
AN ANALYSIS OF SPRING-BEAMS HAVING
LARGE DEFLECTIONS

by

CHENG CHING CHI
B. S. , National Taiwan University, China, 1962

A MASTER'S THESIS

submitted in partial fulfillment of the

reqmrements for the degree

MASTER OF SCIENCE

Department of Applied Mechanics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1965

Approved by:

Major Professor



2bUf
T'/

CS3
c :^

D0CUirA<i^^
T^^^^ O^ CONTENTS

NOTATION

INTRODUCTION 1

DERIVATION OF EQUATIONS 3

Loading Condition Given, Shear Effects Neglected
(Basic Problem I) 3

Loading Condition Given, Shear Effects Considered
(Basic Problem I

)

14

Deflection Curve Given, Shear Effect Considered
(Basic Problem II

)

22

PROPERTIES OF THE ELEMENTAL LINKS IN TERMS OF
THE PROBERTIES OF GIVEN COIL SPRINGS 27

STRESS ANALYSIS 41

Critical Section 43

Critical Point 46

NUMERICAL EXAMPLE 49

CONCLUSIONS 67

ACKNOWLEDGMENT 68

REFERENCES 69

APPENDICES 70

APPENDIX I: Derivation of Unit Vectors along Tangent,
Normal and Binormal Directions at any
Point on the Spiral Curve 71

APPENDIX II: Evaluation of Some Definite Integrals 73

APPENDIX III: Program for Solving Simultaneous
Equations in Basic Problem II 75

APPENDIX IV: Program for Stress Analysis 79



1

iii

NOTATION

t^n^n' co-ordinates of pin n

i
n

original undeformed length of link n

n
final deformed length of link n 1

n
tensile force of link n acting on pin n

T
n

tensile force of link n+ 1 acting on pin n

T
n

moment on pin n caused by link n, and by link n+ 1 i

Pn shearing force at right of pin n

Qn shearing force at left of pin n

Of the acute angle between x asis and link n+ 1,
*

n
clockwise as positive

^n the acute angle between x axis and link n,
n

clockwise as positive

7
n

shear angle caused by Q

*n
shear angle caused by P

4- a function notation 1

a pitch angle

t a parameter in equations describing a spiral curve |

a radius of a spiral curve

i.j.k unit vectors along x, y, z directions, respectively

T, N,B unit vectors along the tangent, the normal and
the binormal directions, respectively

M a moment vector

M ,M ,M
X y z

components of M along x, y, and z directions,
respectively

M^. M^, M^ components of M along T, N, and B directions.
respectively



IV

9 angular displacement about y axis

F a force vector

F^. F^. F^ components of F along T, N, and B directions,
respectively

P radius of curvature

B equivalent bending rigidity for a spring

^n^jj.
»
n^

. "^2 nioments about X, y, and z directions, respectively,
caused by a unit load

n niomber of coils in a spring

X, Y, Z forces along x, y, and z directions, respectively

^3n+ 1
spring constant of tension of link n+ 1 without

' deformation n=0, 1, 2

^3n+2 spring constant of bending of link n+ 1 without
* deformation n=0, 1, 2

^3n+3 spring constant of shear of link n+ 1 without
* deformation n=0, 1,2

k^
2

spring constant of tension of link n as deformed

k'^
2

spring constant of moment of pin n as deformed
with same length for adjacent spring elements

k^
2

spring constant of mioment of pin n as deformed
with different length for adjacent spring elements

k^
3

spring constant of shear of link n as deformed

Or^ normal stress along the T direction

T
^Y)

shear stress perpendicular to the T direction
caused by F,

' b

'^tn
shear stress perpendicular to the T direction
caused by F

n

'''t
shear stress perpendicular to the T direction
caused by M

total shear stress



INTRODUCTION

The problem considered in this thesis is the determination of

the loads carried by laterally loaded coil springs undergoing large

deflections, and the stresses caused by these loads.

Three important features of the problem which are taken into

account are its inherent nonlinearity, the extensibility of the spring,

and its varying rigidity under load.

Since the springs considered are quite flexible, the resulting

deflections are almost certain to be large, and the linear deflection

theory inapplicable. These large deflections cause considerable

nonuniform extensions of the springs. Since the pitch of a given

spring varies from point to point under load, and the bending stiff-

ness varies with the pitch, the deformed spring is equivalent in bend-

ing to a bar having variable rigidity.

Because, in general, the loads are distributed along the spring

in an arbitrary m.anner, there is no simple rxile in accordance with

which the pitch varies. Thus, a solution based only on the differ-

ential equation for the deflected axis of the spring is not possible.

To overcom.e this difficulty, an approximate method has been

developed. The coil spring is approximated by n link-like elastic

elements pinned together with angxilar springs at the hinges. Con-

centrated loads are assumed to act on the hinges. To make the method



more general, each element may be assumed to have different

physical properties. With the assumptions that each element takes

tension and shear only, while the connecting angular springs take

moments only, the tensile bending and shear deformations of the

spring are taken into account.

From the load-deflection relationships, equilibrium, conditions,

and geometrical relationships, a set of simultaneous algebraic equa-

tions are derived which relate external forces to the deformations

they cause, or vice- versa. In the derivation, certain elastic constants

occur. The relationship between these constants and the physical

dimensions and material properties of given coil springs is examined.

Then the solution is reduced to the solution of a set of simultaneous-

nonlinear algebraic equations. The stress analysis follows in a

complicated but routine fashion once the unknown external forces

or deflections are known.

Two basic problems are discussed in this thesis:

1. Given a set of loads, determine the deflection curve

and maximum stresses which result; and

2. Given a deflection curve, determine the set of loads

required to deform the spring into the given curve and the maximum

stresses which result.

Although the basic sets of simultaneous nonlinear algebraic

equations and methods for solution are given for both of thes problems,

a n\imerical example is given for the second problem only. The example



has been worked out with the help of a computer. Small pitch angles

and symmetrical loading conditions are assumed, and three elements

have been used to approximate the half coil spring. This is done

only to shorten the computing time not because of any restriction on

the theory. Comparison of theoretical and experimental loads

calculated and found for given coil springs indicates excellent agree-

ment between theory and experiment.

DERIVATION OF EQUATIONS

Loading Condition Given, Shear Effects Neglected
(Basic Problem 1 )

The equations are derived first without consideration of shear

effects, and later with it.

First, the deflected spring is approximated by a finite number

of link- like elements having angular springs at the hinges as shown

in Fig. la. A typical element appears as shown in Fig. lb. The

element can stretch, as shown in the upper figure, or stretch with

shear as shown in the lower figure.

Load-Deflection Relationships. From the load- deflection

relationships, the following equations are obtained:

Tension: The length of link n, in terms of the coordinates

of its ends, is V (| - ^ i
)^ + (^ - "H J^ . Its original un-

n n-

1

^ n n-

1

°

deformed length is i
n



{

TTi3%nn' n

(a) Deflection curve

N
X

'/[Humimmm

(b)
Spring element before deformation

Spring element after deformation

Fig. 1. Approximate deflection curve.



Assuming linearity, the tension in link n is

0„-^,l(^'^n-^„-l''^(%-%-l''-'n'. t"

where k , is the appropriate spring constant,
nl

Similarly, the tension in link n+ 1 is

Bending : From Fig. Ic it is obvious that the angle

change at joint n is

' n+ 1 ' n ^ ^ - 1 / n
r- ) - tan ( —^ —

n+1 ^n ^n ^n-1
{a^ -

/3J
= tan- 1 (

^""^^
. ^ ) - tan ^

( _|__^ )

.

(3)

Hence, the moment at joint n is

T = k ,(a - /3 ), (4)
n n,2 ^ n n

n = 1, 2, 3, N-2, N-1.

Similarly,

Tn+l = ^n+l,2^-n+l-^n+l^' ^'^

and

where

•n-l
= Vl.2^%-l-'3n.i)> (6)

a = tan" ^(-H^^i^^ J^) , n= 1, 2 . . . . . N- 1, N, (7)
^ ^n+1 ' ^n

/3^ = tan ^
( ^

^
_ ^

^- M , 11 = 1. 2. .... N- 1. N. (8)

n n-1



Equilibrium Conditions. From the equilibrium conditions,

the following equations can be obtained

:

Consider pin n as a freebody, as shown in Fig. 2a.
Summation of vertical forces gives

-F - (S) sin 3 + T sin a + Q cos S + P cos a = 0, (9)n "^n n n n n n n n ^

and horizontal forces,

T cos a - C\ cos i3 - Q sin a - P sin a = 0. (lO)n n '^ n "^n n n n n ^ '

Consider link n+ 1 as a free body, as shown in

Fig. 2b. Sumnaation of moments about the right-hand end

yields

or
T - T ^,

==„= " ""' . (Ha)

Similarly, with link n as a free body, as shown

in Fig. 2c,

T

or

,-l + Q„'J (5„-5n-l''+'%-%-,)'-T„=°. M
T - T ,

o _ n n-

1

/ ^ \

^(^n-^n-l) +^^n-^n-l)

Boundary Conditions. From the boundary conditions,

the following equations are known:

^o=^o=^N=°' (13)

^N=^' (14)



(a) Joint N as a free body

(5A'

^K.v\J

(b) Link n+ 1 as a free body

A
n-1 n

(I r) )
^ n n

n-1
Q
n

(c) Link n as a free body

Fig. 2. Free body diagrams, shear deformation
neglected (Basic Problem I),



and

T^=Ci, (15)

Tj^= Cz, (16)

where Cj and C2 are either zero or constants.

Rearrangement of these equations yields the following;

-Fj -Qi sin ^1 + Ti sin a 1 + Qj cos jSj + Pj cos 0-1=0, ( 17)

Tj cos Q- 1 -Qi cos /3i
- Qi sin jSj - Pi sin 0-1=0, (l8)

Ti - T2
Pi = , . (19)

n/ ( ez - ^3)^ + (Tl2 - ^1)

Ti - T
Qi =

,

°
, (20)

T
1 = ^^^^{^1 - /3i), (21)

-F -Q sin /3 + T sin a + Q cos S + P cos a = 0, (22)n ^n "^n n n n '^n n n ^ '

r cos a -Q cos iS - Q sin S - P sin o- = 0, (23)n n ^n "^n n '^n n n ' ^ '

T - T ^ "

P = " ""^
. (24)

^^+l-^j'-^^%+l-^J^

T - T ,



T = k ,(a - 8 ), (26)
n n, Z n n

-^N-1 -^N-l ^^^'^N-l-^ Vl ^^^'^N-l^ C^_^ cos ^_^

+ P^_^ coscVj^_^= 0, (27)

(28)

T - T
p - N- 1 'n

(29)

^(^N-^N-l)'^^%-^N-l^^

T - T
^

^N-1 N-2
(30)

'^(^N-l-^N-2^' + (^N-l-^N-2^^

and

(31)

where T and T,, are defined by Eqs. ( 15) and ( 1 6) , respectively;
o jN

and B . T. Q" > and i3 are defined by Eqs. ( l) , (2), (7),
^^ n n n n

and (8), respectively.

After substitution of a and /3 into Eqs. (l7) through
n n

(3l), there will be 2N-2 equations for 2N-2 unknowns, which

are the | 's and "n 's.
n n

For symmetrical load distributions it is sufficient to consider

half of the spring as shown in Fig. (3a).
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In these cases, the equilibrium equations will be identical to those

for unsymmetrical loads, pin by pin, except those for pin N,

which require modifications because of altered boundary conditions.

Because of symmetry, it is obvious that

and

^N+l= - ^-1= ^^+2= -^N-2' ^^^^

where all angles are taken to be positive if measured clock-

wise. (See Fig. (3b).)

Thus

T =N = V2^"n-^^--^V2'^N-1' ^'^^

^N+1 " ^+1,2^''n+1 " %+l^ " " ^-l, 2^''n-2"''N-P

= ^-l,2^-N-l-^-l^ = Vl^ (35)

and

Since r[ is unknown, an additional equation is required.

With pin N, taken as a free body, the following equations

are obtained:

. : _; (37)

P. =
"^""^^^

, (38)N
'^^Wl- ^N )'+(%+!-% )^

and
T - T

C^= ^ ^-1
. (39)

"^'^N-Vl'^^'V-lN-l'^
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Equations ( 17) through (3l), together with (32) through

(39), form the basic nonlinear algebraic set of equations which

describe the symmetric case of basic problem 1.

These equations essentially give the external vertical and

horizontal loads which are required to hold the pins joining the

links in given positions as functions of the coordinates of the posi-

tions. They have the form

Fi = Fi(e. , Ti.)

Hi = Hi(e. , Ti.)

(2N-l) equations

i= 1,2,... , N

^N-1 = ^N-l^^i'^i) '

where the F's and the H's represent the given external vertical

and horizontal forces.

In the case of basic problem 1, the forces are given, and this

basic set must be solved for the unknown coordinates. Although an

exact solution of this set seems impossible, an approximxate solution

can be obtained by the summation of infinitesimal deformations found

through the use of a Taylor's series expansion in which the higher

order terms are neglected.
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In partitioned matrix form, for an expansion about

the truncated series is

IH-J

ar.

I HJ aH.

Frona this, the algorithm
ar. ar.

fAe.)

A,.

J

1 1

1
'

a.^

\!^
an.

dF.
i_

an

.

J

an.

dr\

for computing changes in coordinates for given changes in external

loads can be constructed easily.

Now, if the deflection of the laterally loaded coil spring is

fF ]desired for a given loading J
^ , it can be found by constructing

^^
fF?a monotone increasing sequence of loads < > such that

l- -^ n

and computing

1.1J -f Uel
1 ni ;Z

c^-j

l-fv-f - }-rA is small, and lim i-^A = -l--?
^ ^Jn+l I ^J n n-^oo [ ^Jn I

H

n
n=:l

dF. ' aF.

aH. ' an.

'f] JfI
H- f"

'

Jn+1 ••

1

").J
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Loading Condition Given.Shear Effects Considered

(Basic Problem 1 )

In this case, a symmetric loading is assumed.

From Fig. 4 it is obvious that

, -1 illLlln^)a = tan ( -r e— ; j

^n+l"^n

and

^ . tan- 1 (—#- ^ -
n b

^ )

n n-1

In Fig. 4, ABC . . . represents the deflection curve

due to bending only. Let the shear effect of the first element

take place. Then the edge LN shifts with respect to JP

to KQ and the second element translates without any rotation

to the position as shown by dotted lines in Fig. 4. At this

stage, the deflection curve is ADM .... Now, in turn, let

the shear effect of the second element, the third, and so forth

take place, so as to obtain the final deflection curve ADE . . .

The total change in angle is tt - -<iADE = /3 - or

.

The angle change for bending alone is -^ ABC.

AB
t [ CD and BC

] [
DF by construction.

In the actual pin connected link structure the chords

AH, 3l, and so on, are infinitesimal. Therefore, AD
[ j

JK

and DE
i

[ RS, from which ^LJK = Z.ADG = 7^ , and

^FDE =-ilMRS = 9

(40)

(41)

(42)

n
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The change in angle for bending is

TT- /ABC = TT- Z.GDF =Tr-rTr-(/3-c5')+7-<1) l=/3 -Qr+4>-7.
'^ nn n n^ n nn n

(43)

Load Deflection Relationships . The load-deflection

relationships are:

Tension: The length of the link n after deformation is

nMI -^ ,
)^ + (ri ^"ri T)^ , and its original length i . The

^ n n-

1

n n-

1

° * n

tensile forces in link n and n+ 1 are, respectively

0= k , ( J( e - I J2+(ti - ti J^, ^ ) (44)
n n, 1 ^ ^ n n-

1

n n- 1' n ' ^ '

and

/T = k ., f 'V (e ^T
- e )'t(ti ^ - Ti )2_i ). (45)

n ni- 1 , 1 ^ n+

1

n' ^ n+

1

n n+

1

Shearing: The shear angles due to Q and P are

7 and 6 , respectively. Thus
n 'n ^ '

(46)

(46a)

P = k _^. ,4) ,: (47)
n n+1, 3 ^n '

Qn
= k , 7

n, J n
or

7 =
n

°n

and

or
Pn

^n k , , ^
*

n+ 1 , i

Bending: The change in angle at joint n is

(^ -a +4,. - 7 )
n n ^ n n

(47a)

<" > -,• >
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Hence, the moment at joint n is

P Q
n n, Z '"^n n k

, , , k ^ ' ^^°l
n+ 1 , 3 n, 3

Similarly,

^n+l «„+l

n+2, 3 n+1, 3

and

Vl=^-l,z(P„.l-%.l+^ -^Szi^).
(50)

n, 3 n-1, 3

Equilibrium Conditions: Fromi Fig. 4

ZJAH = /3 - 7 ,

n n

and -V ;.

iN ^n

Thus, the forces Q and P are at anglesn n °

2 ^ ^n "
'^n ^ ^"^^ T" " ^^n "

"^n ^ ^^^^ ^^^ horizontal.

Consider joint n as a free body, as shown in Fig. 5a.

Equilibrium requires that

-F^ + ©^ sini3^ - r^ sin^^f P^ sinf^ -{a^ - 'I'j] + Q^sin
(-J -(/3^-7^)}

or .

=0'

-F^+ G^ sin /3^ - T^ sin c.^ + P^ cos (c^- Q^) + Q^cos (^^- ^^ ) = 0,

and (51)

-e^cos/3^+ r^cosc.^+P^sin(«^- ^^) + Q^ sin (/3^ - 7^ ) = (52)

Consider link (n+l) as a free body, as shown in Fig. 5b.
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2 ^ n n '

2 " n n n

(a) Joint N as a free body

(^n^J

(b) Link n+1 as a free body

'«n-l'Vl'

n-1

(c) Link n as a free body

Fig. 5. Free body diagrams, shear defornnation considered
(Basic Problem I).
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Equilibrium requires

n-^n-^^^n+l-^J'+^^+l-^n)' ^°^ '^n
T ,

=
n+1

or

n n+1
n

''n+1 n ' ^ ' n+ 1 ' n '

'^n

Similarly, consider link (n-1 ) as a free body as shown

in Fig. 5c.

Then

Q
T - T ,

n n-1
n

Boundary Conditions: From the boundary conditions, the

following equations are known:

and

-o=^n=°'

^N=^'

To = Ci .

where Cj is either zero or a constant.

Because of symmetry:

'^N'' ' ^N^" " ^N-1 " ^N+1 '

and

'^N+l ~ ' ^N-1 ^N+2

T = (ft)

a
N-2'

(Angles are positive when measured clockwise.)

Thus,

N QN
^N^ ^N,2^"N "N kN_i^3 x.j^^3 ^ - ^N, 2^ ^ '^ N- 1

' k
N Q

(53)

(53a)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

N

N, 3 "^N, 3

(61)
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Substitution and rearrangement of equations yields the following

set of equations:

Pi Qi
<\> = - Fi + ©1 sin ^1 - Ti sin aj + Pj cos {a ^ - r )+ QiCos(,3i-r )

2.3 ^1,3

(62)

^ Pi Qi
4^2 1= -©1 ^°si3i + TiCosai+ Pj sin(ai -C )+ Qi sin(^i- v^— ) = 0.

^2,3 ^1,3

Q
^^^^

T - T

^4-1 = ^' = (65)

^°^(f^) J^^^- ei)^+(^z-^i)'
2, 3 ^

T - C

^5_l=Qi / ' - = Q (66)

COS^)^y ei^ + Tl,^

^1,3

\-n- - ^n-^^n ^^^^n "
"^n
^^ %^ ^n ^°^(%-k-^ ^"^ ^n ^^^^^n" k"

^

n+ 1, 3 n, 3

= ° (67)

P Q
^2-n= -Qn^°^^n+'^n<^°^^n+Pn^i"('^n-k^^ ^ + V^^^VX^ ^

n+1, 3 n, 3

= » (68)

n+ 1 , 3 n, 3
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^ 4-n. n.

T - T , .

n n+1 =

7(^n.l-^n'^^('^n.l-%'^=-'Trf^3'

4j. = Q -
^ 5-n n

T - T ,

n n-

1

Q

(70)

(71)

n, 3

^4-(N-l) - ^N-1

T - T
N-1 N

(72)

N-1
'"^(T^r'-^f^N-^N-l'^+t'lN-lN-l'^

^N, 3

^5-(N-l) - ^N-1

T - T
N-1 N-2

^^N-l-^N-2'^+('lN-l-lN-2)^-= ilC^, '

N-1, 3

n-N= -^N-^^®N^^"^N-l-^^N^°^(^N-l+k^)

(73)

QN
+ Qj^^o^(^N-l--k^^ = (74)

. ^N \ / N ^

^2-N= -^N^^^^^N-l + k^3) + QN.^^"^^N-l "1^ ^
(75)

Oj

3-N = Tn- V2['"N-1-^
P - QN ^N >

V3 ^

=

'^4-N ^N
(^N-^N-i)

cos(-^ )^(e^-^^_^)^ + (n

X3 'N 'N-1 V

^5-N = ^N-^=°

(76)

(77)

(78)
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In these equations © and t are defined by Eqs. (44) and (45),

and the first subscript of the function notation ^ indicates the

number of the equation, while the second subscript indicates the

number of the point. This set contains 5-N equations with 5N

variables. It cannot be reduced to a system containing 2N by

direct substitution as w^as done in the case where shear effects

are neglected, as shown on pages Sand 9, because the P's and Q's

appear also in the arguments of trigonometric functions. The terms
P. Q.

r and -r-— describe shear effects, and therefore are generally
^ifl,3 1,3
small. If they are taken to be zero, the number of equations can

be reduced to 2N, with ^ . 's and ri.' s as variables, and can be11
treated in the manner as described on pages 8 and 9. This treat-

ment will not eliminate the shear effect completely, because the shear

1 P. , Q.angles i and i still appear m 4" , . .

^i+1,3 \3

Deflection Curve Given, Shear Effect Considered
(Basic Problem II)

In this case, a symmetric deflection curve is assumed, and

N points (not including the origin) are chosen arbitrarily along the

first half of the curve (See Fig. 3a). These points should correspond

to end points of the elements. In general, both horizontal and vertical

external forces H and F will be required at the pins joining the

links, since the coordinates of these pins will not be known, even if

a deflection curve is specified. The equations are derived in a manner

similar to that used for basic problem I.
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Load-Deflection Relationships . The equations are the same

as those given on pages 16 and 17 for basic problem I.

Equilibrium Conditions. Consider pin n as a free body,

as shown in Fig. 6a. Then summation of forces in the vertical

direction gives

-F +0 sini3^-T sina +Q sinf^-t/S -7 )] - P sinf^-(ff -^ )]n ^n '^n n n n < Z n n > n '^Z ^ n n. J

=

or

-F + sin /3 - T sino- + Q cos(S - 7 ) - P cos ia -6 ) =
n. n n n n n ^"^n n n ^ n ^n

. :
.

(79)

Summation in the horizontal direction gives

-H -e„ cos8 + T cos a^+ Q cos f-^ -(3 - 7 )1 - P cosR-^ -{a - <^)]nn nn nn *s2 ^ n n -> n K Z ^ n nJ

or

.H^-e^cos0^+ T^cosa^ -P^sin(«^- QJ + Q^sin^^- 7^) = 0.

, -( (80)

Consider pin (n+l) as a free body, as shown in Fig. 6b.

Then

^n^Pn^«n.l-^n'^^(%+l-1„)' cos *^ - T_^^ ^ =

or ,
^ /"

f ,

• V : -
.

' T ^, - t'
p _ n+l n

"''fc'
"^t^.+ l-«n''*(%+l-%'^- (8>^)
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2 ^n n

'

(a) Joint n as a free body

n

(«„'V

'>n+r'ln+l>

(b) Link n+ 1 as a free body

"n-1

(«n-l'2

(^n-%'

s
n.

(c) Link n as a free body \

Fig. 6. Free body diagrams, shear deformation considered
(Basic Problem II).
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Consider pin n as a free body, as shown in Fig. 6c.

Then
T - T ,

n, J

Boundary Condition. These are

lo=^o=°' (83)

^N=^' (84)

'^N^ -^N= "'^N-r^N+l • (85)

''n+I = - Vl = Vz = - '^N-Z ' (86)

^N=0N' (87)

and

^0=^0.2^^0-%)' (88)

where /3^ is either equal to a or is a constant.

Substitution and rearrangement of these equations yields

the follow^ing set:

Qi Pi
^1-1 = - ^1 +01 sin/3i - Ti sinc^i + QiCos(/3i-=- )- Picos(ai-, )

= (89)

Qi

^2-r " ^1 -Bicos^i+T, cos^i + Qisin(/3i-.j- ) - Pisin(c^i-^
)

= ° (90)

^3-i = T-\2(^--i-^krr -^J-' (91)
^, J 1, J

^-1=^1- ""^"
^^ =0 (92)

os(|l )^ (ez- i,y + {^z-r^,yc„.
^2, 3
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Tz - Ti

4^
5-1 ^ Ui ./ £ 2 , ^ 2cos^^ ^/T? + ^l'

= (93)

1.3

4^ , = - F +0 sinS - T sina + Q cos(/3 - -^ ) - P cos(a -—,—-=
)1-n n n n n n n * n k -, n * n k

, , ,n, 3 n+ 1, 3

= (94)

^ = - H -0 cos^ + T cosQ' + Q sin(/3 - -r^ ) - P sin(Q' - rr-^ )

c-n nn nn n. n riK-, n riK,,-,
n, 3 n+ 1, 3

=

4^^ ^= T - k^ ,(8 - a„ +
n

3-n n n, 2 n n k
, , - k _

n+ 1 , 3 n, 3

^ )

(95)

(96)

^4-n n.

T
, ,

- T
n+1 n

^°^^Xfr3^ ^^K^l-K^'^^^n^l-^J'

(97)

3-n n

T - T ,

n n-

1

Q

^k - ' ^ n n- 1 ' ^ ' n n- 1'

n, 3

(98)

'*'4-(N-1) ~ ^N-1 "
" P

T - TN N-1

n, 3

=

4'5-(N-l) = ^N-1

(99)

=

(100)

T - T
N-1 N-2

QN

N, 3

=

N,3

(101)
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n.N= 0, - u/"
""-^

(104)

(1^3) ^(^N-^N-l)^^(^N-^N.l)^

^5.N= ^N- ^= 0- (105)

In the preceding equations,

a +"1/ n-1 n\
^n= ^^

( e - ^ .
)•

n n-1

PROPERTIES OF THE ELEMENTAL LINKS IN TERMS
OF THE PROPERTIES OF GIVEN COIL SPRINGS

In the equations which were derived for Basic Problems I and II

in the previous sections, certain elastic constants occur.

The relationships between these constants and the physical dimen

sions and material properties of given coil springs is examined. The

helical spring as shown in Fig. 7a, can be described by the space curve

j'wi "a v.*m.it
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z

M ^—
I^y ^^

JV

><

S^ ,

/ .. „

J

\

i

A-^
. ' .

"^ *

Fig. 7 (a). A helical spring subjected to pure bending moment.
i

a

A 2

-1 ^"'M .\// i

\2

A

/ ^

©1 /

Fig. 7(b) Same i•igidity, same length in adjacent elements
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X = a cos t

(106)
y = a smt *

z = at tan a

,

where a is the radius of the spring, t is a parameter, and a

is the pitch angle.

The unit vectors of the curve along the tangent, the normal,

and the binomal directions are, respectively.

A /v >*>

^ -sin t i + cos t j + tan a k ^107)
sec a

N ='-(cost1 + sintl), (108)

and

B = 1 ( sin ff sin t ) - 3 sin c^ cos t + k cos or

,

(109)

respectively. (See Appendix l)

Constants for Pure Bending . The angular displacement

about the y axis caused by the bending moment My, as shown

in Fig. 7a, is 9 y .

_ A
Since M = M =0, and M = M j ,

X z y

M = M • T = M cos t cos a,
•* y

M = M- N = - M sin t ,

n y

and
M, = - M sin a cos t.
b y

Now, from Langhaar [l] , and Hodgman [_z] , it follows that



30

9M 8M, 9M

\= X ^ ^eT^
*

EI
^

+ ^3Ji-)asecc. dt^0 p

2niTi j^ sin^ t M sin^ a cos^ t M cos^tcos^Q-
= y (J4^ + _X__ +_J^

^^
)asec.dt

/ 1 , sin^ a n,Tr
,

cos a \ Min^
= M a sec a ( -^^ + ^ ^ + -qj 1^77 ). (110)

^ P

(note that asecor dt= ds)

By definition, .-

M
k = ' y • (ill)

y

Substitution of Eq. (llO) into (ill) yields

k , = ^H£4 2 . (112)
2. / 1 + sin^'a cos'' a \

aniTT( ^ + gj ;

P

This constant, k^ „ , may also be obtained in another manner.

In Fig. 7b, ABC . . . represents the approximate deflection curve.

Approximately,

(113)Q,=
P •

For elastic deflections.

1

P

M
" B

where B - — sin Q-

1 + sin^ a
2EI

cos^ a
2GI

P

(114)

according to Timoshenko \J>J..
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Substitution of Eq. (ll4) into ( 1 1 3) yields

e, = LM , (115)

l+sin^Q- cos^Qf

2EI 2GI
P

from which

M sin a
k

I l+sm Q-
,

cos a\ „ l ^ ^ l\

p

and since I = Zanj tt tan a
,

k, . = "-^^
. (117)

-sin^or cos^ ^

EI GI

'
/ l+sin^or , cos^ Q? \

a ni TT ^ =5=^? + PTr )

P

According to Frisch-Fay \Jl} , when the spring is stretched,

k- „ will be increased in the amount
2, U ^^

<.2 = 1^^2.0' (11«^

n

Where i is the final length of the spring element, and

i is the original undeformed length.

In case the adjacent elements are different in length, as shown

in Fig. 7c and 7d, the equivalent bending constant for the spring can

be found as follows:

If the stiffness of both elements are the same, from Fig. 7c,

B ^1 + ^2—
YT =M = k ,9=k , ——rr
P n, 2 n, 2 p 2 '

from which

K.?. = -: :r^ • (120)n,2 ^. ^
n n+1
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" ^^^ '' ^^ e

c
" 'V^.^^J

%

x\''
p

4/
(c) Same rigidity, different length in adjacent elements.

M . ®

\ 1 //^\\
\ / //c^^"^^
\ / l^^-^z^ 1 M

(d) Different rigidity, different length in adjacent elements.

Fig. 7. Derivation of the spring constant for bending.
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If the stiffnesses of the t\vo links are different, then from Fig. 7d,

Bi

Pi

B

= M = ki t,i ,

^= M = ki 1,2

^2 ^ —' 1- - k(ii + 1).

Pz

and M = ke = k(4i + Cz),

from which

kz ^2= ki Ci = k(^i + Cz).

or ki = k ( 1 +^ ) and kz = k ( 1^

Since

r
kz

^ 1 _

TT ~
ki

• -,:.

Substitution yields

ki = k( 1+^)

kikz
k = ^—-^ . (121)

ki + kz

or

If k2 - «,

, lin
kz -*

Constants for Tension. The loading condition as shown in Fig

lim^ k = ki . (122)

8a can be replaced by that as shown in Fig. 8b. Let 6 represent

the displacement of the free end along the z direction caused by the

,/

eccentric load Z: and 6 that caused by M . Then the displace-
' z y

ment due to the center load Z is

5 = 5" - 6'
.

z z z
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A helical spring under an
eccentric load

(b)

A helical spring under a central

load and a bending moment

*— y

(c) A helical spring under a unit bending
shear

Fig, 8, Derivation of the spring constant for tension.
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For an eccentric load, as shown in Fig 8,

M=-Zi, M =-Z (a-x) j, M = 0.
X y y z

Since y = a sin t, x = a cos t, and z = a t tan a ,

M =M-T= Q-Z 1^-Z (a-x) j] • T = (Z a cos or - Za costcosa).

(123)

^_, /^

M = M- N = F-Za sin tt- Z(a- a cos t) j] • N = Za sin t, (l24)
n '-

and M^= M- B= TZasintt-Zad- cos t) jj • B
b

=
(

- Z a sin c + Z a sin a cos t )

.

It follows that

9M a M, 9M.

^^ ^ b^/Z ^ ^ ^ ° ^
) a sec a dt

(125)

f> M —7<

= 1 (-^ EI GI

= 1

Ztoi r"

(Z a sin t) ( a sin t) (
-Zasino' + Zasina cos t)(-a sino' +asinQ' cost)

EI EI

Z a cos a (l-cost) acosg (l-cost)
GI

a sec a dt

= Z a sec a

ZniT

r , sin^ t , sin^c (cos t - l)^ cos^o- (l - cos t)^ v

J ^—ET~ * EI GI ^ dt

= Za seed'

— Ztt n "

nTT
,

/ sin^a ,
cos a\ \ /„^^2<. -> r.^c ¥ a. ^\ a^

-—I- (—^iTf— + —rrf
—

) \ VC°s t - 2 cos t + IJ dt
EI ' ^ EI GI

P

r- -2 2
„ 3 n TT , / sm a , cos

= Za sec o' ^-^^ + (—^j- + -^^-)(mT+2nTr) ,

from which

6 = Z a sec
z

rnTT(l + 3 sin^cy ) 3 nTT cos^ a
EI

*"

GI
P

(126)
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The angular displacement of the free end about the y axis caused

bv Z is 6 , which can be determined by the unit dummy load
^ y

method [3^ (See Fig. 8c).

The moments about the x, y and z axes caused by the iinit load

as shown in Fig. 8c, are represented by m , m , and m_^ .

Now,

m = 0, m = 1, and m = 0.
x ' y z

Thus m = j.

and

It follows that

m = j • N = - sin t,
n •'

m^ = j • T = cos t cos a

,

t •'

m, = j • B = - sin a cos t.
b ''

Then
Zntr

y = 1'
M m M, m, M, m,nn, bb, tt\ ,.

+ T=^— + —7=rr ) a sec a dt
GI ^

' GI GI
p

-L
ZniT

Za smt /_ sj^^t) +.^(_Za sina + Za sina cos t)(-sinQr cos t)

+ r^—(Zacosor - Zacostcosa) costcosor
Gi

P •
. ,

a sec ff dt

= Za sec

= Z a^ sec

and finally

C f-sin^t
,
sm a/ . z^\ ,

cos ar _^„ . „^„2*.\
+ _.- (cos t - cos t) + —p^Y~i<^°s ^ " cos t;

EI

sin Of c

GI
dt

EI

9 = - nirZ a^ seca
y

1 , / sin a c

EI '^ EI
os^ a V j

°'p J
(127)
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From Maxwell's reciprocal theorem, the displacement 6^ can

be obtained by replacing Z in Eq. (l27) by M which equals -Za.

Thus, : . '

f' > r 2 / 1 sin^ a
,

cos^ a \
/ 1 ?R^6^= - nuMy a^ seca ( -^^ + -^gj- + ^ )• U^S)

P

From Eqs. (l26) and (l28), the displacement caused by the

central load Z is

c ,, c 1 -, r, I I
sin^Q-

,
cos^ a ^

6 =6"-6' sEZaseccj-nir^ —^^r^— + p=rf ).

Now,

k. o=-3^= ^^^^ — . (129)
' ^ -. 3 / sin^ a

,
cos^ a \

:. 2amT( =:t +
p^Y- )

This constant changes with length, and is given by

^.r^^o ./ "^°)
n .

_

for stretched springs.

Constants for Shear . The displacement in the x direction

of the free end caused by the load X, as shown in Fig. 9, contains

two parts, the displacement caused by bending, and that caused by

shear. Let 6 , 6
j , and hi represent the displacements caused by

shear, moment, and the total displacement, respectively.

Then, 6 = 62-61. ' ''

The displacement caused by bending is (See Timoshenko[_6j)

61 = -^ , (131)

f
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where B= ^-^^^ (l32)
/ 1+sin^Q' cos^Q' \

^ 2EI 2GI
P

and

i. = ZnTT a tan a . (l33)

Substitution of Eqs. (l32) and(l33) into Eq. (l3l) yields

, _ 8 X a^ n^ 11^ tan^ a , 1 + sin^ a cos^ a \^ ~ 3 sin a ^ 2EI 2GI ^'

P
or

r ^v3_334. 2 /l+SinO', COSQ'^ /to^X
I
- -^ ^n. IT a tan a sec or ( — -pr? + -pj .) . ( 1 34)

1+sin a , COS a
r
P

The total displacement caused by the load X, as shown

in Fig. 9, is found by the energy method as before.

Since

M = 0,X

M = X ( 2a n IT tan Of - at tan a),

and M = Z a sin t,
z

M = X ( 2a niT tan a - a. t tan o- ) j + X a sin t k, ( 1 35)

from which

\ t TT ^ X a tan a i ^ ^ ^ • . \M. = M • T = (2mTcost-t cos t + sm t

)

t sec a ^
'

or
M = Xa sin a (2 nir cos t - t cos t + sin t ); ( 136)

M^ = M • N = - X a tan a ( 2 niT - t ) sin t; (l 37)

M, = M • B = - X a tan a sin a cos t (2nTr- t) + Xa sint coscv;

(138)
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and
Zmr,

_
(' I Xa^tan^g (Zntr- t)^sin^t s} j^-tano- sinor cos t(ZmT-t) + sint coscT]

^2=1
t

EI
+

EI
"0

Xa^sin^Q' (2n tt cost - t cos t + sin t)
^

7 ,,
+ ^ pqrf

'—
\ a sec or dt

C-ii J
P ^

= Xa^ sec a ( Ii+ I2+ I3).

This can be written as

c V 3 \ tan^Q-/ 4 3_3 nTTvl V 1 ^ 3 3,niT'> 2 -2
5:^ = Xa-' seca ' —gY"t "^"^ '^ " "T" ^ eT L^

~3~ ~T ' ^^" ^ sin a
I

• 2
, 21, sin^a /• 4 3 ^ ,

5 n TT V 7

nu sm Q* + nTT cos Ov + —-^— ^-^ n tt + —^
; >

J

(139)

(See Appendix II. )

Finally, the displacement due to shear can be given as

r c c -17-3 I
tan Q'/nTr\,l/mT, 2 -2

6 = 62-61= Xa^seca —
ei-(- -J"

' ^^'("2"^^"^ *^ ^^"^ "^

..sin^O' 5mT
GI 2
P

•mrsin^Q' + mTcos^O')

(140)

or

6 = Xa^ seccc
nTT tan a 1 2\.nTT/ 2 •2\, sin a 5nTr
2 gj- l-cos'a ) + gj-(cos'a - sin'of ) + _^_|^ —^

—

which reduces to

, .^3 /-SnTTsin^a ,
mr z ,

o =Xa sec a ( zr^^f + „v cos ff +
^ 2EI EI

The shear angle 7 is

sin a 5nTr

GI
(140a)

-.5 Xa sec a , -Smr .2
,
mT 2

,
sin^a 5mT »

^ =— = ^—— —
( ?r:T sm o- + ^r^- cos or + -^^^ 5 ),ZnTra tana 2GI EI

or

7 = Xa^
2sinQ'

Hence,

k3 =
X
7

[^
3 _. 2 \ . sin^or

EI ^^°^' "^ -jr '^^''') +-GI

' GI 2
P

_5_

2

2 sin a

a^ CeT ^^°^^ ^ sm •q'
) +

sm Q- 5 -r

P
J

(141)
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If a is small, (say a < 10°), approximately cos^O' = 1

and sin^Q' = 0.

In this case,

^3, " "
2 sina EI

a} cos a

2 tan a EI

a^

i EI

a^n TT

Under stretching
n, 3

"" k
i^ ^3,0-

(I4la)

(142)

STRESS ANALYSIS

It is very difficult to determine exactly where and how large

the maximxam stresses are in an elemient with the loading condi-

tion as shown in Fig, lOa. However, they can be approximated

without difficulty under the assumption that T is greater than

T (this assumption causes no loss of generality), that shear forces

are perpendicular to the axis of the element, and that a right-hand

coordinate system^ is attached to the right end of the element, as

shown in Fig. lOa. It is reasonable to expect that the maximum

stresses happen at a section between t= and t = 2 t: because

M is larger at this section than at any other section, while other

moments and forces may be the same. One of the sections at

t = 0, -^ , -TT and —:r— is probably the critical section because

at least one of the moments M , M , and M is nnaximum orX y' z

minimum (which implies a greatest negative value). For a critical

section, one of the points a, b, c, and d, as shown in Fig. lOb, is

probably the critical point because the section is circular and at



42

n

S
n+1

n+1

(a) Loading conditions on a spring element.

(b) Loading conditions on a
cross section. T

(c) Mohr s circle

M, Binormal
b

" F,

n M
n

-•
•^T^ormal

L_

Fig, 10. Stress analysis.
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least the stress component due to one of the forces and moments

(See Fig. lOb) is maximum. (See Timoshenko _6_ .)

Critical Section

Case I; t =

M = M =
Z X

M = - T a - T ^,y n n+1

Hence,

^- (-^n- -^n+l^^V (1^^)

and F = P "T- T k. (144)
n n ^ '

From Eqs. (l07), (l08), and ( 109), ( 143), ( 144), the

following equations are obtained.

or '

M =M. ?=(-T a- T ^J J. (
-^i^ti'+ cost"+ tano^k

)
t ^ n n+1 ' ' ^ sec a

M = - (t a + T J -^^2±1 = _ (t a + T
, , ) cos «; ( 145)

t ^ n n+1 ' sec a ^ n n+ 1 ' *

M =M-N=-(Ta+T)j-[_- (cos t i + sin t j )J
=0;

(146)

M, = M. B= -(t a+ T ) j • (sino- sint i - sin (» cost j+ cosak)

= + (T^a+ T^^^ ) sin a cos t ,

or
, i

^b= ^V+ "^n+l^
^^^^

•
(l^"^) '

T - F ' T - iP 'i r V)
(-sinti+ cost j + tan a k v

t ^ n n '• ^ sec cc '

P sin t
n

sec a ^



44

or

or

or

or

or

F^ = - T sin a- ; ( 148)
t n

F = F"- N = (P t - T k) • r-(costi+ sint*j)j = - P cost

F = - P J (149)
n n

_A,AA A ^ C' \

F, = F" B = (P i-T k) • Ismo'ti-sinQf costj+kcoso')
b ^ n n ' ^

= P sin a sin t - T cos a
n n

F^ = - T cos a . (150)
b n

Case II: t = —;:;— ,

M = -Pa,
z n

M = - T a ,X n

and M ^ - T ^ .

y n+1

Hence,

M = -Tai-T^,j'-Pak (l5l)
n n+1 -' n ^ '

and F = P i - t k. (l52)
n n *

Following the procedure in Case I,

A T a sm t
nM^ = M* T = + -^ - T

, , cos t - P a sin 0-

t sec a n+1 n

T a
M. = - -^ - P a sin ff ; ( 153)

t secan' ^ '

M = M-N=+Ta cos t + T
, , sin t

. n n n+1

^n=-Tn+l' (154)
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^b = M • B = - T a sin a sin
n

T + T , , sinan+l
cos t - P

n
acosa

or

^b = T a sin 0- - P a cos o
n n

P sin t

•

< (155)

^t
=

n P
n
cos a ~ T

n
3in a\ (156)sec a n

F
n

= - P cos t = 0; (157)

and
F
n

= P sin a sint - t cos a
n n

^ " P sina -
n

T cos a

.

n (158)

Case III: at t = -TT

M
z
= M = 0,X '

and M, s - T a + T
, ,.n n+l

Since the magnitude of M in this cas.e is obviously small er
i

than that in Case I while other quantities

1

are almost the same, this !

section is not likely the critical one.
1

-1

1

Case IV: ^ ^ 3 TT
at t = - -rr—

M
z = Pn ^ •

M
X

= T^a.

and approximately

M
y

2i _ T
n+l

•

1

Hence
1

M =
(159)

and F = P i - T. k ;n n '

1

(160)

M,=
T a
n . „

' TirrZ' smt - T
, , cost +sec or n+l

P a sino-
n

T a
n
secQ'

+ P a sin an
•

(161)
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M^= -T^acost+ T^+iBinT=T^^^; (l62)

M, = T a sina sint+ T , ,
sinor cos t + Pa cos a

b n 11+

1

'1

= T a sin a + P a cos o
j

( 163)
n n

P sint , .

~ ^ - T sin a = - P cos a - t sin a ; Uo4)

and

t sec a 'n
"*" ~ n n

F = - P cos t= ;
(165)

n n

F = P sin a sin t - T cos a = P sin a - t cos a . ( l66)
b n n n n

Note that in all the equations of this section P^, t^,

and T , are always positive.
n+ 1

Critical Point

In any section, if the six components of forces and naoments,

as shown in Fig. 10b, are known, the stress at any point can be

computed easily. The maximum stresses are determined by a

Mohr' s circle construction [l^ . (See Fig. lOc.) The shearing forces

are ass\inned to be uniformly distributed over the cross section.

The normal stress and shear stress are, following Langhaar [3}

(167)

(168)

(169)

J M^ r
^""^ - - ' (170)

. - ^' . -

M B
n

M, N
b

"
t

" A I
n ^

r = ^b
tb A »

F

"tn " A '

M^ r

t
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where r is the radius of the cross section of the spring. At

b and c positive signs are used for t , while at a and d the
It

negative sign applies.

Case I: At point a the normal and shear stress are

F Mr
^ = A^ + nr- (1^1)

n

M r F
and T = - -ji-+ -^ , (172)

P
from which F Mr

_L + n

(T - A I„ + 1 FT. M~r mTt F

min n p
(173)

and

1
/""FT ivTT mTt f

n D

Case II ; At point b the stresses are

F Mr
a = —

L

H_
t A L '

D
(175)

^t^ ^h^= T— + A^' (176)
P

F^ M, r
t b

b -^xnin

amdl

, , F Mr M.r F,

'n.^- -jJ^-X-l^y^^i-^^ ^y- (178)
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and

Case III ; At point c the stresses are

F, Mr
n

M,r F
T= -f- + -^. (180)

P
F Mr
t_ n

,

A I
, /p\ Mr mTt F

max 2 2n/^A I '^^W^A'*
n pmin

(181)

, / F^ Mr M,r F
and T = 4 /(_4-- _iL_)2+ 4( t ^ n)2^

^g^^
meix 2 N ^ A I ' ^ I A

n p

Case IV: At point d the stresses are

F. M- r

h '

M^r F,

T= - _jl- + ^ . (184)

P
F, M, r

t ,
b

A + T /F. M, r M,r F
a = ^
max ^ , ^» *,

-> 2 / b pmin ^ '-• '^

V_t4_/(i .-^)H4(^--^)^

(185)

1 / F. m77 Ml? FT

v b p
'^max = -T/(-^-^-F^)'+^(-T^--^>'- (l86)

In general, the maximum stresses occur at point b of

the section t = 0.
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NUMERICAL EXAMPLE

A detailed example is shown in this section to illustrate

solution of Basic Problem II for a given coil spring. This coil

spring is used as an idler roller for conveyer belts, as manu-

factured by the J. B. Ehrsam Company of Enterprise, Kansas.

A parabolic deflection curve is assumed. It is further assumed

that only vertical external loads are applied at the pins.

Design Data;

Spring used (See Fig. 11 ) : 48 H-D

Span: 33"

Free length of idler: 54. 25"

Unstretched length of spring: 36"

Pitch: . -|_ + _I=-A = 0.75"

5
Diameter of wire: d = —^' = 0. 625"

Diameter of the spring coil:

7 5
(center to center) (3^ + -q") = 4. 5"

( radius) a = 2. 25"

Acting spring length? 36" -2x2-=- x-^ = 32. 25"

4
Acting nximber of coils = 32. 25 x ^ = 43

Rigid part of the idler at each end: y (54. 25 - 32. 25) = 11"

* Two and a half coils are taken out from each end of the spring
according to the specification of the Ehrsam Company.
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2

Trough angle /3 : 36

Maximum deflection: ( l6. 75 - 6 + 2. 5 ) = 13. 25"

Moment of inertia i - —^—

TI_df
p"" 32

Young's modulus: E = 30 x 10^ psi

Modulus of rigidity: G = 1 1. 5 x lO'' psi

Deflection curve assvimed: (y + mi^) = m (x - i )

(See Fig. 1 1)

Total number of links used: 2N = 6.

Calculation of Spring Constants; The pitch angle a can be

found from

a = tan"^ ,-£- = tan" ^
,, ^'J^. = tan" ^ 0.053= 3.04°.

2 TT a Z TT X Z. Zd

Since a is small, approximately sin^ a -

cos^ a = cos a s 1

.

With the assumption of small pitch angle and the design data

listed in Paragraph 1, Design Data, the three spring constants

•for tension, bending and shear of each element can be obtained from

Eqs. (117), (129), and (141a).

Let the first element have 7. 5 coils, and the second and the

third element have 7 coils each. For the latter case

cos 0- G Ip

kin =
V» 2 2 3

_ 3 / sin or , cos cc \ 2a ni ir

2anjTT(-^gj- + -^ )

P
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11. 5 X lu X 32 ^
1 1.5 X 10^ X 0. 153 _ .. ^

2 x(2. 25)^ X 7 X TT 2x11.4x7x32

, cos a ^ 1ky = =
/I + sin^a

,
cos^a \ ^ / 1 j. 1 ^

aniTT( gj +-^j- ) aniu(^^+-^)
P P

1
= 1980.0;

2. 25 X 7 X TT pr 7-r-p 4 + r=: 7-5-r-4
on ,rvb 0.625'' ,- _ ,„fc 0.625*^--^ - 30xl0''x 7-1, ll.Sx-lO^X x-t; XTT

and
ky =

1
, L

zr- ii.5x-io'x—^
^'^^

32. 25x 30x 0. 625'*x lO'' 32. 25 x 30 x 0. 153 x 10<>

a^ mr (2.25)^x43x64 11.4x43x64

= 4680.0.

For the former case (7. 5 coils )

7
k4o = - g x kj = 322.

and _

k^ = =—^ X kz = 1850.

1 = J (xi - xo)^+ (yi - yo )^ ,Let R

Rz = ^(x2 - xi)' + (y2- yi)' .

and .

R3 = y(x3 - X2)2+ (y3 - yz)^ .

and hj, h^, h.^ , be the original length of the first, second and

third elements, respectively. Then

k^l = k, = ^ kip ,

k22 = k2 = ^ kzp .
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and

1 ^2 1

ki2 = K5 = -^ K^o ,

t5

k,^2 = kb = 2k5 R-f-Rl .

k3.2 = ^9 = -^ k^o

, , R3
1

>^3,3 - kjo = K30 ,

kaz = kn = 2 k

h3

Rz

Calculation of Coordinates: The assumed deflection curve

of the idler is shown in Fig, 11a. A rigid "can" is attached to

each end of the spring to connect the spring to a bearing. The

deflection curve of the spring is shown in Fig. lib.

Because of this "can", and the assumed deflection curves,

2i = L - 2s ' = 55. 75 - 22 cos 36° = 55. 75 - 17. 8 = 37. 95 "

and

5 = 62 - 61 = 13. 25 - 11 sin 36° = 13.25 - 6. 46 = 6.79"
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S *"

L = 55. 75" —
Zi. = 37.95'i

(a) The whole idler

(Vo'

(xi, yi)

2i = 37.95"

(X2, 72 )

(x3, ya)

(b) The spring part of the idler

Fig. 11. A deflection curve of 48HD spring idler.
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The deflection curve is assumed to be parabolic, of the

form y+mi2=m(x-i)2. (l87)

with the deflection y= -6.79" at x = = i = —j^= 18.96".

Thus,

m =
^-"^'^

= -^^ = 0.0188. (188)

18.96^ 36

With Xi , X2 arbitrary,

yi = m (xj - i )2 - mi^ (l89)

and
y2= m(x2 - O^ - mi 2. (l90)

Note that X3 = i = 18.96" '• (l9l)

and ys = - 6.79" . (192)

Calculation of Angles and Tensile Forces:

a^ = tan^. y^ " y^ (l93)» X2 - Xi

„-i yo - Yi
Xj - Xo

yz - ys

^, = tan ^ -^-^ (194)
Xj - Xq

^2= tan ^
.., „, (195)
X3 - X2

^2 = ^1 (196)

&i= k4(Ri - hi) (197)

6>2= ft = ki(R2- hz) (198)

T2 = kg ( R3 - ha). (199)
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Simultaneous Equations ;

-Fi + 6)i sin /3i
- Ti sino-i + Qj cos (3i - p- ) - PjcosCo-i- r:^) =

K7 K3

-H,-6>jCos3i+TxCosQ'i+ Qi sin(/3i -|l-
) _ p „in(c^ , .Ea- ) =

^ k3

Pi
- Tz - Ti

cos(|0 / X2 - x,)^+(y2- yi)'

=

(200)

Qi
Ti - To

cos I(^'7^

= Q, ±2_ =

^+yi^ cos(|i-)^2 1 2
+ yi

-F2 +©2 Sin^2- T2SinQ'2+ Q2COs(i32 - -^) -P2Cos{a2
k3 ^10

) =

O P
•H2 -02 cosjSz + T2 cosQ'2 + Q2 sin (/32 - -f^) - P2 sin (0-2 -1-^ ) =

K3 KjO

T2-kji 02-^2 + 1^ - -^) =
KiO K3

P2 +

co8(:^) R3
Kjo

k„0,.a.;^-§-)-k,(2.,.^-«^)
kio kjo

=

Q2- T2-T1

COs(-~^) / (X2 - Xi)2 + (y2 - y,)

'

=

F3 + 2x2 sin az + Q3 cos {a 2 - -^^^ ) - P3C0S {a z + ^^^ )

_Q3

kio kio
=

Q3 sin (0-2 - -^ ) + P3 sin (0-2 + ^ ) =

T3 -k, (2^2+ ?V Q^
) =

Kjo
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Q3 +
cos(-^)R3 L

ku(^2-a2)+(?^ -g^)-k9(2a2 + ?3 Q3
kjo :io Kio

=

Fo - kg Oo - 01 + %- ) /Si + Qi cos (/3o - /3i) - 1 sin Oo - /3i) =
k9

Programming: In order to adapt this set of equations for

solution by computer, they are rewritten in the matrix form AX = B

where X is a column matrix with the independent variables as

elements, A is a square coefficient matrix and P is another

column matrix with constants as elements. The following notation

is used in the computer program which was constructed to solve

the given set. The first subscript in Aij indicates the equation

number, and the second subscript indicates the variable number.
'

Xi = Pi X2 = Pz X3 = P3 X4 = Qi X5 = Q2 Xfc = Q3

X7 = Ti X8 = T2 X9 = T3 xio = Fi xii = F2 X12 = F3

xi3 = Hj Xi4 = H2 FSO = Fo cos j3o

Aj^i* = - cos(ai -
Y^)

Ai,io= -1

A2^4 = sin(/3x -^)

A - kfe

A4,l= 1

Ai,4= cos (/3i - -^)

A2^i = - sin

A2.13 = - 1

(«.-|^)

%13

A - kb
A3,4 - £7*

A4.

A3,7 = 1

1

os(-g»)J(x2-xO^+(y2-y,)^

only non-zero elements are listed here.
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A4rf = - A4,7 A5,4= 1 »-5,7

1

^/ 'Qixi^+yi^ cos(Hi_)

A6,2= - COS [a 2 - j-^ ) A6,5 = COS (^2 -^-)

A6,n = - 1 W, 2= - sin(a2 --^ )

At, 5 = sin Oz -^

)

A7, h = - 1
^'•--ii^

As, 5 =
k3

A 1 = kn
"•9»-*

kio R3 cos(
kio

)

As, 8 = 1 A9,2 = 1 + -11

kio R3 cos(-y-^
)

A9,; kn

k3 R3 COs(-p. )

kio

A9,6 = - A.9,3 AlO, 5 = 1 Aio, 7 = A4,7

k-10,8 = - A4^7 An, 3 = - COS [a 2+ A- )
Kio

An, 6 = cos ( 0-2 - -^ )
Kio

An, 12= -1

Ai2,i3 = sin(a2 + -i^)
^10

Ai2,6 = sin (0-2 - -^ )
Kjo

kg
^13,3 = -

1̂0
Ai3,6 = - Ai3,3 Ai3,9 = 1

^14,2 = liL
Q3

kio R3 cos (-Hi
)

Kio

Al4,3 = - Ai4,2



Ai4,5 = - A14,2 Ai4,6 = 1 + Ai4,2

Ai,i5 = Ti sin QTi - sin /Sj Az.is = cos |3i
- Ti cos a:

A3,i5 = k6 (/3i - Qfi) As, 15

k5(/3o - /3i+^)

Qicos (^ ) / Xi^ + y:^

A6,i5 = T2 sin 0-2 - sin jSa At , 15 = 2 cos j32 - T2 cos 0-2

As.is = kii i^z - 0!z) A9,i5 = ;
kii(/32 - 0^2) + 2^9 0^2

R3 COs(-rp^)

An, 15 = - 2 T2 sin 0-2 Ai3,i5 = 2 k9 a

2

Ai4,15 = A9,i5

SL = i SM = m CHI = hi CH2 = h2 = hs CHS = Sj

GKJ = K.
J

J = 1,2, 3,4,5 SN = n * *

If the spring is loaded laterally only, as is the case for idler

rollers, such as considered in this example, the horizontal forces

applied to the pins connecting the links should be zero.

58

* Ajjis to Ai4,i5 are the elements in the P matrix.

* * For a short span idler, a second degree parabolic deflection curve
naay turn out to be unrealistic (Fo is upward). Therefore a fourth
degree parabolic curve, (y + mi^ + ni ) = m (x - i)^ + n (x - i)*
should be used.
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For arbitrarily selected positions of these pins along a given

deflection curve, the horizontal forces at the pins will not be zero.

They are given by the solutions of the fundamental set of equations,

however , and once known indicate how the assximed positions should

be changed to reduce the horizontal forces to zero.

The program developed for computation determines the cor-

rect positions of the pins by successive approximations, using the

magnitudes of the horizontal forces as criteria for determining the

changes in positions required to reduce these forces to zero.

In order to implement this, the program includes the follow-

ing terms and their meanings for specification of errors and

corrections to positions: -

VADI: Error allowed for Hj and H2 to be

different from zero.

VAD2: Shift in position of hinges to reduce Hj

and H2 to be zero.

VAD3: Error allowed for P's and Q's between

first iteration and second iteration.

VAD4 = j3o

Within this process of successive approximations, a minor iterative

procedure is included to make use of the almost linear nature of

the basic set of equations. Let BJ = P^ and CJ = Q. , where

J = 1, 2, 3, in the arguments of the trigonometric functions which

appear in the basic equations. This set is first solved with
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BJ = CJ = 0, and the P's and Q's so obtained substituted into

BJ and CJ, and the basic set solved again to obtain improved values.

The program for solving the set of equations and the results

obtained can be found in Appendix 3.

The forces found for the Basic Problem II, for the data

presented on page 49 are

Fo = 60 # Fi = 155. 37# Fz = 138. 53# F3 = 156. 9#.

The total load, including the weight of the spring itself, is

2 X (60 + 155. 37 + 138. 53 ) + 156. 9 = 864. 7 #.

Other cases for the idler rollers designated 48HD with maxi-

mum displacement 9. 75 " and 4"; and the case for 24D with maxi-

mum displacement 8. 57" (using a fourth parabolic curve for the

deflection curve for this case ) have also been worked out. The

computed results * are shown in the following table.

Table 1. Comparison of theoretical and experimental loads.

Idler Max.
62

Def. Calculated
Load, lb.

Experimental Load- lbs.
No. Load Add(3d Weight Total

48
HD

4. 00"

9. 75"

13. 25"

* * 73. 5

394.0

864. 7

300

750

100

100

100

100

400

850***

24D 8. 57" 232 200 30 230

* The experimental results were furnished by the Ehrsam Company,

** The theory is very sensitive to the maximum deflection. The
measurement of this quantity should be very accurate,

* * * These are the maximum loads allowed to be taken by the respective
idlers.



Stress Analysis : The stresses at the right end, i. e. t = 0,

of each element are determined in this section to illustrate the stress

analysis procedure. A computer program for this stress analysis

is given in Appendix IV.

The forces and moments acting on each element, determined

from results of the previous section, are shown in Fig. 12 a, b, and c.

The vector moment and vector force for the first element are

given in the equations

M = - (671 X 2. 5 + 466.4) j = - (l675 + 466 )
j'= - 214l'j*

and
F = 32. 8 t- 671 $.

For the second element, the corresponding equations are

M = - (599. 3 X 2. 5 + 556. 8 )
j^= -

( 1480 + 557 )
'j'= - 2037 j'

and
F = 13. 6 t - 599. 3 k.

For the third element they are

M = - (562.7 X 2. 5 + 611.4) J = - (l400 + 6ll) 3"= - 2011 J

and
F= 8. 3 i - 562. 7^.

The formulas for the maximum stresses are obtained by

substituting the expressions for I , land A into Eqs. (173)

through (l86 ).

At point a (See Fig. 10b )

F^ M r
t

+
n

A I
na =

max 2

F^ Mr M^r F

min

61

n p
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6711b
C

32.8 1b

466. 4in-lb

B-:
^

6711b

32.81b

(a) First element

599.31b

466. 4 in- lb 556. 8 in-

13. 61

^.
_^ 599. 31b

13. 61b

(b) Second element

r
556.8in-lb 6ll.4in-ib

562. 71b

8. 31b

'^

.562.71b

8. 31b

(c) Third element

Fig. 12. Loads on various elements.
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2

4F, 32M 4F, 32M
(_1+ IL+ /(—1+ ^)2 +

(

1
32M, 4F

n \2

TT d^ TT d^ TT d" IT d' 7T d^ IT d^

or

max ,3
TT dmin

r =-1^max ^ ^3

F d / F d F d

F.d F d
(201)

n >2(-i-H. Mj^+(M,-_f-)

At point b.

CT
16

and

max J 3
TT dmm

r = -li
max J 3

TT d

F d / F d F, d

8 8

F.d F, d
(202)

(^ -MJ^+(M,+ ^)

At point c

16

max ,3
IT dmin

F.d
(-^

8

IFA F d
M ) i /(_i_-MJ2 + (M, + -^)^
^ J 8 8

and
Tmax

16
F d

TTd^
C-f- - M^)^+(M^+^)^

(20 3)

At point d

16

and

max
min

nnax

^d^

F d / F d F, d

(204)

TTdM 8
+ M^)^ + (M^--|- )' .
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In the computer program given in Appendix IV the following

notations are used:

Ai = M.

B, = F.

A.= M.

Bz-F.

D = d (diameter of wire )

c = a (pitch angle )

FMOT = M^

FMOB = M,
b

FFON = F

A3= M,

B3 = F,

n

Ti= t

FMON = M.

FFOT = F
t

FFUB = F,

The stresses found for idler roller 48HD under 850 lb load

are given in Table Z.
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CONCLUSIONS

From Table 1, it is seen that the theoretical values check very-

well with the experimental ones, especially when the laterally-loaded

springs are under heavy loads. The theory is very sensitive to maxi-

mum deflections. Under a heavy load, half an inch error in measure-

ment may have only a little effect on the final results, while under a

light load it may cause a great error, for in the latter case half an

inch is probably 20 per cent of the maximum deflection.

In the numerical example given in the preceding section, the

deflection curve of the spring idler has been replaced by six elements

and symnnetry been assumed. This has been done only to shorten the

computing time. The theory can be used equally well for a more

general case. The program given in Appendix I, however, can be

used only for synnmetrical deflections.

The time required for solution of the basic set of simultaneous

equations depends greatly on the accuracy of the first guess of the

pin positions along the assumed deflection curve. By printing out

outputs of the first round and noting values of Hj and H2, the

first guess can be adjusted to make the positions of the pins closer

to the correct values.
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APPENDIX I

Deviation of Unit Vectors along Tangent, Normal and Binormal
Directions at Any Point on the Spiral Curve

The spiral curve, as shown in Fig. 12a, is described by the follow-

ing parametric equations:

X = a cos t

y = a sin t

z = a t tan a

where a is the pitch angle.

Then, the position vector R is

R = a cos t i + a sin t j + a t tan a k

and the arc length

ds = V dx^ + dy^ + dz^ = a sec a dt,

where i, j, k are unit vectors along the x, y, and z

axis, respectively.

From (As) and (A3) (See Lass U
[ )

T = "^^

dR
dt

(Al)

(A2)

(A3)

ds _ds

dt

-a sin t i + a cos t j + a tan a k

a sec a (A4)

From (A4) the curvature k is

K = =

a i

=

^ A
dT dt - a cos t i - a sin t j

ds ds
dt

d} sec ^ a a sec a
(A5)
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The following relationship can be used to find N.

dT
ds

= kN = 1 N ^cos t 1 + sm t J ;

aseca aseca

whence, N = - (cos t i + sin t j ).

B is obtained from the definition (See Lass [jj ),

B = TxN =

i j k

sint cos t tano
seca secQ' sec a

cos t - sint

^ I tana sin t \
= M T^TTZ )sec a

(A6)

(A7)

and

^
I
tan Q-cost^.-r^ '^/. •a'^. ..f'

J \ ; + k cos a = 1 ^sxno' smt; - j sina cos t+ k cos asec a

Collecting Eqs. (A4), (A7), and (A8) gives

»A A /^

ST _ - sin ti+ costj+ tan a k

sec a

N = - (cos t i + sin t j ),

B = i (sino- sint) -j sin a cost+kcosa .

(A8)

(A9)
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APPENDIX II

Evaluation of Some Definite Integrals

'-I

2nTf

It = \ tan Q-

EI
(ZniT- t)^ sin^ t dt

Zmr
t^^ Q' =^^2W. 2^2
EI

inn(4n^TT2 - 4 mr t + t^ ) dt

tan^Q-

EI
4n^ TT^ nTT - 4n7T

ZniT

l-cos 2t)

ZniT

dt +
]

'^^ cos 2t
dt

tan^ Q- . 3 3 ^ r~ t^ 1 / \ ~l t^= —gj— 4n^ TT^ - 4mT
|
— - -±- (cos 2t + 2t sm 2t ) 1 + -—-

jg- []4t cos 2t + (4t^ - 2 ) sin 2t2]

t= ZniT

t =

tan^Q'

EI

2mT

4n3 ^3 _ 4^3^3+8 ^3^3 __8n^
b lo

tan^Q- /4 3 3 nT7 \

= ^r-^3- ^ ^ --2-^

I2 = \ —^ [2 tan a sin o- cos t (Znir - t ) + sint cos a^^ dt

o

ZniT

=
J -gf L^^^^*^ sin^a cos^t(4n^7T2 - 4mTt + t^) - 2tanQ' sino' cos a

X sint cos t (2nTr - t) + sin^t cos^a^] dt

2nTr

=
J 4r ^'^''^ ^^^'^ l+cos2t

^4^2 ^2 . 4^^^^ ^2) . 3.^2^ sin2t(2mT.t)

+ sin^ t cos^
Q-^l dt
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EI Z ^ o ^ /•

+ -g- [4tcos 2t + (4t^-2) sin2t] - sin^a['
2mTcos 2t

-T- ( sin 2t - 2t CO s 2t)
J

t :r- sin 2t

+ cos a s

t= 2mT

t=

£1
I

2

,
sin C/ . \

, 2 I+ -2 t-4nTT)+ cos a^niT/

EI ( ^
"^

+
-^Y—

) ta-J^^ ^ sin^O' + nir cos^ o- - n-rr sin^o-

EI

2nTr

{ 5— + ^5— ) tan' a sm' a + mr cos Za
3 2

r sin^g

"J GI
o p I

cos^t (2mT - t)^ + 2 cos t sin t (2nTr - t) + sin^t dt

sin o 4
GI 3

P ^

3 3 ,
niT 1

^ ^ +-2---T (sin 2t - 2t cos 2t ) + mr
1 2nTT

sm Q- 4 3 3 ,

nTT ,
,

-T
' rr— n TT + -r: + nTT + nil

(ji J 2
p L

sin^a
I
4 3 3,5

GT- — ^ ^ +2-^^
p L
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APPENDIX III

Program for Solving Simultaneous
Equations in Basic Problem II

C NiUMFRICAL EXAMPLE FOR SPRING BEAM
1 FORMAT ( 13)

3 FORMAT ( I3,F14.6)
DIMENSION A(14,15)

4 FORMAT (4F14.6)
5 FORMAT (5F14.6)
6 FORMAT (5F14.6)

41 FORMAT (5F14.6)
•42 FORMAT (3F14.6)
43 FORMAT (4F14.6)

C*****FNTER DATA HERE
RFAD 4, X0,X1,X2»X3
READ 5, SL»SM,CH1»CH2,CH3
READ 41, GK1,GK2»GK3» Y0,Y3
RFAD 42» GK4,GK5,SN
READ 43. VAD1,VAD2»VA3,VAD4
READ 1,N
N1=N+1

C*****EQUQTIONS BECOME LINEAR HERE
Sl=U.O
C1=0.0
B2 = 0.0
C2=0.0
B3=U.O
C3=0.0

C*****LINE 9 TO 110 SUBPROGRAM FOR SOLVING SIMULTANEOUS LINEAR
9 DO 10 I = 1,N EQUATIONS

DO 10 J=1,N1
10 A( I »J)=0.0

C#****ENTER EXPRESSIONS FOR GEOMETRIC RELATIONS HERE
Y1=SM*(X1-SL)**2+SN*(X1-SL)**4-SM*SL**2-SN*SL*»4
Y2=SM*(X2-SL)**2+SN*(X2-SL)**4-SM*SL**2-SN*SL**4
AL1=ATANF( (Y1-Y2)/(X2-X1) )

BE1=ATA,MF( (YO-Yl )/(Xl-XO) )

AL2=ATANF( (Y2-Y3)/(X3-X2) )

BE2=AL1
R1 = SQRTF( (Xl-X0)**2+( Yl-Y0)-«-*2 )

R2=SQRTF( (X2-X1)**2+(Y2-Y1 )**2)
R3=SQRTF{ (X3-X2)**2+(Y3-Y2 )**2)

C*****ENTER EXPRESSIONS FOR SPRING CONSTANTS HERE
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SK1=R2*GK1/CH2
SK2=R2*GK2/CH2
SK3=R2*GK3/CH2
SK4=R1*GK4/CH]
SK5=R1*GK5/CH1
SK6=SK5*2.0*R1/(R1+R2)
SK7=R1*GK3/CH1 '

SK8=R3*GK1/CH2
SK9=R3*GK2/CH2
SK10=R3*GK3/CH2
SK11=SK2*2.0*R2/{R2+R3)

C»****EHTER EXPRESSIONS FOR TENSILE FORCES HERE
HT1=SK4»(SQRTF( ( Xl-XO ) **2+ ( Y 1-YO ) **2 ) -CHI

)

TA1=SK1*(SQRTF( (X2-X1 ) **2+ ( Y2-Y1 ) **2 ) -CH2

)

HT2=TA1
TA2=5K8*(SQRTF{ ( X3-X2 ) **2+ ( Y3-Y2 )**2 ) -CH2

)

C*****ENTER EXPRESSIONS FOR COEFFICIENTS A IN THE MATRICE EQUA-
TIONS AX = pA(1,1)=-C0SF(AL1-B1/SK3)

A(1,4)=C0SF(BE1-C1/SK7)
A(1.10)=-1.0
A(2»l )=-SINF(ALl-Bl/SK3)
A(2.4)=SINF(BE1-C1/SK7)
A (2 13)=- 1.0
A(3,1)=-SK6/SK3
A(3.4)=SK6/SK7 -

A (3 17) =1.0 .;

A(4,l)=1.0
A(4,7)=+1.0/(SQRTF( (X2-X1 ) **2+ ( Y2-Y 1 ) **2 ) *COSF ( B1/SK3 )

)

A(4,3)=-A(4»7)
A(5»4)=l.
A(5»7)=-1.0/(SQRTF(X1**2+Y1**2)*C0SF(C1/SK7)

)

A(6,2)=-COSF(AL2-B2/SK10)
A(6,5)=C0SF(BE2-C2/SK3)
A (6*11 )=-1.0
A(7»2)=-SINF(AL2-B2/SK10)
AC7,5)=SINF(BE2-C2/SK3)
A(7,14)=-1.0
A(a.2)=-SK11/SK10
A(8,5)=,SK11/SK3
A(8,8)=1.0
A(9,2)=1.0+SK11/(SK10*R3*C0SF(B2/SK10)

)

A(9,3)=-SK11/(SK10*R3*C0SF(B2/SK10 )

)

A(9,5)=-SK11/(SK3*R3*C0SF( B2/SK10)

)

A(9,6)=-A(9,3)
A(1G,5)=1.0
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A(10,7)=A(4,7)
A ( 10,8 )=-A(4,7)
A(11,3)=-CCSF(AL2+B3/SK10)
A(11,6)=CCSF(AL2-C3/SK10)
A(ll,12)=-1.0
A(12,3)=SIMF(AL2+B3/SK10)
A(12,6)=SINF(AL2-C3/SK10)
A(13,3)=-SK9/SK10
A(13,6)=-A( 13,3)
A(13,9)=1.C
A(14,2)=SK11/(SK10*R3*CCSF(C3/SK10))
A(14,3)=-A( 14,2)
A (14,5)=-A( 14,2)
A ( 14,6 )=1.0+A( 14,2

)

emter expressions for p in the matrice equation ax=p
A(1,15)=TA1*SINF(AL1 )-HTl*SlNF(RFl)
A(2,15)=HT1*C0SF(BE1 ) -TA 1*C0SF ( AL 1 )

A(3,15)=SK6*(BE1-AL1 )

A(5,15)=-SK5*(VAD4*3.14159/180.0-ATANF{
( YO-Yl) / ( Xl-XO ) )+Cl/<;k:7)

C/(COSF(C1/SK7)*SORTF(X1*«2+Y1**2))
^i^/ixi X0))+ei/SK7)

A(6,15)=TA2*SINF(AL2)-HT2*SINF(BE2)
A(7,15)=HT2*C0SF(BE2>-TA2*C0SF(AL2)
A(8,15)=SK11*(BE2-AL2)
A(9,15)=(-SKll*(BE2-AL2)+SK9*(2.0*AL2))/(
A(11,15)=-2.0*TA2*SINF(AL2)
A(13,15 )=SK9*2.0*AL2
A(14,15)=A(9,15

)

R3*C0SF(B2/SK10)

)

23

25
26
28
29

32

40

50
59

DO 100 J=1,N
IF ( SENSE SWITCH
PRINT 1, J
IF (SENSE SWITCH 2)
IF (J-N) 29,59,59
X = Co
DO 40 I=J,N
IF ( A8SF(X)
X = A( I ,J)
IC = I

CONTINUE
DO 50 K=J,N1
X = A( ICK)
A( ICK) = A( J,K)
A(J,K) = X
X = 1.0/A(J,J)
DO 60 K=J,N1

1 ) 25,26

28,59

- ABSF(A( I,J) ) ) 32,40,40
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60 A(J,K) = A{J,K)*X
DC 80 I=1,M
IF (I-J) 65»80»65

65 AIJ = - A( I J)
DC 70 K=J,N1

70 A(i,K) = A(I,K) + AIJ*A(J,K)
80 CCNTINUE

100 CCNTINUE
DC 110 I=1,N

110 PUNCH 3, I . A( I jNl)

IF (A(13,15)**2-VAD1) 140.140»149
14 IF(A(14»15)**2-VAD1) 200»2GO»149
149 IF (A( 13»15)**2-A( 14»15)**2) 150»150»151

151 IF (A(13,15)) 152*150,153
C»****ADJUE5T PCSITICNS CF PCINTS HERE

152 X1=X]-VAD2
GC TC 9

153 X1=X1+VAD2
GC TC 9

150 IF (A(14,15)) 154,200,155
154 X2=X2-VAD2

GC TC 9

155 X2=X2+VAD2 (

GC TC 9

200 IF (A(1,15)-B1-VA3) 210,210,220
210 IF (A(4,15)-C1-VA3) 211,211,220
211 IF (A(2,15)-B2-VA3) 212,212,220
212 IF {A(5,15)-C2-VA3) 213,213,220
213 IF (A(3,15)-B3-VA3) 214,214,220
214 IF (A(6,15)-C3-VA3) 230,230,220

C*****ITERATICNS BEGIN HERE
220 B1=A(1,15)

C1=A(4,15)
B2=A(2,15)
C2=A(5,15)
B3=A(3,15)
C3=A(6,15)
GC TC 9

230 FSC=SK5*(VAD4*3,1416/180.0-BE1+C1/SK3)/CH3-A(4,15)*CCS
C(VAD4*3.1416/180.0-BE1)+HT1*SIN(VAD4*3,1416/180.0-BE1)
PUNCH 6, HT1,TA1,HT2,TA2,FSC
STCP
END

\
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APPENDIX IV

Program for Stress Analysis

STRESS ANALYSIS OF SPRINGS
1 FORMAT (3F14.6)
2 FORMAT (3F14.6)
3 FORMAT (3F14.6)
A FORMAT (3F14.6)
5 FORMAT (3F14.6)
6 FORMAT (3F14.6)
7 FORMAT (3F14.6)

RFADl, A1,A2,A3
RFAD2»B1 B2,B3
RFAD3»D,T1,C
T2=C*3. 1416/180.0 ^

C1=-SINF(T1)*C0SF(T2)
C2=C0SF(T1)*CCSF(T2)
C3=SINF(T2)
D1=-C0SF(T1)
D2=-SINF(T1)
D3=C.O
E1=SINF(T1)*SINF(T2)
E2=-SINF(T2)*C0SF(T1

)

E3=+COSF(T2)
FM0T=A1*C1+A2*C?+A3*C3
FM0N=A1*D1+A2*D2+A3*D3
FvoB=Al*El+A2*E2+A3*F3

• FF0T = B1*C1 +B2*C2+B3-»C3
FF0N=B1*D1+B2*D2+B3*D3
rF0B=Bl*Fl+B2*E2+B3*E3
T CA 11 = 16. 0/(3. 141 6* ( D^^*3) )*( ( FFCT*D/8 . 0+FMON ) +SQRTF ( (FFOT*

CD/8 . 0+FMCN ) **2+ ( FM0T-FF0N*D/8 . ) **2 )

)

TCA 12= 16. 0/(3. 14 16* (0**3) )*( ( FFCT*D/ 8 . 0+FMCN )-SORTF ( (FFOT*
CD/8.0+FM0N)**2+{FM0T-FF0N*D/8.0)**2

)

)

SCA1=+16.0/(3.1416*(D**3) )*(SORTF( (FFOT*
CD/8.0+FM0N)**2+(FM0T-FFCN*D/8.0)**2)

)

TCA21=16.C/(3.1416*(D**3) )*( ( FF0T*D/8 . 0-FMOB ) +SORTF ( (FFOT*
CD/8 . 0-FMCB ) **2+ ( FM0T+FFCR*D/8 . ) **2 )

)

TCA22=16.0/(3.1416*(D**3) )*( ( FF0T*D/8 . 0-FMOB ) -SGRTF ( (FFOT*
CD/8.C-FM0B)**2+(FM0T+FF08*D/8.0)**2)

)

SCA2=+16.0/(3.1416*(D**3) )*(SQRTF( (FFOT*
CD/8. 0-FMOB )**2+(FM0T+FFCB*D/ 8.0)** 2) )
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TCA31=16.0/(3.1416*( D**3) ) * ( ( FFOT* 0/8 .0-FMCN )+ SORT F ( (FFCT*
CD/8.n-FMCM)**?+(FMCT+FFOM*n/a.0)*«-2) )

TCA3?=i6.0/{ 3.1416*(D**3) )*( ( FFCT*D/8.0-FMCN ) -SQRTF ( (FFCT*

CD/8.0-f MCN)**2+(FMnT +FF0N*D/8 .0)**2 )

)

SCA? = + ]6.0/{3.1416*(D^f*3) )*(SORTF( (FFCT*
CD/8.0-FMCN)**2+(FMCT+FFCN*D/8.0)**2)

)

TCA41 = 16.0/(3.1A16<-(D**3) )*( ( FFCT*D/8 . 0+FMCB ) +SQRTF ( (FFCT*
CD/8.0+FMC3)**2+(FMCT-FFCB*D/8.0)**2)

)

TCA42=16.0/(3.1416*(D**3) )*( ( FFCT*D/8.0+FMCB ) -SQRTF { (FFCT*
CD/8.0+FyCB)**2+(FVCT-FFCB*D/8.0)**2) )

-

5CA'i = + ] 6,0/ ( 3.] 41 6* (0**3) )*(5QRTF( (FFCT*
C0/8.0+FMCB)**2+(FMCT-FFCB*D/8.0)**2)

)

PUNrH4,TCAn ,TCA]?»5''A1
PUNCH5,TCA21,TCA2?»SCA?
PlIMCH 6,TCA31,TrA3?,SCA3
PUNCH?, TCA41 ,TCA42,SCA4
STCP
FND
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ABSTRACT

This thesis presents an approximate solution for the stress

analysis of laterally loaded coil springs undergoing large deflections.

The coil spring is approximated by n link-like elastic elements,

pinned together, with elastic restraints (or angular springs ) at the hinges.

Each element may have different physical properties. With the assump-

tions that each link-like element takes tension and shear only, while the

connecting angular springs take moments only, the analysis is reduced

to the solution of a set of simultaneous nonlinear algebraic equations for

the determination of the forces on the elements, from which the stress

analysis follows in a complicated, but routine manner.

Two basic problems are discussed:

1. Given a set of loads, determine the deflection curve
and maximum stresses which result; and

2. Given a deflection curve, determine the set of loads
required to defornn the spring into the given curve,
and the maximum stresses which result.

Although the basic sets of simultaneous nonlinear algebraic

equations and methods for solution are discussed for both of these pro-

blends, a complete numerical solution is given for the second problem

only.

Comparison of theoretical and experimental loads calculated

and found for given coil springs indicates excellent agreement between

theory and experiment.


