redundant, a data manlpulation
language, to provide Insert, modlify, update, and search
faclill1ties, and report generators +to provide reports on the
Information In the dictlonary. Al|l of these tasks are useful to
the system development process. They provide tools that are of
use to or needed, not just In the LRG, but also throughout the

system development process.

Page 86

In the dlscussion of +the planning phase of software
englneering, In the previcous chapter, the use of an enterprise
analysis methodology, called BICS, +to enhance +the development
process was explored. Thls same toplc has been examined In DBMS,
end computer assistance to a methodology for enterprise analysis
called buslness systems planning, (BSP) has been Implemented,
through the use of 1BM's DB/DC Data DIictlionary [22]. The data
dictlionary offers an Integrated approach to +the management of
activities from enterprise analysls on through requlirements
defInition, database admiInistration, systems design, development,
and malntenance. BSP shows a way In which @a data dlictionary
could be used to enhance the software development process,
starting with +the flrst phase, What 1Is needed 1Is further
research Into +the wuse of +the data dictionary I[In software

development.

Page 87

Chapter 4
A Tool for Managing Databases and Supporting

Software Development Systems

4.1 Introduction

Having taken a look at some of the developments and theorles
from Al, DBMS and SE, examlined +the simijaritles between the
discliplines, and seen how they mlght be wused to compliment one
another, It Is possible to turn attention to the primary purpose
of thls paper, the proposal of a tool for the support of database
management and software development. |t has been sald that there
Is a need for a system that Incorporates all the good aspects of
current data dictlonarles, while providing some additions and
modlflcatlons that would create a paradigmatic form of a data
dictlonary [20]. R. Phlllps has attempted to do just that with a
proposal for a data dictlonary that he calls the dynamic data
dictlionary [20]. It Is the Intent of thls paper +to propose a
modified verslon of this dictlionary +that will fulflll the goals
set forth by Phlllps, and at the same +tIme show how this new
dictlionary, called the System Resource Dictlonary, (SRD) could be
used to provlide support for the software development process,
through a system that Incorporates the SRD, which shall be

referred to as the Resource Management System (RMS).

Page 88
4,2 The Dynamlic Data Dictlonary

The Dynamlic Data Dictlonary System, (DDDS) as proposed by
Phlitps, [20] should have the followling characteristics: I+ must
be flexible, able to support a variety of DBMS +that support
dl fferent data models; 1t must be a primary free-standing
software system. The baslic structure of thls system Is based
upon one suggested by F.S. Zahran [28].

Zahran's proposal separates +the software that manages the
data dictlionary and |s used by the DD users from +the Data
Dictionary Database (DDDB). This software he calls +the Data
Dictionary Management System (DDMS). I+ Is intended that +this
separation lead to an archltecture that allows one DDMS to drlive
and control several DDDBs (see flgure 7). The objectlives of this
structure are: to reach Independent of the assoclated database's
structure a clearer specliflcation of the facllities and functlions
of the dictlionary management software. The DDMS has a role In
three maln areas, +they are: the support of different data
management faclllitles allowing for the management, control and
updating of the different data dlctlonary databases It s
associated with; +the support of iInteractions with the various
dictlionary users; and the support of Interfaces between the DDMS
and varlous standard software packages to provide facllltles that
the dictionary users may need.

Within the DDDS the DDMS should have functlons that provide:
data management facllitles, similar to the facllItles provided by
an ordinary DBMS, for managing the data stored In the DDDBs but
more sophlsticated and versatilie; dictlionary language support to

provide Interactive or batch faclllitles for the definltlion of

Page 89

DBMS DBMS DBMS
1) (2) (3)

DDMS - Data dictlionary Management System
DBMS - Database Management System
(may be mIixed DBMSs)
DB - Database
(may be hlerarchical, network or relatlonal)
DDDB - Data Dictlonary Database

Figure 7: Zahran's Data DIictlionary System.

Page 90
dictionary entlities, the Interrogation of dictlonary contents,
and the generation of data and procedure definitlions; and an
Iinterface to other software systems such as report generators,
query language processors... etc., for use on +the dictlionary
data, and DBMSs to provlde access control, database
descriptions,...etc., to these DBMSs when needed.

At thls polnt Philips suggests some modliflcatlons and
additions to Zahran's model +to arrive at his DDDS. Philips!
changes Include: multiple relatlonal DDDBs that contaln
elementary and complex data obJects; a new Data Abstractlion
Management System (DAMS) and assoclated Date Abstractlion Database
(DADB) which will be placed between +t+he DDMS and Its DDDBs; and
DBMS access to a partlicular database through the DDDS only (see
figure 8).

Phillps describes a data obJect as an abstraction of some
real world entlty which should theoretlcally be general enough to
represent any entity Including programs, and hardware and
software systems. He goes on to define a data obJect, using o
definition provided by Unger [27], as a five tuple with the
following components:

¥ pname or set of names

¥ attrlbute or set of attributes descrlibling Its

characteristics (e.g., real function)

* representation (e.g., string, C source code)

¥ corporallty (Indicatlon of the number of coples,

location, Integrity, and security constraints)

* value

This data object Is used by the data dictionary to represent data

DDMS
DADB

f
[

[

I

|

[

[

'S
: DAMS
|

|

|

|

|

|

:

[

DDDB oDDB oDDB
(1) (2) (3)
e oS

EEE P EE ERE Emes @ @O EmE M W

|
I
|
I
I
|
|
I
{
|
!
|
|
I
-d

DDMS - Data dictlionary Management System
DAMS - Data Abstraction Management System
DADB - Data abstraction Database

DDDB - Data Dictlionary Databease

DBMS - Database Management System

(may be mixed DBMSs)
DB - Database

DBMS
(2)

DBMS
(3)

Page 91

(may be hlerarchlcal, network or relational)

Figure 8: Phillp's Dynamic Data Dictlonary System

Page 92
entities In the database. I+ provides security, Integrity,
location and repllication Information. There are two types of
data objects, real, and virtual or complex. Real data objects
are present In atomic or structural atomic form, while for
virtual data objects, the representation and value are provided
by a process that |s executed In order to compute [ts value.

The responsiblllty for access securlty controls falls on the
DDMS In cases of data retrlieval Involving the satisfyling ot a
request for an element from a DB (see 20 for a description of
this process). Changes made to +t+he DDDBs, such as Insertion,
deletlion, or modification, are monitored by +he DAMS, to allow
for accounting for and adJusting for these changes withlin the
DADB, when they Involve a virtual element. The DADB contalns the
names and allases of all virtual data elements represented In the
databases and thelr conversion routines.

Philips Introduced a module layered between the DDDS and Its
DDDBs to handle virtual data elements within the DBs, &and has
called It the Data Abstractlion Management System (DAMS). This
DAMS supports Its own database, as mentioned above, called +the
data abstraction datebase. The DAMS would be responsibie for
processing ali querlies from the DDMS concernling the contents of
the DDDBs, and passing to the DDMS the Informatlion necessary +o
convert virtual objects.

This configuration eliminates dlrect access or query of +the
DDDBs by the DDMS, and glves the DAMS the responsibility of
monltoring the deletion, Insertlon, retrleval or perusal of data

objJects within the DDDBs.

Page 93

This Insertion of +the DDDS between +the DBMSs and thelr
databases should, according to Philips [20], help reallze the
following goals of database management: data Independence,
sharabl!lity, nonredundancy of data, rellability, integr!ty,
access flexIblllty, privacy and securlty control, performance and

efficlency, and administration and control.

4.3 The Systems Resource Dictlonary
The System Resource Dlctlionary can be deflned as an ordered
col lection of data about a database or Information management
system, contalning Information about the systems data, as well as
Information about the system and 1Its utlllitles/programs. This
dictlonary Is part of a software system that henceforth shall be
termed the Resource Management System or RMS (see flgure 9). The
RMS should provlide the following facllltles:
% support for a software development process
* data management facll[tles
* dictlonary language support
to deflne/describe the program modules/activities
+o describe the relationshlp between the data and
the programs that use and generate the data
to Identifles real vs. virtual data
Real Data: data expllicltly contained In the database
Virtual Data: data derived from the real data
to allow ad hoc querles of the DDDB
* Interfaces to other systems
The purpose of the RMS Is +the Integration of software

englneering with database/Information system management for total

SDS

DBMS
(2)

Wi\

DBMS
(3)

DDDB
(3)

— o - a—

i e TR e e TR e e DT

Systems Resource Dictlonary:
DDMS - Data dictlonary Management System
DAMS - Data Abstraction Management System
DDDB - Data Dictionary Database

SDDDDB - Software Development Data Dicticonary Database

DBMS - Database Management System
{may be mixed DBMSs)
DB - Database

(may be hlerarchical, network or relational)

SDS - Software Development System
SDDB - Software Development Database

Figure 9: Resource Management System.

Page 95
system development, In order to attaln the goals of nonredundancy
In program development and data acqulsltion/retention; data and
program Independence; sharabi|ity; relfablilty; access
flexibillity; data Integrity; performance and effliclency; and
administrative privacy and security control. In addition we have
the purpose of providing Inferencing capabilities +to database
management systems and support +o multiple databases and DBMSs.
With the above purposes In mind some of the requirements that
the SRD must fulflll Include:

® ease of use

® provide system and data security

% provide an entity comparison function

¥ structured requirements definlitions as Inputs

* provide support for a structured software development

process from planning through malntenance

* provide DML and query languages

* provide report generators

® structured design and construction (the system Itself

must be modular for ease of modliflication)

¥ allow multiple views of +the dlctlonary data at

varying levels of generallzation

» pr?vlde Interfaces for many different DBMSs

* provide support for different data models
Looking over this |Ist 1[It can be seen that Phllips' dictionary
system would meet most of +these goals and requirements as
provided.

The basic structure of Phllips'! dynamic data dictlonary s

therefore retalned In what shall be termed the System Resource

Page 96
Dictionary. To achleve the Integration of software development
with Information management, make the dictlionary easier to use,
and provide Inferencing capablilities to +the system, & few
modiflicatlons and additlions will be Introduced:
* To ellminate a dupllication of facllltlies +the requlirements
definitions language of the software development process will be
Integrated with or replace the data definlitlon language of the
data dictlionary.
¥ The data dlictlionary databases w!ll be Implemented using frames
and scripts, from artificlal Intellligence, to provide inferenclng
capabllitles and provide attached procedures for the computation

of virtual element values.

4.3.1 Using Frames In the SRD

Frames, and an assoclated concept scripts, are an artificlal
Intel llgence concept. There are a number of ways In which the
use of frames could be wuseful In the Resource Management System
(RMS).

To begin with, frames can provide the necessary means for
Implementing Unger's [27] ¢flve +tuple data object dlIscussed
earller. Frames provide slots which can be used to describe the
different components of the data objects. Slots for the name and
Its synonyms, the attrlibutes, and representation are possible.
An example of how the baslic data object could be implemented, as
a frame, Is shown In flgure 10. The corporallty component, which
provlides adm!nlsfra+!ve.lnformaflon, could be Implemented as a
speclal slot +that Is actually a subframe +o the data object

frame. A way In which thls could be done Is shown In figure 11,

Page 97

DATA_OBJECT Frame:

SYNONYM(S): (Entlty, Element...)

ATTRIBUTES:
(*|nteger, Real, Character, Boolean, Hexadecimal,
Blnary, Record, String, Array, Set, Frame, Script,
Procedure, Functlon, Activity, User, Termlnal,
Specliallizatlion_of: range: a Data Object Frame,
Restrictlion_on: range: a Partlal Data Object Frame,
Defaul+: range: a speclifled Attribute Slot value,
|1f_Needed: range: a speclfled script or procedure®*)

REPRESENTATION: a data_object's system [mage
(Frame, Script, Record....) Default: Frame

CORPORALITY: a Record of an Objects Corporallty
Default: D_P_CORPORALITY

VALUE: (atomlic_value_reference, structure_of_atomic-

_value_references, structure_of_objJects)

Figure 10: A frame representation of the
data dictlionary data object

RECORD_OF_CORPORAL ITY Frame
Synonym(s): (nil)
Attributes:
Speclallzation_of: DATA_OBJECT
#_of_Coples: an Integer Default: 1
Integrity:
Location(s): System Address(s) (*data dictlonary¥)}
Status: range: (In_Use, Proposed, archived)
Default: Proposed
Securlty_Constralnts:
Owned_by: range: (ADM, ACCTING, MKTING, MFGING,
PRSNL, D_PING) Default: D_PING
Used_by: range: (ADM, ACCTING, MKTING, MFGING,
PRSNL, D_PING) Default: D_PING
Modlfled_by: a D_P_EMPLOYEE.NAME
Modified_on: a DATE
Representation: a frame
Corporallty: D_P_CORPORALITY
Value:

Figure 11: A frame representation for data objJect corporallty

Page 98
The fi1fth component, the object value, could also be Implemented
as a subframe, providing for the attachment of a procedure or
script to calculate or derive the object's value.

This Implementation could elliminate the need for Phlllips'
data abstraction database, (DADB) but 1t would not, of course,
eliminate the need for most of the functlons provided by his data
abstractlion management system. When a virtual data object was
referenced, rather than having to access the DADB for virtual
data objJect Information, the system would simply access the
obJect as It [s stored In the system resource dlictlonary
database. The Information necessary for |Its use would be
acquired from the value slot, which would tell the system whether
the date object was real or virtual, and 1f It Is virtual how to
derive Its value from the database(s).

Frames can be allowed to Inherit the attributes of thelr
parents, restrict the value of the Inherited attributes, and show
relatlionships between frames. The Inherltance property of frames
cpens the way for the definlitlon of different levels of data
objJects having common characteristics, but not belng necessarlly
fully equlvalent. Being able to show relatlonships between
frames allows +the Inclusion of more Information about object
relationships than do traditional database models.

The Inheritance property of frames allows the definition of
objJects to start at a generallzed level of deflnltion and proceed
to more restricted or detalled definitions. |In other words you
attempt to have all "|lke"™ elements have a homogeneous structure
or syntax. For example, the data object date could be deflined on

a general level as a triplet consisting of the month (mm), day

Page 99
(dd), and year (yy), mm-dd-yy, with mm defined as a set of months
where months Is an Integer between | and 12, dd Is defined as an
Integer between the numbers 1 and 31, and yy 1Iis defined as an
Integer (the remalinder of the Information for the flve tuple Is
unimportant for this example). All chlld occurrences of date by
any name In +the dlctlonary would use +his basic generic
defInitlon and could be sald to be derived from the same set of
dates for a glven year or time period. They could however
restrict Its values or attributes. The months could be changed
to be 2 set of 12 character strings, (January, February, ...,
December) for example.

The speclflic meaning of @& glven child date would be
contalned In the relationship +the speciflic date subtype was
Involved In. The difference In meaning In the use of a speclflc
calendar date, say August 5, 1985, can only be seen In +the
context within which [+ Is used by a relationship. Thlis can be
shown by using two records or data objJects, called assignment and
loan. Both records have three attributes, employee, department,
and date. We can say that the underlylng structure and general
meaning behind the two uses of date shown are equlivalent. It 1Is
only within the context of +the relationships given that the two
uses of date have a different meaning, which are assignment.date
and loan.date, or the date of an assignment and the date of a
loan. The relationshlip the general ettribute date Is a part of
glves that Instance of date Its unlque meaning. Of course, If
you deflne a restricted data object with a different name wusling

date as Its parent frame this problem Is avolded. With frames

Page 100
and thelr ablllty +to show relationshlips and Inherit attrlbutes
this may not be necessary.

The use of frames, together with other Al techniques, could
make 1+ possible for the RMS to become an expert system on +the
different data models used 1Iin database development. The RMS
would have all the facllities of a DBMS. The use of these
technlques also ralse the possibllity of eliminating the
dupllicate facllitles exlsting 8Cross the varlous DBMSs
Incorporated Into the RMS, leaving only +thelr user Interfaces.
Thls would allow the varlous users to continue Interacting wlth
the system as they did before the Integration of their DBMS wlith
the RMS,

A great many possiblllities could be opened up using frames
to Implement the data dictlionary's database. By so dolng, the
database becomes more of an Al knowledge base contalnling a great
deal of Information about an organizatfion and the system of which
It Is a part. Thelr use could greatly Increase the efflclency
and Inferencing capabllitlies of the DMLs and query languages ot
the system, since frames can have Inferencing capablilities buillt
in.

In the next sectlion, a methodology for the use of the
software development process In the system resource dlctlonary

will be suggested and the above concepts discussed.

4.3.2 A Methodology for Software Development Support
This 1s not a proposal for a particular method of software
development. What Is belng proposed Is a method for supporting

and enhancing any software development methodolegy, such as

Page 101
mentloned In the sectlon on software engineering in Chapter 2,
using facllitles +that +the proposed SRD would supply. The
specliflc manner [n which, and degree to which this Integration of
software development and data management, using +the SRD, would
occur would of course depend on the software development
methodology chosen and the manner In which the SRD s
Implemented.

In Chapter 2, +two methods of wusing enterprise analysis in
systems development were discussed. The flrst of these was
Business Systems Planning (BSP) [22], which wused the IBM DB/DC
Data Dictlonary to provide Information management support for the
planning process, The second was the Busliness Information
Control Study or BICS [38], which uses an extenslion called REQGEN
(requirements generator) to generate the requirements
speclfication for an organlzation's data processing needs.

These two methodologles show that 1t Is feasible to push the
requirements analysis or plannling phase of systems development
back Into the area of busliness management analysis. By so dolng,
the systems developer can be provided with a great deal of useful
Informatlion on the organfzation's data processing requirements,
at an earliler time 1In the busliness planning process than was
possible before. In additlon, the whole business planning effort
beneflts from the Increased (nformation processing support +that
can be provided by the SRD.

The SRD as proposed could provide these same faclilities, and
In the future provide even greater support to the planning phase.

This would be accomplished through the bullt In Inferencing

Page 102
capabllitles that could be provided by the use of frames and
scripts In Implementing the dictlonarles database(s).

In the requirements definitlon phase of software
development, the SRD would provide a separate dictlonary database
for each new project's requlirement definlitlons. The |language
facilitles for the speclflcations of the systems requlrements
could, as discussed In the last chapter, be provided by the SRD
through a data or requlrements definition language. Properly
developed elther one of these tocls can provide the necessary
Information for both the software development process and the
data management process, as Implemented using the proposed
Systems Rescurce Dictlonary.

The data object, as defined by Unger [27] and used by
Philips, [20] shows +the feasiblillty of +this approach. The
components Included In Unger's data obJect represent the kinds of
Information necessary for the processes carried out by both
systems development and systems management, which should be no
surprise as both tasks are part of the software |lfe cycle.

The use of +the SRD In system design represents an
opportunity +o combine the functions of data and program
management. In the last chapter, +the similaritlies between
managling the program [Ibrary through a llbrary resource guide and
managing the systems data +through +the data dictlonary were
discussed. The concluslon was reached that the functlons of +the
two were so similar that I+ would be feasible, and even
advantageous to comblne these +two tasks. This Is one of the
points of overlap between +the DBMS and Software Englneering

disclpl Ines of computer sclence.

Page 103

By having &access +to one faclllty such as the SRD that
contalns all a systems resource definitions (data, program,
functlons,... etc.) the design phase of software development can
be greatly enhanced. Thls enhancement takes the form of a means
for reducing programming and date redundancy. The dlctlonary Is
used to help the desligners of a system reduce redundancy, by
providling faclllitlies for the comparison of exlsting data and
process (program, functlon, procedure) definlitlions wlth the
defInitions resulting from the requlirements definition phase of
the systems development process. Such a process would be carrled
out something Ilke +this: requirements deflnitions would be
compared with exlstIng activities and data [tems/entltlies In +the
SRD to determine thelr unlqueness or redundancy (look for
existence of wequlivalence between data items and between
activities).

(a) Data [tem - If It exists In the system you need only add +the
data [tem's name I[f It Is dlifferent from the systems name for
that data Item and Is not 2 |lsted synonym. |If It can be derlved
from existing data as a virtual data Item It Is added to +the
dictionary, along with the procedure for deriving It from the
existing data. If the data Item doesn't exist, and can not be
derived then }f is added to the system.

{(b) Activity - If a program module already exists to perform the
needed task then It should be used. |If a sulitable module does
not exlst then It should be ascerfalned [f there exlIsts a module
that can be modifled to perform +the needed functlion. If such a
module exists then It should be used only If +the needed

modiflcations are not extensive. If no equlivalent or easlly

Page 104
mod[fied module exists then and only then do you deslign, code and
test a2 new module. The new or modifled module should be added to
the SRD, and system usage for each module used should be wupdated
to reflect Its usage In the new appllication.

Thls process requlires a facllity +that provides entlty
comparlison capabllities. It would have +to be capable of
comparisons on multliple keys, such as an entity's name and 1its
synonyms, or process name and function(s).

One way of comparing data objJects would be to start by
comparing data object names and synonyms. [f a match Is found In
any of the name or synonym comparisons then thelr representations
would be checked +to determline |[If they matched. The next step
would be to check thelr attrlibutes to determine If they are a
complete or partial match, l.e., whether or not the names, types,
and functions of the attributes present in the data objects
match. It an attribute hes a complex structure It would go
through the comparlison process In the same manner as the data
object of which It Is a member. It Is not necessary that the
number of afttributes match, although It would make things easler
If they dld, since even a partlal match of a new data object wilth
one present In the data dictlonary can provide a useful base on
which to buitd the new data object. This would hold true whether
the new data obJect was less or more complex than the data object
that has been located as a2 possible match and would be true for
both data ltems and activities (processes), provided structured
programming techniques are used In the construction of all

actlivities present In the SRD.

Page 105

The SRD could allow for +the creatlon of separate databases
for the definition and +testing of each Individual development
project, and provide the faclllitles for the Integration of +the
definltlons In the dlictlonary database of the development systems
and the SRD's operational database(s), &as well as provide the
facllitles for comparing dictionary entrles with the requlirements
definitions.

In system constructlion and testing, the next phase, the SRD
wlll of course ald In reducing the amount of code to be wrltten
through the use of the facllities described above. In additlon,
It would provide the facllities to - allow the different
programmers to use program modules developed, by others, for @
glven project, by providing one place (the project database) for
the storage of the new Implementation. Through the malntenance
of the security and Integrlty of the data and process deflnltlons
the facliltles of the SRD would be able to prevent code and date
definitlion changes by unauthorlized personnel, and help to
maintaln the program module Interfaces, by preventing the
prol lferation of different versions of a program module, and
ldentlfying all entrles affected by any change to an enfry.

Testing of the new appllication could be alded by the abillty
of the SRD to store and produce reports (using report generators)
on the tests carrled out to prove the program modules as they are
completed and Integrated. Using frames, each data obJect In the
dlctionary would be able to contaln information on its usage. By
developing a faclllity to step through appllications code and test

each branch and note each use of & variable and place that

Page 106
Information In the corresponding SRD data object 1t Is posslible
that program module correctness and data usage could be tested.

Once a new application was Installed In +the system, this
same faclllty could be wused +to provide data management
Information on +the wusage of +that appllication, and all other
systems resources over thelr |lfetimes. The SRD placed, as
Phillps DDDS would be, In between the DBMSs and thelr databases,
and also In the middle of system development process makes It an
Ideal candlidate for monltoring the development, operation, and
maintenance of all systems functlions.

There are many reason for the Integration of the resource
management system and a software development system. Flirst, the
Integration of different DBMSs Into the RMS would be facllltated
by thelr Integration.

This (Integration could help 1In Identlifylng dupl licate
faclilties, and ald In the production of the Interfaces necessary
to Incorporate the DBMSs varlous faclliltlies 1Into +the RMS,
Integration would be accompllished by developing, If they are not
ajready developed, a set of requlrement definitions for the new
DBMS's resources, and putting them through the comparison process
used In the deslgn phase of systems development described
earlier. |If a set of requirement definitions already exlists for
the DBMS then they would of course be converted to be compatible
with the SRD's definltion |anguage and comparison faclllities and
used In the Integration process.

Further reason for this Integration are enumerated here as a
means of showing the benefits +that could be derlived from this

combined system:

Page 107

* Help In assuring quallty of the system

® Successful Integration requires modern software

deslgn methods, such as structured programming and

structured requirements definltion

¥ Standardlizes module Interface descriptlions - alds not

only testing but also reuse of program modules for

other appllications

¥ Cuts appllcation development time

* Alds In program malntenance

® Alds In Identifying data and programming redundancy

¥ |dentifles new data elements and new program modules

® System securlty ald for both data and programs

% Helps provide Information management for the software

englneerling process

% Provlde Inferencing capabllities to the system

* Advocates the use of a data dictlonary data base

system as the loglcal method of DB support for software

development. (this allows a reduction of or avoldance

of redundancy In system software for software

development support)

¥ Alds In software and DBMS documentation

The system resource dlictlionary becomes an Integrated part of
the software development functlion, Ileadling to the natural
documentation of the system as It s developed and as It evolves.
In addition, the RMS could help In famlllarlzing new personnel
with system resources, and of course, provide all the facllitles

and functlons of PhiliIps DDDS and any other data dictlonary.

Page 108
4.3,3 An Example of the Use of Frames In Software Development

In order to show an example of the use of frames In software
development the design phase of a structured development process,
developed by Warnler and Orr, [42] Is used to demonstrate the
converslon of Warnter/Orr dlagrams Into frames for a Systems
Resource Dictlonary database. The example used here Is a portion
of an example of a sales report generator used Iin a text, by
David Higgins [37], which dlscusses the use of Warnler/Orr
diagrams In desligning structured programs. The dlagrams and
frames for this discussion are contalned In the appendix at the
end of +this report and wlll be referred +to throughout +this
discusslon.

For this example two assumptions are made:

(1) that the Involces are ordered on Invoice number within
customer number wlthin salesman number.

(2) that the relationship between customer and salesman |Is
many-to-one, l1.e., many customer to one sa!qsman, salesman.sales
s the total sales per salesman, and In each case customer.sales
Is the total sales per customer

The Warnler/Orr dlagrams can be divided Into two basic
types of dlagrems for the purposes of this example. The Two
types conslst of data structure dlagrams (fligures 12-15) and
process structure diagrams (figure 16). This [s a some what
loose translation, but It will be sufficlient for the purposes of
this example. Each bracket, of a Warnler/Orr dlagram, represents
a successlively lower level of hlerarchy moving left to right In a
diagram (refer +to flgures 12-16). Each bracket or level of

hlerarchy Is assoclated wlith a word or phrase ldentitylng 1It,

Page 109
which may be assoclated with +the Identifier for the next hlgher
level. A perlod, at the beglnnlng of an Identifler, Is used +o
show associatlion with +the ldentifler of +he next higher level.
Each level can be +thought of as an element, and the Identifier
for that level as the element's name. For example, flgure 13,
which shows the minimal data (Input) needs of the program, has
levels named Company, Salesman, Customer and Involice. It also
shows elements I[dentifled as .Name on the second and *third
levels. These are examples of element ldentiflers that would be
concatenated with the Identifler of the next higher level, and
would be referenced as Salesman Name and Customer Name.

In the case of data dlaegrams, each element Ilsted on a gliven
hierarchy leve! 1s elther an atomlc or simple attrlbute, or a
complex attribute which has a lower level of hlerarchy assoclated
with 1t, Figure 14, 1In the appendix, shows examples of both
simple attributes (Salesman Name) and complex attributes
(Involce).

The diagrams representing processes eare somewhat more
complex. Each |level of hlerarchy represents a lower level
process. However, only the Indlvidual elements on & glven level
assoclfated wlith a lower level of hlerarchy are process
ldentiflers and attrlibutes of the next higher level of hlerarchy.
The remalining elements of & glven level are process statements
for that level. In flgure 16, of +the appendix, Company Begln,
Process Salesman, and Process Customer are examples of processes.
Other elements, such as Set Company Sales Total +to Zero, are

examples of process statements.

Page 110

Process elements are elther sequentlial, repeating, or
alternating. Repeating elements are represented through the
speclification of the number of element repetitions placed 1In
parentheses under the element's name. In flgure 16, of the
appendlx, Process Salesman |s one example of a repeating element
showling Its number of repetitlions ([1,5]).

Those elements that are of the last two types, repeating and
alternating, are assoclated wlith a physical test which will be
used In the finlshed program to control branching. These tests
are deflned In footnotes on the process dlagrams (see flgure 16)
and are noted In the diagram by a question mark (?) followed by
the reference number of the test. For example, In flgure 16, 1?1
following the Process Salesman repetition speclification refers to
test 7?1 - No More Salesman = True.

In order to convert the Warnler/Orr dlagrams Into frames, a
number of decislons had to be made. These decislons were
somewhat arbltrary, belng based sclely on +the desire to stress
clarlity, ease of understanding, and readabllity In the frame
Implementation. Most of these declisions were general In nature,
that Is, necessary +to the process of determining the frame
constructs for the representation of the output of any software
development system. The remalning decislons were speclific to the
conversion of Warnier/Orr dlagrams.

The frames are based, as descrlbed earllier In this chapter,
on a tive tuple data objJect (flgure 10). Thls data object frame
provides the baslic structure around which all the frames of this

example are bullft.

Page 111

Two slot types, Speclallzation_of and Restriction_on, are
used to show the Inherlitance by one frame of another frame's
attributes. The slot Speciallzation_of |Is used to show the
Inheritance by a frame of all the attributes of [ts parent frame.
The slot Restrictlion_on shows the Inherlitance by a frame of
selected frame attributes of another frame. Both slots, used In
this manner, can show the relationships +that exist between the
data objects In a data dictlonary. Figure 17, pages 4 and 5,
shows examples of these two constructs. By referring to flgure
18 the relationshlp between +the Salesman, Customer, and Involce
frames and the Employee frame can be seen. Also shown, by these
two flgures, 1Is +the relationshlip that exists between the
"generic™ date frame and the speciflc wuses of that frame as a
definltion for the date attribute In varlous other frames.

Two additional concepts, discussed In +the Al sectlon of
Chapter 2 dealing wlth frames, are default and range. Defaul t
and range can be thought of as attribute subslots, which can be
used to show an attribute's default value, or a set of values
that an attribute may be expected to have.

In this example, 1t was declided to have each frame represent
the converslion of one level of a Warnler/Orr diagram. Thls shows
the strong relationship that exlsts, In +this Instance, between
the frame Implementation and the Warnler/Orr dlagrams. Each
frame, Iin the example, takes [ts name from the ldentifier for the
hlerarchy level 1t represents. This 1|Is 1llustrated by 8
comparlison of the dlagrams and frames presenfed‘ln the appendlx.

The division of +the dlagrams by hlerarchy level leads to a

Page 112
naturally structured or modular representation of the dlagrams,
and encourages the structured development of applications,

There are two baslic types of frames, data or [Input/output
frames, and process frames. The +two types of frames correspond
to the two dlagram types. As stated above, each level of a data
or process structure diagram Is Implemented as & frame.

In keeping with +the decislion to have each frame represent
one level of a dlagram, each process frame Is deflned so as to
indlcate only those Inputs, outputs, and processes used dlrectly
by the process belng deflined. Thlis can be seen, In this example,
by comparing each element of a dliagram representing an [nput,
output, or process with the corresponding frame'!s attributes. |In
those cases where the element |s assoclated with a lower level of
hlerarchy It Is also a frame ldentifler (name), and the elements
of the Ilower level are Its attributes. Those elements, In
process structure dlagrams, representing process statements are
part of a frame's value slot which shows +the processes
implementation.

By looking at the Process Company frame (flgure 17, page 1
of the appendix), and comparing It with the process structure
(figure 16), the division of the elements of the flirst level of
the process structure between statement elements and process
elements can be seen. It can alsoc be seen that no Inputs or
outputs are shown In this frame. |t Is logical to suppose, that
since the example Is that of a sales report generator, that some
kind of output requliring & number of Inputs would be required.
This results from the declislon to have each frame represent only

one level of a diagram and nothing more.

Page 113

For the purposes of +thlis example, the Data Object
Corporallty Is simply named. It would however follow the pattern
of the example shown In flgure 11 of thls report.

In any attempt to Implement some form of frame
representation for a data dlctlonary database It wll] be
necessary to answer & number of questlons. Most of the answers
to these questlions turn out to be arblitrary ones, based on the
preferences of the Individuals Involved In +he projects
Implementation more than anythling else. Never-the-less, It |Is
Important that these questions be answered so that a clear
picture of +the frame Implementation may be attalned. The
following 1s a IIst of the questlions that were asked and answered
in some form for thls example:

What Is the best way to show the relationship between

an Inherlited frame attribute and the frame from which

the attrlbute Is Inherited?

Would It be best In cases where only t, 2, or 3

elements are Inherited to jJust redefine those elements

In the new frame and use other means to show the

relatlonshlp between two frames?

Could these relationships be shown through attribute

naming conventions where related frame attributes are

given abbrevliated or extended names based on the names

of the frame attributes to which they are related?

Would [+ be best to rename all attributes wused In a

frame that are Inherited from other frames except where

a2 whole frame Is Inherlted Intact, In which case oniy

the Inherlted frame's name need be changed? Is It even

Page 114
necessary to change the Inherited frame's name? (The
problem with +thls ts +that It clutters up the frame
representation and reduces readabl|lity. Then agaln It
can serve to make the relatlion between the two frames
Involved much clearer.)

How much detall should be Tncluded In frames that

define processes? Should a "program"™ frame show all

Inputs and outputs of & program even [f they are not

used by the maln program module, or should !nputs and

outputs be defined only In the process module frames

where they are flrst used?

The frame representation used here Is merely a suggestion of
how frames could be Implemented. Such frame s]ots as
Speclallzation_of, and Restriction_on may or may not prove
useful. The same Is true for the manner In which a default slot
value could be represented. The whole question, of the
feasibllity of using frames for representing data dictlonary data
objects, clearly needs a great deal more study which Is beyond
the scope of thls paper. It remalins to be proven whether or not
thls suggestion will provide an Increase In the productivity and

usabl| ity of large data dictlonary systenms.

Page 115
Chapter 5

Concluslon

Recent developments In computer sclence have made it clear
that there Is @a need for a syntheslis of +tools technology and
methodologlies In the various areas of computer sclence. This
paper has presented a brief look at some of the various tools and
methodologles of three areas of computer sclence, Al, DBMS, and
SE, and attempted to show how +they may be used together, In
varlous ways, to enhance and avold duplications of effort In +The
use of simlilar or complImentary tools and methodologles from the
varlous areas.

The |literature search done, 1In the areas of Al, DBMS, and
SE, shows that there are many ways In which developments In each
of these three areas can be used to enhance the capabilities of
systems and methodologles developed or belng developed In the
other two. Some of the developments +that have been enumerated
within this paper Include the use of natural language Interfaces
from artificlal Intelllgence tc enhance user interfaces In DBMS
and software engineering, and +the Integration of software
development In an enhanced data dlictlonary. It has also been
Illuminated that many of the phases In the software development
process could be Implemented as expert systems as +they fall
within a set of generlic expert tasks outliined In Chapter 2.

The Theoretical System Resource Dictlonary and Resource

Management System, proposed 1In thls work as an enhancement and

Page 116
modl ficatlon to work done by Phllips [20], appear to provide +the
facllities and future opportunitlies necessary to a viable
solution to the problems assocliated with Integrating DBMSs and
other systems, such as a software development process. I+
contlnues fo'brovlde all the benefits, and meet the goals set
forth by Phlllps and others for managing databases such as data
securlity, Independence, and nonredundancy. The RMS would alliow
the absorption by an organlzation of any existing DBMS
environment while avolding excessive costs, mismanagement, and
loss of Its valuable Information and system resources.

There 1s a clear need for future research Into dictlionary
driven systems such as the RMS and the DDDS. A beglinning In this
research would be the Implementation of &a system such as
suggested In +thls paper or by Phillps. It 1Is vital In +this
effort that the use of knowledge systems and knowledge bases be
explored. Thelr use could provide great advances In Information
systems management by enhancing +the Inferencing capabliiities of

the RMS and assoclated DBMSs.

page 117

BIBLIOGRAPHY

ARTIFICIAL INTELLIGIENCE:

1)

2)

3)

4)

5)

6)

7)

8)

Barr, Avron and Edward A, Felgenbaum The Handbook of

Artifliclal Intelligence Vol. 1, Willlam Kaufman, Inc., 1981.

Barr, Avron and Edward A. Felgenbaum The Handbook of

Artifliclal Intelligence Vol. 2, WIllllam Kaufman, Inc., 1981.

Brodle, Michael L. and Stephen N. Zllles, "What Should Be
Modeled?", ACM SIGART-SIGMOD-SIGPLAN Horkshop 1981 ACM

Charnlak, Eugene, "Organlization and Inference In a

Frame-Llke System of Common Sense Knowledge.", TINLAP-1 MIT

1975, (ACM 1975), pp 46-55.
Deutsh Peter L., "Constraints: A Uniform Model For Data and

Contro!.", ACM SIGART-SIGMOD-SIGPLAN Workshop 1981, Michael

L. Brodie and Stephen N. Zllles ACM pp 118-20.
Goldsteln, Ira P., and Bruce Roberts, "Using Frames In

Schedul Ing.", Al: An MIT Perspective, D. H. Winston and

R.H.Brown Edltors, MIT Press, (1979) pp 253-84.

Hartley, R.T., "Knowledge Systems"; papers on Productlion
Systems and Semantic Networks {lecture notes).

Hayes, Patrick J. and Gary G. Hendrix, ™A Loglcal View of
Types.", ACM SIGART-SIGMOD-SIGPLAN Workshop 1981, Michael L.

Brodie and Stephen N. Zille, ACM p128-30.

9)

10)

11)

DATA

12)

13)

14)

15)

16)

17)

page 118
Hayes-Roth, Frederlick, "Knowledge-based Expert Systems.",
Computer, October 1984, pp263-73.
Steflk, Mark, "An Examination of @& Frame-Structured

Representation System.", 7th 1JCAIl UBC Vancover 1881, |JCAI

1981 P845-52.
Stefik, Mark et al, "The Organization of Expert Systems,A
Tutorfial.", Artificlal Intellligence, North-Holland 1982

p135-73.

BASE MANAGEMENT :

Cardenas,A.F., Data Base Management Systems, Allyn and

Bacon, Inc., 1979.
Durell, W., "Disorder to Dislipline Via the Data

Dictionary.", Journal of Systems Management (USA), vol. 34,

no.5 p12-19 (May 1983).
Ewers, Jack E., "How to Evaluate a Date Dictlonary.",

Computer World, 1981.

Gallalre and Minker (Eds.), Loglc and Databases, Plenum, New

York, 1978.

Hammer, Michael!, and D. McLeod, "The Semantic Data Model: A
Model Ing Mechanism for Database Appllcations.", ACM
Transactions on Database Systems, ACM 1978, pp.26-36.

Hammer, Michael, and D. MclLeod, "Database Description with

SDM: A Semantic Database Model.", ACM Transactlons on

Database Systems, Vol. 6, no. 3, September 1981 p351-86.

18)

19)

20)

21)

22)

23)

24)

25)

26)

28)

page 119
Kent, W., "Consequences of Assuming a Unlversal Reiatlon.",

ACM Transactlons on Database Systems, Vol 6, No.4 December

1981, pp. 539-556.
My lopolous, B., and Wong, ™A Language Faclllity for Designing

Database-Intensive Appllications.”, ACM Transactlons on

Database Systems, Vol 5, No. 2 June 1980, pp 185-207.

Phillps, Robert W., Dynamic Data Dictlonary, Masters Report,

Kansas State Unlversity (1983).

Risch, Tore, "Productlon Program Generation 1[n a Flexible
Data Dictlionary System."™, I|EEE, 1980, PP. 343-348.

Sakamato, J.G. and F.W. Ball, "Supporting Business Systems
Planning Studles with +the DB/DC Data Dictlionary.", [BM
Systems Journal, Vol. 21, No. 1 1982, pp. 54-80.

Snyders, Jan, "Data Dictlonary: The Manager 1In DBMS.",

Computer Declisfons, Vol!.13, October, 1981, pp. 36-46.

Snyders, J., "New Trends In DBMS.", Computer Declisions,

February, 1982, pp. 100-133.
Sowa, J.F., "Conceptual Graphs for a Data Interface.", |IBM

Journal of Research and Development, Vol. 20 pp. 336-357.

Ulilmen,Jeffery D., Princliples of Database Systems, Computer

Sclence Press Inc., 1980.

Unger, E.A., and E.J. Schweppe, "A Concurrent Model :
Fundementals.", 2nd International Conference on Parallel
Computation, France, 1979.

Zahran, F.S., "A Basic Structure for Data Dictlonary

Systems.™, ACM_ European Reglonal Conference (England),
Proceeding... Systems Archltecture, March 1981.

page 120

SOFTWARE ENGINEERING:

29)

30)

31)

32)

33)

34)

35)

Bell, Thomas E., D.C. Bixler, and M,E. Dyer, "An Extendable
Approach to Computer-Alded Software Requirements

Englneering.”, |EEE Transactlions on Software Engineering,

YVol. SE-3, No. 1, January 1977, pp. 49-59.
Bloom, Naom! Lee, "Writing Less Code = An Approachable

|deal.", National Computer Conference, Anahelm, Ca., USA,

16-19 May 1983 (Arlilngton, Va, USA: AFIPS Press 1983) p.3-9,

Boehm, B.W. "Software Engineerling.", |EEE Transactions on

Computers, December 1976 pp. 1226-41.
Branscomb, L.A., J.C. Thomas, "Ease of Use: A System Deslign

Chal lenge.", Information Processing 83, Proceedings of the

IFIP 9th World Computer Congress, Parls,France, (Ampsterdam,

Netherlands: North=-Hol land 1983) pp. 431-38.
Curtls, 6. A., "Fondatlon Software : A signlflcantly
Iimproved approch to the development of large appllication

systems." Natlona! Computer Conference, Anahelim Ca., USA,

16-19 May 1983 (Arlington, Va., USA: AFIPS Press 1983)

p11-19 also pgs 113-21 and p137-44. Joint Computer
Conference AFIPS conference Proceedings.

Demetrovics, Janos, Elod Knuth, and Peter Rado,
"specliflcation Meta Systems.", Computer vol. 28 no.5 p29-35
(May 1982).

Depree, Robert W., M"Pattern Recognlitlon In Software
Engtneering.", Computer (USA) vol. 29 no. 5 p247-50 IEEE
(May1983) . |

36)

37)

38)

39)

40)

41)

42)

43)

44)

page 121
Greenspan, Sol J., J. Mylopoulos and A. Borglida, "Capturling
More World Knowledge I1n the Requlrements Specification." 6th

International Conference on Software Englneering, IEEE 1982

p225-34.

Higglns, David, Designing Structured Programs,

Prentice~Hall, lnc., 1983.
Kerner, David V. and A. Malhotra, "Generating Regulrements

From Enterprise Analyslis.™, 1983 National Computer

Conference, Anahelm, Ca., USA, 16-19 May 1983 (Arlington,

Ya., USA: AFIPS Press 1983 p255-60).
Kuo H. C., C. H. LI and J. Ramanathan, "A Form-Based Approch

to Human Englneering Methodologles.", Sixth International

Conference on Software Englneerling, (IEEE 1982) p254-63.

Lauber, Rudolf J., "Development Support Systems.", Computer
Vol.28, no.5, (IEEE, May 1982) p36-46.

Levene, A. A., G. P. Mutlery, "An Investigation of
Requirement Speciflcatlion Languages: Theory and Practice.",

Computer Vol.28 no.5, (IEEE, May 1982) p50-59.

Orr, Ken, Structured Requlirements Deflinition, Ken Orr and

Assoclates, Inc. 1981.
Ross, D.T., "Structured Analyslis (SA): A Language for

Communicating Ideas.", IEEE Transactlions on Software

Englneering, Vol. SE-3, No. 1, January 1977, pp. 16-34.
Ross, D.T., J.B. Goodenough, and C.A. Irvine, "Software
Engineering: Process Principles and Goals.", Computer, May
1975 pp. 17=-27.

45)

46)

47)

48)

49)

50)

51)

52)

page 122
Smollar, S.W., "Software Specificatlions, Databases and

Knowledge Bases.", Informatlion Processing B3. Proceedings of

the IFIP 9th World Computer Congress, Parls, France

(Amsterdam, Holland: North=-Hol land 1983) pp219-22,

Telchroew, D., and E.A. Hershey, II1, "PSL/PSA: A
Computer-Alded Technique for Structured Documentation and
Analysls of Informatlion Processlng Systems.", |EEE

Transactions on Software Englneering, Vol. SE-3, No. 1,

January 1977, pp. 41-48.
Thedens, Mel Inda, "Cataloglng The Program Library",
Datamation (USA) Vol.29, NO.5 p247-50 (May 1983).

Vanderliel, Kenneth, "Software Development Methodology and

Practlices.", GTE Network Systems Journal 3rd Quarter 1983

p76-82.
Warren, Sally, Bruce E. Martin and Charles Hoch, "Experlence
with A Module Package In Developing Productrion Quallty

PASCAL Programs.", Proceedings of +the 6th International

Conference on Software Engineering, Sept. 13-16 1982 |EEE

Computer Soclety Press 1982 p246-53.
Wirth, Robert, "Future Directlion of Softwere Technology.",

GTE Network Systems Journal, Third Quarter 1983 p70-75.

Woodward, Mary, "A Case for Adaptable Aplications

Software.", 1983 Natlona! Computer Conference, Anaheim, Ca.,

USA, 16-19 May, 1983, Arlington, Va., USA: AFIPS Press 1983
p21-28.
Zelkowltz, M.V., Perspectives on Software Englneering.",

Computing Surveys, Vol 10, No 2, June 1978, pp197-216.

Page 123

Appendix
An example of transforming Warnler/Orr Dlagrams
Into frames for a System Resource Dictlonary Database

The Warnler/Orr dlagrams:

-
Report Title Label
Report Perlod Label
Month End Date
Column Labels

(.Name ("
.Name
«Number
Company <4 Salesman < Customer < Involce .Date
(1 (1,8) (1,0 (1,1) - .Total

.Total Label
.Namel(e)
.5ales Total

-
. Total Label
.Name(e)

.Sales Total

-

.Total Label
hSales Total

Figure 12: A loglical output structure

Month End Date
r s

.Name r
.Name
«Number
Company ¢ Salesman < Customer q Involce .Date
(1) (1,8) (1,C) (1, 1) .Sales Amount
" " -

Flgure 13: Loglical data structure for the required output:
represents the minimal data requfrements.

Month End Date
Salesman Name
Customer Name
.Number

.Date

.Sales Amount

Involce <
(1, 1)

Customer
(1,C)

Salesman
(1,8)

Company
(1)

Figure 14: The ldeal Input flle structure

Company Flle
(1)

Company Record

{Mon'rh End Date
(1)

Salesman
Record
(1,8)

Salesman File

Customer Flle
(1)

Record
(1,C)

{
{cUs+o....r

«Number
.Name
.Sales
+Customer
(1,¢)

«Number
.Name
.Address
< .lnvolce
(o,n
.Sales

L.Salesman.No

-
.Customer=Number
.Salesman-Number

Involce «Number

Invoice Flle Record < .Date .Quantlty

(1) (1, 1) . I tem .Description
(1,D) Unt+=Price

L.Tofal .Detall-Total

Figure 15: Actual Input Flles

Page 124

Page 125

r
Get FIrst ldeal Record <...58e below
.Beglin Print Company Heading Info. *
Inftiallze Company Sales Total
F Print Salesman Heading ¥
.Begln Inittallze S-S-Total
Set Salesman-Name(e) To
Salesman-Name
~ Print Customer Headling *
.Beglin Inftiallze C-S-Total
Set Customer-Name(e) to
Customer-Name
Process J Process Process Process Print Inveoice Info. #
Company Salesman < Customer ¢ lnvolce Add Sales to C-S-Total
(1) (1,8)21 (1,C)12 (1,113 Get Next ldeal Record *
Print Cust. Total Info. ¥
+End
. Add C-S=-Total to S=-S-Total
Print Salesman Teotal Info. ¥
L.End
Add S$S-5-Total to Company Grand Total
.End {:Prln+ Company Total Info. *
.
Tests: 71=No More Salesman = True

?72-0ld Salesman Name not
723=-01d Customer Name not

Salesman Name or 11
Customer Name or 72

S=S=Total = Salesman Sales Total
C=5~-Total = Customer Sales Total
(
Open Input Flles
Set End Involce Flle to False
Get ldeal Record ¢ Set Abnormal End to False

(1)
Get Involce Record

Get ldeal Record
“
* Processes not shown
Figure 16: A partial loglical

Moves Spaces to ldeal

Record
%

*

process structure

PROCESS-COMPANY Frame:

Synonym: ()
Attributes:
Processes: COMPANY-BEGIN
PROCESS-SALESMAN
COMPANY=END
Representation: A program algorlithm
Corporal Ity: PROGRAM_CORP
Value:
Beg!n (*program¥*)
COMPANY-BEG IN;
Repeat
PROCESS~SAL ESMAN
Unt1l No-More-Salesman=True;
COMPANY=-END;
End. (*program¥)

PROCESS~SALESMAN Frame:

Synonym: ()
Attributes:
Inputs: IDEAL-RECCRD
PROCESSES: SALESMAN-BEGIN
PROCESS-CUSTOMER
SALESMAN=-END
Representation: a process algorithm
Corporal 1ty: PROCESS_SALESMAN_CORP
Value:
Begin (*process¥)
SALESMAN-BEGIN;
Repeat
PROCESS-CUSTOMER
Until Old-Salesman-Name Not= SALESMAN-NAME or
No-More-Salesman=True;
SALESMAN=-END;
End; (*process¥®)

- Page 1

Page 126

Figure 17: The frame conversion of the Warnler/Orr dlagrams

Page 127

PROCESS-CUSTOMER Frame:
Synonym: ()
Attributes:
Inputs: IDEAL-RECORD
Outputs:
Processes: CUSTOMER-BEGIN
PROCESS-INVOICE
CUSTOMER=-END
Representation: A process algorithm
Corporallty: PROCESS_CUSTOMER_CORP
Value:
Beglin (*process¥)
CUSTOMER~-BEGIN;
Repeat

PROCESS-INVOICE
Untll Old=-Customer-Name Not= CUSTOMER-NAME or

Old-Salesman-Name Not= SALESMAN-NAME or
No-More-Salesman=True;
CUSTOMER=END;
End; (¥*process#)

COMPANY=-BEGIN Frame:
Synonyms: ()
Attributes
Processes: GET-FIRST-IDEAL-RECORD
PRINT-COMPANY~-HEAD ING

Representation: a process algorithm

Corporality: COMPANY_B_CORP

Value:

Beglin
GET-FIRST~IDEAL-RECORD;
PRINT=-COMPANY~HEADING;
Company-Sales-Total := Zero;
No-More-Salesman 3= False;

End;

SALESMAN=-BEGIN Frame:
Synonyms: ()
Attributes:
Inputs: IDEAL-RECORD
processes: PRINT-SALESMAN-HEADING
Representation: a process algorithm
Corporallty: S_B_CORP
Value:
Begln
PRINT-SALESMAN-HEADING;
Salesman~Sales-Total := Zero;
Salesman-Name-E := SALESMAN-NAME;
Current-Salesman := SALESMAN-NAME;

End;

Figure 17: The frame converslion of the Warnler/Orr diagrams
- Page 2

Page 128

CUSTOMER-BEGIN Frame
Synonyms: ()
Attributes:
Inputs: IDEAL-RECORD
Processes: PRINT-CUSTOMER-HEADING
Representatlion: a process algorithm
Corporality: C_B_CORP
Value:
Begln
PRINT=-CUSTOMER-HEADING;
Customer-Sales-Total := Zero;
Customer-Name-E := CUSTOMER-NAME;
Old=Customer-Name := CUSTOMER-NAME;
End;

PROCESS-INVOICE Frame:
Synonym: ()
Attributes:
Inputs: IDEAL-RECORD
Processes: PRINT=INVOICE=-INFO
GET-NEXT=-IDEAL-RECORD
Representation: a process algorithm
Corporal Ity: PROCESS_INVOICE_CORP
Value:
Begln (¥process#)
PRINT=-INVOICE=-INFO;
Add INVOICE-TOTAL to CUSTOMER-SALES;
GET-NEXT=-IDEAL-RECORD; (*|oglcal record*)
End; (*process¥)

CUSTOMER-END Frame:
Synonyms: ()
Attributes:

Processes: PRINT-CUSTOMER=-TOTAL-INFO
Representation: a process algorithm
Corporallty: C_E_CORP
Value:

Begln

PRINT=-CUSTOMER=-TOTAL=-INFO;

Add Customer-Sales-total to Salesman-Sales-Total;
End;

Figure 17: The frame converslon of the Warnler/Orr dlagrams
- page 3

SALESMAN-END Frame:
Synonyms: ()
Attributes:

Page

Processes: PRINT=-SALESMAN-TOTAL=-INFO
Representation: a process algorithm

Corporality: S_E_CORP

Value:

Beglin
PRINT-SALESMAN-TOTAL~-INFO;

Add Salesman-Sales-Total to Compnay-Grand-Total;

End;

COMPANY=-END Frame:
Synonyms: ()
Attrlibutes:

Processes; PRINT-COMPANY=-TOTAL=-INFO
Representation: a process algorithm

Corporal lty: COMPANY_E_CORP

Value:

Beglin
PRINT-COMPANY=TOTAL=-INFO;

End;

GET-FIRST-IDEAL-RECORD Frame:
Synonyms: ()
Attributes:
Inputs: COMPANY File
SALESMAN File
CUSTOMER Flle
INVOICE Flle
OQutputs: IDEAL RECORD

Processes: GET-INVOICE-RECORD
GET- IDEAL-RECORD
Representation: a process algorithm

Corporallty: G_F_I_R_CORP

Value:

Begln
Open Input Files
End=-Involce-Flles := False
Abnormal-End := False
GET-INVOICE-RECORD
GET- IDEAL-RECORD

End

Figure 17: The frame converslion

of the Warnier/Orr diagrams

- page 4

129

INVOICE Frame:
Synonyms: (sales-Involce)
Attributes:
NUMBER: an Integer
CUSTOMER-NUMBER: Restriction_on: CUSTOMER
Attributes: (Number)
SALESMAN-NUMBER: Restrlictlion_on: SALESMAN
Attributes: (Number)
TIME: Speclallzation_of: DATE
ITEM: speclallzatlion_of: DETAIL (1,d) d<=20
TOTAL: a real
Representation: a record (1,1)
Corporality: INVOICE_CORP
Value:

DETAIL Frame:

Synonyms: (ltem)

Attrlbutes:
QUANTITY: an Integer >0
DESCRIPTION: a string(40)
UNIT=-PRICE: a real
DETAIL-TOTAL: a real

Representation: a record

Corporallty: DETAIL_CORP

Value:

CUSTOMER Frame:
Synonyms: ()
Attributes:
NUMBER: an Integer
SALESMAN=-NO: Restrictlon_on: SALESMAN
Attrlbutes: (Number)
NAME: a string(30)
ADDRESS
SALES: a real
INVOICE (0,1}
Representation: a record (1,C)
Corporal Ity: CUSTOMER_CORP
Value:

SALESMAN Frame:
Synonyms: ()
Attributes:
Restriction_on: MRKTING-EMPLOYEE
Attributes: (NUMBER, NAME,
JOB=TITLE: default = salesman)

CUSTOMER: (1,c)

SALES: a real >= 0O
Representation: a record (1,S)
Corporal lty: SALESMAN_CORP
Value:

Page 130

Figure 17: The frame conversion of the Warnier/Orr dlagrams

- page 5

Page 131

COMPANY Frame:
Synonyms: ()
Attributes:
MONTH-END-DATE: Seclalization-of: DATE
DD: Range (28-31)
Representation & record
Corporal ity: COM_CORP
Value:

IDEAL=-RECORD Frame:

Synonyms: ()

Attributes:
MONTH-END=DATE: Speclalizatlion_of: DATE
SALESMAN-NAME: S+ring[30]
CUSTOMER-NAME: St+ring[30]
INVOICE-NUMBER: Integer
INVOICE-DATE: Speclalizatlion_of: DATE
INVOICE-TOTAL: Real

Representation: a Record

Corporal I1ty: I_REC_CORP

Value:

Figure 17: The frame conversion of the Warnlier/Orr dlagrams
- page 6

Page 132

DATE Frame:

Synonyms: ()

Attrlbutes:
MM: an Integer range (1-12)
DD: an Integer range (1-31)
YY: an [nteger

Representation: a record

Corporality: D_P_CORP

Value:

EMPLOYEE Frame:
Synonyms: ()
Attributes:
NUMBER: an Integer
NAME: a string[30]
E-ADDRESS: Speclallzatlion_of ADDRESS
DEPARTMENT: a string[9]
range (Admin, Prsni, Mrkting, Mfgling, D-Prcsing)
SALARY: a real
POSITION: a string[20]
Representation: a record
Corporal lty: PRSNL_CORP
Value:

MKT ING-EMPLOYEE Frame:
Synonyms: (Employee)
Attributes:
Speclallzatlon_of: EMPLOYEE
DEPARTMENT = MktlIng
Representation: a record
Corporality: MKTING_CORP
Value:

Figure 18: A sample of frames showling relationships
to the frames In the converslion example.

THE SYSTEMS RESOURCE DICTIONARY
A SYNERGISM OF ARTIFICIAL INTELLIGENCE, DATABASE MANAGEMENT
AND SOFTWARE ENGINEERING METHODOLOGIES

by

RANDALL N. SALBERG

B. §., Kansas State University, 1978

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfllliment of the

requlrements for the degree

MASTER OF SCIENCE

Department of Computer Sclence

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

The Maln thrust of thls paper 1Is to propose +the means by
whlch developments |[n +the areas of Artificlal Intel |l Igence,
Database Management, and Software Englneering can be brought
together to enhance database management and software development.
The Integrating tool proposed Is a data dictlonary system based
on the Dynamlic Data Dictlionary System (DDDS) as proposed by
Rebert Phillips.

To accomplish thls task a study was done of developments I[n
tools and methodologles In the +three areas mentlioned above. I+
was determlined that a great deal of simllarity exists between the
functlions and support provided by program |Ibrary guldes and data
dictlonarles., Similar findings were made for requirements
definition languages and data deflinltion languages.

An Improved DDDS, «called the Resource Management System
(RMS), that |Is based on a dynamic data dictlionary called +the
Systems Resource Dictlonary (SRD) 1is proposed. The purpose for
and some of the requlrements of the system are establ Ished, and a
proposal Is made for the use of frames 1In developing the SRD's
database as a knowledge base. Some general methods for
supporting the software development process, using the RMS and a
number of generlic expert tasks, are suggested. Reasons for this
Integration of methodologlies and +tools are examined. Lastly an
example of the use of frames for data definition along with a
dlscusslon of necessary lmplemenfatlgn declislons Is glven,

Further research Is suggested to prove +the feaslblllty of
developling a software +tool of +the magnitude of the Resource
Management System, and of using frames to Implement the System's

data dictlonary database as a knowledge base.

