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1.0 INTRODUCTION

1.1 General Discussion

One of the environments in which transistors must function properly is

the nuclear radiation environment. Transistors used for nuclear reactor in-

strumentation and other electronic circuits around a reactor must operate

reliably in a moderate flux of neutrons and gamma-rays for an extended period

of time. Transistors which can operate reliably for long periods in Van

Allen radiation are important to future communication satellites. Military

equipment, using electronic components such as missiles, must operate pro-

perly during and after irradiation from a nuclear blast. Therefore it is

important both to understand and be able to predict the extent of radiation

damage to transistors.

In studying radiation effects on transistors, a parameter which is

critical to the circuit performance and sensitive to radiation effects should

be selected for study. For analysis and prediction of the radiation dependence

of this parameter in a different radiation environment, the selected parameter

should be explicitly related to the internal parameters of the device. For

transistors, there are two related parameters which meet the above require-

ments, the common emitter forward current gain, 8, and the common base forward

current gain, a ., Evaluation of the change of either one of these parameters

in a radiation field will provide information necessary for the design of

radiation resistant transistors. A thorough study of the physical theory of

semiconductors permits the development of relations for a . and B. Knowing

the physical effect of radiation on semiconductor materials will then allow



one to predict the change in a
b
and B in a radiation field.

1.2 Properties of Semiconductors

Semiconductors, the basic materials used in transistor fabrication, are

often defined as electrical conductors with a conductivity between that of an

insulator and of a metal. This definition, of course, does not conpletely

describe a semiconductor.

Silicon and germanium, two typical semiconducting materials, each have

four electrons in their outermost electron shells and liuve a tendency to form

crystals in the pure state. The distribution of the four valence electrons

in the germanium or silicon atom is such that one electron is shared with each

of four neighboring atoms in the crystal. This implies that all the valence

electrons are in a covalent bound state. In this case (only holds strictly

at 0° K) the crystal has insulating properties, since there is no free electron

for conduction. However, an electric field, a beam of light, thermal energy,

or an energetic particle can supply enough energy to break the weak covalent

bonds and liberate free electrons to serve as charge carriers. Thus, depend-

ing on the energy state of the crystal, either silicon or germanium may be

an insulator or a conductor.

In semiconductors conduction is by means of free electrons and holes,

which can be originated by either introducing energy into the crystal as noted

above or by introducing donor and acceptor impurities into the crystal. At

ordinary temperatures the crystal lattice is in continuous random agitation

because of thermal energy. As a result, an individual electron of a covalent

bond occasionally acquires enough energy at room temperature to break the



bond and become a free electron. In the absence of an applied field, the

free electron moves about the crystal in a random way. When an external

electric field is applied, there is superimposed upon this random motion a

steady drift toward the positive electrode that represents a flow of current

carried by electrons. The empty place left in the crystal structure when

an electron breaks away from the covalent bond is termed a hole. Once a

hole is created, it moves about in the crystal in a random way, in the same

manner as an electron only with a positive charge. Therefore, in the pre-

sence of an electric field, there is superimposed upon the random thermal

motion a steady drift of the holes toward the negative electrode. This

drift represents a current flow transported in the absence of, and is in

addition to, the current carried by the electrons.

One of the distinctive characteristics of semiconductors is the extent

to which their electrical properties depend upon impurity content and also

the type and degree of the binding forces which exist between the atoms (8).

A very small amount of certain types of Impurities will tremendously alter

the concentration of electron and hole current carriers, e.g., the introduc-

tion of a small number of phosphorus atoms into a germanium crystal. Since

each phosphorus atom has five electrons in its outer orbit, one electron will

be left from each atom of the Impurity; that is, one electron does not enter

Into the covalent bonding. When freed from its parent Impurity atom, this

fifth valence electron moves at random through the crystal in the same manner

as the free electrons present in an intrinsic semiconductor. When an electric

field is applied, there is superimposed upon this random motion a steady drift

toward the positive electrode.

The addition of an impurity with three electrons in its outer orbit,



e.g., boron, has a different effect upon the lattice. In this case there

are not enough electrons to satisfy all the covalent bonds; therefore, be-

tween each atom of the Impurity and the surrounding atoms, there will be

one electron void, a hole. This hole moves about in a random way due to

thermal effects and when an electric field is applied, it tends to drift

toward the negative electrode.

The study of imperfections in single crystal semiconductors shows that

no such thing as a truly pure crystal exists. It is possible to list six

general types of imperfections (35): holes and electrons, phonons, excitons,

foreign atoms, lattice defects, and dislocations. Electrons and holes are

considered to be Imperfections of the crystal lattice regardless of how they

are produced. A phonon, a quantized unit of an elastic wave, is used to

describe the energy in a particular type of lattice vibration. Since the

elastic waves are excited by thermal energy, the number of phonons increases

with the temperature of the crystal CO. Phonons are effective in scattering

electrons or holes which are moving through a crystal and must be considered

in calculating the carrier mobilities. Excitons, mobile carriers like elec-

trons and holes, are electrically neutral and do not contribute to electrical

conduction; they are not important in the silicon and germanium semiconductors

(35).

Any foreign atom, whether Introduced purposely or not, constitutes an

imperfection in the crystal. A lattice defect is created whenever the periodi-

city and order of the crystal lattice are disturbed by a misplaced atom. In

general, there are two kinds of lattice defects: excess impurity atoms which

squeeze into a lattice between the normal atoms, i.e., interstitial impurities,



and vacancies which are simply the removal of atoms from their places In the

lattice. It Is customary to describe these lattice vacancies and inter-

stitial atoms as Schottky and Frenkel defects (33). A Schottky defect is

equivalent to a simple vacancy In the crystal lattice. The generation of

Schottky defects proceeds by the migration of an ion to the surface of the

crystal, leaving a vacancy behind. A Frenkel defect is produced when the

atom is removed at one point leaving a vacancy, and appears at another point

in the crystal as an Interstitial atom.

The presence of lattice defects and dislocations change the electrical

properties of a semiconductor crystal. These properties generally provide

the most sensitive way of determining the presence of lattice defects, dis-

locations, and foreign atoms. Defects and dislocations affect the velocity

at which charged carriers move through a semiconductor and consequently the

electrical properties of diodes and transistors made from such semiconductor

materials.

Impurity atoms that contribute holes are termed acceptors; they accept

electrons from the germanium atoms. Those Impurity atoms that contribute

electrons are termed donors. By way of further definition P-type materials

are semiconductors In which electrical conduction is primarily due to hole

movement and N-type materials are those in which conduction is primarily due

to electron movement. Electrons In N-type are called the majority carriers.

Electrons in P-type material and holes in N-type material are known as the

minority carriers.



1.3 Conduction in a Semiconductor

At absolute zero a semiconductor may contain a certain concentration

of occupied electronic energy levels which lie in the normally "forbidden

region" between the valence and conduction bands. Figure 1 shows the posi-

tions of the conduction band (E and above) and the valence band (E and

below) . These electrons are localized in the vicinity of the Impurities

and therefore do not contribute to the conductivity unless they are excited

into the conduction band (above E ) (5). Centers of this kind are called

donor levels. In the energy level scheme, Figure 1, they are represented

by a short bar to indicate that they are localized. An impurity semiconduc-

tor may also contain a certain density of holes which at absolute zero are

trapped in levels lying in the forbidden gap, Figure 2. Such levels are

called acceptor levels because they may become occupied by electrons excited

from the filled band (below E ). These excited electrons leave holes in the

valence band, thus conduction becomes possible. (See Figure 2.)

%-*-
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Figure 1. Donor levels Figure 2. Acceptor levels



1.4 Radiation Damage to Semiconductors

The permanent changes in semiconductors produced by radiation result

from the displacement of atoms. These displacements arise from the direct

interaction of incident radiating particles with the semiconductor nuclei.

The physical properties of semiconductors are extremely sensitive to small

amounts of disorder Introduced by such energetic radiating particles.

An energetic particle can lose kinetic energy by two major processes:

electrostatic interaction and direct collision with the atoms of the semi-

conductor. The electrostatic interaction is the chief means of energy loss

for charged particles; this lost energy causes electronic excitation and

ionization of the traversed matter. If the energy of the incident particle

is greater than the ionization energy E , then most of the particle's energy

will be lost by this process. The ionization energy depends on the bond

structure of the solid in question and is estimated by Seitz (30) for semi-

conductors as

M, AE

E
c -hr <"

e

where: M. is the mass of the impurity

M is the mass of the electron and
e

AE is the optical width of the forbidden gap.

In the direct collision process, an incident radiating particle may lose

energy through elastic atomic or nuclear collisions or coulombic interaction.

Any one of these processes may transfer sufficient energy to the struck semi-

conductor atom to displace it from its normal lattice site. The struck atom



may In turn have sufficient energy to displace other atoms so that an

avalanche of displacements may result from a primary collision. To es-

timate the amount of energy lost through a direct primary collision the

following equation has been derived (see Appendix A)

4 M, VL
E ( 6 ) = 1 2

e, sin2 (e/2). (2)
p (M

1
+ M

2
)
2 1

Knowing E it should be possible in principle to calculate the number of

atomic displacements.

Considerable theoretical effort has been applied to calculating the

number of atomic displacements Introduced by a given type of irradiation and

in comparing these results with the observed changes in the physical pro-

perties of the irradiated materials (lit). A major difficulty arises due to

the uncertainty of the number of defects and the changes in the observed

properties. The problem of the number of displacements introduced in a

lattice must be broken down into two processes: First, the collision of the

bombarding particle with an atom of the lattice produces a primary knock-on,

which in turn may possess enough energy to create further displacements.

Secondly, the primary knock-on creates secondary displacements. Calculating

the number of these displacements can become quite Involved and there is little

agreement among Investigators regarding the manner of calculation and calcu-

lated results.

The effects of irradiation on the electrical properties of semiconductors

are usually interpreted in terms of the introduction of electronic states or

energy levels lying within the forbidden energy gap (1). These levels are

associated with defects in the crystal lattice which may tend to trap either



holes or electrons. These trapping sites have profound effects on free

electron and hole concentration and consequently on the electrical proper-

ties of the semiconductors. Figure 3 shows energy levels postulated for

germanium bombarded with electrons, neutrons, deuterons, and gamma rays (17).

The effects of gamma (3), and neutron bombardment (4) on N-type germanium

are similar, the curve showing a decrease in electrical conductivity which

after going through a minimum then increases with further bombardment. This

indicates that the N-type material is converted to P-type,

Irradiation of P-type semiconductors reduces both the hole concentra-

tion and the charge carrier mobility, which in turn reduces the conductivity

(13). In addition to changing majority carrier properties, nuclear irradia-

tion also affects minority carrier properties. The lattice disorders act as

a recombination center for minority carriers and hence reduces the number of

charge carriers in the semiconductor, and also reduces the conductivity of

the irradiated semiconductor.
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2.0 THEORETICAL DEVELOPMENT

2.1 Equations for Current Plow in Semiconductors

The fundamental equations in the analysis of transistor behavior are

those which describe the motion of carriers in semiconductors under the com-

bined influence of external fields and deviations frail the thermal equilibrium

densities of carriers. To find the total current in a semiconductor it is

necessary to add the contributions from the drift current to the diffusion

current of electrons and holes. The total current density, J
n , due to the

electrons in a semiconductor is (37)

J
n

= e n y n
E + e D

n
Vn. (3)

Similarly, the total current density due to holes, J ,

J•
= e p v E - e D v p (1)

P P P

where: e is electronic charge

n is electron density

p is hole density

v is the electron mobility

y is the hole mobility

D is the diffusion constant for electrons

D is the diffusion constant for holes and
P

E is the electric field strength.

At low voltages, diffusion is the main cause of carrier flow and therefore

the current due to the electric field, the drift current, is negligible in

comparison to the diffusion current (23). Hence, for a transistor
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where the applied voltage and electric field produced is small, the hole and

electron current densities take the following form

J = e D„ vn (5)
n n

J = - e D vp. (6)
P P

In the case of a PN junction (a sandwich of a P and an N material), when

holes are injected from the P to the N region, the hole density in the N region

rises from pQ
to p and as equilibrium is approached, the hole density decays

back to pn due to recombination with electrons. This leaves the N region as

a hole current. The rate of recombination of holes is proportional to the

number of excess holes (p - pQ ) present at any given time (5).

3Pr3^=-C( P -
Po ) (7)

3pr
where xr— is the rate of change of holes in N-region due to recombination.

The minority carrier lifetime in N region, t , is defined so that

1 .

C
= V

therefore,

3pr 1

st
£ --r<p-Po>- (8)

p

The rate of decrease of hole density in the N-reglon due to holes leaving

this region is

3pe 3pe ax 3pr
3t 3x at 3x

K ^'
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The current density due to holes Is given by the following equation:

J = p e v (10)
P

where v is the hole speed.

The derivative of equation (10) with respect to x gives

3J ap
-P. = — e v. (ID
3x 3x

Combining equations (9) and (11) gives

^=_l5>. (12)

\ e 3x

Then adding equations (8) and (12) find the total rate of hole decrease at

any part of the N region

(n - n.1 - 3.T

(13)

Thus equation (13) is the relation for hole density as a function of time and

distance.

The relation between diffusion length and minority carrier lifetime is

L
p

- (D
p
,/*. (1A)

Substituting equations (6) and (11) into equation (13) results in the diffu-

sion equation for holes:

3p _
(p - p ) _i3>

at t
p

6
3X

se. i2a -
p " p

°
. (15)

Similarly, the diffusion equation for electrons is



in

»« = S3. 2. (16)
3t

3x 2 L2

n

where: n is the density of electrons in N-region

n is the original density of electrons in N-region and

L is the diffusion length of electrons.

In deriving equations (15) and (16), it is assumed that diffusion takes place

only in the x-direction. For the general case of three dimensional diffusion,

the applicable diffusion equations are the well known continuity equations

|E =7 2
P
_^0 (1?)

at

n — n
3nl£ =7 2n

o.
(18)

2

n
at

L2

For the steady state conditions |& = |& = and therefore,

V 2p 5. = o (19)

V*n = 0. (20)

L2
n

2 . 2 Equations for Common Base Current Gain of A Transistor

A transistor with a thin base region and small V
E , emitter voltage, and

Vr , collector voltage, can be treated by extension of the PN Junction theory

developed above. In the case of a PNP transistor shown in Figure 4, the hole

diffusion equation applicable to the base region is equation (19). Assuming
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that diffusion takes place only In one dimension, the general solution for

equation (19) is

-x/L x/L

p-pn
= Ae P + Be p

with the following boundary conditions

e Vg/K T
p = pn e at x =

(21)

(22)

and

e VVK T
p = pQ

e at x = W

where: K is Boltzmann's constant

T is temperature and

W is the base width of transistor.

(23)

'*£

-©-

V-
o>^

-© » Hole

Recombination

—*—

©

Electror

n I

Figure H. Various flow paths of electrons and holes in PNP transistor
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Applying the boundary conditions to equation (21), the following relations

are obtained:

e V„A T

p
Q

(e
b - 1) - A + B

e VVK T -W/L W/L

pQ
(e

U - 1) = A e p + B e p
.

Then, solving for A and B,

Pn ( e
e V„A T W/L e VVK T

-l)e p - Pn (e

j/K
- 1)

2 slnh W/L

and

Vg/K T e V
E
/ K T -W,I/L

P

(21)

(25)

(26)

(27)

2 sinh W/L

Substituting for A and B in equation (21) gives

P "Pn "

W/L e Vg/K T

P '*

eV7KT
P (e

E -De p - Pn (e

2 slnh W/L

-x/L„

Pn (e

Vj/K T
- D - Pn (e

e V
E
/K T

-De
-W/L,

x/L
(28)

2 sinh W/L

This is the hole diffusion equation for the base region. The derivatives of

this relationship at different values of x are used to describe the hole cur-

rent density injected into the base region and the hole current density going

from the base to the collector region.

The hole current density injected into the base region from the emitter

region, J
pE , is
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pE ~ e
p dx

I
x = 0"

dp
Using 3 _ „ from equation (28) gives

PE

e D p_
p K e V„/K T e V /K T

(e - 1) osch W/L + (e - 1) coth W/L

(29)

.(30)

The hole current density going from the base region to the collector region,

V' is

PC
e D *-e u

p dx | x = W"
(3D

Substituting the derivative of p with respect to x from equation (28) gives

PC

eD
p

p e V„/K T
(e 1) csch W/L - (e

e V
c
/K T

1) coth W/L (32)

Equations (30) and (32) give the current density through both the emitter and

collector junctions due to holes. To calculate the total current density

through these junctions, it is also necessary to calculate the contribution

from electrons crossing the emitter and collector junction.

The electron current density in the emitter region corresponding to

equation (20) is

n - n D e
o n

x/L ,,
nh

(33)

with the following boundary condition

e V
£
/K T

n = n e at x = 0,
o

(31)

where L^, is the diffusion length of electrons in emitter.

The electron current density from emitter to base, Jg, is
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Combining equations (33), (31*) and (35) gives

e D n e V„/K T
J_ r2-^(e * -1). (36)
"E L

nE

For the electron current density through collector, the solution cor-

responding to equation (20) is

n - n = D e
nC

, (37)
o

with the following boundary condition

e V_/K T
n = n

Q
e

L
at x = W, (38)

where L „ is the diffusion length of electrons in the collector. The electron

current density from collector to base, J „, is

J
nC " " e D

n S | x = VT
(39)

Combining equations (37), (38) and (39) gives

e D n e V„/K T
JnP ^-*(e C -1). (10)
nC L

nC

The electron and hole contributions to the junction's current density can be

combined to find the total current density at the junction.

The total current density through the emitter and collector Junctions are

J_ and J
c

respectively.

J
E " J

nE
+ J

pE
(i|1)
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J
C = J

nC
+V (12)

or substituting equations (30) and (36) into equation (11) and substituting

equations (32) and (10) into equation (12) gives

e D pn e V~A T
J„ = J2—- csch WA„ (e

u - 1)

and

e D n
n o

nE

e D p.
P u

coth WA
e V„A T

(e
F - 1)

e D p_ e V„A T
J„ = P u

csch WA„ (e
b - 1)

(13)

e D„ Pn e D» n~
_J2_°cothWA t-r5-^

P ^w.

e VVK T
(e

C -1). (11)
~p r nC

The derivative of these two equations will be used to develop relations for

the transistor gain.

The current amplification factor, a . , is the variation of collector

current, I
r>

in response to a change in emitter current, I
E , with the collec-

tor voltage, V
r , held constant. Assuming that the collector and emitter

junction areas are equal

"cb " 3L,

3J„

V„ = const 3JF V„ = const (15)
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3J,.

3V
E '

V
C

= const

a0b ~ 3J,

3V
E '

V
C

= const

Substituting equations (43) and (14) into (46) gives

e D pn e V„/K T
K T/e • P u

• osch W/L e

3>
cb

K T/e
eD

n
n
o

(

eD
p

P
coth W/L

nE

V
E
/K T'

or more simply,

sech W/L

cb D n L^

rr * — ' f
2- ' tann W/^ + !

Dp P Iv.B PnE

(46)

(47)

Since W/L is very small in most transistors, a first order approxima-

tion may be made for the hyperbolic functions such that (37)

W2

sech W/L =1
P 2L2

(48)

and

tanh W/L « W/L

.

Substituting equations (48) and (49) into equation (47) gives

1 - W2/2L2

cb D n
1 + JL . _£. _

D
p Po L-

W

K L
nE

From the definition of conductivity,

o = e n u,

and assuming that (5)

(49)

(50)

(51)
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D ii

_E. _E
D 11

'

n n

equation (50) can be rewritten in the following form:

1 - W2/2L2

cb
°B

W

°E
L
nE

1 +

(52)

(53)

where: o„ is the conductivity of base region and

o„ is the conductivity of emitter region.

The base transport factor, t, is defined as the fraction of injected

hole current from the emitter which reaches the collector. Therefore

3J

C
=

ST.
pE V„ = const

(51)

3J
1

3V„

pC

3J

3Vr .

V_ = const

V_ = const

Substituting equations (30) and (32) into (55) gives

K = sech (W/L ) * 1 - W2/2L2

(55)

(56)

by the first order approximation used earlier.

Shockley (32) defines y as that fraction of the current at the emitter

Junction produced by emitter voltage that is carried by minority carriers

in the base region, or
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y —bv- (57)

°E
L
nE

Substituting equations (56) and (57) into (53) gives

o
cb

= y I (58)

where K is a function of transistor base width and the diffusion length of

minority carriers in the base region and y Is a function of base and emitter

conductivity, transistor base width and diffusion length of majority carriers

in the emitter region. Equation (58) shows that the transistor amplification

factor, a ., is a pure function of the transistor physical parameters. If

any of these parameters change with irradiation, a change in o . would be

expected. Hence by developing the relationships between the flux and the varia-

tion of these parameters, it is possible to predict the change in a
b
due to

irradiation. Such equations are developed in the following sections.

2.3 Common Emitter Current Gain of a Transistor

The current amplification factor g is the grounded - emitter current

gain, which is defined as the variation of collector current, I„, in response

to a change in base current, IB , with the collector voltage, Vc , held constant.

3I„
C

(59)
v
c

6 is a very sensitive parameter of transistors and critical to the cir-

cuit performance. This parameter is explicitly related to the transistor

parameters, i.e., the material electrical properties, the geometry and the
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dimensions. When the emitter current, I
E , in a junction transistor is in-

creased, S originally increased and after going through a maximum, it finally

decreased steadily (37). Figure 5 shows this variation for a typical P-N-P

alloy junction transistor. Operating temperature can also severely affect

the transistor's current gain (29). This effect is particularly important

for those transistors whose surface has not been stabilized to fix its recom-

bination velocity (38). Absorbed water on the surface and other effects can

change the performance of even inactive transistors. Therefore it is necessary

that pre-irradiation transistor characteristic data be obtained shortly before

irradiation, and that the temperature be fixed at a constant value during

irradiation. This procedure was followed in this work.

Figure 6 shows the energy band structure of the P-N-P transistor and the

conventional directions for both current flow and bias voltage. When operated

as a transistor, the left junction, biased positively with respect to the

base, acts as an emitter, and the right Junction, biased negatively, acts as

a collector.

The emitter current, I
E , results from the injection of holes into the

base region, creating current I „, and the movement of electrons from the

base to emitter region, creating current I
eE ; thus

h = X
pE

+ X
eE-

(60)

In a good transistor, the current I „ is very small and negligible compared

with I _ (37). Therefore the emitter current is
pfc

Some of the holes moving from the emitter to the base recombine with the
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X
E

Emitter o I„ collector
E

Figure 6. Schematic diagram for PNP junction transistor. The upper diagram
shows the three parts of the transistor; the lower part shows the
potential energy diagram for positive holes.

5 10 15

Emitter current (ma)

20

Figure 5. Variation of B with emitter current for a typical transistor
>
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electrons generated in the base region. This recombination rate creates a

current, ID . The saturation current, I , which is composed of holes and
n CO

electrons produced spontaneously by thermal energy in both the base and the

collector region, and the current due to the holes which did not recombine,

constitute the collector current, Figure 7. Therefore the base current Ig,

is

iB-h+hE-ho' (62)

From equation (62), the following relationship can be obtained.

!^-5i +
5*_5=o

(63)
3I
E

' 3I
E

3I
E

3I
E

The recombination current, I
R , is composed of two parts; one is due to

the surface recombination and the other results from the bulk recombination.

Therefore

h - hn + x
bR

m
where: I R

is current due to the surface recombination and

I. „ is current due to the bulk recombination.
bH

Therefore from equations (63) and (6*4),

3IB_ 3IsR. 3I
bR + 5?E_5LO (65)

1% ' 3I
E

+
3I
E

+
3I
E

" 3I
E

-

Since, as noted earlier, I
pE

>>I
eE ! therefore I

£
= IpE

and

!^ = !^r +> + !^-!!2° (66)
3I
E

3I
PE

3I
E

3I
pE

3I
pE

I and I r, are produced in different regions of the transistor and they are
co pE

Independent; therefore
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31

ai Z •

pE

and thus

3I
B _

3I
sR .

^bR , ^eE (fl7)
3lT~ 31 ~ 91- 31

• v "
E pE pE pE

For equation (67) to be useful, it is necessary to express the partial

differentials in terms of physical parameters of the transistor. To derive

such relations, the following assumptions which are used by Shockley, Sparks,

and Teal (32) are adopted. These assumptions are:

1. The donors and acceptors are fully ionized.

2. The density of minority carriers Is much smaller than the density of

majority carriers in each region.

3. The net rate of recombination in any region is linear in the devia-

tion of the minority carrier density from its thermal equilibrium

value

.

k. The electric field in the base region is negligible.

5. The change in base region conductivity due to injected charge is

trivial.

Assumptions (2) and (3) permit the use of linear equations for the currents

arising from carrier injection and therefore

JJa-Jffi.C,. (68)
3I
pE

X
pE

1

31 _ I „

3Tf = r! =c2-d (69)

pE pE
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3l
sR _

I
sR _ -

3l
pE

~ J
pE

" 3" (70)

To find C^, C
2
and C, Ohm's law,

was applied.

"pC " I
pE " I

bR»
(71)

Emitter
^pE_ -©-

Base

bR

Collector

« ©

—

f PC

Figure 8. Hole and recombination current in a transistor

Assuming that the collector and emitter area are equal, it follows from

equation (5 1)) that

3I
pE

~ V (72)
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Substituting equation (71) Into (72) gives

e - 1 - as, (73)

Comparing the terms in equations (56) and (73) gives

bR = wV2L2 = C.. (71)
J
pE p X

Equation (71) is limited to a PNP transistor. For the general case, equation

(7D takes the following form:

2&- 1/2 (W/Lg) 2 (75)

where Lg is the diffusion length of minority carriers in the base region.

An expression for C? can be derived by substituting equations (30) and

(36) into the following equation:

Si-
eK

c, =
E

v
c

2 5>E
3V
E

V
C

The result of this substitution is

where: o
B

and o
£

are conductivity of base and emitter regions respectively and

Lp is the diffusion length of the minority carrier in the emitter

region.

To find C.. it should be noted that nearly all the surface recombination

in an alloy junction transistor occurs in an area which is ring-shaped and
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surrounds the emitter junction (37), figure 7. The current due to surface

recombination of holes is given by equation (77):

I D = e s A P (77)
sR s s

where: s is recombination velocity

A is the effective surface area for recombination and
s

P is the density of holes present near the surface.

However since the area where major surface recombination occurs is very near

to the emitter, it can be assumed that

P
s

= P
£

(78)

where P„ is the density of holes at the emitter Junction.

From the definition of current density given by equation (29)

J
p

= - e D
E
grad P

£
= I

pE
/A (79)

where: A is the cross sectional area of conduction path

EL, is the diffusion constant of majority carrier in emitter region and

J is the hole current density.

For plane parallel geometry, where recombination may be neglected as far as

its effect on minority carrier density is concerned, equation (79) can be

integrated. The result of integration is

e A D
E

P
E " V W

XnF W
P
E = e% • < 80 >

Substituting equations (78) and (80) into equation (77) gives
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I D s A W
_§R = §_ (81)

pE E

Prom equations (81) and (70) the following relation is obtained:

SAW
C = §_ (82)

Equations (74), (76) and (77) show that C,, C
2
and C,,are functions of the

transistor physical parameters. Since it is possible to express 8 as a func-

tion of C,, C
2
and C,, B is also a function of the transistor physical para-

meters .

To develop the relationship between 8 and the physical parameters

Kirchhoff's law,

I
E

= Ig + I
c , (83)

is employed. Differentiating with respect to I„ gives

+ ™£ (81)

and also

3I
E

3I
E

^C ^C 3I
E

3I
B

" 3I
E

3I
B

- (85)

3I
C

3I
C

-jsr- = a . and w-
8I
E

cb 8Ig

the following relation:

SI
B

X
°cb

a h , the common base configuration current gain, is the variation of collector

current in response to a change in emitter current with the collector voltage
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held constant. This parameter was derived and discussed in the previous sec-

tion.

In a properly operating transistor, o . is very close to unity (31);

therefore equation (86) and (84) can be combined to give

(87)
1 - a

cb
3I

B*

Substituting equations (76), (82) and (87) into equation (75) gives

s A W o
B
W

1/S = T£T- +
;^V

+1/2(W/V*- (88)

This equation shows the relation between the common emitter current gain and

the physical properties and parameters of a transistor.

2.H Theory of Radiation Damage in Transistors

Bombardment of a semiconductor material by energetic particles changes

the conductivity (27) and the minority carrier lifetime (7) of the device.

The relations between these parameters and the integrated flux have been for-

mulated empirically by several investigators for fast neutrons (3) and for

other energetic particles (19).

For the initial part of the irradiation o was found to be a linear

function of flux. Thus,

°i
=

°io * c
i

e u
i * (89)

where the subscript i, n or p is used depending on the initial resistivity

type. The choice of sign depends on o, ; for N-type materials it is negative

and independent of the value of a. . For P-type materials, if a is greater
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than 20a~ cm" , the sign is negative. If o is less than 20n~ cm" , the

sign is positive (21).

Lofferski (21) states that since transistor failure from changes in t

occurs before failure from changes in a, it is sufficiently accurate to use

equation (88) in the analysis of transistors. Although Lofferski' s results

indicate that changes in surface recombination velocity do occur during the

early part of irradiation, these changes are transient, (24) they are not

great enough to limit the operation of a transistor, and they are less exten-

sive and/or important than those changes in minority carrier lifetime. However

the bulk changes (changes in t) continue indefinitely under irradiation and

control the useful life of a transistor.

Equation (88) implies that 1/6 is the sum of three independent terms which

can be referred to as the surface recombination term, emitter efficiency term

and bulk recombination term following the sequence in the equation. For the

reasons mentioned before, it is assumed that the surface recombination term,

which depends primarily on surface recombination velocity, does not change

during irradiation.

It has been shown by Rappaport (27) that over many orders of magnitude,

there is a reciprocal relation between t and flux. Thus,

T
ai

T
bi *j

where: t^ Is the value of the minority carrier lifetime in the i region

before irradiation

t . is the value of the minority carrier lifetime in i region after

irradiation
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$ is the irradiation flux and

K. is the lifetime damage constant, dependent upon the type of j

material used in the base region.

The relation between minority carrier lifetime and diffusion length of car-

riers is commonly given by equation (91); similarly the relation between

mobility and conductivity is expressed by equation (92).

Ll
l-'

D1B*J»
(91)

"i
" C

i
e

"lc
(92)

where: L, is the diffusion length of minority carriers in the 1 region

D„ is the diffusion constant of minority carriers in the i region
im

o, is the conductivity of base or emitter

C, is the number of majority carriers in the i region

e is the electronic charge and

u. is the mobility of the majority carriers in the i region.

Substituting equation (90) into (91) gives the following relation:

L
i [% 1

T
bi

K
J ;

Substituting equation (93) into the emitter efficiency term gives

1/2 , 1/2

(93)

o
E
W oD W

ir¥-(*) -fe-ir)
•

Considering the change in conductivity due to irradiation, the emitter effi-

ciency term takes the following form:
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°B
W

m u(jL + L-

1/2

(95)

where

°Blo * 6
1B

e U
1B * W

"
°Elo " h e

"iE *
(Dlm )

1/2 '

Substituting equation (91) into the bulk recombination term of equation (88)

gives

B
L»

2D
ta V

T
bB

K
j

The surface recombination, emitter efficiency and bulk recombination terms

have been calculated as a function of flux, and typical results are shown in

Figure 9. These results show that the bulk recombination term only changes

appreciably during the irradiation time, and therefore equation (96) predicts

that 1/6 is directly proportional to the integrated flux or time of irradia-

tion if the flux Is constant.

In the preceding derivation, the electric field in the base region was

neglected. However Webster (37) shows that If the electric field in the base

region is considered, equation (88) would have the following form:

s A W
1/6 = -T£T-e< z) +

°R W
- 1/2 (W/Lg) J f(Z) (97)

°E%

where: g(Z) is called the field factor and is discussed in Appendix B

f(Z) is called the fall-off factor and is discussed in Appendix B

I„ is the emitter current
E

y„„ is the mobility of majority carriers in the base region
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Figure 9. The flux behavior of three components of B (21)
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D
E

Is the diffusion length of minority carriers in emitter region and

z -
w

"bc h
D
Qn

Ao
B

After irradiation, the equation for 1/6 can be written in the following form:

1/B
a

» 1/Bjj + Al/6 (98)

a
where Al/B is proportional to flux.

From equations (98), (97), (96), (95) and considering the previous discussion

and assumptions in regard to the change in conductivity during irradiation,

the following conclusion is obtained.

Ws A •&
s
-T g(z)||«f( Z ) W/i^^A.« f(Z)

w 2 »(*)

2D
im

3*

Therefore,

3(1/6) _ _W
3* 2D

im
3*

h(Z) (99)

where: h(Z) is a function of (1) emitter current, (2) mobility of majority

carriers in the base region and (3) diffusion length of minority carriers in

the emitter region. Messenger and Spratt (2^) give the following equation

for h(Z)

:

h(Z) _
(1 + 2Z) 2a ^a

1 '

In (1 + fig£)

V
C '

aXTTT^ (100)

where: a and c are constants of the recombination process.

Substituting equation (90) into (99) gives
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3(1/6) _ W* 1 .,„.
,lm .

ii 2% i^"
h(z) - ( }

The solution of this differential equation Is

1/6
a = 1/B

b
+
2DT * K7 • h(Z >- < 102 >

At zero emitter current h(Z) is equal to unity (33); therefore

1/B
a

= 1/6
b

+
2BT-K7'*- (1°3)

lm J

Since W, D. , and K, are constants

V6
a

= 1/^ + oj * (101)

where:

a - V2 ^- • i- . (105)
J D

lm
K
j

The relation between the transistor cutoff frequency and its base width is

commonly given as

W* " ,f • < lo6)
ca

Substituting equation (105) into (106) gives

•j-W-it-fc- (107)

At values of emitter current different from zero, the transistor damage

constant is

a
J

=i#-f^-t- h(Z) - (1°8)
ca j
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Kj is the lifetime damage constant which depends only on the type of Aerials
used in the base region. Therefore, if Kj is Known for a type of material
used in a transistor's base region, the transistor damage constant could be
evaluated from equation (108). To calculate Kj , equation (101) can be used,
in applying this equation, »g/§l ls flrst determlned experljIlentally^
the collector characteristic curves; the necessary procedure will be described
fully in a later section. (See Section 5.2).
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3.0 NEUTRON FLUX MEASUREMENT

3.1 General Discussion

The absolute number of disintegrations per unit time of an irradiated

foil is a function of flux, time of irradiation, foil weight, decay constant

and activation cross section of the foil. Therefore, if all these variables

except the flux is known accurately, the fast neutron flux can be determined.

However in most cases the activation cross section is not known accurately;

hence it is necessary to choose foils that have the best known activation

cross section for the particular neutron energy being used.

3.2 Theory

The activation rate of a foil in a neutron flux is

dr = N(x, y, z)°
act

(E, x, y, z) dE dv

where: N(x,y,z) is the foil's density of atoms at x.y.z

o AE) is the microscopic activation cross section and

(E,x,y,z) is the neutron flux at x,y,z.

Assuming the neutron flux is constant within the thin foil, then

N
T

o(E) *(E) dE (109)

N w
where: NL = -?— is the total number of atoms in the foil

N is Avagadro'8 number

A is the foil atomic weight and

w is the foil weight in gms.

The foil activity at any time, t, during irradiation will obey the following
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equality:

Rate of change of radioactive atoms = Rate of production - Rate of decay.

If N is the number of radioactive atoms at time t, and if a is the decay con-

stant for N, then

dN
dt

r - AN. (110)

Solution of this differential equation with the B.C., N = at t = is

N = r/A (1 - e"
X t

). (Ill)

The activity of the foil at time t during irradiation is

N A = r(l - e"
X fc

). (112)

After the irradiation time t, the number of radioactive atoms and the activity

of these atoms will decrease according to the decay law.

-A t'
N, A = N A e
1 o (113)

where: N is the number of radioactive atoms at the end of irradiation (t'=0)

t' is time after irradiation and

A is the foil decay constant.

A measurement of this activity between time tl and ti gives the following

total number of counts

f
T

c
T

- N e * c
dt'

o

or

or

f
T

C
T

- N
Q

(e
-X H - e

_t
3)

f
T °T " N

o
e
"X

'2 1 - e"
x (t

3
" 4' (111)

.
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where fm is a correction factor which is discussed in the following pages.

From equation (111), AN is

AN

fm Qp A

o -X t< A (t' - t')
•

e
2

(1 - e 3 2
)

Substituting equation (115) into (112) gives

fm Cm A

X (U - t')

e a - e i d
)(1 - e )

-A t' -A t

(115)

(116)

Prom equations (109) and (116), the relation between flux and count rate is

\
f Cm X

o(E) *(E) * " -rti x

T
tt- - 1-) -zre (117)

o
2

(1 - e
3 2

)(1 -e )

In the case where the neutrons, are monoenergetic, equation (117) takes the

following form:

'm Cm X

-X t' X (t' - t') -X t

e Ml - e 3 2
)(1 -e ) Hp o,

(t^ - tp

(118)

act

If t' - t^«t
1
/2 and (t" - t£)«.639, then 1 - e

fore equation (118) may be simplified into the following form:

rm Cm X

X (t' - t|). There-

-X t' -X t »

(1 - e )(t- - t-) N
T o

act

(119)

where f_ is a correction factor which satisfies the following relation:

C
abs ~ °T

f
T
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with C . as the absolute disintegration rate and

Cm as the measured count rate.

In the case of beta counting, assuming each integration in the foil produces

one beta, the correction factor is

i_=ffffff
f
T g w e y bs s

where: f is the counter geometry correction factor

f is the counter window absorption correction factor

f is the counter efficiency for B particles

f is the gamma background correction factor

f is the foil self-absorption and self scatter correction factor and

f. is the correction factor for beta particle back scattering from the

support material.

Since equation (119) is used in calculating the flux, it is important

to choose a foil for which the activation cross section is well known. Cu ,

when irradiated by 14.1 Mev neutrons, shows the following reaction:

Cu
63

+ n
1— Cu

62
+ 2nJ

.

o o

ft?
Cu decays by 8 + (2.91 Mev). Counting the positrons, it is possible to

calculate the absolute activity of the sample; however, since the activation

ft 3 ft?
cross section of Cu J (n,2n) Cu is not known accurately, (°act

.5b ± 1050

,

it is not possible to measure the absolute flux with less than 1056 error.

27
Al foils have been used extensively by the staff of Argonne National Labora-

tories, and it is believed (9) to be the best foil for measuring the 14.1 Mev

neutron flux resulting from the reaction

H3 (djnjHe
1
*.
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Irradiation of Al
27

foils with fast neutrons results in the following

reaction:

,,27 , i ., 24m ,

Al ' + n1 —* Na + o •

Na
2lJm

is metastable and has a half life of 0.02 sec. It will decay to Na

24
which in turn has a half life of 15 hr. Decay of Na results in production

of two ganmas with energies of 2.75 Mev and 1.37 Mev and a B with energy of

1.394 Mev. An energy decay scheme for Na
m

is shown in Figure 10. Other

reactions resulting from fast neutron irradiation of Al are:

Al
27

(n,p) Mg27

and

Al
27

(n,r) Al
28

.

The decay scheme of Mg ' and Al are shown in Figure 11. Some of the charac-

teristics of these three reactions are tabulated in Table I. It is obvious

27 27 27 28
that the activation cross section for the Al (n,p) Mg and Al (n.y) Al

reactions are very small. In addition the half lives of the products are less

24
than ten minutes which is small in comparison to the 15 hour Na half life.

If after irradiation, ten or fifteen minutes are allowed to elapse before

27 - - -'- - «-- - -«- 24
counting Al ' foils, the counts observed will be due only to the decay of Na

24
By measuring the B (1.394 Mev) count rate of Na the absolute activity

foil and the absolute flux can be calculated using equation (119).
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Ha
2"1" (.02

.172

Figure 10. Decay scheme of Na'
2»lm

Mg27 (9.5m) Al
28

(2.3m)

1.78

Figure 11. Decay schemes of Mg
27

and Al
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Table I. Activation cross sections of Ar7 and Cu°3 for 14.1 Mw neutrons
„63

TV2
°act

(mb) ganma radiation other

Al
27

(n,a) Na*" 15h 121 ± * 3 1.37UOOSO. 2.75(100?) B 1.391(100*)

Al
27

(n,p) Mg27 9.15m 70 . 81 3(70*). 1. 015(30?) 8 1.75(58*)1. 59(12*)

Al
27

(n, Y ) Al
28

2.27m .53 t .15 1.78(100*) 8 2.87(100*)

Cu
63

(n,2n) Cu
62

9.8m 500 + *10 several gammas

+

6 2.91
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4.0 EXPERIMENTAL

1.1 Apparatus

The Kansas State University Neutron Generator was used for transistor

irradiation. This Texas Nuclear Model 9504 Neutron Generator, designed pri-

marily for the production of intense neutron fluxes, consists of a deuteron

ion source and focusing and accelerating electrodes to direct the deuteron

beam on a tritium target. The following reaction between the deuteron beam

and the tritium target produces nominal 14.1 Mev neutrons.

H
2
+ H3—p- H * + n

1
+ 17.6 Mev

e o

A Tektronic type 575 Transistor Curve Tracer was used to display the

transistor dynamic characteristic curves. These curves, produced on the

screen of a cathode-ray tube, were photographed with a Hewlett Packard Model

196A Oscilloscope Cmera.

Table II lists the various electronic components used for neutron dosi-

metry. Two types of aluminum foil were used for absolute counting; the first

group of foils was produced by Radiation Equipment and Accessories Corporation.

These foils were 0.50 Inches in diameter, 0.03 inches in thickness, and weighed

approximately 0.2215 grams per foil. The second group produced at K.S.U. had

a 0.50 inch diameter and weighed 0.001 grams.

The beta particle counting system consisted of a B.J. Electronics Model DD7

continuous flow proportional counter, a Baird Atomic Model 225 Proportional

counter preamplifier, a Baird Atomic Model 132 scaler, and a Baird Atomic Model

322 timer. The K.S.U. Nuclear Engineering Inventory No. for the scaler was 114;



Table II. A list of the electronic equipment used

W

Component Type and Model Nuclear Engr.
Inventory No.

Transistor-curve tracer Tektronix Model 575 No. 1071

Oscilloscope camera Hewlett Packard Model 196A

Scaler Balrd Atomic Model 132 No. 1*5

Timer Baird Atomic Model 960 No. 146

Preamplifier Baird Atomic Model 255 No. 208

BP3 probe Radiation Counting Lab.
RCL-10501)

No. 320

Scaler Baird Atomic Model 132 No. 111

Timer Baird Atomic Model 960 No. 117

Proportional counter B.J. Electronics Model DD7 No. 370

Preamplifier Baird Atomic Model 255 No. 209
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that of the proportional counter was 370. The local identification of the

preamplifier was K.S.U. Nuclear Engineering Laboratory Inventory No. 209.

The proportional counter had a tungsten collector wire with a one-half inch

loop. The counting gas was Olin-Matheson P-10, a mixture of 10 percent Methane

and 90 percent argon.

The flux monitor system in the neutron generator room consisted of a Baird

Atomic model 132 scaler, a Baird Atomic model 255 proportional counter preamp-

lifier, a Baird Atomic model 322 timer, and an RCL model 10501 BP3 probe. The

BP3 probe's active volume length of 12 inches and diameter of one inch, con-

tained B P3 gas at a pressure of 12cm of Hg at an enrichment of 96 percent.

The BF3 probe was placed in a cadmium foil covered box surrounded by paraffin

blocks.

1.2 Procedure

Two series of experiments were performed. The first determined the neutron

flux of the generator and standardized the absolute counting system. The sec-

ond series observed the variation in transistor collector characteristic curves

during neutron irradiation.

The calibrated gas flow proportional counter was operated at 1950 volts,

with a pulse height sensitivity setting of 0.8. This counting system was checked

for stability before and after each trial with a standard Ra-D-E source, Nuclear

Chicago Serial No. 2351. All foil data were taken with the counting system

reading 12,000 ± 100 cpm from the standard Ra-D-E source. Background was mea-

sured for a 20 minute period before and after counting each foil. These experi-

ments are described in detail in Appendix D.
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For the second series of experiments, a transistor socket was mounted

on an Alden Chassis Card and then connected to the curve tracer with 30 feet

of low capacitance cable. To reduce noise interference, both ends of the

cable were grounded. Foil holders, one-half inch in diameter, were also

mounted on the Alden Chassis Card so that the transistor was sandwiched be-

tween them. The chassis card was placed one inch from the neutron generator

target cooling Jacket and aligned so the beam would pass first through an

aluminum foil, then the transistor and finally through the second aluminum

foil.

Following the initial measurement of the collector characteristic curve

at zero flux, the transistor was placed in the transistor socket and the

aluminum foils were placed in the foil holders. During irradiation, the varia-

tion of collector characteristics curves was observed on the curve tracer and

pictures of the curves were taken at intervals. The corresponding neutron

flux for each curve was obtained from a calibrated BF3 counter (see Appendix

D) which had been calibrated against the proportional counter. To check the

BF3 counter, at the end of each experiment, the aluminum foils placed on the

Alden Chassis Card were counted by the proportional counter and their absolute

activity checked against the HF3 results.

4.3 Transistors Analyzed

As mentioned earlier, there are basically four different types of tran-

sistors: PNP Ge, NPN Ge, PNP Si, and NPN Si. Many different techniques are

used by manufacturers to design and produce transistors; however, these tech-

niques have in common the fundamental problems of (1) growing suitable crystals,
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(2) forming Junctions In them, (3) attaching leads to the structure and W
encapsulating the resulting transistor. The ultimate aim of all transistor

fabrication techniques is to construct two parallel PN Junctions with both

controlled spacing between them (base width) and controlled impurity content

in the emitter and collector regions.

An attempt was made to purchase different types of transistors with known

physical parameters (desired known parameters include width, diffusion length

of electrons and holes, minority carrier lifetime, etc.). However after a

long period of communication with different manufacturers, it was determined

that all but one of the manufacturers either did not know the exact value of

these parameters or were not willing to give out the information.

A set of 2N9!lA, NPN Qe, transistors was presented, however to the Nuclear

Engineering Department at Kansas State University by the Sylvania Company who

also supplied some of the desired physical parameters (see Table IV). The

2N9^A transistors were irradiated with the Kansas State University neutron

generator and characteristic curves determined.

In addition to the transistor neutron irradiation data collected at Kansas

State University, irradiation data were available in the literature for several

general purpose transistors. The literature data, in the form of collector

characteristic curves, were treated by the theory developed in Section 2.4.

A comparison of neutron damage constants determined for the Kansas State Uni-

versity and literature Irradiated specimens are presented in the Discussion

of Results.
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Table III. Transistors analyzed

Transistor Type Material Manufacturer Nominal f
Ca

1JD1E17 PNP Ge G.E. 1 MC

2N139 PNP Ge R.C.A. 7.5 MC

T1166 PNP Ge Phlloo 10 MC

T1011 PNP Ge Philco 1 MC

L5^05 PNP Ge Philco .75 MC

2N176 PNP Ge Phlloo 225 KN

T1257 PNP Si Philco 35 KC

2N1155 NPN Si Texas Instr. 7.5 MC

2N9^A NPN Ge Sylvanla 1(55 KC

Table IV. Sylvanla specifications for 2N9*)A transistor

20 to 80 at 8 volts « 2.5xl0"3 cm 6.5xl0
2
(ohra-cm)

_:L
6.3x10 (ohm-cm)

Emitter area

1.2xl0"3cm
2
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5.0 DATA PRESENTATION AND ANALYSIS

5.1 Presentation of Data

Collector characteristic curves of 2N94A transistors were obtained by

the experimental procedure described earlier. Figure 12 shows the variation

in a collector characteristic curve for a typical 2N94A transistor during

neutron Irradiation. The standard flux deviation shown for each curve is

due to error present in the aluminum cross section measurement and errors

Inherent in calculating the absolute activity.

Since it was not possible to purchase other types of transistors with

a known base width, the raw collector characteristic data for eight other

types of transistors were obtained from Inland Testing Laboratories (36);

these data are shown in Figures 13 through 20. Flux values corresponding to

these curves are accurate to within ±9% (36). The flux deviation shown in

Figures 12 through 20 is the standard deviation of each value calculated from

the well known equation

a = ± 1.1(830 P

where: P is the probable error and

o is the standard deviation.

5.2 Analysis of Data

From equation (101), section 2,t, it is obvious that the variation of

1/6 with Integrated neutron flux is a function of transistor base width, the

base region diffusion constant for minority carriers, emitter current and life-

time damage constant K, . The transistor cutoff frequency is a function of the
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transistor base width as shown in equation (106). Substituting equation (106)

into (101) gives

ca J

At zero emitter current, Z is equal to zero and h(Z) is equal to unity (see

Section 2.1); therefore

_ 1.22 . 1

_n
E

3(1/6)

3$ • -H- " TT ' r (122)
IF=0 Ca J

K
j

=
"ir ' 1£ ' 371767

,

(123)

IV

The value of
3(1/6)

3<t>

3*

can be calculated from the collector characteristic
I
E
=0

curves shown in Figures 12 through 20, and since f is a known parameter,

K. can be calculated from equation (123).

Equation (121) can be rewritten in the following form:

h«> . jjfc
.
'o.

.

«, .iqja, dan)

Knowing the value of constant K.. (assuming K. is independent of emitter

current) and calculating ||" for different values of L, It Is possible to

calculate h(Z) as a function of the emitter current from equation ( 12M ) . The

transistor damage constant can then be calculated from equation (108) since

all the parameters In this equation are now known.

The IBM-W10 Computer was programmed to determine K., h(Z), a., and

(a. • h(Z)). The necessary data for calculating these parameters are obtained

from the collector characteristic curves, corresponding to different values of
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the base current at V
c

equal to one volt and known flux. An example listing

of the necessary computer input data Is shown in Appendix C. After introducing

the necessary data, the computer program passes through the following steps to

calculate the required parameters (the theory used in the computer programs

are discussed in detail in Appendix C)

:

1. After fitting a polynomial through I
B

and I
C,°VB and I- are cal-

culated using the equations

X
E

= 1
B

+ l
c (83)

and

3IR

V
Q

= 1 volt

This step is repeated for different sets of data corresponding to

different values of the flux.

The inverse of the common emitter current gain is plotted vs emitter

current for different values of flux. Direct reproductions of the

computer plots are shown in Figures 21 through 29.

For different values of emitter current, the computer calculates

corresponding pairs of 1/6 and * data.

The computer program then fits a straight line through the V8 vs *

data and calculates the line slope, ^^-\ . The standard devia-

tion of the 1/B vs * slope is calculated using equation (125);

o(b)-*
I ff(Xl ) =Y]

2

/n-2) I JC*
1=1 * > / i=i

x

This equation was used assuming the data would fit a linear plot and

that the error in calculation of 1/6 is very small compared with the

V2
(125)
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error in *.

5. OnceM!
a*

is known for different values of I,., equations (123),
Ir.
E

(12^) and (108) can be used to compute K. , h(Z) and a
1

.

6, Finally the computer plots values of h(Z) and (a. • h(Z)) as a

function of I„; see Figures ^7 through 55.

The above six steps are also repeated for collector voltages of two and

three volts.

5.3 Results

For each transistor analyzed the inverse of common emitter current gain,

1/B , as a function of I„ was determined at several neutron dose levels; in

each case the graphs for the most representative transistor of a given type

are shown. For a collector voltage of one volt, the results are presented in

Figures 21-29 and for collector voltages of two and three
:
volts they are shown

in Figures 30-46. These graphs show that for a constant value of emitter

current, 1/B increases with the accumulated neutron dose i.e., B decreases

with integrated flux.

The values of lifetime damage constant, Kj, for the 2N91A transistors

irradiated at K.S.U. are shown in Table V (It should be noted that the larger

the value of K, , the smaller the radiation damage susceptibility) . The

measured pre-irradlation collector characteristic curves for the four 2N94A

transistors were not exactly the same. This is usually true for general pur-

pose transistors since the manufacturers do not have complete control over

the transistor physical parameters which determine the collector characteris-
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Table V. Lifetime damage constants for 2N9^A transistors

Transistor
Lifetime damage constant, K, (NVT-•Msec)

No.
V
c

= 1 volt V
c

= 2 volts V
c

= 3 volts

1

2

3

1

(1.39±.10)xl0
13

(2.09±.15)xl0
13

(2.11±.l6)xl0
13

(2.00±.15)xl0
13

(1.2t±.09)xl0
13

(2.06±.15)xl0
13

(2.l6±.l6)xl0
13

(2.07±.24)xlO13

(1.29±.10)xlO
13

(2.22±.17)xl0
13

(2.26±.17)xl0
13

(1.37±.3l)xl0
13

Table VT. Transistor damage constant for 2N9 iIA transistors

Transistor

No.

Transistor damage constant, a.

1 volt V
c

= 2 volts V = 3 volts

(2.79i.21)xl0~
15

(1.85i.lt)xl0"
15

(1.83±.lt)xl0"
15

(1.93±.15)xlO
-15

(3.13±.21)xl0
-15

(1.88±.lH)xl0
-15

(1.79±.lt)xl0"
15

(1.86i.l5)xl0~
15

(3.00±.23)xlO
•15

(1.7^.1'OxlO""
15

(1.71±.15)xlO
-15

(2.8l±.31)xl0
-15

* The a. values shown in Table VI can be used to calculate B for an
J s

irradiated transistor. For example using equation (I0<0, 1/6.. = 1/8K + a.*,
"12

the change in B for a 2N9'*A transistor at an integrated flux, NVT, of 6.6x10

produces a 31? difference in the value of 8 i.e., values of B will drop from

21.00 at zero flux to 16.53±0.05. Considering the standard deviation in a.

and its effect in calculated values of B, it will be noted that this effect

will be mos,t significant at high values of NVT. At the highest flux considered

in this work, 6.6x10 , the mean value of 8 and its standard deviation for a

2N9')A transistor after irradiation are 5.78±0.03 (this Is a 75.92 mean percent

change in 8 as compared with the zero flux value)

.



102

tic curves. Since these parameters are not exactly the same tiae lifetime

damage constant and the corresponding transistor damage constant, ,» varies

slightly from one 2N91IA transistor to another. These variations can be seen

In Tables V and VI.

Transistor lifetime damage constants for transistors with various base

materials are shown in Table VII. This table Indicates that these constants

are a function of materials used in the transistor base region. The average

value of lifetime damage constants for the four types of transistors presented

in Table VII are tabulated in Table VIII. This table shows that (1) germanium

transistors are more radiation resistant than similar silicon transistors,

(2) that N-type silicon base are more resistant than P-type silicon base and

(3) that P-type germanium base are more resistant than N-type germanium base

transistors.

Merrill and Bllinski (23), using a somewhat different analysis than used

here, have calculated lifetime damage constants (see Table XI). However their

analysis neglects the electric field effect in the base region and does not

consider the dependency of K. on collector voltage. Their results concur with

ours that germanium transistors are more radiation resistant than similar

silicon transistors and that N-type silicon base are more resistant than P-type

silicon base transistors. The results in Table IX also show that N-type ger-

manium base are more radiation resistant than P-type germanium base; this

result is not consistant with that of the writer.

Tables V, VII, and VIII show that K, varies with the collector operating

voltage. However this variation is anomalous and as yet no reasonable theo-

retical explanation exists. Prom Tables V, VII, and VIII and graphs of 1/B
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Table VII. Transistor lifetime damage constants*

at different collector voltages

Transistor
Lifetime damage constant, K. (NVT-ysec)

Analyze V
c

= 1 volt V
c

= 2 volts V
c

= 3 volts

4JD1E17 PNP Ge (2.27±.3Dxl0
13 (2.33±.32)xl0

13 (2.56±.36)xl0
13

2N139 PNP Ge (i.o8±.i>))xio
13 (1.64±.22)xl0

13 (1.9t±.27)xl0
13

T1166 PNP Ge {J.J3*i.'»2)jao
12 (1.38±.20)xl0

13 (1.86±.27)xl0
13

TlOlll PNP Ge (2.82±.l)0)xl0
12 (3.25±.t6)xl0

12
(3.69±.52)xl0

12

L5405 PNP Ge (1.17±.l8)xl0
12

(1.99±.23)xl0
12

(1.77±.20)xl0
12

2N176 PNP Ge (8.25±1.36)xl0
12

(8.0iJ±1.30)xl0
12

(9.92±1.18)xl0
l;

T1257 PNP Si (1.07±.lt)xl0
12

(1.38±.19)xl0
12

(2.19±.31)xl0
12

2N115 NPN Si (1.17±.l6)xl0
n

(1.13±.l6)xlO
n

(l.ll±.15)xl0
n

2N9lAt NPN Ge (1.90±.21)xl0
13 (1.88±.20)xl0

13 (1.79±.36)xl0
13

* Collector characteristic data obtained from literature

t Average of values in Table V
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Table VIII. Lifetime damage constants for fast neutrons *

Transistor

Base

K. (NVT-ysec)

Material
V-, - 1 volt V

c
= 2 volts V

c
= 3 volts

N-type Ge (9.32±1.8)xl0
12

(l.ll+.2t)xl0
13 (1.29±.33)xl0

13

P-type Ge (1.90+.21)xl0
13 (1.88t.20)xl0

13 (1.79±.36)xl0
13

N-type Si (1.07±.H)xl0
12

(1.38±.19)xl0
12 (2.19±.31)xl0

12

P-type Si (1.17±.l6)xl0
X1 (1.13±.l6)xlO

l:L
(l.ll±.15)xl0

n

* This is the summary of results from Table VII.

Table IX. Lifetime damage constants for fast neutrons (23)

Material Transistor

Type

K. (NVT-usec)

N-type Ge PNP Ge (5.0±2.0)xl0
13

P-type Ge NPN Ge (2.1±0.1)xl0
13

N-type Si PNP Si (2.8±0.8)xl0
12

P-type Si NPN Si (3.2±l.l)xl0
12
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vs I
E

it is clear that any one transistor operated at a particular current

and voltage experiences minimum damage. It is not possible as yet to predict

a priori what this current and voltage is.

Values of a calculated for the four 2N91A transistors are tabulated

in Table VT for three values of the collector voltages. Curves of h(Z) and

(a.,* h(Z)) as a function of emitter current are shown for several transistors

in Figures 47-55. These graphs indicate that each transistor experiences the

least damage at certain values of the emitter current and collector voltage.

In addition these operating conditions are not the same for different types

of transistors. However it is also clear from Table VI that for a particular

type of transistor (e.g. the 2N9hk) these Operating conditions are very simi-

lar. Therefore, although it is not possible to predict theoretically the

values of emitter current and collector voltage that will produce minimum

damage, this information can be obtained empirically using a transistor of

the same type.

It is generally noted that an increase In f will decrease the transis-

tor damage constant; this can be noted by comparing the results for the

HJD1E17, 2N139, T1166, and 2N176 transistors. Comparison of a, for these

transistors, Table X, Implies that as f increases, the transistor damage

constant decreases. Therefore it can be said that transistors with high cut-

off frequency (small base width) are more radiation resistant than those with

low cutoff frequency (large base width). However there are exceptions to

this observation, for example the TlO^l transistor. This transistor has the

same cutoff frequency as the ^JDIEIJ but its a, is higher (see Table X); a

result possibly due to a difference In the manufacturing process since they
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Table X. Transistor damage constants at different collector voltages

Transistor
Transistor damage constant, a.

Analyzed
V
c
= 1 volt V

c
= 2 volts V

c
= 3 volts

HJD1E17 (8.53±1.17)xlO"15 (8.32±1.11)xl0
-15

(7.30±1.02)xl0
-15

2N139 (2.39±.33)xl0
-15

(1.57±.21)xl0~
15

(1.33i.l8)xlO~15

T1166 («.93i.7DxlO"
16

(3.50±.50)xlO
-16

(2.60±.37)xl0
-16

TlOtl (6.88±.97)xl0"
1 '1

(5.96i.83)xlO"
li(

(5.25t.7l)xl0"
1 '

1

L5t05 (1.75*. 20)xl0"
15

(1.29±.15)xlO"15 (I.l5±.17)xl0
-15

2N176 U.Odi.ODxlo"13 (1.07±.01)xlO
-13

(9.774O.56)xl0'
1'

1

T1257 (5.154. 65)xlO"
15

(3.99i.55)xl0
-15

(2.53t.3t)xl0
-15

2N1155 (2.20±.31)xl0"
13

(2.27±.31)xlO"13 (l.ll±.15)xl0
-13
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are produced by two different companies.

The value of flux used in plotting each collector characteristic curve

is the flux incident on the front face of a transistor. If we assume the

flux from the neutron generator is similar to that from an Isotropic point

source, then the neutron flux incident on any particular part of the transis-

p
tor can t© calculated according to a 1/R dependence. To check the validity

of the point source assumption, a series of foils wa§ placed in front of the

neutron generator in the pattern shown in Figure 56. After Irradiation, the

foils were counted and the corrected activity was plotted against the distance

from the neutron generator cooling Jacket, Figure 57, The slope of this line

did not show 1/R dependence; however if two centimeters were added to each

distance then the slope of the new line did show this dependence. It is

interesting to note that the tritium target is about two centimeters from the

cooling Jacket end of the neutron generator,

5.k Conclusions

Based upon (1) the experimental results, (2) analysis of the literature

data, and (3) the discussion presented in earlier sections, the following

conclusions ape drawn:

1. Transistor current gain decreases with the integrated neutron flux

incident on the transistor. The extent of gain loss is a function

of transistor base material, collector voltage and emitter current.

2. For a given translator type, the transistor with wider base width

experiences more damage,

3. The lifetime damage constant is a function of semiconductor base
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material. Germanium transistors are more radiation resistant than

similar silicon transistors,

*). The lifetime damage constant for P-type germanium base transistors

is higher than for N-type; the lifetime damage is higher for N-type

silicon base transistors than for P-type.

5- The transistor damage constant for a particular transistor can be

decreased by operating at a certain collector voltage and emitter

current.

6. a, and K . were found to be convlent means of reporting the transis-

tor and lifetime damage respectively; the writer suggests that other

writers use these same parameters in reporting their work.
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8.1 APPENDIX A

Energy transferred to primary knock-on by fast neutrons

Elastic scattering of a neutron with a nucleus results in a discrete loss

of neutron energy and subsequent transfer of energy to the recoil nucleus. The

incident neutron with mass M,, and velocity v, collides with the stationary

nucleus with mass M.. Conservation of kinetic energy and momentum in the

L-system requires that

1/2 M
1
v* = 1/2 f^ V* + 1/2 M

2
Vj (A-l)

M
l
V
l

= M
l
V
l

+ M
2 V (A"2)

Conservation of momentum in center of mass system gives

(Vj - v
m
)M

x
= M

2
Vm. (A-3)

Simplifying equation (A-3) gives

v M
V
m = M^ <**>

where v is the speed of center of mass in L-system.

Speed of the neutron before collision in the C-system is

v, M M_ v.

v
i - v

m
= v

i - M^rrg
= M^nq • <A-5>

Speeds of neutron and nucleus before collision, in the C-system are given by

equations (A-**) and (A-5), respectively. The principle of the conservation of

momentum requires that
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M
2
V
1

ft + M
2

M
1
V
1

MT + M
2

M
2

- H
x
Va

- M
2
v
b

(A-6)

or

M,
v
a " M^ v

b
(A-7)

where v and v. are speeds of neutron and nucleus after collision, respectively,

Figure A-l. Applying the law of conservation of energy in C-system gives

1/2

M
2
V
1

M
1
+ M

2

M. + 1/2

M
1
V
1

1^ + M
2

M
2
= 1/2 1^ v

a
+ 1/2 M

2
v
b

Sijrplifying equation (A-8) and using equation (A-7) gives

M,

v
a (M

x
+ M

2
)

"1

(A-8)

(A-9)

v
b

=
(m

1
+ m

2
)

vr (A-10)

f

V
*

/

i

i

v
l

" v
m

--,--* C

1

"v,.

Figure A-l. Velocities in

CM. system

Figure A-2. Velocity of neutron

in L system
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The energy of the Incident neutron is given as

E
i
= 1/2 M

x
v
x
2

. (A-ll)

If V. is the velocity of the neutron after collision in the L-system, then by

law of cosines

V_ 2 = v.
2 + v 2 - 2 vK v cosA

2 b m bra

or

V 2 = v 2 + v 2 + 2 v.v cose. (A-12)
2 b m b m

Substituting equations (A-t) and (A-9) into equation (A-12), the result is

v 2 M 2 + v 2 M 2 v 2 M 2

or

,, 2 1 1 1 1 . , 1 1
V
2 (1^ + M

2
)2

+ d
{H

x
+ M

2
)2
COS*

2 M 2 (1 + cost)

V 2 i V, 2
. (A-13)

*
(M

1
+M

2
)
2 X

The energy transferred to the knock-on is

E = 1/2 V
2
2 Mg. (A-14)

Substituting for V
2
2 from equation (A-13) gives

E = 2 E, N. M,
(1 + C0Slt)

. (A-15)
P X l * (Mj +M

2
)
2

The tlgonometric laws predict that

cos* = - cos(n - ») » - cose.

Substituting equation (A-13) into (A-l 1!) and using trigonometric relation

1 - cose = 2 sin2 (l/2X) results in the following equation:
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E (6) = E, i-^— sin2 (e/2). (A-16)
4 M

1
M

V"' "1
(M

1
+ M

2
)
2

The maximum energy is transferred to the recoil when sin2 (e/2) = 1 or 6 = 180 .

Therefore maximum recoil energy is

h VL M.

pmax (1^ + M
2

)
2 1
E.. (A-17)
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8.3 APPENDIX B

Consideration of electric field in the base region

In the early section, where a relation for transistor amplification

factor is developed, it was assumed that the electric field in the base region

is neglibigle; however, it is possible to consider this electric field and

develop some correction factors for variation of current amplification with

change of electric field in the base region. Webster (32) gives a detailed

analysis of this variation. A summary of his analysis is shown below.

Including the effects of the electric field in the base region, the cur-

rent densities for conduction electrons and holes are

J
n

= n e u
n
E + e D

n
Vn (B-l)

J =pew E - e D vp (B-2)
p P P

where: J is the current density of electrons in the base

J is the current density of holes in the base

n and p are electron and hole densities

u and u are electron and hole mobilities

D and D are electron and hole diffusion coefficients and

E = - VV, where V is the electric potential.

Since the net charge density in the base region is essentially zero,

a + \ p + »a (B-3)

where N and N. are acceptor and donor ion densities. In N-type material
a a

(base region of PNP transistors), N
a

is very small and it may be set equal to

zero and further it is assumed that N= is constant in the base region. This
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implies that

n - p + N
d

(B-4)

and

vn = vp. CB-5)

If a transistor is to be useful, J
fi

must be very small compared to J
p

.

Hence, it can be assumed that J
n

= 0. This assumption and equations (B-<0,

(B-5) and (B-l) give the following equation:

D
j
pn"d

Substituting equation (B-6) into (B-l) and considering that p
p
D
n

= yn
D
p

gives,

£ = --"- X
vp. (B-6)E

K, nh+ P
P

Jp =(-eD
p
7p)(l + j^). (B-7)

If p«N,, then equation (B-7) reduces to equation (B-8).

J = - e D Vp (B-8 )

P P

This Is the same equation that was used in the text with the assumption that

the electric field in the base region is negligible. Therefore in general if

p«N , this assumption is good. This assumption is not correct for a transistor

which is operating at a current density in excess of about 0.1 ampere per square

centimeter. A reasonably good manner of taking into account the electric field

in the base region is to simply multiply the base conductivity by the ratio

p + N

.

S where it appears in the equation for current amplification factor.

- is the ratio of the electron density in the base with the injected holes
N
d

present to the density of electrons in the base in the absence of holes

.
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The ratio p/N, is given by Webster to be equal to Z/2, where

W u I„
Z = „ ? for PNP transistors

D
p
A

°B

w % h
Z = ~ >: for NPN transistors.

D
n
Ao

B

The theory developed in Section 2.3 predicts that

3l
eE

X
eE °B

W

3l- *- °E h
(B-9)

pE pE

Considering the electric field in the base region, equation (B-9) takes the

following form:

l*F °R W~ = -SUf- (1 + Z/2). (B-10)V °E h,

Taking the derivative of equation (B-10) gives

55* = -5-1- (1 + Z/2 + * #-). (B-ll)
3I
pE °E ^ 2 3l

pE

a?
Since Z and I - are linearly related (see equations above), therefore I -, rS

—

PB pn 31
pE

is equal to Z. Thus the effect of differentiation is to double the Z term.

31
E

o
B
W

3l
pE °E h

Webster (32) uses a similar type of analysis to derive correction factors for

the volume recombination and surface efficiency terms. The results of his analy-

sis are shown in equations (B-13) and (B-l^).

31

r^* 1/2 (jt-)4 (1 + Z) (B-13)
3I
pe h
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3I
sR _

W
s
A
s

3I
PE

D
P

A
g(Z) (B-11)

where: A = » d Ad, d is the diameter of emitter and Ad is the width of the
s

absorbing ring which is equal to W and

g(Z) and (1 + Z) are correction factors due to electric field in the

base region.

Therefore the approximate equation for a current amplification factor, con-

sidering the electric field in the base region, for a PNP transistor is

sKA
Vf D A

P

g(Z) + fev^'M
and for NPN transistor is

s W A
g(Z) + '&*"•*

(1 + z)

(1+ z).

(B-15)

(B-16)

The correction factors g(Z) and (1 + Z) are plotted as a function of Z in

Figures (B-l) and (B-2).
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8.3 APPENDIX C

8.3.1 Description and explanation of computer programs

The group of programs discussed in this section are written to compute

the damage coefficients and other pertinent information for an irradiated

transistor. The programs are written for the IBM-ll)10 computer in the FORTRAN

II language. Since the size of IBM-liIlO core storage is only 40,000 charac-

ters, it is necessary to divide the program into six phases. Each phase consists

of a main program and several subprograms. The following list shows the order

of the main program and subprograms in each particular phase:

Phase 1; LSTSQARE, CRAM, SOLVE, RESIDU

Phase 2; LEASTSQ, SOLN

Phase 3; MAPDATTA, PLOT

Phase 4; SLOP, LSTSQ

Phase 5; DAMAGE, FINAL, CRAM, SOLVE, RESIDU

Phase 6; GRAPH, PLOT

Each one of these programs and subprograms are considered in more detail, later

in this Appendix. Table C-I lists the variables utilized in these programs and

Table C-II shows the block diagram for the programs. The source program is

listed, logic diagram shown and the computer's input data for one transistor

Is tabulated in this Appendix.

Three work tapes, 6, 7 and 8, are used in these programs. The tapes are

used for storing Information from one phase and feeding them as input data to

another phase. Approximately 35 minutes is required to compile these sets of

programs and about 23 minutes to compute the results for each transistor.
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Table C-I. Symbols used In program for transistor analysis

Symbol Used In phase Meaning

X(I) 1

Hi) 1

CY(I) 1

DY(I) 1

CZ(I) 1

B(K) 1

NDP 1,2,3,5,6

NCOEP 1,2,5

NCOEFL 1,2,5

NCM1 1,2,5

SMU 1,2,1,5

RELERR 1,2,5

X(I) 2,3

Yd) 2,3

B(K)

Collector current

Base current

Calculated base current by polynomial fit

Inverse of transistor's common emitter
current gain

X(I) + CY(I)

Coefficients of the polynomial fit to
collector and base current

Number of data points

Minimum number of coefficients in the
polynomial fit

Maximum number of coefficients in the
polynomial fit

Degree of analysis

Standard deviation

Relative error

Emitter current

Inverse of transistor's common emitter
current gain

Coefficients of the polynomial fit to
emitter current and 1/B

SL 1 1/6 3I
E

C0NS1 1,5,6 h(Z)

C0NS2 1,5,6 a • h(Z)
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Symbol Used In phase Meaning

CONSK k Lifetime damage constant

CONSA 1 Transistor's damage constant

Z k Intercept of straight line through emitter
current and flux points

Yd) H 1/6

CY(I) h Calculated 1/B by polynomial fit

X(I) 4,5,6 Emitter current

N k NCR

B(I) 5 Coefficients of polynomial fit to h(Z)
and emitter current

C01MA 6 Maximum h(Z)

C02MA 6 Maximum h(Z)

C01MI 6 Minimum a • h(Z)

C02MI 6 Minimum a • h(Z)

NVOLT 1 Number of collector voltages at which the
analysis is performed

NELUX 1 Number of flux conditions

NTEST 1.2,3,4,5,6 A dummy used for testing

CY(I) 2 Calculated 1/s by polynomial fit

N 1,2 NCOEP

XMIN 3,6 Minimum emitter current

XMAX 3,6 Maximum emitter current

YMIN' 3 Minimum 1/8
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Symbol

WAX

NGR

NP

Used In phase Meaning

Maximum 1/6

Number of sets of data corresponding to

different flux values for a transistor

Number of points that must be plotted on
one graph

NPTS 3,6 NP

NPIjOTS 3 NGR

NCARDS 3,6 Number of Information cards to be read

by subprogram PLOT

XF k Flux

Preq k Cutoff frequency of transistor

DELX 1,5,6 AI
E

A.B.C.D u Coefficients of third degree polynomial

fit to I
E

and
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Table C-II. Computer program logic diagram for Appendix C

Continued on
next page

(

>ead CZ, DY

-Vom Tape fi

)

"

Set
X=C7
Y=DY

Set Up
Least Square

Matrix
AX=B

Call ROLN

r Write
B,, i»l, NCOF.F

SMB, "FLFFtR

V(T), CV(T)

.Dn Tape 1
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Continued from
Previous page

Read Pnase 3
From Tape 2

'End File
Rewind
Tape 8

Set
NTEST=1

Read
MDP, NOR
Fron Tape

i z

Read
X(I), Y(I)
From Tape

Calc
mm, xriAx

YMIH, YMAX

I
Call PLOT

* Continued on next page

/Rewind
I Tapes 6,

\JfflTd_8_

Set
X=X+DELX

Write
X, CONS2

On Tape 8

Write
X.C0NS1
On Tape 6

Read
NOR.FREO.XF

XX,

X

.From Tape 5

/T Read

(B., 1=1, t

\From Tape

Set
X=0

Calc
Y(I)

Call
LSTSQ

Calc
SL.Z.SMU
CY(I),CONSl

C0NS2

Write
X,SL,Z,SMU

1Y(I),CY(I),C0NS1
C0HS2

_0n Tape 1

,
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Continued from
previous pnf;e

Set

NCOF.F =

MOTF+1
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8.3.2 Program LEASQARE

In analyzing the experimental data it was necessary to fit polynomial

least squares curve to the data and then use the resulting coefficients in

further computations. LEASQARE is a program which uses the method of least

squares to fit m sets of data points to a polynomial with real coefficients

of the form

f(X) = b
Q
+ b

1
X + b

2
X 2 + .... + b

n
X
n

(C-l)

where b , b,, .... b are determined such that E is minimum.

m r 12

E <V b
i> •••y-J1

[*i- fa
i ,

J

(c-2)

For E (b , b.., .... b ) to be minimum, the first partial derivatives of

E (b
Q

, b, b ) with respect to b„, b,, b must vanish and these co-

efficients must satisfy the equation (C-3)

.

3E(b b .... b )

2—^ "-=0 i-0, 1, .... n (C-3)

Equation (C-2) may be rewritten in the following form

E(b , b,, . . . . b
n

) =
jj Yj - b

Q
- b, X,- . . . . -b

n
x£

]
. (C-i.)

Differentiating equation (C- 1)) with respect to b
n , b. , ... and b gives,

9E
m

3b
1=1

=

ji

2(-l)
[

Y± - b
Q

- b, X, - b
2
X, 2- .... -b

n
X" ]=

!b\ " X 2^i){ Y
i - b " b

l
X
l " b

2
X
i
2
" • • • •

"b
n

X
i]

- ° (C~5)

i
n

" X *<>[ Y
i - b - b

l
X
I - b

2
X
i
2
" ••- -b

n
X
i)

= °
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These equations may be rewritten in the following form by collecting the

coefficients of b
n , b. , and b .

I

1-1

m

I
1=1I h =b

Q
n + b

1
n + b

1 l^ XjL
t .... t^^x;

I X Y = b I X +b [ X 2 + .... +b I X
1=1 1 a u

1=1
x iw 1-1

n+i
(C-6)

2n
III lit 111 , -. ill

I x£y = b
J!

x£ + b [ Xi
n+1

+ ....+b
n I Xi

1=1 i=i 1=1 i=i

This is a system of n+1 linear equations in n+1 unknowns, b.(l=0, 1,

This system of equations may be written in the matrix form.

m

n).

m

I
i=J

m m

I \ I
1=1 1=1

m m

III r Vn

y x <• ii^i ••••i=i
1

m
m m v v j

> X
i IA* •••i=

I
l
Xi

I x£ I x^1
.... I Xl

1=1
x

1=1
1

1=1

n+n

X
i
Y
i

vn vnx
l

Y
i

(c-7)

Program LEASQARE produces the above matrix equation from the input data

points and then this matrix equation is solved by subprograms CRAM, SOLVE and

RESIDU for the unknown coefficients b
Q

, b,, and b . LEASQARE also cal-

culates the slope of the fitted polynomial by using equation (C-8).

m
f(X.) =

I A X,
1

1=1
1 J

1-1
(C-8)

Equations (C-9) and (C-10) are used in LEASQARE to calculate the standard

deviation and the relative error.
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| I (Y, - f(X.)) 2 (C-9)

i=l J

and

'
= * Jl

~\^ (C_10)

This program is the control program for the first phase. In this phase

the Input data, which consists of collector current, base current, number of

data points and the minimum and maximum degree of polynomial least square fit

is read and the preliminary output is produced. Quitter current and the in-

verse of common emitter current gain are evaluated using equations (C-ll) and

(C-12) as follows:

h '
j
b

+ l
c

(c-u)

3I
E

1/6 = 3T (C-12)

V„ = const

The output from this program is stored on tape 6 and is used as input data for

phase 2. This procedure is repeated for different sets of input data which in

turn corresponds to different values of the flux and collector voltage.

8.3.3 Subprogram CRAM

This program reduces a given matrix to an upper right triangular matrix

which indeed is the first step in the Crout reduction method for solving a

matrix equation of the form

(A) {X) = {B> .

To solve the coefficient matrix {X} by Crout reduction, matrix M is chosen

such that
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(H) (T) {X} = (M) {C} (C-13)

where

:

(M) (T) = (A)

(M) {C} = {B}

and (M) is a lower triangular matrix and (T) is an upper right triangular mat-

rix.

Matrix equation (C-13) may be rewritten in the following form:

(M) (TX - C) = 0. (C-ll)

Since (M) is not a zero matrix

(TX - C) = 0. (C-15)

Equation (C-15) can be rewritten in the following form:

(C-16)

In general it is not necessary to choose an M matrix to obtain equation (C-16)

from AX = B. It is possible to change matrix equation A to upper right hand

matrix by using elementary row or column operation. This method which is known

as the modified Crout reduction, is used in this subprogram to reduce matrix

A to an upper right triangular matrix; the basic equations used are:

11 "12 "13

t
22

fc

23

t
23

In
X
l Y l

2n
X
2 ^2

3n

nn

x
3

X
n

Y
3

Yn

J;1
a
'iJ

a« -
Ji

a '

ik
a

kj

a'
ij a

ii « kil a
'ik

a
'kJ

a > j)

(i < J).

(0-17)

(C-18)
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where i and j range from 1 to n, and the a^ are elements of the matrix A.

Prime denotes that this element has been operated on. A detailed description

of this subprogram is on file at the K.S.U. Computing Center.

8. 3. k Subprogram SOLVE

This subprogram solves the matrix equation AX = B for values of X, after

CRAM has reduced the matrix A to T, where T is an upper right triangular matrix.

The column matrix on the right hand side of equation (C-16) is produced by

using equation (C-19).

CO-IS)
b
'i

= F-1 a
11

i-1

1
k»l

ik
u

k

where b<
±
corresponds to Yj of equation (C-l6), a'^ corresponds to diagonal

elements of matrix T, and bj corresponds to elements of the column matrix B.

After matrix equation (C-16) is set up, equation (C-20), the coefficient

matrix, is obtained.

h - »'* - JL a'* x
*

(c"20)

Equations (C-19) and (C-20) are the basic equations used in subprogram SOLVE.

A detailed description of this subprogram is on file in the K.S.U. Computing

Center.

8.3.5 Subprogram RESIDU

This subprogram minimizes the error matrix or residuals obtained when using

the Crout reduction method in solving for the coefficient matrix. After the

coefficient matrix is calculated by CRAM and SOLVE, RESIDU calculates {e} from
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equation (C-21).

A {X} - {B} = {e} (C-21)

Then, the matrix equation A {X} = {e} is solved for a coefficient matrix {X}

by calling CRAM and SOLVE. This new coefficient matrix is added to the pre-

vious one and the result is substituted in equation (C-21) for a new {e} .

This Iteration process is continued until the matrix determined after the n

iteration is negligible with respect to the sum of the previous (n-1) coef-

ficient matrices. A detailed description of this subprogram is on file in

the K.S.U. Computing Center.

8.3.6 Subprogram LEASTSQ

LEASTSQ is the control program for the second phase. In this phase the

input data are read from tape 6 . Using a least squares analysis , a fourth

degree polynomial is fitted to the input data, I- and 1/0 . The coefficients

of the polynomial are stored on tape 7 and the resulting values of 1/8 and I
E

are stored on tape 8. This program is a modified version of LEASQARE.

8.3.7 Subprogram SOLN

After program LEASTSQ performs the least squares analysis and produces

the matrix equation:

AX - B

then, subprogram SOLN is called to solve for the values of coefficient matrix

(X) . This subprogram uses elementary row operations to reduce equation (C-22)

to the form of equation (C-23) .
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a
21

a
22

•'•• a
2n

a
nl

a
n2

•••• a
nn

x
l

b
l

x
2

= b
2

X
n

b
n

(C-22)

x
l

b
'l

x
2

= b

>
1 x

n
b:
n

(C-23)

In the process of elementary row operation to reduce matrix A to an Identity

matrix, matrix B changes to matrix B' . To change the matrix equation (C-22)

to (C-23), the program divides each row of A and B matrices by its correspond-

ing a., to obtain,

-12
a
ll

3i
*22

m
n

2n

22

1

X
l

x
2

X
n

=

b
l

a
ll

b
2

a
ll

b
n

Si

(C-21)

a
nl

a
n2

a
nn

a
nn

then, the elements a,,, i^J are replaced by zero by adding appropriate multi-

ples of each row to the other rows. This operation forms matrix equation

(C-23) • Since after this operation matrix A is changed to an identity matrix

it follows that



1H1

x
l

b
'l

x
2

-
'>

X
n

b '

2

(C-25)

A detailed description of this program is on file in the K.S.U. Computing

Center.

8.3.8 Subprogram MAPDATA

This program is the control program for the third phase. The third phase

reads 1/6 and Ic, for different values of flux from tape 8 and after calculat-

ing the minimum and maximum values of 1/B and Ig, it calls subroutine PLOT to

plot the set of input data. This process is repeated for different values of

the collector voltage.

8.3.9 Subprogram PLOT

This subprogram plots a graph of some of the computed results. To print

titles and axes on the graphs, a set of control cards are first read In from

tape 5. A list of the control cards used in this program are shown in Table

C-III. A complete description of this subprogram is on file in the K.S.U.

Computing Center.

8.3.10 Subprogram SLOP

This program Is the control program for the fourth phase. Equations for

1/8 as a function of flux are read in from tape 7, then for a constant value
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of emitter current, this program fits a straight line through the points of

the vs 1/S data. Using the slope of this line and equations (C-26) and

(C-27), the transistor damage constant and the lifetime damage constant for

a transistor operating at a constant collector voltage are evaluated.

3(1/6) = a (C-26)

i
E
=o J

K . ii22 1 . 1_ (c_27 )

J 2 * f
ca "j

To find the dependancy of h(Z) on emitter current, at different values of

the emitter current, the value of
(

-^^-
) is evaluated and the results are

* I =const

applied in equation (C-28),

a(yg)
|

= a, h(Z) . (C-28)
3* It J

TE

Since a, is a constant and also not a function of emitter current,

3(1/8) 1

h(Z) = -2i—
Ih (C-29)

This process is repeated for several values of the collector voltage. The

resulting values of a. h(Z) and h(Z) are stored on tapes 8 and 6 respectively

and they are used as input to the fifth and sixth phase.

8.3.11 Subprogram I3TSQ

This program determines by least square analysis the slope, intercept

and standard deviation of the best straight line through the data.

Fitting a straight line equation,
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Y = a + b X, (C-30)

to n points (X,, Y
1

) (Xg, 1£ .... (X
fl

Y
n ), one obtains equations

e
x

= a + bX, - Y
x

e
2
= a + bX

2
- Y

2

e
n " a + bX

n " Y
n

These equations are not necessarily equal to zero since the straight line does

not always pass exactly through the points. The principle of least squares

requires that the best representation of the data is that which makes the sum

of the squares of residuals a minimum. Therefore, to find the best values of

a and b, the first partial derivatives of E is set equal to zero,

|£ » || » (C-32)
3a 3b

where

B- I e
x

- (a + b Xj - Y
1 )

2 + .... + (a + b X
n

- Y
n )

2
. (C-33)

Substituting equation (C-33) into (C-32) gives

|| = 2(a + b X
x

- Y
x

) + 2(a + b X
2

- Y
2

) + .... + 2(a + b X
n

- Y
fi

) = (C-3*)

|| = 2X
1
(a + b X

x
- Y

1
) + 2X

2
(a + bX

2
- Y

2
) + . . .

.

+ 2X
n

(a + bX
n

- Y
n

) = 0. (0-35)

Collecting the terms of the unknown coefficients a and b gives,

I Y, = n a + b I X 2 (C-36)

1=1
1 1=1
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I x.y.- I x<+b I tA
1=1 * x

1=1 x 1=1
x

(C-37)

Equations (C-36) and (C-37) can now be solved simultaneously for a and b.

Multiplying equations (C-36) by E X. and (C-37) by n and sunning the results

gives,

n I V - (1 *i>
i=l 1=1

n n n
n y x. y. - y x^ y i,

1
1=1

1
1=1

i

or
ii u it

n
i=l

X^-Jl X
ll=l

Y
*

. (C-38)

Substituting equation (C-38) into (C-37) and simplifying the terms gives the

following equation for a:

n n n n
y x, 2 ! v - u y X. Y.

1=1
1

1=1
1

1=1 * 1=1 * *

n n
n I X * - ( I U«

1=1
x

1=1
x

(C-39)

This subprogram uses equations (C-38) and (C-39) to calculate the best

straight line through a set of n data points , The standard deviation for b

is calculated using the equation

)2

o(b) = t

n
f

>2 v"" n

I f <xi> " Y
i / (n " 2) I V

1=1 '

x 1
> y^ i=l

x

V?
(C-tO)

8.3.12 Subprogram DAMAGE

This is the control program for the fifth phase. The fourth phase reads
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the stored Information on tapes 6 and 8 and then by calling subprograms FINAL

CRAM, VOLVE AND RESIDU it fits different degrees of polynomial to a
±

h(Z) vs

L, and h(Z) vs I„.

8.3.13 Subprogram FINAL

This subprogram is a modified version of program LEASQARE. It is written

in the subprograms and can be used with any program which reads the input

data. The theory used in this subroutine is discussed under LEASQARE. After

performing the least squares analysis, it calls CRAM, SOLVE and RESIDU to

solve the coefficient matrix.

8. 3.11 Subprogram GRAPH

GRAPH is the control program for the sixth phase. It reads the input

data from tapes 6 and 8. After finding the limits for the graphs, it calls

subprogram PLOT and it plots graphs of the stored results in the printed out-

put. Again, to print graph titles and axes a set of control cards used are

shown in Table C-IV.
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Table C-III. LISTING CF COMPUTER PROGRAM

MCNSS JOB TRANSISTOR ANALYSIS BOROOKHIM
MON$$ COMT 10 MINUTES. 25 PAGES .BCRCOKH IM .NUCLEAR ENGG
MCNSS ASGN MJB.12
MCNSS ASGN MG0.16
MCNSS MODE GO. TEST
MCNSS EXEQ FORTRAN. .... ..LSTSQARE
DIMENSION X(40) .Y(40)
DIMENSION CYI40) .DYI40)
DIMENSION CZI40)
COMMON A(20.20),IP(20).V(20)»B(20).AH(20.20).BH(20)

C X STAND FOR COLLECTOR CURRENT. Y FOR BASE CURRENT. CZ FOR EMITTER
C CURRENT AND DY FOR INVERSE OF COMMON EMITTER CURRENT GAIN
C A IS MATRIX OF X SUMMATION COEFFEC I ENTS . I P AND V ARE INTERNAL
C VECTORS USED IN CRAM SUBROUTINE. B IS VECTOR OF XY SUMMATION
C RESIDUALS. MATRIX! AH )=MATRIX< A) I N I T I ALL Y, VECTOR ( BH ) = VECTOR ( B

)

C INITIALLY
C THE POLYNOMIAL COEFFECIENTS ARE STORED IN VECTOR(B) AT

C COMPLETION OF RESIDU SUBROUTINE
C THIS IS THE CONTROL PROGRAM FOR PHASE ONE
C THIS PROGRAM ANALYZES THE RADIATION DAMAGE TO TRANSISTOR GAIN
C THE INPUT DATA TO THIS PART OF PROGRAM CONSIST OF EMITTER CURRENT
C AND BASE CURRENT. DEGRRE OF ANALYSI S .NUMBER CF POINTS .

C THE IMFCRMATICN FROM THIS PHASE ARE STORED ON TAPE AND ARE USED
C IN NEXT PHASE
C THIS PART OF PROGRAM WAS ORIGINALLY WRITTEN BY TOM HILL BUT IT IS

C MODIFIED BY MANOUCHEHR BOROOKHIM FOR USE IN THIS PROGRAM
1 FCRMATOO)
2 FORMAT (20H/ANALYSIS OF DEGREE .131
3 F0RMATI2F12.6)
4 FCRMATOH X=.F12.6.4H Y«iF12.6)

2h FCRMATOH X=.F8.6.4H Y=.F8.6)
5 FCRMATOH B( . 12 .2H ) = .E16 . 8 )

6 FCRMATI20HTSTANDARD DEVI AT I ON= . F16 • 8

)

7 FCRMAT05HTINSUFFECIENT NUMBER OF DATA POINTS)
8 FORMAT OH X=.F12.6.14H CALCULATED Y=»F16.8»16H EXPERIMENTAL Y=.F16
1.8)

28 FCRMATOH X=.F10.8.1AH CALCULATED Y=.F10.8.16H EXPERIMENTAL Y=.F10
1.8)

9 FORMATUSHTRELATIVE ERROR* .F16.8 )

10 FORMATIF12.6.5X.F12.6.5X.F12.6)
11 FCRMATOH ATX . 10X . 1 5HI NVERSE GA I N . 5X . 15HEMI TTER CURRENT)
12 FCRMATI2I3)

REWIND6
NTEST=1
READI1.12 INVCLT.NFLUX



147

NSTR=NVCLT*NFLUX
WRITE(6)NSTR

1000 READd ,1)NDP, NCOEF, NCCEFL
WRITE(6)NDP,NCCEF,NCCEFL

C NCCEFL IS LAST CCEFFECIENT CALCULATED—20 OR LESS
C NDP IS NUMBER OF DATA POINTS— 20 OR LESS
C NCOEF IS NUMBER OF COEFFECIENTS TO BE CALCULATED—20 OR LESS
C THEREFORE. NCOEF-1 IS DEGREE OF LEAST SQUARE FIT

IFINDP.EQ.01CALL EXIT
READ (1,3) (X( I ) ,Y( I ) ,1=1, NDP)
WRITE! 3,4) (X( I ) ,Y( I ) ,1=1, NDP)

C TEST TO DETERMINE IF SUFFECIENT NUMBER OF DATA POINTS
1002 IFINDP.GE. NCOEF) GO TO 1001

WRITE(3,7)
CO TO 1000

1001 NCM1=NC0EF-1
WRITE(3.2)NCM1
DO 10] K=l, NCOEF
DO 102 J=l, NCOEF

C SET MATRIX(A) OF X SUMMATION COEFFECIENTS TO ZERO
102 A(K.J)=0.

C SET VECTOR(B) OF X.Y SUMMATION RESIDUALS TO ZERO
101 t)<K)=0.

DO 107 J=l, NCOEF
DO 107 1*1, NDP
IF( J.GT.l) GO TO. 105
DO 103 K=l, NCOEF

C GENERATE FIRST ROW OF MATRIX(A)
1(3 A( 1 ,K)=A(1,K)+X( I )**(K-1)

GO TO 107
C GENERATE LAST COLUMN OF MATRIX(A)

10 5 A( J,NCCEF)=A( J,NCOEF)+X( I ) ** ( J+NCOEF-2

)

C GENERATE VECTOR(B)
1C7 B(J)=B( J)+Y( I)*X( I)**< J-l)

C THE FIRST ROW AND LAST COLUMN OF MATRIX(A) HAS BEEN FORMED
C VECTOR(B) HAS ALSO BEEN FORMED

DO 109 J*2, NCOEF
DO 109 K=1,NCM1

C GENERATE REMAINDER OF MATRIX(A) BY SHIFTING ELEMENTS OF TCP ROW
C AND LAST COLUMN DOWNWARD AND TO THE LEFT

109 A(J.K)*/ ( J-l.K+1)
DC 120 J=l, NCOEF
DO 121 K=l, NCOEF

C SET MATRIX(AH) EQUAL TO MATRIX(A)
121 AH( J,K)=A( J,K)

C SET VECTCRIBH) EQUAL TO VECTCR(B)
120 BH( J)*B( Jl

CALL CRAMINCCEF.ll
CALL SOLVE(NCOEF)
CALL RESIDU(NCCEF)
WRITE(3,5)( I ,B( I),I*1,NCCEF)

C PROCEED WITH CALCULATION CF STANDARD DEVIATION
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DEVESQ=0.
RELDEV=0.
DO 200 1=1, NDP

C CALCULATE Y VALUE ,CY ,UT I L I Z I NG LEAST SQUARE POLYNOMIAL
CY( I )=B( 1)

DO 201 J=2»NC0EF
201 CY< I >=B(J)*X( I )**( J-ll+CYI I

)

RELDEV = RELDEV+(CY( I
) -Y ( I I ) /Y ( I )

C CALCULATE DEVIATION SQUARED BETWEEN EXPERIMENTAL AND LEAST SQUARE
C POINT

200 DEVESQ=( Y( I )-CY< I ) )**2+DEVESQ
WRITE(3,8)(X( I) ,CY( I ),Y(I ) ,1=1, NDP)
SMU=SQRT(DEVESQ/FLOAT(NDP)

)

WR1TE(3,6)SMU
RELERR=RELDEV/FLOAT(NDP)*100.
WRITE(3,9) RELERR
WRITE(2,9)RELERR

C GENERATE FIRST DERIVATIVE FOR POINTS OF INPUT
C FIRST DERIVATIVE CORRESPOND TO INVERSE OF COMMON EMITTER GAIN

WRITE(3,11)
D0111I=1,NDP
DY(I)=B(2)
IFINCOEF.EQ.2IGO T0114
D0112J=3,NCOEF
DY( I )=DY< I )+FLOAT(J-l)*X< I ) ** ( J-2 ) *B( J

)

112 CONTINUE
114 CZ( I )=X( I )+CY( I

)

111 WRITE(3,10)X( I ),DY( I ) ,CZ( I

)

WRITE (6 I (CZ( I ) ,DY( I ) ,1 = 1, NDP)
C TEST FOR DEGREE OF ANALYSIS

NCOEF = N< OEF+1
IFINCOEF.GT.NCCEFDGOT0300
GOT01002

C TEST TO SEE IF THERE IS ANYMORE INPUT DATA
300 NTEST=NTEST+1

IF1NTEST.GT.NSTR1GO TO 400
G0TC10U0

400 CONTINUE
STOP
END

MONSS EXEQ FORTRAN,,,,,, .CRAM
SUBROUTINE CRAMIN. I

)

C CROUT REDUCTION OF AUGMENTED MATRICES
C THIS PROGRAM PERFORMS A CROUT REDUCTION ON A MATRIX A.

WITH 1=1, THE CROUT REDUCTION IS PERFORMED WITH ROW INTERCHANGES.
C WITH 1=2, THE CROUT REDUCTION IS PERFORMED WITHOUT ROW CHANGES.

COMMON A(20,20),IP(20),V(20),B(20),AH(20,20).BH(20)
2240 F0RMAT(1HK,5HP1V0T,I3,19HIS LESS THAN l.E-12)
2241 F0RMAT(1HK,5HP1V0T,I3,7HIS ZERO)

GO TO (2200,2201) .1

2200 IDMV=1
G0T02202
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2201 IDMV=2
C REDUCTION OF MATRIX
2202 DC 2204 IDK=1,N

VI IDK)=ABS<A( IDK.l)

)

DC2204 101 = 2 *N

IF(V(IDK)-ABS(A( I DK . I DI ) 1 1 2203 . 2204, 2204

2203 VI IDK)=ABS(A( IOK.IDI )

)

221 4 CONTINUE
DO 2222 IDK=1»N
DETRx-J.
IDK1=IDK-1
DC2214 IDI=IDK»N
DETPR=0.0
IFIIDK-112208, 2208, 2206

2206 D02207 IDJ=1»IDK1
2 20 7 DETPR=DETPR+A< I DI , ID J 1*A( I DJ, IDK

)

?208 A(ID1,IDK)=A(IDI.IDK)-DETPR
GO TO(2212.2225),IDMV

2212 DETS=ABS(A( IDI.IDK) 1/VIIDI )

lF(DETSOETR)2214,2214,2213
2213 DETR=DE1S

IP( IDK)=IDK-IDI
GO TO 2214

2225 IP<IDK)=0
2214 CONTINUE

IDK2=IDK-IP( IDK)

D£TR=A< IDK2.IDKI/VI IDK2)

I F(ABS(DETR)-1.E-12 122 30.2 230,2232

2230 WRITE(3»2240)IDK
IF(A( IDK2.IDK) ) 22 32,2231,2232

2231 WRITE(3»2241)IDK
CALL EXIT

2232 VI IDK2)=V( IDK)

V( IDK)=DETR
D02222 IDJ=1,N
DETR=A( IDK.IDJ)
IF( IDJ-IDKI2215, 2215. 2216

2215 A(IDK»IDJ)=A( IDK2.IDJ)
GO TO 2220

2216 DETPR=0.0
IFIIDK-112219, 2219, 2217

2217 002218 101=1 . I DK

1

2 218 DETPR = DETPR+AI I DK, ID I ) *A [ I DI . I D J

)

2 219 A ( IDK.IDJ ) = < A( IDK2 . IDJ ) -DETPR

)

/A< IDK, IDK)

2220 IF( IP( IDK) 12221,2222,2222
2221 A( IDK2.IDJ)=DETR
221 2 CONTINUE

RETURN
END

MONSI EXEQ FORTRAN.,,,, , .SOLVE
SUBROUTINE SOLVE (N)

C AFTER CALLING CRAM THIS SUBROUTINE WILL COMPUTE THE SOLUTION
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C VECTOR CF THE MATRIX EQUATION AX=B. BEFORE RETURNING TO THE
C MAIN PROGRAM THE SOLUTION VECTOR IS STORED IN B.

COMMON A(20»20),IP(20),V(20)»B(20),AH<20,20)»BH<20)
DC 2256 IDK = 1,N
IDK1 = IDK - 1

IDK2 = IDK-IP(IDK)
DETR = B( IDK)
DETPR = 0.0
IF( IDK-1) 2253. 2253. 2257

2257 DO 2252 IDI = 1. IDK1
2!52 DETPR = DETPR+A ( IDK. ID! )« B(IDI)
2253 B(IDK) = (6IIDK2) - DETPR) / A(IDK.IDK)

IF (IP(IDK)) 2254, 2256, 2256
2254 BIIDK2) = DETR
2256 CONTINUE

DO 2263 IDI2 = 1 »N
IDI = N + 1 - IDI2
DETPR = 0.0
IDI 1 = IDI + 1

IF (N - IDI ) 2263, 2263, 2261
2261 DO 2262 IDJ = IDI1.N
2262 DETPR DETPR + A< IDI , IDJ) » B ( IDJ

)

2263 B{ IDI ) = B( IDI ) - DETPR
RETURN
END

MCN$$ EXEQ FORTRAN,,,,, ,,RESIDU
SUBROUTINE RESIDU(N)

C AFTER THE CRAM AND SOLVE SUBROUTINES HAVE BEEN CALLED THIS
C SUBROUTINE WILL COMPUTE THE RESIDUALS IN THE COEFFICIENT
C VECTOR T AND ITERATE ON THE ANSWER VECTOR B UNTIL THERE IS
C NO CHANGE IN B FROM ONE ITERATION TO THE NEXT. THE SUBROUTINE
C ASSUMES THAT THE ORIGINAL MATRIX IS IN S AND THAT THE ORIGINAL
C COEFFICIENT VECTOR IS IN T.

COMMON A(20,20),IP(20),V(20).B(20),S(20.20),T(20)
DO 1 1=1,

N

V(I)=B(I)
DO 1 J=1,N

1 T(I )=T(I )-S( I,J)*B( J)
2 DO 3 1=1,

N

3 B(I )=T(I)
CALL SOLVE (N)
DO 10 1=1,

N

DO 10 J = 1,N
10 T(I)=T(I)-S( I,J)*B( J)

J =

DC 5 1=1,

N

B(I )=B(I)+V( I)

IF(3(I )-V( J) 16.5.6
6 J = l

5 VI I )=B(I)
IF(J) 7,7,2

7 RETURN
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END
MCN$$ EXEQ FORTRAN LEASTSQ
DIMENSION X(40) ,YU0)
DIMENSION CY(40>
COMMON A (20 .20) , IP ( 20 ) ,V ( 20 ) . B ( 20 ) . AH ( 20 , 20 ) , BH< 20 I

THIS PROGRAM FITS A FOURTH DEGREE POLYNOMIAL TO INVERSE OF
C COMMON EMITTER GAIN AND EMITTER CURRENT VALUES
C X STAND FOR EMITTER CURRENT AND Y FOR INVERSE OF GAIN

1 FORMAT (3 13)

2 FCRMATI20H/ANALYSIS OF DEGREE .13)
3 F0RMATI2F12.6)
4 F0RMATI3H X=,F12.6.4H Y=.F12.6)
5 F0RMATI3H B ( , I 2 ,2H ) = ,E16 .8

)

6 FCRMATI20HTSTANDARD DEV I AT I 0N= ,F16 .8

)

7 FCRMATI35HTINSUFFECIENT NUMBER OF DATA POINTS)
8 FCRMATI3H X= , F12 .6 , 14H CALCULATED Y=,F16.8,16H EXPERIMENTAL Y=,F16
1.8)

28 FCRMATI3H X=,F10.8,14H CALCULATED Y=.F10.8,16H EXPERIMENTAL Y=,F10
1.8)

9 F0RMATI16HTRELATIVE ERROR= , Fl 6 .8

)

11 FCRMATI8H ATX , 10X , 15HF 1 RSTDER I VAT I VE . 5X . 1 5HEMI TTER CURRENT)
END FILE 6

REWIND 6

REWIND7
REWINDS
NTEST=1
READI61NSTR

10CO READ(6)NDP,NC0EF.NC0EFL
IF(NDP.EQ.0)CALL EXIT
READI6) (XI I) .Y( I ) .1 = 1, NOP)
WRITE (3. 4) (X( I I ,Y( I ) .1 = 1 ,NDP)

1002 IF(NDP.GE.NCOEF) GO TO 1001
WRITE13.7)
GO TO 1000

1001 NCMl = NCCiF-l
WRITEI3.21NCM1
DO 101 K=l, NCOEF
DO 102 J=1,NC0EF

102 A(K»J)=0.
101 B(K)=0.

DC 107 J=l .NCOEF
DO 107 1 = 1, NOP
IF(J.GT.l) GO TO 105
DO 103 K=l, NCOEF

103 A(1,K)=A(1 ,K)+X( II»*(K-1)
GO TO 107

10 5 A(J,NCCEFI=A(J,NC0EF)+X(I)**(J+NCCEF-2)
107 B( J)=B( J)+Y( I )*X( I )**IJ-1)

DO 109 J = 2, NCOEF
DO 109 K=1,NCM1

109 A( J,K)=A( J-l.K+1)
DO 120 J=l, NCOEF
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DC 121 K=l .NCCEF
121 AH(J.K)=A( J.K)
120 BH(J)=B(J)

CALL SCLNIA.B, NCCEF)
WRITE(3,5MI.B<I), 1=1. NCCEF)
WRITEI7) B{ II .3(2) »B(3) ,3(4)
DEVESQ=0.
RELDEV=0.
DC 200 1=1 ,NDP
CY( I )=B( 1 )

DC 201 J=2. NCCEF
201 CY( I )=B( J)*X< 1 )**(J-1)+CY( I I

RELDEV = RELDEV+(CY( I
) -Y ( I ) ) /Y ( I I

200 DEVESQ=< Y( I
) -CY ( I ) )**2+DEVESQ

WRITE (3, 8) (XI I ) ,CY( I ),Y(I) . I = 1 , NOP

)

SMU=SQRT(DEVESQ/FLCAT(NDP)

)

WRITE(3.S)SMU
RELERR=RELDEV/ FLOAT (NDP)*1 00.
WRITE(3.9) RELERR
WRITE(8)(X( I ).CY( I ) . 1 = 1, NOP I

C TEST FCR DEGREE OF ANALYSIS
NCCEF=NCCEF+1
IF(NCCEF.GT.NCCEFL)GCTC300
GCTC1002

C TEST FCR INPUT DATA
300 NTEST=NTEST+1

IFINTEST.GT.NSTR1GC TC 400
GCTC10U0

400 CONTINUE
STOP
END

MCN$S EXEO FORTRAN.,,,, , .SOLN
SUBROUTINE SCLN(A.B.N)
DIMENSION AI20.20) ,B(20>

25 FORMAT! 1HL . 18HMATR IX IS SINGULAR)
DO 3 KK=2,N
K«KK-1

C****»TEST FCR ZERO DIAGONAL, INTERCHANGE ROWS.
IFIA(X.K) .NE.O. ) GO TC 6
DC5I=KK,N
IF ( A v I ,K) .EQ.0.)GCTC5
F=B(K)
B(K)»BII)
B(I ) = F

DO 7 J=K,N
F=A(K.J)
A(K.J)=A( I .J)

7 A( I ,J)=F
GO TO 6

5 CONTINUE
WRITEI3.25I
STOP
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C#**#*REDUCE A TO UPPER TRIANGULAR
6 D01J=KK.M
1 A(K,J)=A(K,J)/A(K,K)
B(K)=B(K)/A(K,K)
A(K,K) = 1.

DC3I=KK»N
F=A( I ,K)

D02J=K,N
2 At I ,J)=A( I ,J)-F*AIK,J)
3 B( I ) = B(

I

)-F*B(K>
IF(A(N»NJ.EQ.0.)WRITE(3.25)
IFIA(NtN) .EO.O. (STOP
F=A(N»N)
A(NtN)=l.
B<M)=B(N)/F

C****#REDUCE A TC IDENTITY
D010II=2,N
1=1 1-1

DC10K=I I ,N
F=A( I ,<)
B( I )=B( I )-F*B(K

)

D010J=K,N
10 A( I ,J)=A( I ,J)-F*A(K.J)

RETURN
END

MCN1S EXEQ FORTRAN,,, ,,,,MAPDATA
DIMENSION X(40),Y(40)

r l"LL
PR

2
GRm PRINTS THE GRAPHS 0F FITTER CURRENT VS INVERSE OFC COMMON EMITTER GAIN FOR DIFFERENT VALUES OF FLUX

llwtKit ~ F

1 F0RMATI2I3)
2 FCRMATU6H EMITTER CURRENT ,6X , 12HINVERSE BETA//)
3 FCRMAT(F12.6,8X,F12.6)

\
F

,fTz
A

.l/n
X,MAX=,F12 - 6,2X ' 5HXMIN=,F12 - 6 ' 2X ' 5HYMAX=,F12,6.5X.5HYMIN =

END FILE 8

REWIND 8

NTEST=1
10 READ(1,1)NDP,NGR

WRITEI3.2)
NP=NDP*NGR
D020 L=1.NGR
J=NDP*(L-1)+1
K=J+NDP-1
READ(8) (X(l) ,Y( I) ,I=J,K)

20 WRITE(3,3)(X(I ),Y( I),I=J,K)
XMIN=X(1 )

XMAX=X( 1)

YMIN=Y( II

YMAX=Y(1)
C FIND THE LIMITS FOR THE GRAPHS

D030I=2,NP
IFIXMIN.GT.Xd ) )XMIN = X(I )
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30

.0..0.,0.NP,NGR,1,3,2)

9
10
11

12

IFIXMAX.LT. XI I ) )XMAX = X( I

)

IFIYMIN.GT.Y! I ) )YMIM=Y( I

)

IFIYMAX.LT. Y( I

)

)YMAX=Y( I

)

WRITE! 3,4 1XMAX.XMIN.YMAX.YMIN
XMAX=1.6*XMAX
YMAX=1.3*YMAX
CALL PLOT(X,XMIN.XMAX,0,Y,YMIN,YMAX,0,0.
TEST FCR INPUT DATA
NTEST=NTEST+]
IF(NTEST.LE.1)GCTC10
STOP
END

MONSS EXEQ FORTRAN ...... .PLOT
SUBR0UTINEPL0T(X.XMIN,XMAX,LX,Y,YM1N,YMAX,LY,Z,ZMIN,ZMAX,LZ,NPTS,
1NPL0TS.NCCPYS.NCARDS.NDIMI
PROGRAMMED BY ED KOBETICH. KSU DEPT. CF PHYSICS. JUNE 1964.
DIMENSIONXI 1),Y(1),Z(1),SX(7),TITLE(8),L<134) ,NCH ( 4 1 ) ,MOP ( 18

)

FORMAT!! A10)
F0RMAT(58A1.2A9,4A1)
FORMAT! 1H1 .26X.8A10)
F0RMATI1H .A1.1PF9.2.I22A1

)

F0RMAT(133A1

)

FORMAT! 1PE17.2.5E20.2.F16.2)
FORMATI1PE17.2.100X.E16.2I
FORMAT! 1PE17.2.E60.2.E56.2)
F0RMAT(1PE17.2,2E40.2,E36.2)
FORMAT! 1PE17.2.3E30.2.E26.2I

2),FORMAT! 1PE17.2.4E24.2.E20
FORMAT! 1HA.62X.2A9)
SLOG !F)=ALCG(F)/2. 302585
LLX=LX+1
NDD=NCARDS+1
GOTC(15.13,14,13) .NDD

13 READ! 1.1 ) (TITLE! I )

.

1=1 ,8)
14 IFINDD.GE.3 1READ! 1.2) (MOP! I ) ,

I

1NP.NM.NB
15 NCH(41)=NB

NPN=NPTS/NPLOTS
IFILX.GT.01GOT017
CX=120./!XMAX-XMIN)
SX! 1)=XMIN
SX(7)=XMAX
U=XMIN
D016K=2.6
U=(XMAX-XMIN)/6.+U

16 SX(K)=U
G0TC19

17 KX=»120/LX
CX = KX
SXI1 )=XMIN
D018K=2.LLX

18 SX(K)=10.*SX(K-1

)

=1.18) . (NCH( I ) .1=1,40) .TAB1.TA82.ND.



19 CALLPCT (X,XMIN.LXtNPTS»0.120..CX)
IF(LY.GT.0)GCTC20
CY=50./(YMAX-YMIN>
GCTC21

20 KY=50/LY
CY = KY
NY=SLCG(YMIN>

21 CALLPCT ( YiYM I N.LY .NPTS . 1 .50. »CY

>

IFINDIM.LT. 31G0TC24
IF1LZ.GT.0IGCTC22
CZ=40./(ZMAX-ZMIN>
GCTC23

22 ZLZ=LZ
CZ=40./ZLZ

23 CALLPCT(Z.ZMIN.LZ,NPTS»0.40..CZI
24 D050NN=liNCCPYS

Ml = l

Tl=33.
LYY=LY
TT=50.
WRITE(3,3)(TITLE(I ) .1=1.8)
DC43KK=] .51
N = l

NNN=NPN
JED=1
T=51-KK
DC25J=1.133

25 L( J)=NB
L!133)=ND
IFILY.GT.01GCTC26
L(13)=NP
IFIT.GT.TTIGCT^O
SCALE=T/CY+YMIN
L(133)=NP
N =

TT=TT-5.
IFIT.LE.O. )SCALE=YMIN
GCTC30

26 GCTC(27,27.28.28.27,28),LY
27 SS=KY*LYY

GCTC29
28 SS=KY*LYY+1
29 L(13)=ND

IFIT.GT.SS1GCTC30
SCALE=10.**(NY+LYY)
N =

LYY=LYY-1
L( 13)»NP
L(133)=NP

30 IF150..EQ.T1GCTC31
IFIO..NE.T1GCTC37

31 DC32J=14.133

155
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32 L!J)=NM
1F(LX.GT.0)G0T034
DC33J=13.133,10

33 L( J)=NP
GCTC36

34 D035J=13.133.KX
35 L(J)=NP
36 IF(50..EQ.T)L(133)=ND
37 D040LM=1,NPLOTS

DC39I=J! }.NNN
IF(Y(I).NE.T)GOT039
J=X( I

)

IF(NDIM.NE.3)GOT038
I Z=Z ( I

)

L< J+13)=NCH< IZ+1

)

GCTC39
38 LI J+131-NCHCLM)
39 CONTINUE

JED=NNN+1
NNN=NNN+NPN

40 CONTINUE
IFIT1.NE.T1G0T041
IF(15..GE.T)GGTG41
L(2)=M0P(M1)
M1=M1+1
T1=T1-1.

41 IF(N.EQ.1)G0TG42
WRITE! 3.4 )L( 2) . SCALE. (L<J> ,J=12.133)
G0TC43

42 WRITE<3.5)(L(J).J=1.133)
43 CONTINUE

GOT0<44»45,46.47.48,49»44) .LLX
44 WRITEI3.6) <SX(K) .K=l»7)

GCTC50
45 WRITE<3»7) <SX(K)»K=1.LLX)

GCTC50
< 6 WRITEI3.8) (SX(K) .K=1.LIX)

GOTC50
47 WRITEI3.9) (SX(K) »K = 1 .LLX)

GCT050
48 WRITEI3.10) (SX(K) >K=1.LLX)

GOTO50
49 WRITEI3.il) <SX(K).K=1»LLX)
50 WRITEI3.12ITA81.TAB2

RETURN
END

MCNS$ EXEQ FORTRAN
SUBRCUTINEPOTIV.VMIN.LV.NP.J.VC.C)

C PRC6RAIW ID BY ED KCBETICH, KSU DEPT. OF PHYSICS. JUNE 1964.
C THIS SUBPROGRAM SCALES THE COORDINATES OF THE POINTS
C SO THEY CAN BE PLOTTED.

DIMENSIONV(l)
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IF(LV.GT.0)GOTO2
DC1 1=1 ,NP

1 V( I ) = FLC ATI IFIX(C*(VI I I-VMINI+.5) )

G0T04
2 DC3I=1,NP
3 VI I )=FLCAT( IFIX(C*(ALCG(V( I > / VMI N

)

/2. 302585 ) + . 5 ) )

4 IF( J.GT.O )G0T07
DC6I=ltNP
IFIVI I ) .LT.O. )GCTC5
IFIVI I ) .LE.VOGDTC6

5 VCI )=VC + 1.

6 CONTINUE
7 RETURN

END
MCNiS EXEO FORTRAN,,,, , ,,SLCP
DIMENSION XF(20)«A(20),B<20I,C(20) ,D(20),Y<40) ,CY<40)
THIS PROGRAM COMPUTES DAMAGE CONSTANTS K AND ALPHA

C HtZ) IS COMPUTED FOR DIFFERENT VALUES OF EMITTER CURRENT
1 FORMAT1I3)
2 FORMATIE14.8)
3 F0RMATI6H FLUX= , El 6 . 8 , 5X .6HFLUX2 = , E 16.8 , 5X , 6HFLUX3= ,E16. 8//

)

13 F0RMAT(6HFLUX1=,E9.4,3X,6HFLUX2=,E9.4,3X,6HFLUX3,E9.4)
4 F0RMATUHL.13H EMITTER CUR.,3X,10H SLOPE ,8X , 9HI NTERCEPT ,2X , 11H1STAND. DIV.,1X,21HCAL.1/8ETA F I T . 1 /BET A , 5X , 8HK CONST. , 12X , 12HALPHA
2 CONST./)

5 F0RMAT<lHK,F12.6,3X,tl6.8,5X,F8.6,3X,F8.6,3X,F8.6,3X,F8.6,E16.8,5X
1 , F 1 6 . 8 J

6 F0RMAT(59X,F8.6,3X,F8.6)
7 F0RMAT(1HL,2X,2HA=,E16.8,2X,2HB=,E16.8,2X,2HC=,E16.8,2X,2HD=.E16.8

17 FORMAT<2HA=,E12.6,?X,2HB=,E12.6,2X,2HC=,E12.6,2X,2HD=,E12.6>
8 FORMATI2F10.5)
9 F0RMATI32H CUTOFF FREQUENCY OF TR ANSI STOR= , E14. 8 )

25 FORMATI25HLIFETIME DAMAGE CONSTANT* ,E16 .8

)

?6 FORMATI28HTRANSISTOR DAMAGE CONSTANT* , E16.8

)

END FILE 7

REWIND 7

REWIND 6

REWIND 8

40 READ! 1 ,1)NGR
READ(1,2I (XF( I ) , 1=1, NGR)
READ! l.J )FREQ
READU,6)DELX,XX
NTEST=1

30 CONTINUE
D010I=1,NGR

10 READ(7)A(I ) ,B( I ) ,C( I ) ,D( I

)

WRITE(3,7)(A( I I ,B(I) ,C(I ) ,D( I ) ,1 = 1, NGR)
X = 0.
WRITE (3, 4)

100 D020I=1 ,NGR
2 Y( I )=A( I )+B( I )*X+C( I )*X*X + D( I ) *X*X*X
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CALL LSTSQ(XF,Y,NGR,SL,Z,SMU,CY)
CONSK=. 19416/ (FREQ*SL)
CONSA=SL
WRITE(3,5]X,SL,Z,SMU,Y(1),CY( 1 ) .CONSK.CONSA
WRITE (3,6 ) ( Y( I ) ,CY( I ) ,I=2,NGR)
CCNS1=1.
C0NS2=SL
WRITE(6)X,CCNS1
WRITE(8)X,CONS2
X=.0+DELX

130 CONTINUE
1100 DC120I=1,NGR
120 Y< I )=A(I >+B( I )*X+C( I )*X*X+D( I )*X*X*X

CALL LSTSQ(XF,Y,NGR,SL,Z,SMU,CY)
CCNS1=SL/CCNSA
C0NS2=SL
WRITE(6)X,C0NS1
WRITE(8)X,CCNS2
WRITE(3»5)X,SL,Z,SMU.Y( 1 ) ,CY( 1] .C0NS1.CCNS2
WRITE (3, 6) <Y( I ) ,CY( I ) , I=2,NGR)
X=X+DELX
IF(X.LT.XX)GC TC 130

C TEST FOR INPUT DATA
NTEST=NTEST+1
IFINTEST.LE.11GOT030
STOP
END

MON$$ EXEQ FORTRAN,, ,,, ..LSTSO
SUBROUTINE LSTSO I X , Y ,N,SL»Z ,SMU ,CY

)

DIMENSION X(40) ,Y(40) ,CY(40)
C THIS SUBPROGRAM FITS A STRAIGHT LINE THROUGH A SET OF POINTS
C SL IS THE SLOP OF THE LINE
C Z IS THE INTERCEPTS IS NUMBER OF DATA POINT

SX = 0.

SY=0.
SXZ=0.
SXY=0.
DC21=1,N
SX=SX+X( I

)

SY=SY+Y( I

)

SXY=SXY+X( I )*Y( I

)

2 SXZ=SXZ+X( I )**2
Q = N

DFN*0*SXZ-SX**2
SL=(0*SXY-SX*SY)/DEN
Z=(SXZ*SY-SX*SXY)/DEN

C CALCULATION OF STANDARD DIVIATION
DEVESQ=0.
D04 1 = 1,

N

CY( I )=Z + SL*X( I )

h DEVESQ=(Y< I)-CY< I) )**2+DEVESQ
DER=(Q-2.0)#SXY
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SMU=SQRT ( DEVESQ/DER

)

RETURN
END

MCNJS EXEQ FCRTRAN,,,., , .DAMAGE
DIMENSION XI 30) .C0NS1I30) »CONS2(30)
COMMON A (20. 20) ,IP(20) .V(20) .6(20) .AH (20. 20) .BHI20)

: THIS PROGRAM FITS A SERIES OF PCLYNOMIAS TO H(Z) AND CURRENT
1 FCRMATI1HL.53X.37HC0EF. FOR H(Z) VS CURRENT ANALYSIS /)
2 F0RMATI1HL.50X.38HC0EF. FOR ALPHA*H(Z) VS CUR. ANALYSIS /)
3 FORMATI2F10.5)

REWIND 6

REWIND 8

READ(1,3)DELX.XX
NDP=XX/DELX
NTEST=1

9 CONTINUE
NC0EF=2
NC0EFL=4
WRITEI3.1)
D010 1=1, NDP

10 READ(6)X( I ) .CONSK I)

CALL FINAL(X,C0NS1.NDP,NCCEF,NC0EFL)
WRITE(3,2)
NC0EF=2
NC0EFL=4
D020 1 = 1, NDP

20 READ(8)X( I ) ,C0NS2( I

)

CALL FINAL(X,C0NS2.NDP,NC0EF,NC0EFL)
: TEST FOR INPUT DATA

NTEST=NTEST+1
IFINTEST.LE.DGCT09
STOP
END

MCN$$ EXEO FORTRAN.,.,, ..FINAL
SUBROUTINE F INAL ( X . Y .NDP .NCOEF .NCCEFL

)

DIMENSION X(20),Y(20)
DIMENSION CYI20) »DY(20)
COMMON A (20, 20) , IP ( 20 ) , V( 20 ) ,B ( 20 ) .AH (20,20) .BHI20)

2 F0RMATI20H/ANALYSIS OF DEGREE ,13)
5 F0RMATI3H B( , I 2 »2H ) = , E16 .8 I

6 F0RMATI20HTSTANDARD DEV I AT I 0N= . E16 .8

)

9 FORMAT! 16HTRELATIVE ERRCR= , E16.8

)

1001 NCM1=NC0EF-1
WRITE(3,2)NCM1
DO 101 K=l. NCOEF
DO 102 J = l, NCOEF

If 2 A(K.J)=0.
101 B(K)=0.

DO 107 Ja-1 , NCOEF
DO 107 1=1. NDP
IF(J.GT.l) GO TO 105
DO 103 K=l. NCOEF

103 A(1,K)=A( 1.K1+XI I )*#(K-1)
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105
107

109

121
120

-7
I

21 1

200

GC TC 107
A( J,NCCEF)=A( J.NCCEF )+X( I

) ** ( J+NCCEF-

B( J)=B( J)+Y(

I

>*X( I )**( J-l)

DO 109 J=2.NCCEF
DC 109 K=1,NCM1
A( J.K)=A( J-l.K+1)
DO 120 J=1,NCCEF
DC 121 K=1.NCCEF
AH( J.K)=A( J,K)
BH( J)=B( J)
CALL CRAM(NCCEF.l)
CALL SCLVE(NCCEF)
CALL RESIDU(NCCEF)
WRITE (3. 5) ( I»B( 1 ).I=1.NCCEF>
DEVESQ=0.
RELDEV=0.
002001=1. NDP
CY( 1 l=B( 1 )

DC201J=2.NC0EF
CY( I)=B( J)*X( I )**( J-ll+CYI I

)

RELDEV=RELDEV+(CY( 1
) -Y ( I ) ) /Y ( I

)

DEVESQ=( Y( I )-CY( I ) ]**2+DFVESQ
SMU=SORT(DEVESQ/FLCAT(NDP) )

WRITE(3.6)SMU
R ELERR=RELDEV/ FLOAT ( NDP 1*1 00.

WRITE13.9) RELERR
NCCEF=NCCEF+1
IF(NCCEF.LE.NCCEFL) GOTO 1001
RETURN
END
MCNJI EXEO FORTRAN.m .. .CRAM

SUBRCUTI MF CRAMIN. I

)

COMMON A(20.20).IP(20).V(20).B(20).AH(20,20).BH(20)
?240 FCRMAT(1HK,5HP1VCT.I3.19HIS LESS THAN l.E-12)

2241 FCRMATf 1HK.5HP1VCT. I3.7HIS ZERO)

GO TO (2200.2201) .

I

1DMV=1
G0T02202
IDMV=2
DO 2204 IDK=1.N
V( IDK)=ABS(A( IDK.l)

)

DC2204 ID1=2.N
IF( V( IDK)-ABS(A( I DK . I DI ) ) ) 2203 .2204 . 2204

V( IDK)=ABS(A( IDK.IDI >

)

CONTINUE
DO 2222 IDK=1.N
DETR=-1.
1 DK1 = IDK-1
DC2214 IDI=IDK.N
DETPR=0.0
IFl I DK-1 1220 8. 2206 .2206

?206 D02207 IDJ=1.IDK1

2200

2201
?202

2203
2204
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2 207 DETPR=DETPR+A< IDI . IDJ ) *A ( I DJ> IDK

)

2208 A(IDItIDK)=A< I DI

,

IDK l-DETPR
GO T0I2212.2225) iIDMV

2212 DETS=ABS(A( IDI.IDK) l/VIIDI )

IF(DETS-DETR)2214,2214,2213
2213 DETR=DETS

IP(IDK)=IDK-IDI
GO TO 2214

2225 IP(IDK)=0
2214 CONTINUE

IDK2=1DK-IP( IDK)
DETR=A( IDK2.IDK)/V( IDK2)
IF(ABS(DETR)-1.E-12I22 30.2 230»2 232

7230 WRITE(3,2240)IDK
IFIAI IDK2.IDK) > 2232 .223 1 , 2232

2231 WRITE(3i2241) IDK
CALL EXIT

2232 VI IDK2>« 7< IDK)
V(IDK)=DETR
D02222 IDJ=1,N
DETR=A( IDK.IDJ)
IF(1DJ-IDK)2215, 2215. 2216

2215 A< IDK.IDJ)=A( IDK2.IDJ)
GO TO 2220

2216 DETPR'0.0
IF( IDK-112219. 2219. 2217

2217 DC2218 IDI=1.IDK1
2218 DETPR=DETPR+A( IDK.IDI )*A( IDI.IDJ)
2219 A(IDK»IDJ)=< A( I DK2 . I DJ1-DETPR ) /A ( IDK. IDK)
2220 IF( IPIIDKD2221. 2222. 2222
2221 A(IDK2.IDJ)=DETR
2222 CONTINUE

RETURN
END

MON$$ EXEQ FORTRAN..... ..SOLVE
SUBROUTINE SOLVE (N)

COMMON A (20,20) .IPI20) ,V(20).BI20) .AH (20, 20) »BH<20)
DO 2256 IDK = l.N
IDK1 = IDK - 1

IDK2 = IDK-IP(IDK)
DETR = B( IDK)
DFTPR = 0.0
IF(IDK-l) 2253, 2253, 2257

2257 DC 2252 IDI = 1. IDK1
22! 2 DETPR = DETPR+A ( IDK, IDI I * B(IDI)
2253 B(IDK) = (BIIDK2) - DETPR) / A( IDK, IDK)

IF (IP(IDK)) 2254, 2256, 2256
2254 B( IDK2) = DETR
7256 CONTINUE

DO 2263 IDI 2 = 1,N
IDI = N + 1 - IDI2
DETPR = 0.0
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IDI1 =

IF (N -

2261 DC 2262
?262 DFTPR =

2263 B( ID!

)

RETURN
END

MCN4S
SUBRCUT
COMMON
DC 1 1 =

V( I )=B(
DO 1 J =

1 T(

I

>=T(

2 DC 3 1=

3 B( I )=T(
CALL SO
DC 10 I

DC 10 J

10 T( I )=T(
J =

DC 5 1 =

B( I )=B(
IF(B( I

)

6 J = l

5 VII )=B(
IF(J) 7

7 RETURN
END

MCN$$
DIMENSI

C THIS PR
FCRMATI
FCRMATI
FCRMATI
FCRMATI
FCRMATI
END FIL
END FIL
REWIND
RFWIND8
REWIND
READI1,
NDP=XX/
NTEST=1
NBA=1*N
CCNTINU
DC15 K=

15 READI6I
DC20 J=

20 READI8)
XMIN=X(

IDI + 1

IDI) 2263, 2263, 2261
IDJ = IDI1.N
DETPR + A< IDI t IDJ)* B( IDJ)

= B( IDI I
- DETPR

EXEQ FORTRAN,,,,, ..RESIDU
INE RESIDUIN)
A(20,20),IP(20),V(20),B(20),S(20,20),T(20)
1,N
I I

1,N
I )-S( I,J)*B( J)
l.N
I)

LVE (N)
= 1 ,N
= 1,N
I )-S( I ,J)*B( J )

1,N
I )+V( I

)

-VII) 16.5,6

I)

• 7,2

E

ON
CGR
6H
7H
7H
2F1
3X,
E6
E8
6

XEQ FORTRAN,,,,, , .GRAPH
XI 60) .CCNS1 (60) ,C0NS2(60)
AM PLOTS THE OUTPUT FROM TAPES 6 AND 8

XMAX=,E16.8,5X,5HXMIN=,E16.8/)
CC1MA=»E16.8.5X,6HCC1MI=.E16.8/)
CC2MA=,E16.8,5X,6HCC1MI=,E16.8/)
0.5)
3E16.8)

10

5IDELX.XX
DELX

DP
E

l.NBA
XIK) .CCNS1IK)
1 .NBA
XI J) .CCNS2I J)
1)
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XMAX=X( 1

)

CC1MI=CCNS1( 1

)

CC1MA=CCNS1 ( 1

)

CC2MI=C0NS2< 1 I

CC2MA = CC MS2( 1)

FIND THt LIMITS CF GRAPHS
DC 30 1=2. NBA
IFIXMIN.GT.XI I ) )XMIN = X( I

)

IF(XMAX.LT.X( I

)

)XMAX=X( I

)

IFICC1MI.GT.CCNSK I ) ) CC1MI =CCNS1 ( I

)

I FICCIMA.LT. CCNSK I ) >CC1MA=CCNS1 ( I )

IF(CC2MI.GT.CCNS2( I ) ICC2MI =CCNS2 ( I

)

30 IF(CC2MA.LT.CCNS2( I) ) CC2MA=CCNS2 < I

)

WRITE(3,2)XMAX,XMIN
WRITE(3.3)CC1M\.CC1MI
WRITE(3.4)CC2MA.CC2MI
WRITE(3.6)(X(J> ,CCNS1 (J) .CONS2 (J) .J=1.NBA)
XMAX=2.0*XMAX
CC1MA=1.4*CC1MA
CC2MA=1.4*CC2MA
WRITEI7) (X( I ) , 1=1.NBA)
END FILE 7

CALL PLCTU.XMIN.XMAX.O.CCNSI.CCIMI . CC1MA ,0 .0. ,0. .0 . .0 .NBA . 1 , 1 ,3 ,

2

1)

REWIND 7

READI7) (X( I) .1 = 1. NBA)
CALL PLCT(X,XMIN,XMAX,O,CCNS2.CC2MI.CC2MA.0.O..O..O..0.NBA.l,l,3,2

1 )

NTEST=NTEST+1
IFINTEST.LE.IIGCTCIO
STCP
END

MCNSS EXEQ FCRTRAN...., ,.PLCT
SUBRCUTINEPLCTIX.XMIN.XMAX.LX.Y.YMIN.YMAX.LY.Z.ZMIN.ZMAX.LZ.NPTS.
1NPLCTS.NCCPYS.NCARDS.NDIM)
PRCGRAMMED BY ED KCBET1CH, KSU DEPT. CF PHYSICS. JUNE 1964.
DIMENSICNX(l) >Y<1).ZU).SX<7).TITLE(8),U134) .NCH ( 41 ) ,MCP ( 18

)

1 FCRMATI8A10)
2 FCRMAT(58A1.2A9.4A1

)

3 FORMAT! 1H1 .26X.8A10)
4 FCRMATUH . A 1 . 1PE9. 2 . 122A1 )

5 FORMAT! 133A1 )

6 FCRMAT(1PE17.2.5E20.2,E16.2)
7 FCRMATI:PE17.2.100X,E16.2)
8 FCRMATI1PE17.2.E60.2.E56.2)
9 FCRMAT(1PE17.2.2E40.2.E36.2)

10 FCRMATI1PE17.2.3E30.2.E26.2)
11 FCRMAT(1PE17.2.4E24.2.E20.2)
12 FCRMATUHA.62X.2A9)

SLCG(F)=ALCG(F)/2.302b85
LLX=LX+1
NDD=NCARDS+1
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GCTC(15,13.14,13) .NDD
: 3 READ(l.l) (TITLEIl ) .1=1.8)
14 IF(NDD.GE.3)READ( 1.2 1 (MCP( I) .1=1. 18) . ( NCH ( 1 ) .1=1 .40) iTAfll .TAB2 .ND

.

1NP.NM.NB
15 NCHI41 )=NB

NPN=NPTS/NPLCTS
IF(LX.GT.C)GCTC17
CX=120./(XMAX-XMIN)
SX(1)=XMIN
SX(7)=XMAX
U = XMIN
DC16K=2.6
U=(XMAX-XMIN)/6.+U
SX(K)=U
GQTC19
KX=120/LX
CX = KX
SX( 1)=XMIN
D018K=2.LLX
SX(K)=10.*SX(K-1>
CALLPCTIX.XMIN.LX.NPTS.0.120..CX)
IF(LY.GT.0)G0TC20
CY=50./( YMAX-YMIN)
GCTC21
KY=50/LY
CY = KY
NY=SLCGf YMIN)
CALLPCTIY.YMIN.LY.NPTS.1.50..CY)
IFINDIM.LT. 31GCT024
IF(LZ.GT.0)G0TC22
CZ=40./(ZMAX-ZMIN)
G0TC23
ZLZ=LZ
CZ=40./ZLZ
CALLPCTIZ.ZMIN.LZ.NPTS.0.40..CZ)
DCB0NN=1.NCCPYS
Ml = l

Tl=33.
LYY=LY
TT=50.
WRITE(3.3)(TITLE(1 I .1=1.8)
OC43KK=1.51
N"l
NNN=NPN
JED=1
T-51-KK
DC25J=1.133
L(J)=Nfl '

LI133)=ND
IF(LY.GT.0)G0T026
L(13)=NP
IF(T.GT.TT)GCTC30

16

17

18

19

2d

21

22

23
24

25
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26
2 7

28
29

3

.'. 1

32

33

34
35
36
37

38
39

40

4 1

42
4 3

SCALE=T/CY+YMIN
L(133)=NP
N =

TT=TT-5.
IF(T.LE.O.)SCALE=YMIN
GCTC30
GOTO (27. 27, 2 8, 28. 2 7. 28) .LY
SS=KY*LYY
GCTC29
SS=KY*LYY+1
L(13)=ND
IFIT.GT.SSIG0TC30
SCALE=10.#*(NY+LYY>
N = C

LYY=LYY-1
L(13)=NP
U(133)=NP
IFI50..EQ.T1GOT031
IF(0..NE.T)G0TO37
D032J=14,133
L(J)=NM
IFILX.GT.01GOT034
D033J=13,133.10
L(J)=NP
GCTC36
D035J=13,133,KX
L( J)=NP
IF(50..EO.T)L( 133)=ND
D040LM=1 .NPLOTS
D039I=JED,NNN
IF(Y(I I.NE.TIGOTC39
J = X( I I

IFINDIM.NE.3IG0TC38
IZ=Z(I)
L(J+13)=NCH< 12+1)
G0T039
L(J+13)=NCH(LM)
CONTINUE
JFD=NNN+1
NNN=NNN+NPN
CONTINUE
IFIT1.NE.TIG0T041
IF115..GE.T1G0TC41
L(2)=M0P(M1)
M1=M1+1
T1=T1-1

.

IF(N.EQ.1)G0TC42
WRITE(3.4)L<2) .SCALE. (L (J) .J=12»133)
G0T043
WRITE(3.5XL(J),J=1.133)
CONTINUE
GOTO (44. 45. 46. 47. 48. 49, 44 I .LLX
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44 WRITE<3.6> <SX(K) .K = l .7)
G0TG50

45 WF!ITE<3.7XSX(K>.K=1.LLX)
G0TQ50

46 WRITE<3»8)(SX(KI,K=1.LLX)
G0TC50 '

47 WRITEI3.9}(SX(K).K=1.LLX>
G0T050

48 WRITE(3.10)(SX<K).K=1.LLX>
G0T050

fr9 WRITEOill) <SX(K)»K=1.LLX)
50 WRITE(3.12)TAB1,TAB2

RETURN
END

MCNSS EXEO FORTRAN
SUBROUTINEPOTIV.VMIN.LV.NP.J.VC.C)

C PROGRAMMED BY ED KOBETICH, KSU DEPT. OF PHYSICS. JUNE 1964.
C THIS SUBPROGRAM SCALES THE COORDINATES OF THE POINTS
C SO THEY CAN BE PLOTTED.

DIMENSICNV(l)
IFUV.GT.01GCTC2
0011=1. NP

1 V(

I

i=FLOAT< IFIX(C*(V< I 1-VMINI+.5I )

G0TC4
2 0031=1. NP
3 V( I )=FLOAT( IFIX(C*(ALOG(V( I ) /VM IN ) /2.302585 ) + . 5 I

)

4 IFIJ.GT.0JG0TC7
0061=1. NP
IF(V(I).LT.0.)G0TO5
IF(V(I).LE.VCIG0T06

5 V( I )=VC+1.
6 CONTINUE
7 RETURN

END
MONSS EXEO LINKLCAD

PHASELSTSQARE
CALL LSTSQARE
PHASELEASTSO
CALL LEASTSO
PHASEMAPDATA
CALL MAPDATA
PHASESLOP
CALL SLOP
PHASEOAMAGE
CALL DAMAGE
PHASEGRAPH
CALL GRAPH
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APPENDIX D

Neutron Dosimetry and Standarization of Counting Systems

To accurately measure the integrated neutron flux it was suggested by the

Argonne National Laboratory staff (9) that aluminum activation foils be used.

The aluminum activation cross section for I'M Mev neutrons is better known

than that of other materials (see Table I). In utilizing the aluminum foils

it was necessary to establish a stable accurate counting system of known

efficiency. A gas flow beta proportional counter was selected as most suit-

able for this purpose; such a counter was set up and standardized against a

similar counter at Argonne National Laboratory.

The Argonne National Laboratory gas flow proportional counter serves as

a calibration reference within the Argonne National Laboratories and it Is

believed (9) to be the most accurate system available there for measurement

of absolute activity. The count per second (CPS) obtained from this system

are corrected to disintegration per second (DPS) using the following relation:

DPS =

(0.5)(l.^-^tA <™>

Where 0.5 is the system geometry correction factor, 1.1(7 the stainless steel

backscatter correction factor and e~"
93t/" is the foil thickness, t, correc-

tion factor.

To calibrate the Kansas State University beta proportional system, four

foils were Irradiated with the neutron generator and then counted with both

the Kansas State University and Argonne National Laboratory systems. The

resulting CPS values were corrected for background and using equation (D-l)
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the Argonne National Laboratory results were converted to DPS. The DPS ob-

tained with the Argonne National Laboratory system and CPM from the Kansas

State University system are plotted as a function of cooling time in Figure

D-l and D-2. Since the DPS obtained with the Argonne National Laboratory

system are the same as C. and CL, is the same as CPS for the Kansas State

University system (see Equation (120), Section 3.1) therefore

C . DPS. ., .

f
abs = A.N.L. ,

D_2 v

T C
T

CPS
k.S.U.

f„ for the four foils and the average accepted value for the Kansas State

University system are shown in Table D-I. Knowing the f_ value, the inte-

grated neutron flux incident upon the surface of the foil is calculated from

equation (119), Section 3.1.

Table D-I Correction factor for K.S.U. proportional counter

Foil No. 1 2 3 1 Ave.

f
T 1.550 1.552 1.5*11 1.516 1.5394.023

Expected
half life

Measured
half life

15 hrs 15 hrs 15 hrs 15 hrs

lit. 9 15.0 15.1 15.0

To monitor the transistor incident flux during the irradiation, it was

necessary to set up a BF3 proportional counter (see Section 4.1). To calibrate

this system, the transistor was removed from the socket and an aluminum foil
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Figure D-l. Absolute activity (DPS) obtained from

A.N.L. as a function of cooling time
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Figure D-2. Activity (CM) obtained with K.S.U.

system as a function of cooling time
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was placed In Its place so that the front face of this foil was exactly the

same distance from the neutron generator target as the front face of a tran-

sistor when it Is placed in the socket. Two aluminum foils, were placed in

the foil holders around the transistor socket. After irradiation the count

obtained from BP3 counter was calibrated against the absolute activity of each

foil. For irradiation of transistors the middle foil was removed and two new

foils were placed in the foil holders. The two outside foils were used for

checking the stability of the EF3 counter.
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ABSTRACT

The purpose of this work was to study the effects of neutron irradiation

on semiconductor materials and in particular to investigate the effect of l^.l

Mev neutrons on the performance of several commonly used transistors. Since

transistor current gain is both a critical parameter in transistor performance

and a function of the transistor-semiconductor physical parameters, current

gain was selected as a means of measuring the neutron radiation damage.

The known effects of neutron irradiation on the minority carriers and

conductivity of the semiconductor materials were used to derive a theoretical

expression for the variation of transistor current gain with neutron irradia-

tion. To check the validity of this relation, a set of transistors was irra-

diated with fast neutrons and collector characteristic curves obtained. A

computer program was developed to analyze these data and calculate a lifetime

damage constant. The value of this constant depends on the transistor semi-

conductor material. The computer also calculates a transistor damage constant;

this constant is a function of transistor base width, lifetime damage constant

for the base region, and operating conditions including the emitter current

and collector voltage.

Damage constant results are compared with recent literature results. The

literature results in the form of lifetime damage constants indicate that the

order of radiation resistivity for germanium and silicon semiconductors is

N-type 3e>P-type Ge>N-type Si>P-type Si. The results obtained in this work

follow this order except that P-type Ge is found to be more resistant to

neutron irradiation than N-type Ge.



In summary, the general results obtained are:

1. Transistor current gain decreases with the integrated neutron flux

Incident on the transistor. The extent of gain decrease Is a func-

tion of transistor base width, semiconducting material used, and

collector voltage and emitter current.

2. For a given transistor type, the transistor with wider base width

showed more damage.

3. The lifetime damage constants determined were a function of the base

region semiconductor materials.

4. Germanium transistors were found to be more radiation resistant

than similar silicon transistors. Lifetime damage constants were

higher for P-type germanium than for N-type; N-type silicon lifetime

constants, however, were higher than those for P-type.


