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ABSTRACT 

One of the latest buzzes amongst agriculture is the storage and analysis of “Big 

Data.”  There are a number of questions surrounding the quality, quantity, and capacity of 

big data to form real-world decisions based upon past information.  Much like the teachings 

of history, the storybook that big data can reveal about a grower’s operation may hold the 

answers to the question of: “what is necessary to increase food production which will be 

required to feed an ever-growing world?”  With the increase in interest in precision 

agriculture, sustainability practices, and the processing of the immense spatial dataset 

generated on the farm, the next challenge at hand will be in determining how to make 

technology not only streamlined, but also profitable. 

Over the past few years, precision agriculture technology has become widely 

adopted as an agronomic decision making tool.  Much like a scientific experiment, the 

greater the number of similar observations, the greater the degree of confidence can be 

placed upon a decision.  As a means of increasing the number of observations that a farmer 

can use to base a decision upon, there is becoming increasing demand in being able to 

combine the data of similar farming operations in order to increase the size and scope of the 

dataset to generate better decisions benefitting many farms instead of just one.  

The growing interest in forming community data pools for farm data demonstrates 

the need for a study for determining how farming practices can be properly benchmarked. 

The goal was be to evaluate how to use farm data to make economic decisions in a similar 

manner as one would make agronomic decisions using similar observations.  



 
 

The objective was to design the proper protocol for benchmarking the farm’s 

potential, and evaluating potential increases in technical efficiency by adopting precision 

agriculture technology.  To accomplish this, a data envelopment analysis was conducted 

using scale efficiency as a means of determining the frontier of efficient farms. 

The resounding goal for this study in the future will be to use the model as a means 

of implementing the secondary process of pooling precision agriculture data to analyze 

efficiencies gained by the adoption of technology.  By demonstrating the value of 

generating peer groups to increase observations and refine farming practices, farmers can 

find increased profitability and efficiency by using resources that may already be held 

within the operation.
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CHAPTER I: INTRODUCTION 

This thesis is designed to help with the demonstration of the technical efficiency 

associated with implementing precision technology and how that might help to answer the 

question of whether the technology brings profitability to the farm.  The model to 

demonstrate this will be based upon the data envelopment analysis of an expansion of a 

dataset of limited observations.  The purpose of using this type of dataset is to protect the 

private information of the growers of the survey used in this public forum.  Upon the 

review of this work, the simulated dataset generated within this study will be replaced with 

real farm data.  

The agricultural media has reported on ‘big data’ as the current buzzword over the 

last four years, however, very little success stories exist with respect to community data 

analytics. The overall goal of this thesis was to develop a commercially viable community 

analysis tool for benchmarking farmer-clients. This objective was specifically carried out 

by adapting existing data envelopment analysis (DEA) methods for use in real-time big 

data environment.  The majority of  farm-level ‘benchmarking’ is suspected to be informal 

‘coffee shop talk’; and a more rigorous quantitative methodology has the opportunity to 

satiate the natural desire of farmers to rank and compare themselves with respect to yield 

output, input use, and more sensitive profitability.  

Data envelopment analysis methods were applied to a representative dataset of 

farmers who have shared data with a local cooperative. These DEA results provided 

comparative analytics regarding farmers’ utilization of precision agriculture technology.  

The expected outcome of this study will be to determine the variables necessary to ensure a 

proper analysis can be conducted with the real data and to gather feedback from others in a 
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public forum to determine whether there are other means of calculating true technical 

efficiency from the adoption of precision agriculture technology on the farm. 

This study will consist of four primary pieces.  First will be a literature review to 

determine the proper method on which the analysis will be conducted.  Secondly, a script 

will be written to expand the dataset beyond the limited observations using both 2012 

USDA Ag Survey data and relevant works.  Next, the dataset will be subjected to multiple 

forms of analysis to determine the proper format to calculate and analyze technical 

efficiency.  Finally, the project will be submitted to the committee for discussion on 

improving the model and ensuring the analysis will be conducted properly prior to 

constructing a survey for data collection to build the database in industry. 
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CHAPTER II: LITERATURE REVIEW 

2.1 Introduction 

 There is much debate among the experts within agriculture as to the necessary 

requirements of the modern farm operation that will allow for the growth needed to feed 

the ever-increasing population of the world.  The techniques that come to mind deal much 

in improving conservation practices, increasing efficiency in equipment, and maximizing 

the potential yield of growing crops.  While these seem to be a fairly logical set of 

requirements, there has not been nearly enough work done on the side of determining 

exactly how all of these methodologies will fit together to allow for proven sustainable 

growth on the farm.  The purpose of this literature review is to outline some of the work 

that has been done in this part of the industry, with a strong focus on technical efficiency 

and its definition as well as discussing some of the current methodologies that are being 

discussed as potential sources of research for further work, of which this project is a part. 

2.2 Precision Agriculture 

Precision Agriculture, simply put, is information technology applied to agriculture 

(Whitacre, Mark and Griffin 2014).  Within this basic outline come the subjects of big data, 

telematics, and embodied knowledge.  Each of these methodologies encompasses the 

framework powering the technologies that serve modern day farmers and assist them in a 

variety of ways in making on-farm decisions. 

Simply put, precision agriculture and big data can be seen by most as 

interchangeable.  The differences do not have that much of an effect on the surface to the 

average end-user, but the fact is, the powers within big data are just that – big.  What is 

meant by big data is more than a spreadsheet containing thousands of entries.  It is more 

than bringing together a variety of spatial data and analytics to assist in making agronomic 
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decisions.  Big data describes the process of growth and enhanced decision making 

analytics, being both spatial and intangible, that empower the end-user to fully incorporate 

all aspects of the operation to make customized, site-specific decisions.  The power 

unleashed by being able to utilize a vast array of unbiased, original data points can assist a 

grower in making true-to-life decisions that are based upon any number of variables of his 

own choosing, further incorporating the grower’s own personality into the decision making 

process. 

Precision Agriculture (PA), on the other hand, is an explanation, or description of 

the tools and processes that further enhance common agricultural practices by adding an 

element of specificity (geo-referenced points).  Many associate precision with GPS, or the 

Global Positioning System but really what they are referring to is a device using GNSS, 

which is a Global Navigation Satellite System (Whelan and Taylor 2013).  Other devices 

and methods that are found within the framework of PA are Unmanned Aerial Vehicles 

(UAVs), electrical conductivity (EC) or Veris® data, yield monitors, satellite imagery, and 

variable rate technology (VRT).  The majority of these devices have a sole purpose of 

providing the grower with feedback regarding field conditions, soil structure, and 

production linked by a geographical reference point to allow the overlay of multiple layers 

of data for analysis. 

A newer technology to hit mainstream agriculture is that of telematics.  This 

technology involves the wireless transfer of data between multiple devices or multiple 

machines.  This automated transfer of data is accomplished using cellular technology in 

most cases as a data carrier to connect to cloud-based data storage points.  The adoptions of 

this technology generally occur through the purchase of new equipment such as tractors, 
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combines, and spray rigs, but can also be added to old equipment as well as a stand-alone 

device tied into the machine’s on-board computer system.  The systems transmit not only 

as-applied and yield data to the cloud, but also enables the user to view real-time telemetry 

regarding the machine’s location, speed, and direction as well as engine fluid levels and 

temperatures in some systems. 

Mark, Whitacre, and Griffin (2015) outlined a three-stage adoption process that a 

typical farmer might follow in implementing precision technology in their operation in a 

paper presented at the Southern Agricultural Economics Association’s Annual Meeting.  

Stage one of the process is the purchase of a yield monitor and beginning the practice of 

collecting yield data.  Even though in the paper they state that this process is ubiquitous due 

to the relatively inexpensive cost per observation and the fact that most new combines have 

yield monitors installed as a standard equipment option (a very true observation in 

operations with economies of scale and who are upgrading equipment), the initial overhead 

cost may be the hardest step to overcome for a small to middle-sized farming operation 

where the purchase of a new combine may not be feasible.  It may become cost-effective to 

purchase the yield monitor out-right, but purchases such as this can be difficult for a grower 

to realize a net-return due to the fact that this piece of equipment is non-essential to the 

growing of crops in a non-precision farming operation.  To combat this, some Kansas 

farmers instead start on the side of managing inputs rather than collecting data regarding 

production.  In economic theory, which will be better outlined in later chapters, this may 

not be the worst alternative.  The limiting factor, however, is the inability to measure true 

production spatially, and thus being able to determine whether site-specific product 

placement truly produced a positive return on their investment.  This will become a key 
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limitation in being able to measure true growth as a result of PA, and because it takes at 

least three years of quality, normalized yield data to begin to make properly-quantified 

fertilizer and planting prescriptions, time may end up being the most daunting obstacle that 

growers will have to overcome in order to further progress in PA. 

Stage two is noted as increasing the usage of soil mapping technologies.  This 

includes, but is by no means limited to, EC mapping, grid sampling, and the usage of 

spectral reflectance sensors.  Again, steps one and two may be reversed in some operations 

due to access to capital, poor commodity market conditions, and high input costs.  Also, 

some agriculture input retailers may have programs to incentivize growers to implement 

different technologies or agronomic management programs that may allow for an increase 

in production which could possibly supplement the investment in equipment upgrades.   

Finally, the third step in the process is the adoption of variable rate technologies 

(Mark, Whitacre and Griffin 2015).  If a grower is outsourcing their PA to a retailer, this 

step may have been implemented sooner rather than later in the process.  Because many 

custom applicators now have the necessary controllers as part of their standard equipment 

and they have greater economies of scale in the application of fertilizer spatially, this 

technology could be incorporated in even a small farming operation’s agronomic practices 

many years before yield data will be accessible. 

A farming operator’s ability to grow within PA will have a direct impact on the 

measure of the farm’s technical efficiency.  A greater level of PA found on a given field 

may not only show greater returns at harvest time, but also greater transparency, which will 

become valuable as sustainability and traceability practices evolve and record keeping 

becomes a more integral part of the food supply.  This is all summed up quite well by 
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Schimmelpfenning and Ebel (2011) in a USDA study quantifying the adoption of PA in US 

Agriculture.  The conclusion of the research shows that the future viability of PA will 

depend upon three items:  whether technologies become less expensive and/or easier to 

install and maintain, whether conservation tillage becomes more widespread, and whether 

the prices of fuel, fertilizer, and custom application are relative. 

2.3 Telematics and Telecommunications Infrastructure 

Telematics represents the next generation of technology to be implemented on the 

farm.  Essentially, the advantage of such an adoption on the farm would be to eliminate the 

need to transfer data between devices because the communication will be seamless and 

require nothing more than a high-grade broadband source.  As of right now, the data being 

transferred is not requiring a great amount of bandwidth because the number of devices and 

operations that currently implement this technology is not very wide spread.  However, as 

the number of farmers adopting telematics for data transfer grows, the capabilities required 

of the telecommunications infrastructure will need to continue to improve in order to 

handle the increased upload demand brought on by agriculture. 

There are four sources in which farmers obtain high-speed internet:  via wired 

broadband (cable, digital, or fiber-optic line), dial-up (over telephone lines), satellite, and 

cellular service.  The current debate deals specifically with the modern-day and future farm 

operator’s telecommunications needs moving forward with regard to infrastructure and 

capacity to handle big data. 

It may come as no surprise that urban areas have the strongest and most capable 

wireless network.  Actually, 100% of the urban populous has access to at least one network 

provider.  While 98% of the rural population is in the same position, the question no longer 

deals nearly as much with access as it does with signal strength and upload speed.  As 
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Whitacre, Mark and Griffin outlined via multiple sources of their own:  “only 90% of 

households have access to mobile wireless speeds of 3 Mbps or greater and only 78% have 

access to 6 Mbps or greater.”  What does this mean for agriculture?  If not even all urban 

areas have access to high-speed internet, and the demand by rural residents continues to 

grow as technology expands the usage of wireless devices to farm implements,  then the 

needs of the modern farm could make the argument for upgrades in telecom infrastructure 

much greater than anticipated.  The questions that need to be answered are:  what is the 

economic efficiency threshold that comes between agricultural growth and broadband 

speed, and will the farm of the future have the necessary access to data transfer speeds that 

will allow them to evolve in the twenty-first century and to adapt the new technology being 

outfitted in new equipment (Mark, Whitacre and Griffin 2015)? 

What is needed is to define technical efficiency as a means of how the farm is able 

to grow, or not grow, by adapting precision technology methods – namely telematics.  

Also, it will be necessary to determine the threshold which exists where growth in this field 

will outweigh net farm income.  It will be critical to then demonstrate the current capability 

as well as the missing links that will keep from expansion and growth in the usage of 

telematics in big data. 

2.4 Community-Pooled Data & Embodied Knowledge 

In its current form, precision technology requires a substantial commitment of both 

capital and time in order for a farmer to become fully-integrated, which could be a reason 

that such technologies have not been adopted in lower-yielding environments.  The 

capabilities that exist within the technology and the increased availability to automated 

systems will continue to have an impact in this facet of agriculture and will help in the 

growth of its use. 
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In time, precision technology will completely change the way farm data and records 

are stored.  It will also change the means of comparing farmers amongst their peers.  Where 

the status of a farm was compared to those within a neighboring geography and based upon 

yields and equipment, today, the existence of cloud-based storage, community data pools, 

and data cooperatives allow for the comparison of farms among potentially millions of 

others who may be in completely separate parts of the world.  The ability for growers to 

share experiences and techniques with a group beyond their immediate geography could 

enable them to expand their knowledge base and to possibly find new management 

practices to enhance profitability. 

This enhanced data pool could help growers help themselves, but could also 

provide direction for retailers and cooperators in targeting new methods to research, and 

catering programs toward solving problems existing among self-segmented peer groups.  

The more complete the dataset of a community, the more realistic models can become to 

provide insight and direction for everything from research and development of new 

products to risk management practices.  The enhanced data could also become an 

additional tool to be utilized by those involved in other aspects of farming other than crop 

production.  It could be used to generate realistic models for grain storage and 

merchandising groups, to enhance crop production forecasting, or even to assist in product 

allocation for agriculture retailers. 

As more growers become interested in incorporating PA on the farm, the more that 

must be known about its use and how the farmer wishes to use the information.  While the 

“big picture” involves heavy involvement of big data processing, the ability for the average 

end-user to put this to practice will allow them to adapt the added process into the current 
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day-to-day activities without requiring them to make any drastic changes.  There becomes a 

need, then to designate how the process can be separated between an information-intensive 

process and embodied knowledge (Griffin, et al. 2004). 

Embodied knowledge, as described by Whitacre, Mark, and Griffin in the Choices 

article, involves a purchase where information is passed to the end-user in the form of an 

input which will require no acquisition of additional skills in order to adopt the advanced 

technology.  Such examples from the article include automated steering and swath controls 

in equipment and Round-Up Ready® technology in seed.  When an end-user purchases this 

technology, no increase in skill set is required. Since the technology package is ‘self-

contained’, the customer is able to adapt the enhanced capability without a need to 

purchase any additional equipment or change the way the product would otherwise be used 

within the operation (2015). 

2.5 Farrell’s Measurement of Productive Efficiency – Data Envelopment Analysis 

To properly discuss the classical process of Data Envelopment Analysis (DEA), a 

review of the work done by Farrell should be included for his insights on how technical 

efficiency measurement in this form came to exist.  In one of the first essays dealing purely 

on determining a measurement of productive efficiency, taking into account more than just 

labor in its theory, his work outlined a number of concepts that are relevant to nearly every 

DEA application.   

In Farrell’s example, he begins with an exercise outlining a simple case of a 

technically efficient firm which employs two factors of production that will result in a 

single end-product, produced under conditions of constant returns to scale.  The efficient 

production function is known, which in essence means that the value of the perfect 

combination of inputs is known where output will be maximized.   



11 
 

Farrell’s diagram (Figure 2.1) graphically illustrates where the point P represents 

the inputs of the two factors, per unit of output, that are used in production.  The isoquant 

SS’ is representative of the variety of combinations of the factors representing a perfectly 

efficient firm.  Point Q represents a second efficient firm using the two factors in the same 

quantities as P.  This means that the second firm, Q, is able to produce the same amount of 

output as P, but at a fractional rate OQ/OP times that of P.  Where the original theory was 

to simply be satisfied that OQ/OP was indeed the technical efficiency of firm P, Farrell 

redefined technical efficiency.  He also took into account factors related to optimum 

production in a given marketplace, where price becoming a part of the equation is just as 

important as the output. 

Figure 2.1:  Farrell’s Isoquant Diagram  

 
Source:  (Farrell 1957, 254)  

If AA’(Figure 2.1) has a slope equal to the ratio of the prices of the two factors, the 

optimal method of production would, in fact, not be Q, but rather, Q’.  The rationale being 

that even though both points represent a technical efficiency of 100 percent, a firm 

producing at point Q’ will be producing at a fraction of the cost of Q equal to OR/OQ.  The 
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end result in his example was that if the firm were perfectly efficient, by taking into 

account both technical, and also, price efficiency, the costs would be reduced by a fraction 

of OR/OP. 

Farrell was quick to point out that there were a number of weak points in this 

simple assumption, noting that one would need to take into account the difference between 

theoretical and empirical decision-making and the fact that the theoretical efficient function 

overlooks a number of very complex parts to the process, essentially what makes firms 

different from one another.  To this, the design of the model will depend upon the 

complexity and degree of realism.  He also added that there are two very important 

assumptions that need to be made in terms of the design of the efficient production 

function:  the isoquant is convex to the origin and in no way has a positive slope. 

The efficient production function is a result of the two assumptions noted above 

combined with the individual firms on the scatter plot (Figure 2.2).  The assumption of 

convexity comes into account because the resulting theory is, if any two points on the plot, 

or firms, are able to be represented in practice, then too, will any point which represents a 

weighted average of the two.  The second assumption, being that of slope, exists because if 

not, an increase in the applications of both factors would result in reduced output.  In the 

end, the curve SS’, becomes the estimate of the efficient isoquant.  
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Figure 2.2:  Farrell’s Scatter Plot  

 
Source:  (Farrell 1957, 256) 

The resulting curve is then defined in the following way.  There are line-segments 

that join the outer-most points in addition to the points representing infinity along each 

axis.  Each point on the scatter plot represents the solution to the equation where Pi = (xi1, 

xi2), and where λijk, µijk represents the solution to the equations λxi1 + µxi1 = xk1 (likewise, 

the same for firm 2 and so forth).  The solution to λxi1 + µxi1 will always be equal to, or 

greater than 1 for all Pk in the dataset A.  The equation for technical efficiency of firm Pk is 

the maximum of 1/( λijk + µijk) for all segments PiPj of SS’ (Farrell 1957). 

2.6 Adoption of Data Envelopment Analysis in Agriculture 

In the mid-1980s, there were a number of studies conducted that began to introduce 

non-parametric analysis as a means of exploring technical efficiency in production 

agriculture.  By the mid-1990s, Allen Featherstone and a number of Kansas State 

University academics had developed a variety of studies putting to use the modernized 

version of DEA to model and explore on-farm decisions and their impact on efficiency.  

One of the earliest studies, by Moghnieh, Featherstone, and Goodwin, introduces the 

“augmentation hypothesis” as a means of modeling technical change.  Simply put, the 
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hypothesis states that “technical progress increases the effectiveness of inputs in the 

production of output” (Moghnieh, Featherstone and Goodwin 1991).  The difference in this 

study versus others prior was that it recognized the fact that there was two different means 

in which a firm would determine the way it conducts business activities.  A firm would 

either seek to maximize profitability or to minimize costs, the decision being made among 

a host of technological advantages and pricing options. 

In a 1996 study, Featherstone and Rahman used a non-parametric analysis as a 

means of analyzing the profit-maximizing behavior of agricultural cooperatives.  Because 

of the nature of the cooperative as a non-profit organization, it is assumed that the profit-

maximizing model for this group would be different from that of a privately-held or 

publicly-traded company.  Their analysis involved comparing 20 cooperatives across 8 

states in the Midwest which were affiliated with Farmland Industries and determining the 

number of violations to the profit-maximizing hypothesis each cooperative held.  From 

there, they were able to determine how much profit was forfeited as a result.  In the end, 

they were able to use the non-parametric analysis as a means to compare against companies 

that, while belonging to a common group in Farmland Industries, otherwise have their own 

means of generating revenue and managing expenses (Featherstone and Rahman 1996).  

2.7 Re-Introduction of Data Envelopment as a Benchmarking Tool 

In 2006, Fleming et al. re-introduced the medium of comparative analysis to 

agriculture in the form of benchmarking.  They noted five distinct criticisms to using DEA 

as a method for comparative analysis: 

 “It failed to incorporate sound economic principles in its application.” 

 “There was limited scope for action once indices were calculated.” 
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 “The approach failed to establish causal relations between farming practices and 

performance.” 

 “It was not consistent with a holistic approach to farm decision making.” 

 “Risks and uncertainty in farm decision making were neglected.” 

(Fleming, et al. 2006, 3) 

In the original criticism, the reasoning behind the debate came because the analysis 

held no point of reference to anything other than the entities being compared.  When the 

analysis is looked at as the initial point and research is conducted based upon the findings, 

the ability to act becomes feasible.  Due to the nature of each entity in agriculture acting so 

differently, with a variety of practices and methodologies coming into play, it is often 

difficult for those in the community to find value in establishing a reference point amongst 

peers.  This is where the inability of comparative analysis to establish a cause for the 

differences between entities enters the conversation.  Methods such as grouping or 

segmentation were among the only means for such analysis to take place.  Due to the 

differing nature of farming practices amongst even similar pairings, the ability to use this 

methodology was scarce. 

Fleming et al. sought to use data envelopment as an effective tool in comparative 

analysis, but found that in order to use it they had to overcome several key issues. One 

issue included the perception that it is often difficult to use DEA as an effective method for 

economic study due to the difficulty to define a definite course for action.  Their argument 

to that is if the benchmarking terms are designed using economic principles from the start, 

the scope for action is broadened, a holistic approach is included, risk is incorporated, and 

relationships could be more easily identify changes required.  If those elements could be 
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incorporated, then a comparative analysis can indeed provide value.  Including reference to 

the text of Pidnyck and Rubinfeld (2005, 595) define a firm as being technically efficient 

“if the output of one good cannot be increased without decreasing the output of another 

good.”  Using this concept, Fleming et al. argue that the producer is in essence “adopting 

‘best-practice’ production methods for a given production technology, and all points on the 

production contract curve represent technically efficient combinations of labor and capital.”  

They also add that the usage of DEA provides the ability for comparison of inefficient 

farms to identify peer groups, allowing for the design of a course of action for growers to 

improve (Fleming, et al. 2006). 

As a means of countering the benchmark argument, Quintana-Ashwell and 

Featherstone introduced a new study in early 2015 using DEA as a means of demonstrating 

farm productivity growth.  Their work investigated the growth measured by the Malmquist 

Productivity Index, which could be regarded as the existing benchmark for the Kansas 

Farm Management Association farms represented in the study.  They decided to break 

down the index value to examine the primary sources of growth in productivity. Their 

research found technical change to be the driving factor, which differs from the research 

previously conducted, where relative prices were found to be at the core of the impact upon 

technical change and efficiency.  The result, in their opinion, was that perhaps farm 

improvements and farm profitability resulted in an increase in input prices (Quintana-

Ashwell and Featherstone 2015). 
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CHAPTER III: THEORY 

3.1 Introduction 

This project combined multiple economic principles to establish a benchmark for 

further analysis.  It required the understanding of an individual grower’s production 

function and how it relates to increasing output via changes in inputs.  It also involved 

determining the best means of comparing firms by their ability to manage the allocation of 

scare resources as outlined by Farrell via three distinct types of efficiency:  price, technical, 

and economic.  This study included the measurement of scale efficiency by conducting a 

non-parametric data envelopment analysis to establish a benchmark for the purpose of 

ranking and grouping farms based on their efficiency.  These concepts combined to define 

a hypothetical model that was built with the intention of expanding to include empirical 

data with the end-result of designing a platform for the growth of community-pooled data 

and embodied knowledge. 

3.2 The Production Function 

This study essentially covers how the production function changes the technical 

efficiency of the farms of Clay County, Kansas.  To begin, it is important to outline what is 

being meant by the production function and how it relates to this project.  The production 

function represents the necessary combination of inputs which are required to produce one 

unit of output.  Multiple combinations are positioned in an array across on a graph to make 

up what is known as the production possibilities frontier.  This frontier represents all 

combinations of inputs and technological advantages that combine to create desired levels 

of output.  Though not always the case, the production frontier generally has a curved 

shape, representing diminishing marginal product.  What is meant by this is that the amount 
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of effort and/or inputs required to produce smaller quantities of output is less than what will 

be required at greater output levels. 

In agriculture, as it is with many other industries, there is an optimum level of 

output that can be achieved that will have the greatest return, and at that point, any output 

level higher than that level will actually cost more per-unit than the output level which 

precedes it.  Precision agriculture technology can assist in determining the optimum level 

of output which will maximize the efficiency of inputs.  This study attempts to discover 

how the relationship of inputs combined with various levels of access to precision 

agriculture equipment affects the ability of many firms to maximize technical efficiency.  

3.3 Price Efficiency versus Technical Efficiency 

Many studies conducted come with a list of assumptions that must be made in order 

for a given theory or strategy to be tested across a variety of differing decision-makers.  

This study is no different.  Because each farm operates on its own individual marketing 

plan, with its own profit schedule, and containing a number of different goals for output 

and efficiency operating on with its own production function, it is imperative to list in 

advance the variables being considered to have an impact on the study and which ones are 

deemed heterogeneous enough to other entities being compared that the variability need not 

be included within the study. 

Many farmers, in their actions, will dispute this economic theory by claiming that, 

because they have the ability to determine the best price for their input purchases, and 

because they will also sell at any given point in time of their choosing that they have the 

ability to control the price in their efficiency frontier.  The trouble with this is that each 

farmer is one of many who are in the business of growing a commodity.  To this, each 

farmer is a price taker.  An increase in production by this one farm will in no way affect 
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global prices in any facet, nor will a hold-out in purchasing result in a decrease in the cost 

of inputs.  Farrell describes that it is nearly impossible to become truly price efficient and to 

know future price structure, and because of this (especially in the position of a price taker), 

the best way to increase efficiency is by the means of increasing technical efficiency 

through management practices (Farrell 1957). 

3.4 Scale Efficiency 

The data envelopment analysis uses two primary concepts as a means of 

determining the efficiency frontier.  In the analysis conducted, scale efficiency is being 

calculated as the ratio of the data envelopment of the Net Farm Income as it relates to 

Acreage at variable returns to scale (VRS) and constant returns to scale (CRS).  The 

primary purpose of calculating this number is to benchmark the farms within the study 

based upon this ratio. 

3.5 Non-Parametric Data Envelopment Analysis (DEA) 

There are two distinct approaches in the analysis of the production function across 

multiple entities or multiple methods.  First, there is the parametric approach.  Within this 

method, the data is manipulated into an optimized functional form and analyzed using a 

traditional, parametric technique to estimate any unknown parameters from an observed 

dataset.  Firms are then evaluated side by side to make observations in their processes due 

to the fact that each firm is different and may operate on completely separate terms even if 

producing the same outcome.  The other form is the non-parametric approach.  As noted by 

Featherstone and Rahman, “the nonparametric approach examines the behavioral-

optimization hypotheses without specifying any functional form for production 

technology” (1996, 267).  By not specifying a functional form, an analysis is free to be 

conducted without the fear of a potential aggregation bias.  These biases exist because no 
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two firms are the same, and factors differentiate them all due to technological advantages 

or differing input-sourcing or commodity-selling programs.  The existence of these biases 

is among the limiting factors in the analysis of neoclassical optimizing behavior 

(Moghnieh, Featherstone and Goodwin 1991). 
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CHAPTER IV:  METHODOLOGY 

4.1 Introduction 

The objective of this project was to demonstrate the level of technical efficiency 

brought to a grower’s operation by implementing various levels of precision technology.  

This was evaluated by developing a hypothetical dataset based upon real observations 

expanded to fit the distribution of the 2012 Ag Census of Clay County, Kansas and 

comparing the results of the enterprises via data envelopment analysis.   Using a non-

parametric data envelopment analysis, the goal was to determine what pieces of equipment 

and technology bring the most value to the grower when it comes to being technically 

efficient based upon the principles defined by Farrell and Featherstone. 

4.2 Outline of Project 

The project consists of a script, written in R (R Core Team 2015) to simulate a 

county containing 541 farms to be representative of the distribution of farms in Clay 

County, Kansas in the 2012 Census of Agriculture (Figure 4.1).  Using a truncated normal 

distribution, the firms of a similar distribution were generated with the objective of using 

the data to establish a number of simulated variables on which a data envelopment analysis 

can be conducted to measure technical efficiency.  Upon establishing a distribution of 

farms, the acres were divided among a number of properties simulating a similar 

distribution to Clay County in 2012 (Figure 4.1). 

The acres of each of the 541 farms were distributed into four commodity categories:  

corn, soybeans, sorghum, and wheat.  The percentages of the total bushels delivered to 

Clay County elevators were 12.5% corn, 40% soybeans, 35% wheat, and 12.5% sorghum 

in the 2014 crop year.  The acreage of each farm was simulated in the following manner, 

where each commodity’s allocation was divided according to parameters placed upon farm 
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size.   To begin, growers with acreage less than 1000 acres equally divided farm operations 

among soybeans, sorghum, and wheat.  The allocation of acres for farms over 1000 acres 

was handled differently, where the distribution of commodity acres consisted of four 

separate computations. 

Figure 4.1:  Distribution of Clay County Kansas Farms 

 
Source: (US Department of Agriculture 2012)    

First, because corn was allocated only to this group of farms, there was a limiting 

factor in the form of an if/then statement which separated farms into the two separate 

groups and then applied a normal distribution of absolute values which represented the corn 

acreage to the group greater than 1000 acres.  The end result was that 12.5% of the total 

acres in the simulation were allocated to corn, 100% of which originated from farms 

greater than 1000 acres in size. 

Next, the total number of acres of each farm over 1000 acres was multiplied by 

0.43, representing the remaining acres of soybeans to be represented by farms in this group 

to achieve the 40% total acreage for the county.   The same exercise was conducted to 

represent sorghum at a rate of 10% to achieve the county mean of 12%.  Finally, the acres 

allocated were tallied and subtracted from the total to represent wheat grown by the farms. 
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Once the farming sizes and commodities grown were simulated, a number of 

precision agriculture parameters were applied to the group.  There are five groups of 

equipment and practices divided among the farms:  yield monitors (40%), auto guidance 

(20%), variable rate technology (10%), big data analytics (10%), and telematics (5%) 

(Schimmelpfennig and Ebel 2011).  

Next, yield values were calculated based on a normal distribution with the mean 

value being the five-year average for each representative commodity.  Based on USDA 

NASS data, mean yield and standard deviation were assigned each crop (Table X).  Corn 

has an average yield of 150 and standard deviation of 50, soybeans has an average yield of 

40 and standard deviation of 15, sorghum has an average yield of 95 and a standard 

deviation of 40, and wheat has an average yield of 45 and a standard deviation of 10.  With 

the base yield established, precision agriculture variables increased the yield of the 

commodities based on the equipment present within the operation.  Farms utilizing variable 

rate technology increased yield by 15% using a normal distribution.  Farms with an auto 

guidance system had a yield increase of 20% applied, also on a normal distribution.   

Finally, for farms using analytics, which requires a yield monitor to be used, an increase of 

15% was added to yield based on a normal distribution (Schimmelpfennig and Ebel 2011). 

Using current market data regarding inputs and commodity prices within Clay 

County, a net farm income was calculated for each farm based on the commodities grown, 

the inputs, the PA attributes, and the yield.  Credits were issued to the cost of inputs as a 

means of simulating the reduction of input usage based on the PA technology adoption of 

each farm.  A grower with an auto guidance system had a 5% decrease in input costs, 
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analytics had a 15% decrease, and telematics decreased costs by 10%, all based on a 

normal distribution.   

Input prices are based upon a Clay County, Kansas agricultural input retailer’s price 

list using average prices for seed varieties grown locally and fertilizer and herbicide prices.  

The recommendations are based upon common recommendations and practices for the area 

(Table 4.5).  To bring some reality to the agronomic decisions built within this simulation, 

it is assumed within the herbicide program for example, that the grower will have at least 

one burndown application either following harvest or prior to plant of the next year’s crop.   

The commodity prices for sales of crops were based upon the March 13, 2015 harvest-time 

closing prices for AgMark, LLC elevators in Clay Center, KS. 

4.3 Development of Dataset in R 

The entire project was developed and produced using an analytics package written 

in the computational language of R (R Core Team, 2015).  Per the introductory paragraph 

on The R Foundation’s, or R-Project’s webpage:  “R is a free software environment for 

statistical computing and graphics.  It complies and runs on a wide variety of UNIX 

platforms, Windows, and MacOS” (2015).   R represents an “integrated suite of software 

facilities for data manipulation, calculation and graphical display.”  Essentially, R is the 

language and physical environment that exists for the purpose of calculating, computing, 

and manipulating data.  The platform gives the statistician and economist the ability to 

input data and run many different packages to manipulate and analyze the data set in the 

forms of “ linear and nonlinear modeling, classical statistical tests, time-series analysis, 

classification, clustering as well as graphing” (The R Foundation 2015).  The following 

will step the novice user of R through the thought process and script used during the 

inception of this dataset and analysis. 
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As noted earlier, because the dataset was not directly observed, all of the data was 

regenerated using simulation techniques found in R.  The development of this data was 

based upon known values and represents an environment comparable to reality.  The 

reasoning behind using simulated values is that the private values comprising the actual 

dataset are proprietary to the owner-members of the cooperative.  The design, however, 

follows a similar format and pattern to the actual, observed data.   

To begin the generation of the dataset, a histogram representing Clay County 

Kansas in the 2012 agricultural survey (Figure 4.1) was selected as the basic framework for 

determining farm size.  The following code was used to create a dataset simulating this 

distribution: 

rtruncnorm(n = 20, a = 1, b = 9, mean = 1, sd = 50) 

where “rtruncnorm” represents the command to simulate a truncated normal distribution in 

the first group of the histrogram, 20 growers in total, ranging from acreage of 1 to 9, and a 

standard deviation of 50.  

The next step in the process was to divide the total acres created within the dataset 

into four commodities:  corn, soybeans, sorghum, and wheat (Table 4.1, Table 4.2, Table 

4.3).  To do this, the acres were allocated on a normal distribution according to the 

following parameters: 

 Corn was be grown by farms with 1000 acres or more of total farmland. 

 Soybeans were grown on all farms.  Farms larger than 1000 acres allocated 

43% of acres to planting soybeans, while farms smaller than 1000 acres 

allocated 1/3. 

 Sorghum was also grown on all farms, allocating 1/3 of total farmland. 
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 Wheat acres were allocated at a value of the total acreage minus the values 

of the three previously listed commodities.   As a result, some farms did not 

have wheat acres. 

Table 4.1:  Distribution of Acres as a Percentage of Total Simulated Acres by Crop 
Farm Size Corn Soybeans Sorghum Wheat 
<1000 Acres 0% 26% 84% 30% 
>1000 Acres 100% 74% 16% 70% 

Table 4.2:  Distribution of Acres as a Percentage of Total Acres by Farm Size 
Farm Size Corn Soybeans Sorghum Wheat 
<1000 Acres 0% 33% 33% 34% 
>1000 Acres 18% 43% 3% 36% 

Table 4.3:  Distribution of Acres by Crop (Simulated Values) 
Farm Size Corn Soybeans Sorghum Wheat Total 
<1000 Acres 0 38,096 38,096 38,211 114,403
>1000 Acres 45,400 106,710 7,385 89,135 248,630

Total 45,400 144,806 45,481 127,346 363,033

 

An example of this type of command would look like the following: 

ifelse(dat.sim$Total>999, abs(rnorm(541)*0.215*dat.sim$Total),0) 
ifelse(dat.sim$Total >999, dat.sim$Total*.43, dat.sim$Total*0.333) 
 
where the dataset is generated using an if/then statement for corn, soybeans, and sorghum 

and then subtracting those three values from the total for wheat. 

The next task at hand was to simulate the PA attributes to represent equipment 

purchases and adoption of technology on the farm.  Similar to reality, only farms within the 

model with 500 or more acres have the ability to own a yield monitor.  Likewise, only 

farms of the same size, 500 or more acres, have access to an auto guidance system.  All 

farms have the ability to have variable rate technology due to the ability to have products 

custom-applied.  The most limited resource deals with access to big data analytics, which 

require the farms to have both a yield monitor and auto guidance to qualify.  Similarly, 
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telematics would only be a necessary option to have on the farm if the operator was using 

big data analytics, thus requiring the farm to have the same criteria as big data to qualify for 

access to the technology. 

To simulate the adoption of precision agriculture technology, the variables were 

added to the dataset in the form of a binomial response - 1 for yes, 0 for no.  A sample 

command would look like the following: 

ifelse(BIGDATA==1, rbinom(541, 1, .155),0) 
aggregate(Total~TELEMATICS, data=dataset, sum) 
sum(Total Acres) 
aggregate(Total~TELEMATICS, data=dataset, sum)[2,2]/sum(Total Acres) 
 
where the attribute is allocated on a binomial distribution with a probability of 15.5% to 

satisfy the percentage of acres represented by this application. 

Once all of the farm’s attributes were created, using the information from the 

previous section, each commodity’s yield was generated on a normal distribution where the 

mean was representative of the five-year average of the county crop yield and the standard 

deviation, similarly being based on the five-year minimum and maximum average yield.  A 

sample command is listed below: 

SB Acres<-rnorm(541, Mean=40, Standard Deviation=15) 
 
SB Yield<-abs(SB Acres) 
 
SB VRT<-ifelse(dat.sim$VRT==1, SB Yield*rnorm(1, Mean=0.15, Standard 
Deviation=0.25),0) 
 
SB Auto Guidance<-ifelse(AUTOGUIDANCE==1, SB Yield*rnorm(1, Mean=0.2, 
Standard Deviation=0.25),0) 
 
ifelse(Big Data Variable==1, SB Yield*rnorm(1, Mean=0.15, Standard 
Deviation=0.25),0) 
Soybeans Yield<-absolute value(SB Yield + VRT + Auto Guidance + Big Data) 
 
where the simulated yield is a function of a random normal distribution where the county 

average yield of soybean over the five-year period was 40 bushels per acre and standard 

deviation was 15 (statistics for all crops are shown in Table 4.4).  The yield was made an 
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absolute value because, while numerically and statistically that would be possible in a 

normal distribution, negative yield is not possible in reality.  After that, a credit was applied 

based on the expected yield gain as a result of the implementation of the different PA 

variables.  Each farm with a positive value returned within the binomial distribution had a 

yield bump of 15% for having variable rate technology (VRT), 20% for having an auto 

guidance system (AG), and 15% for using software for data analytics (BIGDATA).  The 

percentages applied based on technology was based, again, on a normal distribution. 

Table 4.4:  North Central Kansas Average Yield 2005-2014 
Commodity N Mean Std Dev Minimum Total 
Corn 10 121.31 18.24 89.20 150.00 
Soybeans 10 37.84 6.28 24.90 47.00 
Sorghum 10 88.10 15.08 55.40 108.00 
Wheat 10 40.85 5.32 31.10 47.00 
Source:  (National Agricultural Statistics Service 2015) 

The final piece to be simulated was input costs.  Because this study focuses on 

technical efficiency as a result of implementing precision agriculture technology, prices are 

for the most part, irrelevant.  Thus, prices will be equal for both the inputs and grain sales 

of all farms.  Thus, the prices of inputs and outputs will not be spread on a normal 

distribution, but rather, allocated according to the number of acres for inputs and number of 

bushels for outputs.   
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Table 4.5:  Input Costs by Commodity  
Commodity Seed Fertilizer Herbicide Total 
Corn $90.00 $149.00 $59.05 $298.05 
Soybeans $65.00 $20.00 $73.54 $158.54 
Sorghum $23.40 $104.50 $59.05 $186.95 
Wheat $19.20 $76.50 $36.91 $132.61 

 

The script used for the application of input costs and gross revenue is shown below: 

Input Costs: 

Sorghum Input Costs<-ifelse(GS Acres >0.1, (GS Acres*186.95),0) 
 
Auto Guidance Input Savings<-ifelse(AUTOGUIDANCE==1,GS Input*rnorm(1, 
Mean=0.05, Standard Deviation=0.25),0) 
 
Big Data Input Savings<-ifelse(BIGDATA==1, GS Input*rnorm(1, Mean=0.15, 
Standard Deviation=0.25),0) 
 
Sorghum Input Costs<-absolute value(GS Input-Auto Guidance-Big Data-
Telematics) 
 
Telematics Input Savings<-ifelse(TELEMATICS==1, GS Input*rnorm(1, 
Mean=0.1, Standard Deviation=0.25),0) 
 

Gross Revenue: 

Sorghum Revenue<-ifelse(Sorghum Acres > 0.1, (Sorghum Yield*Sorghum 
Acres*3.95),0) 
 
where, again, the input costs are the same for all firms for each commodity (Table 4.5).  

Similar to the increase in yield resulting from the adoption of precision technology, the 

value of inputs decrease in the same manner based on the inclusion of each variable on the 

farm.  Auto guidance decreased input costs by 5% and data analytics decreased input costs 

by15%.  The allocation of the input cost savings was done so on a normal distribution with 

the mean value for each matching values found in Table 4.7.  For revenue, the value was 

determined via a simple multiplication of the bushels raised per farm and the current 2015 

fall crop elevator price in Clay Center, Kansas (Table 4.6). 
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Table 4.6:  Clay Center, KS 2015 New Crop Commodity Prices (03/13/2015) 
Commodity Futures Month CBOT Price Basis Cash Price 
Corn  DEC 2015 $4.05 -0.45 $3.60 
Soybeans NOV 2015 $9.53 -0.80 $8.73 
Sorghum DEC 2015 $4.05 -0.10 $3.95 
Wheat JUL 2015 $5.44 -0.42 $5.02 
Source:  (AgMark, LLC 2015) 

Table 4.7:  Influence of PA Technology Adoption on Input Cost and Yield 
PA Technology Adopted Yield Increase Input Cost Decrease 
Yield Monitor 0% 0% 
Variable Rate Technology (VRT) 15% 0% 
Auto Guidance 20% 5% 
Big Data Analysis 15% 15% 
Telematics 0% 10% 
 

Once all of the variables were allocated, bushels simulated, and inputs and outputs 

were determined, the total Net Farm Income (NFI) was calculated by adding each 

commodity’s net return.  From there, the net return was divided by the total acres farmed to 

achieve the per-acre value of net return for the farm. 

4.4 Analytical Approach 

First and foremost, it is important to note that the purpose of this analysis was to 

simulate a benchmarking scenario where observed empirical data could easily be inserted 

within the model to generate a real response as to the grouping of peers, measurement of 

technical efficiency, and basis of comparison for future surveys.  As noted, the dataset 

being created will be as close to real as is possible given the constraint of public 

information and availability of survey results.  The hypothetical dataset generated will then 

be subjected to the same analysis as empirical data would be, and the cherry-picking of the 

top entries will be studied in a similar fashion to explore differences between other farms 
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within assigned peer groups.  When real data does become available, the variables of 

interest and hypotheses outlining expected outcomes will already be identified for further 

study and exploration within the confines of this work. 

The analysis was similar to that of Curtiss and Jelinek in their study of cost 

efficiency on Czech wheat farms.  Their usage of NFI as a means to analyze the efficiency 

scores in determining how precision farming variable affect the profitability of the farm 

provides an important keystone to the study presented here.  As a means to measure 

efficiency, all levels of output were brought to a dollar valuation based upon economic 

data.  Then, all firms were collectively analyzed through DEA to determine the impact that 

each level of technological adoption had upon profitability in comparison to farms of 

similar attributes.   

Their research found that, on average, farms which adopted varying levels of 

precision technology carried the potential to reduce on-farm costs by as much as 37%.  

Their results found that “lower levels of allocative efficiency compared to technical 

efficiency scores imply that there is a greater potential for decreasing costs through 

correcting for input combinations (allocation) through different production practices 

(technologies) than in the proportional adjustment of input levels captured by technical 

efficiency” (Curtiss and Jelinek 2012).  Essentially, they determined that the greatest 

potential to decrease costs exists when inputs are properly allocated through the application 

of a precision technology as a means of determining the proper rate and placement.  Curtiss 

and Jelinek’s research also showed varying levels of efficiency scores, suggesting that 

farms identifying as adopters of PA technology had the potential to reach greater economic 

returns than their counterparts (2012). 



32 
 

To replicate a study similar to this, the data envelopment to be conducted will 

compare the NFI to the total acreage, or basically the output, being a measurement of the 

net returns to the farm based upon the resources of acres.  This will then conclude which 

farms are able to return the most profit to the farm based upon the acres they have readily 

available.    Much like Curtiss and Jelinek’s study, all measures of input and all measures 

of output have been converted to the same numerical format – in this case – U.S. dollars to 

be compared as a per unit, per acre, or per farm value.  Because all farms have the same 

methodology of deriving at a measurement of profitability, it makes the math far simpler to 

calculate and compare.  This would not necessarily have to be the case though.  Even if 

some of the firms had allocated acres to livestock production, or perhaps, left some of the 

ground fallow, this type of analysis will allow for the comparison of all operations 

regardless of their true allocation of acreage and/or inputs because efficiency will be 

measured in comparison of peers and the ability to convert acreage to NFI. 

4.5 Benchmarking in R  

The DEA was conducted using the package Benchmarking (Bogetoft and Otto 

2014) found in R.  This package was chosen over the Nonparaeff (Oh and Suh 2013) 

analysis package primarily on the basis of personal preference, but also due to the increased 

capabilities to conduct scale efficiency analysis through DEA.   

Upon loading the Benchmarking package, the X and Y coordinates were identified 

where the X-axis represented the Total acres represented by each farm and the Y-axis  

represented the NFI.  At that point, the scale efficiency of the dataset was calculated using 

the following logic: 

dea(X,Y,ORIENTATION="input",Returns To Scale ="vrs") 
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where “dea” represents the scale efficiency DEA command as a function of the X and Y 

identified previously and “vrs” represents the assumption of varying returns to scale exists. 

The same function was calculated once more assuming constant returns to scale.  For the 

calculation of scale efficiency, the “crs” value will be divided by the “vrs” value. 

This calculation of scale efficiency represents the primary motive for the study.  It 

is believed that this number, in combination with the varying levels of adoption of PA 

technology, will demonstrate the effectiveness of technology and profitability potential 

which may exist on the farm. 
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CHAPTER V: DATA AND RESULTS 

5.1 Data Introduction 

This section describes the observed results of the data envelopment analysis 

(Appendix B) conducted upon the dataset generated from the script outlined in Chapter 4 

(Appendix A).  The hypothesis going into the analysis was that the farms with the greatest 

adoption of precision agriculture technology would have the greatest efficiency levels.  The 

following will outline and interpret the observed results, demonstrating the economic 

impact which can be inferred upon a dataset of empirical values.  

5.2 Descriptive Statistics of Simulated Values 

The simulated dataset generated 541 individual farms ranging in size from 1 acre to 

4,181 (Table 5.1).  Some observations of the dataset were that not all farms recorded a 

positive net farm income (NFI), and as a result, those farms will not be represented in our 

analysis.  In all, there were 19 farms out of 541 which did not have a positive return, with 

none of the farms within this group having adopted any level of PA technology.  The 

largest grower with a negative NFI had a farm size of 1832 acres and was the only farm in 

this group to both produce corn and be of a size over 1000 acres.  The negative return for 

this farm was attributed to the low soybean yield slightly above 5 bushels per acre, 

generating a negative net return on this commodity of over $86,000.  In reality, it would be 

assumed that the negative return would be offset by an insurance payment in support of the 

low yield return.  Because that information does not exist within the confines of this 

dataset, the only correction to this observation will come when real data replaces the 

simulation. 

Overall, the dataset generated is very similar to the observed values of this county.  

There are some factors not being taken into account in this – namely crop sharing and cash 
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rent, which could increase farm size and farm income considerably – but when evaluating 

the farms as they were generated, the concern will be the return of the farm against the 

acres of the farm, which would be the same methodology regardless of the structure of the 

business.  There were some outliers identified as well, especially noted when yield values 

were well below average with no correction based upon crop insurance or subsidy 

programs.  While these values are seen in reality, usually a profit correction is made at the 

enterprise level to correct the below average yield and offset the negative NFI.   

Again, because this model is to generate net farm income across many firms, the 

end result will be to compare farm at the values simulated, regardless of the true-to-life 

implications that low yields will have on profitability and the risk management practices 

that assist in these situations.  The correction for this will be replacing the simulated crop 

income values with observed data.  

Table 5.1:  Descriptive Statistics (Simulated Values) 
Variable N Mean Std Dev Minimum Maximum
Total Farm Acres 541 670.18 801.15 1.00 4181.00
Corn Acres 131 346.56 303.54 5.37 1819.27
Soybean Acres 541 267.66 349.30 0.33 1797.83
Sorghum Acres 541 84.07 78.68 0.26 329.67
Wheat Acres 538 236.70 316.02 0.33 1745.61
Corn Yield 131 134.97 27.52 89.89 243.93
Soybean Yield 541 42.00 21.23 5.01 99.64
Sorghum Yield 541 80.37 37.15 5.46 149.57
Wheat Yield 538 44.94 21.03 5.00 134.97
Corn Inputs 131 280.31 39.60 174.83 298.05
Soybean Inputs 541 152.12 21.06 95.49 158.54
Sorghum Inputs 541 187.16 7.24 71.34 227.22
Wheat Inputs 538 128.71 15.87 83.12 132.61
Efficiency 541 0.92 0.21 0.00 1.00
 

When comparing across all firms, a linear regression (Table 5.2) demonstrates a 

best-fit line measuring net farm income per acre based upon the four precision equipment 
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adoption explanatory variables plus total farm acres.  The regression coefficients tested 

whether the data were representative of the characteristics of local farms and their 

calculation of Net Farm Income.  The regression output registers only VRT variables to be 

statistically significant at a level less than 1%, two other variables (Auto Guidance and 

Telematics) to be statistically significant at the 5% level, and a standard error of 83.73 

based upon 534 degrees of freedom.  One item in particular that did stand out in the 

regression results was that ownership of a Yield Monitor had a negative impact on NFI.  

When the simulated dataset is replaced with actual observations, the OLS regression may 

reflect a completely different correlation. Given the acceptable signs and magnitudes of 

regression coefficients, the dataset was deemed acceptable for further analysis via DEA. 

Table 5.2:  OLS Regression of Simulated Dataset 
Coefficients Estimate Std. Error t-value P>|t| Significance 

(Intercept) 138.90   4.78   29.040  0.0000 <1% 

Yield Monitor -2.68   12.48    -0.22    0.8301     

VRT 58.72   13.35   4.40  0.0000 <1% 

Auto Guidance 29.67  16.64    1.78  0.0751 <5% 

Big Data 2.79  31.66   0.09    0.9298  

Telematics 60.54  14.53   -0.18    0.8590 <5% 

Total Acres 0.01   0.01   1.33    0.1834     

Adjusted R2:   0.0644     

p-value:   2.12 x 10-     

Std Error:   83.73     

Degrees of 534     
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5.3 Scale Efficiency Analysis of Simulated Dataset 

As noted in Chapter 4, the goal of this project would be to determine the technical 

efficiency of farms based on the two variables of Net Farm Income and Acreage in a date 

envelopment of variable returns to scale versus constant returns to scale.  The mathematics 

in this process calculated the scale efficiency of the farms in the study.  From there, a 

scatter plot was formed (Figure 5.1) to visually diagram the collection of firms and their 

positioning along or below the efficient frontier.  The firms represented that sit on the 

frontier directly received the highest score possible in this study of 1.0 out of 1.0.  

Likewise, as noted by the summary statistics in Table 5.3, the mean scale efficiency score 

for all farms in the model was 0.92, representing the potential to increase efficiency on 

average by 8%.  Any farm with a negative value for Net Farm Income scored a zero for 

scale efficiency.  An interesting note is that no farm which adopted any form of technology 

recorded a negative Net Farm Income (noted by the fact that the minimum value for all PA 

technology attributes is greater than zero). 

The second regression which was run was the Censored Tobit Regression Model 

(Table 5.4).  This model represents the expected increase in scale efficiency as technology 

is adopted.  The intercept is the base number upon which the score is calculated.  Because 

some purchases required the adoption of multiple pieces of technology, the value would be 

based upon the highest level of adoption.  Because two of the primary precision agriculture 

explanatory variables were not recorded as significant, there may be multiple concerns with 

using these variables to describe efficiency gains on the farm.  In reality, big data analysis 

and telematics are two pieces of technology that hold incredible value in the statistical 

sense, but do not always provide a direct return in the ways that the other technologies do 
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to the farmer.  Again, until the model is re-run using actual observations, this is simply an 

analysis of the data presented. 

 

Figure 5.1:  DEA Plot – Scale Efficiency of All Farms 

 

Table 5.3:  Summary Statistics for Scale Efficiency Scores 
 Mean Std Dev Min Max 
Yield Monitor 0.72 0.26 0.04 1.00 
VRT 0.79 0.22 0.09 1.00 
Auto Guidance 0.78 0.25 0.14 1.00 
Big Data 0.76 0.18 0.34 1.00 
Telematics 0.80 0.19 0.46 1.00 
All Farms 0.92 0.21 0.00 1.00 
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Table 5.4:  Censored Tobit Regression Model 
Coefficients Estimate Std. Error t-value P>|t| Significance 

(Intercept) 0.90    0.01   85.52   0.0000 <1% 

Yield Monitor 0.08    0.03    3.06    0.0023     <1% 

Auto Guidance 0.09    0.04   2.12  0.0341 <1% 

VRT 0.07   0.03    1.96  0.0502 <5% 

Big Data -0.08   0.08   -0.99    0.3221  

Telematics -0.02    0.09   -0.21   0.8323  

logSigma -1.56    0.03   -49.48    0.0000     <1% 

 

5.4 Scale Efficiency DEA for Commodity Sub-groups 

When conducting a data envelopment analysis, it is possible to examine the firms 

within the study based upon attributes as well.  When the analysis is re-run to account only 

for the attribute, the efficiency scoring is re-worked to properly benchmark within the new 

group of firms.  In this case, the analysis was conducted once more for each of the four 

commodity groups.  The technical efficiency overall remains the same, while the scoring 

within sub-group adjusts according to the highest ranking farms, where a lower scoring 

firm, in essence has the capability of being considered inefficient in one group to perfectly 

efficient within the second group.  For example, there are two efficient farms on the 

frontier on the Corn Producers DEA Plot (Figure 5.2).  The second producer on the plot, 

lined directly below the top-producing farm, is in the exact same position of the plot 

(Figures 5.3, 5.4, and 5.5) for the other three commodities represented in the study.  The 

second producer may be considered efficient among the corn producers, but is no longer 
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represented on the frontier for the other three commodities.  This same analysis holds true 

with regards to this farm’s performance on the efficiency frontier gauging all farms. 

Figure 5.2:  DEA Plot – Corn Producers 

 

Figure 5.3:  DEA Plot – Soybean Producers 
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Figure 5.4:  DEA Plot – Grain Sorghum Producers 

 

Figure 5.5:  DEA Plot – Wheat Producers 

 

5.5 Scale Efficiency DEA for Precision Agriculture Technology Sub-groups 

As noted in the previous section, the efficiency calculation was conducted once for 

all farms in the study and then multiple data envelopment analyses were conducted based 

on the sub-groups of interest.  This section notes some of the highlights found in the DEA 

of the precision agriculture technology sub-groups. 

Also interesting to note, of the ten adopters of the highest level of technology 

available in this study (telematics), the lowest scale efficiency was at a level of 0.94 when 
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compared to the entire group of farms.  Three of the ten were of a size 1000 acres or less, 

and only one grower had adopted all levels of technology (the other firms had not adopted 

variable rate technology).  This grower was the largest farm of the group, had adopted all 

phases of technology, and yet had the lowest efficiency score.  This farm had yielded well 

above the average on both corn and wheat, but had yielded well below the average on 

soybeans and sorghum.  In a dataset of real, not simulated, observations, this would 

probably be the most interesting farm to follow due to its size and technology adoption.  If, 

perhaps, the loss was attributed to weather or some other disaster, it would be expected that 

other farms would have suffered similarly.  Because this study did not include geographic 

area, farm attributes including irrigation, and other details to allow for further examination, 

it would be difficult to offer a sincere opinion on how to improve based solely on the given 

information. 

Figure 5.6:  DEA Plot – Adoption of Yield Monitors 
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Figure 5.7:  DEA Plot – Adoption of Variable Rate Technology 

 

Figure 5.8:  DEA Plot – Adoption of Auto Guidance 
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Figure 5.9:  DEA Plot – Adoption of Big Data Analytics 

 

Figure 5.10:  DEA Plot – Adoption of Telematics 
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CHAPTER VI: CONCLUSION 

The purpose of this study was to create a platform for both calculating technical 

efficiency as well as benchmarking the farms against their peers as a means of potentially 

outlining areas in which the farms could improve.  This study used a simulated dataset that 

was expanded based upon real observations, but in the end, the results were an example of 

the type of economic analysis this dataset allows for.  The goal is to use the R script 

contained in Appendix B to conduct an analysis of real observed data. 

Data envelopment analysis has the potential for addressing many farm-level issues 

by benchmarking across a community of peers. A given farmer’s technical efficiency can 

be directly compared to their peer group to determine if the farm is making the best use of 

input relative to output. 

These methods have the potential to replace informal ‘coffee shop talk’ and rumor 

with quantitative results suitable for making adjustments to farming operations. Techniques 

such as the DEA adapted to cooperative members are likely to impact the agricultural 

industry by improving big data analytics.  

The results of the analysis conducted upon the simulated dataset revealed several 

different challenges that will have to be overcome in order for this type of strategy to work 

in determining efficiency and outlining ways to improve.  Some of the crucial variables that 

must be taken into consideration include how the dataset handles losses due to weather or 

other natural events, how to evaluate a dryland versus irrigated farming operation, how to 

deal with crop sharing and cash rent, and how to offer suggestions for improvement when 

all levels of technology have been adopted. 

While this study in the end offered more questions than answers, the purpose of this 

work was to do just that – to begin the conversation of how to properly evaluate the 
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effectiveness of technology and how to value the potential losses or gains as a result of 

adopting, or not adopting, precision agriculture on the farm.  Benchmarking using DEA 

appears to be capable of providing a proper stepping stone in beginning to evaluate 

precision agriculture technology.  The next phase of the study, implementation of the 

model using observed data, will give a much clearer impression of whether or not this 

process will meet the goals set. 

6.1 Future Work 

This study has inspired a number of future projects as well as a number of additions 

that will be required to increase the effectiveness of what is presented here for usage in 

industry.  As outlined in a few of the sections within this study, there will be a few 

explanatory variables required to be added in order to assist in increasing how effective the 

existing script will work on.  These additions will not be limited to the following:  irrigated 

versus non-irrigated ground, owned versus leased acres, pasture versus crop ground, and 

year of adoption for the different levels of precision technology.  The addition of these new 

variables will help to better evaluate the efficiency of the farms taking part in the survey.  

Other items that have been considered for further evaluation in the study include a variable 

for rainfall as well as a better way to account for losses due to insect infestations, disease, 

or other natural events.  This inclusion will assist in being able to make recommendations 

based on the realized conditions present rather than on statistical analysis alone. 

While this study represents a way to evaluate a mass quantity of farms with a single 

analysis conducted, the real analysis will take place on an individual farm-by-farm basis.  

This study brought a brand new concept in evaluating technical efficiency amongst farms, 

but also inspired a brand new study which will begin upon completion and implementation 

of this project.  The new concept will conduct a similar DEA.  This time, instead of the 
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DMUs being separate entities, the DMUs will be sub-field areas.  A grid will be super-

imposed upon a field in a manner similar to Figure 6.1 with the results of the scale 

efficiency study and DEA generating a visual analysis of technical efficiency on a by-acre 

basis.  

Figure 6.1:  Field Technical Efficiency  
 

 

 

 

 

 

 

 

 

 

This will be conducted using as-applied maps of products not applied at a uniform rate as a 

means of determining input and yield maps as a means of determining output.  The thought 

being that multiple agronomic layers could be laid upon this diagram to determine the 

economic results of applying products or making decisions for future applications of inputs.  

Given the geo-referenced technical efficiency scores, tests for spatial autocorrelation can 

determine whether productivity remains spatially clustered, thereby providing insights into 

natural or man-made variability.  Spatial autocorrelation indicates how similar the values of 

a variable are with respect to distance. 
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APPENDIX A:  R SCRIPT FOR DATASET SIMULATION 

A.1 Introduction 

This appendix outlines the script utilized in the computer generation of the county 

used in the analysis.  The necessity to simulate the data rather than use observed values 

came as a result of the immense survey which would be required to include actual observed 

data.  As adoption of big data among organizations grows and customer data increases, this 

data will become more readily available to conduct this analysis using empirical values.   

When the required observations become available, they can be substituted for the script 

found in this appendix. 

A.2 Outline of Headers Found in Script 

The script used for generating farm data is broken into five parts:  generation of 

farms (establishing acreage), breaking farm acreage into commodity groups, assigning 

precision technology adoption attributes, establishing yield for each commodity, and 

distributing a per-acre cost of inputs across the farms.  The establishment of yield and 

distribution of per-acre cost of inputs will be designated on a normal distribution.  The 

simulation of values should be substituted for real observed data whenever possible to 

generate the most realistic model for analysis. 

The script notated in the next section will generate the same values every time 

unless “set.seed(3414500)” is removed.  Also, the library package “truncnorm” 

(Trautmann, et al. 2014) should be installed in R in order for the generation of the farms to 

take place on a truncated normal distribution as scripted. 

A.3 Dataset Simulation Script 

set.seed(3414500) 
 
library(truncnorm) 
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#2012 Ag Census Clay County, Kansas Attributes 
c1<-rtruncnorm(n = 20, a = 1, b = 9, mean = 1, sd = 50) 
c2<-rtruncnorm(n = 61, a = 10, b = 49, mean = 10, sd = 100) 
c3<-rtruncnorm(n = 119, a = 50, b = 179, mean = 50, sd = 200) 
c4<-rtruncnorm(n = 139, a = 180, b = 499, mean = 180, sd = 1000) 
c5<-rtruncnorm(n = 71, a = 500, b = 999, mean = 570, sd = 1000) 
c6<-rtruncnorm(n = 131, a = 1000, b = 10000, mean = 1000, sd = 1085) 
acres<-c(c1, c2, c3, c4, c5, c6) 
acres<-round(acres) 
 
#Commodity Attributes 
dat.sim<-data.frame(Total=acres) 
 
#Corn 
cn<-dat.sim$Corn<-ifelse(dat.sim$Total > 999, 
abs(rnorm(541)*0.215*dat.sim$Total),0) 
 
#Soybeans 
sb<-dat.sim$Soybeans<-ifelse(dat.sim$Total > 999, dat.sim$Total*.43, 
dat.sim$Total*0.333) 
 
#Grain Sorghum 
gs<-dat.sim$Sorghum<-ifelse(dat.sim$Total < 1000, dat.sim$Total*0.333, 
abs(rnorm(541)*.033*dat.sim$Total)) 
 
#Wheat 
dat.sim$Wheat=dat.sim$Total-cn-sb-gs 
dat.sim$Wheat<-ifelse(dat.sim$Wheat<0,0,dat.sim$Wheat) 
 
#Precision Attributes 
#40% of total acres have a yield monitor 
dat.sim$YIELDMONITOR<-ifelse(dat.sim$Total > 500, rbinom(541, 1, .41),0) 
aggregate(Total~YIELDMONITOR, data=dat.sim, sum) 
sum(dat.sim$Total) 
aggregate(Total~YIELDMONITOR, data=dat.sim, sum)[2,2]/sum(dat.sim$Total) 
 
#20% of total acres have Auto Guidance 
dat.sim$AUTOGUIDANCE<-ifelse(dat.sim$Total > 500, rbinom(541, 1, 
0.238),0) 
aggregate(Total~AUTOGUIDANCE, data=dat.sim, sum) 
sum(dat.sim$Total) 
aggregate(Total~AUTOGUIDANCE, data=dat.sim, sum)[2,2]/sum(dat.sim$Total) 
 
#10% of total acres have VR applications 
dat.sim$VRT<-ifelse(dat.sim$Total > 100, rbinom(541, 1, 0.0904),0) 
aggregate(Total~VRT, data=dat.sim, sum) 
sum(dat.sim$Total) 
aggregate(Total~VRT, data=dat.sim, sum)[2,2]/sum(dat.sim$Total) 
 
#10% of total acres have a Yield Monitor, Auto Guidance, and use Big Data 
dat.sim$BIGDATA<-ifelse(dat.sim$YIELDMONITOR==1 & 
dat.sim$AUTOGUIDANCE==1, rbinom(541, 1, 0.923),0) 
aggregate(Total~BIGDATA, data=dat.sim, sum) 
sum(dat.sim$Total) 
aggregate(Total~BIGDATA, data=dat.sim, sum)[2,2]/sum(dat.sim$Total) 
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#5% of acres are farmed with YM, Auto Guidance, & Big Data utilizing 
Telematics 
dat.sim$TELEMATICS<-ifelse(dat.sim$BIGDATA==1, rbinom(541, 1, .155),0) 
aggregate(Total~TELEMATICS, data=dat.sim, sum) 
sum(dat.sim$Total) 
aggregate(Total~TELEMATICS, data=dat.sim, sum)[2,2]/sum(dat.sim$Total) 
 
#Corn Yield 
cn.sim<-rtruncnorm(n = 541, a = 5, b = 250, mean = 121.31, sd = 10) 
cn.yld<-abs(cn.sim) 
cn.vrt<-ifelse(dat.sim$VRT==1, cn.yld*rnorm(1, mean = 0.15, sd = 0.25),0) 
cn.ag<-ifelse(dat.sim$AUTOGUIDANCE==1, cn.yld*rnorm(1, mean = 0.2, sd = 
0.25),0) 
cn.dat<-ifelse(dat.sim$BIGDATA==1, cn.yld*rnorm(1, mean = 0.15, sd = 
0.25),0) 
dat.sim$Corn.Yield<-abs(cn.yld+cn.vrt+cn.ag+cn.dat) 
dat.sim$Corn.Yield 
 
#Soybeans yield 
sb.sim<-rtruncnorm(n = 541, a = 5, b = 85, mean = 37.84, sd = 30) 
sb.yld<-abs(sb.sim) 
sb.vrt<-ifelse(dat.sim$VRT==1, sb.yld*rnorm(1, mean = 0.15, sd = 0.25),0) 
sb.ag<-ifelse(dat.sim$AUTOGUIDANCE==1, sb.yld*rnorm(1, mean = 0.2, sd = 
0.25),0) 
sb.dat<-ifelse(dat.sim$BIGDATA==1, sb.yld*rnorm(1, mean = 0.15, sd = 
0.25),0) 
dat.sim$Soybeans.Yield<-abs(sb.yld+sb.vrt+sb.ag+sb.dat) 
dat.sim$Soybeans.Yield 
 
#Sorghum Yield 
gs.sim<-rtruncnorm(n = 541, a = 5, b = 150, mean = 88.1, sd = 50) 
gs.yld<-abs(gs.sim) 
gs.vrt<-ifelse(dat.sim$VRT==1, gs.yld*rnorm(1, mean = 0.15, sd = 0.25),0) 
gs.ag<-ifelse(dat.sim$AUTOGUIDANCE==1,gs.yld*rnorm(1,mean=0.2,sd= 
0.25),0) 
gs.dat<-ifelse(dat.sim$BIGDATA==1, gs.yld*rnorm(1, mean = 0.15, sd = 
0.25),0) 
dat.sim$Sorghum.Yield<-abs(gs.yld+gs.vrt+gs.ag+gs.dat) 
dat.sim$Sorghum.Yield 
 
#Wheat Yield 
wh.sim<- rtruncnorm(n = 541, a = 5, b = 120, mean = 40.85, sd = 20) 
wh.yld<-abs(wh.sim) 
wh.vrt<-ifelse(dat.sim$VRT==1, wh.yld*rnorm(1, mean = 0.15, sd = 0.25),0) 
wh.ag<-ifelse(dat.sim$AUTOGUIDANCE==1, wh.yld*rnorm(1, mean = 0.2, sd = 
0.25),0) 
wh.dat<-ifelse(dat.sim$BIGDATA==1, wh.yld*rnorm(1, mean = 0.15, sd = 
0.25),0) 
dat.sim$Wheat.Yield<-abs(wh.yld+wh.vrt+wh.ag+wh.dat) 
dat.sim$Wheat.Yield 
 
#Gross Revenue 
cn.rev<-dat.sim$Corn.Revenue<-ifelse(dat.sim$Corn > 1, 
(dat.sim$Corn.Yield*dat.sim$Corn*3.60),0) 
sb.rev<-dat.sim$Soybeans.Revenue<-ifelse(dat.sim$Soybeans > 0.1, 
(dat.sim$Soybeans.Yield*dat.sim$Soybeans*8.73),0) 
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gs.rev<-dat.sim$Sorghum.Revenue<-ifelse(dat.sim$Sorghum > 0.1, 
(dat.sim$Sorghum.Yield*dat.sim$Sorghum*3.95),0) 
wh.rev<-dat.sim$Wheat.Revenue<-ifelse(dat.sim$Wheat > 0.1, 
(dat.sim$Wheat.Yield*dat.sim$Wheat*5.02),0) 
 
#Corn Inputs 
cn.input<-ifelse(dat.sim$Corn > 1, (dat.sim$Corn*298.05),0) 
ag.cninput<-ifelse(dat.sim$AUTOGUIDANCE==1, cn.input*rnorm(1, mean = 
0.05, sd = 0.25),0) 
dat.cninput<-ifelse(dat.sim$BIGDATA==1, cn.input*rnorm(1, mean = 0.15, sd 
= 0.25),0) 
tele.cninput<-ifelse(dat.sim$TELEMATICS==1, cn.input*rnorm(1, mean = 0.1, 
sd = 0.25),0) 
dat.sim$Corn.Input<-abs(cn.input-ag.cninput-dat.cninput-tele.cninput) 
dat.sim$Corn.Input 
 
#Soybeans Inputs 
sb.input<-dat.sim$Soybeans.Input<-ifelse(dat.sim$Soybeans > 0.1, 
(dat.sim$Soybeans*158.54),0) 
ag.sbinput<-ifelse(dat.sim$AUTOGUIDANCE==1, sb.input*rnorm(1, mean = 
0.05, sd = 0.25),0) 
dat.sbinput<-ifelse(dat.sim$BIGDATA==1, sb.input*rnorm(1, mean = 0.15, sd 
= 0.25),0) 
tele.sbinput<-ifelse(dat.sim$TELEMATICS==1, sb.input*rnorm(1, mean = 0.1, 
sd = 0.25),0) 
dat.sim$Soybeans.Input<-abs(sb.input-ag.sbinput-dat.sbinput-tele.sbinput) 
dat.sim$Soybeans.Input 
 
#Sorghum Inputs 
gs.input<-dat.sim$Sorghum.Input<-ifelse(dat.sim$Sorghum > 0.1, 
(dat.sim$Sorghum*186.95),0) 
ag.gsinput<-ifelse(dat.sim$AUTOGUIDANCE==1, gs.input*rnorm(1, mean = 
0.05, sd = 0.25),0) 
dat.gsinput<-ifelse(dat.sim$BIGDATA==1, gs.input*rnorm(1, mean = 0.15, sd 
= 0.25),0) 
tele.gsinput<-ifelse(dat.sim$TELEMATICS==1, gs.input*rnorm(1, mean = 0.1, 
sd = 0.25),0) 
dat.sim$Sorghum.Input<-abs(gs.input-ag.gsinput-dat.gsinput-tele.gsinput) 
dat.sim$Sorghum.Input 
 
#Wheat Inputs 
wh.input<-dat.sim$Wheat.Input<-ifelse(dat.sim$Wheat > 0.1, 
(dat.sim$Wheat*132.61),0) 
ag.whinput<-ifelse(dat.sim$AUTOGUIDANCE==1, wh.input*rnorm(1, mean = 
0.05, sd = 0.25),0) 
dat.whinput<-ifelse(dat.sim$BIGDATA==1, wh.input*rnorm(1, mean = 0.15, sd 
= 0.25),0) 
tele.whinput<-ifelse(dat.sim$TELEMATICS==1, wh.input*rnorm(1, mean = 0.1, 
sd = 0.25),0) 
dat.sim$Wheat.Input<-abs(wh.input-ag.whinput-dat.whinput-tele.whinput) 
dat.sim$Wheat.Input 
 
#Net Revenue by Crop 
cn.net<-dat.sim$Corn.NET<-cn.rev-dat.sim$Corn.Input 
sb.net<-dat.sim$Soybeans.NET<-sb.rev-dat.sim$Soybeans.Input 
gs.net<-dat.sim$Sorghum.NET<-gs.rev-dat.sim$Sorghum.Input 
wh.net<-dat.sim$Wheat.NET<-wh.rev-dat.sim$Wheat.Input 
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#Total Farm Net Revenue 
farm.net<-dat.sim$Total.Net<-cn.net+sb.net+gs.net+wh.net 
 
#Total Farm Net Revenue/Acre 
farm.netacre<-dat.sim$Total.NetAcre<-farm.net/dat.sim$Total  
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APPENDIX B:  R SCRIPT FOR DATA ENVELOPMENT ANALYSIS 

B.1 Introduction 

This appendix outlines the script utilized in conducting a benchmarking data 

envelopment analysis.  In order for this script to be applicable, it must be used in 

conjunction with a dataset using headers similar to the dataset generated in Appendix A.  

This analysis requires the installation of the “Benchmarking” (Bogetoft and Otto 2014) 

package for data envelopment and the “censReg” (Henningsen 2013) package for the Tobit 

Censored Regression.  This script also includes the charting of the analysis for all four 

commodities as well as all five PA technology parameters.   

B.2 Dataset Analysis Script 

library(Benchmarking) 
dat<-dat.sim 
X<-dat$Total 
Y<-dat$Total.Net 
 
dea.vrio<-dea(X,Y, ORIENTATION="in", RTS="vrs") 
dea.vrio 
 
dea.crio<-dea(X,Y, ORIENTATION="in", RTS="crs") 
dea.crio 
 
dea.se<-eff(dea.crio)/eff(dea.vrio) 
dat.sim$se<-dea.se 
 
eff.metric<-dat.sim[,29] 
library(truncreg) 
 
library(censReg) 
DEAcensReg<-
censReg(eff.metric~YIELDMONITOR+AUTOGUIDANCE+VRT+BIGDATA+TELEMATICS, 
right=1) 
summary(DEAcensReg) 
 
dat.sim.BD<-subset(dat.sim, BIGDATA==1) 
dat.sim.AG<-subset(dat.sim, AUTOGUIDANCE==1) 
dat.sim.TEL<-subset(dat.sim, TELEMATICS==1) 
dat.sim.VRT<-subset(dat.sim, VRT==1) 
dat.sim.YM<-subset(dat.sim, YIELDMONITOR==1) 
dat.sim.CN<-subset(dat.sim, cn.net>0) 
dat.sim.SB<-subset(dat.sim, sb.net>0) 
dat.sim.GS<-subset(dat.sim, gs.net>0) 
dat.sim.WH<-subset(dat.sim, wh.net>0) 
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png("Total_Data.png", width = 1600, height = 1200,  res = 300, 
family="serif") 
dea.plot(x=dat.sim$Total, y=dat.sim$Total.NetAcre, RTS="vrs", 
ORIENTATION="in-out", xlab="Acreage", ylab="Output") 
dev.off() 
 
png("DEA_NetAcre_TotalAcresBD.png", width = 1600, height = 1200,  res = 
300, family="serif") 
dea.plot(x=dat.sim.BD$Total, y=dat.sim.BD$Total.NetAcre, RTS="vrs", 
ORIENTATION="in-out", xlab="Acreage", ylab="Output") 
dev.off() 
 
png("DEA_NetAcre_TotalAcresAG.png", width = 1600, height = 1200,  res = 
300, family="serif") 
dea.plot(x=dat.sim.AG$Total, y=dat.sim.AG$Total.NetAcre, RTS="vrs", 
ORIENTATION="in-out", xlab="Acreage", ylab="Output") 
dev.off() 
 
png("DEA_NetAcre_TotalAcresTEL.png", width = 1600, height = 1200,  res = 
300, family="serif") 
dea.plot(x=dat.sim.TEL$Total, y=dat.sim.TEL$Total.NetAcre, RTS="vrs", 
ORIENTATION="in-out", xlab="Acreage", ylab="Output") 
dev.off() 
 
png("DEA_NetAcre_TotalAcresVRT.png", width = 1600, height = 1200,  res = 
300, family="serif") 
dea.plot(x=dat.sim.VRT$Total, y=dat.sim.VRT$Total.NetAcre, RTS="vrs", 
ORIENTATION="in-out", xlab="Acreage", ylab="Output") 
dev.off() 
 
png("DEA_NetAcre_TotalAcresYM.png", width = 1600, height = 1200,  res = 
300, family="serif") 
dea.plot(x=dat.sim.YM$Total, y=dat.sim.YM$Total.NetAcre, RTS="vrs", 
ORIENTATION="in-out", xlab="Acreage", ylab="Output") 
dev.off() 
 
png("DEA_NetAcre_TotalAcresCN.png", width = 1600, height = 1200,  res = 
300, family="serif") 
dea.plot(x=dat.sim.CN$Total, y=dat.sim.CN$Total.NetAcre, RTS="vrs", 
ORIENTATION="in-out", xlab="Acreage", ylab="Output") 
dev.off() 
 
png("DEA_NetAcre_TotalAcresSB.png", width = 1600, height = 1200,  res = 
300, family="serif") 
dea.plot(x=dat.sim.SB$Total, y=dat.sim.SB$Total.NetAcre, RTS="vrs", 
ORIENTATION="in-out", xlab="Acreage", ylab="Output") 
dev.off() 
 
png("DEA_NetAcre_TotalAcresGS.png", width = 1600, height = 1200,  res = 
300, family="serif") 
dea.plot(x=dat.sim.GS$Total, y=dat.sim.GS$Total.NetAcre, RTS="vrs", 
ORIENTATION="in-out", xlab="Acreage", ylab="Output") 
dev.off() 
 
png("DEA_NetAcre_TotalAcresWH.png", width = 1600, height = 1200,  res = 
300, family="serif") 
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dea.plot(x=dat.sim.WH$Total, y=dat.sim.WH$Total.NetAcre, RTS="vrs", 
ORIENTATION="in-out", xlab="Acreage", ylab="Output") 
dev.off() 

dea.vrio.BD<-dea(X=dat.sim.BD$Total, Y=dat.sim.BD$Total.Net, 
ORIENTATION="in", RTS="vrs") 

dea.crio.BD<-dea(X=dat.sim.BD$Total, Y=dat.sim.BD$Total.Net, 
ORIENTATION="in", RTS="crs") 

BD.se<-eff(dea.crio.BD)/eff(dea.vrio.BD) 

summary(BD.se) 

dea.vrio.YM<-dea(X=dat.sim.YM$Total, Y=dat.sim.YM$Total.Net, 
ORIENTATION="in", RTS="vrs") 

dea.crio.YM<-dea(X=dat.sim.YM$Total, Y=dat.sim.YM$Total.Net, 
ORIENTATION="in", RTS="crs") 

YM.se<-eff(dea.crio.YM)/eff(dea.vrio.YM) 

summary(dea.vrio.YM) 

 

dea.vrio.TM<-dea(X=dat.sim.TEL$Total, Y=dat.sim.TEL$Total.Net, 
ORIENTATION="in", RTS="vrs") 

dea.crio.TM<-dea(X=dat.sim.TEL$Total, Y=dat.sim.TEL$Total.Net, 
ORIENTATION="in", RTS="crs") 

TM.se<-eff(dea.crio.TM)/eff(dea.vrio.TM) 

 

dea.vrio.VR<-dea(X=dat.sim.VRT$Total, Y=dat.sim.VRT$Total.Net, 
ORIENTATION="in", RTS="vrs") 

dea.crio.VR<-dea(X=dat.sim.VRT$Total, Y=dat.sim.VRT$Total.Net, 
ORIENTATION="in", RTS="crs") 

VR.se<-eff(dea.crio.VR)/eff(dea.vrio.VR) 

 

dea.vrio.AG<-dea(X=dat.sim.AG$Total, Y=dat.sim.AG$Total.Net, 
ORIENTATION="in", RTS="vrs") 

dea.crio.AG<-sdea(X=dat.sim.AG$Total, Y=dat.sim.AG$Total.Net, 
ORIENTATION="in", RTS="crs") 

AG.se<-eff(dea.crio.AG)/eff(dea.vrio.AG) 
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summary4thesis<-matrix(0, nrow=6, ncol=4) 

colnames(summary4thesis)<-c("Mean", "Std. Dev.", "Min", "Max") 

rownames(summary4thesis)<-c("Scale Efficiency", "Big Data SE", "Yield 
Monitor SE", "Telematics SE", "VRT SE", "Auto Guidance SE" ) 

summary4thesis[1,1]<-mean(dea.se) 

summary4thesis[1,2]<-sd(dea.se) 

summary4thesis[1,3]<-min(dea.se) 

summary4thesis[1,4]<-max(dea.se) 

summary4thesis[4,1]<-mean(TM.se) 

summary4thesis[4,2]<-sd(TM.se) 

summary4thesis[4,3]<-min(TM.se) 

summary4thesis[4,4]<-max(TM.se) 

summary4thesis[2,1]<-mean(BD.se) 

summary4thesis[2,2]<-sd(BD.se) 

summary4thesis[2,3]<-min(BD.se) 

summary4thesis[2,4]<-max(BD.se) 

summary4thesis[3,1]<-mean(YM.se) 

summary4thesis[3,2]<-sd(YM.se) 

summary4thesis[3,3]<-min(YM.se) 

summary4thesis[3,4]<-max(YM.se) 

summary4thesis[5,1]<-mean(VR.se) 

summary4thesis[5,2]<-sd(VR.se) 

summary4thesis[5,3]<-min(VR.se) 

summary4thesis[5,4]<-max(VR.se) 

summary4thesis[6,1]<-mean(AG.se) 

summary4thesis[6,2]<-sd(AG.se) 

summary4thesis[6,3]<-min(AG.se) 

summary4thesis[6,4]<-max(AG.se) 

round(summary4thesis, 4) 


