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Abstract

Epidemics have been modeled mathematically as a taasafely understand
them. For many of these mathematical models, titeenlying assumptions they make
provide excellent mathematical results, but areaimtic for practical use. This research
branches out from previous work by providing a nodkthe spread of infectious
diseases and a model of quarantining this dised$®wy the limiting assumptions of
previous research.

One of the main results of this thesis was the ldgweent of a core simulation
that rapidly simulates the spread of an epidemi@@aontact network. This simulation
can be easily adapted to any disease through jhstadnt of many parameters.

This research provides the first definition for @acpantine cut and an ellipsoidal
geographic network. This thesis uses the elligoggographic network to determine
what is, and what is not, a feasible quarantingeoreg The quarantine cut is a new
approach to partitioning quarantined and savediddals in an optimized way.

To achieve an optimal quarantine cut, an integergg@am was developed.
Although this integer program runs in polynomiahd, the preparation required to
execute this algorithm is unrealistic in a diseasgbreak scenario. To provide
implementable results, a heuristic and some getleealy are provided. In a study, the
heuristic performed within 10% of the optimal quame cut, which shows that the

theory developed in this thesis can be successfiskyd in a disease outbreak scenario.
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CHAPTER 1 - Introduction

Nobel Prize winner Joshua Lederberg, Ph.D, stresbed importance of
understanding epidemics when he wrote, “The sibgigest threat to man’s continued
dominance on the planet is the virus.” [Zimmerm200Q)]

Since the beginning of time, epidemics have plaguad’s existence. For many
years, man has combated these same epidemics wuditargining the sick from the
healthy with the goal of preventing the spread.cAs be seen in Israel and recorded in
The Holy Bible, Lepers were quarantined outsidéowai to prevent the spreading of this
disease [Numbers 12:14]. In severe cases the wlgaarantine is the loss of human
lives. From 1347-1351 the Bubonic Plague killegpragimately 75 million people
wiping out one third of Europe’s population [Drex(@002)]. In fact, the death toll was
so vast that the Pope consecrated the Rhone Riveydies that were flung into the river
could receive a Christian burial [Zimmerman (2002)dditionally, in 1918 the Spanish
Flu spread to all corners of the world and evehjukilled over 50 million people
[Taubenberger and Morens (2006)]. Had an earlyaqige been in place, these death
tolls would have been drastically smaller.

Viruses and bacteria continue to evolve and grosenger, providing new
challenges for mankind. In 2007, a strain of eedldrug resistant staph infection spread
to 94,000 people throughout the United States, kafidd 19,000 [Manier (2007)].
Because of this, our knowledge of viruses and howguarantine effectively should
continue to grow in order to combat these epidemict maintain mankind’s health.

After an outbreak occurs, it is vital to react dayc With the proper knowledge

of the disease and the proper counter measurdade, pnany lives can be saved. Once a



serious outbreak occurs the government will méstiyi respond with a quarantine. The
decision of where the quarantine line should bawar” is usually a best guess situation.
However, there are many factors that aide thissttacj such as the rate of spread and the
symptoms of the disease. Obviously, a deadly des@ath a rapid spread would cause
the quarantine region to be much larger to redbheentargin of error that an infected
subject was missed. However, a larger quarantee @ndemns many healthy people to
be isolated in an infected region.

Clearly, if the government had a tool that woulthlgze the region and the
disease to determine a more optimal quarantinensatyy lives could be saved. This
research provides mathematical theory that carhtdacision makers how to create a

logical quarantine area.
1.1 Ethics and Quarantines

Quarantines are both good and bad. Any quarati@sethe possibility of not
containing every subject that is infected. Addiily, any quarantine has the possibility
of condemning healthy subjects to remain with tifedted ones.

The issue of an optimal quarantine leads into soreedibly difficult ethical
guestions. What is the value of life? Is it acebp# to sacrifice few to save many?
Whose job is it to determine who lives and who die®/e do not have the expertise,
authority, or right to tackle these questions. hiegtthis research provides a tool for such
an individual that does have to make these inchedilfficult decisions (Government
Agencies).

In society, the cost of quarantining a group ofgeas high. Once a quarantine

has been set it is the quarantine enforcer’s jobnsure no infected subjects escape the



guarantine. The act of confining subjects botHthgand infected together should cause
wide spread panic. First, the infected subjeastarrified because they know what they
have is bad enough to be quarantined. Secondheléhy subjects that are quarantined
with the infected subjects will panic and might toyescape. The results of an attempted
escape could be fatal for the escaping party aguheantine enforcer must do anything
to maintain the quarantine line. Furthermorehd panicked subject manages to escape
and happens to be carrying the disease, the queedirte is broken and the epidemic
continues to spread.

In addition to the effects of the individuals withithe quarantine area, the
surrounding society is also affected. Many indists would refuse to leave their homes
for fear of contacting the virus. While all of shinakes for a great Hollywood movie,

this can be detrimental to a society’s economywgiiand survival.
1.2 Motivation

For years epidemics have been modeled mathemwtiaalla way to safely
understand them. The first and most basic matheahanodel presented was the
progression of three states: susceptible, infesti@nd recovered. From this model,
researchers have branched out by adding new anel coanplex states, such as exposed
and quarantined states. For many of these matiehahodels, the underlying
assumptions they make provide an unrealistic modgbpical assumptions include that
every individual is in direct contact with everyoelse and no geographical distances are
considered. This research branches out from puswaork by providing a model of the
spread of infectious diseases and a model of gtianagn this disease without the limiting

assumptions of previous research.



1.3 Contributions

This research utilizes a simulation that generate®ntact network. Once the
contact network is found, multiple replications tbke simulation are used to find the
probability of infection for each person. Thesehabilities are combined with a
ellipsoidal geographic graph. With this structuadeuristic is used to find an optimized
way to quarantine the nodes. The following secpoovides more information on each
of these stages.

This research begins by creating a contact netwdrk.a contact network the
people are represented by nodes and the probabilitgode i infecting nodej is
represented with an arc.

To estimate the probability of infection, a simidat model is created for the
spread of infectious diseases. The model useuisirésearch uses many parameters that
can be adjusted to model a specific disease, suteaate at which a subject progresses
through each stage of the disease and the prayadilan infected subject transmitting
the disease to another person.

The simulation created for this research uses randamber distributions to
generate numbers for different factors such as, tapidly a subject transitions through
each stage of the disease and the links betwedn sdgect. With this randomized
model, the simulation is run for multiple replicats. To calculate the average
probability the sum of all of the calculated prottiibs for each arc are divided by the
number of replications.

To consider the geographical distance of each ntiaecontact network then

becomes the ellipsoidal geographic gr&eh The arcs irGg form an acyclic graph such



that the arcifj) is in Ag if and only if nodev; is “closer” to the root node than where
“closer” is defined by an ellipse. For nodgan ellipse is created such that the beginning
disease node and are the antipodal points and the foci are caledlainder the
assumption that the width of the ellipse is somegrgage of the distance between the
two antipodal points. With this generated, thexists an arc frony; to v; (v,v) if, and
only if, v; is contained in this ellipse. In an outbreak scin the goal of a quarantine is
to eliminate the disease by keeping the infectetividuals away from the uninfected
subjects. The Graph Theory definition of a pantiing a set of nodes into two groups is
called a cut. This research defines a quarantiuieas a partition that has a logical
geometric shape that would be easy to manage.intance, a donut shape would be a
bad quarantine, because the area in the middledwseuhard to maintain.

A standard industrial engineering approach to diffidecisions is to assign penalties
for bad outcomes. To determine an optimal quamantut, the penalties for not
containing an infected subjedt, and condemning healthy a subjegt,are decided.
These penalties are highly dependant on the sgwdrihe disease. Once the penalties
are decided, an integer programming formulationmade with the objective of
minimizing these penalties.

In addition to the integer programming formulationultiple heuristics and some
theoretical results are presented. The resultyviggodecision makers with ample

knowledge of how to apply this research in a riéaldcenario.
1.4 Overview

The remainder of this thesis is organized as falowChapter 2 discusses the

background that is the basis of this research. relTli® a graph theory section that



specifically targets cuts as they are vitally intpat to this research. This chapter also
discusses the importance of understanding epidewrmcs the current mathematical

models for the spread of epidemics. Since simarais used to model the spread of
infectious disease, a section in this chapter atktresses simulation.

Chapter 3 discusses the computations that wererpretl. The results of this
simulation are analyzed here. Along with the satioh results, a study of the efficiency
of the proposed heuristics will be discussed.

Chapter 4 provides the first mathematical definitmf a quarantine cut and an
ellipsoidal geographic graph. Additionally, thisapter describes how an ellipse is used
to generate the arcs in a geographic graph. Aegantprogram formulation along with
multiple heuristics and general quarantine theawy also provided to optimize the
guarantine. Graphical examples are provided tistilate this theory.

Chapter 5 addresses final thoughts about this n@dsed his section also provides
detailed incite for the field of epidemic researchdditionally, future research and how

this research should be applied are also discussed.



CHAPTER 2 - Background Information

Much research has been done on epidemics. Thigtetharovides a brief
overview of these topics. Additional informatioancbe found in Gordis (2000) or
Rothman (2002).

This first section of this chapter discusses ttaplyrtheory principles that are the
basis for this research. Specific attention isdai cuts as this is a key concept for
guarantining the spread of the epidemic. Sinceerstdnding the parameters of an
epidemic is vital to this research, a section oiepics is provided. The next two
sections provide a summary of mathematical modelspalemics. The final section

discusses simulation and how it can be used ty €pidlemics.

2.1 Graph Theory

A common method to model the spread of infectioiseakes uses a contact
network. A contact network is a special class @&phss. This section discusses some
elementary graph theory topics. A more detailestuision can be found in [Diestel
(2000)].

The study of graphs has been applied to many aspdcour lives. From
analyzing vehicle routes [Dietrich (1992), Kleint &. (1994), Shirabe (2005)], to
mapping a genetic code [Brown and Harrower (20B4jreira, et al. (2002)], graphical
applications are everywhere. The following grapdory discussion helps to understand

graphs and how they can be applied to the spreadestious diseases.



A finite undirected graphG=(V,E), is a set oh vertices,V = {vi,v,,...,\}, and a
set of m edges,E={ey,&,...,&} where each edge is a set of two vertiess{v;,W}.
Additionally, a finite directed grapl&; = (V,A) is defined as a finite set ofverticesV =
{vi,vo,...,\}, and the set of arcy={ay, a,...,an} where an arc is an ordered set of two
vertices, ¥, ).

A graph can be considered weighted if a nonempgtpfseumbers is assigned to
each edge or each node. These weights frequemitggent cost, distances, probabilities,
penalties or capacities of an edge or node andewreted byw; for all edges €, g}. A
directed graph with weighted arcs and/or nodesfexired to as a network.

Figure 2.1 depicts a sample graph and a sampletelitgraph. The nodes, also
called vertices, ar&={s,v,u,w,y,x}{ and the edges are={{ s,}, {v,u}, {Vv,\}, {u,\},
{uw}, {yw}, {w,t}, {y. 8, {yv.¥4 {tx, {x,5, {s.}}. Furthermore, for the directed graph

the nodes stay the same, but the arcsdare{(s,V), (V,u), (v,9, (V,y), (Y,U), (u,wW), (u,\V),

(yw), W), (.9, x.y), %), .9, (8.9}

o Do o P
13 21

Figure 2.1 A Sample Graph and a Sample Directed Gph
A subgraphG’'=(V',E’) of G is a graph wherg’[lV andE’LIE. For example, the
nodes, v, x,andy with the edge $,%, { s,4, and {s,} form a subgraph of the sample

graph above. An induced subgraph is given by aetih of nodes and the edges consist

of all edges irkE that only contain vertices M. For instance, the edges of the induced



subgraph o8, v, xandy contains all edges that are incident to these siodéese edges
are {(s,v), (v.s), (s,y), (s,y), (8:%), (X,8), (6:Yy.X), (¥.V), (V.y)}-

A path is a set of sequential connected nodeggmrajgh. For example asit path
in the directed graph above is the noBes (s,y,). Furthermore, two nodesandyv are
connected if there exists a path franto v. A graph is connected if every pair of its
nodes is connected, if not, the graph is discomaecA strongly connected digraph has a
path from each node to every other node. Each godugonnected nodes is called a
component. A common algorithm for finding the nw@nlof nodes a single node is
connected to is called Breadth First Search or B¥ffsija, et. al (1993)]. Another form
of BFS is Reverse Breadth First Search, whichmslar to BFS, but in reverse order.

A cycle is a set of sequentially connected nodes tbturns to the initial node.
An example of a cycle in the graph above is thees@d= (s,y,t,3. Alternately a graph is
said to be acyclic if it contains no cycles.

Many substructures of graphs are well known becatisy have unique
properties and their names help explain theirmstshape. For example a graph with a
central hub that is connected to a ring of surrcnmdodes is called a wheel. The graph
in Figure 2.1 is an example of a wheel.

Another famous graph structure is a bipartite graphbipartite graph is a graph
that has two partitions d¥ into V; and V, such that edgeu{\} has ullV; and v(1V..
Famous problems associated with the bipartite gemptthe assignment problem, where
the users are in the partitidf and the jobs are ¥».

A clique, or complete graph, is a graph in whickergwertex is adjacent to each

other. A cliqueK, is a graph witm vertices ancE = {{ vi, vi}: i,j0{1,....1}, i # j}.



n
Clearly a clique haEZJ: n(n-1)/2edges. Notice that the above example graph centai

a max clique of size three, also called a triangle.

The degree of a node in a graph is the number gésedoming into or out of a
node. Additionally, the outdegree and indegrea abde in a digraph is the number of
arcs coming out of and into it, respectively. Adaawith degree zero is considered to be
isolated whereas a node with degree one is a pendan

A few classical problems associated with weightedplys are shortest path
[Dijkstra (1959)], minimum cost spanning tree [Pri(h957), Kruskal (1956)] and

maximum flow/minimum cut [Ford and Fulkerson (193denger (1927)].

2.1.1Cuts

In general, the definition of a cut is the separatof two entities. It is only
natural to consider a cut when separating a bodndiiduals into quarantined and
saved partitions. The following section definesahematical cut in a graph.

In mathematics, a cut in a grafgh,= (V,E), is defined as partition of vertices into
two sets. That isM,V”) is a cut if and only iV'0OV, V'OV, V' n V'= 01, andV' O
V"=V . The cost of the cut is measured by summing thights of all edges that cross
the cut. Therefore, the cost of th&,§/”) cut isz{i”j}miwljw. Wi .

Some of the most famous cuts involve the minimumbaiween two vertices,
andt. A minimums-t cut is defined as the smallest value of a cut ekeV’ andtl1V”
in a graph. The Ford Fulkerson Algorithm [Ford d&hdkerson (1956)] is used to find

the minimum cut in pseudo polynomial time. The maxm cut on the other hand#-

Complete as shown by [Karp (1972)]. The max flomimum cut theorem states that

10



the maximum flow is equal to the minimum cut [Men@g&927)]. In other words, the
amount of flow between any two vertices cannot egcdde capacity of the smallest set
of edges between the two vertices. This is alsowknas being limited by your
bottleneck.

Rather than looking at the traditional cut on edt¢j@s research looks at a
nontraditional idea of a cut where the values ar¢he nodes with some restrictions as to
what constitute a valid cut. These definitions emécal to this work and, due to their

importance, are reserved for Chapter 4.

2.2 Epidemics

Dustin Hoffman’s character in the 1995 movie Oudliretressed the importance
of understanding epidemics when he said, “The Isugnie billionth our size and it's
beating us.”

Epidemics are fundamental to life on earth. Thesifaxf a bird over 90 million
years old has shown symptoms of infectious disgasemerman (2002)]. The fact that
our history has always been plagued with epidemintg shows that there will continue
to be epidemic problems. The benefits of advanounrgunderstanding of epidemics can
be reaped in many sectors of our lives. With cuovwedge of epidemics come more
advanced healthcare systems, longer life spandeaadear of biological warfare.

Here, an epidemic is defined as an outbreak ofeade that spreads rapidly and
widely. Various epidemics have hampered societycémturies including such famous
cases as the bubonic plague, avian flu, and SABSparticular interest to this thesis is
the Spanish Flu of 1918, because it began at ey RKansas. This virus spread to all

corners of the earth from the Arctic to remote itapislands. It is estimated that this

11



epidemic killed 50 million people [Taubenberger aidrens (2006)], which is more
than double of the death toll in World War I.

Understanding an epidemic requires the study ofptexnbiological systems such
as viruses, bacteria, parasites, and immune systdinglso requires understanding of
how the epidemic affects the individual with redpecage, sex, and recovery rate. In
addition, it also necessitates the understanding &pidemics spread, which includes,
how the disease is transmitted, what the travelepe of the subject are, and the
geographical layout of the area.

Utilizing and controlling epidemics has been alvgart of world history. The
Mongol attacks in the battle of Caffa consistedatbpulting plagued corpses over castle
walls [Wheelis (2003)]. The defenders of Caffatcacted the plague and in their retreat
helped spread the Black Death to the entire Madiean Region. Outbreaks of
smallpox plagued the American Indians in an accaldnological attack and contributed
to the settlement of the new world [Wheelis (2003)/When an outbreak of this
magnitude occurs the population’s economy weaksnmany fear to or cannot leave

their residence. Society in general, slows dowmngduan epidemic outbreak.

2.2.1 Mathematical Models of Epidemics Spread
Studying any complex systems is typically too difft, costly or unethical, so
researchers develop and study models of the systéiypically these models have
underlying assumptions that enable the researochandlyze the system and estimate or
optimize the effects of changes to the system. guestion always remains whether or

not these assumptions enable a model that reallgtaescribes the scenario.

12



Mathematical models of epidemics can be largelydé into two classes, host
and spread. The host class focuses on the affebt alisease on the individual, while
the spread class focuses on how the spread aHegtsup of individuals. The focus of
this research is more on the spread of infectiossade and not the host. In order to
further understand how a disease spreads, the dfoste disease should also be
understood.

Much research has been done on how a parasitesaffdwst. The host-parasite
model simulates the spread of a parasite onto fa Aides mathematical model provides
an effective way to understand key factors in #risa. Some versions of this include
how a parasite selects its host and competitionvdest parasites for hosts [Kumar
(2002)]. Some models use optimization principtefutther understand the parasite host
relationship [Olsson (1996)]. These models araluid further understand how an
epidemic affects an individual and also when anviddal can transmit an infection to
another person.

A model of a spreading epidemic can be used to teferstand how to group
cities together to prevent the spread of diseabesn also help understand why a certain

group of people are more susceptible to a certagade.

2.2.1.1 Contact Networks
When modeling an epidemic, a contact network igueatly used. A contact
network models the chances that an individual isfenother individual. Given a set of
n peopleN={1,...,r} and ann x n probability matrixP wherep; equals the probability of

personi infecting persorj with the disease being studied, then the contatwork is

13



constructed as follows. L&c= (Vc,Ac) be the contact network whev@lVc fori=1,...n
and (,v)JAc with a weight ofp;. For simplicity, ifp;=0, then the arc is not considered
in Ac.

Accurate contact networks are difficult to generdbecause estimating the
probability of every person in a graph infectingleather is hard. In a crisis situation, it
would be virtually impossible for a government agyeno generate a contact network
efficiently and accurately. For disease controfppges, a contact network should be
developed before an outbreak occurs.

Once a contact network is generated, it can be asedput for a simulation and
optimization software. The simulation and optintiza software can use the contact
network to decide where the best location for araptine line would be. Again, the
biggest drawback to this approach is generatingndgmessary assumptions so that the

contact network is accurate.

2.2.2 Compartmental Disease State Models
Once a contact network is established, researaagrghen model the spread of
epidemics. Modeling the spread of infectious diselaas been a goal of researchers for
many years. Because it is such a complex probkemerfect model may never be
created. Most current models for the spread oécinbus disease have underlying
assumptions that make the models unrealistic. eStihe benefits are so high, an effort

should always be made to model the spread of aleepc more effectively.
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2.2.2.1 SIR Model
One of the first, and most basic models for theeagrof an epidemic is the
Susceptible, Infectious, or Recovered (SIR) stateleh At any moment of time each
individual is classified into a state. Thus, al agiven moment every individual is
susceptible, infectious or recovered. The recal/state can either mean the subject no

longer has the disease or the subject is dead.

Figure 2.2: SIR Model

The current assumptions for a basic SIR modellmethe contact network is a
complete graph and no geographical distances arsidgred. Also each of these links
between nodes transmits the disease with the saobalplity [Newman (2002)]. The
SIR model uses differential equations to expressiid out rate. This shows that the SIR
model and the models that have branched from teisogused on natural selection and
not how to mitigate the disease. While these aptionms provide nice mathematical
results, in real life, none of these assumptiopgrale, as commented by Newman.

In the SIR model and most other mathematical mod®dsviduals transition from
each of these states. The rate of transition frogsceptible to infectious i and is used

for the infection rate ang is used for the recovery rate. Consequently, i§ much

larger thany, the infection will spread quickly. On the otheand, if the ratio ofﬁ <1,
4

then the disease will die out. Ultimately, the Herathis ratio, the more rapidly the

disease dies out.
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Some specific examples of researchers using then&i&el include generating
optimal vaccination strategies [Ogren (2000)], miodethe spread of influenza in a
mixed population [Fuks, et al. (2006)] and modelihg spread of a computer virus in a
network [Piqueira (2005)].

Due to the differences in diseases, researchews énxgyanded on the SIR model.
By adding new states, these researchers can mouoeassly model different diseases.
For instance, if a disease has a state where thecsus exposed but not infected, a new
state can be added to model this. The followinglet®are examples of how researchers

have branched off of the basic SIR model.

2.2.2.2 SEIR Model
The SEIR model is similar to the previous SIR masalatept it adds an exposed
state. This state is used to model a period Wihersubject is exposed to the disease. In
this state the subject is said to be infected notiinfectious, meaning the disease cannot
be transmitted from an exposed subject to a subbepgubject. Among many diseases,
this model is also used to model the propagatiowarins from computer to computer

[Yu (2006)].

Figure 2.3 SEIR Model

2.2.2.3 MSIR Model
For many epidemics, most notably measles, babiesbam with a temporary

immunity to the disease. For this reason, reseeschave added another state to the
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standard SIR model. This state allows for a peabdmmunity in babies. The chart

below shows the progression of the MSIR model [€ag1992)].

Immune

Figure 2.4: MSIR Model

2.2.2.4 Carrier State Model
For some epidemics such as tuberculosis, the edeatdividual can never
actually recover. When an individual is in thiatstthey are know as a carrier and thus
the carrier state model was created to represenfKblesin (2007)]. The most famous
case of a carrier state model is Mary Mallon, bewiwn as Typhoid Mary. Mary, a
carrier of typhoid fever, spread the disease top2®ple over a span of 7 years

[Rosenberg (1997)].

Susceptible

Figure 2.5: SIC/R Model

2.2.2.5 SIS Model
Some infections such as the common cold do not hgveriod of immunity and
thus have no recovered state. This model thenrad to bounce between susceptible

and infectious [Neal (2008)]. The chart of thisdabcan be seen below.
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Susceptible

Figure 2.6: SIS Model

2.2.2.6 SIQR Model
To model the effects of a quarantine in a disepseasl scenario, the SIQR model
was developed. The SIQR model shown below, adgisagantined state to the normal
SIR model. This model has been proven to workcéffely on single strain epidemics
[Nuno (2008)]. In a perfect world, where as sosnsameone is infected they can be
qguarantined, this model would be accurate. Howewsany times in a quarantine
scenario, susceptible subjects are quarantined widttious. Therefore, in real life

people transition from susceptible into quarantined

Figure 2.7: SIQR Model
Much research has been done on the aforementiote#d models. The
assumptions made with each of these models prayodel mathematical results, but
frequently cause the model to be unrealistic. Ppre@ach this problem differently,

researchers use simulation to model how diseasadpinrough a society.

2.3 Simulation
Simulation is used to model processes that arerettio costly or unethical to
perform experimentation. More specifically a cotgpsimulation models a hypothetical
situation to study how the actual system works. flimelamentals of simulation focus on

using random numbers to mimic the randomness ofsyflsgem. Once the model is
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created, multiple replications provide significalata. With this data, statistical analysis
is done to support a decision or recommendation.

Some impressive simulations include flight simulatowideo games, and weather
simulations. To model most systems, some assungpiiast be made to explain parts of
the process that cannot be modeled. The assumptiade for a simulation define the
accuracy of the model.

The goal of any simulation is to use statisticsmufitiple replications of data to
show that the simulation is representative of tbtua system. Through statistics,
confidence intervals can be used to support thalteesf a simulation. The justification
of results is vital for a credible model. Withatatistically justified data, a simulation

model is less valuable.

2.3.1 Simulating Epidemics

Simulation is beneficial to advancing epidemic egsk, because it allows us to
test a scenario before implementing a policy. iRstance if a government agency wants
to see the effects of vaccinating a whole city agag to prevent a disease, they can do
this without real life consequences. One of theembacks of simulation is that it takes
time to run a model. If a decision is needed shart time span, simulation may not be
the best option.

Much research has been done in the area of hostlation. This type of
simulation models the effects of a disease on divigtual. Specifically the work done
on simulating cancer has given medical doctorsrin&tion on how to cure this disease

[Roberts, et al. (2007)]. An example of how sintioia can improve medical care is the
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use of simulation to optimize the checkup intenfalsbreast cancer [Michaelson, et al.
(1999)].

Since an epidemic spread does not happen frequamdlyvould not be safe to do
real tests with, simulation is an excellent tooh&lp understand how epidemics spread.
Specifically, simulation has been used to see h@mall-pox outbreak would affect the
city of Portland [Barrett (2005)]. This simulatiogave authorities in this city the
knowledge of how to vaccinate in a way to minimize spread. Simulation can also be
used to see how a disease would affect a netwoditiek. For instance, a simulation
was conducted to model the spread of influenz&Bhdities in Russia [Rvachev (1968)].
The result of this gave authorities incite on wherdocus their aid if an outbreak did
occur.

There are many factors to consider when modelidig@ase spread such as how
rapidly a subject transitions through each stagehef disease and how to generate
probability between each subject. Most models s®lom number generators to
simulation these factors.

Much research has been done on simulating the gdmkanfectious diseases.
Many of these simulations are disease specific, domdt allow the user to tailor the
simulation to their needs. The following chapteegants the design considerations for

the simulation that was created for this researtiich fixes many of these problems.
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CHAPTER 3 - Epidemic Simulation

This research began by creating a core simulatiodemfor the spread of an
infectious disease in rural Kansas. Although | enaignificant contributions to this
simulation, it has been a combined effort of fotudents under the direction of my
advisor Dr. Easton. The three other students@eAhderson, Mathew James and David
Willis.

The simulation core simulates the spread of aneepicl on a contact network.
The goal of this simulation was to create a simoiathat can be easily adapted to any
disease. The best property of this simulatiotsisersatility. Given a contact network of
individuals, this core simulation can be modifiednodel any disease in less than an
hour. This simulation can also model the spread disease on large networks rapidly.
Joe Anderson and | focused our research effortsudding this simulation core.

A fundamental assumption that led to this rese&r¢hat a disease would spread
much differently in a rural region than in a larggy. To test the simulation core, this
simulation is applied to a small rural town in Kass The team selected Clay Center
because Mathew James is from there and has finst k@owledge of the area. Mathew
James and David Willis focused their research odetiog the geographical locations

and contacts of individuals in Clay Center, KS.
3.1 Simulation Core

The motivation for creating a disease simulatioat s extremely versatile is so it

can be applied to any disease. The following sadfiscusses the requirements for such

21



a simulation. A detailed description of how theglation core operates is also discussed

here.

3.1.1 Contact Network, Disease States and Tracks

Ideally, the input to the simulation core is a @mitnetwork and a set of infected
nodes. The contact network needsxaandy location to represent the geographical
location of an individual. Also, each individuatscs (j) are required with the
probabilityp; of infecting each person.

If a contact network is not provided, a random aohhetwork can be generated.
As seen in Section 3.3, the Clay Center contastortwas generated by examining the
population and layout of the town. In this simidatan infected individual is selected at
random. Several other random contact networks \gereerated to test the quarantine
theory discussed in Chapter 4.

A main assumption for this simulation is that iesigiscrete time intervals. For
example, in the simulation below, a person will aamexposed for a certain number of
days and then transition into another state. filme period can be adjusted to represent
any time unit such as a minute, hour or day. Ror $tudy, one day was selected as the
time period. Thus an individual must be in a stime an entire day; therefore, an
individual cannot be susceptible for one half afag and infectious for the other half. If
a disease allows this, the time period should b&odeours or half days.

In a given day of a disease outbreak scenario,néactious subject has the
possibility to spread the disease to individualsamtact with the subject. To simulate

this, every node in the graph that is in the infect state generates a random number for
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every susceptible node that has an arc from thectious node. This number is then
compared to the number from the contact networkaated with the arc between each
node. If the random number is less than the nurabdhe arc, then the disease spreads
to that node, else the node may contract the diskam another node in this time or
some time in the future.

This simulation can easily be adapted to any desdasg to a disease track model.
A disease track is comprised of multiple states alisease. These states are vital to a
disease, because each state of a disease is wlifféfer instance, in a given disease an
older person may follow a SID path, where D stdiodslead, while a baby could follow
a SIR path.

This simulation allows a specific disease to followiltiple disease tracks with
different probabilities. For instance with typhdeler, a subject could become a carrier
(Typhoid Mary) while others could recover from thisease. If a subject becomes a
carrier 10% of the time, then a uniform random namib generated before once a node
contracts the disease and this random number de&smwhat track a particular subject
will follow.

The time spent in each state is also random. Agahlife, one person can be
infected with a cold for 3 days while another vadl infected for 1 day. This randomness
is captured in this model. Currently, a uniformdam number is generated to determine
the length of time in each state, but this can djasted to any probability distribution

that models a specific disease.
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3.2 Disease State Transition Example

Figure 3.1 is an example of a small contact netvibsdt is used to describe the
simulation core. For this example, assume thexéven disease tracks that have an equal
probability of occurrence and have the followingates: Susceptible, Infectious,
Susceptible, and Susceptible, Infectious, DeadFidire 3.1 susceptible is represented
by green, infectious is represented by purple, éead is represented by black. Also,
subjects can spend anywhere from 1-3 time periodsach state. At time period O,
subjectA starts out in the SID track and in the infectistete. A random number for the
time in this state is generated between 1 and Jappens to be 2. Therefore, subct

will be infectious for 2 time periods.

Figure 3.1: Iteration O

Also during iteration time 0, a uniform random riwen between 0 and 1 is
generated for all contacts of the infectious nod&is number is then checked with the
weight on the arc. If the random number is lesstthe arc weight, the node contracts
the disease.

For example, if the number generated for the atwédxn nodeA andB is 0.5,
then nodeB would remain susceptible until the next time peridhe next time period is
similar to the first. Since nod& has one more time period in the infectious siaiEan
still infect any susceptible adjacent nodes. Tousate this, another random number is
generated, say 0.01. Since this value is less thararc weight of 0.3, nod® has

contracted the disease. To determine what distaskeB is in, a random number is
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generated, say 0.6. Since this number is abovadlléB is in the SIS track. Thus, node
B is classified as infectious and a uniform randamber between 1 and 3 is generated
to determine the state duration. For this examgdsume the number generated is 1.

Figure 3.2 represents this transition.

Figure 3.2: Iteration 1

The next time period has a new transition. Sinoele A has been in the
infectious state for its allotted time, it now tsarons into the terminal dead state. Also
in this time period, nodB has a chance of infecting no@e To simulate this, a uniform
random number is generated between 0 and 1 and.isSince this number is larger than

the arc weight between noBeandC, nodeB does not infect nodeé.

Figure 3.3: Iteration 2
Since the duration of nodgs infection is only 1 time period, the next timerjod
yields the susceptible state for noBe Finally since all nodes are either dead or
susceptible, there is no way for the disease teasbr This means all nodes are in their

terminal state.

Figure 3.4: Iteration 3
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The state transitions example presented above igiteh concept of the
collaborative disease simulation created. Theovalg section is a more detailed
example of how these concepts can be applied tetwork of people in Clay Center,

Kansas.

3.3 Simulation Examples

This section discusses how the simulation corgpdied to a contact graph that
resembles the population and density of Clay CeRi@nsas. Because Clay Center has a
population of approximately 4,600 people and isawtensely populated as a city such
as Portland, Oregon [Barrett (2005)], an epidemutbieak should spread differently than
in Portland.

For this research, an example disease was creatd@tbw how a disease can be
simulated. This disease is named the WAJEC diskasis creators. As with most
diseases, WAJEC can have multiple disease traclks.person can be in any of the
disease tracks in Table 3.1. The number at theshopvs the probability of each track

that a subject that contracts the disease caniollo

Track 1 Prob.=0.4

Track 2 Prob.=0.4

Track 3 Prob.=0.2

Susceptible Susceptible Susceptible
Exposed Contagious Symptoms Carrier
Carrier Dead Recovered

Contagious Symptoms

Symptoms Not Contagious

Immune

Table 3.1: WAJEC Disease Tracks

To display how WAJEC spreads, a graphic user fexter was created. This

interface visually shows the user how the dise@seasls. The graphics in the figures
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below represent the town of Clay Center. As yow $@e, there are colored nodes that
represent each person and their disease statediSdase states and corresponding color
for WAJEC are listed in Table 3.2.

As you can see the square blocks of the resideateds of Clay Center are
separated by primary streets of the town and gneesented by white space in the graph.
The large white area in the graph is the town ceti& is not a residential area. Also
notice that there are some nodes that live far alwam the town center. Their

geographical distance is represented accordingly.

Node Color State

Green Susceptible

Yellow Exposed

Red Carrier

Purple Contagious

Blue Symptoms/Not Contagious
Teal Immune

Black Dead

Olive Recovered

Table 3.2: Graphic Key

Before WAJEC is simulated, a contact network idtbuTo build the contact
network for Clay Center, approximately 4,600 nodesre given locations. These
locations were random, but were confined to certagas, such as the square blocks.
Also, a random family size was generated betweandl5. The geographic locations of
families outside of town were also randomly gerestat

The contact between one node and another is \gegs by an arc. For this
simulation there are three levels of arc existdmesed on the distance from each node.
Additionally, there is a probability that each bése arcs exists. For the base case below,
the probability that a short arc exists is 0.2.isTheans that the residence of Clay Center

have contact with 20% of the people that resid@iwitwo blocks.

27



Along with the probability that an arc exists, #hé a maximum level of contact.
This level means that if the arc exists, thereger@ain probability the disease can spread
between these two people. For the base case biliswneans that of the 20% of close
contacts, the maximum probability of infecting adeas 50%. Thus, if such an arc
exists, then a uniform (0.5) number is generatatithis becomes the probability that an
infectious node transmits the disease to its contathese parameters are further
explained in the following examples.

Similarly to the short contact, there are also mediand long contacts. A
medium contact is defined as someone within a arggblock radius. On the other hand,
a long contact is a contact that is either acroas tor outside of the town. Once such an
arc exists, a probability of infection is generated

The following example is the base case for thisutation. The parameters for
the contact network are presented below along thighgraphical representation of how
these parameters affect the spread of WAJEC fota@&nd 20 days. For this study, the
time spent in each state is fixed at 3 days, asid@e individual starts the disease.

Base Case
Probability of Short Arc Existence: 0.2; MaximunoBability: 0.5

Probability of Medium Arc Existence: 0.05; MaximuPnobability: 0.5
Probability of Long Arc Existence: 0.01; MaximurmoBability: 0.5

Day: 10
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As you can see, the number of days greatly affeats an individual transitions
through a disease. By day 20, most individuals rerttbe disease started are either
recovered or dead. Notice that some individualghenoutside of town have yet to be
exposed to the disease.

To see how the arc existence and the maximum pildgaaffect the spread of
the disease, the following study was conductedthi study, the probability of the arc
existence is doubled while the maximum probabibityinfection is set to the base case
(remains the same). These graphical results amgpad to doubling the maximum
probability of assigning a disease track and legate edges the same.

Double the Probabilities of Arc Existence

Probability of Short Arc Existence: 0.4; MaximunoBability: 0.5
Probability of Medium Arc Existence: 0.1; MaximumoBability: 0.5
Probability of Long Arc Existence: 0.02; MaximumoBability: 0.5
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Double the Maximum Probabilities of Contracting theDisease

Probability of Short Arc Existence: 0.2; MaximunoBability: 1.0
Probability of Medium Arc Existence: 0.05; MaximuPnobability: 1.0
Probability of Long Arc Existence: 0.01; MaximunoBability: 1.0
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By examining day 10, it is evident that doubling thrc existence spreads the
disease much more rapidly than doubling the prdibalof an arc existence. With this
said, by the 20 day, both studies have similar results. As yausee the 20day yields
most subjects in either the, immune, dead, recdveresymptoms but not contagious

state.  Once this steady state is reached, thikabpildy of arc existence and the
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probability of assigning a disease track are eguatiportant. This means that when
generating the contact network, each of these peteamis important.

The study provides important incite on how to gonére diseases. If a
government agency is given the choice to have eadesthat spreads half as quickly or a
network of people with half as many contacts, theney would want the network with
fewer contacts.

After examining this study and the base case graphs evident that after 10
days, of this disease spread the whole town shHmilguarantined. As far as the families
on the outskirts of Clay Center, it seems thatsifread does not start to reach them until
day 15. This means that if a government agencyidextified this disease after 10 day
of it starting, the whole town except for the faesl in the outskirts of town should be
guarantined.

A fundamental question of this research is afteedain amount of days, where
should the quarantine region be? The followingptéiadiscusses theory on how to
optimize a quarantine region. The theory preseimethis chapter can help decision

makers decide where the best quarantine should &elisease outbreak scenario.
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CHAPTER 4 - Optimizing Quarantine Regions
The goal of this research is to provide an optichingethod for quarantining a
group of infected subjects. Quarantines can camearious sizes depending on the
severity of the outbreak. Although the idea of lmntine is relatively simple, the
consequences of applying a quarantine are immeAseommon industrial engineering
technique for optimizing a scenario with negatieesequences is to assign penalties to

negative results. These areas are addressed ichidupter.

4.1 Basic Ideas of a Quarantine

In an outbreak scenario, the goal of a quaransni ieliminate the disease by
keeping the infected individuals away from the @edted subjects. Therefore, no
subject is allowed to leave a quarantine areaacbomplish this, all sides of a quarantine
area must be enforced by military, police or ndtlnariers. In order to enforce a
guarantine area, the area should be a continugiareith a reasonable shape, because
it is impractical and unmanageable for the govemtm® maintain several large
quarantine areas.

A logical quarantine is defined as a region that loa easily enforced. Clearly in
a disease outbreak scenario the entity that belgendisease, defined as the root node, as
well as any person that has contracted the disshse]d be quarantined. Assuming the
root node is colored in black, the quarantine algsioted in red, shown in Figure 4.6 are
logical quarantine regions, and Figure 4.7 sholegital ways to quarantine an infection

given the geographic position of the nodes.
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Figure 4.1: Logical Quarantines
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Figure 4.2: lllogical Quarantines

4.2 Ellipsoidal Geographic Graphs
This thesis uses a geographic network to determimat is, and what is not a
feasible quarantine (a quarantine of a reasondlalpe3. Formally, a geographic network
Gg is a network with a root node, where each node has two paramet;y)(that
correspond to the geographic position of ngde i [0 {1,...,}. The arcs inGg form a
graph such that the argjJ is in Ag if, and only if,v; is “closer” to the root node than
where “closer” is some well-defined measure. Fegdr3 shows some nodes with their

respective locations of @g with the root node denoted as a black circle.
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Figure 4.3: The Nodes of a Geographic Graph

The primary idea of closer is to not allow a quérento be an unreasonable
shape. If a quarantine region has an unreasoshhfee, then the citizens along the poor
borders are likely to revolt. Just consider eitbiethe two illogical quarantines depicted
in Figure 4.2. Clearly, the northeast individuahacomplain that they are further from
the epicenter of the disease than someone whotiguarantined. Thus, this northeast
individual should try to move closer to the disedsrause there is a node that is closer
that is in the “saved” area.

In this paper, an ellipse is used to generatedée of “closer.” In such a case, the
geographic graph is called an ellipsoidal geog@ghaph. This graph draws an ellipse
from the root node to nodg This means that if the nodeis in the quarantine region,
any node that is contained within the ellipse betwthe root node ang, must also be in
the quarantine, since these other nodes are “closer

To find the ellipse generated from the antipodah{so/; andv, begin by finding
two foci f; andf, such the distance from to v; plus the distancé& to v equals the
distance fronf; to v; plus the distanc® to v;, which alscequals the distance fromto v;.
The ellipse consists of all poinsR? such that the distance frofgto p plus the distance

from f, to p is equal to the distance fromtov; .
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Clearly, there are an infinite number of choicesff@ndf, the distance between
f, andf, determines the width of the ellipse. fifandf, are equal, then the ellipse is a
circle and iff; andf, are the antipodal points, then the ellipse is @ #iagment.

For this work we chos& andf, such that the distance between the antipodal
points on the major axis was twice the distance/éen the antipodal points on the minor
axis. This ratio of the major axis and the mingisas denoted by, wherea<l. This
implies that the location of focal points are givan((xy, + A(xy - %,)),(W, + 4% - W),

where for this research andf, havel = [Z'Tﬁ}[z*f} respectively. Observe that

o# /. and giver, A can be generated by applying Pythagorean Theorem.

To generate a ellipsoidal geographic graph witlapetero, which is equal to the
minor axis divided by the major axis, there ex&tsarc fromv; to v; (v, v) if, and only if,
v; is contained in the ellipse generated by the adapnodes; andvi. The development
of this graph is shown in Figures 4.4 — 4.7. As gan see, the nodes that are interior to
the ellipse are the nodes that must be quarantingds the root node andg is in the
guarantine area. This is because these nodesoaer tbv; thanv, is closer toy. Using

the ellipse structure, the geographic network fitbm root nodey; to v, is established in

Figure 4.5.

Figure 4.4: Generating an Ellipse Figure 4.55¢ with Contacts fromv; to v;
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Continuing this process for all nodesGg generates all of the arcs@s. As you
can see by the geographic graph generated in Fg@rdy using an ellipse as a way to
generate the arcs, there are no cycles in the draphuse; is “closer” to the root node

thanv;.

Figure 4.6: All of the Arcs of a SampleGg
The final step is to include the probability thatk node has the disease. In this
researchp; is used to define the probability of infection fmodei. The full ellipsoidal
geographic graph is shown in Figure 4.7. The nundwethe interior of the nodes

indicates the individuals corresponding probabiitynfection.

Figure 4.7: The FinalGg with Probabilities
Various other structures could be used to defins&” such as circles,

diamonds, norms, etc. Figure 4.8 demonstratesraatid structure that could be used to
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find which nodes should be containedvifis contained. Some care must be taken in

defining “closer”, which is described in the negtson.

N
.,
DAY

Figure 4.8: Example of Alternate Structure and Elges Generated from Structure

4.3 Feasible Quarantine Cuts

The focus of this research is to find the optimahmgntine cut. Consider an
outbreak of a deadly disease. The government'soabvesponse is to seal off the area
and eliminate any travel into or out of the ar&me medical individuals may be called
in to help out with the situation, but these indivals will be “cleansed” before they can
leave the area. The area that the governmentsiéascalled a quarantine.

A fundamental advancement of this research is tla¢h@matical model and
corresponding optimization of a quarantine regioklere this quarantine region is
modeled as a cut in a geographic graph. The atitipas the nodes into two sets, a
quarantine seto, and a saved sets. Clearly, the quarantine set must have the starti
infected individual.

Finding a feasible quarantine cut requires a ggaucagraphGe = (Ve, As) and a

beginning disease node,as input. A cutVg, Vs) is a quarantine cut if, and only Wg
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0O Vs=Ve, Vo n Vs= 0,  OVgand vU Vsand y O Vg implies (4,v) U As . For ease
of notation, a quarantine cufd, Vs) can also be referred to ¥g or VssinceVo=V \Vs

With an ellipsoidal geographic graph, a legal qoang cut can now be
described. Figure 4.9 shows a legal quarantine leuthis sense, a quarantine cut is legal
if all predecessors of the nodes contained in tfegantine side are also in this side.

In contrast, Figure 4.10 shows an infeasible quararcut. If nodey is contained
in the quarantine, then its predecessor, npdeust also be in the quarantine. Thus, this

guarantine region is not feasible.

Figure 4.10: lllegal Quarantine Cut in Gg

Now, imagine a quarantine line has been breaclfedovernment agency must

increase the size of the quarantine region. Aenpérson might think that just adding all
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“closer” individuals to this node is sufficient ftine quarantine. This is not the case as
the following example illustrates.

If the preexisting quarantine is represented bydinge in Figure 4.9, and the
breached quarantine is predicted to have reachedshladed node, then this figure
represents what the new quarantine would look liKetice that an ellipse is drawn from
the shaded node to quarantine. This ellipse shallvef the nodes that should be
included in the new quarantine with the shaded nodewever, any node in this first
ellipse also creates its own ellipse, which mayude nodes that the first ellipse missed.
This process continues as needed, and performuegse breadth first search is sufficient

to determine the smallest quarantine region far ltineach as described in Theorem 4.1.

Figure 4.11: Graphical Representation of Theorem 4.

Theorem 4.1: Given any directed grap& and a set of node® [ V. The smallest

cardinality quarantined partitiovip that containg) is unique and is the set of all nodes
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encountered by performing reverse breadth firstcbestarting from all of the vertices in
Q.
Proof: It suffices to show thatg is a quarantine cut and that any quarantine/guthat
containsQ has at least as many vertices/ags

For contradiction, assun; is not a quarantine cut. Thus, there exists an ar
(vi,v) such that is in Vs andy; is inVg. However, this contradicts reverse breadth first
search, because vertgxwould have been added to the visited vertices Siniszon a
path that terminates in some vertexQn

For contradiction, assum¥g # Vo is a quarantine cut that contaigs and
Vo £lVq|. Therefore, there exists a vertgxVq such thatg, O Vs. Due to reverse
breadth first search, there exists a path from seenexq,[1Q to gp, P = ¢, ..., Thus,
there exists somg}{1,...,3, such thatg.; O Vs andq; O V. Therefore, Yqo,Vs) is not
a quarantine cut, a contradiction, and the reslws.

0

The result of Theorem 4.1 provides useful incite ¥alid quarantine cuts of
directed graphs, regardless of weights. Thusj iihdividual is known to be ill and is to
be quarantined, then a simple reverse breadth deatch onGg would result in the
smallest possible quarantine region.

The following theorem is similar to Theorem 4.1 aslould be used if a
government agency wants to save a particular pensarmguarantine region. Imagine the
President is near a quarantine region, and thecggenst save the President. It would

be illogical for the government to say the Presidem be safe, but the people that are
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further away from the disease should still be go@mad. The question then is who must
be saved to save the President? The following émdormally describes everything that

IS necessary to move a set of nodes from the gtiaeanregion into the saved region.

Theorem 4.2: Given any directed grap® and a set of nodeS [0 V. The smallest
cardinality saved partition/s that containsS is unique and is the set of all nodes
encountered by performing breadth first searchistawith all of the vertices is.
Proof: It suffices to show thals is a quarantine cut and that any quarantine/guthat
containsS has at least as many verticed/gs

For contradiction, assumés is not a quarantine cut. Thus, there exists an ar
(vi,v) such that; is in Vs andy; is in Vo. However, this contradicts breadth first search,
because vertex; would have been added to the visited vertices sihde in Vs
Furthermore, whew; is evaluatedy; is one of its neighbors and it would have beereddd
to Vsalso.

For contradiction, assum¥s # Vs is a quarantine cut that contaisand
VS [K[V4. Therefore, there exists a vergpIVo\Vg' such thaty, 7 Vg. Due to breadth
first search, there exists a path from some vemi&S to ¢, P = @, ...,0p. Now there
exists som¢l{1,...,3, such thatg., 0 Vs andg; 0 Q. ThereforeyVs' is not a quarantine
cut and the result follows.

[

Besides generating this smallest saved region, réheal.1 and 4.2 also have

strong implications for what types of directed drsyghould be considered when trying to
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find optimal quarantine cuts. These theorems intipdy if the directed graph is strongly
connected (there is a path from every node to evtrgr node), then the only quarantine

cut is the entire graph. Formally, the resultssalows.

Corollary 4.3: Every strongly connected digraph has one quamantut, namely the
entire vertex set.

Proof: Every strongly connected graph has a directed fpah every node to every other
node. Applying breadth first search or reverseaditie first search to any node results in
every node being encountered. Since the root mogt always be in the quarantine
region, the entire graph must be quarantined.

[

Applying Corollary 4.3 on any cycle of a directecdgh, implies that either none
of the nodes in the cycle are in a quarantine bofathe nodes are in the quarantine.
Thus, any digraph with a cycle can be reduced loyraoting the cycle into a super node.
This means households should be considered a smgle. Thus, any work on
guarantine cuts must be performed on acyclic diegraphs. One of the best properties

of ellipsoidal geographic graphs is that they angchc as the following two results show.

Theorem 4.4 If Gg is an ellipsoidal geographic graph andndy; do not have the same

coordinates and the distance from ngd® the root node is at least as big as the distanc

from the root node to nodg then ¢, vj) is not inAg.
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Proof: AssumeGg is an ellipsoidal geographic ellipsoid graph. tRermore, assume
andy; are not at the same location and the distance frmateyv; to the root node is at least
as big as the distance from the root node to npdé-or contradiction assume;,(;) [
Ac.

To find the ellipse generated from the antipodah{sos; andv; begin by finding
two foci f; andf, such the distance from to v; plus the distancé to v; equals the
distance fronf; to v; plus the distancé& to v; equals to the distance fromto v,.. The
ellipse consists of all pointgsdR® such that the distance frofato p plus the distance
from f; to p is equal to the distance froyto v; .

Since ¢,v) U Ag, the distance from to f; plus the distance from to f, is less
than or equal to the distance frasnto v;. If viis on the line passing through batfand
vr, thenv; is closer to the root node thapa contradiction ow; is further from the root
node thary; and is not in the ellipse also a contradiction.

Next examine the three poinisg f; andvi. The triangle inequalities implies that
the distance fronv; to v is less than or equal to the distance frianto v; plus f; to vi.
Sincey; is in the ellipse, the distance frdmto v is strictly less than the distance frém
to ;. Consequently, the distance fraqto v is strictly less than the distance frasto
v;, a contradiction.

0

The previous theorem describes the nature of theseidal geographic graph, an

acyclic graph. This structure is vital to thiseasch, because if the graph is not acyclic
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then the entire area should be quarantined asquglyimentioned. The formal result is

as follows.

Corrollary 4.5: An ellipsoidal geographic grap@s with no two nodes at the same
location is acyclic.

Proof: For contradiction assume there exists a cycle wdbe set equal to {{,\»),
(V2,V3)...,(Ve-1, V), (Ve,V1)} in an ellipsoidal geographic graph. Defidév,v) to be the
distance from the root node t@ From Proposition 4.3 and the existence of tlee ar
(Vi,Vi«1), one obtaingd(v;,vi)) < d(v;, v+1) O i=1,...,c-1L Thus,d(v,v1) < d(v, Vo) <...<
d(vr,\c). However, Y.Vvi) is an edge and sd(v;,v;) < d(v;,v1), which contradicts the
previous expression and the result follows.

0

Now that the feasibility of quarantine cuts hasrbéescussed, this thesis now

turns to optimizing quarantine cuts. Section 4.fbctused on this topic.

4.4 Optimizing Quarantine Regions
Quarantine cuts are both good and bad. Any quagahas the possibility of not
containing every subject that is infected. Additifly, any quarantine has the possibility
of condemning healthy subjects to remain with tifeated ones.
A standard industrial engineering approach to diffi decisions is to assign
penalties for bad outcomes. Before an optimal antare cut can be determined, the
penalties for not containing every infected subjaotl condemning healthy subjects

should be decided.
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For instance, a contagious disease has been discowvea town and the military
may think it is 10 times as bad to have an infesigloiect outside the quarantine as it is
to have a healthy subject in the quarantine. Toerethe penalty for an infected person
outside the quarantine line is 10 and the penaltydndemning a healthy person would
be 1. This means the military would be willingdacrifice 10 healthy subjects before
they would allow an infected individual outsidetbé quarantine zone.

These penalties are highly dependant on the sgvefithe disease. If for
instance, the disease was deadly and spread almsianhtaneously, the penalty for
having an infected subject outside the quarantmgdcapproach infinity. Therefore, the
guarantined area would be much larger as the guaeaenforcers would not risk the
spread. With a more severe disease, it would be hkely for the military to quarantine
entire states or even countries. SARS was an lerta@xample of this type of disease.
On the other hand, if a disease is very unlikelgpgoead (HIV) or has minor symptoms
(Influenza), the penalty for having an infected goer outside of the quarantine could
approach zero. In this case, the quarantine doeilds small household or one person or
even no quarantine.

Once the penalties for not quarantining an infededject and condemning a
healthy subject have been established for sompseitial geographic grapBs, an
optimal quarantine cut can be established. Paosame theoretical results @, an

integer program is first introduced that finds dpgimum quarantine cut.

4.4.1 Quarantine I nteger Program Formulation
Integer programming is a widely used optimizatimolt If a problem has

variables that are integer and the objective famcéind the constraints are linear, then the

46



problem can be represented as an integer progtatager programs have been used to
solve problems in routing goods and equipment [Aputam and Solow (2003),
Kaufmanand and Smith (1998), Toth (1997)], genegadiirline schedules [Hoffman and
Padberg (1993), Klabjan, et al. (2001), Alefragss,al. (2000)], managing portfolios
[Pinto and Rustem (1998), Bertsimas, et al. (199@3earching genetics [Brown and
Harrower (2004), Ferreira, et al. (2002)], and d@weg sports schedules[Urban (2003),
Easton, et al. (2003)].

It has been shown that solving an integer proget®-Hard [Karp (1972)], and
thus there exists integer programs that cannobh@&d in polynomial time, unles® =
77. The most common algorithm for solving integeograms is called branch and

bound. The major problem is that branch and bduesl an exponential run time and
there are still numerous integer programs that aabe solved.

When optimizing a quarantine region, the best bssiutcome is to have all of
the infected individuals in the quarantine regioml all the healthy individuals in the
saved region. To achieve this, the objective fionctould be focused on maximizing the
benefit of having an infected individual for exampl For this research, the objective
function is focused on the opposite, which is miaing the penalty of having infected
individuals in the saved region and having savetividuals in the quarantined region.
Clearly, both objective functions would work sinmija

Due to the additive nature of any IP’s objectivadiion, an exact probability of
an epidemic moving past a quarantine region woetflire an exponential number of

variables, due to the inclusion exclusion principk®r instance, assurag &, andag are
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the only individuals in a saved region. This metres probability that the epidemic is

not contained is

Plap 0 U ag) = Pl@a)+P@2)+ P@s)- Pl n &) - Pl n a) - Pl n ag) +
Pé1n an ag).

More people require more terms in this expressioth the terms grow on the
order of2". Thus, an exact IP would require each region &ean diagram witin
regions to have its own variable and the IP woulden? variables. Writing such a large
IP is not feasible, let alone solving such a probleThus, this research assumes to be
conservative in its quarantine region by overedimgathe probability that an infection
leaves the quarantine area. That is, none of@ébhensl or higher order terms from the
inclusion-exclusion principle are used in the obyecfunction. Thus, optimal quarantine
generated by this IP is slightly conservative.

This research developed the first integer programgniormulation to find the
optimal quarantine cut. This integer program ifodlews.

Optimal Quarantine Integer Program (OQIP)
Sets:
N={1,...,1}: the set of the nodes of a graph

Decision Variables:

xi = 1 if nodd is in the saved patrtition
0 if nodae is in the quarantine partition.
Parameters:
pi - Probability of infection for node
s - Penalty for allowing an infected subject in f#aed partition.

g - Penalty for having a healthy subject in the gnéine partition.
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Obijective Function:

Minimize: sYievX i+ g2 iev (1-%)(1- p)
Subject to:

x<x @) 0As

x{0,1} Oi0Ve

The decision variablg is a binary variable that is used to decide whictles are
in the saved region. Obviously any nodes thahatencluded in this region are included
in the quarantine region.

The goal of a quarantine is to partition the untgasubjects in the quarantine,
while saving the healthy subjects. If for instanae infected subject is not quarantined,
there is a penaltg. On the other hand, if a healthy subject is quiamad, there is a
penaltyq.

The objective function displays the goal for theeger program. In this case, the
objective is to minimize the total penalties. Thisction multiplies the penalty for an
infected subject to be in the saved reg®my the sum of all of the nodes in saved region
times their probability of being infecteg,. Similarly, this summation is added to the
penalty for a healthy subject to be quarantimgdyith infected subjects multiplied by the
sum of the subjects in the quarantine regiom;Inaultiplied by the probability that they
are not infected or healthy ().

The single set of constraints is the restrictiba deasible cut. These constraints
are generated from the ellipse principle. In gahéhe constraing < x; states that if any
nodev; contained in the quarantine region, then eachsobriedecessors, determined by

the ellipse, must also be in the quarantine region.

49



Fortunately, OPIQ is Totally Unimodular. A totalunimodular matrix is a
matrix where all square submatrices have a detamhiof O, 1 or -1. TUM is important
because any integer program that has a totally ashittar constraint matrix can be solved
with linear programming as long as the right hade ss integer. This result is especially

important because it reduces the running time wéditional integer program fror?-

Hard to polynomial time. Theorem 4.5 formally déses why OQIP is TUM.

Theorem 4.6 The constraint matrix of OQIP is TUM.

Proof: Let A be the constraint matrix of any OQIP. Strong ctohin on the number of
rows is used to prove thatis TUM. For a base case, consider a single rotds matrix

is clearly TUM as every submatrix is a 1x1 square the determinant is either 0, 1 or -1.

By strong induction assume that evérynatrix of OQIP with fewer thak rows
is TUM. To show tha# is TUM for k rows, letB be any square submatrix&f Clearly,

B could be represented as an acyclic graph witladligtion of two dummy nodes, aid
must be &xk matrix or the result follows from the inductiorsasption.

Clearly, B has at least one row with at most one nonzeroezieor at least one
column with at most one nonzero element. To fimel determinant oB, expand upon
this row or column. Clearly, such an expansioryahlanges the sign of the determinant
or moves the determinant to 0. So by the inducissumptionB has a determinant that
is either O, | or -1 and the result follows.

0

In a real life outbreak scenario, it would be illcag and almost impossible for a

decision maker to run an integer program to fireldptimal quarantine region. The next
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section provides decision makers with general haad heuristics for how to optimize a

guarantine region in a disease outbreak scenario.

4.5 Theory of Optimized Quarantine Cuts

When deciding where to implement a quarantine, ghabability of infection
should be analyzed. As mentioned earliers used to define the probability of infection
for nodei. The thresholds, of a quarantine cut is defined as the quarargerelty,q,
divided by the sum of the quarantine penalty amdstved penalty; thus,t = %.
These penalties are user defined and the threstddalyzed with the probability of
infection to determine where the quarantine shoeld

Given a defined threshold, an optimal quarantinetaias only the connected
nodes whose average probability of infection exseibe@ defined threshold. If a set of
connected nodes or any node with an outdegreedufe@ not meet this condition it is
assigned to the saved set in the optimal quarantihe

Figure 4.12 provides a small graphical exampleaf the theory of this research
should be applied to find an optimized quarantioe dmagine that an official from a
government agency is assigned to this portion efgtaph and each node represents a
city. He/she knows that this group of cities istlh@ edge of a large quarantine and wants
to know if any of these cities should be saved mjitree previously mentioned threshold.
The following shows how the theory of the previ@estions can help make optimized
decisions.

The government agency should begin by considehiegehtire population in the

guarantine region. Starting this way allows theray to decide which nodes should be
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removed from the quarantine region. As seen iniféig.12 below, all nodes start in the
guarantine region as denoted by the red line.
In this example, the penalty for a healthy subjedie condemned in a quarantine

region or they is 1 and the penalty for an infected subject tanbe healthy region or the
sis 19. Therefore, the overall threshold rs 1+—119 =0.05. This threshold means that it

is an improvement in the objective value for anypugr of nodes whose average

probability is less than 0.05, to move from thergaéine region to the saved region.

Figure 4.12: Example Fully QuarantinedZ = 5.67

Recall the objective function for an optimal qudnaa is: Minimize: s v pi %

+ qYiv (1 p)(1-%). Asyou can see from Figure 4.9 since every nedgarantined, the
right half of the objective function is only used®} i.v (1. p;)(1-%). Numerically, this

objective value is 1((0.93)+(0.96)+(0.94)+(0.98)8()+(0.90)) = 5.67.
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Clearly the pendant node with probability of 0.0C&hdbe moved to the saved
region and still maintain a feasible quarantine dtithere was an arc from the 0.04 node

to the 0.02 node, this would not be a feasible &igure 4.13 shows this scenatrio.

Figure 4.13: 1st IterationZ = 5.47

Using OQIP’s objective function, the objectivewalould calculated as follows:
19((0.04))+1((0.96)+(0.90)+(0.93)+(0.94)+(0.98))547. As you can see, since the
pendant node is added to the saved region, ther@.i34 chance that the node is infected
in the saved region. Thus, the objective funct®oimcreased by 19* 0.04, but decreases
by 1*0.96 and the overall objective value decredse8.2. Thus, any pendant node in a
guarantine that has a probability of infection belthe threshold of 0.05, reduces the

objective value if it is added to the saved regioithis result is formally described by

Theorem 4.6.

Theorem 4.6: If p, < i and the outdegree of nodds 0 inGg, then node; is in the
s

saved partition of the optimal quarantine cut.
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Proof: For contradiction, assume nodehasp, <—— , the outdegree of nodgis 0 in
S

Gg and the optimal cuMy*,Vs*) has node; [ Vo* with an objective value df*. Let's
examine the cut given byw¢*\{ vi}, Vs*O{wv}) . Since the out degree of is O and
(Vo*,Vs¥) is a quarantine cutVe*\{vi}, Vs*O{v}) also has no edges from a node in
VgtO{v} to a node inVo*\{vi}. Thus {V/o*\{v}, V&*{Vv}) is a quarantine cut.

The value of the\(g*\{vi}, Vs*{v}) quarantine cut is the value oV{*Vs¥)
minus the probability that nodeis healthy times the penalty to quarantine a hgalt
person plus the probability that the person is digfeé times the penalty of not
guarantining an infected persondy - s@)+q(1-p;) =Z* +q - gp - Sp=2Z* +q - pi(q+s)
< Z*, which contradicts \(o*,Vs*) Dbeing the optimal quarantine cut and the result
follows.

[l

Continuing the OQIP process, if the four nodeshia bottom right are removed
from the quarantine region as Figure 4.14, theretie still a feasible quarantine. The
objective function becomes

19((0.02)+(0.06)+(0.07)+(0.04)+(0.04))+1((0.90)5:27.
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Figure 4.14: 2nd lterationZ = 5.27

Notice that the objective value has improved frod/50 5.27. This is because

the average probability of these four nodes is ToO&hich is less than the threshold of

0.05. Theorem 4.7 formally describes why remoximg previous four nodes improves

the objective value.

Theorem 4.7: LetVq be any quarantine partition withy as the corresponding saved
partition. IfSO Vo such that\(o\S, Vs O §) is a quarantine cut andy. _ p, <|s [q_‘is}

then the value of the quarantine cv (S Vs LIS is strictly better than the value ofd,

Vs).

Proof: Let (Vo,Vs) be a quarantine cut with valiZé. LetSU Vg such that Vo'\S Vs

09 is a quarantine cut an§ <|g (qj. The valuez” of the {¥o\S Vs O 9
jos ™ q+S

guarantine cut is the value of thé(’, VS’) cut minus the penalty of havirgin the

guarantine partition plus the penalty of haviiop the saved partition. Formally; =Z’

+jesS(P) - Yjesd-B)) =Z' +S)jes(B)- A +Ajesp =2+ (@+S) Yjes (@) -AIY < Z
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+qY - g9 =2Z'. The inequality follows frorEiDS p, <|8 (%} which implies

(a+s)Yjes (B) <q 9. ThusZ”<Z’' and the results follows.
[l

Since the last node in the quarantine has a pildlgadd 0.1 which is larger than
the threshold, it should be kept in the quarantegon. A naive person may think that
this is the optimal solution to this example beeatl®e most possible nodes are in the
saved region. However, when evaluating the ohjecfunction which is based on
penalties, this is not true. This example showes ithis not always optimal to remove a
group of nodes with an average probability thagss than the threshold.

Figure 4.15 shows that in fact the nodes at thtoboof the graph should not
have been included in the saved region. If theyaalded back into the quarantine as the
figure suggests, the objective function becomes

19((0.02)+(0.06)+(0.04))+1((0.90)+(0.96)+(0.93)507.

Figure 4.15: 3rd Iteration Z = 5.07
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As you can see, the optimal solution does not awaglude the most nodes in
the saved region. In fact, this shows it is natagls optimal to remove a group of nodes
whose average probability is less than the threlshdlhe following theorem discusses

this scenario.

Theorem 4.8:Let Vy be any quarantine partition withy: being the corresponding saved

partition. If Q O Vs such that Voo O Q, Vs\Q) is a quarantine cut and

> p >[Q [ 9 j then the value of the quarantine cdy:(J Q, Vs\Q) is strictly better
joQ q +s

than the value oMMg, Vs).

Proof. Let (Vg,Vs) be a quarantine cut with valde. LetQ [ Vs such that Yo Q,

Vs\Q) is a quarantine cut anEjDQ p; >|Q ( i j The valuez” of the ¥oO Q,
s

q

Vs\Q) quarantine cut is the value of théy( Vs) cut minus the penalty of havir@ in

the saved partition plus the penalty of havi@gn the quarantine partition. Formally,

Z2"=2" - ¥ S(P) + Y d(1-p) =Z' - e )+ AIQ| -Aj @ B =2 - (A+S) Xjeq () +

qQl <Z' +d|Q| - qlQ| =Z'. The last inequality follows fromzjDQ p; >|Q ( i j
q+s

which implies §+s)j.0 () > g |Q]. ThusZ”<Z’ and the results follows.

[]
Figure 4.15 shows the optimal solution to the eXangraph. This example

shows that there is a trade off when removing arfoain a quarantine region. In terms
of penalties, when removing a node from the quaranyou subtract off the probability

of a healthy node being in a quarantine regioniplidt by this penalty, but you gain the
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probability of an infected node being in a savediae multiplied by this penalty.
Therefore, to determine the change in the objestalee for moving a set nodes from the
guarantine region to the saved, the vail@)-s(1-p;) for all nodes moving should be
subtracted from the previous objective value. Ha example above, notice that this
marginal value is equal to 0.20 for all iterations.

Clearly if the sum of probabilities is equal to thlereshold, then it is the
digression of the decision maker to either keepgifeeip quarantined or move them to
the save zone. If the decision maker wants todmservative, he/she should keep the

group in the quarantine.

4.5.1 Heuristic

In a real life scenario, it would be infeasibleé ogovernment agency to run an
integer program to find the optimal quarantine oegeven though the integer program is
TUM and runs quickly. The goal of this sectiontasprovide real-time guidelines for
finding near optimal quarantine regions througheartstic, called Greedy Quarantine
(GQ). Although GQ may not find the optimal quametregion, it provides a rapid
method for a decision maker to adapt a quarantiee ia a dynamic scenario.

Greedy Quarantine

Initialization:

Given a geographic ellipsoidal graph with weightedies and a defined threshold

T =0/(g+S).

Seto; := the outdegreg U Vo v; O V. LetVs:= 0 andVg := V.

Set Flag:=True
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Main Step:
While Flag = True
Flag:=False
if there exists a node with o, = 0 andpi< g/(g+s)
Vs=Vs U {vi}, Vg:=Vqg \ {vi}
For all {4,vi) O A seto; := 0-1 (update the outdegrees\4j)
Flag:=True
else
Run a subroutine or several subroutines to addipreihhodes to/s.
If the size ofVs has changed, update the outdegredg,aind Flag:=True
End else
End While loop
Go to termination
Termination

Report {q,Vs) as the optimized quarantine cut.

Subroutines to add multiple nodes td/s

The first heuristic, Interior Greedy, starts wikie thodes with the smallest probability
of infection. With this, a breadth first searchrus to a degree zero node. If the average
probability of the nodes encountered by this brdiash search is less than the threshold,
then the nodes are added to the saved region. h€hisstic utilizes this low probability
node so as to have a greater chance of finding@pgef nodes that have a lower average
probability than the threshold.

Interior Greedy
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Let vi O Vg such thap; is minimum angi<g/(g+s).
Let C be the set of all nodes can be reached frafmn breadth first search frow)
If X 5 P < (@(a+9))IC], then

Vs=Vs C, VQ::VQ \ {C}

The next heuristic, Greedy Exterior Greedy, staith the node that has the smallest
probability and is a degree zero node. From tberreverse breadth first search is run
to the root node. Within the nodes encounterekle thhe node with the smallest
probability and run breadth first search. Thisdité first must include the starting node
with the out-degree zero. If the average probighi below the threshold add it to the
guarantine. This heuristic is greedy by choosheydmallest probability node with out-
degree zero and the smallest node encountereddweese breadth first search.

Greedy Exterior Greedy

Letv; Vg such that; has outdegree zero Wy and has the minimuim value of all

such nodes.

Let D equal the set of all nodes that must be quarahtingis quarantined (run

reverse breadth first search froh

Let v, be the node iD with the smallesp; value. LetC be all the nodes encountered

by running breadth first search starting with
If X 0P < @(a+9))|C|, then

Vs=VsO C, VQ::VQ \{C}
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The goal of a heuristic is to be close to optirmatl run fast. Since we have
established that a government agency would noisteally use an integer program to
find the optimal quarantine, the next section dises how accurate the agency could be

if they used the theory mentioned in the previaction.

4.6 Comparison of Heuristic to Optimal

The motivation for this section is to compare tl@f@rmance of the heuristic,
GQ, to the optimal solution found by OQIP. Sincgoaernment agency implementing a
guarantine region would most likely not use angeteprogram to find the quarantine,
the following study shows how accurate this ageteny be if it uses the logic provided
by the heuristic and theorems discussed in Chdpter

To compare these two objective values, a basic SiBtlel on a random
geographic graph was chosen. In this study, 38amngraphs were used. To see how
the size of the graph affected the optimal valuswethe heuristic value, three different
sizes of graphs were used. Also, three diffevaniations of the penalties were used to
see their effect.

To find the probabilities that a node is infectadthousand replications of each
random graph were run. The probability of infeatfor each node is cumulated for these
replications and divided by 1,000 to find the agera Thus, if; contracts the disease in
100 of the 1000 replications, thpr= 100/1000 = 0.1. These probabilities are useten
ellipsoidal geographic graph, which is then usedet@rmine the quarantine cut.

As you can see for a graph size of 100 nodes, tbeage percent error is the
highest. This is because as the graph size iresdasaround 500 nodes, the probability

of infection is higher. This means it is easy fioe heuristic to decide that everyone
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n 100
Avg. Zh Avg. Z* | Avg. % Error
g=1,s=19 46.48 45.42 2.34%
g=1,s=9 36.23 34.06 6.35%
g=1,s=4 22.09 21.67 1.91%

should be quarantined. Tables 4.1 — 4.3 show veeage results for the 30 random

Table 4.1: Comparison of Heuristic to Optimal n = D0

n 250
Avg. Zh Avg. Z* |Avg. % Error
g=1,s=19| 157.49 157.34 0.10%
g=1,s=9 | 148.44 147.17 0.87%
g=1,s=4 [ 127.91 125.21 2.16%
Table 4.2: Comparison of Heuristic to Optimal n = %0
n 500
Avg. Zh Avg. Z* | Avg. % Error
g=1,s=19| 219.33 219.33 0.00%
g=1,s=9 218.68 218.64 0.02%
g=1,s=4 211.56 211.29 0.13%

Table 4.3: Comparison of Heuristic to Optimal n = ®0

It is important to note that if the probabilitie infection were closer to the
threshold, the heuristic value was further fromiropt. This is because it is harder for
the heuristic to make the optimal decision.

This study confirms that with large graphs, GQ peris with less than 1% error
of the optimal value. These results also show ttr@tumber of nodes in the graph and
the penalties has an effect on how well GQ performa general, the further the
probabilities of infection are from the threshalde better GQ performs. In cases where
the probabilities are close to the threshold lik§ able 4.16, GQ performs with less than
10% error of optimal.

These results show that government agencies shdilize the theory in this

research. Although they may not run an integegiaum to find the optimal decision,

62



they can achieve close to optimal quarantine regioyn utilizing the decision making

tools provided in this research.
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CHAPTER 5 — Conclusion and Future Work

One of the main results of this thesis was the ldpweent of a core simulation
that rapidly simulates the spread of an epidemia@aarontact network. Although the
simulation core was developed by a team, | haveersaghificant contributions to it.

The goal of this simulation was to create a sinottethat can be easily adapted to
any disease. Given a contact network of individuilis simulation core can be modified
to model any disease in less than an hour. If @acb network is not given, the
simulation core has the capability of generatinguradom contact network with various
parameters.

The simulation created for this research uses mandamber distributions to
generate numbers for different factors such as, tapidly a subject transitions through
each stage of the disease and the links betwedn sdgect. With this randomized
model, the simulation is run for multiple replicats. With these replications, the
average probability of infection can be found amdedflipsoidal geographic graph is
created.

This research provides the first definition for @aantine cut and an ellipsoidal
geographic network. This thesis uses the elligog@ographic network to determine
what is, and what is not a feasible quarantineoregi The quarantine cut is a new
approach to partitioning quarantined and savedviddals in an optimized way.

To execute the quarantine cut, an optimum quarantiteger program, OQIP,
was developed. The objective function of OQIPosused on minimizing the penalty of

having infected individuals in the saved region draing saved individuals in the
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guarantined region. This integer program is proteie totally unimodular and thus,
runs in polynomial time.

Since OQIP is not practical for a real-life sceoaa heuristic, Greedy Quarantine
(GQ), and some theoretical results were createde r€sults provide decision makers
with ample knowledge of how to apply this reseamcha real life scenario. After
performing a study on the how well GQ’s value ighe optimal value, | can conclude
that GQ performs with less than 10% error of optimiaen the threshold is close to the
probabilities of infection. If the threshold istradose to these probabilities, GQ performs

even closer to optimal.

5.1 Future Work

The development of OQIP and the various accompagnyieorems and heuristics
provide implementable principles and exhaust mjaf the theoretical approaches to
this research. Any future work on this researcbugh be performed on real-life
applications.

It is vital for our society to continue to modektBpread of disease as a way to
safely understand them. Given a specific diseasmmplex simulation study could be
conducted. This would include adjusting variousapeeters to see how each effect the
spread of the disease. The results of this inkdsfidy could then be compared to actual
disease spread data.

In the future, this research can be used to mduelspread of any disease in

animals such as skunks. The simulation core sfrésearch could also be used to model
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the spread of information in a contact network.oter real world application that could
be simulated would be the spread of viruses omgpater network.

Additional future work could be conducted on théeef of pre-clustered graphs.
This would show how a quarantine line could chamgentact clusters are established.
To demonstrate how a media broadcast of a quaearggion affects people’s actions, a
simulation could also be conducted. This migha#gméducing each person’s number of
edges because they would be unwilling to leave tiwne.

To model the spread of disease to rural towns, éaeh could be considered a
single node. This model would operate under tlsgraption that if a town is infected,
the entire town should be quarantined. This waarlovide a high level quarantine for
multiple rural towns.

As Nobel Prize winner Joshua Lederberg, Ph.D, steesThe single biggest
threat to man’s continued dominance on the plaméhe virus.” [Zimmerman (2002)]
The future work conducted in this field will saweds, and it is imperative for humanity’s

survival.
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