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I, INTRODUCTION

Solids mixing or blending is an operation by which two or more parti-
culate solid materials are scattered randomly in a mixer by the random
movement of the particles. Solids mixing tends to eliminate existing inhomo-
geneities, or to reduce gradients. Although it is one of the oldest
industrial operations, it is still one of the most widely employed. For
example, 1t is essential in plastic processing, ore smelting, pharmaceutical
preparation, fertilizer production, food manufacture, and catalytic synthesis
of chemicals. Generally, solids mixing operations are often multicomponent
in nature in that each of such operations involves blending of more than
two ingredients. Thus, the study of solids mixing for multicomponent mixtures
is of practical importance.

Statistical analysls has begn 8 major tool in solids mixing investi-
gations because of the stochastic nature of mixing processes. The statistical
properties of a multicomponent heterogeneous solids mixture have been of
intense interest to ressarchers in the field of solids mixing, yet a sys-
tematlic approach to this problem is still lacking.

The theory of nonparametric methods is essentially concerned with the
development of statistical inference procedures without the explicit agsump=
tions regarding the functional form of the probability distribution of the
sample observations. Since the distributions of the components during
mixing are usually unknown, nonparametric statistical methods sheould proe-
vide a class of appropriate and effective techniques for the analysis of
mixing systems. The applications of certain nonparametric tests for solids
mixing for binary mixtures has been previously demonstrated by Lai, Wang and

Fan [ 1].



The object of this study is to demonstrate the applicability of non-
parametric statistics to the analysis of mixing processes of multicomponent

mixtures and the characterization of such mixtures. As specific examples, the

mixing processes carried out in a drum mixer and several mixtures generated

by the processes are considered.



IT. NONPARAMETRIC STATISTICS

In most statistical problems, a class of distributions or states of
nature assumed as possible models is defined by a probability density
function of given form, which depends on a finite number of real para-
meters. In other words, if the basic distribution is known, one may be
able to derive optimal tests of hypotheses and confidence intervals based
on the distribution. In many case an experimenter does not know the form
of the basic distribution and is in need of statistical techniques which
are applicable regardless of the form of the density. These techniques
are called nonparametric or distribution-free methods,

The term "distribution free" refers to the fact that no assumptions

are made about the underlying distribution except that the distribution

function being sampled 1s absolutely centinuous or purely discrete. The term

"nonparametric" refers to the fact that there are no paramenters involved in

the traditional sense, The restriction to absolutely continucus distribution

function is a simplifying assumption that allows us to use the fact that ties

occur with probability 0., Thev apply to very wide families of distributions

rather than only to families specified by a particular functional form.

In nonparametric statistics, the measurement scale need not be numerical.

Usually measurements can be classified as one of four levels depending on the

recision represented by the measurement procedure. They are
b

(1). Nominal scale: In nominal (scale) measurements no physical meaning
is attached to the values of the numbers. We simply assign numerical
names to the types of outcomes, however the principle of order in
real number system ig not velevant, Of the four measurement scales,

nominal is the least precise.



{(2). Ordinal or ranking scale:; When measurements are made on an
ordinal scale, the elements can be arranged in a meaningful
order, which corresponds to their relative positons or sizes.

In a taste test for five different brands of beer, the tasters
may rank beers as 1, 2, 3, 4, and 5 according to their prefer-
ences. Note that the rank does not indicate how much better
one beer is preferred.

(3). 1Interval scale: When the elements can be ordered and the
arithmetic difference between the elements is meaningful, the
data are measured on an interval scale. Thus, we can say not
only that one element 1s larger than or smaller than another,
but also by how much. This scale of measurement 1s much more
informative than either of the scales above, since the fact
that the distance between elements can be determined implies
that there is a fixed unit of measurement and a zero point,
the latter being arbltrary. Thus, interval scale data are quan-
titative in the sense, that the numbers have a true meaning.

(4). Ratilo scale: For ratio scale measurements we have not only the order
property, a unit of measurement and a meaningful arithmetic difference
between elements,. but also a fixed origin or zero point as opposed to
an arbitrary origin. The term "ratio scale' is used bec;use the ratio
of two measurements on this highest scale 1is meaningful.

The validity of the nonparametric statistical inference does not rest

on a specific probability model in the population. Honparametric procedures
exist for data from all four scales of measurements. Such procedutes are
very useful in many different areas of application. HNonparametric methods
can be applied to test a varietv of hypotheses. According to types of

inferences, the major nonparametric statistical tests are summarized helow:



Goodness—of-Fit Tests

Chi-square test, Kolmogorov-Smirnov test

Tests of Location or Central Tendency

Sign test, Wilcoxon signed rank test, Mann-Whitney-Wilcoxon test,
Normal scores Van der Waerden test, Kruskal-Wallis test, Friedman
test.

Tests of Scale or Dispersion

Siegel-Tukey test, Klotz test, Ansari-Bradley test, Mood test.
General Distribution Tests

Equality of k proportions test, Chi-square test, Kolmogorov-Smirnov
test.

Assoclation Analysis

Spearman test, Kendall Tau test, Chi-square test.

Tests for Randomness or Trenﬁ

Ordinary runs test, Runs up and down test.

Table 1 gives some available nonparametric tests depending on types of

samp les

obtained and types of measurements involved. For further details,

we may he referred to some nonparametric statistics texts such as Gibbons

[2,3], Conover [4], Lehmann [5], Hdjek [6] or Hollander and Wolfe [7].

Note that we may be referred to Puri and Sen [8] for nonparametric multi-

variate methods.

Besides the advantage of robustness against distvibutional assumptions,

nonparametric statistical methods often involve less computational work,

v

and therefore, are easier and quicker to apply than other statistcical methods.

Another advantage of nonparametric statistical techniques is that much of

their theorv may be developed rigorously using elementary combinatorial

mathematics.
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III. THEORY
Consider a mixture which has (m+l) components. For the trivial case

(m=1), the mixture is called binary. In this paper, we are particularly
interested in the nontrivial case where m>l. Let Xij be a random variable
denoting the weight fraction of the i-th component in the j-th spot sample
(=121, 2, ..., ml; 3 =1, 2, ..., n}. Since

w1

151 Xij =],

only m of (m+l) welght fractions need to be determined. Thus,

X=Xy Koy o0 Xl j=1,2, ..., n (1)

will denote an arbitrary selection of m weight fractions for a given sample.
Several nonparametric statistical methods, which can be applied in analyzing

a varlety of sampling results of multicomponent solids mixing, are presented

in this section.
1, One-Sample Location Problem

In many mixing problems, the true component proportions in a mixture
are known. The problem of intereat then becomes a test of the sampling
procedure, If sampling is random throughout the mixture, the sample mean
vector should be representative of the population and the sample mean
vector should not be significantly different from the specified component
proportions. Multivariate rank tests for the one-sample location problem
[8] are thus appropriate for a test of the sampling procedure.

Suppose that n spot samples are taken from a mixture. Let X, (j =1,

=3

2, «v., Nn) be a random sample (vector-valued) with a continuous cumulative

distribution F(x), Eng, where R is the set of all m-tuples x = [xl xz...xm]

F(x) may be written as



F(x) = F(x, u) (2)

1
where B = [u um] is a location (vector) parameter. The random

1 Uz -

(mxn) matrix takes the form

& . x]
f1 Ppp ommo Egy
« | *a %22 X (3)
Lfm_l Xm2 e qu_
We now derive a test of the null hypothesis
Hyt B = M, (4)
against the alternative hypothesis
Hpi: n#u,
e 1
where By = [ulo Hog ; umo] is a specified vector. Let
= ] - 5
Yij Kij y0 (5)
denote the adjusted gample values, then the randoem sample matrix becomes
1 g ® T1n
Tyy Tap + ¢ r Ypq
YA - . . . (6>
~n
Tni  Tm2 ¥n

Ranking the n elements in each row of

Z
—n

value, we obtain an (mxn) rank matrix

in increasing order of thelr absolute
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Roy Rgp v v« By
Ro= L. . 7
R, R R

ml m2 mn
-
where Rij is the rank of IYij[ (j =1, 2, ..., n) among the set {|Yill,
]Yizl, iy |Yin|}' Since the populations are assumed continuous, the
probability of a tie is zero. Then for each 1 (1 =1, 2, ..., m), we

replace the ranks 1, 2, ..., n in the i1-th row of gn by a set of general

scores denoted by

i
{E§ ), ] X, 2, weeg W3
Hence, we obtain an (mxn) matrix of general scores En corresponding to
R ¢
- " %
Eél) Eél) L Eél)
11 12 In
E - Eéz) E;z) o E;z) (8)
21 22 2n
(m gm  pw
R R
| ml m2 mn |

We refer the reader to Chapter 4 of Puri and Sen [8] for a detailed discus-

sion of the regularity conditions on a score generating function which

(1)
3

We now consider a univariate rank order ststistic for each coordinate

determines the constants E

(component) of the form

(1 (1)
= T ER cij (9)

T L
I=1 13
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where C, = 1 or -1 according as Y >0orY < 0, respectively. Therefore,

13 ij i}
(1)

1) 45 the difference of the sum of the scores Egi) for which Y , > 0 and
the sum of those for which Yij < 0.

Let

(1)

2 T(m)]

I=Ir (10)

Under the null hypothesis, eqn. (4), the mean and dispersion matrix of T are

E[(T] =0 (11}
and
L} - = .
E[(2'I] = oV = alv,, ] (12)
where
n
1 (L) (43
v,, == I E c [ . (13)
it n so1 Rij Esz 1i "
i, £ =1, 2, s M
Mote that
n
"11“% : [Eff')lz, Lo Lp 2y sews M (14)
J=i 1]
The test statistic, S, formed by
S -% [_'gy"l ] (15)

is asymptotically distributed as a chi-square random variable with m degrees
of freedom for large samples. If T is stochastically different from 0, S
will be large which will lead us to reject the null hypothesis. The
appropriate P-value [see Appendix A] 1s the probability that a chi-square
variable is greater than or equal to the observed value of S, that is, a
right tail probability.

Two special cases are considered in this paper for the one~-sample

location problem. First, setting
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Egi)‘l, i‘.‘cl’ 2, s uay m; j=l, 2, sesy N (16)
the test statistic, S, is the multivariate sign test. Second, if
i
E§ 1 Eii i 1w Yo 25 wmws M l<jixz<n an

then S reduces to the multivariate generalization of the one sample Wilcoxon
signed rank statistic.
2. Test of Homogeneity of Dispersion Matrices

The degree of mixedness is used to judge the difference between various
experimental situations (treatments), For example, we may be interested in
comparing different types of mixers, mixing speeds or mixing times.
The covariance (dispersion) matrix characterizes the degree of
dispersion of each component proportion. Therefore in testing for the
homogeneity (or equality) of several dispersion matrices, we may be able
to judge whether thelr degrees of mixedness are significantly different.
In other words, we may determine if the variation in compositicn among spot
samples of each treatment is identical. A multivariate nonparametric test
of the equality of dispersion matrices discussed in [8] is used to assess
treatment effects, |

Suppose that we wish to compare the effects among t treatments.
All t treatments are assumed to be mutually independent. The number of

spot samples for the treatment k is denoted by . Let X(k) be a random

ij
variable representing the weight fraction of the i~th component in the j-th

sample for the treatment k, Also let

(k) (k) (k) (k) 4, -
X7 = Iy Ky e Xy 1% $=1 2 ey my (18)

be n, independent and identlically distributed (vector-valued) random

variables having a mvariate absolutely continuous cumulative distributicn

functiog {o«d.£.) F{k)(g) for k =1, 2, ..., &,



Assuming the identity of locations, we test the hypothesis of the

equality of dispersion matrices, 1.e.

By P ag@a, -

0 — o —
against the alternative hypothesis

Hl: _§(1) . E(Z), . e .,_g(t) are not all identical.
Let

&
N= L
k=1 T

denote the total number of observations

(k) i -
j . =1, 2, ..., n k=1, 2, ..., t
and define
.
(1) (1) (1) (2} (2) (2) () (o)
11 %g rue Xlnl 51 X e 1n2 ws BT Ay
- (l) (1) (1) _(2) (2 (2) (t) (t)
Zy %31 Fgp exw Hpy Bay” Bys s inz e Xon” Koo
LD LD LD @ @ e (o)
ml m2 ' an ml m2 t i an2 7 m1 XmZ

a random matrix of dimension (mxN).

. X

(20)

(t)
1n

(t)
2n

.(t)

man
o

—d

Ranking the N elements In each row of

(t)

lnt

(t}
2n

EH in increasing order of magnitude, we obtain an {mxN) rank matrix
(1) (l) (l) (2) R(Z) (2) (t) (t)
11 12 e lnl ll 12 T ln T ll 12
(’) (l) (1) (2) _(2) (2) () L)
=7 {83y Rag v Vo, Pmp War e R, o Ry B
(D@ @ (e (©
RTRS Rmnl R\ RS e Rmn2 oo ROR

13

(21

(22)
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where the poasibility of tles may be ignored in probability by virtue of
the continuity of the c.d.f.'s, For each i (1 =1, 2, ..., m), we replace

the ranks in the i-th row of BN by a set of general scores

(1),J—( _.32;), j=1, 2, «.., N (23)

and obtain the corresponding score matrix
(see the following page) (24)

Now, let us define

R r::kE(i) Bk o2 ?E(i) n}:k (&) (25)
el bl RIS RE;) RE;) j=1 RS) a1 RS)
i<1=1, 2, , m; k=1, 2, , t
and
t "k
* 1 (1) 8 o =(1)s(2)
where
t "k
=(1) _ 1 e (i)
E = & L E (27)
N1 g1 R“')
i3
Furthermore, let
1 5 2} (1) (8 ') 5"

Vi1 By TF T W o B Bad
k=l 3=l R R0 Ry Ry

* *
Ui£ Ui'ﬁ' s i, 2%, %, &' = 1, 2, weiz m (28)

Setting

r = %-(i—l) (2m-1) + % ford <L =1, 2, sun, m

we rewrite

{u (k)

ii y LK =L, By weoq m
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a8
1w, r-1, 2, 2e@) (29)
and
{U* 1<2=1, 2 }
iR-’ 15 » 3y sy M
as
* *
U=, re=1,2 .., 700D (30)
and
1 .
"Y"N(’BN) = {VZ’S (-Bﬂ)]’ Y8 ® 1 2y was "2"1"!(32'!'1.) (30
Thus, the test statistic can be expressed as
t k) _  *, -1 (k) %
L= I n [U - U]y (EN) (U -l (32)
k=1

Under the null hypothesis, eqn. (20), the test statistic L (for large
samplas) 1s asymptotically distributed as a chi-square random variable with

v degrees cof freedom, where
1
v = 5 m(m+l) (e-1) {33}

The P~value for this test is a right tail probability from a chi-square
distribution table with the appropriate degrees of freedom.
3. Distribution-free Tests of Fit
desides testing hypotheses concerning parameters of location and dis-
persion we are often Interested 1n the validation of a specifled distribution.
The goodness-of-~fit problem in this nultivariate setting may be described
as follows:
let 51, v ey En be independent multivariate random variables with

the distribution function F(x). We wish to test the hypothesis

Hot F(9 = Fy() (34)
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againat the alternative
Hl: F(x) # Fo(_:_{_)

where F0(§) is some particular distribution fumction (either continuous
or discrete). We can distinguish two special cases for tests of fit:

(1) Simple null hypotheses

Under a simple null hypothesis, the distribution of the random variable

is completely specified by FO(E)'

{i1) Composite null hypotheses

Under a composite null hypothesis, the distribution of the random variable
is not completely determined by FOCE)' If a composite npull hypothesis depends
upon unknown parameters, their maximum likelihood estimators [9]are usually
used to derive the appropriate test.

When samples are obtained in a multicomponent solids mixing problem,

the data can be expressed as

component

sample 1 2 o W w m mtl
L i f12 v+ 0 B Bernd
¢ Far faa o fap formn
n fnl fn2 o o fnm fn(m+1)

where fij ({1 =1, 2, ..., (m+l); 1 =1, 2, ..., n) denotes the number
of particles of the i-th component in the j-th spot sample., If the samples
are taken from a specified distribution, the expected number of particles

of the i-th component In the j~th sample will be known and denoted hy eij'
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Furthermore, under the null hypothesis, eqn. (34), there should be close

)

agreement between these corresponding frequencles. The deviations (fi

37 13

measure lack of agreement., We eliminate the signs by squaring each differ-

ence, and reduce that value to original units by dividing by the respective

eij' Thus

2
(fij - eij) /eij

measures lack of agreement for the i-th component in the j-th sample. An
overall measure of the lack of agreement 1s the sum of these individual
measures. Thus, the test statistic Q is defined as

w0 (f, - e, )

Q= z 1§ —ii %
1=1 j=1 ®1j

(35)

A small value of Q supports the null hypothesis HO’ whereas a large value
reflects a general incompatibility between the frequencies observed and

those expected under HO.
The asymptotic distribution (large n) of @ is independent of the under-

lying distribution. For a simple null hypothesis, Q 1Is asymptotically distri-

buted as a chiesquare random variable with mn degrees of freedom under HO'
As mentlioned earlier, it is sometimes necessary to estimate some

parameter values before the test can be performed. Once the parameters are

estimated and subsequently used to estimate eyqa Q is calculated

according to egqn. (35) as before. For a composite null hypothesis, again the

distribution of Q@ is approximately chi-square but with n{mw) degrees of

freedom, where w denotes the number of independent‘unspecified parameters.

Reduction of the number of degrees of freedom shifts the boundary of the

critical region so that Q has to be smaller for acceptance at a given

level.
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4, Binomial Test

A common problem in solids mixing involves the blending of an active
ingredient with several diluents., The homogeneity of this active ingredient
in the entire mixture is of primary importance, Given a prescribed quality
standard we are interested in testing the hypothesis that the proportion of
mixture which meets the quality standard exceeds a fixed level.

In general, the hypothesis may take one of the following forms for some
specified value of 90 (0<:%f1)

(1) One=-sgsided alternatives

(a) H01 : 85_@0 versus H+: 8>80 (36)
{b) HO2 B2 80 versus H_: 6<80 (37)

(2) Two=sided alternative
Hyq 8 = 80 versus Haze # 90 (38)

We first consider a test of the hypothesis (la). Suppose that n spot
samples are drawn from the mixture with each spot sample being classified as
satisfactory or unsatisfactory. Denote the numbers of satisfactory and un-
satisfactory samples by S+ and S _, respectively. The hypothesis H01 is re-

jected at the o level whenever

S
N ¥ ]
where the critical wvalue Cal is determined such that
> =
Prea[ S+ Cal] o

Note that the distribution of S+ , when 8 = 90 , Ls binomial with parameters

n and 60 , hence
E. [ $.] = n@
BO + 0

Similarly, we reject the hypothesis H02 at the & level whenever



20

where

Pred[ s_> Caz] = Q

Here the distribution of S_ , when 8= 80 » 18 binomial with parameters n
and (1-80), hence

E

]

TR

n{(l-¢6)
0 0

Since

+ »
the rejection region of an « level tests of the hypothesis H03 is determined by
S+ < Cal or S+ > Ca2
where
Pgeo[ S+ < Cdl] + Preo[ S+ > CuzJ = O

An equal tails test selects critical values Caland th2 such that

Pr, [ S5, <C_,]

5 + ol

0

and
Pre [ S+ > Ca2]
0
are approximately equal.
For large samples, we define the standardized variables (with a con=-
tinuity correction of 0.3) to be

S+ - nBU - 0.5 (39)

nGO (1 - eO)
and
S, - n(1-8,) = 0.5

z -
o — (40)
neo (1—80)

The P-value associated with the tests of the above three hypotheses



are obtained from the standard normal table[ 2] as:

Hypothesis P-value

HO]. vs H+ Pr| Z>z+]

Hyy vs H_ Prl 2>z_]

}%3vslg 2(rmx(Pr{Z>z+],Pr[Z >z_1))

where Z has a standard normal distribution.

21
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IV. EXPERIMENT

The experimental apparatus, materials and procedures employed are
described in this section. To minimize experimental and computational
effort, ternary particles systems ﬁere chosen to demoustrate the analysis
of multiqomponent solids mixing by nonparametric statistical methods,

1. Apparatus and Materials

The apparatus used in this experiment was a cylindrical plexiglass
mixer of the following dimensions: internal length 38.1 em (15 in),
diameter 14.0 cm (5.5 in) and end flanges diameter 25.4 cm (10 in). The
tube was split axially so that the upper portion could be removed for
loading and sampling. The end flanges were accurately made to insure that
during mixing the axis of rotation coincided with the geometric axis of
the mixer. The plexiglass cylinder was set horizontally on a jar mill whose
rotational speed was accuvately maintained at a speed between 10 and S0
r.p.m.. Particles used in thils experiment were Lucite spheres with an
average diameter of 0.16 cm (small), 0.32 cm (medium) and 0.48 cm (large)
with an average density of 1.1536 g/cm3.

2. Procedure

Prior to mixing, two thin semi-circular partitions were placed between
the two ends of mixer normal to the mixer axis dividing it into three equal
compartments. One hundred and seventy grams each of 3 types of particles
were loaded in each compartment, respectively. Approximately 30% of the
overall volume of the mixer was occupled by the particles. The bed was then
leveled, the partitions were removed, the cover was put in place, and the
mixer was rotated. Two types of systems were created:

(1) Heterogeneous

Three tvpes of particles of different sizes ( small, medium and

large ) were employed in this system.
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(2) Homogeneous
Three types of (large) particles, which had identical properties
except color, were used in thig system.
Table 2 summarizes the experimental conditions of each run. After a predeter-
mined mixing time, twelve spot samples were randomly drawn from the mixture
for aach experimental run and the weight fractions of three types of particles
in the sample were recorded. For the homogeneous system, the number of particles

of each type in the sample was also counted.



Table 2. Summary of particle system and experimental conditions

(1) Heterogeneous system (small, medium and large particles)

experimental
rin

1
2
3
4

5

rotating speed
(r.p.m.)

30
30
30
20

45

mixing time
{min.,)

2
10
30
10

10

(2) Homogeneous system (large particles)

»

experimental
run

6

7

rotating speed
(r.p.m.)

30
45
45

45

mixing time
(min.)

30
30
60

150

24
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V. RESULTS AND DISCUSSION

The theories and procedures presented in Section III. are employed
to analyze the experimental data obtained. Implications of various tests
are explained.
1, Test of sampling techniques

In a multicomponent solids mixing problem, the sample mean vector should
not deviate greatly from its known'pdﬁulation mean vector. On the bther hand,
the mean vector by itself should not be used as a measure of the degree of
mixedness, since, if the batch is properly sampled, the only varietion be-
tween sample mean vectors should be the sampling wvariation, regardless of
how well mixed the batch is. If the mean vector U differs significantly. from

the population mean vector H the sampling may have been biased due to loca-

0 El
tion or method [ 10], If so, this bias should be eliminated before further
sampling.

To accomplish this, we have to test the hypothesis that the mean

vector is specified, e.g., to test the null hypothesis

, I S
against the alternative hypothesis
11

] = 71
H:p#l3 31
An example of this calculation is shown below. for the first experimental run.
The experimental data for the 3 particle sizes (small, medium and large) in 12

random spot samples are tabulated in Table 3. By selecting the small and medium

sized particles, we express the sample data matrix, X, as
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0.127
0.968
0.004
0.000
0.022
0.992
0.869
0.241
G. 000
0.018
0.987
0.969

\

0‘
0.
0.

o O O o 0o 0 o O

which,after adjustment

.

r -0.

0

-0,
-0.
=0.

797
032
370

410
695
.008
123
W -
. 000
.658
.013
.031

/

for M, , yields

206
035
329
333
311

0.659
0.536

-0.
=0.

092
333
.315

0.654
0.636

Since ties occur in the

that assigns the simple

a.
=0,

464
301

0.037
0.077
0.362

-0.
-0.

85
=0,
.325
-0,
~0.

0

325
210
419
333

320
302

'\

s
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application of rank tests, we use a midrank procedure

average cf the ranks whichrwould have been assigned to

the observations if they were not tied. Thus, ranking the elements of each -

row of y in increasing order of ‘their absolute values, we obtain

2 9 5 6.5

“ 12 4 1

9

-

12

8

1 6.5 4 11 10

N 7.58.3 1L 8 7.5 6 5
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Two multivariate rank tests were developed to test the hypothesis of a pre-

scribed wmean vector:
(1) A multivariate sign test
The score matrix takes the form

1 11111111111

E
= !t 11 %1 1f11i11t11

According to eqn. (9), we have

Wies I <

and,
T=[-2 0]

Thus, from eqns. (13) and (14), we have

10
1 -1
E =
10
- i3 1
and
36 30
i1 11
vt -
30 36
™ T

Therefore, the test statistic is calculated as

1 -1
S=2 [ZY I]
36 39
1 11 11 -2
=1 [ -2 0]
30 38 0
11 11
= 1.0909

Since § is asymptetiecally distributed as a chi-square random variable with 2
degrees of freedom, we can calculate the P-value as

P =0,5796



Such a large P-value supports H,; hence, the sampling technique is

0’
judged to be representative of the mixture.
(2) A multivariate generalization of the Wilcoxon signed-rank test

In this case, the score matrix
1
En =13 Ry
By eqn. (9),

1) 2)

M 21,692, 12 = 0.692
and

T=1[1.692 0.692]
According to eqns. (13) and (14), we have

0.320 -0.158

i<
it

-0.158 0.320
Thus, the test statistic, eqn. (15), is

[T K-l lj]

v
]
=R Eo

= 1.5476
The associated P-value is
P = 0.4613
Therefore, use of the multivariate Wilcoxon signed-rank procedure leads to
the same conclusion as the multivariate sign test and the sampling technique
is judged to be representative of the mixture.

Table 4 lists the P-values for all pairs of particles considered and the
two multivariate rank tests. Calculations have been carried out for experimental
runs 2 through 5, The results from these runs are also shown in Table 4,

2. Test of Treatment Effects
The data from the first three experimental runs are used to illustrate a

test of significance of treatment effects., This is accomplished by testing the

homogeneity of their covariance matrices, Thus, we test the hypothesis
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L) L (2 o (3) ‘
Ho 1 & £ & (42)
against the alternative

1 2
Hl H E( ), E( ) and g

(3

are not identical
In other words, HO hypothesizes no significant difference in dispersion for
mixing times of 2, 10 and 30 minutes.

The experimental data are listed in Table 3. Using the small and medium

sized particles for illustration, we define

1 2 3
Ew,,[zu Me E()J e
where
- ’ ’

[0.127  0.797 ] (0,012 0.259)
0.968  0.032 0.435  0.565
0.004  0.370 0.115  0.606
0.000  0.410 0.017  0.771
0.022  0.695 0.271  0.611

(D, |0.992  0.008 LD, 10.166  0.836

= 0.869  0.123 0.089  0.250
0.241  0.752 0.929  0.071
0.000  0.000 0.272  0.517
0.018  0.658 0.600  0.225
0.987  0.013 0.067  0.202
[0.969  0.031 |, 0431 0.419

and
’
(0.035  0.426 |
1.000  0.000
0.029  0.493
0.000  0.049
0.109  0.482
(3. |0.085  0.507
= 0.008  0.200

0.064  0.463
0.064  0.583
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0.136 0.529
0.052 0.504
0.050 0.474

Ranking the 36 elements of each row of the matrixEH in increasing order of

magnitude, we obtain the rank matrix

g - 2D @ R(s)J

- - 2x36
where
16 31 3 1.5 7 36 29 21 1.5 6 35 32
O
B 35 7 16 20 32 2 9 33 1 31 3 6 }
f 4 26 15 5 22 17 12 30 23 27 10.5 25]
RO
- (13 28 29 34 30 36 12 8 27 11 10  22]
and

R

(3) 33 13 20 14 18 10.5 & 19 9 34 28 24
5 23 17 26 21 18 19 25 24 4 15 14

According to equ. (24), the general score matrix is of the form
1 1
Ey “‘vﬁ-z_ oy VR

where

Thus, in ocur example,
1 1
By =12 Caz iy -3 4y
Using eqns. (25) through (31), (see Appedix B for a list of computer program)
v® = [1.7099 -0.7724 1.5668 ]

u'® = [0.6743 -0.0612 0.9201]

U(3) = [ 0,703% =0.4645 0.4565]
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U° = [ 0.9727 -0.4126 0.9730]
0.6606 =0,2705 «0,3515
EN(EN) = | -0,2705 0.9632 =0,2442
0.1870 =0.2442 0.6623

and
1.7878 0.4113 ~0.,3515
-1

EN (gN) ={ 0.4113 1,2402 0.3411
=0,3515 0.3411 1.7348

According to egn. (32), the test statistic is

(%) @

3 * -
L= 3o (v o ts®-u

k=1
= 21.6334
Since L is asymptotically distributed as a chi-square random variable with six
degrees of freedom, the associated P-value is
P = 0.001
Therefore, the null hypothesis HO, eqn. (43), is rejected, and we conclude that
there exists a significant difference in dispersion between the mixing times
of 2, 10 and 30 minutes. The P-value basgsed on small and large sized particles
and that based on wmedium and large sized particles are 0.001 and 0.006
respectively.

In the second experiment, we test the effect of rotating speeds (20, 30
and 45 r.p.m.) on dispersion for a fixed mixing time of 10 minutes (Experimental
runs 2, 4,and 5). The P-values corresponding to test statistics for pairs (small
,medium), (small, large) and {(medium, large) are 0.720, 0.360 and 0,753 respec-
tively. Because, the P-values are quite large, we conclude that the
difference in dispersion among rotating speeds of 20, 30 and 45 r.p.m. is not

significant,



3. Test of the Completely Mixed State
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In solids mixing, the completely random (or mixed) state is characterized

by the property that the probability of selecting a particle of a given comw~

ponent from anywhere in the mixture 1s identical. When the population proportilons

are known for the components of a mixture, the chi-square goodness-of-fit test

can be used to test the hypothesis that the mixture is in the completely mixed

state. In other words, we test

"

against the alternative

Hy

0

+ H. is not true

: the mixture is in the completely mixed state (44)

The data generated in run 6 of the experiments is shown below.

spot color distribution* total number  expected number of
sample Green Red White of particles particles for each color
1 47 34 22 103 34.33
2 35 28 31 98 32.6
3 26 16 42 84 28
A 24 10 50 84 28
5 38 42 17 97 32,33
6 33 39 35 107 §5.517
7 35 47 9 91 30.33
8 3l 26 54 111 37
9 32 39 3k 102 34
10 36 20 27 83 27.67
11 33 76 11 120 40
12 40 43 37 120 40

* The ratio is 1

+ 1

1 for categories Green :

Red

: White, respectively.
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From eqn. (35), the test statistic is computed as

2
3 12 f..-e. )
Q=1 = X
i=1 j=1 1
47 - 36.33)2 (34 - 34.33)° (22 - 34.33)2 (40 - 40)°
« 1 = 3%, - Sl + = B30 & i 2l
3%.33 3,33 .33 40
43 - 40)24 (37 = 40)2
) 70
= 162.68

Under the null hypothesis, eqn. (44), Q is asymptotically distributed as the
chi-square random variable with 24 degrees of freedom. Since

P << 0,001,

the null hypothesis is rejected (at the usual levels); we conclude that mixture
has not reached the completely mixed state. The following table summarizes the

results of tests of completely mixed state for experimental runs. 6 through 9:

experimental mixing rotating expected Test associated inference
time  speed statistic probability about H.,
run (min) (r.p.m.,) distribution Q P eqn. (42)
. 1 1 1 ;
6 30 30 TTF3 162.28 <<0,001 rejected
7 30 45 2k, L 56,25  <0.001 rejected
7 g "3 " 3
8 60 45 iz 43.43 0.009  rejected
- i 1 1 ;
9 150 45 34343 13.20 0.963 accepted

4, Test of a Quality Standard

In quality control involving multicomponent solids mixing, we may be concerned
with the fraction of a population which meets a quality criterion. The binomial
test can be used to solve this multicompcnent solids mixihg problem. Again let
xij denote the weight fraction of the i-th component in the j«th sample and P

the population weight fraction of i-th component. We may set the criterion as
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wH ’
151 Ay (x-ij - uyy) 2 s (45)
where
ii = arbitrary positive constant which might reflect the relative
importance of the i-th component being mixed.
and

€ = pre-selected positive real number.

We say that a spot sample is satisfactory, if it satisfies this eriterion,
otherwise, it is unsatisfactory.

Assume that three ccmponents are equally important, Hence, let
= Ay =Ag ™
We wish to test that the satisfactory proportion of 2 mixture has reached
957 for a pre-selected value of 0,015 for €. In the following examples) we test
the null hypothesis

Hy ¢ 8 > .95 (46)

against the alternative hypothesis

H : 3 < .95

The calculation for run 7 of the experimeants is shown in Table 5. The results
are

S =7, 8§=5, =n=12

The guide indicates that the appropriate P-value is leftetail probability

for S, = 7 with a parameter of .95, which from a binomial table is

»

B = ,0002

Since this Pwvalue is so small, we conclude that the data reject H, in favor

0



Table 5., The calculation for experimental run 7 for testing the quality

standard as defined in eqn. (45)

spot'  3 2** is it
sample 5 ij ®a3 iil( xj - “10) satisfactory?
1 0.3333 0.2564 0.4103 0,0018 yes
2 0.3537 0.4146 0.2317 0.0174 ne
3 0.2941 0.3765 0.329 0,0034 ves
4 0.3196 0.2474 0.4330 0.0175 no
5 0.3113 0.4811 0.2075 0.0382 no
6 0.2857 0.3286 0.3587 0.0050 yes
7 0.2785 0.2405 0.4810 0.0334 no
8 0.3678 0.3908 0.2414 0.0129 yes
9 0,3229 0.2917 0.3854 0.0046 yes
10 0.3182 0.3636 0.3182 0.0014 yes
11 0.3367 0.5000 0.1633 0.0567 no
12 0.3636 0,2987 0.3377 0.0021 yes
** = 0.3333

H1g = Hp T H3g
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of H . Hence, we conclude that mixing is not adequate. The results of runs 6

through 9 are summarized in the following table.

experimental s S 0 p Inference concerning
run + - Hy, eqn. (46).
6 5 7 12 0.0000 rejected
7 5 12 0.0002 rejected
8 10 2 12 0.1184 accepted
9 12 0 1z 1.0000 accepted

Note that this test may also be used in the analysis of a continuous mixing

process.
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VI, CONCLUSIONS

Statistical analysis is recognized as a major tool in solids mixing
investigations. Traditionally, results of sampling have been analyzed using
normal theory statistical techniques [10, 12].

This study proposes the applicability of several nonparametric statistical
techniques to problems in multicomponent solids mixing. The most important
feature of a nonparametric procedure 1s its lack of dependence on a particular
distribution type, e.g., normal. Since the distributions of components
during mixing are usually unknown, nonparametric provedures comprise a sube
stantial collection of alternatives to the classical parametric procedures,

Recently, the extension of nonparametric techniques from the univariate
to the multivariate case has been pursued in [8]. The present study demonstrate
the applicability of multivariate tests of location and dispersion to test the
hypotheses concerning a sampling technique and the significance of treatment
effects in multicomponent sﬁlids mixing problems.

The proposed nonparametric procedures were tested with actual homogeneous
and heterogeneous ternary mixtures generated by a drum mixer.. In spite of the
small number (n = 12) of the sample obtained, the results tend to support the
practical significance of nonparametric statistics in the evaluation of mixing
systems,

Besides the robustness of the nonparametric methods against the assump-
tion of a specified distributional form, it is important to note their sim=
plicity in application, An effort will be made in the future to study the

performance of the proposed nonparametric methods for larger sample sizes.



NOTATIONS

C, eritical value at the significance ievel a

Cij sign indicator of Yij

E(X) expected value of random variable X

EN score matrix as defined in eqn. (24)

En score matrix as defined in eqn. (8)

E(i) mean score of the i-th variate

eij expected number of particles of the i-th component in the j«th
sample

F(x) cumulative distribution function (¢.d.f.)of X

fij number of particles of the i-th component in the j-th sample

HO null hypothesis

Ha two-sided alternative

H+ one-sided alternative with positive direction

H_ one~sided alternative with negative directionw

L test statistic for testing homogeneity of dispersion matrices

m number of variates

N total number of spot samples for t treatments

n number of spot samples

n, number of samples of treatment k

P assoclated probability

Q test statistic for goodness of fit test

BN {m x N) rank matrix as defined in equn. (22)

Bn (m x n) rank matrix as defined in egqn. (7)

Rij rank of Yij among ( Yil s evey Yin )

R set of all order m-tuples (xl Ky v xm)

R§§) rank of XE?) among (Xit), ceesy Xizi) for k=1, 2, y E

1) number of unsatifactory samples
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number of unsatigfactory samples

test statistic for testing equality of mean vectors
univariate rank order statistic as defined 1n eqn. (9)
row vector as defined in eqn. (10)

number of treatments

row vector as defined in eqn. (29)

row vector as defined in eqn. (30)

as defined in eqn. (25)

as defined in eqn. (26)

as defined in eqn. (13)

as defined 1in eqn. (12)

as defined in eqn. (31)

number of unspecified parameters estimated from data

row vector = [Xij ij v w ij]’ i=1,2, ..., n
row vector = [X§§) Xgﬁ) . X;§)], 4 @ 1o B wews B
row vector = [Xig) Xgi). i Xég)], ji=1, 2, ..., n

a random variable representing the weight fraction of the i-th
component in the j-th sample for the k-th treatment

realization of_gj
*Xg Mo

(m x n) random matrix

(m x N) pooled random matrix

standardized variable as defined in eqn. (39)
standardized variable as defined in eqn. (40)

a parameter representing the probability of satisfaction

location vector parameter



weight proportion of the i-th component in the populaticon
degrees of freedom as defined in eqmn. (33)
chi-square distribution

dispersion matrix of treatment k

42
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APPENDIX A, On the Use of P-values in Hypothesis Testing
The traditional method of testing a& hypothesis is the determination of

a rejection region and a corresponding rejection rule for which the probability
of making a Type I error does not exceed some preselected value called the
level of the test, In many cases, the choice of the level of the test is
arbltrary and in some testing situwations the chosen level may not even be
attainable. These problems are circumvented by the reporting of P-values.

The P-value is defined as the probability under the null hypothesis of &
sample outcome equal to or more extreme than that observed. The reporting of
P-values clearly contains more information than merely reporting the decision
made on a hypothesis at a possibly arbitrary level.

The use of P-value is clear for those tests in which the outcomes can be
ordered according to how extreme they are relative to the expected outcome
under the null hypothesis. In those unambiguous cases the P-value is the
probability associated with a corresponding right or left tail probability.

In the more complex situations where '"more extreme' is an ambiguous relation,

conventions must be defined for the reporting of P-values.
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APPENDIX B List of a Computer Program for Calculating the Test Statistic L

A computer program for calcuting the test statistic L in eqn. (32) is
developed and listed in the following pages. The input data are the elements
of the rank matrix, eqn. (22). The symbols used in this program are listed as
below.

M : m; number of variates

NT : T; number of treatments

N(K) : n, ; number of spot samples for treatment k.

(1)
E(X,1,J) : ER(R); general score of the.i-th component in the j~th spot

sa;;le for treatment k.
NTT ; N; total number of observatioms.
S(K,I,J) : UEF) as defined in eqn. (25).
SS(I,J) : U# as defined in eqn. (26).
G(1) = ﬁ(i) as defined in eqn. (27).

V(LJLILJ) 2 Vs 3159 as defined in eqn. (28)

L : L; test statistic as defined in eqn. (32)
Note that two subroutines are used. Subroutine MINV is used to obtain the
inverse matrix of a non~singular matrix. Subroutine GMPRD is used to get
the product of two general matrices. The result of calculation of the testc
statistic for comparison among the first three runs is also shown in page

56.
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ABSTRACT

This study demonstrates the applicablity of nonparametric procedures to
the analysis of mixing processes. In particular, multivariate nouparametric
methods are used to evaluate the properties of a multicomponent solids mixture.
Specific problems considered are:

(1) test of sampling techniques,

(2) a test of treatment effects,

(3) a test of the completely mixed state, and

(4) a test of a quality standard.

The usefulness of the proposed nonparametric techniques is amply demon-
strated with both homogeneous and heterogeneous mixtures generated by a drum
mixer. The techniques presented in this paper are also applicable to any

other mixers.



