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ABSTRACT

In this thesis, we establish the theoretical tools to investigate high-order harmonic gener-

ation (HHG) by intense infrared lasers in a gaseous medium. The macroscopic propagation

of both the fundamental and the harmonic fields is taken into account by solving Maxwell’s

wave equations, while the single-atom (or single-molecule) response is obtained by quan-

titative rescattering theory. The initial spatial mode of the fundamental laser is assumed

either a Gaussian or a truncated Bessel beam. On the examples of Ar, N2 and CO2, we

demonstrate that the available experimental HHG spectra with isotropic and aligned target

media can be accurately reproduced theoretically even though the HHG spectra are sensitive

to the experimental conditions. We show that the macroscopic HHG can be expressed as a

product of a macroscopic wave packet and a photorecombination cross section, where the

former depends on laser and experimental conditions while the latter is the property of the

target only. The factorization makes it possible to retrieve the single-atom or single-molecule

structure information from experimental HHG spectra. As for the multiple molecular orbital

contribution in HHG, it causes the disappearance of the minimum in the HHG spectrum of

aligned N2 with the increase of laser intensity, and the position of minimum in HHG spec-

trum of aligned CO2 depending on many factors is also attributed to it, which could explain

why the minima observed in different laboratories may differ. For an important application

of HHG as ultrashort light source, we show that measured continuous harmonic spectrum

of Xe due to the reshaping of the fundamental laser field can be used to produce an isolated

attosecond pulse by spectral and spatial filtering in the far field. For on-going application of

using HHG to ionize aligned molecules, we present the photoelectron angular distribution

from aligned N2 and CO2 in the laboratory frame, which can be compared directly with

future experiments.
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Chapter 1

Introduction to high-order harmonic
generation

1.1 Background

The laser (light amplification by stimulated emission of radiation), invented in 1960, has

opened up new research areas in atomic and molecular physics. Based on this technology,

Franken et al. [1] first demonstrated the frequency doubling in a crystal in 1961, New

and Ward [2] observed the third-harmonic generation in gases in 1967, and a few years

later Reintjes et al. [3] generated higher-order harmonic such as the fifth order. These

harmonics were all in the perturbative region, which could be understood in the framework

of n-photon excitation. The probability of absorbing n photons decreases exponentially

with n, explaining the rapid decrease in the harmonic intensity with the order. Meanwhile,

pulsed lasers were developed towards increasing peak powers, increasing repetition rates and

decreasing pulse durations. The character of laser-atom interaction also evolved from being

essentially pertubative for laser intensities below 1013 W/cm2 to strongly nonperturbative

for higher intensities. When the pulsed laser intensity reaches about 1014 W/cm2, the

electric field from the laser becomes comparable to the Coulomb field, and a dramatically

nonlinear process of high-order harmonic generation (HHG) can occur, in which an intense

ultrafast laser pulse at a given frequency is converted to integer multiples of this fundamental

frequency in a conversion medium. The first observations of HHG date back to the late
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1980’s. Indeed, efficient photon emission in the extreme ultraviolet (XUV) range (from

10 eV up to 124 eV, corresponding to 124 nm to 10 nm, respectively), in the form of

high-order harmonics was observed in Chicago (17th harmonic of a KrF laser, 1987) [4]

and in Saclay (33rd harmonic of a Nd:YAG laser, 1988) [5]. Different from perturbative

harmonics, the high-harmonic spectra start with a rapid decrease in efficiency for low-order

harmonics consistent with the perturbation theory, followed by a broad plateau of nearly

constant efficiency, and then an abrupt cutoff as shown in Fig. 1.1. Most of the early

work concentrated on the extension of the plateau, i.e., to obtain the harmonics of higher

frequency and shorter wavelength. Today, HHG produced with short and intense laser pulses

has been extended to the water window (below the carbon K-edge at 4.4 nm) [6, 7].

Figure 1.1: Typical high harmonic spectrum. The spectrum has three parts: the perturbative
regime for low orders, the plateau for intermediate orders, and the cutoff at the highest
orders.

Since there was a broad plateau range with comparable harmonic efficiency, another

mechanism instead of the pertubative theory was needed to explain HHG phenomenon. A

breakthough in the theoretical understanding was initiated in 1992-1993 by Krause et al. [8]

and Corkum [9], presenting a semiclassical theory, which reproduced the plateau behavior in

the observed HHG spectra. According to these works, in the strong ultrafast laser field, an

outmost electron is tunnel ionized through a barrier formed by the electric field and atomic
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potential when the electric field strength of the laser is close to its peak during an optical

cycle, and is driven away from the nucleus. When the oscillating laser field changes its sign

(about a quarter of an optical cycle later), the electron first decelerates, and then starts

to re-accelerate back towards the parent ion. Therefore, the electron can gain a significant

amount of kinetic energy, much larger than the fundamental photon energy. If the returning

electron recombines with its parent ion, this kinetic energy plus the ionization potential can

be released in the form of high energy photon. This model has been named a “three-step

model” because there are three steps involved: ionization, propagation in the laser field

and recombination (see Fig. 1.2), or “simple-man’s model” due to its striking simplicity.

Krause et al. [8] also showed that the cutoff position in the HHG spectrum followed a

universal law of Ip + 3.17Up, where Ip is the ionization potential, and Up = e2E2
0/4meω

2
0

ponderomotive energy, i.e., the mean kinetic energy acquired by an electron oscillating in

the laser field. Here, e is the electron charge, me its mass, and E0 and ω0 laser electric

field and its frequency, respectively. This quasiclassical theory was shortly confirmed by a

quantum-mechanical treatment also including quantum effects, such as the depletion of the

ground state, wave packet spreading and interference based on a strong-field approximation

(SFA) by Lewenstein et al. [10] and Antoine et al. [11]. Such a highly nonlinear process

as high harmonic generation can be accurately treated in a microscopic aspect with these

simple models.

Figure 1.2: Schematic drawing of the three-step model for HHG. Adapted from [12].

However, HHG is a process involving not only the response from a single atom outlined
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above but also the response from a large ensemble of atoms, molecules or their ions, coher-

ently stimulated by the laser, i.e., the response of the whole medium [12–15]. Both the laser

and the generated harmonic fields propagate in a gaseous medium, influenced by the nonlin-

ear effects, such as dispersion, absorption, plasma, and ionization. Harmonic generation will

be efficient only if the good phase-matching is achieved, requiring that the generated field

to be in phase with the nonlinear polarization over the medium’s length. The geometries

widely used for generating HHG include that laser is focused in a gas jet or a cell, and

laser is guided in a hollow-core fiber or a waveguide filled with gas. Moreover, the high

laser intensity used may induce a strong ionization of the nonlinear medium. The resulting

spatio- and temporal-dependent free-electron dispersion has important consequences on the

propagation of both laser and harmonic fields [16].

1.2 Single-atom response

1.2.1 Three-step model

The intuitive picture mentioned in Sec. 1.1 for harmonic generation from a single atom (or

the microscopic process) includes three steps: ionization, propagation and recombination.

Each of them will be discussed in detail as follows:

Step 1: Ionization.

In an intense laser field the electron motion is governed by the oscillating electric field of

laser pulse once it is freed. Firstly, the electron has to escape the binding potential of an

atom in the presence of an intense laser pulse. In 1965 Keldysh [17] suggested an alternative

mechanism for ionization could occur under certain conditions. At modest laser intensities

(<1014 W/cm2), if the ionization potential is low compared with the frequency of the light

and large compared with the electric field of the laser, the normal multiphoton excitation

route for ionization via intermediate states applies as shown in Fig. 1.3(a). If the incident

field is strong enough, and the atomic potential is significantly distorted to such an extent

4



that a potential barrier is formed. If the frequency of light is low enough such that the

electron can respond to this changing potential, within a quasi-stationary approximation,

the electron can tunnel out through a static potential barrier as shown in Fig. 1.3(b). As

the laser field strength is high enough, the barrier is completely suppressed and the electron

will be classically “ripped off”. This is known as barrier-suppressed ionization in Fig. 1.3(c).

The critical field is obtained by equating the maximum induced by the field in the atomic

potential to the binding energy:

F =
κ4

16Zc

, (1.1)

where κ =
√

2Ip with Ip being the ionization energy, and Zc is the charge seen by the active

electron. Keldysh also introduced a parameter γ, now well known as “Keldysh parameter”

to determine whether the atom is ionized in the tunneling (γ �1) or the multiphoton regime

(γ �1), which was defined as:

γ =

√
Ip

2Up

, (1.2)

where Up is the ponderomotive energy as defined in Sec. 1.1. This can be understood in a

qualitative way: the laser-distorted Coulomb potential oscillates with the laser frequency.

For higher frequency (larger γ), the electron does not have enough time to accommodate the

fast changes in the potential and the quasi-static approximation is not valid. The motion

of the electron is governed by an average over many cycles of the laser field. For tunneling

(smaller γ), its time, which depends on laser intensity and ionization potential is larger

than the optical period, so it occurs in a single cycle. In the multiphoton regime, the steady

nonlinear interaction with the laser field (absorption of many photons) leads to an electronic

state with an energy larger than zero, thus a free electron. In the opposite limiting case

(much smaller γ), the laser field is high enough to fully suppress the barrier. The tunneling

ionization model is an essential element in the theory of high harmonic generation, in which

the electric field can be regarded as quasi-static one. In 1986, Ammosov, Delone and Krainov

[18] gave a generalized analytical theory, which is well known as “ADK theory”, to calculate
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the ionization rate for arbitrary atoms and initial electronic states. In 2002 Tong and

Lin extended the atomic ADK theory to diatomic molecules by considering the symmetry

property and the asymptotic behavior of the molecular electronic wave function. They also

tabulated the structure parameters of several molecules for calculating the ionization rates.

This approach is usually called molecular ADK theory, or MO-ADK theory [19].

Figure 1.3: Schematic diagram of three ionization mechanisms. Modified from [15].

Step 2: Propagation.

After an electron is ionized, it is driven away from the atomic core by a laser field E(t) =

E0 cosω0t. But at later time, the laser field reverses its direction and the electron is then

accelerated back towards the atomic core. Based on the Newton’s law of motion, the electron

displacement, x, from the core obeys [13]

d2x

dt2
=
eE0

m
cosω0t,

dx

dt
= v =

eE0

mω0

sinω0t+ vi,

x = − eE0

mω2
0

cosω0t+ vit+ xi, (1.3)

where vi and xi are the initial velocity and position. Assuming the conditions v(t0)=x(t0)=0

at the moment of ionization, t = t0, the different classes of electron trajectories during

propagation in the laser field are plotted in Fig. 1.4. Electrons starting from the atomic core
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located at (0,0), can return to the core at position 0 depending on the initial phase φ = ω0t0.

The final kinetic energies of electrons at the moment of recombination are determined by

the intersection with the velocity axis. If the electron ionized at a phase of φ = 17◦ along

the cutoff trajectory b has the highest kinetic energy of 3.17Up upon it returns to the core.

Electrons ionized at the peak of the electric field (φ = 0◦) return to the core with zero kinetic

energy (can be seen in trajectory d). However, most electrons are produced at unfavorable

phases of the electric field and never return to the core (for example, trajectory e). There

are “short” and “long” trajectories, leading to the same final energy for the harmonics in

the plateau, for example, trajectories a (φ = 45◦) and c (φ = 3◦), respectively. Only the

first two encounters of the electron with the ion (as shown in Fig. 1.4) lead to significant

photon emission because of the quantum-mechanical nature of the electron, which suffers

from dispersion (spreading of the wave function, thus the overlap with an atom becomes

smaller) as soon as it is not bound to a potential.

Step 3: Recombination.

When an electron recombines with the parent ion, the photon energy is determined by the

sum of the ionization potential Ip and the momentary kinetic energy Wkin of the electron

depending on the phase φ at the moment of ionization (as shown in Fig. 1.5):

~ω = Ip +Wkin, (1.4)

where ~ is the reduced Plank constant (or Dirac constant) and ω is the angular frequency of

high harmonic. The maximum kinetic energy is 3.17Up as the phase is 17◦, this determines

the “cutoff” law of Ip+3.17Up for high harmonic generation [8] as mentioned in Sec. 1.1. The

recombination step is either replaced by the radiationless transition to the autoionizing state

or relaxation with XUV emission to describe the enhancement of the generation efficiency

for the harmonic resonant with the transition between the ground and autoionizing state of

the generating ion [20], or modified such that a returning electron can promote a lower-lying

electron into the valance band and then recombine to the vacancy in the lower-lying state
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Figure 1.4: Different classes of electron trajectories during the propagation phase of high
harmonic generation, plotted in the position-velocity plane. Reproduced from [12].

to probe the multi-electron dynamics with high-harmonic spectroscopy [21].

HHG is only one of the strong-field nonlinear processes in the frame of the three-step

model. Other important processes are high-energy above-threshold ionization (HATI) [22,

23] and nonsequential double ionization (NSDI) [24, 25]. HATI originates from the elastic

scattering of the returning electron with the atomic ion in the backward direction. The

electron gains energy in excess of its initial energy in integer multiples of the fundamental

laser frequency. A typical photoelectron spectrum shows a characteristic plateau of electron

peaks, separated by one fundamental photon energy, with a sharp drop around 2Up and

a cutoff of 10Up. When an inelastic collision of the electron with its parent ion occurs,

another electron can be ionized so that in the end the atom is doubly ionized. This process

is called “NSDI”. In NSDI, a characteristic intensity dependence of doubly ionized atomic

ions is followed the intensity dependence of single ionization. A “knee” was observed in the
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Figure 1.5: (a) A variation of the kinetic energy of the returning electron as a function of
the birth phase (i.e., the phase of the electric field at which the electron is born by tunneling
ionization). (b) Plot of the recombination phase (or recombination time) changing with the
final kinetic energy. The kinetic energy reaches the maximum (or cutoff) of 3.17 Up at the
birth phase of 17 degrees. Below the cutoff, two trajectories (short and long) lead to the
same final kinetic energy.

intensity dependence at the point where single ionization saturated, indicating that the two

processes are coupled. There are two mechanisms for the removal of the second electron by

the returning electron: one is through electron-impact ionization, i.e., the (e, 2e) process,

and the other is electron-impact excitation followed by laser tunnel ionization [26].

1.2.2 Wavelength scaling of harmonic efficiency and attochirp

One of the main interests in the study of HHG is to produce bright tabletop XUV or soft

X-ray sources, or intense attosecond pulses. The single-atom harmonic cutoff energy is

proportional to the square of the wavelength λ0 of the laser and laser intensity I0. One

approach to extend the cutoff energy is to increase the laser intensity. Unfortunately, due

to the depletion of the ground state there is a practical limit beyond which the intensity can

be increased. An alternate way is to use longer-wavelength lasers. However, semiclassical

strong-filed approximation [10] predicts that the HHG yield from a single atom scales as

λ−3
0 , which was partially supported by an experiment [27]. A simple physical interpretation

for this scaling law is that λ−2
0 originates from the wave packet spreading (spending much
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more time in the continuum as the wavelength of the laser increases) while an additional

λ−1
0 factor arises from the conversion from photon number to energy. This is only valid for a

single harmonic with both Ip/ω0 and Up/ω0 constant [28]. Quantum-mechanics calculations

suggested that single-atom HHG yield drops even more dramatically with laser wavelengths

and scales as λ−5.5
0 for the fixed laser intensity and for a same photon energy interval [29–31].

Later on, this unfavorable scaling law was partially confirmed by experimentally measured

scaling laws of λ−6.3±1.1
0 in Xe and λ−6.5±1.1

0 in Kr at constant laser intensity (somewhat

worse than the theoretical predictions) [32]. Actually, macroscopic dispersive effects (such

as electronic, geometric, dispersion and induced dipole phase) generally result in a more

rapid decrease of the HHG scaling with increasing wavelength, this will be discussed in

detail in Sec. 3.6.

Figure 1.6: Representation of short and long trajectories predicted by the semiclassical
model similar to Fig. 1.5(b). Short trajectories are emitted first, and exhibit a positive chirp
β. Increasing the wavelength lowers the attochirp as evidenced by the decrease in slope.
Adapted from [33].

HHG can also be described in an effective way based on classical trajectories. A bound

electron freed by intense field ionization is accelerated for approximately half an optical

cycle, and then it can recombine with the parent ion to emit an attosecond burst of light.

Since the emission process occurs twice per optical cycle, it corresponds to a comb of odd-
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order harmonics of the fundamental driving laser field in the frequency domain. The often

used quantum mechanical treatment based on SFA [10] neglects the influence of the Coulomb

potential on the motion of the free electron in the laser field. Those quantum paths whose

quasi-classical action is stationary contribute mostly to the single-atom induced dipole.

Consequently, classical mechanics as mentioned in Sec. 1.2.1 is a good approximation to

describe the motion of the electron in the continuum, and the semiclassical model predicts

a dispersion of the recombination times [as shown in Fig. 1.5(b)], which corresponds to

a spectral group delay dispersion (GDD) of the emitted harmonics (attochirp) [33]. The

attochirp is the main intrinsic limitation to the duration of Fourier-synthesized attosecond

pulses. In attosecond generation, the consecutive harmonics do not emit simultaneously

due to the attochirp, and the ordering of the frequencies defines the sign of the attochirp.

Consequently, for the production of the shortest attosecond burst there exists an optimal

bandwidth (Fourier transform limited pulse duration), beyond which the pulse broadens

as dispersion dominates. This attochirp can be partially compensated by propagating the

pulses in a suitable dispersive medium [34, 35]. In Fig. 1.6, the attochirp is given by the

derivative of the curve of HHG emission times as a function of harmonic photon energy. For

a given class of trajectories (either “short” or “long” trajectory), the attochirp is almost

constant. It also follows that the attochirp is proportional to the ratio of the fundamental

laser period to the harmonic cutoff energy [33] as shown in Fig. 1.6. Since the cutoff energy

scales linearly with the laser intensity, one can reduce the attochirp by increasing the peak

intensity. However, this is limited to a maximum laser intensity due to the depletion of

the ground state as mentioned before. Another better way to reduce the attochirp consists

in exploiting the wavelength scaling. Since the laser period is proportional to λ0 and the

cutoff energy scales as λ2
0, and thus the attochirp (their ratio) should scale as λ−1

0 . As

mentioned previously, increasing the fundamental wavelength at constant intensity can avoid

the problems related to the ionization, so, this method, coupled with the strong enhancement

of cutoff energy, would allow a better path towards shorter attosecond pulses centered at
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higher photon energies.

1.3 Macroscopic propagation effects

1.3.1 Phase matching conditions

Phase matching is the matching of the phase front of the generated harmonic field to the

phase front of the fundamental laser field. In laser-matter interaction, this phase matching

could be complicated spatially and temporally due to the spatiotemporal variation of laser

intensity. The phase mismatch relation for the qth harmonic can be written as [36, 37]

∆kq = (kq − qk0)−Kq,dip

= ∆kq,geo + ∆kq,el + ∆kq,at −Kq,dip. (1.5)

Here kq and k0 are the wave vectors of harmonic and fundamental laser fields. The coherence

length is proportional to the inverse of the phase mismatch. For the efficient generation of

harmonics, the phase mismatch should be small. Each contribution to the phase mismatch

will be discussed in more detail.

Geometric dispersion. To drive the HHG process, we need to use a laser with high

enough intensity, usually obtained by confining (or focusing) a laser pulse to a small region

in space, or guiding the laser beam in a waveguide. This introduces the geometric phase

(it is more generally called as “Gouy” phase ) for the fundamental laser and the generated

harmonics, and the phase mismatch can be written as

∆kq,geo = kq,geo(r, z)− qk0,geo(r, z). (1.6)

There are two main geometries in practice. One is to focus a laser beam in the free space.

The most general mode is a Hermite-Gaussian beam. A Gaussian TEM00 mode is the low-

est Hermite-Gaussian mode whose radial intensity distribution is Gaussian. The Gaussian

beams emitted by many lasers are usually refracted by a lens to create a converging beam,

and then a Gaussian laser beam is transformed into another Gaussian beam (characterized
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by a different set of parameters). However, the focal spot size of a Gaussian beam is only

sustained over approximately one Rayleigh length zR = πw2
0/λ0, where w0 is the beam waist.

After that the beam size increases approximately linearly with propagation distance z. (See

details in Appendix D.1.) The truncated Bessel beam is a general model for a few-cycle

pulse (as discussed in Appendix D.2). The other one is to guide a laser beam in the hollow

waveguide to maintain high intensity over an extended propagation length. When a laser

pulse is focused into a capillary, the beam radius remains constant over the length of the

capillary, due to reflection of the light at the boundaries. The wave vectors of the laser and

the generated harmonic fields are all affected due to the particular conditions at the capil-

lary walls. The modification of the wave vector is larger if the diameter of the waveguide is

smaller.

Induced dipole phase. For the HHG in the strong-field regime, it is shown that the

single-atom induced dipole phase strongly depends on the laser intensity, so the spatial

variation of the focused laser beam results in longitudinal and transverse gradients of this

phase. The contribution to the phase mismatch is

Kq,dip = ∇ϕq,dip. (1.7)

Here the intrinsic dipole phase ϕq,dip is the action accumulated by an electron during its

excursion in the laser field along the trajectory leading to the emission of the qth harmonic.

It can be expressed as (in the first-order approximation)

ϕq,dip = −αq
i I, (1.8)

where I is the instantaneous laser intensity. The proportional constant αi=S,L depends

on “short” (S) or “long” (L) trajectory. When the harmonics are in the plateau region,

αq
i=S ≈ 1×10−14 rad cm2/W and αq

i=L ≈ 24×10−14 rad cm2/W [38–41]. In the cut-off

region, these two trajectories merge into one, and αq
i=S,L ≈ 13.7×10−14 rad cm2/W. The

intensity dependence of the dipole phase is different for “short” and “long” trajectories, so

good phase-matching conditions are different for the two trajectories. This dipole phase is

13



also responsible for the spectral broadening of high harmonics because the intensity variation

I(t) in time causes a frequency chirp ∆ωq(t) = −∂ϕq,dip(t)/∂t.

Plasma (electronic) dispersion. The first step of the HHG process is ionization.

Actually, only a small portion of electrons freed by the laser field could recombine with the

parent ion to emit high-energy photons. The rest miss the core and become free for a long

time compared with the laser duration. This would finally cause the modification in the

refractive index. The phase mismatch due to free electrons is

∆kq,el = kq,el(r, z, t)− qk0,el(r, z, t)

≈ e2ne(r, z, t)

4πε0mec2
qλ0 = qr0ne(r, z, t)λ0, (1.9)

where ne(r, z, t) is the spatiotemporal dependent electron density, e, me and r0 are the

charge, the mass and the classical radius of an electron, respectively. Here the free-electron

dispersion for the harmonic field is neglected because the frequencies of high harmonics are

much higher than the plasma frequency.

Neutral (atomic) dispersion. Any conversion media for HHG exhibit dispersion,

which is a refractive index depending on the frequency (or wavelength) of the light. The

phase mismatch due to neutral atom dispersion is

∆kq,at = kq,at(r, z, t)− qk0,at(r, z, t). (1.10)

The spatiotemporal dependence may be involved due to the ionization of the medium. For

the fundamental laser pulse, the Sellmeier equations with coefficients that are specific for

a particular medium can be applied to obtain the refractive index, where the wavelength

region is not too close to a resonance. For the harmonics in the XUV regime, the refractive

index is generally smaller than 1. For an intense ultrafast laser, the intensity dependent

modification in the refractive index caused by the third-order susceptibility (usually called

as “Kerr effect”) may become important in some parts of the pulse close to the laser peak.
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1.3.2 Absorption effect

For most conversion media used for HHG process in the photon-energy region of 10 - 100

eV, the photoionization cross section σ, as well as the absorption of the photons is large.

So the reabsorption is a limiting factor to phase-matched harmonics in the soft X-ray and

XUV spectral region. One can define an absorption length Labs = 1/ρσ as the length over

which the intensity of XUV light propagating in an absorbing medium drops to 1/e, where

ρ denotes the gas density. The harmonics are generated as the driving laser propagates

along the direction z through the medium. The earlier generated harmonics are added to

the newly generated ones coherently, and they are also affected by absorption. Based on a

one-dimensional model, one can obtain the qth harmonic yield [42, 43]

Iq ∝ |
∫ Lmed

0

ρAq(z) exp(−Lmed − z

2Labs

) exp[iϕq(z)]dz|2, (1.11)

where Aq(z) is the amplitude of the single-atom response, and ϕq(z) is its phase at the

exit of the medium. For the loose focusing or guiding laser beam, Aq(z) can be assumed

independent of z, Eq. (1.11) becomes

Iq ∝ ρ2A2
q

4L2
abs

1 + 4π2(L2
abs/L

2
coh)

[1 + exp(−Lmed

Labs

)− 2 cos(
πLmed

Lcoh

) exp(−Lmed

2Labs

)], (1.12)

where Lcoh = π/∆kq is the coherence length, which can be calculated by phase mismatch

∆kq in Sec. 1.3.1. The evolution of Iq as a function of the medium length for different ratios

of Lcoh/Labs is plotted in Fig. 1.7. To generate about half the asymptotic harmonic yield for

a long coherence and propagation length, the following conditions need to fulfill [42, 43]:

Lmed > 3Labs, Lcoh > 5Labs. (1.13)

Under these conditions, one can generate close to the maximum of harmonic yield, for

example, the harmonic yield reaches approximately 90% of the asymptotic value when Lmed

is about 6Labs. Another important feature from this analysis is that the asymptotic value

increases as |Aq/ρ|2, independent of the gas density. It requires to maximize Aq/ρ and fulfill

Eq. (1.11) simultaneously to optimize the HHG yield. These optimizing conditions are time

dependent and strongly influenced by ionization.
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1.3.3 Spatiotemporal dynamics of laser pulse

As discussed above, most free electrons resulted from ionization could not recombine with

the parent ions, and they create a plasma environment for laser propagation in a gaseous

medium. This plasma effect contributes to the refractive index as a negative value: −e2ne(r, z, t)/(2ω
2
0ε0me)

with electron density ne [44] and other parameters defined before. The strong dependence of

the ionization on the laser intensity leads to the strong spatiotemporal electron density, and

spatiotemporal dynamics for a focused laser beam propagating in a relatively dense medium

[16]. Consequently, the generated harmonics which are driven by the distorted laser pulse

are greatly affected and shown to be good candidates for producing an isolated attosecond

pulse after spatial and spectral filtering in the far field (see Publication [7]).

Defocusing. Laser focusing leads to quite different spatial distribution of the intensity
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(or ionization). In the beginning part of the medium, the ionization probability is highest

on axis and decreases with r because of the radial laser intensity variation, and the resulting

radial variation of the electron density (or refractive index) acts like a negative lens which

rapidly defocuses the laser beam [16]. However, the resulting lower intensity in turn slows

down the defocusing process. The most changes to the spatial profile occur in the first half

of the medium where the laser intensity is still high (also the high ionization). When the

ionization probability becomes lower (typically a few percent), the spatial profile does not

significantly change its shape and the beam diverges slowly. Finally the profile of laser close

to the propagation axis is changed dramatically compared to the assumed one propagating

in the vacuum (usually considered as a Gaussian beam).

Blue shift. The ultrafast laser pulse also makes laser intensity change rapidly in time.

The time dependent refractive index, through the variation of the electron density, leads

to a time dependent phase of the electric field and therefore a frequency chirp. During

the evolution of the pulse, there are two cases for the time-dependent electron density [16].

One is that it either increases (when the intensity is high enough to induce the considerable

ionization), or stays constant (when the intensity is low). The other is that the intensity is

sufficiently high to saturate the ionization probability, the electron density initially increases

and then saturates and stays constant. The central frequency of laser field in both cases

is blue shifted because the number of the free electron is increased as a function of time,

and the blue shift also has time dependence. Thus the fundamental laser field at the exit

of the medium is reshaped both spatially and temporally [45]. The outgoing beam is much

broader and more divergent than the incoming beam, and has a lower peak intensity. The

peak of the pulse may shift to off-axis position in space, it may occur earlier in time and

the effective duration of the pulse may be shorter than the incoming pulse.
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1.4 Applications of high-order harmonic generation

1.4.1 Generation of attosecond pulse train and isolated attosec-
ond pulse

One of the most attractive goals in nonlinear optics is to generate short-wavelength pulses

with ultrashort duration [46]. Due to some unique properties, such as ultrashort duration,

high brightness, and good coherence, HHG becomes a candidate source for this purpose.

The harmonic emission can be understood intuitively as ultrashort bursts emitted at each

recollision of the electron with the parent ion, which takes place during every half optical

cycle (linearly polarized laser is assumed). Each emission consists of contributions of two

electron trajectories with the shortest return times. Furthermore, either phase matching

in the medium, or spatial filtering in the far field, selects contribution of only one of these

trajectories. As a result, harmonic radiation consists of a train (called as “attosecond pulse

train” – APT) of sharp short-wavelength pulses with sub-femtosecond duration, with only

one pulse per half cycle. Experimentally, an APT with duration of 250 as was demonstrated

by Paul et al. [47] firstly, which corresponds to the coherent superposition of harmonics 11-

19 generated in argon. To characterize attosecond pulses, they introduced the RABITT

(reconstruction of attosecond beating by interference of two-photon transitions) technique,

in which side bands involving adjacent harmonics were measured to determine their phase

relationship.

An APT is suitable for a number of specialized applications, however, for many other

applications an isolated attosecond pulse (IAP) is required to offer the unique time resolution

on the attosecond timescale. Indeed, there was a plethora of techniques developed for the

production of IAP, with the idea that harmonics can be limited to generate only from half an

optical cycle in a few-cycle or multi-cycle infrared laser pulse. Conceptually, spectral filtering

of high harmonics by a few-cycle driving pulse is the simplest scheme for producing an IAP.

Generally, the harmonics in the cutoff region are emitted during one half-cycle only (will

be continuous spectrum) if the driving pulse is short enough (typically two optical cycles or
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less) and has appropriately stabilized carrier-envelope phase (CEP). Using this method, an

IAP as short as 80 attoseconds has been generated [48]. Based on the strong sensitivity of

the HHG process to the polarization (ellipticity) of the driving laser, the harmonic emission

can be localized to the time interval in which the laser is linearly polarized. Using this

polarization gating technique, an isolated 130 as pulse has been produced [49, 50]. The

advantage of this technique is that in principle a much larger range of frequencies in the

harmonic spectrum are emitted during a short time (not only the frequencies in the cutoff

region), allowing for potentially much shorter attosecond pulses with higher yields. Other

methods for IAP generation include spatiotemporal gating, two-color control, quasi-phase

matching, and so on. In a tight-focusing geometry, different phase-matching can be achieved

for different photon-energy regions. The good phase matching on axis is only for harmonic

radiation within one half cycle of the driving field, an IAP could be temporally selected

by applying a spatial and spectral filter in the far field [51, 52]. The polarization gating

method above is based on the use of two color fields with the orthogonal polarizations,

and the two-color field co-polarized is also used for IAP generation. The presence of the

second field with different frequency and intensity breaks the half-cycle periodicity of the

electron dynamics and offers an additional time gating. To improve the yield of harmonics,

as well as the intensity of attosecond pulses, quasi-phase matching method has been used

with the idea that only the constructive build-up of the harmonic radiation was allowed.

The newly generated harmonics interferes with earlier ones during the propagation in the

medium, while the destructive inference regions can be minimized either by modulating

the generating light (for example, using counter-propagating light), or by modulating the

generating material (for example, using modulated wave guides) [53–56]. Meanwhile, an

IAP can be characterized using an attosecond streak camera technique pioneered by Krausz

and coworkers [57, 58] reling on the use of an intense (1013 - 1014 W/cm2) infrared laser field

that exchanges many photons with the electron after it has been set free in the continuum

by the attosecond pulses.
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The availability of APT and IAP makes it capable of performing pump-probe experi-

ments with APT or IAP as a pump pulse and infrared (IR) laser as a probe pulse (usually

written as “APT+IR” or “IAP+IR”) [59–61]. Such experiments have the advantage that

the time delay between the APT (or IAP) and the IR can be controlled with high precision

at the level of attoseconds. The pump pulse can create an attosecond wave packet evolving

in time, and the probe pulse can be applied at different time delays. It is of interest to ob-

serve how the results of the probe changes with the time delay, and then using these results

to retrieve the information on the dynamic system after the pump pulse. The availability of

attosecond pulses may also allow one to perform attosecond pump-probe experiments [62]

where a first XUV pulse electronically excites an atomic, molecular, or condensed phase sys-

tem of interest, thereby initiates an ultrafast electronic process, and a second, time-delayed

XUV pulse extracts a signal from the system containing information about the time evolu-

tion that has taken place. Both pulses have a duration that is short compared to the typical

timescale of the electron dynamics under investigation. Few attempts include that Hu and

Collins [63] calculated two-color ionization of He using a sequence of two ultrashort XUV

pulses and Yudin et al. [64] analyzed the ionization of a set of coherently coupled states

using an attoscond pulse.

1.4.2 Probing electronic structure and dynamics of atoms and
molecules

HHG itself has also become a tool to obtain the structural and dynamical information of

atoms and molecules. Because single-atom (or single-molecule) harmonic emission results

from interference of the re-collision electron with the ground-state wave function (Step

3 as discussed in Sec. 1.2.1), the electronic structure of molecular orbitals, or electron-

electron interaction is imprinted on the HHG spectrum. In a recent experiment Shiner et

al. [21] recorded high-harmonic spectra of several atoms (Kr, Xe and Ar) for the photon

energy up to 160 eV using a few-cycle 1.8-µm laser. They showed that these spectra can be

related to differential photoionization cross sections measured with synchrotron sources, and
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these spectra contain features due to collective multi-electron effects involving inner-shell

electrons, in particular the giant resonance in Xe. In addition, harmonic interferometry has

been used to probe the multi-electron dynamics in molecules by Smirnova et al. [65]. They

measured the phases and amplitudes of CO2 harmonics, and revealed features of multiple

orbitals and the underlying attosecond multi-electron dynamics, including the dynamics of

electron rearrangement upon ionization. In another pioneering experiment, Itatani et al. [66]

demonstrated the so-called tomographic imaging of molecular orbitals, where the highest-

occupied molecular-orbital (HOMO) of N2 molecule can be retrieved by measuring HHG

spectra at a range of alignment angles of the molecular axis with respect to the polarization

of the driving laser. This approach has recently been applied to reconstruct the HOMO of

CO2 using harmonic spectroscopy [67].

HHG process can provide access to the molecular structure as well. Following the two-

center interference model by Lein et al. [68], Kanai et al. [69] observed the constructive

and destructive interference occurred for selected harmonics subject to a Bragg condition

for the returning electron. Since then one can deduce the internuclear distances in the

molecule by using the harmonic order where constructive or destructive interference occurs.

Single-molecule harmonics can be viewed as from an electron-ion recollision process, where

the electron recollides with the positive ion predominantly during a small fraction of the

optical cycle of the driving laser, implying that the electron probes the ion with attosecond

time resolution. In an experiment on D+
2 dissociation, one could thus map the first few

femtoseconds of the molecular dissociation by using a wavelength-tunable ionization laser,

where variation of the wavelength translates into a variable recollision time [70]. In another

experiment, Baker et al. [71] demonstrated a method that could probe nuclear dynamics

and structural rearrangement on a sub-femtosecond time scale using HHG in molecules.

The chirped nature of the electron wave packet produced by laser ionization in a strong

field gave rise to a similar chirp in the photons emitted upon electron-ion recombination,

and this chirp in the emitted light allowed one to obtain information about nuclear dynamics
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with 100-as temporal resolution, from excitation by an 8-fs pulse, in a single laser shot.

In the experiments above the nuclear and electronic dynamics were induced by the same

laser pulse, one can also apply another probe laser, which subsequently resolves time-delayed

processes of electronic and nuclear configuration of the molecule.

1.4.3 Single-photon ionization of aligned molecules

The chemical reactions and biology transformations occur on a time scale of picoseconds

or less, where the time evolution of molecules can be commonly probed by exploiting the

relation between the structure of a molecule and its photoabsorption spectrum [72]. The

interpretation of these experiments often relies on the existing knowledge about the molec-

ular spectroscopy. Therefore X-ray (or XUV) diffraction and electron diffraction are the

conventional approaches, which severed well to image the molecular structure. In electron

diffraction experiments, the wavelength of the electrons is small compared to the relevant

inter-nuclear distances, inducing diffraction that enables one to resolve structures with sub-

nanometer resolution. However, the creation of electron bunches shorter than 100 fs is a

major challenge. Alternatively, one can use the diffraction of electrons generated within a

molecule through photoionization by an XUV or X-ray pulse.

Photoionization is the basic physical process that provides the most direct investigation

of molecular structure. The ejected photoelectrons contain information on the molecular

orbitals from which they are removed. The outgoing electrons also experience the sur-

rounding atoms in the molecule as scattering centers, endowing the photoelectron angular

distribution (PAD) with sensitivity to the underlying molecular structure. It is possible to

extract the detailed information on orbitals and/or structure if the PAD is measured in the

molecular frame. However, almost all earlier experimental measurements were performed

from an ensemble of randomly distributed molecules. Thus the rich dynamical structure of

PAD for fixed-in-space molecules still remains largely unexplored. This challenge can be

met by measuring photoelectrons and fragment ions formed from the same parent molecule
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in coincidence. Using molecular alignment and orientation techniques, it can avoid the

requirement of a rapid dissociation accompanied by an axial recoil of the fragment ions.

These techniques allow active control of the angular distribution of a parent molecule before

ionization takes place using either adiabatic or nonadiabatic methods with infrared lasers

[73–75].

Photoionization of aligned molecules has previously been explored with UV/near-infrared

radiation [76–78]. However, the kinetic energy of the ejected photoelectron is very low, i.e.,

the de Broglie wavelength of the electron is much larger than the inter-atomic spacings, which

is not suitable for obtaining the structural information. An alternative approach is provided

by the HHG source served as XUV or X-ray light, which makes it possible to perform

single-photon ionization experiments of aligned molecules. In a few recent experiments,

Thomann et al. [79] reported the angular dependence of single-photon ionization of aligned

N2 and CO2 molecules, Kelkensberg et al. [80] measured electron angular distribution of

CO2 molecules which were aligned using a near-infrared laser and ionized using XUV pulses,

and they revealed the contributions from four orbitals and the onset of the influence of the

molecular structure.

1.5 Thesis outline

In this thesis, our main focus is to develop a macroscopic propagation model to quantitatively

describe HHG spectra of gaseous atoms and molecules measured in experiments. To make a

complete story of HHG, we investigate some of its important applications, i.e., probing the

electronic structure of atoms and molecules, producing an isolated attosecond pulse, and

ionizing the aligned molecules.

In Chapter 2, we describe a complete theory for HHG in a macroscopic atomic and molec-

ular medium. The theory is divided into two parts: the single-atom (or single-molecule)

induced dipole obtained by solving time-dependent Schrödinger equation, and the macro-

scopic response of the medium by solving Maxwell’s wave equation for the fundamental laser
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field and harmonic field.

In Chapter 3, we apply our propagation model to simulate the measured HHG spectra

by using a multi-cycle laser pulse, and establish a separable approximation for macroscopic

HHG. In Chapter 4, we extend our model to incorporate the truncated Bessel beam as an

incident laser beam, which is the general case for a few-cycle laser pulse. Our focus in these

two chapters is Ar. We especially take a close look of the Cooper minimum in the HHG

spectrum.

In Chapter 5, we investigate multi-electron effect and continuum structure in the mea-

sured HHG spectrum of Xe. The reshaping of the fundamental laser field plays an important

role to form the continuum harmonics, and these harmonics will be proven theoretically to

produce an isolated attosecond pulse.

In Chapter 6, we simulate the HHG spectra of molecular targets by taking into account

of macroscopic propagation in the medium, which can be quantitatively compared to mea-

surements directly. For two examples, N2 and CO2 molecules, we also discuss the multiple

orbital contributes to the HHG spectrum.

In Chapter 7, we study another important application of HHG, i.e., single-photon ion-

ization. We use the well-established photoionization theory to calculate the photoelectron

angular distribution in the laboratory frame, which can be compared to the future experi-

ments.

Finally, we summarize this thesis in Chapter 8.
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Chapter 2

Theoretical tools

2.1 Introduction

Our focus in this thesis is high-order harmonic generation (HHG) by an intense laser field.

In considering the interaction of an atom (or a molecule) with radiation, there are three

basic processes [81]: spontaneous emission in which an atom is treated as a classical oscil-

lating charge that can make a spontaneous transition from an excited state to a state of

lower energy, emitting a photon; absorption in which an atom absorbs a photon from an

external radiation field, making a transition from a state of lower to a state of higher energy;

and stimulated emission in which an atom can also emit a photon under the influence of

an external radiation field. To describe the interaction of an atom (or a molecule) with

an intense laser field, there are generally three approaches: classical theory; semiclassical

theory; and theory of quantum electrodynamics. In classical theory, atoms (or molecules)

can be modeled as a group of classical harmonic oscillators, and the laser field is simply

treated as a classical electromagnetic field. In the semiclassical theory, the intense laser

field is still treated classically by using Maxwell’s wave equations, while the atomic (or

molecular) system is described by using quantum mechanics. The influence of the atom on

the external field is also neglected in this theory. Since only one-photon transition process

is involved in the spontaneous emission, the semiclassical theory cannot explain it. In the

theory of quantum electrodynamics, both the intense laser field and atoms are treated quan-

25



tum mechanically, and it can describe all phenomena involving charged particles interaction

by means of exchange of photons.

As discussed in Chapter 1, the process of HHG involves the collective effect of many

atoms (or molecules) in the medium interacting with a laser field. This means that a full

description of the observed HHG spectra requires not only the treatment of the microscopic

nonlinear laser-atom (or -molecule) interaction, but also the macroscopic propagation of

harmonic radiation in the medium. Experimentally the harmonics are usually measured far

away from the generating medium, the harmonic radiation from the exit of the medium

needs to propagate and diverge further in the vacuum. The individual time-dependent

dipole induced by the strong oscillating laser field can be obtained by semiclassical theory,

and then the fundamental laser field and harmonic field are treated classically as electro-

magnetic fields propagating in the medium and in the vacuum. A typical HHG study thus

consists of three parts: first, the calculation of the single-atom (or -molecule) response by

solving the time-dependent Schrödinger equation; second, the propagation of fundamental

and harmonic fields by solving the three-dimensional Maxwell’s wave equations; third, the

further propagation of harmonics in the vacuum (probably involving the complicated optical

system) by constructing an optical ABCD matrix. Each part will be discussed in detail in

the following.

2.2 Time-dependent Schrödinger equation

In this section, we are only concerned with constructing the time-dependent Schrödinger

equation (TDSE) of an atom. Two approximate approaches, strong-field approximation

(SFA) and quantitative rescattering (QRS) theory, are applied to solve it. The formulation

of TDSE for a molecular target is beyond the scope of this thesis, and we only present the

approximated solution of TDSE based on SFA and QRS theory. In this thesis we limit

ourselves to linearly polarized light only.
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2.2.1 Semiclassical theory

The classical electromagnetic field is described by Maxwell’s wave equations. The vector

potential of a monochromatic electromagnetic field (with linear polarization) is

~A(~r, t) = ~εA0 sin(~k · ~r − ω0t), (2.1)

where ~k is the wave vector. And the angular frequency ω0 and the wave number k (the

magnitude of ~k) are related by

ω0 = kc, (2.2)

where c is the speed of light. The vector potential ~A in the direction specified by the unit

vector ~ε (polarization vector) has an amplitude |A0|. The wavelength of the laser field is

much larger than the size of an atom, characterized by Bohr radius, a0, thus k · a0 << 1,

and then the dipole approximation is applied here. Eq. (2.1) can be written as

~A(t) = ~εA0 sin(ω0t). (2.3)

Using single-active electron (SAE) approximation [8, 82], i.e., all the electrons in an atom are

bound except the valence electron, the time-dependent Schrödinger equation of the valence

electron in a laser field can be written as

i~
∂

∂t
ψ(~r, t) =

[
1

2me

(~p− e

c
~A)2 + V (~r)

]
ψ(~r, t)

=

[
1

2me

(p2 − e

c
~p · ~A− e

c
~A · ~p+

e2

c2
A2) + V (~r)

]
ψ(~r, t), (2.4)

where V (~r) is the atomic potential. To obtain Eq. (2.4), we adopt the Coulomb gauge

defined in the following:

∇ · ~A(t) = 0, (2.5)

and take the scalar potential φ=0. The momentum operator ~p is

~p = −i~∇. (2.6)
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Using the commutation relation between ~p and ~A:

~p · ~A− ~A · ~p = −i~∇ · ~A, (2.7)

Eq. (2.4) can be written as

i~
∂

∂t
ψ(~r, t) =

[
− ~2

2me

∇2 − e

cme

~A · ~p+
e2

2mec2
A2 + V (~r)

]
ψ(~r, t). (2.8)

Under the dipole approximation, ~A(t) only depends on time, so the term with A2 also

depends on time only, which could be eliminated from Eq. (2.8) in terms of the unitary

transformation:

ΨV (~r, t) = exp

(
e2

2i~mec2

∫ t

0

A2(t′)dt′
)
ψ(~r, t). (2.9)

And then Eq. (2.8) can be simplified as

i~
∂

∂t
ΨV (~r, t) =

[
− ~2

2me

∇2 − e

cme

~A · ~p+ V (~r)

]
ΨV (~r, t). (2.10)

Eq. (2.10) is the time-dependent Schrödinger equation of an atom in the velocity gauge.

Actually the TDSE in the length gauge is more preferred. We introduce a unitary

transformation

ΨV (~r, t) = exp

(
ie

c~
~A · ~r

)
ΨL(~r, t), (2.11)

Eq. (2.10) can be expressed as

i~
∂

∂t
ΨL(~r, t) =

[
− ~2

2me

∇2 +
e2

2mec2
A2 +

e

c

∂ ~A

∂t
· ~r + V (~r)

]
ΨL(~r, t). (2.12)

Using the transformation in Eq. (2.9), the term including A2 could be eliminated. Because

the effect of an electron with a magnetic field is much weaker compared to an electric field,

the effect of the magnetic field can be neglected. The strength of the electric field ~E(t) is

related to the vector potential ~A(t) by

~E(t) = −1

c

∂ ~A(t)

∂t
. (2.13)
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Eq. (2.12) can be further simplified as

i~
∂

∂t
ΨL(~r, t) =

[
− ~2

2me

∇2 + V (~r)− e~r · ~E(t)

]
ΨL(~r, t). (2.14)

Eq. (2.14) is the time-dependent Schrödinger equation of an atom in the length gauge. This

is the equation used to study the microscopic nonlinear laser-atom interaction for harmonic

radiation, and we use “Ψ(~r, t)” without “L” to note the time-dependent wave function in

the length gauge for simplicity.

Eq. (2.14) can be solved by expanding the Ψ(~r, t) in terms of eigenfunctions, RnlYlm(r̂),

of the laser-free Hamiltonian, within the box of r ∈ [0, rmax],

Ψ(~r, t) =
∑
nl

cnl(t)Rnl(r)Ylm(r̂), (2.15)

where radial functions Rnl(r) are expanded in a discrete variable representation (DVR)

basis set [83] associated with Legendre polynomials, while cnl are calculated using the split-

operator method [84].

2.2.2 Strong-field approximation

Based on strong-field approximation (SFA), Lewenstein et al. [10] proposed an analytic form

to solve the time-dependent Schrödinger equation of an atom in a low-frequency laser field

in 1994. Their theory can recovers the semiclassical interpretation of high-order harmonic

generation by Krause et al. [8] and Corkum [9] as discussed in Sec. 1.2.1. This approach

will be called either “Lewenstein model” or “SFA” interchangeably in this thesis. SFA has

also been applied to study the characteristics of HHG from molecular targets [85–92]. In

the following we derive the Lewenstein model for an atomic target in detail, and then it is

extended for a molecular target straightforwardly.

There are two main assumptions in this model: (i) all the bound states in an atom are

neglected excepted for the ground state; (ii) the electron in the continuum state is treated as

a free particle without the influence of the Coulomb potential. The depletion of the ground

state was neglected initially, and later on added by Antoine et al. [11].
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We consider an atom in the SAE approximation under the influence of a laser field E(t)

with linear polarization in the x direction, which satisfies Eq. (2.14). The time-dependent

wave function can be expanded as (atomic units are used):

|Ψ(t)〉 = eiIpt

[
a(t)|0〉+

∫
d3~vb(~v, t)|~v〉

]
, (2.16)

where a(t) ≈ 1 is the ground-state amplitude, |0〉 denotes the wave function of the ground

state, and b(~v, t) are the amplitudes of the corresponding continuum states. The Schrödinger

equation for b(~v, t) can be written as

ḃ(~v, t) = −i
(
~v 2

2
+ Ip

)
b(~v, t)− E(t)

∂b(~v, t)

∂vx

+ iE(t)dx(~v). (2.17)

Here ~d(~v) = 〈~v|~x|0〉 is the transition dipole matrix element from the bound to free state, and

dx(~v) is the component parallel to the polarization axis. Eq. (2.17) can be solved exactly

and b(~v, t) can be written in the closed form,

b(~v, t) = i

∫ t

0

dt′E(t′)dx(~v + ~A(t)− ~A(t′))

× exp{−i
∫ t

t′
dt′′

[
(~v + ~A(t)− ~A(t′′))2/2 + Ip

]
}, (2.18)

where ~A(t) is the vector potential of the laser field, which is defined in Eq. (2.13).

To calculate the parallel component (with respect to laser polarization) of time-dependent

dipole moment, we need to evaluate D(t) = 〈Ψ(t)|~x|Ψ(t)〉. Using Eqs. (2.16) and (2.18), we

obtain

D(t) =

∫
d3~vd∗x(~v)b(~v, t) + c.c.. (2.19)

In the above formula, only the transition back to the ground state is considered, and the

contribution from continuum to continuum part is neglected. The velocity operator is

defined as follows

~v = ~p− ~A(t), (2.20)
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the final expression of Eq. (2.19) is

D(t) = i

∫ t

0

dt′
∫
d3~pd∗x(~p− ~A(t)) exp[−iS(~p, t, t′)]E(t′)dx(~p− ~A(t′)) + c.c., (2.21)

where

S(~p, t, t′) =

∫ t

t′
dt′′{[~p− ~A(t′′)]2/2 + Ip}. (2.22)

Eq. (2.21) has a clear physical interpretation, and it is actually a sum of probability ampli-

tudes for the following processes: E(t′)dx(~p− ~A(t′)) is the probability for an electron to make

the transition to the continuum at time t′ with the canonical momentum ~p; exp[−iS(~p, t, t′)]

is a phase factor when the electronic wave function is propagated from time t′ until t, where

S(~p, t, t′) is the quasi-classical action; d∗x(~p− ~A(t)) is a transition amplitude when the electron

recombines to the parent ion at time t.

The major contribution to the integral over ~p in Eq. (2.21) is from the stationary points

of the classical action,

∇~pS(~p, t, t′) = 0, (2.23)

so the integral over ~p could be performed using a saddle-point method. Defining the electron

return (or excursion) time τ = t− t′, Eq. (2.21) is written as

D(t) = i

∫ ∞

0

dτ

[
π

ε+ iτ/2

]3/2

d∗x(~pst − ~A(t)) exp[−iS(~pst, t, τ)]

× E(t− τ)dx(~pst − ~A(t− τ)) + c.c., (2.24)

where

~pst =

∫ t

t−τ

dt′′ ~A(t′′)/τ, (2.25)

S(~pst, t, τ) = Ipτ −
1

2
~p 2

stτ +
1

2

∫ t

t−τ

~A 2(t′′)at′′. (2.26)

Here the small positive constant of ε comes from the regularized Gaussian integration over

~p around the saddle-point.
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It is straightforward to put the depletion of the ground state in Eq. (2.24), it becomes

as

D(t) = i

∫ ∞

0

dτ

[
π

ε+ iτ/2

]3/2

d∗x(~pst − ~A(t))a∗(t) exp[−iS(~pst, t, τ)]

× E(t− τ)dx(~pst − ~A(t− τ))a(t− τ) + c.c.. (2.27)

The ground-state amplitude a(t) can be expressed as [11, 85]

a(t) = exp

(
−

∫ t

0

γ(t′)

2
dt′

)
. (2.28)

Here γ(t′) is the ionization rate.

Eq. (2.27) is the generally used formula of Lewenstein model to calculate the single-atom

harmonic radiation induced by an intense laser field. For a single-molecule HHG, we assume

that the molecules are aligned along the x axis, while the laser field E(t) is linearly polarized

on the x-y plane with an angle θ with respect to the molecular axis. The parallel component

of the time-dependent dipole moment can be expressed as

D‖(t) = i

∫ ∞

0

dτ

[
π

ε+ iτ/2

]3/2

[cos θd∗x(t) + sin θd∗y(t)]a
∗(t)

× [cos θdx(t− τ) + sin θdy(t− τ)]a(t− τ)E(t− τ)

× exp[−iS(~pst, t, τ) + c.c., (2.29)

where ~d(t) = ~d
[
~pst(t, τ) − ~A(t)

]
and ~d(t − τ) = ~d

[
~pst(t, τ) − ~A(t − τ)

]
are the transition

dipole matrix elements. The perpendicular component D⊥(t) can be given in a similar

formula with [cos θd∗x(t) + sin θd∗y(t)] replaced by [sin θd∗x(t) − cos θd∗y(t)] in Eq. (2.29). In

the calculation, the ground-state electronic wave function of a molecule is obtained using

the quantum chemistry codes such as GAMESS or GAUSSIAN [93].

Eq. (2.29) is the extended formula of Lewenstein model to calculate the single-molecule

HHG induced by an intense laser field. In the SFA, the transition dipole moment ~d(~p) is given

by 〈~p|~r|0〉 with the continuum state approximated by a plane wave |~p〉. For hydrogenlike

atoms, the dipole matrix element for transition from the ground state to a continuum state
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is given in the form

d(p) = i
27/2(2Ip)

5/4

π

p

(p2 + 2Ip)3
. (2.30)

For other atoms and molecules, ~d(~p) is calculated numerically with the known wave function

of the ground state.

2.2.3 Quantitative rescattering theory

The Lewenstein model is well-known to give good results for the harmonics with high-

photon energy, especially for cutoff harmonics, but it fails to predict the harmonics in the

lower plateau region since the effect of Coulomb potential is not included. To improve the

SFA, the quantitative rescattering (QRS) theory has been developed in Lin’s group [94].

QRS theory states that single-atom (or -molecule) HHG can be expressed as a product

of a returning electron wave packet and the photorecombination cross section (PRCS) of

the laser-free continuum electron back to the initial bound state. Based on the Lewenstein

model, each step in the three-step model (see Sec. 1.2.1) can be quantified [see Eq. (2.21)].

The last step, i.e., recombination, is not described precisely due to a plane-wave approx-

imation, but the motion of an electron after tunneling ionization governed mostly by the

laser field has been well taken into account in the SFA. One can extract an accurate return-

ing electron wave packet by using SFA. The PRCS as the other integral part in the QRS

theory is only determined by the structure of an atomic (or molecular) target, and it can

be accurately calculated by solving the stationary Schrödinger equation. Eqs. (2.27) and

(2.29) for calculating HHG are expressed in the time domain, while QRS theory deals with

the induced dipole moment in the frequency domain. A detailed discussion of QRS theory

for HHG is given in Ref. [95]. In the following we describe the QRS theory for atoms and

molecules separately.

33



1. Atomic target

According to the QRS, the induced dipole moment D(ω) can be written as [96]

D(ω) = W (ω)d(ω), (2.31)

where d(ω) is the complex photorecombination (PR) transition dipole matrix element, and

W (ω) is the complex microscopic wave packet. |W (ω)|2 describes the flux of the returning

electrons and is the property of the laser only. The QRS replaces the plane wave used in

the SFA by an accurate scattering wave in the calculation of PR transition dipole matrix

elements, while the returning microscopic wave packet is the same as that in the SFA. The

harmonic frequency ω is related to the electron momentum p by

~ω =
p2

2me

+ Ip. (2.32)

In practical applications, the QRS obtains the induced dipole moment by

DQRS(ω) = DSFA(ω)
dQRS(ω)

dSFA(ω)
, (2.33)

where both DSFA(ω) and dQRS(ω) are complex numbers, while dSFA(ω) is either a pure real

or pure imaginary number. Within the SAE approximation, we calculate dQRS(ω) using

“exact” numerical wave functions for the bound and continuum states. For Ar, we use the

model potential given by Müller [97],

V (r) = −[1 + Ae−r + (17− A)e−Cr]/r, (2.34)

with A=5.4 and C=3.682. In this model, spin-orbit interaction is neglected. The parameters

have been chosen such that the minimum in the photoionization (or photorecombination)

cross section is reproduced correctly. Tong and Lin [98] also proposed a model potential for

rare atoms,

V (r) = −Zc + a1e
−a2r + a3re

−a4r + a5e
−a6r

r
, (2.35)
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where Zc is the charge seen by the active electron asymptotically, and a1, ..., a6 are param-

eters obtained by fitting V (r) to the numerical potential from self-interaction free density

functional theory. Note that in principle the parameters in Eq. (2.33) can be generalized to

many-electron wave functions if needed.

2. Molecular target

Within the QRS theory, the induced dipole moment D(ω, θ) for a fixed-in-space molecule is

given explicitly by

D(ω, θ) = N(θ)1/2W (ω)d(ω, θ), (2.36)

where N(θ) is the alignment-dependent ionization probability, W (ω) is the microscopic

wave packet, and d(ω, θ) is the alignment-dependent transition dipole (complex in general).

Here θ is angle between the molecular axis with respect to the laser’s polarization. We limit

ourselves to linear molecules here, and consider the parallel component of HHG with respect

to the laser polarization only. Thus only the parallel component of the transition dipole

d(ω, θ) is needed in the calculation. Note that W (ω) does not depend on the alignment

angle θ.

The wave packet W (ω) can actually be calculated in two ways. First, it can be calculated

formally as

W (ω) =
D(ω, θ)

N(θ)1/2d(ω, θ)
. (2.37)

Here D(ω, θ) for a fixed alignment angle θ can be calculated using Eq. (2.29). And then

N(θ) and d(ω, θ) are also calculated in the frame of SFA, where the continuum waves are

replaced by plane waves. Since the wave packet W (ω) is independent of the alignment

angle θ, it needs to be calculated only once for a given angle θ. The second approach of

obtaining the wave packet is to use a reference atom with a similar ionization potential. For

the reference atom, we can perform either TDSE or SFA to calculate the induced dipole
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moment D(ω), and then following Eq. (2.31) the wave packet can be expressed as

W (ω) =
Dref (ω)

dref (ω)
. (2.38)

In the QRS, the single-molecule induced dipole moment is then obtained from Eq. (2.36)

by combining the electron wave packet with the accurate d(ω, θ) obtained from quantum

chemistry code [99, 100] and the tunneling ionization rate N(θ) obtained from the MO-ADK

theory [19].

It has been well documented that QRS results are nearly as accurate as those obtained

from TDSE whenever accurate results from the latter can be obtained, i.e., including the

atom in the SAE approximation [96] and the H+
2 molecular ion [101]. Applications of the

QRS for HHG from single molecules have been investigated in Refs. [95, 102, 103].

2.3 Maxwell’s wave equation

2.3.1 Fundamental laser field

In a dense and ionizing gaseous medium, the propagation of a fundamental driving laser

pulse is affected by refraction, nonlinear self-focusing, ionization, and plasma defocusing.

The pulse evolution in such a medium is described by a three-dimensional (3-D) Maxwell’s

wave equation [44, 104, 105]:

∇2E1(r, z, t)−
1

c2
∂2E1(r, z, t)

∂t2
= µ0

∂Jabs(r, z, t)

∂t
+
ω2

0

c2
(1− η2

eff)E1(r, z, t), (2.39)

where E1(r, z, t) is the transverse electric field of the fundamental laser pulse with angular

frequency ω0. In cylindrical coordinates, ∇2 = ∇2
⊥+∂2/∂z2, where z is the axial propagation

direction. The effective refractive index ηeff of the gas medium can be written as

ηeff(r, z, t) = η0(r, z, t) + η2I(r, z, t)−
ω2

p(r, z, t)

2ω2
0

. (2.40)

The first term η0 = 1 + δ1 − iβ1 takes into account of refraction (δ1) and absorption (β1)

effects of the neutral atoms, the second term accounts for the optical Kerr nonlinearity,
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which depends on laser intensity I(t), and the third term is from free electrons, which

contains the plasma frequency ωp = [e2ne(t)/(ε0me)]
1/2, where me and e are the mass and

charge of an electron, respectively, and ne(t) is the density of free electrons. The absorption

term Jabs(t) due to the ionization of the medium is expressed as [16, 106]

Jabs(t) =
γ(t)ne(t)IpE1(t)

|E1(t)|2
, (2.41)

where γ(t) is the ionization rate, and Ip is the ionization potential. This term is usually

small under the conditions for high harmonic generation [16, 106].

The absorption effect (β1) on the fundamental laser field caused by neutral atoms is in

general small, so it is neglected. We only keep the real terms in the refractive index ηeff,

and Eq. (2.39) can be written as

∇2E1(r, z, t)−
1

c2
∂2E1(r, z, t)

∂t2
= µ0

∂Jabs(r, z, t)

∂t

+
ω2

p

c2
E1(r, z, t)− 2

ω2
0

c2
(δ1 + η2I)E1(r, z, t). (2.42)

By going to a moving coordinate frame (z′ = z and t′ = t−z/c) and neglecting ∂2E1/∂z
′2

since the z′ dependence of the electric field is very slow, we obtain [107]

∇2
⊥E1(r, z

′, t′)− 2

c

∂2E1(r, z
′, t′)

∂z′∂t′
= µ0

∂Jabs(r, z
′, t′)

∂t′

+
ω2

p

c2
E1(r, z

′, t′)− 2
ω2

0

c2
(δ1 + η2I)E1(r, z

′, t′).

(2.43)

The temporal derivative in Eq. (2.43) can be eliminated by a Fourier transform, yielding

the equation

∇2
⊥Ẽ1(r, z

′, ω)− 2iω

c

∂Ẽ1(r, z
′, ω)

∂z′
= G̃(r, z′, ω), (2.44)

where

Ẽ1(r, z
′, ω) = F̂ [E1(r, z

′, t′)], (2.45)
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and

G̃(r, z′, ω) = F̂{µ0
∂Jabs(r, z

′, t′)

∂t′
+
ω2

p

c2
E1(r, z

′, t′)

−2
ω2

0

c2
[δ1 + η2I(r, z

′, t′)]E1(r, z
′, t′)}, (2.46)

where F̂ is the Fourier transform operator acting on the temporal coordinate.

The plasma frequency ωp(r, z
′, t′) is determined by the free-electron density ne(t

′), and

ne(t
′) can be calculated as following

ne(r, z
′, t′) = n0{1− exp[−

∫ t′

0

γ(r, z′, τ)dτ ]}, (2.47)

where n0 is the neutral atom density, and γ(r, z′, τ) is the ionization rate calculated from

Ammosov-Delone-Krainov (ADK) theory [18, 19, 98]. The refraction coefficient δ1, depend-

ing on the pressure and temperature of the gas medium, is obtained from the Sellmeier

equation [108, 109]. The nonlinear refractive index η2, also depending on pressure of the gas

medium, can be calculated through third-order susceptibility χ(3), which can be measured

from experiments [110, 111]. Note that the relationship between η2 and χ(3) in Koga et

al. [112] differs from that in Boyd [113] since the latter is derived by using time-averaged

intensity of the optical field.

At the entrance of a gas jet (z′ = zin), the fundamental laser field is assumed to be either

Gaussian or truncated Bessel in space, and in time it has a Gaussian or cosine square envelop

(see Appendix D for details). These will be specified whenever we present the calculated

results. The pressure is assumed constant within the gas jet.

2.3.2 High-harmonic field of atoms

The 3-D propagation equation of the harmonic field is described by [16, 107, 114]

∇2Eh(r, z, t)−
1

c2
∂2Eh(r, z, t)

∂t2
= µ0

∂2P (r, z, t)

∂t2
, (2.48)

where P (r, z, t) is the polarization depending upon the applied optical field E1(r, z, t). In this

equation, the free-electron dispersion is neglected because the frequencies of high harmonics
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are much higher than the plasma frequency. Again going to a moving coordinate frame and

neglecting ∂2Eh/∂z
′2, Eq. (2.48) becomes

∇2
⊥Eh(r, z

′, t′)− 2

c

∂2Eh(r, z
′, t′)

∂z′∂t′
= µ0

∂2P (r, z′, t′)

∂t′2
. (2.49)

We eliminate the temporal derivative by a Fourier transform, obtaining the equation

∇2
⊥Ẽh(r, z

′, ω)− 2iω

c

∂Ẽh(r, z
′, ω)

∂z′
= −ω2µ0P̃ (r, z′, ω), (2.50)

where

Ẽh(r, z
′, ω) = F̂ [Eh(r, z

′, t′)], (2.51)

and

P̃ (r, z′, ω) = F̂ [P (r, z′, t′)]. (2.52)

The source term on the right-hand side of Eq. (2.50) describes the response of the medium

to the laser field and includes both linear and nonlinear terms. It is convenient to separate

the polarization into linear and nonlinear components as: P̃ (r, z′, ω) = χ(1)(ω)Ẽh(r, z
′, ω) +

P̃nl(r, z
′, ω), where the linear susceptibility χ(1)(ω) includes both linear dispersion and ab-

sorption through its real and imaginary parts, respectively. The nonlinear polarization term

P̃nl(r, z
′, ω) can be expressed as

P̃nl(r, z
′, ω) = F̂{[n0 − ne(r, z

′, t′)]D(r, z′, t′)}, (2.53)

where ne(r, z
′, t′) is calculated from Eq. (2.59), and D(r, z′, t′) is the single-atom induced

dipole moment caused by the fundamental driving laser field.

The refractive index n(ω) =
√

1 + χ(1)(ω)/ε0 [113] (which is valid only off resonance or

for small absorption) is related to atomic scattering factors by

n(ω) = 1− δh(ω)− iβh(ω) = 1− 1

2π
n0r0λ

2(f1 + if2), (2.54)

where r0 is the classical electron radius, λ is the wavelength of harmonic, n0 is again the

neutral atom density, and f1 and f2 are atomic scattering factors which can be obtained
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from Refs. [115, 116]. Note that δh(ω) and βh(ω) account for the dispersion and absorption

of the medium on the harmonics, respectively. Finally Eq. (2.50) can be written as

∇2
⊥Ẽh(r, z

′, ω)− 2iω

c

∂Ẽh(r, z
′, ω)

∂z′
− 2ω2

c2
(δh + iβh)Ẽh(r, z

′, ω) = −ω2µ0P̃nl(r, z
′, ω),

(2.55)

where the nonlinear polarization as the source of the harmonic field is explicitly given. After

the propagation in the medium, we obtain the near-field harmonics at the exit face of the

gas jet (z′ = zout).

2.3.3 High-harmonic field of aligned molecules

In general both the fundamental laser field and the harmonic field are modified when they

copropagate through a macroscopic medium. If both the pressure and laser intensity are

low, the effects of dispersion, Kerr nonlinearity, and plasma defocusing on the fundamental

laser field can be neglected. In other words, the source term in Eq. (2.39) can be taken as

zero, the fundamental field is not modified through the medium. Under these conditions

the profile of the fundamental laser field in space (in the vacuum) can be expressed in

an analytical form. If it can be considered as a Gaussian beam, its spatial and temporal

dependence is given approximately in Appendix D.3. For the harmonic field, the dispersion

and absorption effects from the medium, which are explicitly expressed as a dispersion-

absorption term in Eq. (2.55) are not included when the pressure is low. These effects

would become important if the gas pressure is high. For molecular targets, we will limit

ourselves to experiments carried out under the conditions of low laser intensity and low gas

pressure, and only include the induced dipoles for the generated harmonic field.

The 3-D Maxwell’s wave equation for the harmonics in a molecular gas medium is

∇2E
‖
h(r, z, t, α)− 1

c

∂2E
‖
h(r, z, t, α)

∂2t
= µ0

∂2P
‖
nl(r, z, t, α)

∂2t
. (2.56)

Here E
‖
h(r, z, t, α) and P

‖
nl(r, z, t, α) are the parallel components (with respect to the polariza-

tion direction of the generating laser) of the electric field of the harmonic and the nonlinear
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polarization caused by the fundamental laser, respectively. α is the pump-probe angle, i.e.,

the angle between the aligning (pump) and the generating (probe) laser polarizations.

The nonlinear polarization term can be expressed as

P
‖
nl(r, z, t, α) = [n0 − ne(r, z, t, α)]D‖,tot(r, z, t, α), (2.57)

where n0−ne(r, z, t, α) gives the density of the remaining neutral molecules, and D‖,tot(t, α)

is the parallel component of the induced single-molecule dipole over a number of active

electrons (including the effects from outermost and the inner molecular orbitals). And

ne(t, α) is the free-electron density, which can be calculated as follows

ne(t, α) =

∫ π

0

ne(t, θ
′)ρ(θ′, α) sin θ′dθ′. (2.58)

Here ne(t, θ
′) is the alignment-dependent free-electron density, obtained from

ne(t, θ) = n0{1− exp[−
∫ t

−∞
γ(τ, θ)dτ ]}, (2.59)

where γ(τ, θ) is the alignment-dependent ionization rate, which can be calculated by MO-

ADK theory [19] for different molecular orbitals. In Eq. (2.58), θ′ is the alignment angle

with respect to the polarization direction of the probe laser, and ρ(θ′, α) is the alignment

distribution with pump-probe angle α [95, 117] (see Appendix B).

By going to a moving coordinate frame again, Eq. (2.56) can be written in the frequency

domain as

∇2
⊥Ẽ

‖
h(r, z

′, ω, α)− 2iω

c

∂Ẽ
‖
h(r, z

′, ω, α)

∂z′
= −ω2µ0P̃

‖
nl(r, z

′, ω, α), (2.60)

where

Ẽ
‖
h(r, z

′, ω, α) = F̂ [E
‖
h(r, z

′, t′, α)], (2.61)

and

P̃
‖
nl(r, z

′, ω, α) = F̂ [P
‖
nl(r, z

′, t′, α)]. (2.62)
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After the propagation in the medium, we obtain the parallel component of near-field

harmonics on the exit face of the gas jet (z′ = zout). For isotropically distributed molecules

and partially aligned molecules with α = 0◦ or 90◦, by symmetry there are only parallel har-

monic components. The perpendicular components, which are usually much smaller, would

appear for partially aligned molecules and the harmonics will be elliptically polarized in gen-

eral [118]. Generalization of Eq. (2.60) to the perpendicular component is straightforward,

but we restrict ourselves to the parallel component in this thesis only.

Note that Eqs. (2.44), (2.55), and (2.60) are solved using a Crank-Nicholson routine for

each value of ω. Typical parameters used in the calculations are 200 ∼ 400 grid points along

the radial direction r and 400 grid points along the longitudinal direction z for a 1-mm wide

gas jet.

In the calculation, the induced dipole moments included in nonlinear polarizations of

Eqs. (2.53) and (2.57) are mostly obtained by QRS theory in this thesis. For an atomic tar-

get, we can use Eq. (2.33) to calculate the single-atom induced dipole in frequency domain,

and then transfer it back to time domain by the Fourier transform. For a linear molecular

target, it can only be partially aligned if it is placed in a short laser field (pump laser). The

intensity of the aligning laser is usually weak and not tightly focused such that it can be

assumed to be constant within the gas medium. In other words, the degree of molecular

alignment is not varied in the medium at one fixed pump-probe time delay. The averaged

induced dipole from the partially aligned molecules at each point in the gas medium is then

obtained by coherently averaging induced dipole moment of a fixed-in-space molecule in

Eq. (2.36) over the molecular angular distribution, i.e.,

D‖,avg(ω, α) =

∫ π

0

D‖(ω, θ′)ρ(θ′, α) sin θ′dθ′, (2.63)

where ρ(θ′, α) is the angular (or alignment) distribution of the molecules again. Eq. (2.63)

is only for one particular molecular orbital. The total laser induced dipole over a number
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of active electrons can be written as [119, 120]

D‖,tot(ω, α) =
∑
j,n

D
‖,avg
j,n (ω, α), (2.64)

where index j refers to the different molecular orbital, and n is an index to account for

degeneracy in each molecular orbital. In the end Eq. (2.64) is transferred into time domain,

and put back into Eq. (2.57).

2.4 Far-field harmonic emission

Figure 2.1: Typical configuration for measuring HHG in the far field. Adapted from Pub-
lication [8].

Once the harmonics are emitted at the exit plane of an atomic or molecular (probably

aligned) gas medium (called near-field harmonics), as shown in Fig. 2.1, they will propa-

gate further in the vacuum until they are detected by the spectrometer. In this process,

harmonics may go through a slit, an iris or a pinhole, or be reflected by a mirror or more

complicated optical system before they reach the detector (called far-field harmonics). In

an axial-symmetric optical system, the complex electric field on the initial plane (near field)

is related to the final plane (far field) by an ABCD ray matrix, and AD-BC=1 for a lossless

system. Here we only consider the simplest configuration shown in Fig. 2.1 without any

additional optics (or within free space propagation) between near field and far field, and

A=1, B=1, C=0 and D=1 in the ABCD matrix. For constructing the more complicated
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ABCD matrix, see Appendix D.2. According to the diffraction theory in the paraxial ap-

proximation, the far-field harmonics can be obtained by using near-field harmonics through

a Hankel transformation [121–123]

Ef
h(rf, zf, ω) = −ik

∫
Ẽh(r, z

′, ω)

zf − z′
J0(

krrf
zf − z′

) exp[
ik(r2 + r2

f )

2(zf − z′)
]rdr, (2.65)

where J0 is the zero-order Bessel function, zf is the far-field position from the laser focus,

rf is the transverse coordinate in the far field, and the wave vector k is given by k = ω/c.

Note the elements of an ABCD matrix are not expressed explicitly in Eq. (2.65), but the

explicit expression can be found in Appendix D.2. For a case of molecules, Ẽh(r, z
′, ω) is

replaced by the electric field in Eq. (2.60), which also depends on pump-probe angle α, and

is parallel or perpendicular to the polarization of harmonic generating laser.

Suppose the harmonics in the far field are collected from an extended area. By integrating

harmonic yield over this area, the power spectrum of the macroscopic harmonics is obtained:

Sh(ω) ∝
∫ ∫

|Ef
h(xf, yf, zf, ω)|2dxfdyf, (2.66)

where xf and yf are the Cartesian coordinates on the plane perpendicular to the propagation

direction, and rf =
√
x2

f + y2
f .

Note in Eq (2.66), the detailed information on the experimental setup is involved. To

simulate experimental HHG spectra quantitatively, besides the general used laser parame-

ters, such as intensity, duration, wavelength, spot size, and so on, we need more parameters

about the experiment (for example, the size and location of a slit).
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Chapter 3

Medium propagation effects in
high-order harmonic generation of Ar

Most of figures and paragraphs in this chapter are adapted from Publication [8], [11] and

[17].

3.1 Introduction

High-order harmonic generation (HHG) is an extreme nonlinear optical process in which an

intense ultrafast infrared laser light is efficiently converted to an ultrafast coherent extreme

ultraviolet (XUV) or soft X-ray light. As discussed in Chapter 1, HHG has been widely

studied for its potential as a short-wavelength light source [6], or the production of ultrashort

light pulses [46]. It has also been shown to extract information of the atomic structure [21]

or to image molecular structure with sub-Angstrom precision in space and sub-femtosecond

precision in time [65, 66, 124, 125]. HHG process in single-atom response level can be in-

tuitively understood in terms of the semiclassical “three-step” model [8, 9]. However, the

laser field interacts with a macroscopic medium, and the harmonics from all atoms are gen-

erated coherently, a full description of the experimentally observed HHG spectra requires

the treatment of the nonlinear propagation of the fundamental laser beam together with

the harmonics in the medium. As discussed in Chapter 2, the most accurate way to obtain

the microscopic laser induced dipole of an atom is to solve the time-dependent Schrödinger
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equation (TDSE) numerically. Since this approach is quite time consuming and the cal-

culations have to be carried out for hundreds of laser peak intensities in order to describe

the nonuniform laser distribution inside a focused laser beam, this is rarely done in existing

studies including macroscopic propagation effect of HHG [45]. Instead, the much simpler

strong-field approximation (SFA) [10] is often used to calculate the single-atom induced

dipole. Despite of this limitation, the temporal and spatial properties of HHG observed

experimentally have been reasonably understood from such SFA-based calculations. On the

other hand, in a few examples, macroscopic HHG spectra obtained using TSDE-calculated

induced dipoles do show significant quantitative discrepancies compared to SFA-based cal-

culations [16, 41], and such studies have been limited to a few atomic gases only.

In this chapter, we demonstrate an accurate and efficient method for calculating the

HHG spectrum from an atomic gaseous medium. This method is based on the recently

developed quantitative rescattering (QRS) theory [26, 94, 95], which allows us to calculate

laser induced dipole of an atom with accuracy comparable to that obtained from solving

TDSE, yet with computing time comparable to that by using the SFA. The validity of the

QRS, at the single-atom level has been carefully calibrated against TDSE results for one-

electron model atoms [96]. Clearly such comparison is incomplete without considering the

macroscopic propagation effects. In this chapter, we first consider the situations where the

laser intensity and the gas pressure are small such that the fundamental laser field is almost

not modified during the propagation (or it can be assumed propagating in the vacuum). This

simplification allows us to calculate the macroscopic HHG spectra with TDSE-based single-

atom induced dipoles, which can be used to calibrate the spectra with QRS-based induced

dipoles. We then extend the theoretical model to the more realistic situations of higher

laser intensities and gas pressures, at which the nonlinear propagation of the fundamental

field needs to be taken into account. We examine the simulated HHG spectra of Ar and

compare them directly with experimental data. Based on the QRS theory, we show that the

macroscopic HHG can be expressed as a product of a “macroscopic wave packet” (MWP)
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and the photorecombination (PR) cross section of the target. The MWP reflects the effect

of the laser and the consequence of propagation in the medium.

In Sec. 3.2, with the single-atom response from TDSE or QRS, we calculate the macro-

scopic HHG spectra of Ar when a gas jet is put at the generally good phase-matching

position. We also show the phase of the calculated macroscopic harmonics with changing

gas-jet position. In Sec. 3.3, we simulate HHG spectra of Ar with a 1200- or 1360-nm laser

by taking into account the detailed experimental information, the experimental spectra from

30-90 eV can be accurately reproduced theoretically based on the QRS theory. In Sec. 3.4,

we show how the width and depth of the well-known Cooper minimum in the HHG spectrum

of Ar changes with gas-jet position. In Sec. 3.5, we first show that the macroscopic HHG

spectrum can be decomposed as a PR transition dipole (or a PR cross section) and a MWP.

We also verify that MWP is a property of laser independent of the target by comparing

the wave packets from different targets under the same laser. The harmonics are quite dif-

ferent by varying the experimental conditions, and we find that all the differences can be

attributed to the different MWP’s. Thus we show the dependence of MWP on the gas-jet

position with respect to the laser focus, the degree of phase matching with the change of the

gas pressure for individual harmonics. Since phase-matching condition is also dependent on

the wavelength of the laser used, we investigate how the macroscopic HHG scales with the

laser wavelength in Sec. 3.6. In Sec. 3.7, we give a summary of this chapter.

3.2 Macroscopic HHG spectra: QRS vs TDSE

In the numerical simulation, we take the fundamental laser pulse in space to be a Gaussian

beam with cylindrical symmetry, propagating along the z direction. The beam waist at the

laser focus is fixed as w0=25 µm, and a 1-mm long gas jet with constant atom density is

placed after or at the laser focus. In the time domain the laser pulse is assumed to have a

cosine-squared envelope, and the carrier-envelope phase is taken to be ϕCE = 0 radian. (see

Appendix D.3 for details.)
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In the SFA calculation, the ground-state wave function of Ar is obtained numerically by

using the quantum chemistry software GAUSSIAN [93]. And for the QRS calculation, we

use the model potential in Eq. (2.35), which gives a Cooper minimum occurring near 42 eV

instead of 50 eV from the Muller potential [97].

3.2.1 Strength of the harmonics

Figure 3.1: (a) Single-atom and (b) macroscopic harmonic spectra of Ar from the TDSE,
QRS and SFA. Spatial distribution of macroscopic harmonic emission at the exit face of gas
jet from the (c) TDSE, (d) QRS and (e) SFA. Adapted from Publication [17].

With the amplitude and phase of single-atom HHG calculated from the TDSE, SFA, and

QRS as the source terms for the macroscopic propagation equation of the harmonic field,

we calculate and compare the macroscopic HHG spectra from these three different models.

In Fig. 3.1(a), single-atom HHG spectra of Ar exposed to a 19.4 fs (full width at half

maximum, FWHM) laser pulse with peak intensity of 1.5× 1014 W/cm2 and central wave-
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length of 800 nm are shown. The spectra from QRS and SFA are normalized to that from

the TDSE near the cutoff. We can see that HHG spectra in the plateau region are very noisy,

with no clear peaks at odd harmonics except in the cutoff region. It also shows that SFA

agrees with TDSE only for harmonics close to the cutoff, while in the plateau region there

are large discrepancies. For the QRS, on the other hand, it is in a good agreement with the

TDSE except for a sharp spike near harmonic 14 (or H14). The abnormal spike near H14

can be easily traced to zero of the PR cross section of Ar in the plane wave approximation.

In Fig. 3.1(b), we show the macroscopic HHG spectra of Ar when gas jet is placed 2 mm

after the focus and laser peak intensity at the center of the gas jet is 1.5 × 1014 W/cm2.

The pulse duration and wavelength are the same as those in Fig. 3.1(a). The HHG signal

after propagation is collected at the exit of the gas jet (near field). The macroscopic HHG

spectra from QRS and SFA are again normalized to that from TDSE in the cutoff region.

Several general features of the spectra are presented: sharp drop of the spectra beyond the

cutoff; well-resolved odd harmonics are observed across the whole plateau; spectral widths

are smaller in the plateau and increase with the harmonic order; the cutoff location of the

spectrum is about the same as that in single-atom response. In comparison with single-atom

HHG spectrum, the propagation greatly cleans up the spectrum between odd harmonics.

The relative intensity of odd harmonics do not change too much even after propagation.

If we only look at the cutoff region, the SFA gives the correct prediction with the TDSE.

Obviously, it fails for the lower plateau spectrum. The QRS model, after the propagation,

gives a much better agreement with the one obtained from the TDSE over the whole spectral

region. This result shows that the QRS is capable of improving the SFA quite significantly,

but with computational effort close to the SFA. Again the spike in the propagated spectra

near H14 is caused by the same reason as in the single-atom case.

In Fig. 3.1(b), only the total HHG signal at the exit face of gas jet has been displayed.

An interesting question is how the QRS model improves over the SFA in comparison with

the TDSE for the harmonic field intensity in different region of the exit face (which has
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cylindrical symmetry). In Figs. 3.1(c)-(e), the strength |Ẽh(r, z
′, ω)|2 versus the radial dis-

tance for H19 to H23 are shown based on the three models. Again, the TDSE and the QRS

show the good overall agreement. This comparison also offers a good reason for adopting

QRS-based single-atom response for the macroscopic propagation of HHG.

3.2.2 Phase of the harmonics

Figure 3.2: Phase difference of macroscopic harmonics from the TDSE and the QRS, which
is calculated for r=0 µm or r=9.2 µm at the exit of gas jet. [(a) and (b)] Gas jet is put 2
mm after the focus. [(c) and (d)] Gas jet is put at the focus. Laser intensity in the center
of gas jet is always kept as 1.5×1014 W/cm2; laser duration and wavelength are the same
as in Fig. 3.1. Adapted from Publication [17].

The phase of HHG is crucial for attosecond pulse generation. According to Eq. (2.31),

the phase of harmonics gets contribution from the returning wave packet as well as from

the complex PR transition dipole moment. How is the harmonic phase affected by the

macroscopic propagation? This question also demands a proper way to present the phase of
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harmonics. According to the semiclassical theory, the phase difference between successive

odd harmonics reveals the harmonic emission time [35]. Since the phase difference between

consecutive odd harmonics can be measured using the RABITT technique [47] experimen-

tally, we choose to study the phase difference as defined by

∆φ2n = φ2n+1 − φ2n−1. (3.1)

In Figs. 3.2(a) and (b), we show the phase difference of macroscopic HHG for Ar from TDSE

and QRS, where the spectral strength has been shown in Fig. 3.1(b). Define the phase

difference in the interval [-π, π], we show the successive phase difference at two different

positions r=0 µm and r=9.2 µm at the exit face of gas jet. Since harmonic fields emitted

at different radial positions finally are added up incoherently when a few odd harmonics are

combined to generate attosecond pulses [11, 126], it is meaningful to observe phase behavior

of harmonics in different positions separately. From Fig. 3.2(a) the phase difference increases

almost linearly with the harmonic order (linear chirp [35]) with the same slope for both r=0

µm and r=9.2 µm due to phase-matching, but the curve for r=9.2 µm is shifted up in

comparison with r=0 µm. In these two cases the absolute phase increases quadratically

with the harmonic order. In Fig. 3.2(b), the QRS gives the same phase behavior as the

TDSE in Fig. 3.2(a). Again, this shows the validity of the QRS in studying the macroscopic

response.

In order to understand the mechanism of HHG phase behavior after the propagation,

we move the gas jet into the laser focus, fix the laser peak intensity at its center to be

1.5 × 1014 W/cm2, and keep other laser parameters the same as in Figs. 3.2(a) and (b).

Phase difference of macroscopic HHG for Ar from TDSE and QRS are shown in Figs. 3.2(c)

and (d). Whether r=0 µm or r=9.2 µm, both the TDSE and the QRS give random-like

phase differences, and are similar to single-atom HHG. Note that our observation of this

phase behavior agrees with Gaarde et al.’s TDSE calculation [126] (see their Fig. 3).

51



3.3 Macroscopic HHG spectra: theory vs experiment

Figure 3.3: HHG spectra of Ar generated by a 1200-nm laser. Upper frame: Spatial dis-
tribution of harmonic emission vs photon energy in the far field. Lower frame: Comparison
of theoretical (green lines) and experimental (red lines) HHG yield integrated over the verti-
cal dimension for 1200-nm (upper curves) and 1360-nm (lower curves) lasers. Other laser
parameters are given in the text. Adapted from Publication [8].

To compare with the experimental HHG measurements, we carry out the propagation

for both fundamental and harmonic fields in the medium, and take into account the further

propagation of the harmonics in the vacuum, i.e., the information of the detecting system.

The spatial beam mode of the fundamental field at the entrance of the gas medium is

assumed as Gaussian one. In the QRS calculation, we use the Muller potential in Eq. (2.34)

to obtain the PR cross section of Ar, and the returning electron wave packet is obtained

from SFA, where Ar is assumed as a hydrogenlike atom in Eq. (2.30).

Fig. 3.3 shows the measured and simulated HHG spectra of Ar. Experimentally, a 0.5-

mm-long gas jet was placed few mm’s after the laser focus. A vertical slit with a width of 100

µm was placed 24 cm after the gas jet. For a 1200- (1360-) nm laser used in the experiment,
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the beam waist at the focus is 47.5 (52.5) µm, and the pulse duration is ∼ 40 (∼ 50) fs.

The laser intensity and gas pressure in the simulations are adjusted until the best overall

fit is achieved with the experimental data. For the 1200-nm laser, the peak intensity for

experiment (theory) is 1.6 (1.5)×1014 W/cm2, and the gas pressure is 28 (84) Torr. For the

1360-nm laser, the corresponding intensity and pressure are 1.25 (1.15)×1014 W/cm2, and

28 (56) Torr, respectively. In the upper frame of Fig. 3.3, the horizontal axis is the photon

energy, and the vertical axis is the transverse spatial dimension. The experimental and

theoretical spectra, generated by the 1200-nm laser, are normalized at harmonic 75 (H75), or

at photon energy of 77 eV. We can see the general agreement between the two spectra except

for the “up-down” asymmetry in the experimental spectra, which is due to asymmetry in the

laser beam profile. The “famous” Cooper minimum is clearly seen in both experimental and

theoretical spectra. The harmonic yields integrated over the vertical dimension are compared

in the lower frame in Fig. 3.3. The HHG spectra with a 1360-nm laser is also shown. In

both cases, we can see a good agreement (in envelope of HHG spectrum) between theory

and experiment over the 30-90 eV region covered. A careful examination of Fig. 3.3 reveals

that there are still small discrepancies between the experimental data and the simulations

by QRS despite various attempts using somewhat different laser parameters. The harmonic

width (or harmonic chirp) in the simulation is narrower than that in the experimental

measurement. The harmonic width is mainly determined by laser intensity, pulse duration,

and gas pressure. In the experiments, parameters such as pressure of the gas jet and laser

intensity and its spatial distribution cannot be measured precisely. Other factors, such as

the use of the slit and the position of the detector, can also influence the HHG spectra.

All of these uncertainties can contribute to the discrepancy between the simulation and the

measured HHG spectrum.
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Figure 3.4: Variation of width and depth of the Cooper minimum in HHG spectrum of
Ar using a 1200-nm laser. Upper frame: the sketch of experimental setup where the gas jet
is put at different positions with respect to the laser focus. Lower frame: calculated HHG
spectra of Ar at three different gas-jet positions. Yellow dashed line indicates the position of
Cooper minimum using the Muller potential [97]. Laser intensity in the gas jet is 1.6×1014

W/cm2, gas pressure is 56 Torr. Other parameters are the same as those in Fig. 3.3.

3.4 Disappearance of Cooper minimum in the HHG

spectra of Ar

The Cooper minimum (CM) in the HHG spectra of Ar has been studied intensively by

using the traditional 800-nm lasers [127–129], or longer-wavelength lasers [130, 131]. This

minimum always occurs in the single-atom HHG spectrum of Ar based on the QRS theory,

however, it is not necessary to appear in the macroscopic spectrum. The position of the CM

can change or even disappear under different experimental conditions. Experiments have

shown that the CM may disappear in the HHG spectrum by changing the gas pressure [128]

or by changing the gas-jet position with respect to the laser focus [129].

To make this point clear, we also carry out calculations for different experimental con-
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ditions as shown in the upper frame of Fig. 3.4. In the lower frame of Fig. 3.4, we show the

calculated HHG spectra of Ar in the far field with changing the gas-jet position. In case 3,

the CM is wide and deep in the spectra. With moving the gas jet close to the laser focus,

the CM becomes shallow in case 2, and the harmonics around 70 eV do not show the clean

peak structures indicating that the phase matching conditions become poor. If we place

the gas jet before the laser focus as shown in case 1, the phase matching conditions are

greatly changed since the geometric phase of fundamental laser changes its sign. The CM

disappears in the spectrum, and some of the high-energy harmonics show the noisy struc-

tures. This example once again tells us that the CM in the macroscopic HHG spectra can

be washed out easily by changing the macroscopic experimental conditions. The change of

the experimental conditions can also be reflected by the “macroscopic wave packet”, which

will be discussed in Sec. 3.5.

3.5 Macroscopic wave packet

Based on the QRS theory, the macroscopic HHG spectrum in the near field or in the far

field for atomic targets can be expressed as

Sh(ω) ∝ ω4|W ′(ω)|2|d(ω)|2, (3.2)

where W ′(ω) (the complex amplitude) is called a “macroscopic wave packet” (MWP), and

d(ω) is the PR transition dipole moment. The MWP can be considered as the collective effect

of the microscopic wave packet for the returning electrons, which is mostly governed by the

fundamental laser field. And the MWP can be calculated by solving Maxwell’s propagation

equation. In other words, the laser, gas medium, and experimental setup effects are all

incorporated into MWP. While the structure information of the target is included in PR

transition dipole. In this chapter, only the amplitude of MWP is considered.
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Figure 3.5: Macroscopic wave packets extracted from macroscopic HHG spectra based on
the QRS using Ar and hydrogenlike atom. Gas jet is at 2 mm after the laser focus. Laser
intensity is 1.5×1014 W/cm2. The arrow indicates the cutoff position determined by the
classical model. Adapted from Publication [17].

3.5.1 Independence of wave packet on targets

To extract the PR transition dipole (or PR cross section) from the macroscopic HHG spec-

trum, we need to rely on the MWP in Eq. (3.2). The question is how to obtain the MWP,

which is only a property of laser and experimental setup. We answer this question in a

different way. Taking Ar target as an example, we can use the QRS to generate single-

atom induced dipole moment and then carry out the propagation to obtain the macroscopic

HHG. Recall that in this case the single-atom returning wave packet is calculated from SFA

using the ground state wave function of Ar, and the MWP is extracted by using Eq. (3.2).

In Fig. 3.5, we show the resulting MWP |W ′(ω)| of Ar (solid line) from HHG spectra in

Fig. 3.1(b). Using laser parameters and focusing condition the same as those in Fig. 3.1(b),

we also show another MWP calculated from a hydrogenlike atom in Fig. 3.5, where the

effective nuclear charge has been adjusted such that its 1s binding energy is the same as the

3p ground state energy of Ar. By normalizing the two MWPs at the cutoff energy (marked

by an arrow and estimated from the laser peak intensity at the center of gas jet) we see that

they agree relatively well. These results indeed show that MWPs from different targets with
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the same Ip agree with each other reasonably well under the same laser condition. (More

examples can be found in Publication [17].) These results have important implications.

Since atomic PR transition dipole is generally well known, by taking the HHG spectra of

an atomic target and a molecular one with nearly identical binding energy in the same laser

field, one can extract the transition dipole of the molecule from the ratio of the HHG yields

of the two targets and the known PR transition dipole of the atomic target. This model

has been assumed in Itatani et al. [66] and in Levesque et al. [132]. Our results confirm the

validity of their assumptions.

3.5.2 Separation of target structure information from HHG spec-
tra

Figure 3.6: Macroscopic wave packet extracted from HHG spectra of Ar for 1200- and
1360-nm lasers in Fig. 3.3. Calculated photorecombination transition dipole moment using
the Muller potential [97] is also shown. Adapted from Publication [8].

According to Eq. (3.2), the HHG spectra in the lower frame of Fig. 3.3 can be decomposed

as MWPs and PR transition dipole moment in Fig. 3.6. The two wave packets derived from

1200-nm and 1360-nm lasers are quite similar, but they only have slight different slopes near

50 eV. The PR transition dipole, however, shows a clear and broad CM around 50 eV. Thus,

we can conclude that the broad CM in the HHG spectra shown in Fig. 3.3 is caused by the
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minimum in the PR transition dipole (or PR cross section). The precise position of CM in

the HHG spectra is somewhat influenced by the MWP. As an example shown in Fig. 3.6,

due to the difference in MWP, the position of CM with the 1200-nm laser in Fig. 3.3 is

slightly different from that with the 1360-nm laser. This could explain that the measured

position of CM of Ar varies from one laboratory to another due to the sensitivity of MWP

to the experimental conditions.

3.5.3 Dependence of wave packet on experimental conditions

Figure 3.7: (a) Dependence of macroscopic wave packet |W ′(ω)| on the position of the Ar
gas jet with respect to the laser focus, and (b) on gas pressure. Adapted from Publication
[8].

The MWP is a characteristic, which doesn’t depend on the PR transition dipole of the

target. In other words, the macroscopic conditions only affect HHG through its modifications

on the MWP. Thus, we can only study the macroscopic propagation effect on HHG by

investigating how the MWP varies with the laser and experimental conditions.

In Fig. 3.7(a), we show the MWPs for three gas-jet positions, which are at z=-3 mm (gas

jet before laser focus), z=0 mm (at), and z=3 mm (after). The three curves are extracted

from HHG spectra in Fig. 3.4. For easy visualization, we only show the smooth envelope of

|W ′(ω)|. Among the three curves, the “after” curve is very flat since good phase-matching

is favored for this arrangement as the single-atom harmonic phase is partially compensated

58



by the geometric phase from the focused laser. If the gas jet is placed before the laser focus,

the MWP changes rapidly, especially near photon energy around 50 eV. Such strong energy

dependence can wash out the CM in the HHG spectrum in Fig. 3.4.

In Fig. 3.7(b) we investigate how the MWP depends on the gas pressure for the focusing

condition of z=3 mm. Laser and other experimental parameters are the same as Fig. 3.7(a).

The MWP has been normalized by the ratio of the pressure. The three curves would be on

top of each other if a complete phase-matching condition had been fullfilled. The curve for

higher pressure is slightly lower indicates that full phase matching is not reached, especially

for the lower harmonics. With the increase of pressure, the MWP is much smoother vs

energy. In fact, increasing the gas pressure tends to smooth out the harmonics. These

results also indicate that the harmonic energy increases quadratically with the gas pressure,

which is in agreement with measurements reported in Ref. [32].

3.6 Wavelength scaling of harmonic efficiency

One of the main interests in the study of HHG is to improve the harmonic efficiency, thus

producing bright tabletop XUV or soft X-ray sources, or intense attosecond pulses. Since

the single-atom harmonic cutoff energy is proportional to the square of the wavelength of

the driving laser, HHG generated by mid-infrared (MIR) lasers can efficiently reach high-

energy photons, but the yield is less favorable. It is of interest to study how the HHG

yield scales with the laser wavelength. In the single-atom response level, there have been

a few theoretical calculations [29, 31, 133–135]. Macroscopic propagation effect has to be

included in order to compare with experimental HHG spectra. A few investigations on the

wavelength scaling of HHG experimentally [32, 130, 136] have been reported. However,

theoretical analysis is still rather scarce.

To study wavelength scaling of the HHG yield, one has to fix all other parameters that

may affect the efficiency of HHG. One also has to decide if it is the total HHG yield or only

the HHG yield within a given photon energy region. In single-atom HHG simulations, the
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Figure 3.8: (a) Single-atom HHG spectra, and macroscopic HHG spectra without (b) and
with (c) the slit for 800 nm (solid lines), 1200 nm (dashed lines) and 1600 nm (dot-dashed
lines) lasers. The laser parameters are given in the text. (d) Wavelength dependence of
the total integrated HHG yields above 20 eV. The integrated HHG yields in (a), (b) and (c)
follow λ−3.5±0.5, λ−8.5±0.5 and λ−10.2±0.2, respectively. Adapted from Publication [11].

laser parameters can be easily fixed, but this is not the case in experiments. Theoretical

simulations including macroscopic propagation effect are few [137, 138]. Since the resulting

HHG spectra depend on so many other parameters, any wavelength scaling laws derived are

likely to depend on the experimental parameters used. In spite of this limitation, it is still of

interest to take a look at the wavelength scaling by using the present QRS model. For this

purpose, we will define a parameter that describes the efficiency of harmonic generation.

This is the ratio between the output energy (total harmonic energy) with respect to the

input energy (fundamental laser energy) for different laser wavelengths. The input pulse

energy can be calculated using Eq. (D.14) if the laser beam has a Gaussian distribution in

time and space. The output energy can be obtained by integrating the harmonic intensity
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over a photon-energy region:

Eout =

∫ ωmax

ωmin

∫ ∫
|Eh(x, y, ω)|2dxdydω. (3.3)

.

In Fig. 3.8(a) we show the single-atom HHG spectra calculated for three wavelengths.

Only the envelope of each spectra is shown. In the calculation, the laser intensity and

duration are kept as 1.6×1014 W/cm2 and 40 fs, respectively. In Fig. 3.8(b) the HHG

spectra obtained after including macroscopic propagation are shown. In the calculation, the

beam waist at the focus is kept as 47.5 µm, a 0.5 mm-long gas jet is placed at 3 mm after

the laser focus, and gas pressure is kept at 56 Torr. The yield of each harmonic is obtained

by integrating over the whole plane perpendicular to the propagation axis. In Fig. 3.8(c),

the HHG yields are recorded after they have passed a slit (the slit with a width of 100 µm

is placed at 24 cm after the gas jet). From Figs. 3.8(b) and 3.8(c), we calculate the HHG

efficiencies per atom vs the wavelength.

In Fig. 3.8(a), the ratio of input energy is 1:1:1 for 800 nm, 1200 nm, and 1600 nm

lasers. If we integrate the HHG yields above 20 eV as the output energy. The resulting

energy follows λ−3.5±0.5 shown in Fig. 3.8(d). If we integrate the HHG yields between 20 eV

and 50 eV, which would give a scaling rule of λ−5. In Tate et al. [29], the laser intensity

and the number of optical cycles were fixed for 800 nm and 2000 nm lasers. According to

our approach, the ratio of input energy is 1:2.5 for the 800 nm and 2000 nm lasers. And

their scaling rules at constant intensity of λ−(5−6) would be modified as λ−(6−7) at a constant

input energy.

When propagation effect is considered it is generally known [27, 29] that phase-matching

condition is more difficult to meet for longer-wavelength lasers, thus the HHG efficiency

decreases with increasing wavelength. Here we consider the total HHG yields for the lasers

used in Fig. 3.8(b) in which the gas jet is placed at z=3 mm. Since the laser intensity is

fixed at the center of the thin gas jet, we calculate that the intensities at the laser focus are

1.78×1014 W/cm2, 2.01×1014 W/cm2, and 2.33×1014 W/cm2, for 800 nm, 1200 nm, and
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1600 nm lasers, respectively, thus the input energies have the ratios of 1:1.13:1.31. We find

that HHG yields integrated from 20 eV up scale like λ−8.5±0.5, as shown in Fig. 3.8(d). If

we only integrate the harmonics between 20-50 eV, then the scaling rule is λ−10.5.

Experimentally, Colosimo et al. [130] reported that the HHG yields between 35-50 eV for

2000 nm lasers are about 1000 times smaller than that for 800 nm lasers, for experimental

conditions that were kept “as fixed as possible”. This would give a λ−9 dependence in

this narrow energy region which is not too far off from our scaling of λ−10.5. In addition,

Shiner et al. [32] reported a scaling rule of λ−6.3±1.1 for the HHG of Xe with a fixed laser

intensity. By assuming perfect phase-matching condition for all the laser wavelengths used,

they derived scaling law of λ−6.3±1.1 that was to be compared to the scaling law derived from

the single-atom response. We cannot compare their results with our simulations. They used

a truncated Bessel beam (instead of Gaussian beam) in the experiment and the gas jet

was located at the laser focus. Since the HHG yields depend on so many experimental

parameters, it is clear that any simple scaling laws derived should be taken with caution.

In Fig. 3.8(d), we also show the scaling law for the case where the HHG yields are collected

after the slit. We integrate the HHG signals above 20 eV and obtain the λ−10.2±0.2 scaling. In

general, good phase-matching condition becomes more difficult to meet with increasing laser

wavelength. Even if the gas jet is placed after the laser focus, the short trajectories are not

selected efficiently for longer-wavelength lasers. A slit is usually used to select contributions

from short trajectories in the far field. By blocking out contributions [see Fig. 3.8(c)] from

the long trajectories the harmonic efficiency becomes worse.

Based on the above analysis, the HHG yields for long-wavelength driving lasers under the

same experimental conditions appear quite unfavorable. On the other hand, for practical

purpose, experimentally high harmonics are to be generated with optimized conditions. In

Colosimo et al. [130] it was reported that the HHG yields between 35-50 eV generated by

using 2000 nm lasers can be as high as 50% of that from 800 nm lasers if the experimental

conditions were optimized independently. Furthermore, Chen et al. [139] demonstrated that
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it was possible to use much higher pressure to generate HHG for long-wavelength lasers,

thus achieving usable photon yields even in the water-window region. Clearly additional

theoretical analysis of macroscopic propagation effects on HHG for long-wavelength driving

lasers under different experimental conditions is desirable.

3.7 Conclusion

In the past two decades HHG by infrared laser pulses with atoms has been widely investi-

gated both experimentally and theoretically. Since the HHG is generated from a macroscopic

medium, theoretically we need to deal with both the microscopic laser-atom interaction, and

macroscopic propagation of laser and harmonic fields. In this chapter, we first showed that

the calculated macroscopic HHG spectrum obtained from the QRS-based atomic dipoles

was in much better agreement with the TDSE than that from the SFA. For the TDSE being

carried out efficiently, in these comparisons we only limited ourselves in the conditions of

low-intensity lasers and low-density gas medium where the fundamental field can be con-

sidered as propagating in the vacuum. Then we extended our model to the higher laser

intensities and gas pressures at which the nonlinear propagation of the fundamental laser

field was also considered with the inclusion of dispersion, plasma, and Kerr effects, and

simulated the HHG spectra of Ar with 1200- and 1360-nm lasers by considering the detailed

experimental information. The experimental HHG spectra have been successfully repro-

duced by theory. The most pronounced structure in the measured spectra of Ar, i.e., the

Cooper minimum, has also been reproduced. Specifically, we investigated how the Cooper

minimum was washed out by changing the experimental conditions.

We showed that the macroscopic HHG spectrum can be expressed as a product of a

MWP and a single-atom photorecombination transition dipole moment. The MWP has

been shown to be largely independent of the target if the ionization potential is nearly the

same for the two targets. The study of HHG spectra with the macroscopic conditions can be

simplified as the study of MWPs only, which can be easily obtained by solving the Maxwell’s
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equation with the SFA-based induced dipoles. The concept of MWP also implies that one

can extract the photorecombination transition dipole of an unknown atom or molecule from

one for which the photorecombination transition dipole moment is known by comparing

their measured HHG spectra in the same laser pulse.

It is always an obstacle to improve the harmonic efficiency if the long-wavelength laser

is applied to obtain the high-energy photons. Tate et al. [29] suggested that the harmonic

yield followed a λ−(5−6) scaling at constant intensity theoretically. However, this scaling law

was obtained by the calculation of the single-atom response. It is generally known that the

macroscopic propagation of the HHG makes this scaling law even worse. In this chapter,

we showed the scaling law with wavelength in the single-atom response first based on the

QRS theory. And then we fixed the input pulse energy, and showed how this scaling law

was varied with the macroscopic conditions. This study also implies that the scaling law

can be improved by changing the experimental conditions, such as increasing gas pressure,

increasing input energy, optimizing the detecting system, and so on.
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Chapter 4

Comparison of high-order harmonic
generation of Ar using a truncated
Bessel or a Gaussian beam

Figures and most paragraphs in this chapter are adapted from Publication [2].

4.1 Introduction

As discussed in Chapter 3, a full quantitative description of high-order harmonic generation

(HHG) in a macroscopic medium requires the inclusion of the propagation of the funda-

mental laser field and the generated harmonic field. The QRS theory has been successfully

incorporated into the well-established macroscopic propagation theory such that the simu-

lated HHG spectra can be compared directly with experimental measurements in Fig. 3.3,

where experimental conditions have been well specified. The harmonics in these studies were

generated with multi-cycle (FWHM, ∼ 10 optical cycles) laser pulses. And these simulations

were based on the assumption that the initial fundamental laser pulse at the entrance of the

gas medium is a Gaussian beam. Few-cycle laser pulses are also widely used to produce the

high harmonics, and they are usually obtained by gas-filled hollow-core fiber compression

technique [140]. In this method, an incident laser beam can be dominantly coupled into

the fundamental EH11 hybrid mode by proper mode matching. At the exit of the fiber a

truncated Bessel (TB) beam is produced instead of a Gaussian beam. Nisoli et al. [141] have
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shown that the spatial properties (divergence and brightness) of the harmonics were greatly

improved using a TB beam as the driving laser pulse. To simulate harmonics generated by

few-cycle pulses we generalize the propagation code to include situations where the spatial

distribution of the generating laser pulse is a TB beam.

In this chapter, using the spatial TB beam we first want to check if we can simulate the

high-harmonic spectra of Ar reported by Wörner et al. [127], which were carried out with

a few-cycle laser at relatively high intensities (Fig. 1 of their paper). Our second goal is

to establish the general conditions where the generated harmonic spectra are insensitive to

whether the generating beam is a Gaussian or a TB beam.

We modify the numerical code by changing the initial condition in which the input beam

is a TB beam. A TB beam exiting from the hollow-core fiber is usually refocused through

lens and mirrors before entering the harmonic-generating gas medium. In the Appendix

D.2, we describe two types of TB beams. In TB-1 (Type-1 Bessel), a tight focusing beam

was used by Nisoli et al. [141]. In TB-2 (Type-2 Bessel), for the case of a loosely focused

TB beam, was used by Wörner et al. [127] and Shiner et al. [21]. In Sec. 4.2 we show

the calculated HHG spectra of Ar with a TB beam or a Gaussian beam using a 780-nm

laser and setup parameters as close as those in Wörner et al.’s [127]. Even with the TB-2

beam, we still have not been able to reproduce the observed deep Cooper minimum (CM)

reported in the experiment. However, we are able to reproduce the HHG spectra of Ar

reported in Shiner et al.’s [21] where the harmonic spectra were generated using 1800-nm

mid-infrared lasers. We then turn to study the detailed harmonic growth maps in space for

TB-1 and TB-2 beams in terms of phase matching conditions. In Sec. 4.3, we investigate

how these maps change with the gas-jet position. In Sec. 4.4, we specifically study the

pressure induced phase mismatch by analyzing the harmonic growth map for different gas

pressures. We then draw the conclusion that for TB-2 beam, the HHG spectra are generally

close to those generated from a Gaussian beam with the similar beam waist. A summary

in Sec. 4.5 concludes this chapter.
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4.2 Simulation of HHG spectrum of Ar

4.2.1 Few-cycle 780-nm laser

Figure 4.1: Calculated HHG spectra (CEP averaged) of Ar assuming the initial laser pulse
is a truncated Bessel beam (Type 2 in Fig. D.5) [(a) and (b)], or a Gaussian beam (beam
waist w0=50 µm) [(c) and (d)]. z0 is the position of the gas jet with respect to the laser
focus, and laser intensity (at the focus, z=0 mm) is given in units of I0=1014 W/cm2.
Dashed lines indicate the position of the Cooper minimum. Laser wavelength is 780 nm.
See text for additional laser parameters. This figure should be compared with Fig. 1 in Ref.
[127] and Fig. 4.2(b) below. Adapted from Publication [2].

It is well-known that photoionization cross section (PICS) of Ar has a minimum [142],

called Cooper minimum (CM), at photon energy near 51 eV. The Cooper minimum also

appears in the harmonic spectrum of Ar, and has been reported in many measurements

[21, 127–131] using different laser intensities and different laser wavelengths. To observe

clear CM, the cutoff of the HHG spectrum should lie well above 51 eV. In experiments with

typical 800-nm Ti:sapphire lasers, this would require a high laser intensity. On the other
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hand, at high intensities saturation occurs. Thus in earlier experiments with 800-nm lasers,

the CM in the HHG spectrum of Ar was not clearly located. To avoid saturation effect, in

Wörner et al. [127] few-cycle laser pulses were used and clear CM has been reported. In this

experiment, a hollow-core fibre filled with Ar gas was used to achieve self-phase modulation

for the laser pulse, subsequently, using chirped mirrors it was compressed to a few-cycle

pulse (∼ 3 optical cycles). The most prominent feature of the experimental result was the

appearance of a clear deep CM at 53±3 eV, which didn’t not shift with laser intensity.

Wörner et al.’s [127] measurements appear to be consistent with the general prediction of

the QRS theory, in that the position of the CM is at about 51 eV, and the position does not

change with laser intensity. However, the width and depth of the CM appear to contradict

the QRS theory. (The CM observed in the PICS of Ar is not as deep [142].) We have carried

out simulations with experimental parameters by assuming that the incident laser pulses

were Gaussian beams, but were unable to reproduce the broad and deep Cooper minimum

reported in the experiment. We thus decide to investigate whether the limitation is due to

the use of a Gaussian beam in the simulation. Here we show the results from simulations

using a truncated Bessel beam.

In the simulation, both the fundamental and harmonic field are propagated in the

medium, and the single-atom induced dipole is obtained by using the QRS theory. Laser

wavelength is 780 nm, and duration is 3 cycles (FWHM). The gas jet is 1-mm wide in the

interaction region and the gas pressure is assumed to be a constant at 30 Torr, and a slit

with a width of 100 µm is placed at 24 cm after the gas jet to select the harmonics in the far

field. These parameters are close to those in Wörner et al. [127]. The laser peak intensity

at the focus (in the vacuum) was adjusted as indicated in Fig. 4.1 to obtain the correct

experimental cut-off position.

We first assume that the laser pulse is a Gaussian beam with waist w0=50 µm and the

center of the gas jet is at the laser focus (z0=0 mm). The HHG spectra after CEP averaged

are shown in Fig. 4.1(c). For clarity, the spectra have been shifted for different intensities.
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In Fig. 4.1(d), we show the spectra for three intensities in linear scale. The CM appears at

about 50 eV. Beyond 4×1014 W/cm2, the laser field reaches saturation and higher harmonics

show blue shift. The ratio of the maximum yield near the cutoff with respect to the lowest

yield at the CM is about a factor of 3 - 6 in the simulation, but the same ratio is close to

100 in the experiment of Wörner et al. [127] [also see Fig. 4.2(b) below]. We have varied the

position of the gas jet (z0) with respect to the laser focus, but the harmonic spectra remain

nearly the same as those in Fig. 4.1(c).

We next assume that the incident beam is a TB-2 pulse, and the center of the gas jet

is located at 4 mm after the laser focus (i.e., z0=4 mm). The HHG spectra after CEP

averaged are shown in Figs. 4.1(a) and (b). The laser intensities indicated are the ones at

the laser focus (z=0 mm), so the on-axis intensities at z=4 mm are almost the same as those

in the Gaussian pulses (at z=0 mm) in Fig. 4.1(c). The high-harmonic spectra shown in

Fig. 4.1(a) do not differ significantly from those in Fig. 4.1(c), with the CM appearing near

50 eV. From Fig. 4.1(b), we find that with the TB-2 beam, the HHG spectra are stronger for

the higher harmonics, such that the previous maximum/minimum ratio rises by about 50%,

but still much smaller than the ratio seen in Wörner et al. [127]. We have also changed z0

(not shown), the CM was always seen, but the depth of the CM reported in the experiment

still cannot be reproduced. Thus the origin of the discrepancy remains unexplained.

4.2.2 Few-cycle 1800-nm laser

As shown in Eq. (1.4), the cutoff energy can be extended with the increase of laser wavelength

since the ponderomotive energy is proportional to the square of the wavelength of a driving

laser.Iit is preferable to study the CM in HHG spectra of Ar using near-infrared (NIR)

lasers. Indeed, such measurements have been reported by Jin et al. (Publication [8]) using

1.2- and 1.36-µm lasers and by Higuet et al. [131] with 1.8- to 2.0- µm and 50-fs NIR lasers.

None of these experiments reported the CM as deep as shown in Wörner et al. [127]. In

fact, the experimental data reported in Jin et al. (Publication [8]) were well reproduced
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Figure 4.2: (a) Comparison of experimental (envelope only) [21] and theoretical HHG spec-
tra using an 1800-nm laser. Laser intensity used in the simulation is indicated in units of
I0=1014 W/cm2. See text for additional parameters. Experimental data are shown only from
30 to 75 eV due to constraint from the filter. (b) Experimental HHG spectra (envelope only)
[127] using a 780-nm laser with intensity of 2.9×1014 W/cm2. Calculated photorecombi-
nation cross section (PRCS) using the Muller potential [97] is also shown in (a) and (b).
Adapted from Publication [2].

by our simulations using an incident Gaussian beam spatially. Recently, Shiner et al. [21]

also reported the measurements of Ar HHG spectra using a few-cycle (∼ 2 optical cycles)

1800-nm laser (see Fig. 9 in the supplementary information). We show their experimental

spectrum in Fig. 4.2(a). We carry out the simulation with an 1800-nm, 11-fs laser pulse. A

gas jet (0.5 mm wide) is located at the laser focus, gas pressure is 6 Torr, and a slit with

a width of 190 µm is placed at 45.5 cm after the gas jet. Only the harmonics after the

slit are detected. The initial laser beam is assumed as a Gaussian one with w0=100 µm.

The calculated HHG spectra (CEP averaged) with two intensities are shown in Fig. 4.2(a).

We can see that the experimental spectrum agrees very well with the theoretical one (laser

intensity is 1.5×1014 W/cm2). These spectra also agree well with the calculated PRCS of Ar

using the Muller potential [97]. With decreasing laser intensity, the general spectral shape

and the depth of the Cooper minimum don’t change much except that the cut-off position
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moves to lower photon energy. This also shows that a Gaussian beam can be used to model

the experiment of Shiner et al. [21]. In other words, the general HHG spectra obtained from

loose focusing TB beam and Gaussian beam do not differ significantly.

Based on the above simulations, we conclude that the deep Cooper minimum in the

HHG spectra [see Fig. 4.2(b)] reported in Wörner et al. [127] remains not reproduced

by simulations. On the other hand, the very deep minimum was not observed in other

experiments using NIR lasers [21]. Our simulations can reproduce these latter observations.

4.3 Phase matching conditions at the low gas pressure

Nisoli et al. [141] have shown that the characteristics of HHG using a truncated Bessel

beam and Gaussian beam were quite different. Our results in Sec. 4.2 seem to contradict

with their conclusions. It turns out that in Nisoli et al. [141] they used a tightly focused

truncated Bessel beam (or TB-1), while in Sec. 4.2, a loosely focused truncated Bessel beam

(or TB-2) was applied. In Appendix D.2 we summarize how the two types of the TB beams

are constructed, together with their typical spatial intensity distributions. In this section,

we present a systematic comparison of phase matching conditions for the TB-1, TB-2, and

Gaussian beams. In the calculation, the ab initio macroscopic propagation and the QRS

theory for the single-atom response are applied, the laser intensity (at the focus, as shown in

Figs. D.3 and D.5), wavelength, duration (FWHM), and CEP are fixed at 3×1014 W/cm2,

780 nm, 3 cycles, and 0, respectively.

As discussed in Sec. 1.3.1, phase matching is a pre-requisite for efficient generation of

high harmonics. The phase mismatch for the q-th harmonic in Eq. (1.5) includes four terms

[12, 15, 16, 36, 37]. Each term has been discussed in detail in Sec. 1.3.1. Here we only

give a brief review. The first term of the phase mismatch is due to the geometry of laser

focusing. The second term is from the dispersion by free electrons that are present in the

gas medium, i.e., free electron or plasma dispersion. The third term is from neutral atom

dispersion where the index of refraction changes with wavelength. The last term is due to
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laser-induced atomic dipole phase which depends strongly on laser intensity. The dipole

phase mismatch is given by Kq,dip = ∇ϕq,dip, where ϕq,dip is the action accumulated by an

electron during its excursion in the laser field. This phase depends on whether the q-th

harmonic is emitted by electrons that take the “long” or “short” trajectories.

4.3.1 Phase-matching map at low gas pressure

Figure 4.3: Phase matching map for H15 of the interplay between the geometric phase
ϕq,geo(r, z) and induced dipole phase ϕq,dip(r, z) for Type-1 Bessel and Gaussian (w0=25
µm) beams. Upper row: “short” trajectory; lower row: “long” trajectory. Note that
∆ϕq(r, z)=ϕq,geo(r, z)-ϕq,dip(r, z) modulo 2π is plotted, and the phase change between two
neighboring white regions is 2π. Adapted from Publication [2].

We first set the gas pressure very low (0.1 Torr) such that pressure effect can be ignored.

In this case, the phase matching conditions are only determined by the interplay between

the geometric phase ϕq,geo(r, z) and the induced dipole phase ϕq,dip(r, z) in Eq. (1.8). We

plot ∆ϕq(r, z)=ϕq,geo(r, z) - ϕq,dip(r, z), modulo 2π, in Fig. 4.3 for the 15th harmonic (H15)

in contrast to the generally used contour map for the coherence length [36, 143]. The color

coding is chosen such that it is bright (or white) when ∆ϕq is near π, and dark (or red)

when near 0 and 2π (such that no color changes at the two boundaries). Note that the
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length scale is in mm along the z-axis and in µm along the r-axis. In Fig. 4.3, the phase

between two neighboring white regions is 2π. For good phase matching, this region is large

(such that the gradient is small). From the figure we can see in general it is easier to achieve

good phase matching for “short” (upper row) than for “long” (lower row) trajectories.

Figure 4.4: On-axis phase mismatch ∆kq(z) = (∂/∂z)[∆ϕq(0, z)] for the phase shown in
Fig. 4.3 with Type-1 Bessel and Gaussian (w0=25 µm) beams. q=15. Upper row: “short”
trajectory; lower row: “long” trajectory. Dashed lines indicate the zero values of the phase
mismatch. Note that the values of ∆kq(z) from z=-0.2 to 0.2 mm in (a) and (b) are probably
not precise numerically due to the dramatic phase oscillation along z direction. Adapted from
Publication [2].

Using the phases in Fig. 4.3 we can calculate the phase mismatch by taking the gradient.

In Figs. 4.4(c) and (d) we show the phase mismatch ∆kq(z) for H15 along the propagation

axis z for a Gaussian beam. It is much smaller for the “short”-trajectory component than

for the “long”-trajectory one. Furthermore, phase matching is better after the focus. Since

laser intensity decreases quickly away from the focus, thus a gas jet located at z=2 mm is

about near the optimum condition for HHG generation for a Gaussian beam. In Figs. 4.4(a)

and (b) the phase mismatch ∆kq(z) for a TB beam along the propagation axis z is shown.

Again the phase mismatch is much larger for “long”-trajectory component than for the

“short”-trajectory one. Although the phase oscillates widely near z=0 mm, spatial average

over a small volume would result in a small phase mismatch. Thus for TB beams a broad
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good phase-matching region close to the axis from z=-1.5 to 1.5 mm for “short”-trajectory

harmonics can be achieved. This conclusion is consistent with the experimental results of

Nisoli et al. [141]. For the typical gas-jet length (∼ 1 mm), the phase matching conditions

should depend strongly on the position of the gas jet, and for whether it is Type-1 Bessel

or Gaussian (w0=25 µm) beams.

For harmonics generated away from the axis, the phase mismatch has components par-

allel and perpendicular to the axis. For a Gaussian beam, the distance between two white

regions (where phase changes by 2π) is larger along the z-axis than along the r-axis, see

Figs. 4.3(c) and (d), thus phase matching (by taking the gradient of the phase) is still fa-

vorable, even not as good as the on-axis region (also see Fig. 4 in [36]). From Fig. 4.3, in

general, “long”-trajectory harmonics tend to have off-axis phase matching and the harmon-

ics are more divergent.

We next consider loosely focused laser beams. From Eqs. (D.4) and (D.5), we note that

for a Gaussian beam, if we scale z by the confocal parameter b and scale r by the beam

waist w0, the intensity and phase stay the same. Thus for the loosely focused Gaussian beam

the phase matched volume will increase (by b or w0 in each direction). For a typical fixed

gas-jet length, we expect that good phase-matching conditions are more easily achieved.

This is also true for TB beams. We have checked (not shown) that the phase map for TB-2

and Gaussian (w0=50 µm) beams were very similar to those shown for TB-1 and Gaussian

(w0=25 µm) beams in the scaled coordinates (for H15). Thus for loosely focused TB-2

beams the phase matching conditions do not differ much from the loosely focused Gaussian

beam. In Sec. 4.3.2, we will show that in this case the HHG spectra generated by TB-2

beam and by Gaussian beam are very similar.

4.3.2 Dependence of harmonic yield on gas-jet position

Fig. 4.5 shows the intensity distributions of the plateau harmonic H15 and cutoff harmonic

H35, under tight-focusing conditions at two different gas-jet (1-mm width) positions, for
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Table 4.1: Phase mismatch ∆kq,geo(0, z) and Kq,dip(0, z) (mm−1) derived from Eqs. (1.6)
and (1.8) for a Gaussian beam. Here z=1 mm and I0=3×1014 W/cm2.

Harmonic order H15 H35

Confocal parameter b (mm) 5 3 20 15 5 3 20 15

∆kq,geo 4.83 6.46 1.39 1.83 11.72 15.69 3.37 4.45

Kq,dip Short (“S”) 0.71 1.28 0.059 0.103 < 9.77 < 17.51 < 0.81 < 1.41

Long (“L”) 17.12 30.67 1.41 2.47 > 9.77 > 17.51 > 0.81 > 1.41

a TB-1 beam and a Gaussian beam. The other laser parameters are given in the figure

caption. To understand these results, we examine the phase mismatch [see Eq. (1.5)] values

in units of 1/mm. On-axis phase mismatch ∆kq,geo(0, z) and Kq,dip(0, z) for a Gaussian

beam are written as [16, 37]

∆kq,geo(0, z) ≈
2

b
(q − 1)

1

1 + (2z/b)2
, (4.1)

Kq,dip(0, z) =
8z

b2
1

[1 + (2z/b)2]2
αq

i I0. (4.2)

Here αq
i is defined in Eq. (1.8), and other parameters can be found in Appendix D. In

Table 4.1, we show the typical values of ∆kq,geo(0, z) and Kq,dip(0, z) calculated by using

Eqs. (4.1) and (4.2) at z=1 mm on the axis (r=0). [We caution that the value of Kq,dip(0, z)

calculated using αq
i in the cut-off region in Eq. (1.8) may not be very accurate.] Since the

gas pressure is very low (0.1 Torr), there is no laser defocusing. For b=5 mm (w0=25 µm),

clearly from Table 4.1, the “short” trajectory is favored for good phase matching. The

coherence length is lcoh=π/∆kq, where ∆kq = ∆kq,geo − Kq,dip is calculated to be about 1

mm for both H15 [also see Fig. 4.4(c)] and H35. This large coherence length allows the

harmonic intensity to grow steadily along the propagation axis z, as seen in Figs. 4.5(f) and

(h). If the gas jet is placed before the laser focus (z0=-1 mm), Kq,dip changes its sign while

∆kq,geo remains the same as that at z=1 mm. Thus the coherence length lcoh (no matter

“short” or “long” trajectory) becomes much smaller. In Figs. 4.5(e) and (g), we see that
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Figure 4.5: Spatial distributions (normalized) of harmonic intensity for H15 and H35
using tight focusing laser beams. z0 is the position of the gas-jet center with respect to the
laser focus, i.e., z0 >0 means the gas jet (1-mm wide) is placed after the laser focus. Gas
pressure: 0.1 Torr (i.e., the fundamental laser field is not modified through propagating in
the medium). Upper row: Type-1 Bessel beam; lower row: Gaussian beam (w0=25 µm).
Adapted from Publication [2].

the buildup of the harmonic along z is not monotonic. The small coherence length results

in destructive interference such that the harmonic yield vanishes, followed by buildup and

then destruction, as z increases. Thus gas-jet position z0=-1 mm is not favorable for phase

matching for the generation of harmonics. For Type-1 Bessel beam, as shown in Figs. 4.5(a)-

(d), the harmonic spatial distribution is quite different from the Gaussian beam, but the

strong gas-jet position dependence is similar, i.e., the coherence length is shorter for negative

z0 than for positive z0.

The same analysis can be done for a loosely focused Gaussian beam (b=20 mm, w0=50

µm). At z=1 mm, lcoh is ∼ 2 mm (H15) or ∼ 1 mm (H35), and lcoh becomes ∼ 1 mm at

z=-2 mm. The large coherence length allows steadily monotonic buildup of the harmonics

as z is increased, as confirmed by numerical results shown in Figs. 4.6(e)-(h). For Type-2

Bessel in Figs. 4.6(a)-(d), the harmonic spatial distribution is very similar to the Gaussian
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Figure 4.6: Same as Fig. 4.5 except for loosely focused laser beams. Upper row: Type-2
Bessel beam; lower row: Gaussian beam (w0=50 µm). Adapted from Publication [2].

beam. These confirm that for loosely focused Gaussian and Bessel beams the generated

harmonic spectra are expected to be quite similar for the same gas-jet positions and the

results are less sensitive to their positions with respect to the laser focus as discussed in Sec.

4.2.

4.4 Pressure induced phase mismatch

The phase mismatch ∆kq,el in Eq. (1.9) due to free electrons and ∆kq,at in Eq. (1.10) due to

neutral atom dispersion explicitly depend on pressure [144]. ∆kq,el is always positive, and

∆kq,at usually is negative for high-energy photons. The two terms can compensate, i.e., add

up to near zero, at very low ionization level (about 6% for H15, and 4% for H35) if a 780-

nm, 3-cycle (FWHM) laser is applied. On the other hand, gas pressure also induces laser

defocusing and blue-shift, thus changes the geometric phase mismatch ∆kq,geo in Eq. (1.6)

and Kq,dip in Eq. (1.7). It is difficult to quantify the variations of these values since the laser

field undergoes complicated spatial and temporal variation in the medium. In the following,

we only illustrate the effect of laser defocusing by changing the confocal parameter b for a
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Figure 4.7: Spatial distributions (normalized) of the harmonic intensity under different
pressures (10 Torr and 80 Torr) using tight focusing laser beams. z0=1 mm (can be read
from the z-coordinate). Gas jet is 1-mm wide, and harmonic order is indicated. Upper row:
Type-1 Bessel beam; lower row: Gaussian beam (w0=25 µm). Adapted from Publication [2].

Gaussian beam.

We first give a rough estimate of phase mismatch caused by the pressure, i.e., ∆kq,el+∆kq,at,

and ∆kq,geo −Kq,dip due to the laser defocusing. For the tight focusing Gaussian beam, the

ionization level (in the end of the laser pulse) is about 12%, thus the values of ∆kq,el+∆kq,at

are about 0.5 and 2 mm−1 at 10 Torr for H15 and H35, respectively. These values increase

to 4 and 16 mm−1 at 80 Torr. On the other hand, pressure could induce laser defocusing,

i.e., making the confocal parameter b smaller. In Table 4.1, we show ∆kq,geo and Kq,dip as b

changes to 3 mm. We can see at 10 Torr, the phase mismatch caused by the laser focusing

is dominant, and then becomes comparable to ∆kq,el+∆kq,at at 80 Torr. For Type-1 Bessel

and Gaussian beams, the geometric phase and induced dipole phase between the two beams

have been shown to be quite different (see Fig. 4.3). With the increase in pressure, their

differences still prevail so the harmonic spatial distributions for the two beams behave dif-

ferently at higher pressure as well. Fig. 4.7 shows the spatial harmonic emissions for Type-1

Bessel and Gaussian beams at two pressures, and they are quite different for the two tightly
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focused beams.

Figure 4.8: Same as Fig. 4.7 except for the loose focusing laser beams. Upper row: Type-2
Bessel beam; lower row: Gaussian beam (w0=50 µm). Adapted from Publication [2].

We carry out a similar analysis for the loosely focused laser beams. The ionization level is

found to be about 15% for the loose focusing Gaussian beam, so the values of ∆kq,el+∆kq,at

are about 1 and 3.5 mm−1 at 10 Torr for H15 and H35, respectively. These values increase

to 8 and 28 mm−1 at 80 Torr. In Table 4.1, changing b to 15 mm for the Gaussian beam does

not change the phase mismatch much. ∆kq,geo −Kq,dip is comparable with ∆kq,el+∆kq,at at

10 Torr, and then ∆kq,el+∆kq,at becomes dominant as the pressure is increased. Fig. 4.8

shows that the spatial harmonic emissions for Type-2 Bessel and Gaussian beams are similar

even at moderate pressures.

4.5 Conclusion

In this chapter, we have examined the generation of harmonics in the gas medium for incident

intense lasers that have Gaussian or truncated Bessel spatial profiles. We have investigated

how the generated harmonic emissions (with the inclusion of propagation effect) depend on

the gas-jet position and gas pressure, for tightly and loosely focused Bessel and Gaussian
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beams. First we simulated the HHG spectra of Ar reported in Wörner et al. [127] using

the 780-nm few-cycle pulses. We were unable to reproduce the deep and broad Cooper

minimum in the observed HHG spectra of Ar, whether we assumed that the spatial profile

was a truncated Bessel beam or a Gaussian beam. However, our simulation was able to

reproduce the observed HHG spectra of Ar generated using 1800-nm lasers in Shiner et

al. [21]. We suggested that additional experiments might be needed to clarify the existing

discrepancy for the 780-nm data.

We have also analyzed phase matching conditions for tightly and loosely focused Bessel

and Gaussian beams, and have varied the gas-jet position and gas pressure. We have

demonstrated that for loosely focused Bessel or Gaussian beams the harmonic growth maps

were very similar thus resulting in nearly identical harmonic spectra. For tightly focused

beams, the harmonic growth maps were different for Bessel and Gaussian beams, and the

resulting HHG spectra differed from each other as well. At higher pressure and/or intensity,

phase matching analysis is complicated due to laser defocusing and blue shift as the laser

intensity changes in the gas medium. To probe atomic or molecular electronic structure

using HHG, harmonics generated from loosely focused beams are preferable since the spectra

would be less sensitive to gas-jet location and other experimental parameters. For tightly

focused beams the harmonic spectra are very sensitive to experimental conditions such

that the comparison of theoretical simulation with experiment is less straightforward since

experimental parameters are not all generally well specified.
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Chapter 5

Generation of an isolated attosecond
pulse in the far field by spatial
filtering with an intense few-cycle
mid-infrared laser

Figures and most paragraphs in this chapter are adapted from Publication [7].

5.1 Introduction

As discussed in Sec. 1.4.1, high-order harmonic generation (HHG) has been widely used for

the production of attosecond pulses in the extreme ultraviolet (XUV) [16, 46, 145]. Due to

its great potential for probing ultrafast electronic processes, there is a plethora of techniques

for the production of an isolated attosecond pulse (IAP), with the idea that harmonics be

generated from half an optical cycle only in a few- or multi-cycle infrared laser pulse as

discussed in Sec. 1.4.1. Since the harmonic field generated by all atoms within the laser

focus co-propagates with the fundamental laser field in the gas medium, as well as possible

further propagation in the free space depending on the experimental setup, any methods

using HHG to generate the IAP also need to take into account the effects of macroscopic

propagation of fundamental and harmonic fields. As demonstrated in Chapters 3 and 4,

these effects have been well taken care by using the well-established propagation theory

with the quantitative rescattering (QRS)-based single-atom induced dipoles, the phase of the
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harmonics which is inevitably involved in the propagated harmonic field plays an essential

role for the attosecond pulse generation. In this chapter, we will focus on the generation of

the attosecond pulses, which allows us to test the phase of harmonics in the previous studies

as well.

Recently, Xe has become a favorite candidate for generating an intense IAP [146], study-

ing phase-matching effects in the generation of high-energy photons [147], and probing

the multi-electron dynamics with high-harmonic spectroscopy [21]. Ferrari et al. [146] re-

ported the generation of a high-energy 160-as IAP using low-order harmonics of Xe from a

CEP-stabilized laser. They used very high laser intensity and very dilute gas so that the

fundamental field was not severely distorted, but the ground state of atom was depleted very

quickly in the leading edge of the laser pulse. Only low-order harmonics emitted within one

half cycle were used to obtain an IAP. Shiner et al. [21] used a 1.8-µm laser with a duration

of less than two optical cycles to obtain the HHG spectra of Xe up to the photon energy of

160 eV. They have shown that HHG spectra exhibited strong enhancement above about 90

eV. This enhancement is well-known in photoionization (PI) of Xe due to the presence of a

strong shape resonance from the 4d shell which, through the channel coupling, modifies the

partial PI cross section of the 5p shell of Xe – a feature attributed to many-electron effects.

According to QRS theory, such enhancement is anticipated since partial photorecombination

(PR) cross section (related to photoionization) enters directly in the laser-induced dipole. To

simulate HHG spectra at high-photon energies, multi-electron effects on the laser-induced

dipoles thus have to be included. Using such dipoles in the QRS model, we simulate the

HHG spectra of Xe generated by 1.8-µm lasers by including the macroscopic propagation

effects.

In this chapter, mostly we aim at understanding the HHG spectra of Xe observed exper-

imentally in Publication [5], which show nearly continuous photon energy distributions (to

be called continuum structure) at high laser intensities. Such continuum spectra have also

been observed in molecules, like NO (see Publication [5]). From our simulation, we wish
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to demonstrate whether IAPs are generated by these harmonics. For this, we demonstrate

how to select different ranges of harmonics to synthesize an IAP by using a spatial filter in

the far field. This approach is different from that in Ferrari et al. [146], but similar to the

analysis in Gaarde et al. [148]. In Sec. 5.2, we briefly summarize the QRS theory including

multi-electron effects and present the calculated HHG spectra of Xe with a mid-infrared

laser. In Sec. 5.3, we show the spatiotemporal electric field of fundamental laser pulse. In

Sec. 5.4, we first give the wavelet theory for the time-frequency analysis, and then plot

the near- and far-field harmonics in time domain using this technique. In Sec. 5.5, we

demonstrate the IAP generation in the far field by synthesizing harmonic orders from 40 to

80 (H40-H80) and H90-H130. A study of carrier-envelope phase (CEP) dependence of IAP

presented in Sec. 5.6 concludes that it is still possible to obtain an IAP even by using a

laser where the CEP is not stabilized. We also compare attosecond pulses calculated using

the QRS and the SFA in Sec. 5.7. A short summary in Sec. 5.8 concludes this chapter.

5.2 Macroscopic HHG spectra of Xe using an 1825-nm

few-cycle laser

5.2.1 Photorecombination dipole moment of Xe in QRS theory

The single-atom induced dipole moment D(t) in Eq. (2.53) is obtained by the QRS theory.

In energy (or frequency) domain, D(ω) = W (ω)d(ω), where d(ω) is the PR transition dipole

moment and W (ω) is the microscopic wave packet. In QRS theory, W (ω) is determined

by the laser field and can be accurately calculated based on the strong-field approximation

(SFA), and d(ω) is the transition dipole between the initial and final states of PR or PI. When

the multi-electron effect is not important, d(ω) can be calculated using the single-active

electron (SAE) approximation. However, the transition dipole is easily generalized to include

many-electron effects, as routinely done in PI theory of atoms and molecules. Thus to include

many-electron effects in d(ω), multi-channel calculations such as many-body perturbation

theory, close-coupling method, R-matrix method, random-phase approximation, and many
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others can all be employed for such purpose. Since PI of Xe has been well studied, we obtain

d(ω) in this chapter semi-empirically. The major many-body effect for PI of Xe from 5p shell

occurs at photon energy where 4d shell is open. Thus below about 60 eV, the transition

dipole from 5p can be obtained from a single-electron model. This gives the magnitude

and phase of the transition dipole. At higher energies, the effect from the 4d shell on the

transition dipole of 5p becomes important since PI cross section of Xe from 4d has a large

and broad shape resonance around 100 eV. The inter-shell coupling will enhance d(ω) for 5p

near and above 90 eV. Such enhancement has been calculated in Kutzner et al. [149] using

the relativistic random-phase approximation (RRPA). In our calculation, the phase of d(ω)

is taken from the 5p shell under the SAE approximation while the magnitude is taken from

Ref. [149]. This approximation does not change the temporal structure of attosecond pulses

(will be shown in Sec. 5.7) since the phase of D(ω) is dominated by the phase of the wave

packet W (ω). We comment that in QRS the induced dipole is given in the energy domain,

thus the calculation is similar to the time independent theory used in PI which has been

well-established in the last 30 years.

5.2.2 Macroscopic HHG spectra of Xe at low and high intensities

Figure 5.1: Macroscopic HHG spectra of Xe in an 1825-nm laser, for (a) CEP=0 and
(b) CEP averaged. Laser intensities are indicated in units of I0=1014 W/cm2. See text for
additional laser parameters and the experimental arrangement. Adapted from Publication
[7].

84



HHG spectra of Xe extended to the photon energy of over one hundred electron volts

using 1.8-µm lasers with the pulse duration of few optical cycles have been reported recently

[21] (also see Publication [5]).

In Fig. 5.1, we show the calculated HHG spectra of Xe exposed to a 14-fs (FWHM),

1825-nm laser. The laser beam waist is 100 µm. A 1-mm-long gas jet with the pressure of

30 Torr is placed at the laser focus. The harmonics are detected after a slit with a width

of 190 µm and placed 455 mm behind the focus. These parameters are chosen to be close

to those in the experiment of Trallero-Herrero et al. (see Publication [5]). For the present

purpose we analyze HHG spectra obtained from our theoretical simulations at two laser

peak intensities 0.5×1014 W/cm2 and 1.0×1014 W/cm2, which are below and above the

critical intensity for Xe at ∼ 0.87×1014 W/cm2 [98], respectively. Here the critical intensity

is defined with respect to the static electric field where an electron can escape over the top

of the field-induced potential barrier classically.

We show the macroscopic HHG spectra for CEP=0 in Fig. 5.1(a). The two laser inten-

sities present different characteristics of harmonics. For the low intensity, the harmonics

are very sharp, i.e., the valley between the neighboring odd harmonics is very deep. At

high intensity, the valley is very shallow, i.e., the spectrum shows a continuum structure.

Furthermore, the harmonics are not exactly at odd orders due to the blue shift of the fun-

damental field. Note that the spectrum rises above about H90 is due to the inter-shell or

many-electron effects discussed in Sec. 5.2.1. Since a few-cycle laser pulse is applied, the

HHG spectra have a strong CEP dependence. In Fig. 5.1(b), we show the CEP averaged

HHG spectra. The main characteristics of harmonics remain the same except that the har-

monic spectra are much smoother. The CEP is fixed at zero in the following sections unless

otherwise stated.
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Figure 5.2: Spatiotemporal intensity profile of the fundamental laser pulse at (a) the en-
trance and (b) the exit of Xe gas jet. Laser intensity at the focus is 1.0×1014 W/cm2

(assumed in the vacuum) and CEP=0. (c) Evolution of the on-axis electric field at the
entrance (solid line) and the exit (dot-dashed line). The laser field becomes chirped during
the propagation. For sub-cycle dynamics analysis, we use the label Bt, with t=-1, -0.5, 0,
and 0.5 (in units of optical cycles) to indicate the approximate half-cycle where the electron
is born. Note that t is defined within the half cycle only. Adapted from Publication [7].

5.3 Spatiotemporal evolution of fundamental laser field

To understand the different spectral features in Fig. 5.1, we inspect the fundamental field in

the ionizing medium. The spatiotemporal intensity profile and on-axis electric fields of the

laser pulse at the entrance and the exit of the gas jet are shown in Fig. 5.2. The laser peak

intensity is 1.0×1014 W/cm2, which would give an ionization probability of ∼ 35% at the end

of laser pulse for Xe according to an empirical ADK formula in barrier-suppression regime

[98]. While the electric field at the entrance has a good Gaussian shape both in time and
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space, it is strongly reshaped during the propagation in the ionizing medium. At the exit

it shows positive chirp in time (blue shift in frequency) [see Fig. 5.2(c)] and defocusing in

space [see Fig. 5.2(b)]. We have also checked the fundamental field with laser peak intensity

of 0.5×1014 W/cm2. It always maintains Gaussian spatial distribution and there is no blue

shift because the ionization probability is very low. The reshaping of the fundamental field

at high intensity is responsible for the continuum structure in the HHG spectra in Fig. 5.1.

Note that similar results have been obtained by Gaarde et al. [45] using a 750-nm laser

interacting with Ne gas.

5.4 Time-frequency representation of high harmonics

5.4.1 Wavelet analysis of attosecond pulses

A time-frequency representation (TFR) (or spectrogram) of the harmonic field Eh(t) is a

simultaneous representation of the temporal and spectral characteristics of the harmonics.

We perform the time-frequency analysis in terms of the wavelet transform of the harmonic

field [150–153]:

A(t, ω) =

∫
Eh(t

′)wt,ω(t′)dt′, (5.1)

with the wavelet kernel wt,ω(t′) =
√
ωW [ω(t′ − t)]. We choose the Morlet wavelet [150]:

W (x) = (1/
√
τ)eixe−x2/2τ2

. (5.2)

The width of the window function in the wavelet transform varies as the frequency changes,

but the number of oscillations (proportional to τ) within the window is held constant. The

dependence of A(t, ω) on the parameter τ has been tested. The absolute value of A(t, ω)

depends on τ , but the general temporal pattern does not change much. In this chapter, we

choose τ = 15 to perform the wavelet transform.

Harmonics emitted at the exit plane (near field) of the medium act as a source for the

far-field harmonics. In order to avoid the complexity of the harmonic spatial distribution in
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the near field (see Fig. 4 in Publication [11]), we calculate A(t, ω) for each radial point in

the near field and then integrate over the radial coordinate [152]:

|Anear(t, ω)|2 =

∫ ∞

0

2πrdr

∣∣∣∣ ∫
Eh(r, t

′)wt,ω(t′)dt′
∣∣∣∣2. (5.3)

To demonstrate the divergence of harmonics, we preform the TFR for each radial point in

the far field.

The spectral filter used to select a range of harmonics (ω1 - ω2) could affect the generation

of attosecond pulse trains (APTs) or IAPs. Theoretically we can obtain the total intensity

of an APT or an IAP in the near field as following [11]:

Inear(t) =

∫ ∞

0

2πrdr

∣∣∣∣ ∫ ω2

ω1

Eh(r, ω)eiωtdω

∣∣∣∣2. (5.4)

In the far field, a spatial filter is used to select the harmonics in a prescribed area. In this

chapter, we assume that the filter is circular with a radius r0, and is perpendicular to the

propagation direction of harmonics. The intensity of an APT or an IAP in the far field is

Ifar(t) =

∫ r0

0

2πrdr

∣∣∣∣ ∫ ω2

ω1

Ef
h(r, ω)eiωtdω

∣∣∣∣2. (5.5)

5.4.2 Time-frequency analysis of harmonics in near and far fields

As shown in Eq. (1.8), for each harmonic order q, the phase can be expressed as ϕq
i (r, z, t) =

−αq
i I(r, z, t), where I(r, z, t) is the spatiotemporal intensity of the fundamental laser field.

The proportional constant αi=S, L depends on “short” (S) or “long” (L) trajectories. The

phase can also be expressed in terms of the ponderomotive energy Up and the electron

excursion time τ q
i : ϕq

i ≈ −βiUpτ
q
i [154], where the coefficient βi for the “short” trajectory

is much smaller than for the “long” trajectory. The electron excursion times for the two

trajectories are τ q
S ≈ T/2 and τ q

L ≈ T (T is the laser period) [38]. It shows that the phase

grows with the cubic power of the wavelength. The curvature of the phase front caused

by the radial variation ∂ϕq
i (r)/∂r makes the harmonic beam divergent. The divergence of

“short”- or “long”-trajectory harmonic is determined by either ∆αq
i or ∆I(r).
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Figure 5.3: Top row: Time-frequency representation (TFR) of harmonics in the near
field. Middle row: TFR for on-axis (r=0 mm, divergence: 0 mrad) harmonics in the far
field. Bottom row: TFR for off-axis (r=1 mm, divergence: 2.2 mrad) harmonics in the far
field. Far-field position is at z=455 mm, and laser intensity (CEP=0) along each column
is indicated. Electrons are released at each half cycle, labeled by Bt, with t=-1, -0.5, 0 and
0.5 as in Fig. 5.2. For each Bt, electrons can follow a “short” (S) or “long” (L) trajectory
to recombine with the ion to emit harmonics. For each harmonic, the emission time can
be read from the time axis. For each Bt, the emission time for each off-axis harmonic is
delayed with respect to the corresponding on-axis harmonic, e.g., compare (b) vs (c), and
(e) vs (f). All the TFRs have been normalized. Adapted from Publication [7].

1. Harmonics in the near field

The TFR, |Anear(t, ω)|2, calculated from Eq. (5.3), are shown in Figs. 5.3(a) and (d) for

harmonics above H40 at two laser intensities, collected at the exit face of the gas jet (near

field). In Fig. 5.3(a), the symbols S and L are used to indicate the first (earliest) group

of harmonics generated. Here S (L) stands for “short” (“long”)-trajectory harmonics that

have positive (negative) chirp. These harmonics are from electrons born at t=-1 (in units of
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optical cycles), i.e., B−1 to indicate born time at t=-1, in the leading edge of the pulse [see

Fig. 5.2(c)]. In the following, the electron born time t (in units of optical cycles) is indicated

by Bt in the figure, while the harmonic emission time is read off from the horizontal axis of

the figure, one for the “short”, and the other for the “long” trajectory. In this chapter the

time is always defined in moving coordinate frame (also see Publication [11]). At the low

intensity in Fig. 5.3(a), we can see that both S and L contribute to harmonics generated from

electrons born at t=-1, -0.5, 0 and 0.5. In other words, harmonics are generated by electrons

born over four half cycles. Note that Tate et al. [29] have shown that harmonics generated

by mid-infrared lasers had large contributions from electron trajectories even longer than the

“long” trajectories in single-atom response, which has also been confirmed in our calculation

(not shown). But these trajectories are all eliminated during the propagation in the medium

since their phases are very large. For low intensity, the propagation in the medium cannot

eliminate contributions from “long” trajectories.

The same TFR analysis for the high intensity is shown in Fig. 5.3(d). Higher harmonic

cutoff from each burst is easily seen since the intensity is twice higher. Comparing to

Fig. 5.3(a), there are no contributions to the harmonics from the “long” trajectories for

electrons born at t=-1 and -0.5, i.e., from the leading edge of the pulse. Since the laser

intensity is twice higher, the phase of each harmonic is also twice higher (also see Fig. 17 in

Ref. [155] and Fig. 1(A) in Ref. [35]), thus resulting in cancelation of contributions from the

“long” trajectories. For electrons born at the falling edge of the pulse, due to the blue shift

(thus shorter wavelength) and reshaping (thus lower intensity) the phases of harmonics due

to the “long” trajectories are smaller and they can survive after propagation in the medium,

for example, for electrons born at t=0, and 0.5, see Fig. 5.3(d).

2. On-axis harmonics in the far field

In Fig. 5.3(b), the TFR is shown for r=0 mm in the far field (455 mm after the laser focus).

At low intensity, the emission from “short” trajectories born at different times have the

similar small divergence, and after propagation in free space they all survive along the axis
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in the far field. Interference between “short”-trajectory harmonics from each half cycle leads

to enhancement in odd harmonics and suppression in even harmonics (see Fig. 18 in Ref.

[13]), and resulting in a big contrast between an odd harmonic and neighboring harmonics

shown in Fig. 5.1(a) for the spectra obtained with a slit. At high intensity, only harmonics

from the “short”-trajectory electrons born at t=-1 survive (the next one at t=-0.5 is much

weaker), see Fig. 5.3(e). This would result in a nearly continuum spectra and a potential

for generating an isolated attosecond pulse.

3. Off-axis harmonics in the far field

In Figs. 5.3(c) and (f), the TFR is shown for r=1 mm (divergence: 2.2 mrad) in the far field.

Each off-axis burst has an obvious time delay with respect to the on-axis burst because it

travels a longer distance in free space. At low intensity, harmonics from “long” trajectories

appear on each burst since they have large divergence [see Fig. 5.3(c)]. At high intensity, the

“short” trajectories contribute to bursts B−0.5 and B0 [see Fig. 5.3(f)]. They appear to come

from the pulse reshaping, see Fig. 5.2(b) showing laser peak intensity shifting to region away

from the propagation axis. They experience larger ∆I(r) with respect to “short”-trajectory

electrons born at B−1 at the leading edge. Fig. 5.3(f) shows that a continuum spectra from

a “short” trajectory is generated for electrons born at t=-0.5.

Note that attochirp (emission time varying with harmonic order) [35, 156] of “short”-

or “long”-trajectory harmonics exists even after propagation. They may be compensated

using a “plasma compressor” [35] because free electrons induce a negative group velocity

dispersion, or by thin filters with linear negative group velocity dispersion [34]. But attochirp

is inversely proportional to laser wavelength [33]. This implies that one can select a broad

range of harmonics to synthesize a short attosecond pulse using an 1825-nm laser (will be

shown next). The harmonic emission of “short” trajectory in the far field in Figs. 5.3(e)

and (f) varies with time or radial distance. This provides the possibilities to generate IAPs

using the different ranges of harmonics on or off axis. We will only show the spectral and

spatial filters applied on axis in the far field in the following.
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5.5 Spectral and spatial filtering in generation of at-

tosecond pulses

Figure 5.4: First column: Intensity (or envelope) of attosecond pulses in the near field,
synthesized from the harmonics and the laser intensity shown in each frame. Laser intensi-
ties are given in units of I0=1014 W/cm2. In (a) and (d), odd bursts (“short” trajectories)
are labeled. Even bursts due to “long” trajectories are not labeled for brevity. Middle col-
umn: Spatial distribution (normalized) of attosecond pulses in the far field (z=455 mm).
Notice that even bursts (“long” trajectories) have large divergence, or at large r. The odd
bursts (not labeled) have smaller divergence. There is a time delay between off-axis attosec-
ond pulses compared to on-axis ones. Last column: Intensity of attosecond pulses in the far
field using a spatial filter with a radius r0=100 µm (shown by the solid line in red in each
middle-column frame). Adapted from Publication [7].

A spectral filter is usually used to synthesize attosecond pulses. In this section we

also study how the attosecond pulses are manipulated through spatial filtering. Fig. 5.4(a)

displays the intensity profile of an XUV light by synthesizing H40-H80 at the near field

generated by laser intensity of 0.5×1014 W/cm2. The intensity of the attosecond pulses
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Inear(t) is calculated by using Eq. (5.4). The time-frequency analysis of these harmonics has

been given in Fig. 5.3(a). Besides attosecond bursts occurring at each half optical cycles,

which can be attributed to harmonics resulting from “short” trajectories, we observe other

pulses in between which are attributed to contributions from “long” trajectories. The main

peaks from the “short” trajectories are labeled by 1, 3, 5 and 7 in the figure, while those in

between (2, 4, 6 and 8 are not labeled) are from “long” trajectories. The attosecond pulses

thus generated show a poor periodicity in time, see Fig. 5.4(a).

If the XUV light is synthesized at the far field, in particular, by introducing a spatial

filter, then it may be possible to remove harmonics resulting from the “long” trajectories.

In Fig. 5.4(b), the intensity distributions of the synthesized light in space in the far field

are shown. They are obtained from the near-field harmonics by further propagation in free

space. The peaks 2, 4, 6 and 8 [not shown in Fig. 5.4(a) explicitly] are attributed to “long”

trajectories. They are indicated in Fig. 5.4(b) showing that they are distributed far from

the propagation axis. By using a spatial filter (indicated by a solid line in red, with a radius

r0=100 µm) to select harmonics generated near the axis only, as shown in Fig. 5.4(c) by using

Eq. (5.5) to calculate Ifar(t), well-behaved APTs are then obtained. We comment that the

time delay between off-axis and on-axis harmonics leads to the curved spatial distribution

in Fig. 5.4(b), and it can be understood mathematically since each harmonic behaves like

a Gaussian beam, and the geometric phase of each harmonic is proportional to r2 along

the transverse direction (see Fig. 4 in Publication [11]). The traveling distance of off-axis

harmonics can be compensated using a reflecting mirror to refocus the harmonic beam or

by a detector with a curved surface. In principle, this compensation becomes important to

reduce the duration of attosecond pulses when a spatial filter with a large radius is applied.

In this chapter, the radius of the spatial filter is chosen to be small enough to avoid this

curvature effect.

Next we use the same range of harmonics (H40-H80) generated by the laser intensity of

1.0×1014 W/cm2 to synthesize attosecond pulses in the near field. Referring to Fig. 5.3(b),
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the “short” trajectories dominate the harmonic generation in the leading edge of the laser,

while the “long” trajectories dominate the harmonic generation in the falling edge. The syn-

thesized XUV light, shown in Fig. 5.4(d) indeed reflects this point where the first two peaks

occur at multiples of half optical cycles, while the last four peaks are not. In Fig. 5.4(e),

the spatial distribution of the synthesized XUV light in the far field indeed supports this

description. By using a spatial filter (indicated by a solid line in red, with a radius r0=100

µm) to select only “short” trajectories, as shown in Fig. 5.4(f), a nice IAP with a dura-

tion of 270 as is obtained, accompanied by a weak sub-pulse with a much weaker intensity.

This demonstrates the generation of IAPs using spatial filtering. A similar mechanism of

IAP generation has been proposed by Strelkov et al. [157, 158] using the harmonics in the

plateau region generated by the Ar gas with very high pressure.

The TFR in Fig. 5.3(e) shows considerable on-axis emission above H80 at burst B−0.5.

We use H90-H130 to generate attosecond pulses in the near field in Fig. 5.4(g). Both bursts

have considerable contributions from “short” trajectories. In the far field [see Fig. 5.4(h)],

they show different divergences as discussed before. Finally, we obtain an IAP with a

duration of about 170 as in Fig. 5.4(i) with a spatial filter. The intensity of the IAP is

about 1/8 as that in Fig. 5.4(f) due, not only to the larger divergence of “short”-trajectory

harmonics born at B−0.5 than at B−1, but also the lower harmonic intensity of H90-H130

than that of H40-H80. On the other hand, the duration of the IAP is decreased. Similar

mechanism of IAP generation has been proposed by Gaarde et al. [45, 148] using harmonics

in the cutoff region by a 750-nm laser exposed on Ne gas.

5.6 CEP dependence of isolated attosecond pulses

The selection of an IAP by a spatial filter in the far field discussed above is only for a single

CEP, and thus only useful if the laser is CEP-stabilized (has not been achieved for 1.8-µm

lasers yet). To check if the method can be used for lasers that are not CEP-stabilized, we

investigate the CEP dependence of the IAP generation.
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Figure 5.5: (a) and (b): The contrast ratio between intensities of the strongest satellite
and the main attosecond burst, (c) and (d): The peak intensity of the main attosecond burst
as a function of CEP. Laser intensities are shown in units of I0=1014 W/cm2. Harmonics
used to generate an IAP are labeled. Far-field position: z=455 mm, and the radius of the
spatial filter: r0=100 µm. Adapted from Publication [7].

In Figs. 5.5(a) and (b), we show the contrast ratio between the intensities of the strongest

satellite and the strongest attosecond burst, and in Figs. 5.5(c) and (d), we show the peak

intensity of the strongest attosecond burst, as the CEP is varied, for the two laser intensities

indicated. A good IAP is to have high peak intensity for the main peak and weak satellites.

From Figs. 5.5(c) and (d), we note that at the CEP’s where the strongest attosecond bursts

have high peak values, the contrast ratios shown in Figs. 5.5(a) and (b) at these CEP’s are

always small. In the meanwhile, when the contrast ratio is large, the strongest attosecond

burst is always weak. Thus it is possible to generate single attosecond pulses even when

the CEP of the driving laser is not stabilized. This explains the success why the first single

attosecond pulses were generated using few-cycle laser pulses that were not phase-stabilized

[159].
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5.7 Comparison between QRS and SFA in modeling

propagation effects

Figure 5.6: Comparison of HHG spectra and attosecond pulses calculated using QRS and
SFA for single-atom induced dipoles. (a) Macroscopic HHG spectra (total spectra without
using a slit) of Xe by QRS [red (dark gray) line] and SFA [black (light gray) line]. Laser
parameters: I=1.0×1014 W/cm2 and CEP=π/2. Intensity of attosecond pulses (b) in the
near field, and (c) in the far field (z=455 mm) using a spatial filter with a radius r0=300
µm: QRS [red (solid) lines] vs SFA [black (dashed) lines]. Inset in (c): enlarged temporal
structure of an IAP. The spectra are normalized at the peak intensities in (c). The same
normalization factor is used in (a) and (b). H40-H80 are used to synthesize attosecond
pulses. Adapted from Publication [7].

In the last two decades, the strong-field approximation (SFA), which is in the frame of the

SAE approximation, has been widely used to predict the temporal structure of attosecond

pulses even though SFA is unable to explain the observed harmonic spectra precisely in

general. In the present calculation, we use QRS in the propagation calculation. For single-

atom response, QRS has been tested against TDSE, both for the magnitude and phase, as

documented in Le et al. [96], for example. In QRS, the wave packet is obtained from SFA,

including the phase. The transition dipole d(ω) also introduces a phase. In SFA, this phase

is a constant, either real or pure imaginary (depending on the symmetry of the ground

state) and independent of the harmonic order. In QRS, the transition dipole moment is a

96



complex number in general. From PI theory, however, it is known that the phase of the

transition dipole does not change much with the photon energy. Thus the phases of the

harmonics calculated from QRS and SFA do not differ significantly. Since the phases of the

harmonics are much more important in synthesizing attosecond pulses [41], this explains

why propagation theory based on SFA has been so successful in explaining the generation

of attosecond pulses, in spite of its failure in predicting or explaining the observed harmonic

spectra. In this section, we support this analysis with actual results from simulations.

In Fig. 5.6(a) the HHG spectra of Xe obtained from SFA (within the SAE approximation)

and QRS (including multi-electron effects) using the laser parameters given in the captions

are shown. Clearly the spectra differ greatly. In Figs. 5.6(b) and (c) the synthesized (H40-

H80) attosecond pulses at the near field and the far field are shown. Clearly the results from

the two calculations are essentially identical (after an overall normalization), in spite of the

large differences in the harmonic spectra. We have checked some other cases and found that

the temporal structures of the attosecond pulses from the two theories were always very

similar. Larger differences than those shown in Figs. 5.6(b) and (c) are expected if a wider

range of harmonics are used or if the spectra from the two theories differ much more, but

the general conclusion is correct.

5.8 Conclusion

In this chapter, we have studied the generation of isolated attosecond pulses (IAPs) using

few-cycle mid-infrared lasers at high intensities near and above the critical intensity of Xe.

The calculations are based on the QRS theory where many-electron effects are included

in the single-atom induced dipole moment; specifically, by including the coupling of the

inner 4d shell of Xe in the partial 5p photorecombination transition dipole matrix element.

The effect of the medium on the fundamental and harmonic fields is obtained by solving

the Maxwell’s wave equations. The modification (or reshaping in space and time) of the

fundamental field is due to its nonlinear interaction with the medium includes dispersion,
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plasma effect, and Kerr nonlinearity. We have investigated the spatiotemporal evolution

of the fundamental laser field in detail, and found that its reshaping is responsible for the

continuum structure in the HHG spectra. This conclusion is carried out in terms of the

time-frequency analysis of harmonics in the near and far fields.

Since the divergence of harmonic emission from different half cycles is varied due to

the blue shift and defocusing of the fundamental laser pulse (or complicated reshaping),

we have shown that isolated attosecond pulses can be generated by synthesizing H40-H80

or H90-H130, selected by a spatial filter centered on the propagation axis in the far field.

The mechanism of IAP generation in this chapter could be called as “ionization gating”. It

works for a loosely focused laser at high laser intensity (above the critical intensity), which

is reshaped as it propagates through the medium with a moderate gas pressure. A similar

approach has been discussed by Gaarde et al. [45, 148] using a 750-nm laser interacting

with 135-Torr Ne gas. Our studies have shown that it could reshape the fundamental laser

field using a long-wavelength laser with a moderate gas pressure (∼ 30 Torr). The extended

harmonic cutoff of Xe leads to a broad range of harmonics available for IAP generation.

This approach is also different from Ferrari et al. [146] where low harmonics (∼ 30 eV,

which is equivalent to H40 in this chapter) are used to generate the IAP. In addition, we

have shown that the method is very robust and an IAP can be generated even if the laser

CEP is not stabilized.
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Chapter 6

Effects of macroscopic propagation
and multiple molecular orbitals on
the high-order harmonic generation of
aligned N2 and CO2 molecules

Figures and most paragraphs in this chapter are adapted from Publication [4], [8] and [9].

6.1 Introduction

As discussed in Sec. 1.4.2, high-order harmonic generation (HHG) has been employed to

probe the electronic structure of molecules on an ultrafast time scale recently [65, 66, 102,

124, 160]. Actually the last step in the HHG process - “recombination” is the inverse of

photoionization. Any spectral features in the photoionization cross section (PICS) would

thus be embodied in the HHG spectrum as well. Since molecules can be impulsively aligned

by a laser field [73], the observation of HHG from aligned molecules further offers the

opportunity for probing PICSs from aligned molecules that are not generally possible with

synchrotron radiation experiments. In addition, the first step of HHG is a highly nonlinear

tunneling ionization process which is very selective with respect to the ionization energy of

the molecular orbital from which the electron is removed. Thus HHG in general is dominated

by the recombination to the highest-occupied molecular-orbital (HOMO). In contrast, direct

photoionization of a molecule is a linear process, where PICSs from the next or next few inner
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orbitals could be of comparable importance. For example, for N2, the HOMO is a σg orbital.

The next more tightly bound orbital, the HOMO-1, is a πu orbital with an ionization energy

1.3 eV higher. The HOMO-2, is a σu orbital and is 3.2 eV more tightly bound than the

HOMO. Calculations by Lucchese et al. [99] and experimental results [161, 162] show that

for photon energy from the threshold at 15 eV to about 40 eV, the PICS from the HOMO-

2 is negligible, but the HOMO-1 PICS is actually comparable with that of the HOMO.

The HOMO has a shape resonance that peaks near the photon energy of 29 eV. These are

predictions and measurements made on randomly oriented N2 molecules. How do these

features depend on the alignment of molecules? Today the rich structure in PICSs from

fixed-in-space molecules predicted by the theory remains mostly unexplored experimentally.

Can high-harmonic spectra generated by laser pulses from aligned molecules provide new

information that are not yet directly available from photoionization measurements? The

answer is yes. McFarland et al. [163] reported that HHG from the HOMO-1 dominates over

that from the HOMO when the molecules are perpendicularly aligned with respect to the

laser polarization. Mairesse et al. [164] performed harmonic spectroscopy to characterize

the attosecond dynamics of multielectron rearrangement during strong-field ionization.

Among the molecules, CO2 is another most extensively studied system so far [165–168].

Initially the interest was focused on the observation of the minimum in the HHG spectrum

of CO2 [65, 169, 170]. The positions of the minima from different experiments, however, are

often vastly different. For fixed-in-space CO2 molecules the PICSs of HOMO indeed exhibit

minima at small alignment angles. If HHG is generated from HOMO only, then one expects

that the position of the minimum does not significantly change with laser intensity. Indeed,

strong field ionization depends exponentially on the ionization potential Ip. The HOMO-1

and HOMO-2 orbitals in CO2 are 4 and 4.4 eV more deeply bound than the HOMO, thus

they are not expected to contribute significantly to the HHG spectra. However, it is also well

known that tunneling ionization rates depend sensitively on the symmetry of the molecular

orbital [171]. The HOMO is a πg orbital. It means that at small alignment angles the ion-
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ization rates are small. For HOMO-2, on the other hand, it is a σg orbital, thus it has large

ionization rate when CO2 molecules are parallel aligned. Thus for small alignment angles,

HOMO-2 may become important even though it is bound 4.4 eV deeper than the HOMO.

(HOMO-1 is a πu orbital and thus not expected to contribute significantly to the HHG.)

The alignment dependence of tunneling ionization rate is usually calculated using molecular

Ammosov-Delone-Krainov (MO-ADK) theory [19] (also see Publication [14]) or SFA. For

most molecules that have been studied the two models give nearly identical alignment de-

pendence (after normalization). However, this is not the case for CO2. Experimentally, the

alignment dependence of CO2 ionization reported by Pavic̆ić et al. [172] is very narrowly

peaked near alignment angle of 46◦. It differs significantly from the predictions of MO-ADK

and SFA (see Publication [18]). In fact, so far all theoretical attempts [173–176] (also see

Publication [16]) have not been able to confirm the sharp alignment dependence reported

in the experiment. Furthermore, the observed HHG spectra from aligned molecules are

inconsistent with the reported experimental alignment dependence of ionization [103, 118].

Earlier attempts to extract structure information from HHG spectra were based on

the two-center interference model [68] and the strong-field approximation (SFA) [85, 86].

Subsequently, a quantitative rescattering (QRS) theory [26, 94, 95] was developed which

established that HHG spectra from an isolated molecule can be expressed as the product of a

returning electron wave packet with a photorecombination cross section (PRCS). The QRS

asserts that the PRCS is independent of the laser parameters, including the wavelength,

intensity, and pulse duration. The latter affect the returning electron wave packet only.

In the meanwhile, Smirnova et al. [65] studied HHG from aligned CO2 molecules and

emphasized the importance of hole dynamics with including multiple orbitals. Within the

QRS theory, multiple orbitals can be easily incorporated into the theory and it was first used

by Le et al. [103] to explain the HHG data by McFarland et al. [163]. These theoretical

studies were all based on single-molecule calculations. To extract structure information of

individual molecules, e.g., the amplitude and phase of photorecombination (PR) transition
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dipole from the measured HHG, the propagation effect in the medium should be investigated.

For molecular targets, this has not been performed so far. Instead, it was often assumed

that HHG was measured under the perfect phase-matching conditions and that the observed

harmonics were directly proportional to the harmonics from a single molecule. While such

assumptions may be inadequate if accurate structure information of individual molecules is

to be extracted from the observed HHG spectra.

In this chapter, we will simulate the measured HHG spectra of random and aligned N2

molecules, and revisit the issue about the importance of the HOMO-1 contribution raised

in Refs. [103, 163, 177]. And then we will check how the famous shape resonance in HOMO

PICS of N2 present in the HHG spectrum. Finally we will simulate the measured HHG

spectra of random and aligned CO2 molecules, and investigate the factors which would

change the position of the minimum in the HHG spectra. So far there have been no other

theoretical attempts to simulate HHG spectra of molecular targets, which can be compared

with measured ones directly. This chapter is organized as follows. In Sec. 6.2, we will

show the calculated HHG spectra against measured ones for N2 molecules being randomly

distributed or aligned with pump-probe angle as 0 degree, and the macroscopic wave packet

extracted from calculated HHG spectra. In Sec. 6.3, we will discuss how the HOMO-1

contribution present in the HHG spectrum of aligned N2 molecules with pump-probe angle

as 90 degree as laser intensity varies. In Sec. 6.4, we will show the PICS of N2 from well-

established theory, and the shape resonance in the HHG spectra at small alignment angles.

In Sec. 6.5, we will simulate the existing HHG spectra of CO2 molecules, and discuss the

origin of the minimum for the aligned cases. In Sec. 6.6, we will investigate carefully how

the minimum in the HHG spectrum of aligned CO2 shifts its position. A short summary

in Sec. 6.7 concludes this chapter. Note that in this chapter we are only concerned of the

parallel component of HHG along the polarization direction of generating laser.
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6.2 HOMO contribution in HHG of random and aligned

N2 molecules

6.2.1 Macroscopic HHG spectra of random and aligned N2: the-
ory vs experiment

Figure 6.1: Comparison of HHG spectra from theory (green curves) and experiment (red
curves) of Ref. [178], (a) for randomly distributed N2 and (b) for N2 aligned along the polar-
ization direction of the generating laser, i.e., pump-probe angle α=0◦. The laser intensities
are indicated where I0=1014 W/cm2. See text for additional laser parameters. Adapted from
Publication [8].

HHG spectra from molecules by 1200-nm lasers have been reported for randomly dis-

tributed and aligned N2 recently by Wörner et al. [178]. In this section, we report our sim-

ulated results for N2 molecules, at the two peak laser intensities, 0.9 and 1.1×1014 W/cm2,

reported in [178]. Experimentally, the laser duration (full width at half maximum, FWHM)

is ∼ 44 fs, the beam waist at the focus is ∼ 40 µm, and the length of gas jet is ∼ 1 mm, which

is located 3 mm after the laser focus. A vertical slit with a width of 100 µm is placed 24 cm
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after the gas jet. To achieve good agreement in the cutoff positions, the intensities (in the

center of the gas jet) used in the theory are 0.78 and 0.9×1014 W/cm2 instead, respectively.

Since the experiment was carried out at low laser intensity and low gas pressure, the har-

monics are propagated without absorption and dispersion effects from the medium, and the

fundamental laser field is not modified through the medium as discussed in Sec. 2.3.3. In

the theoretical simulation, we first obtain induced dipoles of fixed-in-space molecules using

QRS theory (as discussed in Sec. 2.2.3) for different laser peak intensities. The induced

dipoles are averaged coherently according to the alignment distribution [see Eq. (2.63)] and

then fed into the Maxwell’s wave equations.

Fig. 6.1 shows the good overall agreement between the measured and the simulated

spectra, for both randomly distributed and aligned N2. By examining the experimental

HHG spectra more carefully, they reveal a shallow minimum at 38 ± 2 eV (low intensity)

and at 41 ± 2 eV (high intensity) for both aligned and unaligned molecules. The theory also

predicts a minimum: for unaligned molecules, the minimum is at ∼ 39 eV for low intensity

and ∼ 40 eV for high intensity. For aligned molecules, the minimum is at ∼ 42 eV for low

intensity and ∼ 44 eV for high intensity. In the experiment, the degree of alignment was

estimated to be 〈cos2 θ〉=0.6 - 0.65. In the simulation, an alignment distribution of cos4 θ

is used. Note that only HOMO is included in the calculation. We believe that this is the

first time that HHG spectra from molecules have been calculated including the propagation

effect in the medium and the simulated results have been compared directly to the measured

spectra.

6.2.2 Separation of photorecombination transition dipole from
HHG spectrum

As shown in Sec. 3.5, the macroscopic HHG spectrum for atomic targets can be expressed

as

Sh(ω) ∝ ω4|W ′(ω)|2|d(ω)|2, (6.1)
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Figure 6.2: Macroscopic wave packets (MWPs) for two different laser intensities, and av-
eraged PR transition dipoles are for random and aligned N2 molecules. MWPs are extracted
from HHG spectra in Fig. 6.1 according to Eq. (6.1). Adapted from Publication [8].

where W ′(ω) is called a “macroscopic wave packet” (MWP), and d(ω) is the PR transition

dipole moment. For the macroscopic HHG spectrum of partially aligned molecules, this

equation is still valid with d(ω) being replaced by coherently averaged PR transition dipole:

davg(ω, α) =

∫ π

0

N(θ′)1/2d(ω, θ′)ρ(θ′, α) sin θ′dθ′, (6.2)

where N(θ′) is the alignment-dependent ionization probability, ρ(θ′, α) the alignment dis-

tribution, and d(ω, θ′) the parallel component of the alignment-dependent PR transition

dipole. Here θ′ is the alignment angle with respect to the polarization direction of the probe

laser, and α is the pump-probe angle. From Eq. (6.1), the target structure is reflected

in the PR transition dipole, the propagation effect of the harmonics, in the meanwhile, is

incorporated into the MWP. The two properties are well separated. The MWP represents

the cumulative effect of the returning electron wave packet (or microscopic wave packet)

after propagation in the medium and in the free space. The validity of Eq. (6.1) forms the

basis of extracting molecular structure information from the experimentally measured HHG

spectra.

For the HHG spectra shown in Fig. 6.1, we can separate the averaged PR transition

dipoles and MWPs according to Eq. (6.1), see Fig. 6.2. The averaged PR transition dipole
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indeed shows a rapid drop near 40 eV, which is due to the presence of a shape resonance of

N2 in the lower energy, and the rapid drop is more pronounced for aligned molecules than for

random ones (see Fig. 6.5). For the MWP, under the same laser intensity, we have checked

that they are the same for randomly distributed and aligned molecules. Thus it explains

why the HHG from single-molecule response can be used to interpret how the intensity of

each harmonic changes with pump-probe time delay in Le et al. [102]. However, the MWP

changes more rapidly with laser intensity, especially for the longer wavelength laser used

here. We note that the two MWPs in Fig. 6.2 have somewhat different slopes near 40 eV.

The multiplication of the MWP and the PR transition dipole results in a weak minimum in

the observed HHG spectra. The minimum would be more clearly seen if the molecules were

better aligned. From Le et al. [95], the minimum in PR transition dipole changes rapidly

with the alignment angle and the effect is severely averaged out when molecules are not well

aligned. We further mention that the MWPs in Figs. 3.6 and 6.2 are rather different. They

are due to the large difference in the laser peak intensities used. In the future, it is desirable

that predictions such as those in Figs. 3.6 and 6.2 be checked experimentally.

6.3 Intensity dependence of multiple orbital contribu-

tions in HHG of aligned N2 molecules

6.3.1 Macroscopic HHG spectra: theory vs experiment

In Sec. 6.2, we have simulated the HHG spectra of aligned N2 molecules with the pump-

probe angle α = 0◦. In this section, we present new measurements for aligned N2 molecules at

a time delay corresponding to the maximal alignment while the HHG-generating laser is per-

pendicular to the aligning one. The degree of alignment is estimated to be 〈cos2 θ〉=0.60±0.05.

Fig. 6.3 shows the HHG spectra of aligned N2 molecules generated by a 1200-nm laser

which is perpendicular to the aligning laser. Experimental conditions are the same as

those in Sec. 6.2. The intensities (in the center of the gas jet) used in the theory are

adjusted to coincide with experimental HHG cutoff position. In Figs. 6.3(a)- 6.3(c), the
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Figure 6.3: Comparison of experimental [red (dark gray) lines] and theoretical [green (light
gray) lines] HHG spectra of aligned N2 in a 1200-nm generating laser where the pump-probe
angle α=90◦. Laser intensities in the simulations are indicated where I0=1014 W/cm2.
Degree of alignment is 〈cos2 θ〉=0.60 by the aligning laser. See text for additional laser
parameters. Only σ orbital is included in the simulations in (a) and (b), and both σ and
π orbitals are included in the simulation in (c). Arrows indicate the positions of minima.
Adapted from Publication [4].

laser intensities in theory (experiment) are 0.75 (0.65), 0.9 (1.1), and 1.1 (1.3), in units of

1014 W/cm2, respectively. We use the degree of alignment 〈cos2 θ〉=0.60 (see Appendix B

for the quantum calculation of the molecular alignment) and keep other parameters close

to experimental ones in the simulation. The HHG spectra from the experiment and theory

are normalized at the cutoff.
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The main features in the spectra are the deep minima at 38.2 eV and 40.4 eV, at the

two lower intensities in Figs. 6.3(a) and 6.3(b), respectively. The minimum disappears at

the higher intensity in Fig. 6.3(c). To simulate the spectra at the two low intensities, we

include the HOMO (σ orbital) only. The simulation reproduces not only the correct shape

of the spectra, but also the precise positions of the minima in the spectra in Figs. 6.3(a)

and 6.3(b). For the higher intensity in Figs. 6.3(c), when we only included the σ orbital the

theory could not reproduce the correct spectral shape. It also predicted a minimum in the

spectrum which was not seen in the experiment [see Fig. 6.4(a)]. We then included both σ

and π (HOMO-1) orbitals. A very good agreement between theory and experiment (correct

shape and no minimum in the spectrum) in Fig. 6.3(c) is then achieved.

6.3.2 Single HOMO orbital contribution at low laser intensity

We now take a careful examination of the spectral features in Figs. 6.3(a) and 6.3(b). The

deep minimum is related to the σ orbital. This minimum has been observed in many

experiments, either in unaligned or aligned N2 [170, 178–180]. The minimum shifts only

slightly when the laser intensity is changed. This behavior is similar to the well-known

Cooper minimum in Ar [127, 128]. The same behavior with laser intensity has been observed

by Wörner et al. [178] (see their Fig. 1) and Farrell et al. [180] (see their Fig. 7) when

α=0◦. This can be understood as proposed in Sec. 6.2. When only one molecular orbital

is contributing to the HHG spectra, the harmonic yield is given in Eq. (6.1). In Fig. 6.4

we show that there is a fast drop-off in the averaged PR transition dipole (shown is the

square of the magnitude multiplied by ω2) of the σ orbital around 38 eV [see Fig. 6.4(b)],

which causes the pronounced minimum in the HHG spectra. For different laser intensities,

the slope of the averaged PR transition dipole does not change, but the MWP (ω2|W ′(ω)|2)

increases monotonically with photon energy. Since the spatial distribution of the infrared

(IR) laser intensity is different when the peak intensity at the focus is increased, the wave

packet is modified differently as it propagates through the medium (see Fig. 6.2). This
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makes the minimum in the HHG spectra shift slightly with laser intensity. Using only one

molecular orbital, our theoretical simulation can reproduce the position of the minimum

close to the experimental one.

6.3.3 Multiple orbital contributions (HOMO and HOMO-1) at
higher laser intensity

Figure 6.4: (a) Calculated macroscopic HHG spectra (envelope only) corresponding to
Fig. 6.3(c). Total (HOMO and HOMO-1 together) spectra and individual HOMO and
HOMO-1 spectra. (b) Averaged photorecombination transition dipoles (parallel component,
the square of the magnitude multiplied by ω2) of the HOMO and HOMO-1 corresponding
to (a). Laser intensity is 1.1×1014 W/cm2. Degree of alignment is 〈cos2 θ〉=0.60 by the
aligning laser. The pump-probe angle α=90◦. Adapted from Publication [4].

We next analyze the spectral features in Fig. 6.3(c). In Fig. 6.4(a), the envelopes of

the HHG spectra in Fig. 6.3(c) from the two individual molecular orbitals, and from the

total one, are obtained after macroscopic propagation in the gas medium, are shown. Mean-

while, the averaged PR transition dipoles (the square of the magnitude multiplied by ω2,
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degeneracy is not included) of the two orbitals are shown in Fig. 6.4(b).

In Fig. 6.4(a), the σ orbital alone shows a deep minimum, similar to Figs. 6.3(a) and

6.3(b). Since the π orbital shows comparable contributions over the whole spectral re-

gion, the interference between σ and π orbitals washes out the minimum in the spectra.

From Eq. (6.2), the relative contribution between the two orbitals can be adjusted by the

alignment-dependent ionization probabilities N(θ′) and the alignment distribution ρ(θ′, α).

For lower intensities, the relative N(θ′) of the π orbital is small, so only the HOMO orbital

contributes to the spectra. As the intensity increases, both orbitals contribute and the two

amplitudes interfere resulting in a drastic change of the spectra.

As shown in Eq. (6.1), the macroscopic HHG spectra from individual molecular orbitals

can be considered as a product of a MWP and an averaged PR transition dipole, based

on the QRS theory. Since the ionization potential of the σ orbital (15.6 eV) differs from

the π orbital (16.9 eV) only by 1.3 eV, the MWPs of the two orbitals are almost the same

under the same IR laser, so the relative contribution between σ and π orbitals to the total

HHG spectra is mostly determined by the averaged PR transition dipoles. In Figs. 6.3(a)

and 6.3(b), the magnitude of N(θ′) for σ orbital is much larger than the one for the π

orbital, thus making the corresponding averaged PR transition dipole also larger. At the

higher intensity of Fig. 6.3(c), the averaged transition dipoles between the two orbitals

become comparable. Thus by increasing the laser intensity, the total HHG can evolve from

single-orbital to multiple-orbital phenomena. Note that the MO-ADK theory [19] (also see

Publication [14]) is used to calculate N(θ′). There are also other models in the literature

[103, 176, 181] for calculating the ionization rates. Using different ionization rates and

different alignment distributions may change the theoretical predictions. We find that the

ionization rates obtained from MO-ADK theory is very close to the recent model calculation

used by Petretti et al. [176] where they solved the time-dependent Schrödinger equation

(TDSE) at laser intensity of 1.5×1014 W/cm2.

The contribution of the π orbital to the HHG of N2 molecules when the pump-probe angle
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α=90◦ has been studied previously [163, 177] using 800-nm pulses at the high intensities of

around 2.0×1014 W/cm2. In this case, HOMO-1 was found to be much more pronounced in

the cutoff region. Note that the QRS theory has been applied to interpret the results in [163]

with the ionization probability obtained from SFA [103] without including the propagation

effect. (Note that at the alignment angle of 90◦, the ratio of ionization rate between HOMO

and HOMO-1 is about 2 from the SFA in comparison with about 5 from the MO-ADK

theory [19].) In this study, a 1200-nm laser generates a broad photon energy range even

with a low laser intensity and the π orbital contributes not only in the cutoff region, but

also in the plateau.

In the future, measurements similar to the present one but with a full range of pump-

probe angles may provide a way to determine the relative ionization probabilities of the

two orbitals. The pump-probe angle α=90◦ is much closer to the alignment angle of 90◦

since the “volume element” sin θ′dθ′ in the angular integration peaks at 90◦. To probe

the PR transition dipole of the HOMO orbital, HHG spectra taken at low laser intensity

with long-wavelength lasers is preferable to avoid multiple orbital contributions. This would

make the retrieval of the structure of the target easier. If one wishes to study the π orbital,

then a higher laser intensity and better alignment will enhance its contribution to the HHG

[163, 177].

6.4 Shape resonance in photoionization and harmonic

generation of N2 molecules

6.4.1 Photoionization cross sections and phases of N2 from HOMO
and HOMO-1 orbitals

The most basic information on photoionization of a fixed-in-space molecule is the parallel

and perpendicular transition dipole amplitudes in the body-frame of the molecule. They

appear in the differential PICS in the body-fixed frame as shown in Appendix C:

d2σ

dΩk̂dΩn̂

=
4π2ωk

c
| 〈Ψi|~r · n̂|Ψ(−)

f,~k
〉 |2, (6.3)
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Figure 6.5: Calculated differential photoionization cross sections [(a) and (c)] and phases
[(b) and (d)] of the HOMO and HOMO-1 for N2 in terms of the alignment angles, respec-
tively. The shape resonance in the HOMO shows up around 30 eV for small alignment
angles only. Only the parallel component to the polarization direction of the laser is shown.
Adapted from Publication [4].

where n̂ is the polarization direction of the light, ~k the momentum of the photoelectron,

and ω the photon energy. We will only focus on the case of n̂ ‖ ~k since they are related to

the parallel polarized HHG spectra measured from aligned molecules.

In Fig. 6.5 we show the differential PICSs (in units of Mb) and the corresponding phases

of the σ and π orbitals of N2 using the well-established photoionization theory (see Appendix

C) for photon energy from 20 to 80 eV. These data have been shown previously for selected

photon energies against the alignment angles for the HOMO (see Fig. 5 of [95]) and HOMO-

1 (see Fig. 2 of [103]). The observed HHG minima shown in Fig. 6.3 above for α=90◦ and

in Fig. 6.1 for α=0◦ and for randomly distributed N2 molecules can all be understood as

due to the rapid change of cross section near 40 eV at alignment angles either close to 0◦ or

90◦. Clearly the precise position of the minimum will depend on the degree of alignment.

For the HOMO-1, Fig. 6.5 shows that the cross section generally peaks at large alignment
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angles. Thus interference of HHG spectra from the σ and π orbitals are only observed close

to α=90◦. Note that in Fig. 6.5 the PICS for the two orbitals are shown on the same scale.

Except for the HOMO shape resonance near 30 eV that will be discussed next, the PICS

from HOMO-1 is comparable with that from HOMO over the photon energies covered. This

result has been confirmed by the measured electron spectra in photoionization experiments.

In HHG, HOMO contribution is always dominant for the randomly distributed N2. HOMO-

1 can become more important only at large alignment angles and higher laser intensities, as

discussed earlier.

6.4.2 Shape resonance in HHG of aligned N2

Figure 6.6: Calculated macroscopic HHG spectra (envelope only) of unaligned N2 and
normalized HHG yields of aligned N2 with respect to the unaligned ones as a function of
the photon energy at the selected pump-probe angle α. Laser intensities are indicated where
I0=1014 W/cm2. Degree of alignment is 〈cos2 θ〉=0.60. Adapted from Publication [4].

Resonances are very common in photoionization spectra. Most of them are due to
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the so-called Feshbach resonances which in general are quite narrow and thus can only

be observed using high-resolution spectroscopy. However, broad Feshbach resonances and

shape resonances can be observed since they have widths from fractions to a few eV’s. In

HHG, resonances have been explored in experiment [21] and theory [20, 182, 183] (also see

Publication [7]) recently for atomic targets. But shape resonances are rare for common

atomic targets. The resonance feature observed in Xe [21] is due to the intershell coupling

with the well-known shape resonance that occurs in the 4d shell. On the other hand, shape

resonances are very common in molecules. For N2, there is a pronounced shape resonance

in the HOMO channel near photon energy of 30 eV. This is due to the 3σg → kσu channel,

and for small alignment angles only. We can see a decrease of the phase shift by π for this

resonance from 20 to 40 eV in Fig. 6.5(b). There are no other known shape resonances

in the covered energy region. Clearly this shape resonance is best observed by selecting

ionization from the σ orbital only, by using low laser intensity and for molecules that are

aligned nearly parallel to the polarization axis of the probing laser.

In Fig. 6.6, we first show the calculated HHG spectra (envelope only, normalized) of

randomly distributed N2 at two laser intensities. For randomly distributed N2 molecules, it is

known that the σ orbital is the dominant contributor to the HHG spectra. The peak around

30 eV in the HHG spectra is due to the shape resonance in the PICS of σ orbital at small

alignment angles. In Fig. 6.6, we also show the normalized yield at selected alignment angles

with respect to the randomly distributed one. We take the degree of alignment 〈cos2 θ〉=0.60.

The intensity of each odd harmonic q is obtained by integrating over harmonics q−1 to q+1.

For low laser intensity, the shape resonance is very pronounced at α = 0◦. It decreases as the

pump-probe angle is increased, showing that the shape resonance is present only at small

aligning angles. For higher laser intensities, the same behavior is seen even though the π

orbital is also contributing at large pump-probe angles. We should comment that absorption

is not included in the present simulation and it will suppress the shape resonance if the gas

pressure is high.
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Comparison of this prediction with existing experimental data is far from conclusive.

Torres et al. [170] have shown high-harmonic data for aligned N2 using a 1300-nm laser

with intensity of 1.3×1014 W/cm2 (see their Fig. 4). The general trend of their data

is very close to our prediction, but they used a higher intensity and a higher degree of

alignment (〈cos2 θ〉=0.66), and thus the HOMO-1 channel may contribute to the signal at

larger alignment angles. Using 800-nm lasers, Lee et al. [177] reported the HHG ratios

of aligned vs unaligned N2 at the selected alignment angles. They did not present data

near the resonance region and they used a high intensity of 2.5×1014 W/cm2 [see their Fig.

1(c)]. Our calculation does not reproduce their measured ratios. They also reported that

the normalized HHG yields for α=0◦ and 90◦ crosses at about harmonic order 39. This is

confirmed in our calculation (not shown). The very recent measurement by Kato et al. [184]

did not extend below 30 eV either. There are other measurements [180, 185, 186] using Ar

or α=0◦ as a reference. Direct comparison with these data are difficult. Thus, it remains to

be seen if the shape resonance in N2 can be seen in the HHG spectra as predicted here. We

comment that absorption was not included in our propagation simulation. Absorption may

modify the prediction if the gas pressure is too high. Experiments dedicated to address this

issue would be of interest.

6.5 Contributions of multiple molecular orbital in HHG

of aligned CO2 molecules

6.5.1 Macroscopic HHG spectra of random and aligned CO2: the-
ory vs experiment

HHG spectra for isotropically distributed and partially aligned CO2 molecules by 800-nm

and 1200-nm lasers have been reported recently [178]. In this section, we will present the

simulated HHG spectra for random and aligned CO2 separately in the following. SFA is

used to calculate the ionization probability in QRS theory in this section and next section,

unless otherwise stated.
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Figure 6.7: Comparison of theoretical (green -light-lines) and experimental (red -dark-
lines) HHG spectra of random and aligned CO2 molecules, in an 800-nm laser shown in
(a) and (d), and in a 1200-nm laser shown in (b), (c), (e) and (f). Laser intensities are
indicated where I0=1014 W/cm2. Experimental data are from Ref. [178]. Arrows indicate
the positions of minima. Pump-probe angle α=0◦. See text for additional laser parameters
and experimental arrangements. Adapted from Publication [9].

1. HHG spectra of randomly distributed CO2

In Figs. 6.7(a)-6.7(c), we show the HHG spectra for isotropically distributed CO2 molecules

by 800-nm and 1200-nm lasers. To obtain good agreement between theory and experiment,

especially in the cutoff region, the intensity used in the theory is adjusted from the value

given in the experiment. In Figs. 6.7(a)-6.7(c), the intensities in theory (experiment) are

1.9 (2.1), 0.8 (1.0), 1.0 (1.2), in units of 1014 W/cm2, respectively. Other parameters used

in the simulation are the same as those given in the experiment [178]. The laser parameters
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are: pulse duration is ∼ 32 fs (800 nm) or ∼ 44 fs (1200 nm), beam waist at the focus is ∼

40 µm. A 0.6-mm-wide gas jet is located 3 mm (800 nm) or 3.5 mm (1200 nm) after the

laser focus, and a slit with a width of 100 µm is placed at 24 cm after the gas jet.

Figs. 6.7(a)-6.7(c) clearly show the good overall agreement between experiment and

theory for randomly distributed CO2 molecules. We have checked that HOMO is dominant

for randomly distributed CO2, with negligible contributions from inner orbitals. The HHG

spectra do not exhibit any minima, as opposed to the spectra of random N2 molecules (as

shown in Fig. 6.1) when they are generated under the same experimental conditions [178].

For randomly distributed CO2, there was no minimum found in HHG spectra using an 800-

nm laser by Vozzi et al. [169]. However, for the 1300-nm lasers, the data from Torres et al.

[170, 187] appear to show a very weak minimum at photon energy near 45 eV. Without more

careful study including different intensities and wavelengths, however, this is not conclusive.

2. HHG spectra of aligned CO2

Experimentally HHG spectra have also be reported from aligned CO2 molecules. A relatively

weak and short laser pulse was used to impulsively align molecules, and the HHG spectra

were taken at half-revival (∼ 21.2 ps in CO2) when the molecules were maximally aligned

[178]. The angular distributions of the aligned molecules are obtained by solving the TDSE

of rotational wave packet (see Appendix B). The degree of alignment is 〈cos2 θ〉=0.60 in

Fig. 6.7(d), and 〈cos2 θ〉=0.50 in Figs. 6.7(e) and 6.7(f). The polarizations of the pump and

probe lasers are parallel to each other.

The HHG spectra of partially aligned CO2 molecules are shown in Figs. 6.7(d)-6.7(f),

which are obtained under the same generating lasers and experimental arrangements as

those in Figs. 6.7(a)-6.7(c), respectively. The simulation and experimental data agree well

with each other in general. In Fig. 6.7(e), the discrepancy is a little bigger, showing the drop

near 40 eV is larger in the experiment than in the theory. But we note that in Fig. 6.7(f),

the experimental data do not drop as rapidly, in agreement with the theoretical simulation.

The minima in the HHG spectra of CO2 and their dependence on laser intensity have been
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widely discussed in the literature [65, 187]. In Fig. 6.7(d), for an 800-nm laser, experiment

gives a strong minimum at 42 ± 2 eV, our simulation predicts a minimum around 42 eV.

For the 1200-nm laser, in Fig. 6.7(e), experiment shows a minimum at 51 ± 2 eV, theory

predicts a minimum around 50 eV. In Fig. 6.7(f), the experimental minimum is shifted to 57

± 2 eV, and the theoretical one is moved to around 53.5 eV. Thus our simulation also shows

the shift of the minimum from low to high harmonic orders as laser intensity is increased.

Below we interpret the origin of the shift.

6.5.2 Origin of minimum in the HHG spectra of aligned CO2

We next analyze the origin of the minimum in the HHG spectra seen in Figs. 6.7(d)-6.7(f),

and consider the dominant contributions from HOMO and HOMO-2 only. The averaged

PR transition dipole is defined in Eq. (6.2) for each molecular orbital. This gives a measure

of the relative contribution of each molecular orbital to the HHG, which is obtained by

averaging over the angular (or alignment) distribution of the partially aligned molecules,

weighted by the square root of the tunneling ionization probability. The relative ionization

rates between HOMO and HOMO-2 change with laser intensity.

Figs. 6.8(a)-6.8(c) show the envelopes of the HHG spectra from individual molecular

orbitals together with the total ones, each obtained after propagation in the medium. In

the meanwhile, the averaged PR transition dipoles of HOMO and HOMO-2 under different

generating lasers and alignment distributions are shown in Figs. 6.8(d)-6.8(f), respectively.

In Figs. 6.8(a) and 6.8(b), there are no minima in the HHG spectra of HOMO or HOMO-

2, but the minimum shows up in the total spectra. This is due to the interference between

HOMO and HOMO-2. We call this type I minimum. Clearly the minimum position will

change with laser intensity since the relative ionization rates between HOMO and HOMO-2

change with intensity [also see Figs. 6.11(c) and 6.11(d)]. Similar analysis can be found

in Ref. [65]. In Fig. 6.8(c), there is a minimum in the HOMO spectra at 52.6 eV. This

minimum is shifted to 53.6 eV in the total spectra due to the interference with the HOMO-
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Figure 6.8: (a)-(c) Macroscopic HHG spectra (envelope only) corresponding to Figs. 6.7(d)-
6.7(f), respectively. Total (HOMO and HOMO-2 together) spectra and the spectra of indi-
vidual HOMO and HOMO-2 are shown. (d)-(f) Averaged photorecombination transition
dipoles (parallel component, the square of magnitude) of HOMO and HOMO-2 correspond-
ing to (a), (b) and (c), respectively. Laser intensities are indicated where I0=1014 W/cm2.
Arrows indicate the positions of minima. Pump-probe angle α=0◦. Adapted from Publication
[9].

2. This is categorized as type II minimum. Similar analysis of this type can be found in Refs.

[187, 188]. The minimum in the HOMO spectra is due to the minimum in the averaged

PR transition dipole of HOMO shown in Fig. 6.8(f). But their positions differ due to

modification of the “macroscopic wave packet” (MWP). In this connection we mention that

the earlier calculations [95, 102] with an 800-nm laser showed minimum in HHG spectra at

small pump-probe angles due to the contribution from the HOMO only. These calculations

were carried out with a higher degree of alignment and higher laser intensities as compared
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to our present study. This is expected as the minimum in the averaged PR transition

dipole from HOMO in Fig. 6.8(d) becomes deeper and is slightly shifted away from the

cutoff to lower energies with increased degree of alignment [see Fig. 6.8(e) and 6.8(f)].

Furthermore, as shown in Fig. 6.2, the minimum in the HOMO spectra could also result

from the multiplication of MWP and averaged PR transition dipole even when neither has

minimum. When a minimum occurs in the dominant orbital, its position will not change

much if it remains the dominant one when the laser intensity changes. The little bump

around 36 eV in the HOMO spectra as well as in the total spectra can be seen due to the

bump in the HOMO curves in Figs. 6.8(d)-6.8(f). Its position does not change much since

the HOMO-2 remains small.

In Fig. 6.2, we have shown that the macroscopic HHG spectrum is the product of a

MWP and an averaged PR transition dipole for each individual molecular orbital. Since the

ionization rate for each orbital has been incorporated in the averaged PR transition dipole,

the MWP is mostly identical except for the phase due to ionization potential. The averaged

PR transition dipole is very sensitive to ionization rates. The relative magnitude changes

rapidly with the increase of laser intensity. Thus when two averaged PR transition dipoles

are comparable [see Fig. 6.8(d)], the position of the minimum changes rapidly with the laser

intensity. The averaged PR transition dipole is also sensitive to alignment distributions [see

Figs. 6.8(d)-6.8(f)]. At low laser intensity, HOMO-2 is small, interference often occurs in a

narrow region only where the two amplitudes are comparable, see Figs. 6.8(b) and 6.8(c).

In comparison, in Smirnova et al. [65], HOMO and HOMO-2 tend to interfere over a broad

photon-energy region. The ionization rates and transition dipoles used in their calculations

are different from ours.
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Figure 6.9: Laser intensity dependence of macroscopic HHG spectra (envelope only) (a)
in an 800-nm laser and (b) in a 1200-nm laser. Intensities are shown in units of I0=1014

W/cm2. Arrows indicate the positions of minima. Degree of alignment: 〈cos2 θ〉=0.60.
Pump-probe angle α=0◦. Adapted from Publication [9].

6.6 Major factors that influence positions of the min-

ima in the HHG spectra of aligned CO2 molecules

6.6.1 Progression of harmonic minimum versus laser intensity

In Figs. 6.9(a) and 6.9(b) we show the envelope of the calculated HHG spectra for four

different peak intensities with an 800-nm laser and a 1200-nm laser, respectively. For the

800-nm spectra, the lowest intensity does not have a minimum. For the higher ones, each

spectrum has a type I minimum, with its position shifts to lower photon energy as the

laser intensity is decreased. The degree of alignment of molecules used in the calculation is

〈cos2 θ〉=0.60. We find that the shift cannot be attributed to either MWP or the averaged

PR transition dipole alone. For the 1200-nm data, also with 〈cos2 θ〉=0.60, which is different

from Figs. 6.7(e) and 6.7(f), we find that the minimum is type II, where the averaged PR

transition dipole of the HOMO has a minimum. The minimum in the HHG spectra of
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the HOMO shifts to higher photon energy as the intensity increases, but the interference

with HOMO-2 shifts the minimum to even higher energies. In other words, the shift of the

position of the HHG minimum vs intensity cannot be attributed to a single factor alone.

6.6.2 Other factors influencing the precise positions of HHG min-
ima

Figure 6.10: Dependence of macroscopic HHG spectra (envelope only) with degrees of
molecular alignment distributions for (a) an 800-nm laser with intensity of 1.8×1014 W/cm2,
and (b) a 1200-nm laser with intensity of 1.0×1014 W/cm2. The weighted angular distribu-
tions of the molecules are shown in (c). Arrows indicate the positions of minima. Pump-
probe angle α=0◦. Adapted from Publication [9].

In our analysis, the averaged PR transition dipole is calculated over the angular distribu-

tion of the molecules and thus depends on the degree of alignment. Since the latter cannot

be accurately measured, we check how sensitive the calculated spectra is with respect to the

assumed alignment distribution. In Fig. 6.10(c), four different alignment distributions are

shown. The distributions are multiplied by the volume element sin θ for easy comparison.

Three of them are obtained from the calculated rotational wave packets (see Appendix B),
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with 〈cos2 θ〉 as 0.63, 0.60 and 0.55, respectively. The other is the commonly used cos4 θ

distribution. For 800-nm and 1200-nm lasers, the envelopes of the calculated HHG spectra

are shown in Figs. 6.10(a) and 6.10(b), respectively. The precise position of the minimum

changes slightly except for the one from the cos4 θ distributions. However, change of a couple

of eV’s is seen.

Figure 6.11: Dependence of macroscopic HHG spectra (envelope only) on the ionization
probabilities calculated from MO-ADK or SFA in (a) an 800-nm laser, and (b) a 1200-nm
laser. Laser intensities are indicated where I0=1014 W/cm2. Arrows indicate the positions
of minima. Degree of alignment: 〈cos2 θ〉=0.60. Pump-probe angle α=0◦. (c) and (d)
Alignment-dependent ionization probabilities of HOMO and HOMO-2 calculated using MO-
ADK and SFA. Laser parameters are the same as (a) and (b). Ionization probabilities of
HOMO-2 in (d) are multiplied by 5. Adapted from Publication [9].

To precisely determine the minimum in the HHG spectra, accurate alignment-dependent

ionization probability N(θ) for each molecular orbital is needed. For CO2, even for HOMO,

different theories in the literature [65, 172–176] (also see Publication [14] and [18]) show

non-negligible differences, and they do not agree with the experimental data [172]. Here

we examine how the HHG spectra change with the different ionization rates used. The
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ionization rates for both HOMO and HOMO-2 can all be easily calculated from SFA or

from MO-ADK theory. Figs. 6.11(a) and 6.11(b) show the HHG spectra calculated using

the ionization probabilities shown in Figs. 6.11(c) and 6.11(d). Other laser parameters

used in the calculation are given in the figure captions. The difference of the position of

the minimum is 3 eV in Fig. 6.11(a) and 2 eV in Fig. 6.11(b). Note that the ionization

probabilities from SFA and MO-ADK are normalized at the peak of the HOMO curve. In

Fig. 6.11(a) the spectra are normalized at H33 (51 eV) and in Fig. 6.11(b) at H65 (67 eV).

Figure 6.12: Dependence of macroscopic HHG spectra (envelope only) on experimental
arrangements (a) for an 800-nm laser with intensity of 2.1×1014 W/cm2, and (b) for a
1200-nm laser with intensity of 1.2×1014 W/cm2. The arrangements are: (1) gas jet after
focus and slit is used (solid lines); (2) gas jet at the focus and slit is used (dashed lines);
and (3) gas jet is after the focus but without the slit (dot-dashed lines). Arrows indicate the
positions of minima. Degree of alignment: 〈cos2 θ〉=0.60. Pump-probe angle α=0◦. Adapted
from Publication [9].

The HHG spectra are also sensitive to the experimental arrangement and thus can also

move the position of the HHG minimum. To demonstrate this, we (i) move the gas jet
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to the laser focus and collect the signal using a slit; (ii) put the gas jet after the laser

focus, and collect HHG signal without slit (total signal). These two will be compared to the

arrangement used in this paper: gas jet is after the laser focus and the HHG is collected

with a slit. The results are compared in Fig. 6.12. Note that the spectra are normalized

at H17 (26 eV) in Fig. 6.12(a) and at H35 (36 eV) in Fig. 6.12(b). Not only the spectra

change quite significantly, but also the position of the HHG minimum. This illustrates that

it is very difficult to compare the position of the HHG minimum from different experiments.

In this comparison, the change of the HHG spectra is due to the change of MWP which

depends on the experimental setup. The averaged PR transition dipoles of HOMO and

HOMO-2 are the same in the three calculations.

6.7 Conclusion

In this chapter, we have described a complete theory (as discussed in Sec. 2.3.3) for HHG

in a macroscopic molecular medium. Our approach is based on the simultaneous solution of

the coupled Maxwell’s wave equations describing macroscopic propagation of both driving

laser pulse and its high harmonic fields together with the microscopic induced dipoles. For

the latter we use the recently developed QRS theory. This scheme provides a simple and

efficient method for calculating HHG from a macroscopic medium. To our knowledge, this

is the first time that theoretically calculated HHG spectra with including the propagation

effect can be directly compared with experimentally measured spectra. We summarize this

chapter in the following:

(1) We have demonstrated that experimental HHG spectra of random or aligned N2

and CO2 molecules can now be accurately reproduced by theory. The contribution of the

outmost molecular orbital only or the multiple molecular orbitals is included in the calcula-

tion depending on conditions of molecular alignment. If there is only one molecular orbital

dominant for the HHG process, we have further shown that the HHG spectrum can be ex-

pressed as the product of a macroscopic wave packet and the photorecombination transition
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dipole moment. The latter is a property of the target, and is independent of the lasers, not

of the propagation effect. This factorization makes it possible to extract target structure

information from the experimental HHG spectra. It provides the needed theoretical basis

for using HHG as ultrafast probes of excited molecules, such as those demonstrated recently

[124].

(2) We have carefully investigated HHG spectra of aligned N2 at a time delay of the

maximal alignment using a 1200-nm laser when the pump-probe angle is set at 90◦. The

minimum in the HHG spectrum appears at about 38 - 40 eV at two low laser intensities.

It disappears at a higher laser intensity. We have carried out theoretical simulations to

understand these results, and concluded that the minima in the HHG are associated with the

properties of the transition dipole moments for photoionization from the HOMO. At higher

intensity, the contribution from HOMO-1 becomes important and interference between the

two contributions washes out the minimum.

(3) We have examined the possibility of observing the well-known shape resonance in

the photoionization of N2 in the HHG spectra. While the normalized HHG yield (with

respect to randomly distributed molecules) shows clear enhancement at small alignment

angles and shape resonance may have been seen in the 1300-nm data [170], no evidence

of shape resonance has been observed in the HHG spectra from 800-nm lasers. Further

experiments dedicated to resolve this issue will be of great interest.

(4) We have analyzed the multiple orbital contribution to HHG in CO2 with the inclusion

of macroscopic propagation effect. In the past few years, there have been many experimental

and theoretical studies on the HHG of CO2 from many laboratories, using lasers with differ-

ent wavelengths and intensities, for CO2 molecules that are randomly distributed or partially

aligned. In particular, for CO2 molecules that are partially aligned along the polarization

axis of the probe laser, many experiments have shown that the HHG spectra exhibit minima

and the positions of the minima shift with laser intensities [65, 178, 187]. The shift of the

minimum position with laser intensities has been attributed to the interference between the
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contributions to HHG from the HOMO-2 with the one from the HOMO, despite HOMO-2

lying at 4.4 eV deeper than the HOMO. We have found that although HHG spectra change

significantly under different experimental parameters such as degree of alignment, focusing

condition, and the use of a slit, the position of the minimum in the HHG spectrum behaves

in a similar trend as laser intensity varies. This trend has been found to be consistent with

the recent experimental measurements from different groups.

We comment that our theory, i.e., QRS theory (as shown in Sec. 2.2.3 and Sec. 2.3.3),

and the earlier one by Smirnova et al. [65] both explain the intensity dependence of the

change of HHG minima, but the details between the two theories are quite different. The

alignment dependence of the ionization rates, the recombination dipole matrix elements

and their phases entering the two theories are not the same, for both the HOMO and

HOMO-2 taking CO2 for example. As illustrated in this chapter, these parameters can all

affect the position of the predicted interference minimum. Furthermore, in Smirnova et al.

[65] the interference is attributed to the importance of hole dynamics in the ion core. Our

approach is formulated in the time-independent fashion, no hole dynamics is included. Since

HHG spectra are taken without explicit observation of electron dynamics, the difference

between the two models cannot be settled. Despite these differences, our understanding

of the HHG spectra of CO2 has come a long way since 2005 [69]. With the possibility

of including macroscopic propagation effect “routinely” in the HHG theory for molecular

targets, further experimental studies should explore the effects of laser focusing condition

and gas pressure, for lasers extending to longer wavelengths. Such studies would further our

basic understanding of strong-field physics of molecules to the next level, and eliminate the

need of introducing extraneous assumptions in the interpretation of experimental data.
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Chapter 7

Photoelectron angular distributions in
single-photon ionization of aligned N2
and CO2 molecules using XUV light

Figures and most paragraphs in this chapter are adapted from Publication [15].

7.1 Introduction

Photoionization (PI) is the basic physical process that allows the most direct investigation

of molecular structure [189–192]. Until recently, however, almost all experimental measure-

ments have been performed from an ensemble of randomly distributed molecules. Thus the

rich dynamical structure of photoelectron angular distributions (PADs) for fixed-in-space

molecules predicted nearly 30 years ago still remains largely unexplored [193]. Molecular

frame photoelectron angular distribution (MF-PAD) has been investigated with X-ray or

extreme ultraviolet (XUV) photons if the molecular cation dissociates immediately after the

absorption of the photon. Using photoion-photoelectron coincidence techniques the molecu-

lar axis can be inferred from the direction of motion of the fragmentation products. Clearly

this method is not applicable if the cations are stable, and thus it is not applicable to PI

from the highest-occupied molecular-orbital (HOMO). In the last decade it has been shown

that gas phase molecules can be aligned with infrared (IR) lasers using either adiabatic or

nonadiabatic methods [73–75]. To investigate PI of molecules, the nonadiabatic method is
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preferable such that PI occurs in field-free conditions.

In a recent experiment, Thomann et al. [79] reported the angular dependence of single-

photon ionization of aligned N2 and CO2 molecules. The molecules were first impulsively

aligned by a non-ionizing IR laser pulse impinging on supersonically cooled molecules. These

aligned molecules were then ionized by 10 fs soft X-ray pulses, and the photoelectrons were

detected in coincidence with the molecular ions. The aligning pulse generated a rotational

wave packet, which periodically exhibits macroscopic field-free alignment about the polar-

ization axis of the pump laser. The soft X-ray was from high-order harmonic generation

(HHG). Filters were used to select only the 27th harmonic (H27) which has a center en-

ergy of 43 eV. The ions and electrons were measured during the first half-revival where the

molecular-axis distribution changes from aligned to antialigned. In other words, PI can be

investigated from partially aligned molecules to probe molecular frame PI directly. Due

to the limited number of soft X-ray photons, this measurement did not report PAD from

aligned molecules. Similarly, the energy resolution did not permit different ionic states to

be distinguished. In spite of this, the experiment did succeed in establishing clearly that

PI yield was maximum when the molecules were aligned perpendicular to the polarization

of soft X-ray for both N2 and CO2 molecules. This is a strong contrast to strong-field

multiphoton ionization where the two molecules show great differences.

In this chapter we will explain the experimental results of Thomann et al. [79] using the

well established PI theory of molecules [99, 100]. These theories have been widely used to

interpret experimental results for randomly distributed molecules. However, the PI theory

also predicts much detail that can be measured from aligned molecules, in particular, the an-

gular distributions of photoelectrons from different subshells. Since the technology of HHG

is advancing rapidly, we anticipate that PAD from aligned molecules will become available

soon. This chapter is organized as follows. In Sec. 7.2, we will examine the alignment

dependence of H27 if it is generated by exposing N2 molecules to intense IR lasers [103].

Since HHG involves a recombination step which is the inverse process of photoionization,
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such a comparison is of interest. In Sec. 7.3, we will show the simulated single-photon

ionization yield of aligned N2 and CO2 molecules in the experiment of Thomann et al. [79].

This would also allow us to compare the alignment dependence of single-photon PI by soft

X-ray with multiphoton ionization by IR lasers [194, 195]. In Sec. 7.4, we will report the

predicted PAD of fixed-in-space N2 molecules in the laboratory frame. In Sec. 7.5, we will

introduce the pump-probe setup similar to Thomann et al. [79] and report the predicted

PAD for partially aligned N2 molecules (with different degree of alignment) in the labora-

tory frame. The predicted angular distributions in the laboratory frame are presented in

such a way that they can be compared directly to future experiments. In fact, several such

measurements have been reported recently [77, 196]. In Sec. 7.6 we will investigate how the

PADs of aligned N2 molecules change with the photon energy. In Sec. 7.7, we will predict

the PAD in the laboratory frame for fixed-in-space and partially aligned CO2 molecules

using the same pump-probe scheme as in Sec. 7.5. The similar measurements for aligned

CO2 molecules have been reported in [80] recently. A summary in Sec. 7.8 concludes this

chapter.

7.2 Connection between photoionization and harmonic

generation

For aligned molecules, experimentally one can measure the ionization cross section by single

photons, say, at 43 eV, by multiphotons with IR lasers, say, at 800 nm (1.55 eV per photon),

or by the observation of high-order harmonics, say, H27, at 43 eV. Today field-free molecules

can be transiently aligned by lasers only, thus experiments are carried out at intense IR laser

facilities. To compare with experimental measurements, theory must perform calculations

first on molecules that are fixed in space. Here we compare photoionization cross sections

(PICSs) for ionization by a 43 eV photon of N2 leaving N+
2 in the X 2Σ+

g , A 2Πu and B 2Σ+
u

ionic states, corresponding to removing an electron from the HOMO, HOMO-1 and HOMO-

2 orbitals of N2, respectively. In Fig. 7.1(a) we show the alignment dependence of integrated
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Figure 7.1: (a) Integrated photoionization cross sections, and (b) doubly differential cross
sections for electrons ejected in the polarization direction, for N2 aligned at an angle θ
from the polarization axis, by a single photon at 43 eV. (c) Alignment dependence of the
multiphoton ionization rate of N2 by a laser with intensity of 2×1014 W/cm2. (d) Alignment
dependence of the 27th harmonic (43 eV) of N2 by a laser with intensity of 2×1014 W/cm2,
wavelength of 800 nm, and duration (FWHM) of 30 fs. HOMO (solid lines), HOMO-1
(dotted lines) and HOMO-2 (dot dashed lines). Adapted from Publication [15].

PICS for ionization leading to the X, A and B states of the ion. The polarization axis is

fixed and the molecular axis makes an angle θ with respect to it. According to Eq. (C.19),

we obtain the asymmetry parameter βn̂ to be -0.83, -0.95 and 0.47 for X, A and B states,

respectively [99].

From Fig. 7.1(a), we note that PICSs are of the same order of magnitude, with the

HOMO and HOMO-1 channels having nearly identical θ-dependence even though HOMO

is a σg orbital and HOMO-1 is a πu orbital. This is in strong contrast with ionization by

intense IR lasers. Fig. 7.1(c) shows the alignment-dependent multiphoton ionization rates

of N2 by intense lasers with peak intensity of 2×1014 W/cm2 calculated with the MO-ADK
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theory [19] (or Publication [14]). Note that ionization rates for X, A and B states are

quite different since tunneling is the main mechanism for ionization at such high intensities.

For the tunneling processes the ionization rate decreases rapidly as the ionization energy

increases. The A and B states are higher than the X state (15.6 eV) by 1.3 eV and 3.2 eV,

respectively [197]. On the other hand, the alignment dependence of strong field ionization

reflects the shape of the charge density of the molecular orbital from which the electron is

removed.

Next we consider the alignment dependence of single-molecule HHG. According to the

quantitative rescattering (QRS) theory in Eq. (2.36), the HHG yield is proportional to the

product of tunneling ionization rate [see Fig. 7.1(c)] and the differential PICS for electrons

ejected along the polarization axis [see Fig. 7.1(b)] (the modulus square of photoionization

transition dipole is proportional to differential PICS). The resulting alignment dependence

of H27 is shown in Fig. 7.1(d). It shows that at the intensity of 2×1014 W/cm2 HOMO-1

overtakes HOMO in contributing to the generation of H27 when molecules are aligned near

90◦. Using the QRS theory, Le et al. [103] were able to explain these results observed

experimentally by McFarland et al. [163]. We comment that the HHG contributions from

the three orbitals shown in Fig. 7.1(d) should have been added coherently. Coherence can

be neglected in regions where there is only one dominant channel as discussed in Sec. 6.2

and Sec. 6.3.

One advantage of studying HHG is that the phase of the dipole transition matrix ele-

ment can be retrieved from the phase of the harmonics, see Refs. [95, 102, 165, 168]. On

the other hand, unlike photoionization, experimental HHG spectra suffer from macroscopic

propagation effect as discussed in Chapter 6 and thus care must be taken when drawing

conclusions on single molecule HHG spectra from experimental HHG spectra.
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7.3 Total photoionization yield from aligned N2 and

CO2 molecules

Thomann et al. [79] employed a state-of-the-art high-harmonic ultrafast soft X-ray to ionize

field-free aligned molecules in which the cations are nondissociative. In their experiment, a

single harmonic order − H27 at 43 eV − with a width of a few eV’s, was selected as the

ionizing probe pulse. The ion yield was detected around the first half-revival of 4.2 ps for N2

and 21.0 ps for CO2, respectively. The polarization axes for the aligning and ionizing pulses

were parallel such that molecular distributions had cylindrical symmetry with respect to the

polarization axis. They presented the yields of singly ionized N2 and CO2 by 43 eV photons

as a function of time delay between the two pulses. In this section, we report the comparison

between our theoretical calculations with their experimental results. The formulation for

the alignment dependence of integrated PICS is presented in Appendix C.3.

7.3.1 Single-photon ionization yield of aligned N2 molecules: the-
ory vs experiment

In Fig. 7.2(a), we show the calculated degree of alignment 〈cos2 θ〉 for N2 vs time delay.

In the calculation, the pump laser has wavelength of 800 nm, duration(full width at half

maximum, FWHM) of 140 fs, and intensity of 5×1012 W/cm2, taken from Ref. [79]. We

choose gas temperature of 20 K to obtain a high degree of alignment. By solving the time-

dependent Schrödinger equation of Eq. (B.1), 〈cos2 θ〉 can be calculated from Eq. (B.4).

In Fig. 7.2(c) the alignment-dependent PICS (summed over X, A and B ionic states) are

shown. Combining with the calculated alignment distribution of molecules, we obtain the

photoionization yield vs time delay. The results are shown in Fig. 7.2(b) and compared to

experimental data of Ref. [79]. Clearly the theoretical calculations are in good agreement

with experiment. It shows that when molecules are aligned mostly perpendicular to the

polarization axis the total ionization yield peaks. This is easily understood from Fig. 7.1(a),

or from Fig. 7.2(c) which shows the sum of ionization cross sections (normalized at θ=90◦)
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Figure 7.2: (a) Calculated degree of alignment 〈cos2 θ〉 for N2 vs time delay near first half-
revival. (b) Single-photon ionization yield from transiently aligned N2 by 43 eV photons vs
time delay: theory (solid line) and experiment (solid squares) [79]. (c) Angular dependence
of the ionization rate in single-photon (43 eV) ionization (solid line), and by multiphoton
ionization by an IR laser with intensity of 2×1014 W/cm2 (dashed line). Adapted from
Publication [15].

from the X, A and B ionic states. For comparison, the alignment dependence of multiphoton

ionization rates (normalized at θ=0◦) by intense IR lasers at peak intensity of 2×1014 W/cm2

are also shown in Fig. 7.2(c). The ionization rate here is calculated by using the MO-ADK

theory [19]. In this case, ionization occurs mostly from the X ionic state, i.e., only from the

HOMO orbital.

7.3.2 Single-photon ionization yield of aligned CO2 molecules:
theory vs experiment

Similar calculations are carried out for CO2 molecules. The parameters for the pump laser

are wavelength of 800 nm, duration (FWHM) of 140 fs, and intensity of 3.5×1012 W/cm2,
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Figure 7.3: (a) Calculated degree of alignment 〈cos2 θ〉 for CO2 vs time delay near first
half-revival. (b) Single-photon ionization yield from transiently aligned CO2 by 43 eV pho-
tons vs time delay: theory (solid line) and experiment (solid squares) [79]. (c) Integrated
photoionization cross section for ionization leading to the X (solid line), A (dotted line) and
B (dot dashed line) ionic states of CO+

2 , with alignment angle θ, by single-photon (43 eV)
ionization of CO2. (d) Angular dependence of the ionization rate for single-photon (43 eV)
ionization (solid line), and for multiphoton ionization by an infrared laser with intensity of
1.1×1014 W/cm2 (dashed line). Adapted from Publication [15].

taken form [79]. The gas temperature is chosen to be 20 K. PICS at each fixed alignment

angle θ for ionization leading to CO+
2 in the X 2Πg, A 2Πu and B 2Σ+

u ionic states are shown

in Fig. 7.3(c). The asymmetry parameter βn̂ extracted from Fig. 7.3(c) are -0.64, -0.77 and

-0.53 for the X, A and B states, respectively. And the θ-dependence of the ionization cross

sections (summed over X, A and B states, and normalized at θ=90◦) are shown in polar plot

in Fig. 7.3(d). In Fig. 7.3(d) the total multiphoton ionization rate (normalized at θ=35◦) vs

θ for an IR laser with intensity of 1.1×1014 W/cm2 is also shown. The latter has the shape

of a butterfly, reflecting the angular dependence of the πg orbital of the HOMO. Note that

135



in adding up cross sections from different channels, the degeneracy of the molecular orbitals

should be included.

The 〈cos2 θ〉 and the total ionization yield vs time delay for CO2 are shown in Figs. 7.3(a)

and (b), respectively. Both have behavior that is quite similarly to the behavior seen in

Figs. 7.2(a) and (b) for N2. The calculated results in Fig. 7.3(b) are in good agreement with

the results from Ref. [79]. Note that the alignment dependence of multiphoton ionization

for individual X, A and B ionic states are actually quite different and they have different

oribtal symmetries. To obtain tunneling ionization rate from the MO-ADK theory shown

in Fig. 7.3(d) the vertical ionization energies are taken from [100, 197] while the molecular

parameters are from Zhao et al. (see Publication [14]). The similar alignment-dependent

multiphoton ionization rates for different laser intensities have been shown in Fig. 6.11 by

using MO-ADK theory or strong-field approximation.

7.4 Photoelectron angular distributions (PADs) of fixed-

in-space N2 molecules in the laboratory frame

Experimentally, COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) has been

used to measure the full momentum vectors of charged particles resulting from the ionization

of molecules [198]. For different ionization channels, the detected photoelectron energy Epe

is related to photon energy hν and vertical ionization energy Eion by Epe = hν −Eion. The

PAD from different ionization channels can be measured. We present the results in the

laboratory frame so they can be compared to future measurements. The formulation for the

PAD in the laboratory frame in presented in Appendix C.4.

In Fig. 7.4, we show the PAD from fixed-in-space N2 molecules that make an angle θ

with the polarization axis. Photons of 43 eV are used and the ions are left in the X, A

and B ionic states after PI. Figs. 7.4(a)-(c) compare the PAD for emission angles from 0◦

to 90◦ for several molecular alignments. As the alignment angle changes, the PAD changes

rapidly. The PADs for the three channels at a given molecular alignment angle also vary
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Figure 7.4: Photoionization cross sections in the laboratory frame for single-photon (43
eV) ionization of fixed-in-space N2 vs emission angle θk′ at alignment angles indicated and
for ionization leading to N+

2 in the X, A and B states, shown in panels (a)-(c), respectively.
In panels (d)-(g) the same distributions are shown for the X, A and B channels at each
fixed-in-space molecular alignment angle. See text. Adapted from Publication [15].

significantly. For easier comparison of the complicated PAD, false colors are used to present

the PAD for each ionic state, see Figs. 7.4(d)-(g). The radius measures the photoelectron

energies. Thus the rings, starting from the outermost rings, are for electrons ejected from

HOMO, HOMO-1 and HOMO-2, respectively. These complicated variations of the PADs

from aligned molecules is in strong contrast with PI from isotropically distributed molecules

where the PAD depends on a single β-parameter, and can be expressed as in Eq. (C.25).
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7.5 PADs of transiently aligned N2 molecules in the

laboratory frame

7.5.1 PADs of aligned N2 molecules at the low degree of alignment

Figure 7.5: PADs in the laboratory frame for single-photon (43 eV) ionization of N2 as a
function of emission angle θk′ and pump-probe time delay. (a)-(c): Molecules are maximally
aligned (τ=4.00 ps), antialigned (τ=4.55 ps), and isotropically distributed, for ionization
leading to N+

2 ions in X, A and B states, respectively. (d) and (e): The same distributions
are compared for maximally aligned and antialigned molecules. (f)-(h): PADs vs time delay
for the X, A and B channels, respectively. Adapted from Publication [15].

For transiently aligned molecules the angular distribution of molecules with respect to

laser polarization axis evolves with time delay. To compare with experimental measure-

ments, the PAD for each fixed angle must be averaged over the molecular alignment dis-

tributions. In Figs. 7.5(a)-(c), we show the PAD after such averaging for the X, A and

B ionic states, respectively, at the two time delays when molecules are maximally aligned

or antialigned. Note that the angular averaging has severely smoothed out the structures
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compared to the “raw” data shown in Fig. 7.4. In Figs. 7.5(a)-(c) we also show the PAD

for molecules that are isotropically distributed for comparison. Using Eq. (C.25), we find

the values of βk̂′ to be 0.74, 1.20 and 1.88 for the X, A and B channels, respectively [99].

In Figs. 7.5(d) and (e) the PAD from the three ionic states are compared together. Such

data can be compared directly to future experiments since the PAD has been expressed in

the laboratory frame with the fixed polarization axis. Alternatively, the laboratory-fixed

PAD for each ionic state vs the time delay can also be measured and they are shown in

Figs. 7.5(f)-(h). While the degree of molecular alignment by IR lasers is not very sharp, in

the future data like Figs. 7.5(f)-(h) can be de-convoluted to retrieve PAD for fixed molecular

alignment angles, and to compare with theoretical calculations shown in Figs. 7.4(a)-(c).

7.5.2 PADs of aligned N2 molecules at the high degree of align-
ment

In Fig. 7.5, we assume that the pump laser to align the molecules is the same as that

assumed in Fig. 7.2. The maximum degree of alignment is only 〈cos2 θ〉=0.43, such that no

striking features are seen. In order to improve the contrast, we assume a pump laser with

intensity of 5×1013 W/cm2, duration of 60 fs at temperature of 20 K to align molecules.

The maximum degree of alignment achieved is 〈cos2 θ〉=0.71. We show the PAD in the

laboratory frame in Fig. 7.6. Molecules are maximally aligned at τ=4.04 ps and antialigned

at τ=4.39 ps. In comparison with Fig. 7.5, with the better alignment, we can clearly see

the improved contrast and PADs of aligned and antialigned molecules become closer to that

for fixed-in-space molecules at θ=0◦ and 90◦, respectively, see Fig. 7.5.

7.6 Photon energy dependence of PADs for aligned N2

molecules

All the calculations above have been carried out at photon energy of 43 eV. Next we explore

the behavior of the alignment dependence of the PAD at photon energies of 20 eV, 30 eV and
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Figure 7.6: Same as Fig. 7.5 except that a strong aligning pump laser is assumed. See text.
Adapted from Publication [15].

46 eV. In Fig. 7.7 the PAD for the X, A, and B channels are shown for fixed alignment angles

of θ=0◦, 30◦, 60◦ and 90◦, respectively, together with the PAD for isotropically distributed

molecules. As the photon energy changes, the PAD also vary substantially at each alignment

angle. At 30 eV, as shown in Lucchese et al. [99], there is a 3σg→kσu resonance in the

HOMO channel. From Fig. 7.7(e), we further demonstrate that this resonance occurs for

small alignment angles only. [The same conclusion is obtained in Fig. 6.5(a).] From Fig. 7.7,

it is clear that the PAD for aligned molecules are quite complicated. The PAD changes much

with photon energy as well as with the alignment angle. Thus in trying to understand the

dynamics of a molecule, measurements that do not explore the alignment dependence will

tend to miss important features.
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Figure 7.7: Fixed-in-space photoionization angular distributions (vs θk′) in the laboratory
frame, for photon energies of 20eV, 30eV or 46eV, and the four alignment angles are shown.
First row: X-channel. Second row: A-channel. Third row: B-channel. The last row shows
that the PAD becomes featureless if the molecules are isotropically distributed. Adapted from
Publication [15].

7.7 PADs of transiently aligned CO2 molecules in the

laboratory frame

7.7.1 PADs of fixed-in-space CO2 molecules

In Fig. 7.8 we show the PAD in the laboratory frame for CO2 ionized by a 43 eV photon.

The three ionization channels considered are X 2Πg, A
2Πu and B 2Σ+

u , with ionization

potential of 13.8, 17.7 and 18.2 eV, respectively [100, 197]. In Figs. 7.8(a)-(c) the PAD are

shown at alignment angles θ=0◦, 30◦, 60◦ and 90◦, respectively. In Figs. 7.8(d)-(g) the PAD

from the three channels are compared together using false colors. The radius of the circle
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Figure 7.8: Photoionization cross sections in the laboratory frame for single-photon (43
eV) ionization of fixed-in-space CO2 vs emission angle θk′ at alignment angles indicated and
for ionization leading to CO+

2 , in panels (a)-(c), in the X, A and B states, respectively.
In panels (d)-(g) the same distributions are shown for the X, A and B channels at each
fixed-in-space molecular alignment angle. See Text. Adapted from Publication [15].

is a measure of the energy of the photoelectron.

7.7.2 PADs of aligned CO2 molecules

In Figs. 7.9 (a)-(c) we show the calculated PAD for CO2 molecules aligned by a pump laser

at the time delay of τ=20.82 ps and 22.14 ps when molecules are aligned and antialigned,

as well as when molecules are isotropically distributed. The PAD are compared together in

Figs. 7.9(d) and (e), and vs the time delay in Figs. 7.9(f)-(h). The asymmetry parameters,

βk̂′ , in Eq. (C.25), can be deduced from Figs. 7.9 (a)-(c), are 0.92, 1.32 and 0.68 for X, A and

B states, respectively [100]. Since the angular distribution of molecules can be considered

as known, in the future when experimental data similar to Figs. 7.9(f)-(h) become available,
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Figure 7.9: PADs in the laboratory frame for single-photon (43 eV) ionization of CO2

as a function of emission angle θk′ and pump-probe time delay. (a)-(c): Molecules are
maximally aligned (τ=20.82 ps), antialigned (τ=22.14 ps) and isotropically distributed, for
ionization leading to CO+

2 ions in the X, A and B states, respectively. (d) and (e): The
same distributions are compared for maximally aligned and antialigned molecules. (f)-(h):
PADs vs time delay for the X, A and B channels, respectively. Adapted from Publication
[15].

one may deconvolute the experimental results to retrieve the alignment dependence of the

PAD and compare to the calculated values.

7.8 Conclusion

In this chapter we study photoelectron angular distributions (PADs) from aligned molecules.

These data can provide much more details on the molecule than PAD from isotropically dis-

tributed molecules [193]. Since field-free molecular alignment can only be achieved by an

IR laser, PAD from aligned molecules can be measured only at strong-field IR laser facili-
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ties. The IR laser can be used to align molecules, to generate soft X-ray or XUV photons,

and to ionize aligned molecules. Experiments have been carried out to determine the total

ionization yield from such aligned molecules. With higher intensity of XUV photons or

soft X-ray becoming available, one can measure the PAD from aligned molecules. In fact,

such measurement has been reported recently [80]. We calculate PADs theoretically for

geometries where the PAD can be measured in the future. Using aligned linear molecules

such as N2 and CO2, we calculate the expected PAD for the removal of one electron from

the HOMO, HOMO-1 and HOMO-2 orbitals, by photoionization codes that have been de-

veloped. These theoretical predictions often have not been tested except for randomly

distributed molecules. In the future, PAD from aligned molecules that are also undergoing

changes in the vibrational degrees of freedom can also be measured. In fact, such exper-

iments have been demonstrated by Bisgaard et al. [77] and PAD will be able to provide

insights on the time-dependent systems. With these possibilities, the well-tested PAD mea-

surements of isotropically distributed molecules are expected to play important roles in

structure determination of molecules.
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Chapter 8

Summary

High-order harmonic generation (HHG) is a dramatic nonlinear process when atoms or

molecules are exposed to an intense infrared laser pulse. In this process, the fundamental

laser light is efficiently converted to an extreme ultraviolet (XUV) or soft X-ray light. Its

potential has been shown to probe the electronic structure of targets and the time-resolved

molecular structure, ionize the aligned molecules, and produce the attosecond pulse train

and isolated attosecond pulse. In this thesis, we have established a complete model for HHG

in a gaseous medium by incorporating the quantitative rescattering (QRS) theory with the

standard macroscopic propagation theory. Here we will summarize the main achievements

in this thesis.

1. Numerical modeling the macroscopic HHG.

To describe a HHG process completely, we need to consider both the single-atom (or

single-molecule) response and macroscopic response of the medium. The QRS theory is an

efficient approach to calculate the single-atom (or single-molecule) induced dipole, which has

the comparable accuracy with solving the time-dependent Schrödinger equation (TDSE).

It is then fed into the propagation equation of the harmonic field. Meanwhile we include

plasma, dispersion, and Kerr effects for the propagation of fundamental laser field in the

medium. The further free propagation of harmonics from the exit plane of a gas jet can be

handled by Hankel transformation. Two types of spatial beams for the fundamental laser,

Gaussian and truncated Bessel beams, are incorporated into propagation model, which are
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mainly dealing with the multi-cycle and few-cycle laser pulses, respectively. Our model has

been checked against the TDSE results by comparing both the magnitude and phase of

macroscopic HHG.

2. Quantitative comparison with measured HHG.

Since the HHG is a coherent process, there are many factors which can influence the HHG

spectrum. The direct comparison with measured HHG spectrum for atoms is rare, and it has

not been done for molecules as far as our knowledge goes. In the usual studies of single-atom

(or single-molecule) HHG, we are mainly concerned about laser intensity, pulse duration,

wavelength, and carrier-envelope phase (CEP). Besides these parameters, we also include

position and width of the gas jet, gas pressure, spatial beam modes, detecting system, and so

on in our model. The more experimental parameters can be specified, the better simulation

can be resulted from our model. For a few examples with the well specified experimental

conditions, we are able to show the good agreement between the measured HHG spectrum

and the simulation over a broad photon-energy region for isotropic and aligned N2 and

CO2. According to our knowledge, this is the first time that measured HHG spectrum of

molecules can be described quantitatively by theory. We also show the good quantitative

agreement between measured HHG spectra of Ar and simulations for different wavelengths.

For recently measured HHG spectrum of Xe using a mid-infrared laser pulse, our model is

able to predict the multi-electron effect and continuum structure.

3. Factorization of macroscopic HHG.

In QRS theory, the HHG from a single atom (or a single molecule) can be separated as

an electron returning wave packet and a photorecombination (PR) transition dipole. In this

thesis, we have proven numerically that the macroscopic HHG can be written as a product

of a “macroscopic wave packet” (MWP) and a PR transition dipole. For a molecular target,

the PR transition dipole is replaced by an alignment-averaged one. The PR transition dipole

reflects the electronic structure of a target, i.e., the property of a target only. While the

laser and medium propagation effects can all be included in MWP. For the same target, all
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the variations of HHG spectra by changing experimental conditions can be attributed to

the differences in the MWP. This factorization (or separable approximation) of HHG after

macroscopic propagation provides a necessary theoretical basis for extracting the electronic

structure of molecular orbital from HHG spectrum.

4. Spatial filtering in the far field for isolated attosecond pulse generation.

The continuum harmonics in the spectrum (in the frequency domain) are generally used

to produce an isolated attosecond pulse (IAP) (in time domain). However, it is challenged

to measure the duration of an IAP experimentally. To make a connection between an IAP

and continuum harmonics, alternatively it has to rely on the theoretical model. In this

thesis, we have investigated the continuum structure in the HHG spectrum of Xe, measured

with a CEP-not-stabilized few-cycle mid-infrared laser pulse. By using the time-frequency

(or wavelet) analysis we are able to show that the reshaping of the fundamental laser field

is responsible for the continuous harmonics. And then we have suggested an approach to

create an IAP by using a filter centered on axis to select the harmonics in the far field with

different divergence. This approach has been tested for different CEPs.

5. Multiple orbital contribution in HHG for aligned molecules.

The first step for HHG process is tunneling ionization. Since the tunneling ionization

rate depends on the ionization potential exponentially, the electrons are usually ionized

from the outmost molecular orbital (or highest-occupied molecular-orbital, HOMO) only.

However, the ionization rate also depends on the symmetry of molecular orbital. At some

alignment angles, the ionization rate of outmost molecular orbital becomes small, while it

becomes large for some inner molecular orbitals. In this case, the HHG process could occur

in both the outmost and inner molecular orbitals. There are two mostly studied molecules,

N2 and CO2. The HOMO-1 contributes to HHG when the laser polarization is perpendicular

to the molecular axis of N2. For CO2, the contribution of HOMO-2 is presented in HHG

when laser polarization is parallel to the molecular axis. In this thesis, we have shown that

the HOMO-1 contribution of N2 in HHG spectrum over a broad region of photon energy can
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be controlled by the laser intensity. And the minimum in the HHG spectrum of CO2 can

be easily influenced by many factors due to the interference between HOMO and HOMO-2.

This can explain why the minima measured in different laboratories may vary.

In brief, we have established an ab initio model to describe the HHG completely. A few

interesting issues in the field have been touched in this thesis. All these studies strengthen

the theoretical basis for the applications of HHG, and they are also helpful for experimen-

talists in the future.
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Extracting the phase of high-order harmonic emission from a molecule using transient

alignment in mixed samples. Phys. Rev. A, 76:061403, 2007.

[168] X. Zhou, R. Lock, W. Li, N. Wagner, M. M. Murnane, and H. C. Kapteyn. Molecular

recollision interferometry in high harmonic generation. Phys. Rev. Lett., 100:073902,

2008.

[169] C. Vozzi, F. Calegari, E. Benedetti, J.-P. Caumes, G. Sansone, S. Stagira, M. Nisoli,

R. Torres, E. Heesel, N. Kajumba, J. P. Marangos, C. Altucci, and R. Velotta. Con-

trolling two-center interference in molecular high harmonic generation. Phys. Rev.

Lett., 95:153902, 2005.

[170] R. Torres, T. Siegel, L. Brugnera, I. Procino, J. G. Underwood, C. Altucci, R. Velotta,

E. Springate, C. Froud, I. C. E. Turcu, M. Yu. Ivanov, O. Smirnova, and J. P. Maran-

gos. Extension of high harmonic spectroscopy in molecules by a 1300 nm laser field.

Opt. Express, 18:3174–3180, 2010.

[171] C. D. Lin, X. M. Tong, and Z. X. Zhao. Effects of orbital symmetries on the ionization

rates of aligned molecules by short intense laser pulses. J. Mod. Opt., 53:21–33, 2006.
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[180] J. P. Farrell, B. K. McFarland, M. Gühr, and P. H. Bucksbaum. Relation of high

harmonic spectra to electronic structure in N2. Chem. Phys., 366:15–21, 2009.

[181] D. A. Telnov and S.-I. Chu. Effects of electron structure and multielectron dynamical

response on strong-field multiphoton ionization of diatomic molecules with arbitrary

orientation: An all-electron time-dependent density-functional-theory approach. Phys.

Rev. A, 79:041401, 2009.

[182] M. Tudorovskaya and M. Lein. High-order harmonic generation in the presence of a

resonance. Phys. Rev. A, 84:013430, 2011.

169



[183] M. V. Frolov, N. L. Manakov, A. A. Silaev, N. V. Vvedenskii, and A. F. Starace.

High-order harmonic generation by atoms in a few-cycle laser pulse: Carrier-envelope

phase and many-electron effects. Phys. Rev. A, 83:021405, 2011.

[184] K. Kato, S. Minemoto, and H. Sakai. Suppression of high-order-harmonic intensities

observed in aligned CO2 molecules with 1300-nm and 800-nm pulses. Phys. Rev. A,

84:021403, 2011.

[185] Y. Mairesse, J. Levesque, N. Dudovich, P. B. Corkum, and D. M. Villeneuve. High

harmonic generation from aligned moleculesamplitude and polarization. J. Mod. Opt.,

55:2591–2602, 2008.

[186] S. Haessler, J. Caillat, W. Boutu, C. Giovanetti-Teixeira, T. Ruchon, T. Auguste,

Z. Diveki, P. Breger, A. Maquet, B. Carré, R. Täıeb, and P. Salières. Attosecond
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Appendix A

Abbreviations

HHG High-order harmonic generation

MWP Macroscopic wave packet

QRS Quantitative rescattering

TDSE Time-dependent Schrödinger equation

SFA Strong-field approximation

SAE Single-active electron

CM Cooper minimum

ADK Ammosov-Delone-Krainov

MO-ADK Molecular Ammosov-Delone-Krainov

HOMO Highest-occupied molecular-orbital

PRCS Photorecombination cross section

PR Photorecombination

PICS Photoionization cross section

PI Photoionization

PAD Photoelectron angular distribution

MF-PAD Molecular frame photoelectron angular distribution

LF-PAD Photoelectron angular distribution in the laboratory frame

DCS Differential cross section

IDAD Integrated detector angular distribution

ITAD Integrated target angular distribution
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CASSCF Complete-active-space self-consistent field

CI Configuration interaction

IR Infrared

MIR Mid-infrared

NIR Near-infrared

XUV Extreme ultraviolet

UV Ultraviolet

APT Attosecond pulse train

IAP Isolated attosecond pulse

TFR Time-frequency representation

CEP Carrier-envelope phase

FWHM Full width at half maximum

3-D Three-dimensional

TB Truncated Bessel

TB-1 Type-1 Bessel

TB-2 Type-2 Bessel

HATI High-energy above-threshold ionization

NSDI Nonsequential double ionization

GDD Group delay dispersion

RRPA Relativistic random-phase approximation

RABITT Reconstruction of attosecond beating by interference of

two-photon transitions

COLTRIMS Cold target recoil ion momentum spectroscopy

HCF Hollow-core fiber
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Appendix B

Theory of alignment for linear
molecules

Theory of molecular alignment for linear molecules has also been presented in Publication

[15]. When linear molecules are placed in a short laser field (pump laser), a rotational

wave packet is excited. At later times when the wave packet undergoes “rotational revival”

[199, 200], the molecules will be aligned or antialigned. To calculate the alignment, or the

angular distribution of the molecules, each molecule can be treated as a rigid rotor [73, 201].

The time-dependent Schrödinger equation describing the evolution of rotational wave packet

with initial state ΨJM(θ, ϕ, t = −∞) in a linearly polarized laser field is given by

i
∂ΨJM(θ, ϕ, t)

∂t
=

[
BJ2 − E(t)2

2
(α‖ cos2 θ + α⊥ sin2 θ)

]
ΨJM(θ, ϕ, t), (B.1)

where J is the angular momentum operator, B is the rotational constant, α‖ and α⊥ are

the anisotropic polarizabilities in parallel and perpendicular directions with respect to the

molecular axis, respectively. These molecular properties for N2, O2 and CO2 are shown in

Table B.1. The electric field of pump laser, E(t) in Eq. (B.1), is taken to have a Gaussian

form:

E(t) = E0e
−(2 ln 2)t2/τ2

w cos(ω0t), (B.2)

where E0 is the peak field, τw and ω0 are the pulse duration (full width at half maximum,

FWHM) and frequency of the pump laser, respectively. Eq. (B.1) is written in the molecular

(or body-fixed) frame.
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Table B.1: Molecular properties for N2, O2 and CO2. B is rotational constant, α‖ and α⊥
are parallel and perpendicular polarizability, respectively. The data are taken from [202, 203].

Molecule B (cm−1) α‖ (Å3) α⊥ (Å3)

N2 1.989 2.38 1.45

O2 1.438 2.35 1.21

CO2 0.39 4.05 1.95

Eq. (B.1) is solved independently for each initial rotational state |JM〉 (up to J = 40)

using the split-operator method [84, 150]. After the pump laser is turned off, the rotational

wave packet will continue to propagate in the free space,

ΨJM(t) =
∑
J ′

aJ ′e−iEJ′ t|J ′M〉, (B.3)

where EJ ′ are the energy eigenvalues, |J ′M〉 are spherical harmonics, and the coefficients of

aJ ′ can be determined at the moment when the pump laser is turned off.

Assuming a Boltzman distribution of the rotational levels at the initial time, the time-

dependent alignment at a given temperature can be obtained by

ρ(θ, t) =
∑
JM

ωJM |ΨJM(θ, ϕ, t)|2, (B.4)

where ωJM is the weight according to the Boltzman distribution. The nuclear statistics and

symmetry of the total electronic wave function must be taken into account properly in order

to determine ωJM . The angular distribution or alignment does not depend on the azimuthal

angle ϕ in the frame attached to the pump laser field, and it only depends on the angle θ

between the molecular axis and the polarization direction of the pump laser.
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Appendix C

Photorecombination transition dipole

C.1 Photorecombination transition dipole of atomic

targets

Photoionization transition dipole from an initial bound state Ψi to the final continuum state

Ψ−
~k

due to a linearly polarized light is [95]

d~k,~n = 〈Ψi|~r · ~n|Ψ−
~k
〉. (C.1)

Here ~n is the direction of the light polarization and ~k is the momentum of the ejected

photoelectron. The photoionization differential cross section (DCS) is proportional to the

modulus square of this transition dipole (in the length form):

d2σI

dΩ~kdΩ~n

=
4π2ωk

c
|〈Ψi|~r · ~n|Ψ−

~k
〉|2, (C.2)

where k2/2 + Ip = ω (atomic units) with Ip being the ionization potential, ω the photon

energy, and c the speed of light. The continuum wave function Ψ−
~k
(~r) satisfies the stationary

Schrödinger equation [
− ∇2

2
+ V (r)− k2

2

]
Ψ−

~k
(~r) = 0 (C.3)

where the spherically symmetric model potential V (r) is also used in Eqs. (2.34) and (2.35).

The more relevant quantity to the HHG process is its time-reversed one-photon photore-

combination process. The photorecombination DCS can be written as

d2σR

dΩ~ndΩ~k

=
4π2ω3

c3k
|〈Ψi|~r · ~n|Ψ+

~k
〉|2. (C.4)
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In comparison with photoionization DCS in Eq. (C.2), the continuum state is taken as the

outgoing scattering wave Ψ+
~k

instead of an incoming wave Ψ−
~k
, and there is also a different

overall factor. In fact, the photoionization and photorecombination DCS’s are related by

d2σR

ω2dΩ~ndΩ~k

=
d2σI

c2k2dΩ~kdΩ~n

, (C.5)

which follows the principle of detailed balancing for the direct and time-reversed processes

[204].

C.2 Doubly differential photoionization cross section

in the molecular frame

Theory of photoionization cross section (PICS) of linear molecules has also been presented

in Publication [15]. Similar to Eq. (C.2), the doubly differential PICS in the molecular (or

body-fixed) frame is [95, 99, 100]

d2σI

dΩk̂dΩn̂

=
4π2ω

c
|I~k,n̂|

2. (C.6)

Here the dipole matrix elements from an initial bound state Ψi to the continuum state Ψ
(−)

f,~k

due to the linearly polarized light in the dipole length approximation are

I~k,n̂ = (k)1/2〈Ψi|~r · n̂|Ψ(−)

f,~k
〉, (C.7)

where n̂ is the polarization direction of the light, and ~k the momentum of the photoelectron.

To treat the angular dependence of the PICS on the target orientation, the dipole matrix

elements are expanded in terms of spherical harmonics

I~k,n̂ = (
4π

3
)1/2

∑
lmµ

IlmµY
∗
lm(Ωk̂)Y

∗
lµ(Ωn̂). (C.8)

The partial-wave matrix elements are given by

Ilmµ = (k)1/2〈Ψi|rµ|Ψ(−)
f,klm〉, (C.9)
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where

rµ =

{
∓(x± iy)/21/2 µ = ±1,
z µ = 0.

(C.10)

In the calculation, the initial bound state Ψi is obtained from the MOLPRO code [205]

within the valence complete-active-space self-consistent field (CASSCF) method. Based

on the frozen-core approximation the final state Ψ
(−)

f,~k
is then described in a single-channel

approximation where the wave function of the ionic core is given by a valence complete

active space configuration interaction (CI) wave function obtained using the same bound

orbitals as in the initial state. It has the form

Ψ
(−)

f,~k
= A[Φφ

(−)
~k

(~r)], (C.11)

where Φ is the correlated N−1 electron ionic-core wave function, φ
(−)
~k

(~r) is the one-electron

continuum wave function, and operator A performs the appropriate antisymmetrization of

spin and spatial symmetry adaptation of the product of the ionic core and continuum wave

functions. Note that it is possible to use ionic orbitals, however, we perform CI calculations

in both the initial and final states, the choice of orbitals does not affect much the final

results. For valence ionization, such as we are studying here, the position of one-electron

continuum resonances has been reproduced quite well using the initial state orbitals. So

starting with initial state orbitals and using CI wave functions give quite reliable results.

The Schrödinger equation for the remaining continuum electron is then (in atomic units)[
− 1

2
52 −1

r
+ V (~r)− k2

2

]
φ

(−)
~k

(~r) = 0, (C.12)

where V (~r) is the short-range portion of the electron-molecular-ion interaction. Note that

the potential is not spherically symmetric for molecules. Eq. (C.12) is then solved by using

the iterative Schwinger variational method. The continuum wave function is expanded in

terms of partial waves as

φ
(−)
~k

(~r) = (
2

π
)1/2

lp∑
l=0

l∑
m=−l

ilφ
(−)
klm(~r)Y ∗

lm(Ωk̂), (C.13)
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where an infinite sum over l has been truncated at l = lp. In the calculation, we typically

choose lp=11. Once we obtain φ
(−)
klm(~r), Ψ

(−)
f,klm in Eq. (C.9) can be obtained straightforwardly

through Eq. (C.11). Note that our continuum wave function is constructed to be orthogonal

to the strongly occupied orbitals. This avoids spurious singularities which can occur when

scattering from correlated targets is considered.

Here we describe the method used to compute the scattering potential V (~r) found in

Eq. (C.12). First, the electronic Hamiltonian is written as

H =
N∑

i=1

h(i) +
N∑

i<j

1

rij

, (C.14)

with

h(i) = −∇
2
i

2
−

∑
a

Za

ria

, (C.15)

where the Za are the nuclear charges, and N is the number of electrons. Then the single-

particle equation for the continuum electron is obtained from

〈δΨ(−)

f,~k
|H − E|Ψ(−)

f,~k
〉 = 0, (C.16)

where δΨ
(−)

f,~k
is written as in Eq. (C.11), with φ

(−)
~k

(~r) replaced by δφ
(−)
~k

(~r). By requiring this

equation to be satisfied for all possible δΨ
(−)

f,~k
[or δφ

(−)
~k

(~r)], one obtains a nonlocal optical

potential that can be written in the form of a Phillips-Kleinman pseudopotential.

A single-center expansion approach is used to evaluate all required matrix elements. In

other words, all functions, including the scattering wave function, occupied orbital, and

potential are expanded about a common origin, which is the center of mass of the molecule,

as a sum of spherical harmonics times radial functions

F (~r) =
lmax∑
l=0

l∑
m=−l

flm(r)Ylm(θ, φ). (C.17)

With this expansion, the angular integration can be done analytically and all three-dimensional

integrals reduce to a sum of radial integrals, which are computed on a radial grid. Typically,

we choose lmax=60 to 85.
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If we are dealing with electron ionization from inner molecular orbitals, i.e., not highest-

occupied molecular-orbital (HOMO), but rather HOMO-1 and HOMO-2, it can still be done

in the same manner, except that the ionic-core state Φ employed in Eq. (C.11) needs to be

replaced by the excited ion state, which corresponds to electron ionization from the HOMO-

1 or HOMO-2 orbital. Furthermore, the present single-channel formalism can be extended

to coupled-multichannel calculations to account for additional electron correlation effects.

The calculations in this thesis are limited to the single-channel approximation.

As mentioned in the quantitative rescattering (QRS) theory (see Sec. 2.2.3), the pho-

torecombination transition dipoles are involved in the process of high-order harmonic gen-

eration. It only has a difference in the sign of the phase, but has the same magnitude as

compared to the photoionization transition dipole [95]. To perform the QRS calculation, we

usually obtain the returning electron wave packet by using the strong-field approximation

for simplicity, where the photorecombination transition dipole is either a pure real or pure

imaginary number. And then the exact photorecombination transition dipole is incorporated

with the wave packet to obtain the induced dipole moment.

C.3 Alignment dependence of integrated photoioniza-

tion cross section

Doubly differential PICS in the molecular frame is given in Eq. (C.6), but for a given ap-

plication one may need averaged PICSs as suggested by Wallace and Dill [206]. One such

averaged distribution is the integrated detector angular distribution (IDAD), which corre-

sponds to experiments where target orientation is fixed in space and the PICS is integrated

over all possible emission directions of photoelectron. For linear molecules, the integrated

cross section depends only on the alignment angle θ due to the symmetry of the molecules

and the IDAD can be expressed in the molecular frame as

σ(θ, ω) =
dσ

dΩn̂

=

∫
4π2ω

c
|I~k,n̂|

2dΩk̂. (C.18)
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Eq. (C.18) can also be found in the form of [99, 206]

dσ

dΩn̂

=
σtot

4π
[1 + βn̂P2(cos θ)], (C.19)

where σtot is the total PICS averaged over all alignments and photoelectron directions,

P2(cos θ) is the Legendre polynomial of degree 2 and βn̂ is the asymmetry parameter.

In experiments, the pump laser is used to create transiently aligned molecular sample,

and then the soft X-ray probe ionizes the molecules. The time dependent alignment distri-

bution is obtained by solving the time-dependent Schrödinger equation (see Appendix B).

If the polarizations of the pump and probe lasers are parallel, the detected experimental

signal in terms of the pump-probe time delay τ can be written as

Y (ω, τ) ∝
∫ π

0

σ(θ, ω)ρ(θ, τ) sin θdθ. (C.20)

Without the pump-probe scheme, the molecules are distributed randomly, and the angular

distribution of ρ(θ, τ) in Eq. (C.20) is a constant. Eq. (C.20) actually gives us the total

cross section σtot.

C.4 Photoelectron angular distribution in the labora-

tory frame

PICS in the molecular frame is given in Eq. (C.6), and the doubly differential PICS in the

laboratory frame can be expressed as

d2σ

dΩk̂′dΩn̂′
=

4π2ω

c
|I~k′,n̂′|2, (C.21)

where n̂′ and ~k′ are the polarization direction of pump laser and the momentum of the

photoelectron in the laboratory frame, respectively. Assuming that the molecular axis is

aligned at an arbitrary angle R̂ ≡ (θ, ϕ) with respect to the polarization direction of pump

laser. In other words, R̂ is the Euler angle of the molecular frame with respect to the

laboratory frame. The dipole matrix elements in Eq. (C.8) can be rewritten in the laboratory
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frame as

I~k′,n̂′ = (
4π

3
)1/2

∑
lmµ

Ilmµ

l∑
m′=−l

Dl
mm′(R̂)Y ∗

lm′(θk′ , ϕk′)
l∑

µ′=−l

Dl
µµ′(R̂)Y ∗

lµ′(θn′ , ϕn′), (C.22)

with Dl
mm′(R̂) and Dl

µµ′(R̂) being the rotation matrices. In Eq. (C.22), θk′ and ϕk′ are

the polar and azimuthal angles of the photoelectron in the laboratory frame, respectively,

θn′=0◦ and ϕn′=0◦ in the laboratory frame. The PICS of Eq. (C.21) in the laboratory frame

is an explicit function of θk′ and ϕk′ for the alignment angle R̂.

In the laboratory frame, taking into account the molecular distribution with respect to

the polarization direction of the pump laser described by the angle θ, the PICS in Eq. (C.21)

must be integrated over the azimuthal angle ϕ. Finally, we obtain the PICS for all molecules

with a fixed alignment angle θ, which depends on photoelectron emission angle θk′ ,

σ′(θ, ω, θk′) =

∫ 2π

0

d2σ

dΩk̂′dΩn̂′
(θ, θk′ , ϕk′ − ϕ)dϕ. (C.23)

The actual experimentally observed photoelectron angular distribution in the laboratory

frame (LF-PAD) corresponds to the average of the PICS in Eq. (C.23) accounting for the

molecular distribution in space. The time dependent angular distribution of ρ(θ, τ) can be

calculated by Eq. (B.4), and the analytical form of the LF-PAD, which can be compared

with experimental photoelectron spectra directly, is expressed as

Y ′(ω, θk′ , τ) ∝
∫ π

0

σ′(θ, ω, θk′)ρ(θ, τ) sin θdθ. (C.24)

The polarizations of the pump and probe lasers are parallel in Eq. (C.24).

As suggested by Wallace and Dill [206], another averaged PICS is the integrated target

angular distribution (ITAD), which corresponds to PI experiments where target orientation

is not resolved. For the isotropically distributed molecules, the angular distribution of ρ(θ, τ)

is a constant, and Eq. (C.24) has the form [99, 206]

dσ

dΩk̂′
=
σtot

4π
[1 + βk̂′P2(cos θk′)], (C.25)

where βk̂′ is the photoelectron asymmetry parameter.
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Appendix D

Spatial mode of laser beam: Gaussian
beam vs truncated Bessel beam

Theory of Gaussian and truncated Bessel beams has also been presented in Publication [2]

and [17].

D.1 Gaussian beam

In optics, a Gaussian beam is a beam of electromagnetic radiation whose transverse elec-

tric field and intensity distributions are well approximated by Gaussian functions. For a

Gaussian beam, the complex electric field is given by

Egau(r, z) =
bE0

b+ 2iz
exp(− kr2

b+ 2iz
) = |Egau(r, z)|eiφlaser(r,z). (D.1)

Here E0 is the peak laser field at the focus, ω0 is the central frequency, k = ω0/c = 2π/λ0 is

the wave vector. As shown in Fig. D.1, the geometry and behavior of a Gaussian beam are

governed by a set of beam parameters. The spot size w(z) is at a minimum value w0 along

the z-axis, which is known as beam waist. At a distance z, the variation of the spot size is

given by

w(z) = w0

√
1 + (

z

zR

)2, (D.2)

where

zR =
πw2

0

λ0

, (D.3)
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is called the Rayleigh range. b is the confocal parameter (depth of focus) given by twice

the distance along z-axis for the beam to expand from its minimum cross sectional area at

z = 0 to twice this area, i.e., b = 2zR.

Figure D.1: Schematic diagram of Gaussian beam. Beam width w(z) as a function of
the axial distance z; w0: beam waist; b: confocal parameter, twice of Rayleigh range zR.
Reproduced from [113].

From Eq. (D.1), we can also express the intensity and phase of a Gaussian beam explicitly

I(r, z) = |Egau(r, z)|2 =
I0

1 + (2z/b)2
· exp[−(

r

w0

)2 · 2

1 + (2z/b)2
], (D.4)

φlaser(r, z) = − tan−1(
2z

b
) +

2kr2z

b2 + 4z2

= − tan−1(
2z

b
) +

kλ0

2π
· ( r
w0

)2 · (2z/b)

1 + (2z/b)2
. (D.5)

Geometric phase due to focusing is given by φlaser, and tan−1(2z′/b) is the Gouy phase,

which results in a phase shift of π relative to a plane wave as the laser passes through the

focus from the far field on one side to the far field on the other side of the focus. As shown

in Eq. (D.4) and (D.5), if the propagation distance z is scaled by the confocal parameter b,

and the radial distance r is scaled by the beam waist w0, the intensity and the phase stay

the same.
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D.2 Truncated Bessel beam

For an axial-symmetric lenslike system, the complex electric field on the output plane

is related to the one on the input plane by an ABCD ray matrix [207, 208]. Let the

laser electric field on the input plane (the exit plane of a hollow-core fiber) be given by

E(ρ)=E0J0(2.405ρ/a) with ρ ≤ a, where ρ is the radial coordinate, E0 the on-axis peak

electric field, a the capillary radius, and J0 the zero-order Bessel function of the first kind.

The transverse electric field on the output plane, according to the diffraction theory in the

paraxial approximation, is

ETB(ξ, r) = E0
−ik
B(ξ)

exp

[
ik(L+ ξ +

Dr2

2B(ξ)
)

] ∫ a

0

J0(2.405
ρ

a
)J0

[
krρ

B(ξ)

]
exp

[
ikA(ξ)

2B(ξ)
ρ2

]
ρdρ,

(D.6)

where k=2π/λ0, and λ0 is the central laser wavelength. The meanings of the parameters

in the equation will be defined explicitly below. We note that the integral in Eq. (D.6)

becomes indeterminate if B(ξ = ξ̄)=0, where ξ=ξ̄ is also the location of the focus plane. As

discussed in Ref. [208], the electric field at ξ̄ can be written as

ETB(ξ̄, r) =
E0

A
exp

[
ik(L+ ξ̄ +

Cr2

2A
)

]
J0(2.405

r

aA
). (D.7)

For a lossless system, AD-BC=1. In the following we will show two truncated Bessel (TB)

beams from the different optical systems, which have been used by Nisoli et al. [141] and

Wörner et al. [127], respectively.

D.2.1 Type-1 Bessel beam - - tightly focused beam

In the experiment of Nisoli et al. [141], the optical system setup is depicted in Fig. D.2. The

radius of the capillary is a=0.25 mm, and the focal length of the focus mirror is f=250 mm.

The ξ and the focus plane ξ̄ are sketched in the figure. The laser pulse emerging from the

hollow-core fiber propagates in free space for a distance d=2000 mm [or L in Eq. (D.6)] to the

focusing mirror where it further propagates for a distance ξ after the mirror to the output

189



Figure D.2: Sketch of the experimental setup for Type-1 Bessel beam generation [141].
Adapted from Publication [2].

Figure D.3: On-axis laser intensity (a) and phase (b) as a function of propagation distance
z: Type-1 Bessel (solid lines) vs Gaussian (w0=25 µm, dashed lines). (c) Spatial intensity
distribution of Type-1 Bessel beam. The laser intensity at the focus is 3×1014 W/cm2.
Adapted from Publication [2].

plane. The laser pulse is also compressed by chirped mirrors, but they are not included in

the ABCD matrix. For this optical system, the ABCD matrix can be written as:

A(ξ) = 1− ξ/f,

B(ξ) = d+ ξ(1− d/f),

C = −1/f,

D = 1− d/f. (D.8)
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Figure D.4: Sketch of the experimental setup for Type-2 Bessel beam generation. Adapted
from Publication [2].

The TB beam constructed by Eq. (D.8) is called Type-1 Bessel beam in this paper. We

plot the intensity |ETB|2 and the phase φTB (red solid lines) as a function of z for r=0

(on-axis) in Figs. D.3(a) and (b), respectively. Here the coordinate ξ has been replaced

by z=ξ-ξ̄ for convenience, and the phase φTB is set as 0 at z=0 and r=0 (focusing point).

In the present case, ξ̄ > f , where B(ξ̄)=0 with B defined in Eq. (D.8). Laser wavelength

λ0=780 nm, and laser intensity at the focus is 3×1014 W/cm2. For comparison, we fix the

laser intensity at the focus and plot the intensity and phase (dashed lines) of a Gaussian

beam with the beam waist w0=25 µm in Figs. D.3(a) and (b), respectively. In Fig. D.3(c),

we plot the spatial distribution of the laser intensity for the TB beam.

D.2.2 Type-2 Bessel beam - - loosely focused beam

In the experiment of Wörner et al. [127], the setup is depicted in Fig. D.4. The hollow-core

fiber (HCF) is similar to Nisoli et al.’s [141]. The beam comes out of the HCF (with radius

a=0.125 mm) is divergent and. It is recollimated by a spherical mirror (focal length f1=1000

mm) placed 1 m after the output of the HCF (d1=1000 mm). The beam is then reflected

8 times on chirped mirrors and propagated a distance of 2 m from the spherical mirror

(d2=2000 mm) until a focusing mirror (focal length f2=500 mm). It further propagates
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Figure D.5: Same as Fig. D.3 except for loosely focused Type-2 Bessel and Gaussian
(w0=50 µm) beams. Adapted from Publication [2].

through a distance ξ after the mirror to the output plane. L in Eq. (D.6) equals to d1 + d2.

We then write down the ABCD matrix for this optical system without considering the

chirped mirrors,

A(ξ) = (1− d2

f1

)(1− ξ

f2

)− ξ

f1

,

B(ξ) = (d1 + d2 −
d1d2

f1

)(1− ξ

f2

)− ξ(
d1

f1

− 1),

C = − 1

f1

− 1

f2

+
d2

f1f2

,

D = −d1

f2

+ (1− d1

f1

)(1 +
d2

f2

). (D.9)

To have the collimated laser beam before the focusing mirror f2, it requires d1=f1, i.e.,

the output of the HCF is put at the focal plane of the spherical mirror f1. In this case

ξ̄ = f2. The TB beam constructed by Eq. (D.9) is called Type-2 Bessel beam in this paper.

Similar to Fig. D.3, we plot the on-axis intensity |ETB|2 and the phase φTB (red solid lines)

as a function of z and the spatial distribution of intensity in Fig. D.5. In Figs. D.5(a) and

(b), we also plot on-axis intensity and phase (dashed lines) of a Gaussian beam with the

beam waist w0=50 µm. The same laser wavelength and intensity (at the focus) are applied.
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D.3 Ultrashort laser pulse and geometric phase

The spatial dependence of a laser field has been discussed above, we will write a laser field

with complete spatial and temporal dependence in this section. In the moving coordinate

frame (i.e., z′ = z and t′ = t − z/c), the term of e−ikz can be eliminated, and the electric

field can be written as

E1(r, z
′, t′) = Re

[
Egau(r, z

′)A(r, z′, t′)e−i(ω0t′+ϕCE)

]
, (D.10)

where

A(r, z′, t′) = cos2{π[t′ − φlaser(r, z
′)/ω0]

τp
}. (D.11)

Here we assume spatial beam is Gaussian (i.e., Egau), it can be replaced by truncated Bessel

or other beams straightforwardly. Carrier-envelope phase is represented by ϕCE, and τp in

the envelope function A(r, z′, t′) is the total duration of the laser pulse, which equals to 2.75

times τw, the full width at half maximum (FWHM) of the laser’s intensity. If we apply

Gaussian envelope in time domain, and then

A(r, z′, t′) = exp

[
− (2 ln 2)

(t′ − φlaser(r, z
′)/ω0)

2

τ 2
w

]
. (D.12)

We also introduce the pulse energy Wpulse for the laser beam:

Wpulse =

∫ ∫
I(r, z′, t′)2πrdrdt′, (D.13)

where I(r, z′, t′) is the spatial- and temporal-dependent laser intensity (assuming cylin-

drical symmetry). For a Gaussian beam, we have an explicit expression of I(r, z′, t′) =

|E1(r, z
′, t′)|2 in Eq. (D.10), and we can derive an analytical expression for the pulse energy

assuming the Gaussian envelope of Eq. (D.12) in time (it is convenient to calculate pulse

energy at the focal plane where z=0):

Wpulse = I0
πw2

0

2
τw

√
π

4 ln 2
, (D.14)
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where I0 is the laser peak intensity at the focus. We choose τp to be 3 cycles (7.8 fs),

I0=3×1014 W/cm2, then Wpulse obtained by Eq. (D.14) is 24.45 µJ for Gaussian beam in

Fig. D.3. While Wpulse is 27.24 µJ for Type-1 Bessel beam in Fig. D.3 calculated numerically

using Eq. (D.13).

If the fundamental laser field can be considered as propagating in the vacuum, its electric

field can be expressed as an analytical form approximately by using Eq. (D.10). And then

the propagation of the harmonic field in the gas medium can be simplified. Let

t′′ = t′ − ϕlaser(r, z
′)/ω0, (D.15)

then

E1(r, z
′, t′′) = |Egau(r, z

′)| cos2(
πt′′

τp
) cos(ω0t

′′ + ϕCE), (D.16)

where we assume the cosine square envelope, and it can be changed as Gaussian envelope

easily.

In order to solve Eqs. (2.55) and (2.60), the nonlinear polarization in the moving coordi-

nate frame needs to be calculated. First we can compute Pnl(r, z
′, t′′) since in the time frame

t′′ the spatial component and temporal part are separated. In other words, the fundamental

laser field only depends on the peak field |Egau(r, z
′)|. Using the Fourier transformation, we

then obtain

P̃nl(r, z
′, ω) = F̂ [Pnl(r, z

′, t′)] = F̂ [Pnl(r, z
′, t′′)]e

−i( ω
ω0

)φlaser(r,z′)
. (D.17)

From the expression above, it can be seen that there are two contributions to the phase of

the nonlinear polarization: the first one is atomic phase, which depends only on the laser

peak intensity; the second is geometric phase multiplied by the harmonic order. It is known

that the most time-consuming job is the calculation of the spatial dependent nonlinear

polarization for atoms inside the medium as the harmonic field is propagated. It is the

separation of atomic phase and geometric phase that allows one to simplify the calculation.

Using a batch of laser peak intensities, the nonlinear polarizations in the time frame t′′ are
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calculated and then stored. When it comes to solve the propagation equations for each

value of ω, the nonlinear polarization in t′′ for atoms (or molecules) inside the medium are

obtained by interpolation. Meanwhile the geometric phase is added up in order to transform

the nonlinear polarization to the moving coordinate frame. The use of interpolation method

greatly improves the efficiency of harmonic field propagation. This approach is valid only

for multi-cycle laser pulse (FWHM, 10 optical cycles) applied.

195



Appendix E

Copyright approval from the
publishers

196



1

Cheng, Jin

From: lamanca@aps.org on behalf of Associate Publisher [assocpub@aps.org]
Sent: Friday, January 27, 2012 8:41 AM
To: Cheng, Jin
Subject: Re: Copyright questions

Dear Cheng Jin, 
  
Thank you for your email. As the author, you have the right to use the article or a portion of the article in a thesis or 
dissertation without requesting permission from APS, provided the bibliographic citation and the APS copyright credit line 
are given on the appropriate pages. 
 
Best wishes, 

 
Eileen LaManca 
Publications Marketing Coordinator 
American Physical Society 
 
 
On Thursday, January 26 2012 "Cheng, Jin" <cjin@phys.ksu.edu> wrote : 
           (Original included CC: to  "Cheng, Jin" <cjin@phys.ksu.edu>) 
 
>Dear editor, 
> 
>My name is Cheng Jin from Kansas State University. I am writing my Ph. D thesis now, and in my thesis I would like to 
include the contents (some paragraphs and figures) of  my articles (I am the first author in these articles), which have 
been published in Physical Review A. Could you tell me what policy or procedure I need to follow? 
> 
>The articles I want to use are listed below: 
> 
>1.      Cheng Jin, Anh-Thu Le, and C. D. Lin, Retrieval of target photorecombination cross sections from high-order 
harmonics generated in a macroscopic medium, Phys. Rev. A 79, 053413 (2009). 
> 
>2.      Cheng Jin, Anh-Thu Le, Song-Feng Zhao, R. R. Lucchese, and C. D. Lin, Theoretical study of photoelectron 
angular distributions in single-photon ionization of aligned N2 and CO2, Phys. Rev. A 81, 033421 (2010). 
> 
>3.      Cheng Jin, Anh-Thu Le, and C. D. Lin, Medium propagation effects in high-order harmonic generation of Ar and 
N2, Phys. Rev. A 83, 023411 (2011). 
> 
>4.      Cheng Jin, Anh-Thu Le, and C. D. Lin, Analysis of effects of macroscopic propagation and multiple molecular 
orbitals on the minimum in high-order harmonic generation of aligned CO2, Phys. Rev. A 83, 053409 (2011). 
> 
>5.      Cheng Jin, Anh-Thu Le, Carlos A. Trallero-Herrero, and C. D. Lin, Generation of isolated attosecond pulses in the 
far field by spatial filtering with an intense few-cycle mid-infrared laser, Phys. Rev. A 84, 043411 (2011). 
> 
>6.      Cheng Jin, Julien B. Bertrand, R. R. Lucchese, H. J. Wörner, Paul B. Corkum, D. M. Villeneuve, Anh-Thu Le, and 
C. D. Lin, Intensity dependence of multiple-orbital contributions and shape resonance in high-order harmonic generation 
of aligned N2 molecules, Phys. Rev. A 85, 013405 (2012). 
> 
>I will appreciate your help! 
> 
> 
> 
>Best regards, 
> 
>Cheng Jin 
> 

197



198



199


	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	1 Introduction to high-order harmonic generation
	1.1 Background
	1.2 Single-atom response
	1.2.1 Three-step model
	1.2.2 Wavelength scaling of harmonic efficiency and attochirp

	1.3 Macroscopic propagation effects
	1.3.1 Phase matching conditions
	1.3.2 Absorption effect
	1.3.3 Spatiotemporal dynamics of laser pulse

	1.4 Applications of high-order harmonic generation
	1.4.1 Generation of attosecond pulse train and isolated attosecond pulse
	1.4.2 Probing electronic structure and dynamics of atoms and molecules
	1.4.3 Single-photon ionization of aligned molecules

	1.5 Thesis outline

	2 Theoretical tools
	2.1 Introduction
	2.2 Time-dependent Schrödinger equation
	2.2.1 Semiclassical theory
	2.2.2 Strong-field approximation
	2.2.3 Quantitative rescattering theory

	2.3 Maxwell's wave equation
	2.3.1 Fundamental laser field
	2.3.2 High-harmonic field of atoms
	2.3.3 High-harmonic field of aligned molecules

	2.4 Far-field harmonic emission

	3 Medium propagation effects in high-order harmonic generation of Ar
	3.1 Introduction
	3.2 Macroscopic HHG spectra: QRS vs TDSE
	3.2.1 Strength of the harmonics
	3.2.2 Phase of the harmonics

	3.3 Macroscopic HHG spectra: theory vs experiment
	3.4 Disappearance of Cooper minimum in the HHG spectra of Ar
	3.5 Macroscopic wave packet
	3.5.1 Independence of wave packet on targets
	3.5.2 Separation of target structure information from HHG spectra
	3.5.3 Dependence of wave packet on experimental conditions

	3.6 Wavelength scaling of harmonic efficiency
	3.7 Conclusion

	4 Comparison of high-order harmonic generation of Ar using a truncated Bessel or a Gaussian beam
	4.1 Introduction
	4.2 Simulation of HHG spectrum of Ar
	4.2.1 Few-cycle 780-nm laser
	4.2.2 Few-cycle 1800-nm laser

	4.3 Phase matching conditions at the low gas pressure
	4.3.1 Phase-matching map at low gas pressure
	4.3.2 Dependence of harmonic yield on gas-jet position

	4.4 Pressure induced phase mismatch
	4.5 Conclusion

	5 Generation of an isolated attosecond pulse in the far field by spatial filtering with an intense few-cycle mid-infrared laser
	5.1 Introduction
	5.2 Macroscopic HHG spectra of Xe using an 1825-nm few-cycle laser
	5.2.1 Photorecombination dipole moment of Xe in QRS theory
	5.2.2 Macroscopic HHG spectra of Xe at low and high intensities

	5.3 Spatiotemporal evolution of fundamental laser field
	5.4 Time-frequency representation of high harmonics
	5.4.1 Wavelet analysis of attosecond pulses
	5.4.2 Time-frequency analysis of harmonics in near and far fields

	5.5 Spectral and spatial filtering in generation of attosecond pulses
	5.6 CEP dependence of isolated attosecond pulses
	5.7 Comparison between QRS and SFA in modeling propagation effects
	5.8 Conclusion

	6 Effects of macroscopic propagation and multiple molecular orbitals on the high-order harmonic generation of aligned N2 and CO2 molecules
	6.1 Introduction
	6.2 HOMO contribution in HHG of random and aligned N2 molecules
	6.2.1 Macroscopic HHG spectra of random and aligned N2: theory vs experiment
	6.2.2 Separation of photorecombination transition dipole from HHG spectrum

	6.3 Intensity dependence of multiple orbital contributions in HHG of aligned N2 molecules
	6.3.1 Macroscopic HHG spectra: theory vs experiment
	6.3.2 Single HOMO orbital contribution at low laser intensity
	6.3.3 Multiple orbital contributions (HOMO and HOMO-1) at higher laser intensity

	6.4 Shape resonance in photoionization and harmonic generation of N2 molecules
	6.4.1 Photoionization cross sections and phases of N2 from HOMO and HOMO-1 orbitals
	6.4.2 Shape resonance in HHG of aligned N2

	6.5 Contributions of multiple molecular orbital in HHG of aligned CO2 molecules
	6.5.1 Macroscopic HHG spectra of random and aligned CO2: theory vs experiment
	6.5.2 Origin of minimum in the HHG spectra of aligned CO2

	6.6 Major factors that influence positions of the minima in the HHG spectra of aligned CO2 molecules
	6.6.1 Progression of harmonic minimum versus laser intensity
	6.6.2 Other factors influencing the precise positions of HHG minima

	6.7 Conclusion

	7 Photoelectron angular distributions in single-photon ionization of aligned N2 and CO2 molecules using XUV light
	7.1 Introduction
	7.2 Connection between photoionization and harmonic generation
	7.3 Total photoionization yield from aligned N2 and CO2 molecules
	7.3.1 Single-photon ionization yield of aligned N2 molecules: theory vs experiment
	7.3.2 Single-photon ionization yield of aligned CO2 molecules: theory vs experiment

	7.4 Photoelectron angular distributions (PADs) of fixed-in-space N2 molecules in the laboratory frame
	7.5 PADs of transiently aligned N2 molecules in the laboratory frame
	7.5.1 PADs of aligned N2 molecules at the low degree of alignment
	7.5.2 PADs of aligned N2 molecules at the high degree of alignment

	7.6 Photon energy dependence of PADs for aligned N2 molecules
	7.7 PADs of transiently aligned CO2 molecules in the laboratory frame
	7.7.1 PADs of fixed-in-space CO2 molecules
	7.7.2 PADs of aligned CO2 molecules

	7.8 Conclusion

	8 Summary
	Bibliography
	Publication list
	A Abbreviations
	B Theory of alignment for linear molecules
	C Photorecombination transition dipole
	C.1 Photorecombination transition dipole of atomic targets
	C.2 Doubly differential photoionization cross section in the molecular frame
	C.3 Alignment dependence of integrated photoionization cross section
	C.4 Photoelectron angular distribution in the laboratory frame

	D Spatial mode of laser beam: Gaussian beam vs truncated Bessel beam
	D.1 Gaussian beam
	D.2 Truncated Bessel beam
	D.2.1 Type-1 Bessel beam - - tightly focused beam
	D.2.2 Type-2 Bessel beam - - loosely focused beam

	D.3 Ultrashort laser pulse and geometric phase

	E Copyright approval from the publishers

