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NOMENCLATURE

English alphabets:

x’ y} z
s, n, t
hos B By

P

Cartesian coordinates

Arc length of a, B, and y axes, respectively

Parameters in curvilinear coordinates.

Pressure

Temperature (absolute)

Entropy, energy per degree per unit mass

Enthalpy; energy per degree per unit mass

Gas constant, length per degree

Specific heat at constant pressure and volume, respectively
Velocity

a, B, and y components of q, respectively

X, ¥, and -z components of g, respectively

Normal and tangential velocity component on a curved shock
wave, respectively

Velocity of sound

Total energy, energy per unit mass

Angle between velocity vector and tangent to shock wave
Connection factor for boundary condition at shock wave
Diameter of sphere

Detachment distance of bow shock wave from nose of body

Total pressure in uniform upstream



Greek letters:

o, 8, Y Orthogonal curvilinear coordinates

p Density

Y CP/CV = ratio of specific heat

v Stream function )

£ Y component of rot q

€ Constant (e=0 in two-dimensional flow and e=1 in axisymmetric
flow)

8 Deflection angle of streamline through shock wave

) Angle of flow direction

2 Reference length

Subscripts:

0 Quantities in state at rest of undisturbed flow
* Quantities at state of locally sonic
b Value along a certain boundary, which will be replaced by

s in the present condition

a Quantities along the fixed surface

8 Quantities immediately behind the shock wave

Ly 2 Quantities before and behind the shock wave, respectively
m Grade of approximation

vi
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CHAPTER 1
INTRODUCTION

The problem of the high-speed flow past a blunt-nosed body has been a
subject of considerable interest. In this problem, the bow shock wave is
detached from the body surface. The difficulty encountered in attempting
to analyze the entire flow field seems to be caused by an inability to find
proper means of quasi-linearization. By the fact that the flow around the
body is a non-linear, mixed subsonic-supersonic flow and the location of the
bow shock wave in front of the body is not known in advance, neither the
small-disturbance theory nor the analytical method of the hodograph plane
can be applied in the general case of a detached, curved shock wave.

Except for a wedge or cone of small apex angle, the effects of rotation
(i.e. vorticity) cannot be neglected. In order to retain the non-linearity
of the flow pattern as well as the effects of rotationality, numerical meth-
ods have been studied by Uchida and Yasuhara (3) and several other authors
(5, 8, 10). Many of these authors treated the present special problem by
the relaxation method, starting with the observed form of shock wave or re-
quiring the pressure distribution on the entire body and the shock shape.

As a result, these methods require some definite, prior knowledge of the
flow and, thus, do not represent complete sclutions to the problem. On the‘
other hand, although the method of Uchida and Yasuhara requires iterating
both the shock shape and streamline pattern, it :equires no fixed assump-

tions regarding values of the flow variables, either at the surface or in



the flow field.

The principle of this method is to reduce the partial differential
equation to the form of an ordinary one by taking one of the coordinate axes
to be nearly coincident with the integral curves of solution. In this case,
streamlines and their orthogonals are chosen as a suitable set of curvilinear
ccordinates. The equation of vorticity for iscenergetic, rotational flow
has been given by Uchida, Equation (42) of Ref. (3), and involves only deriv-
atives with respect to a single, independent variable. Approximate solution
for flow speed, direction, and entropy gradient are obtained by integration
as shown in Equation (34) of this report. A streamline will have the pro-
perties of a characteristic, because, in this form, the equations of motion
do not determine the rate of change of velocity, ¢, and entropy, S, in the
direction perpendicular to the streamlines.

For hypersonic flow past a blunt body, the shock wave lies close enough
to the surface that the streamlines are roughly parallel to the body except
in a small region near the stagnation point. This fact immediately suggests
the possibility of utilizing an assumed streamline pattern and shock shape
for calculating the flow over the nose of a blunt body in a high-speed flow.
Computations are started by assuming the flow pattern and the corresponding
form of the bow shock wave; the distribution of entropy behind the shock wave
can then be determined. With the aid of the continuity, momentum, and energy
equations; Equations (34), (37), and (38), these initial assumptions are
corrected by a convergent iterative procedure until.a final solution is
found. It is easy to satisfy the boundary conditions for a flow with an
attached shock wave, because the location of the shock is fixed at the point

of attachment to the body in this case. If the shock wave is detached,



Uchida and Yasuhara use the ratio of the maximum value of two flow deflection
angles, before and behind the shock, as a parameter to define the incomplete-
ness of the solution at the shock boundary for a fixed shock-stand-off dis-
tance. The correct shock location then can be determined by interpolating

for the shock standoff distance which makes K = S max l. A double itera-

§ max
tion technique is carried out whereby both the streamlines and the shock are
readjusted until a consistent solution is obtained.

As an example, the flow about a sphere in a uniform supersonic free

stream (M=1.5) is presented herein.



CHAPTER II

FUNDAMENTAL EQUATIONS

2-1. Fundamental Equations for Steady Rotational Flow

The steady rotational flow of a nonviscous and non-heat-conductive
compressible fluid is governed by the following relations—i.e.,

Equation of state for the ideal gas:
P/p = RT (1)
with the aid of the first law of thermodynamics
dq = € dT + Pdv = C dT - vdP

and the second law of thermodynamics

ds=i%=Cpg%—-%dP
we can find
ds = (cp)(d—i--d—z—) - 3 av
= (C +R)5§—cpi9—§dp
oy



integrating
_ r oY
S SO C lnP(-—p)
0
or
P 5-8./C P -5./C
%=-O—e " iflet—>2e 0 Yo
£ pOY pO
s/C
hence P = ¢ ¥ pY : (2)

Equation of continuity:

div(pq) = 0 (3)

Definition of %E(q):

2
29 , 24 L -
Dt ¥ + grad(2 q) q A rot g

If it is steady flow, %% = 0, and from momentum equation and the definition

D
of gt-(q),

D “ 1
-I-J—E»=grad(%q)-—qﬂ rotq=-p—grad P. (4)

Equation of energy in steady flow without dissipation and heat conduction:

or

58 _
T(at + g x grad §) = 0.



58
Steady flow: 5 0;

then

DS _ _
T5¢=0=qx grad s, (3)

i.e., the streamlines are perpendiculars to grad S;

then
S = () (6)

where i is the stream function.

The equation of energy or enthalpy, i, is given by

Di .. DS . 1DP
Dt - Ipe T o Dt 7
or
Di 1 DP
Di _ 1DP 8
Dt o Dt (8)

C
Since 1 = C T = £
p R

© |ry

=Y 2
y=1 p

and since the total energy is defined by

S

y-1p° (9)

@ g
E = > qg + 1 > q

2
DE _ DL D(sq )
Dt Dt Dt

2
%—q x grad P+ q x grad (%q )



and

hence

2
=qx E% grad P + grad (%q )]

q x (g A rot g) = 0.

DE 5E
Dt é{ + q x grad E

q x grad E,

|5

»

=49

o
rt

the total energy does not vary along the streamlines.

Therefore,

E = G(y).

Equation for vorticity:

From

and

it is

oT

(g A rot q) = q x grad E = 0,

1 2 _ 1
V(z q ) q A rot g = - 5 VP,

1

vVi= TV + 5 W,

VE

; 1 =
Vi + VQE q ),
easily seen that

1 2
V(4) - q A rot q = TVS

Vi

(10)

(11}



2
-thotq-TVS=-Vi—-V(-:2£q);

therefore,

q A rot @ + TVS VE.
For isoenergetic flow, VE = O; then,

qQ k rot g = - TVS = -T grad S. (12)

2-2, Fundamental Equations for Geometrical Relations
General Curvilinear System:

x = £ (a, B, ¥)y ¥ = £,(e, B, ¥), z = £5(a, B, V)

parameters of coordinates are defined by

h = 1 Ca \// D653 o (BB s g DEy° ' (13a)
a 6120 3a (Ba) (aa) (au) -
o
b= dim B o2 | Bny% (222 (13b)
N T Ge s 28
B
ok 3% 2 . oy.Z . /32,2
h = lim —L = 1/(—) + (D + (2D (13¢)
Y 5 -0 3y 3y 3y Y
v

In the new coordinate system, a vector is given by

The operator V is given by

[y
=)

Vo s i b e
os s
a B Y

™l
+




or

13z, 13 . 13 -
T wmttR TR o Y
o < Y
The divergence is given by
A h A h
B 1 a(Am hS hY) 3( 8 ha Y) 3( P hB)
VAR BB | 50 38 T 3 1+
a ™3 My ¥
The rotation is given by
o B Y a 8 Y
3 3 3 135 13 13
VAL = | — — = R T AR T
o 3 ]
s, sB SY h  3ca hB oB hY 3y
A A
o B Ay b A A
or
h a B h ¥
o @ hBB YY
1 3 a a
VAA = = = —
ha hB hY o 38 3y
A h A h,_ A
@ e B B YhY
In this way, we can write
' ) 1 B(QqahBhY) B(DQBhahJ)
e B
d(pq h h )
yof
+ 5y 1. (14)

For two-dimensional flow in the reference plane, X-Y, qY = 0 and
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a(pq h,) 3(pq,h )
; - a B8 2 a
divieq) h i et 1

For axially symmetric flow in the meridian plane, X-Y, where the X-axis is
identified as the axis of symmetry,
3(pq hoy)  3(pqgh y)

divieq) = h by T

Alternatively, the equation of continuity can be written as follows:

_ 1 a(oqahaye) B(Dqshaye)
div(pq) = . [ ™ + 38 1 =0, (15)
hahsy

where € = 0 in two-dimensional flow
g = 1 in axially symmetric flow.
From the equation of continuity, the stream function can be defined by the

velocity components as

e 1 By sl g, — 1 3 . (16)
a € 38 B
ohBy o

The vorticity is given by

a B ¥
. N 3q 8q aq oq
_ a E] 3 - = Y _ B a S N
vig 98 ds,. 0s @ (as ds ) 8 (as 3s )
a B Y R o
5q dq
- 8 Q
Ty 95 9y v (53 35,




il

ar

In the special case that the streamlines are parallel to one of the
orthogonal curvilinear coordinates. TFor example, let B = constant (see

Fig. 1(b)) so that the streamlines are parallel to the o—axis, then qB =

1 3 . . . p y
- =< = 0. Then in the two-dimensional case or axi-symmetrical case,
ph au
P QY

q, =0, q = fla, 8);

Y o
hence,
@ B ¥
n oo aq -3q
_ a g g = a o
rot q = ds ds_ 3s B (Es )+ ( as )
a B Y B8
0 0 =gy B EY ¥
or
9q
- o
rot ¢ = vy (- oy )
8
because
. BqOi . 9q . B
EB © Bs h & '
Y Y Y

Therefore,
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-
rot qAq = | 0 0 & =3
qAq Ly 3 (EY q,)
| 4. 0 0
Since rot qiq = TAS,
-Yqu =T 52 ’
"8
And, because gq = 1 &y and ds, = h_ dRg,
o - B g
OhBY o8
_ T 35 E &5
5y T T s, PV By
h
phoy~ 28
or
P &£ 3§
EY =X 59 (17)
Also,
I a(anB) _ c(qaha)] _P e 38 (18)
h g 3a 58 RY %y °

2-3. Fundamental Energy Equation in Steady, Isoenergetic Flow of an Ideal
Gas.

The velocity of sound is defined by

a = v(3P/3p) = y(P/p). (19)

s=const

The energy equation is given by
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2 y 2 P
E=-]-'-q+ B=£q +-—-Y—l.
2 v=1 p 21 y=1 pl
If g = 0,
2
P a
E=-—Y_ 0 __0

‘where a, is the sound speed at stagnation conditioms.

If P =0,

2 Pl 2

-1 S 1.1
Feqy ° 2 Imax * (20)

where Uax is the constant maximum speed the fluid can achieve and is deter-
mined by the upstream conditions. If q = a = a,, where a, is defined to be

the critical speed of sound,

2
2 2 2 a
s i g et
2 y-1 2(y-1) "* -1
hence,
2 +1 Z
ay = J%?- a, -

The formula for demsity can be obtained in the following way:

From
12, x 2.y
2% TYTe Ty
o 2
P "0 y-1
Pp 177 a7
G P 0



State 1

Fig. 1(a). Velocity components before and behind a shock wave.

y
Bow Shock Wave
Boundary S a-Constant
8=Constant
(Stream Line)
=
=y,
Dl ¢
1
41
C—————
Boundary A
=1 _|[=0

) \ N~ X

Fig. 1(b). Scheme of the flow pattern.

14
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bo) Y S_S /C
. I D 0 p ; . ; :
Since T » by substitution into the previous equation,
Q poY
1
-[(s-5,) /R] B
2 - e 0 [1- [El 92]Y_l
Po 24
L
-[(s-5,) /R] Rt
= e 0 1 -xL._q vl
v+l 2
8%
or
o cles=spmy
—=e L), ] (21)
°q Py isentropic
2-4., Boundary Conditions
(a) . Fixed boundary along the surface of a body

Along the solid surface of a body, the stream function must be constant.
Thus, a fixed, solid boundary is usually represented by B = Ba = 0 so that
Y = ¢a = ( when we choose one of the two curvilinear coordinates to be the
streamlines.

(b). Variable boundary along the bow shock wave

Introducing the notation shown in Fig. 1(a), fundamental equations are

given by
Low of continuity: P19,7 = Pol.9 (22)
2 2
Momentum theorem: P19,1 + Pl = 054, + P2 (23a)
(23b)

P1991%1 = P292%:2



Conservation of energy:

2 Pl 2

r|

q
L 1

In solving these equations, several relations are obtained (6), as

follows:

Deflection angle:

2
1 y+1 Ml
tand

2
hl Sin wl-l

Pressure ratio:

P
2o B ope el _ ¥RL
P, = v+l Mg Sin W, - =]

—

Density ratio:

o _
E£-= Yil [ Z % < * liil
2 Ml Sin Wl
Entropy cheange:
e(sz_sl)/cv __B/P
S
(oz/ol)
_ 1/y
(52 Sl)/Cp ) (PZ/Pl)
czfpl
1/y-1
(SZ-SI)/R ) (PZ/PI)

e =
(o, /oY T7E

The form of the shock wave can be expressed by

~ 1_1 I
RS 2% Ty

= [ 2 > - 1] tan w

1

16

(24)

(25)

(26)

(27)

(28a)

(28b)

(28¢c)



w
I

or by

y ys(x) in Cartesian coordinates,

as shown in Fig. 1(b).

Since
1 oy
g = =z s
€ 3B
h
P BY
integration gives
1 B 5
f dy =17 pq hy v dé.

In the free stream, upstream of the shock,
h, =1 and - B =y.
(i) For the 2-dimensional case, € = 0, and

¥4 0
p=r dy = p,q.¥, ;

(ii) For the axi-symmetrical case, € = 1,

y Y

u o= f 1 d — (—l)

Bs(a) in curvilinear coordinates -

17

Therefore, we can write the shock boundary conditions in the following way:



and

=y

s

71
= £19,¥, 5
at 8

&

at

8 = Ss(a)

18



CHAPTER III

PRINCIPLE OF THE METHOD

3-1. Characteristic Equation Referred to the Streamline Coordinates

A partial differential equation can be formally transformed into an
"ordinary one in the general case, and then it can be iﬁtegrated along the
coordinate curve (or surface) perpendicular to the reference coordinate if
we are careful to choose curvilinear cocrdinates so that the reference co-
ordinate coincides with the curve of solution about to be analyzed.

In the present case, we assume that B = const. coincides with the

streamline ¢ = const., as shown in Fig. 1(b). On such streamline coor-

dinates, we find:

4, = 95 Gy = 0
Since %g =0 and Y = Y(8),
%%_ 3 = gy
or
a8 _ 1 .
¥ pqhBY8

The equation of vorticity is reduced from Eq. (18) to

19



Because h_odB = le Y, by substitution into Eq.

. Or

8
Py
a(qha) _ Phu 38
oy Rpq 9y °
and, because
P
2 Y
y=1 p 2 -1 0 v=1 po
P 2

P 0 =1 g
Smes [ = BT

p DO aO

Eq. (30) can be changed to another expression:

m=_P_O[l L(_g.)lh“"s
5y Po Rq oy

Furthermore, because

2 2 2
o 3% & __ %
Rp YR c (y=1)C_ °’
0 —¢ (=2 P
(€0, (D)
. 2
) % % = Bk g5y a3
B y-1 2 24 q s 3

or, reduced to dimensionless form,

(29),

20

(29)

(30)

(31
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- _q. 3(5/C).
°<ha a ) h > —EB
LER - S T = L (32)
oV v=-1 2 ag q/ao

Under the known distribution of entropy S, this differential equation
is the characteristic equation referred to the streamline coordinates.

In different form,

S(HQQ/HO) . SCq/aO) s aha .
50 « Bu 128 3y °
Then,
3S/C
amj%) 3h h 1 5 “'TR
h ————+ q/a, =2 = - 2 [1 - Llg/a) 14—
a v 0 oy Y- 2 0 q/ao
or
A PR E B SR NPT = M e L0
ay 3y 0 ha 3y y=-1 2 0 oy
But
9 2
- a(q/ao) i i-a(q/ao) g o0 sh 1 (Inh_ ) .
a, oy 2 8y oL B W 2 50 ’
hence,
/ )2 ( 2) 3as/c
3(q/a 2 3(ln h 5 -1 L2
— ¥ s (qfa) ——2— = - L1 - g/ 12
3y 0 3y ¥-1 2 0 3y

or
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5 2
B(qfao) 3(1ln ha ) d(S/C ) 2 d(5/C_)
- =% P

50 + k 5 P (q/ao) il ey av (33)

This is the differential equation of Uchida (3).

To obtain the integra-

= =)

s d(S/CP)
dy
2
o By d(s/cp)

tion, because
2
2 ha
lnha —C—=ln S/C
e
and
s/c 2
. 2 5 / p o(h_ /e
o [lnh ____]=e O
3y a G < e
P h,
by substitution,
2 s/C
SIB. .
a(q/a,) p a¢h “/e
Gjh e . o
/ |
i aO ha ol
or
s/C
h 2 35(q/a,) 5 3(h ?%/e
0 + 9 o
s/c ay a, 3P
e
Now
. b, 2 2 h 2 3(a/ay)
— [ (q/a Y 1=
3y S/C s/C Y
e e

therefore,

-1 s/C dy
Y P L4

e

(a/ag)"

s/C
2 3(h 2/6 By

30 ;




2 2
h 2 e d(S/Cp)

s/C_ y-1 di
/ _ Y

~
a

a
= E"§7E;(q/ao) ] =

oy
e e

Integrating along the normal n or B to the streamline wl’

h2

3 o 2. oa . 7SIC asicy
I 3% [ s/cp(q/ao) 14y = J g—th e ——Eﬁ—z—dw + F(a),
e

where F(a) is an arbitrary function of « only, or

2 1 S/cp o —s/cP d(s/c_)
(Q/ao) - ;—5 e (s ;:Iha e 3 dy + F(a)].
o]

Integration between the streamlines, wb and Y, along an orthogonal,

a = constant, eliminates F(a):

2, ~S/C, 2 2 8,/C
(q/ao) h e -(qb/aﬂ) hub e

v _, o ~S/C,a(s/c)

— P 4y
Cy-1a © dy dy.

¥y

= [

Since

-s/C
-s/C_ d(s/cC
de. P SHIG PG
dy Ay
5 -s/C 2 o =S_/C
. 2 P _ b "p
(q/aj) h,e (qb/ao) by ©
v -5/C
2 2 d(e ) t
+ s / ha ey dy
Y

or

23



2
-S/C
2 2 "S/Cp 2 2 "Sb/C 2a Y 2 de P

. N de
q ha e 9y hab e + o) fw ha o di.
b

This is the integral equation of Uchida (3). Also, because

-s/C 2
Y 2 4a P 2 =§/C, v v =8/C_ d(h )
s L dy=[h e P -7 e P v,
u o dy o ; " dy
b *b b
Eq. (34) can be written as
2 2 -5/C 2 2 -S. /C 2 -S5/C U
P_ b"p 2 P
(q/ap) b, e = (qp/ap) By e Pogr y ® !
¥,
2
- oy=1 ; dy
Yb
or
2 9 2 -S/CP 2 2 2 _Sb/Cp .
[(q/ao) - ;:I] h e = [(qéao) - ;:i]hab e
2
__2_f1p —s/cp d(h_ ) i
=1 © ay oY
%
or
(s-5,)
2 hub C 2
= P
(a/ay) 2 e (qt;/ao)
a
-s/C
S/C_ h v h P
2 P (b & 5= de
+ -1 e (h )/ (h b) av dy

24

(34)

(35)
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In the fully nondimensional form, this equation can be written as

(q/ao) = ( ha/E) e (qh/ao)
g =s/C
L2 S/C, B/t 2 f¢/wu h /b 2 40P i "
a Yy /¥, ab ) Yy
\bu

- 2
where wu = pOaOEQi)E, unit flux.
The stream function can be calculated by integrating the equation of

continuity as follows:

B
B = i = IB pqyehsds .

a

Boundary conditions are given by

and

V= v, =014y, 5,/ at 8 =8_(a)

or

. 8 h
‘1"_:#=_{ _ﬂ_(z}é)el_sds
Vs ppage/m® o Pofo
n/% n
=5 2L0ehfa® (37)
o Po% * 2

where thB = dn and



s

tiy

——p—

Orthogonal line

()

o ]

Approximation of flow pattern.



27 .

~[ (8- , 2
_0q _ [(s SO)/P}[(l _ l:ﬂ;_fl_)lf(Y—l) _ﬁ} (38)
o2y 2 2 a il
070 a 0
8]
Hence,
q
—t— D - D (39)
pOaOR(E/Z) 0 0
but v = ¥ = pjagy,(y;/2)° at  n=ng
therefore,
W P14,y (y,/2)° q
s — = 17111 — - GCgi) ' (40)
pOaOR(E/Z) pOaOE(E/Z) 0

The quantity, qS/aO, is obtained by numerical calculation of Eq. (40).

3-2. Approximate Method of Flux Analysis by Uchida and Yasuhara

Consider now that the conditions of a free stream before shock wave
are given and that the body shape is known. The method of flux analysis
by Uchida and Yasuhara can be reduced to the following steps:

STEP 1 -—— Assume the flow pattern.

In the first step of the procedure, an approximate pattern for the
streamlines around the body and an approximate detached shock shape are
assumed as shown in Fig. 2. Such approximate patterns can be obtained from
approximate theories; even incompressible flow patterns have been success—
fully employed in several cases.

STEP 2 --- Iteration of streamlines.

For the given free stream Mach number and the assumed streamline pat-

tern and shock shape, the entropy distribution and the distribution of the



A
Eq. (40)
Vs
£
L
poaolﬁi)
i L (y_l) €
poaoﬂ L
4 T,
qS/a0
Fig. 3. Representation of Eq. (40)..
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Fig. 4. Flux distribution along an orthogonal curve (x=constant).
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approximate valueé for the geometric parameter, ha/has = 555/65, can be
established. In the formula for hu/has’ §s is the are length of a stream
line segment between two adjacent orthogonal curves.

We can obtain the value of flow speed at an arbitrary point, q/ao, ex-
pressed in terms of the boundary value of velocity, qs/ao, can be obtained

from the following equation:

2 2 [(s-s)__,/c ]
= P
(q/ao}m e (haslha)m"l (q /a )
-Smrl
B C
S /C m-l 2 p
url he! de ~
= 1 /h ) / )m_l a8 dg__; » (41)
B m-1
s,m—l

‘where m represents the degree of the approximation, i.e. the iteration
number.
Using Egs. (38) and (40), the boundary value of dimensionless speed of
flow, qslao, is obtained as shown in Fig. 3. Then, substituting qS/ao into
(39), a distribution of the stream function along an orthogonal curve
(o=constant) can be obtained (see Fig. 4). From the y-n relation, values
of 8 or n corresponding to the stream function can be corrected and, accord-
ingly, the intersection of the corrected streamline with the orthogonal curve
concerned, o= constant, can be determined as shown schematically in Fig. 5.
STEP 3 --- Correction of the form of the bow shock wave
The value of Wl corresponding to the Smax’ viz., Wlmax’ can be obtained
by differentiating Eq. (25), and setting %% = (0; the following result is

obtained:



3k

2
A _ 1 oyl 2
Slnwlmax———:—ztﬁ Ml -1
Y
y=1, % _ ytl 4
+ /[(y+1)(1+ M+t Ml)]} (42)

Then, substituting W into Eq. (25), 6max can be obtained.

lmax

In the initially assumed patterns, the streamline deflection, 85, in
general does not coincide with the flow deflection angle immediately behind

the shock & obtained from the oblique shock relations for the assumed shock
)

angle. Uchida and Yasuhara use K =-§§ = 20X

g
max

incompleteness of the solution at the shock boundary for a fixed detachment

as a parameter to define the

distance.

The first step in their calculation is to find a shock shape which is
consistent with K = 1 approximately. They set the value of the detachment
distance b on the axis. With a given value of the detachment distance, they
find an appropriate value of K and the corresponding shock shape by a method
of successive correction.

If the calculations for various values of b are made by starting with

identical patterns of flow as the zeroth approximation, the correction fac-
tor, K, will be given as a continuous function of detachment distance b.
The correct detachment distance for the nose of the bow shock wave (corre-
sponding to K=1) will be determined from the K-b relation as obtained above.
A final solution is obtained by determining the flow field corresponding to
this value of b.

STEP 4 -—— Double iteratiom

Using the new value of & from Step 3 {which will give the readjusted



distribution of entropy [Egs. (26), (27), and (28a)] and the streamlines
(corrected by the method described in Step 2), the shock shape is once
again adjusted to the new streamline patterm. The double iteration tech-
nique is carried out by repeating Steps 2 and 3 until the streamline pat-
tern and the shock shape and location provide a completely consistent

solution.
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CHAPTER IV

FLOW AROUND A SPHERE IN A SUPERSONIC FREE STREAM
WITH A DETACHED BOW SHOCK WAVE

As an illustrative example, the flow about a sphere will be determined
for the case of an M=1.5 uniform, supersonic free stream:

1. Assume flow pattern and shock form.

A flow pattern for starting the calculation can be assumed arbitrarily.
The more nearly the initially chosen flow pattern approximates the final
result, the more easily a convergent solution for a fixed detaéhment dis-
tance of the shock wave may be found. In the present problem, the flow
pattern corresponding to the incompressible, irrotational flow of a fluid
around a sphere is initially chosen for starting the calculation. The stream

function corresponding to incompressible, irrotational flow around a sphere

is
vd 2 yr
¢=—mSine+—2-Sin6,
-where d = the diameter of the sphere,
r = the distance from the center to streamline,
U = the free stream velocity,
and
6 = angle of polar coordinate.

For simplicity, the value of the detachment distance, b, can be se-

lected from the experimental values of Heberle, Wood and Gooderum's or from
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Hida's theory

Irratational Case (Tamada)

Heberle, Wood and Gooderum
Experimental Values

(1)}

L.5

Case of a Sphere.



the theoretical values of Hida shown in Fig. 6. 1In the present case,
M1 = 1,5; therefore, b/d - 0.287. It is assumed that the entropy in the
free stream stagnation state is SO = 0.

The assumed flow pattern and shock shape are shown in Fig. 7(a).

2. Correction of streamlines.

Given Ml = 1.5, it can be shown for y = 1.4, that

p/oy = 0.395,

P /P, = 0.2724,
M* = 1.365,
and
= +l1/2*=-—-——2 T/*=-——2 ]/2 =
q,/8y = 4,/ 5 %a ™ = G x 1.365 = 1.246.

For the sphere, e¢=1, and, if 2=d, the shock wave boundary can be

represented by

or

ST

‘.‘JS yl 2 yl 2
—_— 2 =0.395 x 1.246(—) = 0.4922(—)
pna (d)(é) g d

070 2

From Egqs. (26) and (27),

e 2 2
2 2y .
= ;;I(Ml Sin W

Pl 1

2
N el S . -
1 2Y) 2.625 Sin W 0.1667



\ﬂ/// Streamline

o

Orthogonals

¥,=1.5

]
fih

[0}]

7(a). Assumed flow pattern.

[



and

p -— 1
i gk + XLy 03708 4 1667,
oy YL Ty Zsin’u 2 Sin’wW
1 1 1
From Eq. (2),
5,-5,
o9 BT 1.4
e = (%)(p—l) = (0,2724) x (m) = 1.0007.
1f
5 = 0,
-5./C
e 1 V.2o0.9993,
-s_/C
e 1 P -0.9994,
and
—Sl/R
e = 0.9997.
From Egs. (28a), (28b), and (28¢),
e-sz/cv Bk, fa¥ = 0.9993
- p P /P o, 1.4 °?
1 FofFy °1
(P2/Pl) X (pz)
=S,/C, 870, ey 1 ~ 0.9994
: " C A Y RS Vo SR
(®,/2) e X tpqipy

and

]
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-5, /R “5_ /R p, ==
2 1 2.v-1 1
e )"

P 1/y-1
1 (Pz/Pl)

e

0.9997

170.4 1.470.4

(2, /20 x (o) /0,)

Measuring Wl values from the initial assumed flow pattern shown in
Fig. 7(a) and substituting into the above equations, distribution of the
entropy and the entropy gradient behind the shock wave can be obtained as

shown in Table II. The approximate value of the parameter, ha/has’ can be

measured from the assumed flow pattern since
ha/has = GSS/SS.

Thus, using Egs. (36), (38), and (40) and the given data, the corrected
streamline distribution can be determined. The y-n/d relation along an
orthogonal curve (o= const.), for example, the 8-g line shown in Fig. 7(b),

can be calculated as follows:

W, = 66° (from Fig. 7(a))

1
and
Py
T = 0.8 (from Fig. 7(a)).
Values of ba and %—corresponding to each intersection on this orthogonal
“us

curve (i.e., the 8-g line shown in Fig. 7(b)) are

h
EE" = 0.9, 0.92, 0.95, 0.97, 0.98, 0.99, 1, 1
as .



Fig.

— — — — lst Approx.
— - —. —2nd Approx.

— .. —..—3rd Approx.

4th Approx.

7(b). Streamlines and form of bow shock waves in every stage

approximation for b/d = 0.287.
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and
% = 0.48, 0.525, 0.56, 0.625, 0.662, 0.712, 0.75, 0.80;
¢S 2
—= = 0.4922 x (0.8) = 0.3136;
d
Po%0 2
B, "
7= 2.625 x Sin (66°) - 0.1667 = 2.0241;
1
P1 _ 0.3704
= B meeer— 0.1667 = 0.6105;
P2 sin  (66°)
-5,./C
g © P 1/2'2994 —— = 0.9969.
(2.0241) 7 x (0.6105)
Similarly, other lines such as 7-f, 6-e (see Fig. 7(b)) and so forth
-82/R de—52/Cp
are calculated. The quantities e and ———— are presented in Table
dw/pOaGd

II, Then, substituting the above data into Egs. (36), (38), and (40), the
value of qS/aO correspdnding to this orthogonal curve (i.e., the 8-g line

shown in Fig. 7(b)) can be found. Thus,

qS/aO = 0.90

in the first approximation, and the § vs o relation can now be established
as shown in Fig. 9(a). From the ¢ vs o relationship shown in Figures 9(a)
and 9(b), values of o or n corresponding to the various streamlines, Yy =
constant, can be corrected; then the orthogonal curves, o = constant, can be
constructed as shown in Fig. 7(b).

New orthogonal curves and, consequently, new values of the parameters,

ha/has and y/d, are used in the succeeding calculation.
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3. Correctiqn of the detached-shock-form.

(a) Using Eq. (42), the maximum value of Wl is obtained:

2 2
1 =l_l—_l-.]_'. P = < 4
338 ¥y e gt oy~ Vi a + Iilﬂl i I%%Ml ) 1
YMl
2
] 1 [1.2+1 . B e g
i Al 8
+ /(2.4)(1+Qﬁx152+3'—‘ix154) ] = 0.842
2 - 16 - -
hence W = 66°36".
1,max

Using Eq. (25), the corresponding deflection angle,

§_ = 12%"',
max

is then found.
(b) Using Hida's theory or the experimental values of Heberle, Wood

and Gooderum (see Fig. 6)

b/d = 0.287
therefore,
emax =K=0.95#%&1
s ,max

Since the correction factor is very close to unity, the value of b/d,
0.287, will be assumed as the final solution of the detachment distance.

(c) Then, the form of the shock wave is drawn by tracing the points,
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— —— 2nd Approx.
== 3rd Approx.
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Fig, 8. Distribution of the entropy (sphere).
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—t=—.—.—  3rd Approx.

=—se=—s———  4th Approx.
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Fig. 9(b). Relation between v 3 and o (3rd and 4th approximations).
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on which the angle of flow, GS, coincides with the corresponding deflection
angle, &, as given by Eq. (25).
4, Double-iteraticnm.

Substituting the new values of W. into Eqs. (26), (27), and (28), the

1
new distribution of entropy is determined as shown in Fig. 8 or Table II.
Correction of the flow field established by the method outlined above can
now be corrected by iteration.

Four iterations have been calculated with the aid of IBM 1620 and IBM
360 computers. Since the linear relation on each eg-constant line is not
like that on any other a=constant line, a trial-and-error method for finding
the values of qS/aO that satisfied Eq. (40) seemed necessary. However,
there are always two roots in Eq. (40), especially in the vicinity of the

sonic line.

All the results are shown in Table III and Fig. 7(c).



CHAPTER V
DISCUSSION

At present, no one of the existing analytical treatments or numerical
methods for solving the supersonic or hypersonic blunt-body problem is en-
tirely adequate for predicting the details of the flow field past general
blunt shapes. This is particularly true if an adequate solution of this
problem is defined as one which can establish the flow field geometry when
non-equilibrium effects are present in the flowing fluid.

The problem which is considered here to be the most interesting one is
what is termed the "direct problem", in which the body shape is given and
the details of the flow field are unknown. Existing numerical attacks on
the direct problem fall mainly into three categories: (1) Steamtube-
continuity methods, (2) Methods of integral relations and polynomial
approximation, and (3) Relaxation techniques and the unsteady approach
method,

In this present report, the method of flux analysis developed by Uchiéa
and Yasuhara, a streamtube-continuity technique, is used. Other such itera-
tion schemes have been reported by Maslen and Moeckel, Gravalos (5), and
Gravalos, Edelfelt, and Emmons (11). Among such iterative approaches, the
method of Uchida and Yasuhara is, in principle, more nearly exact than the
other methods. No fixed assumptions are required in the scheme given by
Uchida and Yasuhara. If no difficulties in convergence occur, this method

provides a way of completely determining the blunt-body flow under
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consideration. Furthermore, many of the difficulties associated with the
transonic character of the flow in the neighborhood of the sonic line can
be minimized.

However, Uchida and Yasuhara have given a very tedious method of suc-
cessive approximations which does not seem to be easily adapted to computer
computation. Such an approach seems to involve procedures of trial and
error, and some errors grow with the number of iterations as geometric or
arithmetic progressions. To increase the accuracy achieved, one must per-
form many iterations and, in making these iterations, must carry many sig-
nificant figures,

Uchida and Yasuhara have published the results of such a calculation
for the flow over a circular cylinder at M = 2 (y= 1.4). Their published

results agree fairly well with corresponding experimental results.
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NUMERICAL RELATION BETWEEN FLOW QUANTITIES IN FRONT AND BEHIND

TABLE I

INCLINED SHOCK WAVES AT M. = 1.50 (from reference 10)

50

1

AS
P P e

iy 5 . 32 5 felaec’

(deg.) (min.) (deg.) (min,) 2 1 2 °F

41 49 0 0 1.500 1.000 1.000 0

45 2 47 1.405 1.146 9074 3339
48 5 5 1.322 1.283 .8373 2.643
51 7 5 1.246 1.419 . 7799 7.361
54 8 46 1.174 1.551 7325 14.752
57 10 8 1.107 1.680 .6932 24,227
60 11 9 1.045 1.802 . 6605 35.484
63 11 49 .986 1.917 .6332 47.745
66 12 6 .932 2.024 .6105 60.597
69 11 59 .882 2.121 .5916 73.519
72 11 25 .837 2.208 .5761 85.625
75 10 26 797 2.282 .5636 96.758

78 9 0 . 764 2.345 .5538 106.52

81 7 10 .737 2.394 .5463 114.27

84 5 0 .717 2.430 . 5411 120.18

87 2 34 . 705 2.451 .5381 123.69
90 0 0 .701 2.458 .5370 124.917
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TABLE II

DISTRIBUTION OF THE ENTROPY AND ITS DERIVATIVE
(SPHERE, M;=1.5, y=1.4, S,=0) '

1
-S/C
: P
2 -8 /CP ._.ie_—z_._.
ylld w/poaod /2 e dwfpoaod /2
lst Approximation
0.1 0.0049 0.9799 0.1219
0.2 0.0196 0.9815 0.0397
0.3 0.0441 0.9834 0.0489
0.4 0.0784 0.9871 0.0501
0.5 0.1224 0.9906 0.0235
0.6 0.1764 0.9920 0.0221
0.7

0.3136 0.9941 0.0226

2nd Approximation

0.1 0.0049 0.9799 0.1219
0.2 0.0196 0.9808 : 0.0305
0.3 0.0441 0.9811 0.0271
0.4 0.0784 0.9824 0.02%1
0.5 0.1224 0.9834 0.0163
0.6 0.1764 0.9840 0.0102
0.7 0.3136 0.9846 0.0087




TABLE II (Continued)

--S/CP

y,/4 ¥/pgagd /2 e dwfpoaod 12

3rd Approximation
0.1 0.0049 0.9799 0.1219
0.2 0.0196 0.9811 0.0483
0.3 0.0441 0.9819 0.0491
0.4 0.0784 0.9840 0.0508
0.5 0.1224 0.9858 0.0254
0.6 0.1764 0.9865 0.0229
0.7 0.3136 0.9885 0.0196

4th Approximation
0.1 0.0049 0.9799 0.1219
0.2 0.0196 0.9810 0.0406
0.3 - 0.0441 0.9815 0.0322
0.4 0.0784 0.9829 0.03586
0.5 0.1224 0.9843 0.0234
0.6 0.1764 0.9852 0.0152
0.7 0.3136 0.9861 0.0131




TABLE III

SOLUTION FOR SPHERE AT M=1.5, v=1.4

First Approximation

53

L4
Line No n/L /a /d /h Pna o C* Pa*
’ - 1s/% y as 070 2

8-g 0.47  0.90 0.470 0.90 0.0329 0.0590  0.9111
0.525 0.92 0.0687 0.0468  0.9683
0.560 0.95 0.1084 0.0403  0.9874
0.625  0.97 0.1526 0.0296  0.9853
0.662 0.98 0.2038 0.0208  1.0034
0.710 0.99 0.2572 0.0136  1.0027
0.750 1.00 0.3139 0.0068  1.0007
0.800 1.00 0.3145 0.0000  1.0000

7-f 0.40  0.77 0.40 0.92 0.0267 0.0521  0.9297
0.46 0.93 0.0568 0.0395  0.9676
0.50 0.95 0.0905 0.0333  0.9867
0.537 0.97 0.1265 0.0229  0.9846
0.60 0.98 0.1665 0.0138  0.9828
0.65 1.00 0.2106 0.0068  1.0020
0.70 1.00 0.2580 0.0000  1.0000

6-e 0.375  0.63 B:.,455 0.96 0.0232 0.0443  0.9669
0.425 0.98 0.0516 0.0318  0.9855
0.460 0.99 0.0830 0.0259  1.0047
0.500 0.99 0.1176 0.0161  1.0025
0.560 1.00 0.1567 0.0072  1.0007
0.600 1.00 0.1983 0.0000  1.0000

-s/c
h _,8/C B h_
% - %y 08 P a y“ de
C Y"l(ha ) e fB (ho.s) a8 dg
s-S S
S
h _2 C q 2
# p=GEDe P (D)
%



TABLE III (Continued)
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2

) ' d

Line No. n/t qs/a0 y/d has/h P02 3 C P

5—& 0.34 0.585 0.245 1.10 0.0174 0.0390 1.2173
0.340 1.05 0.0414 0.0250 1.1078
0.410 1.00 0.0695 0.0171 1.0040
0.450 1.00 0.1008 0.0083 1.0018
0.500 1.00 0.1360 0.0000 1.0000

b4—c 0.34 0.510 0.200 1.30 0.0163 0.0277 1.2151
0.245 1.20 0.0354 0.0153 1.1058
0.290 1.05 0.0577 0.0085 1.0021
0.375 1,00 0.0862 0.0000 1.0000

3-6 0.40 0.382 0.140 1.00 0.0129 0.0161 1.0020
0.210 1.00 0.0326 0.0058 1.0008
0.280 1.00 0.0581 0.0000 1.000

2-a 0.22 0.475 0.110 1.10 0.0101 0.0107 1.2115
0.190 1.00 0.0266 0.0000 1.0000
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TABLE II1I1 (Continued)

Second Approximation

L)
‘Line ' d2 : (_g)z
No. n/2 qsfa0 y/d has/ha Po30 3 C o4 a,
8-g 0.54 1.32 0.50 0.90 .0329 .0389 .8144 1.3800
0.54 0.92 0677 0254 .8502 1.4560
0.57 0.95 . 1030 .0215 .9063 1.5576
0.63 0.97 L1411 .0158 .9436 1.6283
0.67 0.98 .1811 .0100 .9622 1.6665
0.71 0.99 .2228 .0063 .9813 1.7035
0.73 1.00 .2651 ,0033 1.0006 1.7402
0.80 1.00 L3114 .0000 1.0000 1.7424
7-f 0.48 0.58 0.41 0.90 .0258 0328 .8139 .3501
0.47 0.92 .0561 0207 .8497 .3785
0.52 0.97 .0909 0179 L9443 .4213
0.54 0.98 .1270 .0123 9626 JA405
0.60 0.99 .1682 0067 .9813 4549
0.64 1.00 .2129 .0031 1.0006 L4677
0.70 1.00 .2615 .0000 1.0000 4705
6-e 0.42 0.58 0.355 0.95 0211 .0284 .9063 .2772
0.41 0.97 0462 .0180 L9440 .3408
0.44 0.98 0735 0140 .9632 .3108
0.48 .99 .1037 .0089 .9817 .3223
0.53 1.00 .1367 .0036 1.0006 .3355
0.60 1.00 .1763 0.0000 1.0000 .3373
5-d 0.38 0.505 0.25 1.06 .0157 0249 1.1276 .2570
0.34 1.04 .0372 0149 1.0845 .2562
0.41 1.00 0624 0102 1.0023 . 2404
0.45 1.00 .0905 .0051 1.0010 .2451
0.50 1.00 .1220 0.0000 1.0000 .2500
bf=-c 0.38 0.40 0.21 1.20 .0153 .0196 1.4437 .2114
0.25 1.10 .0327 L0097 1.2120 .1842
0.28 1.02 .0511 .0050 1.0418 .1616
0.40 1.00 L0774 0.0000 1.0000 .1600
3-b 0.40 0.25 0.15 1.30 .0109 0116 1.6921 .0941
0.20 1.20 .0249 .0039 1.4404 .0861
0.30 1.10 L0447 0.0000 1.2100 .0756
2-a 0.22 0.20 0.11 1.20. L0045 .0060 1.4413 L0465

0.20 1.10 -.0187 0.0000 1,2100 0492
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TABLE III (Continued)

Third Approximation

Line dz . (_3)2
No. n/e- qS/a0 y/d haslha Po20 3 C P a,
8-g 0.50 1.20 0.505 0.98 0312 0504 9674 1.3426
0.53 0.99 .0636 .0364 .9861 1.3836
0.56 0.99 .0978 .0300 .9856 1.3893
0.62 0.99 .1359 .0225 .9842 1.3948
0.67 1.00 1767 0151 1.0027 1.4288
0.71 1.00 .2201 .0095 1.0018 1.4331
0.74 1.00 . 2653 .0049 1.0009 1.4364
0.80 1.00 L3144 0.0000 1.0000 1.4400
7-f 0.45 0.65 0.40 0.95 .0235 0409 .2082 .3428
0.46 0.97 .0513 .0290 .9458 . 3706
0.51 0.98 .0824 .0236 .9649 . 3840
0.53 0.99 .1153 0171 L9833 . 3984
0.60 1.00 .1531 .0100 1.0018 4132
0.65 1.00 L1944 0046 1.0009 .4183
0.73 1.00 .2410 .0000 1.0000 L4225
6-e 0.39 0.65 0.35 0.98 .0213 .0346 .9656 .3734
0.41 0.99 .0468 .0238 .9843 .3921
0.44 0.99 0742 .0185 .9838 .3971
0.47 0.99 .1038 .0121 .9824 4030
0.53 1.00 1377 .0053 1.0009 4176
0.60 1.00 .1763 0.0000 1.0000 4225
5-d 0.36 0.56 0.24 1.05 0154 .0283 1.1075 .3190
0.33 1.04 .0368 .0183 1.0852 .3220
0.40 1.03 .0626 .0133 1.0639 .3204
0.45 1.00 .0915 0066 1.0014 .3074
0.50 1.00 .1240 .0000 1.0000 3136
b~c 0.36 0.44 0.20 1.20 .0149 .0228 1.4444 .2569
0.24 1.10 .0319 .0122 1.2123 .2226
0.29 1.00 .0512 .0059 1.0014 .1879
0.40 1.00 .0782 .0000 1.0000 .1936
3-b 0.40 0.30 0.14 1.20 ,0108 .0133 1.4424 .1080
0.20 1.10 .0257 .0050 1.2106 .0968
0.30 1.00 .0450 0000 1.0000 .0841
2-a 0.23 0.25 0.10 1.20 .0090 0068 1.4416 .0201
0.20 1.00 .0182 .0000 1.0000 0354
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TABLE III (Continued)

Fourth Approximation

¥
Line 2 _ﬂ.z
No. n/L qs/aG y/d has/ha pOadéi C P (ao)
8-g 0.52 1.25 0.485 0.95 .0310 .0618 L9111 1.3617
0.53 0.96 L0645 L0484 .9292 1.4035
0.56 0.97 .0995 .0408 . 9480 1.4405
0.62 0.98 .1381 .0301 .9655 1.4784
0.67 0.99 .1794 0207 .9835 1.5159
0.71 1.00 2227 0143 1.0027 1.5525
0.74 1.00 .2681 .0073 1.0087 1.5563
0.80 1.00 3171 .0000 1.0000 1.5625
7-f 0.46 0.62 0.415 0.95 .0259 .0506 .9104 .3156
0.46 0.96 .0553 .0385 .9286 .3262
0.51 0.99 .0856 .0329 . 9868 3405
0.54 1.00 .1223 0230 1.0046 .3592
0.61 1.00 . 1596 0136 1.0027 L3678
0.645 1.00 . 2080 ,0069 1.0020 .3762
0.70 1.00 . 2457 0.0000 1.0000 3844
6-e 0.40 0.61 0.35 0.99 .0207 0428 .9867 3125
0.40 0.99 D447 0317 .9855 .3230
0.43 1.00 0709 .0253 1.0048 . 3364
0.48 1.00 .1006 0156 1.0025 . 3454
0.54 1.00 .1345 . 0066 1.0007 .3536
0.60 1.00 .1725 .0000 1.0000 .3600
5-d 0.37 0.53 0.24 1.08 .0150 . 0367 1.1734 .2568
0.33 -1.05 - .0352 0260 1.1078 .2601
0.40 1.00 .0592 L0177 1.0041 L2662
0.46 1.00 .0868 .0086 1.0018 2703
0.50 1.00 .1201 0.0000 1.0000 . 2809
4-c 0.37 0.425 0.20 1.30 .0149 .0319 1.6971 .2396
0.24 1.10 .0309 0172 1.2136 L1770
0.29 1.00 . 0490 .0088 1.0022 .1516
0.40 1.00 0748 0.0000 1.0000 . 1600
3-b 0.40 0.27 0.14 1.20 - .0107 .0154 1.4428 .1059
0.21 1.10 .0261 .0068 1.2109 .0951
0.30 1.00 .0470 .0000 1.0000 .0841
2-a 0.22 0.24 0.11 1.10 .0049 .0068 1.2115 .0511

0.20 1.00 .0189 0.0000 1.0000 .0602




APPENDIX A

FLOW CHART FOR TABLE III FORTRAN PROGRAM

READ DATA:
ANL(L): n/D
QS(L): qS/a
Start (Assumed)
ENTPN(K): e °/Cp
(from Table II)
¥D(K): Y, /D

Last line?

CALCULATE
Streamfunction
B(I)

yes

no

CAL.
the gradient
of entropy:
SLOPE(K)

CAL.

e_S/R(K)

Last line?

WRITE
SLOPE(K)

2%
' dB

1 sTop
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APPENDIX A (Continued)

READ DATA:
YL(M): Y/D

c(M)

Cal.
PC(M)

Cal.

2
) = Q)
0

Cal.
RHOQI (M) :

-GJELO

Po%o isentropic

Cal.
RHOQ (M) :
_pq
)

Cal.

SUM2 (M) :
_ P9 ¥y pAl
253 )

=\\ALP(M): haslha

i

Cal.
Last point? ALPHA(M);
(h /b))
os’ o
Divide
n/D by
Streamlines
4
Cal.
SUM1(M):
Last point? Wo. Jaia S/Cp
2G2-) s
hyg’ dB
yes
Last point? ‘ Yo% 2
i
no

WRITE DATA:
QS(L), SUM2(M),
C(M) , PCQM),
and Q(M)
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APPENDIX B

FORTRAN PROGRAM FOR CALCULATION OF THE FLOW PATTERN

ABOUT THE BLUNT BODY (M=1.5, v=1.4, SO=0)

SEMONS IO ANL(OL10Y, Q5 (10), YD{LC)  FHIPMIL1G),5LeP

ECL1O)

BIXNTNSTON ENTRIN(LO) ,YLILO) , ALP(LO) , ALPHA(LCG), hL(lG)
DIMENSILN HOLCY,BETA(LICG) ,YY(LO),SUuNMI(1G),C(10),PC(10)
DIMENSTION GUL0) RHCQILLO),RHEGGILI0) ;XX {10),SL42(10)

FORY \T(Hk,'”S{L)',bk,'QUJZ(M)',GK'
FORMATLEFT. 4)
FORMAT(IFT,.4)

FORMAT 3%y FT by 84Xy FTeb et X FT o4y aX FTob 4Ky FT04)

FURNATIOX, YSLOPEY /)

‘a=* A00) (ANL{L)sL=1,7)

y400) (CS{L)Y,L=1,7)
uOl(VClhi,u—l )
OYUENTON(K) ,K=1,8)
A22% (YD 1) *%2
F*TPﬂ(xi-.iTSj}/fE A(L)
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Dr‘

PELT}
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Fol et A

e

-

TPRUK) %5 (R/IR=1))

1 o~

[l LI
- I""T~..O'

M
7

bowe A
s
[ 1]

v
R iy B P L
=y

o5

(M) 4M=1,N)
(4)aM=1,N)

- Y1

A4

[
L e oa
S | BN R U]
| [

PEJE 4

r~r

'U—"-

T -

e W

e

pas

v
B
I~

>

pas
IJ

—~—

%2

HLIL)=aNMLLILY /XN
SUrR2=0.C
Ki="—-1

D3 17 d=1,K1
Ko=M=-¥

NTPN(K+1)-cNIPN(K-1) 1/ [BETA(K+]1)-3E7

CIMIY, 6K, PCINIY, 64,

A{K=11))
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24
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30

31
32

APPENDIX B (Continued)

HOMY= (o TAMNY-BFRTAIN)Y)Y/ XD

SUMAXT=CL0 '

00 17 1=, K1

YY{I)= (L ZALPHA(T) )ESLOPE(])

YY{I41 )=l /ALPHA(T 1)) =SLOPECT+L)

YYs= YY)+ YYLi+L)) /2.

SUMA1=SUMX1+YYY

SUMLINM)I=RH{M)I®RSUNXL

CoxnTINUE

SUMI(INI=0.0C

GO 21 F=1l,N
Cl)=(2.7{R=1 VI HALPHAIRIZ (L /EMTPNIR)#SUMILEY)

Pt ) =ALPHALSYE{ENTPNIN) FENTPNIMN) )
,{H}=FC{F}*(DS{L)**2)—C(Ml

DTN = () a={(R=1.3/2)%G(M) ) %ux{ L/ IR-TIIIR(L{M)=H,3)
RHDO UM I=IRNTRN(MYERHCQL (M) - : '
XX ()= (M) =YL {4}
SUMKZ2=SURAX2+XX (M)
SUMZ{F)Y =2 %Rl L)Y ®SUMKZ
CONTINGE
SUMX2= 2 FHLIL ) *S5UMK2
IFLABS(CETAINY=SUMAZ)-C.6GC3) 30,30,2¢4
[FI3ETAINI=-SUMX2) 2864+30,28

QS(L)=3SIL)-0.0025

63 TC 12
RSLL)=0S{LI+0,.C025
G7T0 1&

CAMTENUE

WRITE(3, 100

BT 3L M=l,.80
WRITE(3,5000QSIL ) 3UM2L{R)Y,CUM)PC{m),00x)
CoONTIANUGE

W Ticl3,600)

WRITE(2,2300) (SLOPELJ)Wd=1,8)

ST

AT
[
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APPENDIX C

ENTROPY DISTRIBUTION IN DETACHED-SHOCK SUPERSONIC FLOW

FNTROoY DISTRIBRUTICN IN DETACHED-SHZCK SUPERSCNIC FLZW
T7CNG-NAN LIN

DIMENCIZN W(1C0)sX(10)sP(10)sRHCIIN)SENTPN{10) sENTRN(LIN)
FORMAT (SFT7e4)

FORMAT (S5XBHENTPM(K}s10Xs8BHEENTRNIK) /)
FORMAT (3XeFTebsl13XsFTe&)

READ 1004 (W(K)s K=1155)

R=1.24

Fl=l.r

ENTPE=(0.2724%%(14/R)) /04395

ODC 12 K=1,9

W)= () %3 ,14/7180,0

ITF (K=1)548B,55
X(K)=FI#F1*SIN(WI{K)IIESIN{W(KY))
PIK)=(2e%R/IR+1IIF(X(KI—(R=14)/(2%R)}
RHCIK 1 =22 /(R+1e )% ({1 /X(K)+(R=14)/2¢)

GZ T2 10
PIK)=(2e¥R/(R+1a))¥F1%F1—{(R-14)/(R+14))
RHC(KY=2 /([ (R+1)¥F1#F1)+(R=12)/(R+14)
ENTPN(K)I=FNTPS/IRHOCIKI® (PR )#X{1a/R)})
ENTRNIK)I=ENTPN(K)¥¥(R/(R=14))

CONTINHUF

PUNCH 200

DO 14 ¥=14.9

PUNCH 200 4FENTPN{K¥ ), ENTRN(K)

PUNCH 300, ENTPN(K)s ENTRN(K)

STCP

END
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An iteration technique for the numerical solution of a partial differ-
ential equation, based on the conception that the partial differential equa-
tion expressed in terms of suitably chosen curvilinear coordinates may be
replaced by an ordinary differential equation in a single variable has been
étudied. This technique, originally proposed by Uchida and Yasuhara and
termed by them the "method of flux analysis", has been applied to the
steady, rotational flow of a nonviscous and non-heat-conductive compressible
fluid by utilizing the corresponding fundamental equations (including the
equation of state, and those for the conservation of mass, momentum, and
energy) to obtain a relationship between the local speed of flow and the
entropy which is valid along orthogonals to the streamlines.

A unified graphical method for amalyzing the problem of flow over a
sphere at a free stream Mach number of 1.5 has been presented. 1In the cal-
culations of isoenergetic rotational flow behind a detachment shock wave,
the stand-off distance was assumed to be obtained in advance and the up-
stream stagnation entropy to be constant.

The solution was started by assuming an approximation for both the
shock shape and the streamline pattern, and a double-iteration method was
carried out whereby both the streamlines and the shock were readjusted until
a consistent solution was obtained. By this meéhod of solution, properties
of the flow between the shock wave and the sphere were finally obtained.

Because of the tediousness of the computations involved in this method
it has been examined with the aid of an IBM 360 computer only in case of a
particular symmetric flow problem. An example of a sphere at M=1.5 (y=1.4)

is presented.
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