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Abstract 

Epidemics have been modeled mathematically as a way to safely understand 

them.  For many of these mathematical models, the underlying assumptions they make 

provide excellent mathematical results, but are unrealistic for practical use.  This research 

branches out from previous work by providing a model of the spread of infectious 

diseases and a model of quarantining this disease without the limiting assumptions of 

previous research. 

One of the main results of this thesis was the development of a core simulation 

that rapidly simulates the spread of an epidemic on a contact network.  This simulation 

can be easily adapted to any disease through the adjustment of many parameters. 

This research provides the first definition for a quarantine cut and an ellipsoidal 

geographic network.  This thesis uses the ellipsoidal geographic network to determine 

what is, and what is not, a feasible quarantine region.  The quarantine cut is a new 

approach to partitioning quarantined and saved individuals in an optimized way.   

To achieve an optimal quarantine cut, an integer program was developed.  

Although this integer program runs in polynomial time, the preparation required to 

execute this algorithm is unrealistic in a disease outbreak scenario.  To provide 

implementable results, a heuristic and some general theory are provided.  In a study, the 

heuristic performed within 10% of the optimal quarantine cut, which shows that the 

theory developed in this thesis can be successfully used in a disease outbreak scenario.
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CHAPTER 1 - Introduction 
 

Nobel Prize winner Joshua Lederberg, Ph.D, stressed the importance of 

understanding epidemics when he wrote, “The single biggest threat to man’s continued 

dominance on the planet is the virus.” [Zimmerman (2002)]   

Since the beginning of time, epidemics have plagued man’s existence.  For many 

years, man has combated these same epidemics with quarantining the sick from the 

healthy with the goal of preventing the spread. As can be seen in Israel and recorded in 

The Holy Bible, Lepers were quarantined outside of town to prevent the spreading of this 

disease [Numbers 12:14].  In severe cases the value of quarantine is the loss of human 

lives.  From 1347-1351 the Bubonic Plague killed approximately 75 million people 

wiping out one third of Europe’s population [Drexler (2002)].  In fact, the death toll was 

so vast that the Pope consecrated the Rhone River so bodies that were flung into the river 

could receive a Christian burial [Zimmerman (2002)].  Additionally, in 1918 the Spanish 

Flu spread to all corners of the world and eventually killed over 50 million people 

[Taubenberger and Morens (2006)].  Had an early quarantine been in place, these death 

tolls would have been drastically smaller.   

Viruses and bacteria continue to evolve and grow stronger, providing new 

challenges for mankind.  In 2007, a strain of evolved drug resistant staph infection spread 

to 94,000 people throughout the United States, and killed 19,000 [Manier (2007)]. 

Because of this, our knowledge of viruses and how to quarantine effectively should 

continue to grow in order to combat these epidemics and maintain mankind’s health.    

After an outbreak occurs, it is vital to react quickly.  With the proper knowledge 

of the disease and the proper counter measures in place, many lives can be saved.  Once a 
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serious outbreak occurs the government will most likely respond with a quarantine. The 

decision of where the quarantine line should be “drawn” is usually a best guess situation.  

However, there are many factors that aide this decision, such as the rate of spread and the 

symptoms of the disease.  Obviously, a deadly disease with a rapid spread would cause 

the quarantine region to be much larger to reduce the margin of error that an infected 

subject was missed.  However, a larger quarantine area condemns many healthy people to 

be isolated in an infected region.   

 Clearly, if the government had a tool that would analyze the region and the 

disease to determine a more optimal quarantine cut, many lives could be saved.  This 

research provides mathematical theory that can teach decision makers how to create a 

logical quarantine area.  

1.1 Ethics and Quarantines 
 

Quarantines are both good and bad.  Any quarantine has the possibility of not 

containing every subject that is infected.  Additionally, any quarantine has the possibility 

of condemning healthy subjects to remain with the infected ones.   

The issue of an optimal quarantine leads into some incredibly difficult ethical 

questions.  What is the value of life? Is it acceptable to sacrifice few to save many? 

Whose job is it to determine who lives and who dies?  We do not have the expertise, 

authority, or right to tackle these questions.  Rather, this research provides a tool for such 

an individual that does have to make these incredibly difficult decisions (Government 

Agencies).  

In society, the cost of quarantining a group of people is high.  Once a quarantine 

has been set it is the quarantine enforcer’s job to ensure no infected subjects escape the 
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quarantine.  The act of confining subjects both healthy and infected together should cause 

wide spread panic.  First, the infected subjects are terrified because they know what they 

have is bad enough to be quarantined.  Second, the healthy subjects that are quarantined 

with the infected subjects will panic and might try to escape.  The results of an attempted 

escape could be fatal for the escaping party as the quarantine enforcer must do anything 

to maintain the quarantine line.  Furthermore, if the panicked subject manages to escape 

and happens to be carrying the disease, the quarantine line is broken and the epidemic 

continues to spread.  

In addition to the effects of the individuals within the quarantine area, the 

surrounding society is also affected.  Many individuals would refuse to leave their homes 

for fear of contacting the virus.  While all of this makes for a great Hollywood movie, 

this can be detrimental to a society’s economy, growth and survival.   

1.2 Motivation 

For years epidemics have been modeled mathematically as a way to safely 

understand them.  The first and most basic mathematical model presented was the 

progression of three states: susceptible, infectious, and recovered.  From this model, 

researchers have branched out by adding new and more complex states, such as exposed 

and quarantined states.  For many of these mathematical models, the underlying 

assumptions they make provide an unrealistic model.  Typical assumptions include that 

every individual is in direct contact with everyone else and no geographical distances are 

considered.  This research branches out from previous work by providing a model of the 

spread of infectious diseases and a model of quarantining this disease without the limiting 

assumptions of previous research. 
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1.3 Contributions 

This research utilizes a simulation that generates a contact network.  Once the 

contact network is found, multiple replications of the simulation are used to find the 

probability of infection for each person.  These probabilities are combined with a 

ellipsoidal geographic graph.  With this structure, a heuristic is used to find an optimized 

way to quarantine the nodes.  The following section provides more information on each 

of these stages.  

This research begins by creating a contact network.  In a contact network the 

people are represented by nodes and the probability of node i infecting node j is 

represented with an arc.  

To estimate the probability of infection, a simulation model is created for the 

spread of infectious diseases.  The model used in this research uses many parameters that 

can be adjusted to model a specific disease, such as the rate at which a subject progresses 

through each stage of the disease and the probability of an infected subject transmitting 

the disease to another person.  

The simulation created for this research uses random number distributions to 

generate numbers for different factors such as, how rapidly a subject transitions through 

each stage of the disease and the links between each subject.  With this randomized 

model, the simulation is run for multiple replications.  To calculate the average 

probability the sum of all of the calculated probabilities for each arc are divided by the 

number of replications.    

To consider the geographical distance of each node, the contact network then 

becomes the ellipsoidal geographic graph GG.  The arcs in GG form an acyclic graph such 
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that the arc (i,j) is in AG if and only if node vi is “closer” to the root node than vj where 

“closer” is defined by an ellipse.  For node vi, an ellipse is created such that the beginning 

disease node and vi are the antipodal points and the foci are calculated under the 

assumption that the width of the ellipse is some percentage of the distance between the 

two antipodal points.  With this generated, there exists an arc from vj to vi (vj,vi) if, and 

only if, vj is contained in this ellipse.  In an outbreak scenario, the goal of a quarantine is 

to eliminate the disease by keeping the infected individuals away from the uninfected 

subjects.  The Graph Theory definition of a partitioning a set of nodes into two groups is 

called a cut.  This research defines a quarantine cut as a partition that has a logical 

geometric shape that would be easy to manage.  For instance, a donut shape would be a 

bad quarantine, because the area in the middle would be hard to maintain.   

A standard industrial engineering approach to difficult decisions is to assign penalties 

for bad outcomes.  To determine an optimal quarantine cut, the penalties for not 

containing an infected subject, s, and condemning healthy a subject, q, are decided.  

These penalties are highly dependant on the severity of the disease.  Once the penalties 

are decided, an integer programming formulation is made with the objective of 

minimizing these penalties.   

In addition to the integer programming formulation, multiple heuristics and some 

theoretical results are presented.  The results provide decision makers with ample 

knowledge of how to apply this research in a real life scenario.  

1.4 Overview 

The remainder of this thesis is organized as follows.  Chapter 2 discusses the 

background that is the basis of this research.  There is a graph theory section that 
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specifically targets cuts as they are vitally important to this research.  This chapter also 

discusses the importance of understanding epidemics and the current mathematical 

models for the spread of epidemics.  Since simulation is used to model the spread of 

infectious disease, a section in this chapter also addresses simulation. 

Chapter 3 discusses the computations that were preformed.  The results of this 

simulation are analyzed here.  Along with the simulation results, a study of the efficiency 

of the proposed heuristics will be discussed.   

Chapter 4 provides the first mathematical definition of a quarantine cut and an 

ellipsoidal geographic graph.  Additionally, this chapter describes how an ellipse is used 

to generate the arcs in a geographic graph.  An integer program formulation along with 

multiple heuristics and general quarantine theory are also provided to optimize the 

quarantine.  Graphical examples are provided to illustrate this theory.  

Chapter 5 addresses final thoughts about this research.  This section also provides 

detailed incite for the field of epidemic research.  Additionally, future research and how 

this research should be applied are also discussed.   
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CHAPTER 2 - Background Information 
 

 Much research has been done on epidemics.  This chapter provides a brief 

overview of these topics.  Additional information can be found in Gordis (2000) or 

Rothman (2002). 

This first section of this chapter discusses the graph theory principles that are the 

basis for this research.  Specific attention is paid to cuts as this is a key concept for 

quarantining the spread of the epidemic.  Since understanding the parameters of an 

epidemic is vital to this research, a section on epidemics is provided.  The next two 

sections provide a summary of mathematical models of epidemics.  The final section 

discusses simulation and how it can be used to study epidemics. 

 

2.1 Graph Theory 

A common method to model the spread of infectious diseases uses a contact 

network. A contact network is a special class of graphs.  This section discusses some 

elementary graph theory topics.  A more detailed discussion can be found in [Diestel 

(2000)].  

The study of graphs has been applied to many aspects of our lives.  From 

analyzing vehicle routes [Dietrich (1992), Klein, et al. (1994), Shirabe (2005)], to 

mapping a genetic code [Brown and Harrower (2004), Ferreira, et al. (2002)], graphical 

applications are everywhere.  The following graph theory discussion helps to understand 

graphs and how they can be applied to the spread of infectious diseases.  
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A finite undirected graph, G=(V,E), is a set of n vertices, V = { v1,v2,…,vn}, and a 

set of m edges, E={ e1,e2,…,em} where each edge is a set of two vertices ei={ vj,vk}.    

Additionally, a finite directed graph, G = (V,A) is defined as a finite set of n vertices, V = 

{ v1,v2,…,vn},  and the set of arcs, A={ a1, a2,…,am} where an arc is an ordered set of two 

vertices, (vj,vk). 

A graph can be considered weighted if a nonempty set of numbers is assigned to 

each edge or each node.  These weights frequently represent cost, distances, probabilities, 

penalties or capacities of an edge or node and are denoted by wij for all edges {ei, ej}.  A 

directed graph with weighted arcs and/or nodes is referred to as a network.   

Figure 2.1 depicts a sample graph and a sample directed graph.  The nodes, also 

called vertices, are V={ s,v,u,w,y,x,t}, and the edges are E={{ s,v}, { v,u}, { v,y}, { u,y}, 

{ u,w}, { y,w}, { w,t}, { y,t}, { y,x}, { t,x}, { x,s}, { s,y}}.  Furthermore, for the directed graph 

the nodes stay the same, but the arcs are A = {(s,v), (v,u), (v,s), (v,y), (y,u), (u,w), (u,v), 

(y,w), (t,w), (y,t), (x,y), (t,x), (x,s), (s,y)}.   

 

Figure 2.1 A Sample Graph and a Sample Directed Graph 
 

A subgraph G’= (V’,E’) of G is a graph where V’⊆V and E’⊆E.  For example, the 

node s, v, x, and y with the edge {s,x}, { s,v}, and {s,y} form a subgraph of the sample 

graph above.  An induced subgraph is given by a subset V’ of nodes and the edges consist 

of all edges in E that only contain vertices in V’.  For instance, the edges of the induced 
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subgraph of s, v, x and y contains all edges that are incident to these nodes.  These edges 

are {(s,v), (v,s), (s,y), (s,y), (s,x), (x,s), (x,y), (y,x), (y,v), (v,y)}. 

A path is a set of sequential connected nodes in a graph.  For example an s-t path 

in the directed graph above is the nodes P = (s,y,t).  Furthermore, two nodes u and v are 

connected if there exists a path from u to v.  A graph is connected if every pair of its 

nodes is connected, if not, the graph is disconnected.  A strongly connected digraph has a 

path from each node to every other node. Each group of connected nodes is called a 

component.  A common algorithm for finding the number of nodes a single node is 

connected to is called Breadth First Search or BFS [Ahuja, et. al (1993)].  Another form 

of BFS is Reverse Breadth First Search, which is similar to BFS, but in reverse order.  

A cycle is a set of sequentially connected nodes that returns to the initial node.  

An example of a cycle in the graph above is the nodes C = (s,y,t,x).  Alternately a graph is 

said to be acyclic if it contains no cycles. 

Many substructures of graphs are well known because they have unique 

properties and their names help explain their distinct shape.  For example a graph with a 

central hub that is connected to a ring of surrounding nodes is called a wheel.  The graph 

in Figure 2.1 is an example of a wheel.   

Another famous graph structure is a bipartite graph.  A bipartite graph is a graph 

that has two partitions of V into V1 and V2 such that edge {u,v} has u∈V1 and v∈V2.  

Famous problems associated with the bipartite graph are the assignment problem, where 

the users are in the partition V1 and the jobs are in V2.  

A clique, or complete graph, is a graph in which every vertex is adjacent to each 

other.  A clique, Kn is a graph with n vertices and E = {{ vi , vj} : i,j∈{ 1,…,n} , i ≠ j}.  
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Clearly a clique has 








2

n
= n(n-1)/2 edges.  Notice that the above example graph contains 

a max clique of size three, also called a triangle.  

The degree of a node in a graph is the number of edges coming into or out of a 

node.  Additionally, the outdegree and indegree of a node in a digraph is the number of 

arcs coming out of and into it, respectively.  A node with degree zero is considered to be 

isolated whereas a node with degree one is a pendant.  

A few classical problems associated with weighted graphs are shortest path 

[Dijkstra (1959)], minimum cost spanning tree [Prim (1957), Kruskal (1956)] and 

maximum flow/minimum cut [Ford and Fulkerson (1956), Menger (1927)]. 

 
2.1.1 Cuts 

 
In general, the definition of a cut is the separation of two entities.  It is only 

natural to consider a cut when separating a body of individuals into quarantined and 

saved partitions.  The following section defines a mathematical cut in a graph. 

In mathematics, a cut in a graph, G = (V,E), is defined as partition of vertices into 

two sets.  That is, (V’,V” ) is a cut if and only if V’⊆V, V” ⊆V, V’ ∩ V” = ∅, and V’ ∪ 

V”=V .  The cost of the cut is measured by summing the weights of all edges that cross 

the cut.  Therefore, the cost of the (V’,V” ) cut is ∑
{i,,j} ∈E:i∈V’,j∈V”  

wij . 

Some of the most famous cuts involve the minimum cut between two vertices, s 

and t.  A minimum s-t cut is defined as the smallest value of a cut where s∈V’ and t∈V”  

in a graph.  The Ford Fulkerson Algorithm [Ford and Fulkerson (1956)] is used to find 

the minimum cut in pseudo polynomial time.  The maximum cut on the other hand is NP-

Complete as shown by [Karp (1972)].  The max flow minimum cut theorem states that 
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the maximum flow is equal to the minimum cut [Menger (1927)].  In other words, the 

amount of flow between any two vertices cannot exceed the capacity of the smallest set 

of edges between the two vertices.  This is also known as being limited by your 

bottleneck. 

Rather than looking at the traditional cut on edges this research looks at a 

nontraditional idea of a cut where the values are on the nodes with some restrictions as to 

what constitute a valid cut.  These definitions are critical to this work and, due to their 

importance, are reserved for Chapter 4. 

 
2.2 Epidemics 

 
Dustin Hoffman’s character in the 1995 movie Outbreak stressed the importance 

of understanding epidemics when he said, “The bug is one billionth our size and it’s 

beating us.” 

Epidemics are fundamental to life on earth. The fossil of a bird over 90 million 

years old has shown symptoms of infectious disease [Zimmerman (2002)].  The fact that 

our history has always been plagued with epidemics only shows that there will continue 

to be epidemic problems.  The benefits of advancing our understanding of epidemics can 

be reaped in many sectors of our lives.  With our knowledge of epidemics come more 

advanced healthcare systems, longer life spans, and less fear of biological warfare.  

Here, an epidemic is defined as an outbreak of a disease that spreads rapidly and 

widely.  Various epidemics have hampered society for centuries including such famous 

cases as the bubonic plague, avian flu, and SARS.  Of particular interest to this thesis is 

the Spanish Flu of 1918, because it began at Ft. Riley, Kansas.  This virus spread to all 

corners of the earth from the Arctic to remote tropical islands. It is estimated that this 
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epidemic killed 50 million people [Taubenberger and Morens (2006)], which is more 

than double of the death toll in World War I.  

Understanding an epidemic requires the study of complex biological systems such 

as viruses, bacteria, parasites, and immune systems.  It also requires understanding of 

how the epidemic affects the individual with respect to age, sex, and recovery rate.  In 

addition, it also necessitates the understanding how epidemics spread, which includes, 

how the disease is transmitted, what the travel patterns of the subject are, and the 

geographical layout of the area. 

Utilizing and controlling epidemics has been a vital part of world history.  The 

Mongol attacks in the battle of Caffa consisted of catapulting plagued corpses over castle 

walls [Wheelis (2003)].  The defenders of Caffa contracted the plague and in their retreat 

helped spread the Black Death to the entire Mediterranean Region.  Outbreaks of 

smallpox plagued the American Indians in an accidental biological attack and contributed 

to the settlement of the new world [Wheelis (2003)].  When an outbreak of this 

magnitude occurs the population’s economy weakens as many fear to or cannot leave 

their residence.  Society in general, slows down during an epidemic outbreak. 

 

2.2.1 Mathematical Models of Epidemics Spread 

Studying any complex systems is typically too difficult, costly or unethical, so 

researchers develop and study models of the system.  Typically these models have 

underlying assumptions that enable the researcher to analyze the system and estimate or 

optimize the effects of changes to the system.  The question always remains whether or 

not these assumptions enable a model that realistically describes the scenario. 
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Mathematical models of epidemics can be largely divided into two classes, host 

and spread.  The host class focuses on the affect of the disease on the individual, while 

the spread class focuses on how the spread affects a group of individuals. The focus of 

this research is more on the spread of infectious disease and not the host.  In order to 

further understand how a disease spreads, the host of the disease should also be 

understood. 

Much research has been done on how a parasite affects a host.  The host-parasite 

model simulates the spread of a parasite onto a host.  This mathematical model provides 

an effective way to understand key factors in this area.  Some versions of this include 

how a parasite selects its host and competition between parasites for hosts [Kumar 

(2002)].  Some models use optimization principles to further understand the parasite host 

relationship [Olsson (1996)].  These models are vital to further understand how an 

epidemic affects an individual and also when an individual can transmit an infection to 

another person.  

A model of a spreading epidemic can be used to help understand how to group 

cities together to prevent the spread of diseases.  It can also help understand why a certain 

group of people are more susceptible to a certain disease.   

 

2.2.1.1 Contact Networks 

When modeling an epidemic, a contact network is frequently used.  A contact 

network models the chances that an individual infects another individual.  Given a set of 

n people, N={1 ,…,n} and an n x n probability matrix P where pij equals the probability of 

person i infecting person j with the disease being studied, then the contact network is 
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constructed as follows.  Let GC= (VC,AC) be the contact network where vi∈VC for i=1,…,n 

and (vi,vj)∈AC with a weight of pij.  For simplicity, if pij=0, then the arc is not considered 

in AC.   

Accurate contact networks are difficult to generate, because estimating the 

probability of every person in a graph infecting each other is hard.  In a crisis situation, it 

would be virtually impossible for a government agency to generate a contact network 

efficiently and accurately.  For disease control purposes, a contact network should be 

developed before an outbreak occurs.   

Once a contact network is generated, it can be used as input for a simulation and 

optimization software.  The simulation and optimization software can use the contact 

network to decide where the best location for a quarantine line would be.  Again, the 

biggest drawback to this approach is generating the necessary assumptions so that the 

contact network is accurate.  

 
2.2.2 Compartmental Disease State Models 

 
Once a contact network is established, researchers can then model the spread of 

epidemics.  Modeling the spread of infectious disease has been a goal of researchers for 

many years.  Because it is such a complex problem, a perfect model may never be 

created.  Most current models for the spread of infectious disease have underlying 

assumptions that make the models unrealistic.  Since the benefits are so high, an effort 

should always be made to model the spread of an epidemic more effectively. 
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2.2.2.1 SIR Model 
 

One of the first, and most basic models for the spread of an epidemic is the 

Susceptible, Infectious, or Recovered (SIR) state model.  At any moment of time each 

individual is classified into a state.  Thus, at any given moment every individual is 

susceptible, infectious or recovered.  The recovered state can either mean the subject no 

longer has the disease or the subject is dead.   

 

Figure 2.2: SIR Model 
 

The current assumptions for a basic SIR model are that the contact network is a 

complete graph and no geographical distances are considered.  Also each of these links 

between nodes transmits the disease with the same probability [Newman (2002)].  The 

SIR model uses differential equations to express the die out rate.  This shows that the SIR 

model and the models that have branched from this are focused on natural selection and 

not how to mitigate the disease.  While these assumptions provide nice mathematical 

results, in real life, none of these assumptions are true, as commented by Newman.   

In the SIR model and most other mathematical models, individuals transition from 

each of these states. The rate of transition from susceptible to infectious is β and is used 

for the infection rate and γ is used for the recovery rate.  Consequently, if β is much 

larger than γ, the infection will spread quickly.  On the other hand, if the ratio of 1<
γ
β

, 

then the disease will die out.  Ultimately, the smaller this ratio, the more rapidly the 

disease dies out. 
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Some specific examples of researchers using the SIR model include generating 

optimal vaccination strategies [Ogren (2000)], modeling the spread of influenza in a 

mixed population [Fuks, et al. (2006)] and modeling the spread of a computer virus in a 

network [Piqueira (2005)]. 

Due to the differences in diseases, researchers have expanded on the SIR model.  

By adding new states, these researchers can more accurately model different diseases.  

For instance, if a disease has a state where the subject is exposed but not infected, a new 

state can be added to model this.  The following models are examples of how researchers 

have branched off of the basic SIR model. 

 

2.2.2.2 SEIR Model 

The SEIR model is similar to the previous SIR model except it adds an exposed 

state.  This state is used to model a period where the subject is exposed to the disease.  In 

this state the subject is said to be infected, but not infectious, meaning the disease cannot 

be transmitted from an exposed subject to a susceptible subject.  Among many diseases, 

this model is also used to model the propagation of worms from computer to computer 

[Yu (2006)].   

 

Figure 2.3 SEIR Model 
 

2.2.2.3 MSIR Model 

For many epidemics, most notably measles, babies are born with a temporary 

immunity to the disease. For this reason, researchers have added another state to the 
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standard SIR model.  This state allows for a period of immunity in babies.  The chart 

below shows the progression of the MSIR model [Cristea (1992)]. 

 

Figure 2.4: MSIR Model 
 

2.2.2.4 Carrier State Model 

For some epidemics such as tuberculosis, the infected individual can never 

actually recover.  When an individual is in this state they are know as a carrier and thus 

the carrier state model was created to represent this [Kolesin (2007)].  The most famous 

case of a carrier state model is Mary Mallon, best known as Typhoid Mary.  Mary, a 

carrier of typhoid fever, spread the disease to 22 people over a span of 7 years 

[Rosenberg (1997)].  

 

 
Figure 2.5: SIC/R Model 

 
 

2.2.2.5 SIS Model 
 

Some infections such as the common cold do not have a period of immunity and 

thus have no recovered state.  This model then continues to bounce between susceptible 

and infectious [Neal (2008)].  The chart of this model can be seen below. 
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Figure 2.6: SIS Model 

 
 

2.2.2.6 SIQR Model 
 

To model the effects of a quarantine in a disease spread scenario, the SIQR model 

was developed.  The SIQR model shown below, adds a quarantined state to the normal 

SIR model.  This model has been proven to work effectively on single strain epidemics 

[Nuno (2008)].  In a perfect world, where as soon as someone is infected they can be 

quarantined, this model would be accurate.  However, many times in a quarantine 

scenario, susceptible subjects are quarantined with infectious.  Therefore, in real life 

people transition from susceptible into quarantined.  

 

 
Figure 2.7: SIQR Model 

 
Much research has been done on the aforementioned state models.  The 

assumptions made with each of these models provide good mathematical results, but 

frequently cause the model to be unrealistic.  To approach this problem differently, 

researchers use simulation to model how disease spread through a society. 

 
2.3 Simulation 

 
Simulation is used to model processes that are either too costly or unethical to 

perform experimentation.  More specifically a computer simulation models a hypothetical 

situation to study how the actual system works. The fundamentals of simulation focus on 

using random numbers to mimic the randomness of the system.  Once the model is 
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created, multiple replications provide significant data. With this data, statistical analysis 

is done to support a decision or recommendation. 

Some impressive simulations include flight simulators, video games, and weather 

simulations.  To model most systems, some assumptions must be made to explain parts of 

the process that cannot be modeled.  The assumptions made for a simulation define the 

accuracy of the model. 

The goal of any simulation is to use statistics of multiple replications of data to 

show that the simulation is representative of the actual system.  Through statistics, 

confidence intervals can be used to support the results of a simulation. The justification 

of results is vital for a credible model.  Without statistically justified data, a simulation 

model is less valuable.  

 
2.3.1 Simulating Epidemics 

 
Simulation is beneficial to advancing epidemic research, because it allows us to 

test a scenario before implementing a policy.  For instance if a government agency wants 

to see the effects of vaccinating a whole city as a way to prevent a disease, they can do 

this without real life consequences.  One of the drawbacks of simulation is that it takes 

time to run a model.  If a decision is needed in a short time span, simulation may not be 

the best option. 

Much research has been done in the area of host simulation.  This type of 

simulation models the effects of a disease on an individual.  Specifically the work done 

on simulating cancer has given medical doctors information on how to cure this disease 

[Roberts, et al. (2007)].  An example of how simulation can improve medical care is the 
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use of simulation to optimize the checkup intervals for breast cancer [Michaelson, et al. 

(1999)]. 

Since an epidemic spread does not happen frequently and would not be safe to do 

real tests with, simulation is an excellent tool to help understand how epidemics spread.  

Specifically, simulation has been used to see how a small-pox outbreak would affect the 

city of Portland [Barrett (2005)].  This simulation gave authorities in this city the 

knowledge of how to vaccinate in a way to minimize the spread.  Simulation can also be 

used to see how a disease would affect a network of cities.  For instance, a simulation 

was conducted to model the spread of influenza in 128 cities in Russia [Rvachev (1968)].  

The result of this gave authorities incite on where to focus their aid if an outbreak did 

occur.   

There are many factors to consider when modeling a disease spread such as how 

rapidly a subject transitions through each stage of the disease and how to generate 

probability between each subject.  Most models use random number generators to 

simulation these factors.     

Much research has been done on simulating the spread of infectious diseases.  

Many of these simulations are disease specific, and don’t allow the user to tailor the 

simulation to their needs. The following chapter presents the design considerations for 

the simulation that was created for this research, which fixes many of these problems.    
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 CHAPTER 3 - Epidemic Simulation 
 

This research began by creating a core simulation model for the spread of an 

infectious disease in rural Kansas.  Although I made significant contributions to this 

simulation, it has been a combined effort of four students under the direction of my 

advisor Dr. Easton.  The three other students are Joe Anderson, Mathew James and David 

Willis.  

The simulation core simulates the spread of an epidemic on a contact network.  

The goal of this simulation was to create a simulation that can be easily adapted to any 

disease.  The best property of this simulation is its versatility.  Given a contact network of 

individuals, this core simulation can be modified to model any disease in less than an 

hour.  This simulation can also model the spread of a disease on large networks rapidly.  

Joe Anderson and I focused our research efforts on building this simulation core. 

A fundamental assumption that led to this research is that a disease would spread 

much differently in a rural region than in a large city.  To test the simulation core, this 

simulation is applied to a small rural town in Kansas.  The team selected Clay Center 

because Mathew James is from there and has first hand knowledge of the area.  Mathew 

James and David Willis focused their research on modeling the geographical locations 

and contacts of individuals in Clay Center, KS.  

 

3.1 Simulation Core 

 The motivation for creating a disease simulation that is extremely versatile is so it 

can be applied to any disease.  The following section discusses the requirements for such 



 22 

a simulation.  A detailed description of how the simulation core operates is also discussed 

here. 

 

3.1.1 Contact Network, Disease States and Tracks 

Ideally, the input to the simulation core is a contact network and a set of infected 

nodes. The contact network needs an x and y location to represent the geographical 

location of an individual.  Also, each individuals arcs (i,j) are required with the 

probability pij of infecting each person. 

If a contact network is not provided, a random contact network can be generated.  

As seen in Section 3.3, the Clay Center contact network was generated by examining the 

population and layout of the town.  In this simulation an infected individual is selected at 

random.  Several other random contact networks were generated to test the quarantine 

theory discussed in Chapter 4.   

A main assumption for this simulation is that it uses discrete time intervals.  For 

example, in the simulation below, a person will remain exposed for a certain number of 

days and then transition into another state.   This time period can be adjusted to represent 

any time unit such as a minute, hour or day.  For this study, one day was selected as the 

time period.  Thus an individual must be in a state for an entire day; therefore, an 

individual cannot be susceptible for one half of a day and infectious for the other half.   If 

a disease allows this, the time period should be set to hours or half days.   

In a given day of a disease outbreak scenario, an infectious subject has the 

possibility to spread the disease to individuals in contact with the subject. To simulate 

this, every node in the graph that is in the infectious state generates a random number for 
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every susceptible node that has an arc from the infectious node.  This number is then 

compared to the number from the contact network associated with the arc between each 

node.  If the random number is less than the number on the arc, then the disease spreads 

to that node, else the node may contract the disease from another node in this time or 

some time in the future.  

This simulation can easily be adapted to any disease due to a disease track model. 

A disease track is comprised of multiple states of a disease.  These states are vital to a 

disease, because each state of a disease is different.  For instance, in a given disease an 

older person may follow a SID path, where D stands for dead, while a baby could follow 

a SIR path.   

This simulation allows a specific disease to follow multiple disease tracks with 

different probabilities.  For instance with typhoid fever, a subject could become a carrier 

(Typhoid Mary) while others could recover from this disease.  If a subject becomes a 

carrier 10% of the time, then a uniform random number is generated before once a node 

contracts the disease and this random number determines what track a particular subject 

will follow.   

The time spent in each state is also random.  As in real life, one person can be 

infected with a cold for 3 days while another will be infected for 1 day.  This randomness 

is captured in this model.  Currently, a uniform random number is generated to determine 

the length of time in each state, but this can be adjusted to any probability distribution 

that models a specific disease.   
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3.2 Disease State Transition Example 

Figure 3.1 is an example of a small contact network that is used to describe the 

simulation core.  For this example, assume there are two disease tracks that have an equal 

probability of occurrence and have the following states: Susceptible, Infectious, 

Susceptible, and Susceptible, Infectious, Dead.  In Figure 3.1 susceptible is represented 

by green, infectious is represented by purple, and dead is represented by black. Also, 

subjects can spend anywhere from 1-3 time periods in each state.   At time period 0, 

subject A starts out in the SID track and in the infectious state.  A random number for the 

time in this state is generated between 1 and 3 and happens to be 2.   Therefore, subject A 

will be infectious for 2 time periods.  

 

Figure 3.1: Iteration 0 
 

 Also during iteration time 0, a uniform random number between 0 and 1 is 

generated for all contacts of the infectious node.  This number is then checked with the 

weight on the arc.  If the random number is less than the arc weight, the node contracts 

the disease.  

For example, if the number generated for the arc between node A and B is 0.5, 

then node B would remain susceptible until the next time period.  The next time period is 

similar to the first.  Since node A has one more time period in the infectious state, it can 

still infect any susceptible adjacent nodes. To simulate this, another random number is 

generated, say 0.01.  Since this value is less than the arc weight of 0.3, node B has 

contracted the disease.   To determine what disease track B is in, a random number is 
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generated, say 0.6. Since this number is above 0.5 node B is in the SIS track.  Thus, node 

B is classified as infectious and a uniform random number between 1 and 3 is generated 

to determine the state duration.  For this example, assume the number generated is 1.  

Figure 3.2 represents this transition.  

 

Figure 3.2: Iteration 1 
 

 The next time period has a new transition.  Since node A has been in the 

infectious state for its allotted time, it now transitions into the terminal dead state.   Also 

in this time period, node B has a chance of infecting node C.  To simulate this, a uniform 

random number is generated between 0 and 1 and is 0.7.  Since this number is larger than 

the arc weight between node B and C, node B does not infect node C.   

 

Figure 3.3: Iteration 2 
 

 Since the duration of node B’s infection is only 1 time period, the next time period 

yields the susceptible state for node B.  Finally since all nodes are either dead or 

susceptible, there is no way for the disease to spread.   This means all nodes are in their 

terminal state.   

 

Figure 3.4: Iteration 3 
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 The state transitions example presented above is a vital concept of the 

collaborative disease simulation created.  The following section is a more detailed 

example of how these concepts can be applied to a network of people in Clay Center, 

Kansas.   

 

3.3 Simulation Examples 

 This section discusses how the simulation core is applied to a contact graph that 

resembles the population and density of Clay Center, Kansas.  Because Clay Center has a 

population of approximately 4,600 people and is not as densely populated as a city such 

as Portland, Oregon [Barrett (2005)], an epidemic outbreak should spread differently than 

in Portland. 

 For this research, an example disease was created to show how a disease can be 

simulated.  This disease is named the WAJEC disease for its creators.  As with most 

diseases, WAJEC can have multiple disease tracks.   A person can be in any of the 

disease tracks in Table 3.1.  The number at the top shows the probability of each track 

that a subject that contracts the disease can follow.   

Track 1 Prob. = 0.4 Track 2 Prob. = 0.4 Track 3 Prob. = 0.2
Susceptible Susceptible Susceptible

Exposed Contagious Symptoms Carrier
Carrier Dead Recovered

Contagious Symptoms
Symptoms Not Contagious

Immune  

Table 3.1: WAJEC Disease Tracks 
 

 To display how WAJEC spreads, a graphic user interface was created.  This 

interface visually shows the user how the disease spreads.  The graphics in the figures 
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below represent the town of Clay Center.  As you can see, there are colored nodes that 

represent each person and their disease state.  The disease states and corresponding color 

for WAJEC are listed in Table 3.2.   

As you can see the square blocks of the residential areas of Clay Center are 

separated by primary streets of the town and are represented by white space in the graph.  

The large white area in the graph is the town center that is not a residential area.  Also 

notice that there are some nodes that live far away from the town center.  Their 

geographical distance is represented accordingly.  

Node Color State
Green Susceptible
Yellow Exposed
Red Carrier
Purple Contagious
Blue Symptoms/Not Contagious
Teal Immune
Black Dead
Olive Recovered  

Table 3.2: Graphic Key 
 

 Before WAJEC is simulated, a contact network is built.  To build the contact 

network for Clay Center, approximately 4,600 nodes were given locations.  These 

locations were random, but were confined to certain areas, such as the square blocks.  

Also, a random family size was generated between 1 and 5.  The geographic locations of 

families outside of town were also randomly generated.   

 The contact between one node and another is represented by an arc.  For this 

simulation there are three levels of arc existence based on the distance from each node.   

Additionally, there is a probability that each of these arcs exists.  For the base case below, 

the probability that a short arc exists is 0.2.  This means that the residence of Clay Center 

have contact with 20% of the people that reside within two blocks.   
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Along with the probability that an arc exists, there is a maximum level of contact.  

This level means that if the arc exists, there is a certain probability the disease can spread 

between these two people.   For the base case below, this means that of the 20% of close 

contacts, the maximum probability of infecting a node is 50%.   Thus, if such an arc 

exists, then a uniform (0.5) number is generated and this becomes the probability that an 

infectious node transmits the disease to its contact.  These parameters are further 

explained in the following examples.   

Similarly to the short contact, there are also medium and long contacts.  A 

medium contact is defined as someone within a 5 square block radius.  On the other hand, 

a long contact is a contact that is either across town or outside of the town.  Once such an 

arc exists, a probability of infection is generated.  

 The following example is the base case for this simulation.  The parameters for 

the contact network are presented below along with the graphical representation of how 

these parameters affect the spread of WAJEC for 10, 15 and 20 days.   For this study, the 

time spent in each state is fixed at 3 days, and a single individual starts the disease. 

Base Case 
Probability of Short Arc Existence: 0.2; Maximum Probability: 0.5  
Probability of Medium Arc Existence: 0.05; Maximum Probability: 0.5  
Probability of Long Arc Existence: 0.01; Maximum Probability: 0.5 

 
Day: 10 
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Day: 15 

 
Day: 20 

 
 

 As you can see, the number of days greatly affects how an individual transitions 

through a disease.  By day 20, most individuals where the disease started are either 

recovered or dead.  Notice that some individuals on the outside of town have yet to be 

exposed to the disease.  

 To see how the arc existence and the maximum probability affect the spread of 

the disease, the following study was conducted.  In this study, the probability of the arc 

existence is doubled while the maximum probability of infection is set to the base case 

(remains the same).  These graphical results are compared to doubling the maximum 

probability of assigning a disease track and leaving the edges the same.   

Double the Probabilities of Arc Existence  

Probability of Short Arc Existence: 0.4; Maximum Probability: 0.5  
Probability of Medium Arc Existence: 0.1; Maximum Probability: 0.5  
Probability of Long Arc Existence: 0.02; Maximum Probability: 0.5 
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Day: 10 

       
Day: 15 

 

   
 

Day: 20 

 

 
Double the Maximum Probabilities of Contracting the Disease 

Probability of Short Arc Existence: 0.2; Maximum Probability: 1.0  
Probability of Medium Arc Existence: 0.05; Maximum Probability: 1.0  
Probability of Long Arc Existence: 0.01; Maximum Probability: 1.0 
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Day: 10 
 

 
Day: 15 

 
 

Day: 20 

 
 

By examining day 10, it is evident that doubling the arc existence spreads the 

disease much more rapidly than doubling the probability of an arc existence.  With this 

said, by the 20th day, both studies have similar results.  As you can see the 20th day yields 

most subjects in either the, immune, dead, recovered or symptoms but not contagious 

state.   Once this steady state is reached, the probability of arc existence and the 
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probability of assigning a disease track are equally important.  This means that when 

generating the contact network, each of these parameters is important.  

The study provides important incite on how to quarantine diseases.  If a 

government agency is given the choice to have a disease that spreads half as quickly or a 

network of people with half as many contacts, the agency would want the network with 

fewer contacts.   

After examining this study and the base case graphs, it is evident that after 10 

days, of this disease spread the whole town should be quarantined.  As far as the families 

on the outskirts of Clay Center, it seems that the spread does not start to reach them until 

day 15.  This means that if a government agency had identified this disease after 10 day 

of it starting, the whole town except for the families in the outskirts of town should be 

quarantined. 

A fundamental question of this research is after a certain amount of days, where 

should the quarantine region be?  The following chapter discusses theory on how to 

optimize a quarantine region.  The theory presented in this chapter can help decision 

makers decide where the best quarantine should be in a disease outbreak scenario.  
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CHAPTER 4 - Optimizing Quarantine Regions 
 

The goal of this research is to provide an optimized method for quarantining a 

group of infected subjects.  Quarantines can come in various sizes depending on the 

severity of the outbreak.  Although the idea of a quarantine is relatively simple, the 

consequences of applying a quarantine are immense.  A common industrial engineering 

technique for optimizing a scenario with negative consequences is to assign penalties to 

negative results.  These areas are addressed in this chapter. 

 
4.1 Basic Ideas of a Quarantine 

 
In an outbreak scenario, the goal of a quarantine is to eliminate the disease by 

keeping the infected individuals away from the uninfected subjects.  Therefore, no 

subject is allowed to leave a quarantine area.  To accomplish this, all sides of a quarantine 

area must be enforced by military, police or natural barriers.  In order to enforce a 

quarantine area, the area should be a continuous region with a reasonable shape, because 

it is impractical and unmanageable for the government to maintain several large 

quarantine areas.   

A logical quarantine is defined as a region that can be easily enforced.  Clearly in 

a disease outbreak scenario the entity that begins the disease, defined as the root node, as 

well as any person that has contracted the disease, should be quarantined. Assuming the 

root node is colored in black, the quarantine cuts, denoted in red, shown in Figure 4.6 are 

logical quarantine regions, and Figure 4.7 shows illogical ways to quarantine an infection 

given the geographic position of the nodes.    
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Figure 4.1: Logical Quarantines 
 
 

     
 
 

Figure 4.2: Illogical Quarantines 
 

 
4.2 Ellipsoidal Geographic Graphs 

This thesis uses a geographic network to determine what is, and what is not a 

feasible quarantine (a quarantine of a reasonable shape). Formally, a geographic network 

GG is a network with a root node vr, where each node has two parameters (xi,yi) that 

correspond to the geographic position of node vi ∀ i ∈ {1,…,n}.  The arcs in GG form a 

graph such that the arc (i,j) is in AG if, and only if, vi is “closer” to the root node than vj 

where “closer” is some well-defined measure.  Figure 4.3 shows some nodes with their 

respective locations of a GG with the root node denoted as a black circle. 
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Figure 4.3: The Nodes of a Geographic Graph 
 

The primary idea of closer is to not allow a quarantine to be an unreasonable 

shape.  If a quarantine region has an unreasonable shape, then the citizens along the poor 

borders are likely to revolt.  Just consider either of the two illogical quarantines depicted 

in Figure 4.2.  Clearly, the northeast individual can complain that they are further from 

the epicenter of the disease than someone who is not quarantined. Thus, this northeast 

individual should try to move closer to the disease, because there is a node that is closer 

that is in the “saved” area.   

In this paper, an ellipse is used to generate the idea of “closer.” In such a case, the 

geographic graph is called an ellipsoidal geographic graph.  This graph draws an ellipse 

from the root node to node vi.  This means that if the node vi is in the quarantine region, 

any node that is contained within the ellipse between the root node and vi, must also be in 

the quarantine, since these other nodes are “closer.” 

To find the ellipse generated from the antipodal points vi and vr begin by finding 

two foci f1 and f2 such the distance from f1 to vi plus the distance f2 to vi equals the 

distance from f1 to vr plus the distance f2 to vr, which also equals the distance from vi to vr.  

The ellipse consists of all points pєR2 such that the distance from f1 to p plus the distance 

from f2 to p is equal to the distance from vi to vr .   



 36 

Clearly, there are an infinite number of choices for f1 and f2 the distance between 

f1 and f2 determines the width of the ellipse.  If f1 and f2 are equal, then the ellipse is a 

circle and if f1 and f2 are the antipodal points, then the ellipse is a line segment.   

For this work we chose f1 and f2 such that the distance between the antipodal 

points on the major axis was twice the distance between the antipodal points on the minor 

axis.  This ratio of the major axis and the minor axis is denoted by α, where α≤1. This 

implies that the location of focal points are given by ((xvr
 + λ(xvi

 - xvr
)),(yvr

 + λ(yvi
 - yvr

)), 

where for this research f1 and f2 have λ =    respectively.  Observe that 

α≠ λ and given α, λ can be generated by applying Pythagorean Theorem.  

To generate a ellipsoidal geographic graph with parameter α, which is equal to the 

minor axis divided by the major axis, there exists an arc from vj to vi (vj,vi) if, and only if, 

vj is contained in the ellipse generated by the antipodal nodes vr and vi.  The development 

of this graph is shown in Figures 4.4 – 4.7.  As you can see, the nodes that are interior to 

the ellipse are the nodes that must be quarantined if vr is the root node and v1 is in the 

quarantine area. This is because these nodes are closer to vr than v1 is closer to vr.  Using 

the ellipse structure, the geographic network from the root node vr to v1 is established in 

Figure 4.5. 

           
 
 
Figure 4.4: Generating an Ellipse       Figure 4.5: GG with Contacts from vr to v1 
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Continuing this process for all nodes in GG generates all of the arcs in GG.  As you 

can see by the geographic graph generated in Figure 4.6, by using an ellipse as a way to 

generate the arcs, there are no cycles in the graph because vi is “closer” to the root node 

than vj. 

 

 
Figure 4.6: All of the Arcs of a Sample GG  

 
The final step is to include the probability that each node has the disease.  In this 

research, pi is used to define the probability of infection for node i. The full ellipsoidal 

geographic graph is shown in Figure 4.7.  The number on the interior of the nodes 

indicates the individuals corresponding probability of infection. 

 

Figure 4.7: The Final GG with Probabilities 
 

Various other structures could be used to define “close,” such as circles, 

diamonds, norms, etc. Figure 4.8 demonstrates a diamond structure that could be used to 
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find which nodes should be contained if v1 is contained.  Some care must be taken in 

defining “closer”, which is described in the next section. 

 
 

             
 
 
 
   Figure 4.8: Example of Alternate Structure and Edges Generated from Structure 

               
 

4.3 Feasible Quarantine Cuts 
 

The focus of this research is to find the optimal quarantine cut.  Consider an 

outbreak of a deadly disease.  The government’s obvious response is to seal off the area 

and eliminate any travel into or out of the area.  Some medical individuals may be called 

in to help out with the situation, but these individuals will be “cleansed” before they can 

leave the area.  The area that the government seals off is called a quarantine.   

A fundamental advancement of this research is the mathematical model and 

corresponding optimization of a quarantine region.  Here this quarantine region is 

modeled as a cut in a geographic graph.  The cut partitions the nodes into two sets, a 

quarantine set, VQ, and a saved set, VS.  Clearly, the quarantine set must have the starting 

infected individual.  

Finding a feasible quarantine cut requires a geographic graph GG = (VG, AG) and a 

beginning disease node, vr as input.  A cut (VQ, VS) is a quarantine cut if, and only if, VQ 
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∪ VS = VG, VQ ∩ VS = ∅, vr ∈ VQ and vi ∈ VS and vj ∈ VQ implies (vi,vj) ∉ AG .  For ease 

of notation, a quarantine cut (VQ, VS) can also be referred to as VQ or VS since VQ = V \VS.  

With an ellipsoidal geographic graph, a legal quarantine cut can now be 

described.  Figure 4.9 shows a legal quarantine cut.  In this sense, a quarantine cut is legal 

if all predecessors of the nodes contained in the quarantine side are also in this side.   

In contrast, Figure 4.10 shows an infeasible quarantine cut.  If node vj is contained 

in the quarantine, then its predecessor, node vi must also be in the quarantine.  Thus, this 

quarantine region is not feasible. 

 

 

Figure 4.9: Legal Quarantine Cut in GG      

 

 

 
Figure 4.10: Illegal Quarantine Cut in GG 

 

Now, imagine a quarantine line has been breached.  A government agency must 

increase the size of the quarantine region.  A naïve person might think that just adding all 

vi 

vj 
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“closer” individuals to this node is sufficient for the quarantine.  This is not the case as 

the following example illustrates. 

If the preexisting quarantine is represented by the circle in Figure 4.9, and the 

breached quarantine is predicted to have reached the shaded node, then this figure 

represents what the new quarantine would look like.  Notice that an ellipse is drawn from 

the shaded node to quarantine.  This ellipse shows all of the nodes that should be 

included in the new quarantine with the shaded node.  However, any node in this first 

ellipse also creates its own ellipse, which may include nodes that the first ellipse missed.  

This process continues as needed, and performing reverse breadth first search is sufficient 

to determine the smallest quarantine region for this breach as described in Theorem 4.1. 

Vr

              

Vr

 

Figure 4.11: Graphical Representation of Theorem 4.1 
 

Theorem 4.1: Given any directed graph G and a set of nodes Q ⊆ V. The smallest 

cardinality quarantined partition VQ that contains Q is unique and is the set of all nodes 
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encountered by performing reverse breadth first search starting from all of the vertices in 

Q.  

Proof:  It suffices to show that VQ is a quarantine cut and that any quarantine cut VQ’ that 

contains Q has at least as many vertices as VQ.   

For contradiction, assume VQ is not a quarantine cut.  Thus, there exists an arc 

(vi,vj) such that vi is in VS and vj is in VQ.  However, this contradicts reverse breadth first 

search, because vertex vi would have been added to the visited vertices since it is on a 

path that terminates in some vertex in Q. 

 For contradiction, assume VQ ≠ VQ’ is a quarantine cut that contains Q and 

|VQ’|≤|VQ|.  Therefore, there exists a vertex qp ∈VQ such that qp ∈ VS’. Due to reverse 

breadth first search, there exists a path from some vertex q1∈Q to qp, P = q1, …,qp. Thus, 

there exists some j∈{ 1,…,p}, such that qj-1 ∈ VS’ and qj ∈ VQ’. Therefore, (VQ’,VS’) is not 

a quarantine cut, a contradiction, and the result follows. 

 

 

The result of Theorem 4.1 provides useful incite for valid quarantine cuts of 

directed graphs, regardless of weights.  Thus, if an individual is known to be ill and is to 

be quarantined, then a simple reverse breadth first search on GG would result in the 

smallest possible quarantine region.  

The following theorem is similar to Theorem 4.1 and should be used if a 

government agency wants to save a particular person in a quarantine region.  Imagine the 

President is near a quarantine region, and the agency must save the President.  It would 

be illogical for the government to say the President can be safe, but the people that are 
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further away from the disease should still be quarantined.  The question then is who must 

be saved to save the President? The following theorem formally describes everything that 

is necessary to move a set of nodes from the quarantine region into the saved region.     

 

Theorem 4.2: Given any directed graph G and a set of nodes S ⊆ V. The smallest 

cardinality saved partition VS that contains S is unique and is the set of all nodes 

encountered by performing breadth first search starting with all of the vertices in S.  

Proof:  It suffices to show that VS is a quarantine cut and that any quarantine cut VS’ that 

contains S has at least as many vertices as VS.   

For contradiction, assume VS is not a quarantine cut.  Thus, there exists an arc 

(vi,vj) such that vi is in VS and vj is in VQ.  However, this contradicts breadth first search, 

because vertex vi would have been added to the visited vertices since it is in VS.  

Furthermore, when vi is evaluated, vj is one of its neighbors and it would have been added 

to VS also. 

 For contradiction, assume VS ≠ VS’ is a quarantine cut that contains S and 

|VS’ |≤|VS|.  Therefore, there exists a vertex qp ∈VQ\VQ’  such that qp ∉ VQ. Due to breadth 

first search, there exists a path from some vertex q1∈S to qp, P = q1, …,qp. Now there 

exists some j∈{ 1,…,p}, such that qj-1 ∈ VS’ and qj ∈ Q.  Therefore, VS’  is not a quarantine 

cut and the result follows. 

 

 

Besides generating this smallest saved region, Theorem 4.1 and 4.2 also have 

strong implications for what types of directed graphs should be considered when trying to 
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find optimal quarantine cuts.  These theorems imply that if the directed graph is strongly 

connected (there is a path from every node to every other node), then the only quarantine 

cut is the entire graph.  Formally, the result is as follows.  

 

Corollary 4.3: Every strongly connected digraph has one quarantine cut, namely the 

entire vertex set. 

Proof: Every strongly connected graph has a directed path from every node to every other 

node.  Applying breadth first search or reverse breadth first search to any node results in 

every node being encountered.  Since the root node must always be in the quarantine 

region, the entire graph must be quarantined.  

 

 

Applying Corollary 4.3 on any cycle of a directed graph, implies that either none 

of the nodes in the cycle are in a quarantine or all of the nodes are in the quarantine.  

Thus, any digraph with a cycle can be reduced by contracting the cycle into a super node.  

This means households should be considered a single node. Thus, any work on 

quarantine cuts must be performed on acyclic directed graphs.  One of the best properties 

of ellipsoidal geographic graphs is that they are acyclic as the following two results show. 

 

Theorem 4.4:  If GG is an ellipsoidal geographic graph and vi and vj do not have the same 

coordinates and the distance from node vi to the root node is at least as big as the distance 

from the root node to node vj, then (vi, vj)  is not in AG.   
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Proof: Assume GG is an ellipsoidal geographic ellipsoid graph.  Furthermore, assume vi 

and vj are not at the same location and the distance from node vi to the root node is at least 

as big as the distance from the root node to node vj.  For contradiction assume (vi,vj) ∈ 

AG. 

To find the ellipse generated from the antipodal points vj and vr begin by finding 

two foci f1 and f2 such the distance from f1 to vj plus the distance f2 to vj equals the 

distance from f1 to vr plus the distance f2 to vr equals to the distance from vj to vr.  The 

ellipse consists of all points p∈R2 such that the distance from f1 to p plus the distance 

from f2 to p is equal to the distance from vj to vr . 

 Since (vi,vj) ∈ AG, the distance from vi to f1 plus the distance from vi to f2 is less 

than or equal to the distance from vr to vj.  If vi is on the line passing through both vj and 

vr, then vi is closer to the root node than vj, a contradiction or vi is further from the root 

node than vj, and is not in the ellipse also a contradiction.   

Next examine the three points vr, f1 and vi.  The triangle inequalities implies that 

the distance from vr to vi is less than or equal to the distance from f1 to vr plus f1 to vi. 

Since vi is in the ellipse, the distance from f1 to vi is strictly less than the distance from f1 

to vj.  Consequently, the distance from vr to vi is strictly less than the distance from vr to 

vj, a contradiction.  

 

 

The previous theorem describes the nature of the ellipsoidal geographic graph, an 

acyclic graph.  This structure is vital to this research, because if the graph is not acyclic 
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then the entire area should be quarantined as previously mentioned.  The formal result is 

as follows.    

 

Corrollary 4.5:  An ellipsoidal geographic graph GG with no two nodes at the same 

location is acyclic. 

Proof:  For contradiction assume there exists a cycle with edge set equal to {(v1,v2), 

(v2,v3)…,(vc-1,vc), (vc,v1)} in an ellipsoidal geographic graph.  Define d(vr,vi) to be the 

distance from the root node to vi.  From Proposition 4.3 and the existence of the arc 

(vi,vi+1), one obtains d(vr,vi) < d(vr, vi+1) ∀ i=1,…,c-1.  Thus, d(vr,v1) < d(vr, v2) <…< 

d(vr,vc).  However, (vc,v1) is an edge and so d(vr,vc) < d(vr,v1), which contradicts the 

previous expression and the result follows.       

 
  

Now that the feasibility of quarantine cuts has been discussed, this thesis now 

turns to optimizing quarantine cuts.  Section 4.4 is focused on this topic. 

 
4.4 Optimizing Quarantine Regions 

 
Quarantine cuts are both good and bad.  Any quarantine has the possibility of not 

containing every subject that is infected.  Additionally, any quarantine has the possibility 

of condemning healthy subjects to remain with the infected ones.   

A standard industrial engineering approach to difficult decisions is to assign 

penalties for bad outcomes.  Before an optimal quarantine cut can be determined, the 

penalties for not containing every infected subject and condemning healthy subjects 

should be decided.    
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For instance, a contagious disease has been discovered in a town and the military 

may think it is 10 times as bad to have an infected subject outside the quarantine as it is 

to have a healthy subject in the quarantine.  Therefore, the penalty for an infected person 

outside the quarantine line is 10 and the penalty for condemning a healthy person would 

be 1.  This means the military would be willing to sacrifice 10 healthy subjects before 

they would allow an infected individual outside of the quarantine zone.  

These penalties are highly dependant on the severity of the disease.  If for 

instance, the disease was deadly and spread almost instantaneously, the penalty for 

having an infected subject outside the quarantine could approach infinity.  Therefore, the 

quarantined area would be much larger as the quarantine enforcers would not risk the 

spread.  With a more severe disease, it would be more likely for the military to quarantine 

entire states or even countries.  SARS was an excellent example of this type of disease. 

On the other hand, if a disease is very unlikely to spread (HIV) or has minor symptoms 

(Influenza), the penalty for having an infected person outside of the quarantine could 

approach zero.  In this case, the quarantine could be as small household or one person or 

even no quarantine.  

Once the penalties for not quarantining an infected subject and condemning a 

healthy subject have been established for some ellipsoidal geographic graph GG, an 

optimal quarantine cut can be established.  Prior to some theoretical results on GG, an 

integer program is first introduced that finds the optimum quarantine cut. 

 
4.4.1 Quarantine Integer Program Formulation 

 
Integer programming is a widely used optimization tool. If a problem has 

variables that are integer and the objective function and the constraints are linear, then the 
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problem can be represented as an integer program.  Integer programs have been used to 

solve problems in routing goods and equipment [Arunapuram and Solow (2003), 

Kaufmanand and Smith (1998), Toth (1997)], generating airline schedules [Hoffman and 

Padberg (1993), Klabjan, et al. (2001), Alefragis, et al. (2000)], managing portfolios 

[Pinto and Rustem (1998), Bertsimas, et al. (1999)], researching genetics [Brown and  

Harrower (2004), Ferreira, et al. (2002)], and developing sports schedules[Urban (2003), 

Easton, et al. (2003)]. 

  It has been shown that solving an integer program is NP-Hard [Karp (1972)], and 

thus there exists integer programs that cannot be solved in polynomial time, unless P = 

NP.  The most common algorithm for solving integer programs is called branch and 

bound.  The major problem is that branch and bound has an exponential run time and 

there are still numerous integer programs that cannot be solved.  

When optimizing a quarantine region, the best possible outcome is to have all of 

the infected individuals in the quarantine region and all the healthy individuals in the 

saved region.  To achieve this, the objective function could be focused on maximizing the 

benefit of having an infected individual for example.  For this research, the objective 

function is focused on the opposite, which is minimizing the penalty of having infected 

individuals in the saved region and having saved individuals in the quarantined region.  

Clearly, both objective functions would work similarly.     

Due to the additive nature of any IP’s objective function, an exact probability of 

an epidemic moving past a quarantine region would require an exponential number of 

variables, due to the inclusion exclusion principle.  For instance, assume a1, a2, and a3 are 
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the only individuals in a saved region.  This means the probability that the epidemic is 

not contained is  

P(a1 ∪ a2 ∪ a3 ) = P(a1)+P(a2 )+ P(a3 )- P(a1 ∩ a2) - P(a1 ∩ a3 ) - P(a2 ∩ a3 ) +  
      P(a1 ∩ a2 ∩ a3 ). 
 

More people require more terms in this expression and the terms grow on the 

order of 2n.  Thus, an exact IP would require each region of a Venn diagram with n 

regions to have its own variable and the IP would have 2n variables.  Writing such a large 

IP is not feasible, let alone solving such a problem.  Thus, this research assumes to be 

conservative in its quarantine region by overestimating the probability that an infection 

leaves the quarantine area.  That is, none of the second or higher order terms from the 

inclusion-exclusion principle are used in the objective function.  Thus, optimal quarantine 

generated by this IP is slightly conservative.  

This research developed the first integer programming formulation to find the 

optimal quarantine cut. This integer program is as follows. 

Optimal Quarantine Integer Program (OQIP) 

Sets: 

 N={1,…,n}: the set of the nodes of a graph  

Decision Variables: 

xi  =  1  if  node i is in the saved partition 

         0 if node i is in the quarantine partition. 

Parameters: 

pi - Probability of infection for node i.  

s - Penalty for allowing an infected subject in the saved partition. 

q - Penalty for having a healthy subject in the quarantine partition. 
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Objective Function: 

Minimize:  s ∑iєV 
xi pi +  q ∑ iєV 

(1-xi)(1- pi) 

Subject to: 

x
i 
≤ x

j ∀ (j,i) ∈ AG 

xi∈{ 0,1} ∀ i∈VG 

 The decision variable xi is a binary variable that is used to decide which nodes are 

in the saved region.  Obviously any nodes that are not included in this region are included 

in the quarantine region.   

The goal of a quarantine is to partition the unhealthy subjects in the quarantine, 

while saving the healthy subjects.  If for instance, an infected subject is not quarantined, 

there is a penalty s.  On the other hand, if a healthy subject is quarantined, there is a 

penalty q.  

The objective function displays the goal for the integer program.  In this case, the 

objective is to minimize the total penalties.  This function multiplies the penalty for an 

infected subject to be in the saved region, s, by the sum of all of the nodes in saved region 

times their probability of being infected, pi.  Similarly, this summation is added to the 

penalty for a healthy subject to be quarantined, q, with infected subjects multiplied by the 

sum of the subjects in the quarantine region (1-xi) multiplied by the probability that they 

are not infected or healthy (1- pi).  

 The single set of constraints is the restriction of a feasible cut.  These constraints 

are generated from the ellipse principle.  In general, the constraint xi ≤ xj states that if any 

node vi contained in the quarantine region, then each of its predecessors, determined by 

the ellipse, must also be in the quarantine region.  
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 Fortunately, OPIQ is Totally Unimodular.  A totally unimodular matrix is a 

matrix where all square submatrices have a determinant of 0, 1 or -1.  TUM is important 

because any integer program that has a totally unimodular constraint matrix can be solved 

with linear programming as long as the right hand side is integer.  This result is especially 

important because it reduces the running time of a traditional integer program from NP-

Hard to polynomial time.  Theorem 4.5 formally describes why OQIP is TUM.  

 

Theorem 4.6  The constraint matrix of OQIP is TUM. 

Proof: Let A be the constraint matrix of any OQIP.  Strong induction on the number of 

rows is used to prove that A is TUM. For a base case, consider a single row.  This matrix 

is clearly TUM as every submatrix is a 1x1 square and the determinant is either 0, 1 or -1. 

 By strong induction assume that every A matrix of OQIP with fewer than k rows 

is TUM.  To show that A is TUM for k rows, let B be any square submatrix of A.  Clearly, 

B could be represented as an acyclic graph with the addition of two dummy nodes, and B 

must be a kxk matrix or the result follows from the induction assumption. 

Clearly, B has at least one row with at most one nonzero element or at least one 

column with at most one nonzero element.  To find the determinant of B, expand upon 

this row or column.  Clearly, such an expansion only changes the sign of the determinant 

or moves the determinant to 0.  So by the induction assumption, B has a determinant that 

is either 0, l or -1 and the result follows. 

 
  

In a real life outbreak scenario, it would be illogical and almost impossible for a 

decision maker to run an integer program to find the optimal quarantine region.  The next 
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section provides decision makers with general theory and heuristics for how to optimize a 

quarantine region in a disease outbreak scenario. 

 
4.5 Theory of Optimized Quarantine Cuts 

 
When deciding where to implement a quarantine, the probability of infection 

should be analyzed.  As mentioned earlier, pi is used to define the probability of infection 

for node i.  The threshold, τ, of a quarantine cut is defined as the quarantine penalty, q, 

divided by the sum of the quarantine penalty and the saved penalty, s; thus, τ =       

These penalties are user defined and the threshold is analyzed with the probability of 

infection to determine where the quarantine should be. 

Given a defined threshold, an optimal quarantine contains only the connected 

nodes whose average probability of infection exceeds the defined threshold. If a set of 

connected nodes or any node with an outdegree of 0 does not meet this condition it is 

assigned to the saved set in the optimal quarantine cut.   

 Figure 4.12 provides a small graphical example of how the theory of this research 

should be applied to find an optimized quarantine cut.  Imagine that an official from a 

government agency is assigned to this portion of the graph and each node represents a 

city.  He/she knows that this group of cities is on the edge of a large quarantine and wants 

to know if any of these cities should be saved given the previously mentioned threshold.  

The following shows how the theory of the previous sections can help make optimized 

decisions.  

The government agency should begin by considering the entire population in the 

quarantine region.  Starting this way allows the agency to decide which nodes should be 

.
 q s

 q

+
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removed from the quarantine region.  As seen in Figure 4.12 below, all nodes start in the 

quarantine region as denoted by the red line. 

In this example, the penalty for a healthy subject to be condemned in a quarantine 

region or the q is 1 and the penalty for an infected subject to be in a healthy region or the 

s is 19.  Therefore, the overall threshold is τ = =
+191

1
0.05.  This threshold means that it 

is an improvement in the objective value for any group of nodes whose average 

probability is less than 0.05, to move from the quarantine region to the saved region.   

 
 

 
 
 

Figure 4.12: Example Fully Quarantined Z = 5.67 
 

   

Recall the objective function for an optimal quarantine is: Minimize:  s ∑iєV  
pi xi  

+  q ∑ iєV 
(1- pi)(1-xi).  As you can see from Figure 4.9 since every node is quarantined, the 

right half of the objective function is only used or q ∑ iєV 
(1- pi)(1-xi). Numerically, this 

objective value is 1((0.93)+(0.96)+(0.94)+(0.98)+(0.96)+(0.90)) = 5.67.  
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Clearly the pendant node with probability of 0.04 can be moved to the saved 

region and still maintain a feasible quarantine cut.  If there was an arc from the 0.04 node 

to the 0.02 node, this would not be a feasible cut.  Figure  4.13 shows this scenario. 

 

Figure 4.13: 1st Iteration Z = 5.47 
 

 Using OQIP’s objective function, the objective value would calculated as follows: 

19((0.04))+1((0.96)+(0.90)+(0.93)+(0.94)+(0.98)) = 5.47.  As you can see, since the 

pendant node is added to the saved region, there is a 0.04 chance that the node is infected 

in the saved region.  Thus, the objective function is increased by 19* 0.04, but decreases 

by 1*0.96 and the overall objective value decreases by 0.2.  Thus, any pendant node in a 

quarantine that has a probability of infection below the threshold of 0.05, reduces the 

objective value if it is added to the saved region.   This result is formally described by 

Theorem 4.6. 

Theorem 4.6:  If 
sq

q
pi +

<  and the outdegree of node vi is 0 in GG, then node vi is in the 

saved partition of the optimal quarantine cut. 
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Proof: For contradiction, assume node vi has
sq

q
pi +

<  , the outdegree of node vi is 0 in 

GG and the optimal cut (VQ*,VS* )  has node vi ∈ VQ*  with an objective value of Z*.  Let’s 

examine the cut given by (VQ*\{ vi},VS*∪{ vi}) .  Since the out degree of vi is 0 and  

(VQ* ,VS* ) is a quarantine cut, (VQ* \{ vi},VS*∪{ vi})  also has no edges from a node in 

VS*∪{ vi} to a node in VQ* \{ vi}.   Thus (VQ* \{ vi},VS*∪{ vi})  is a quarantine cut. 

The value of the (VQ* \{ vi},VS*∪{ vi}) quarantine cut is the value of (VQ*,VS*) 

minus the probability that node i is healthy times the penalty to quarantine a healthy 

person plus the probability that the person is infected times the penalty of not 

quarantining an infected person or Z* - s(pi)+q(1-pi) = Z* +q - qpi - spi = Z* +q - pi(q+s) 

< Z*, which contradicts  (VQ*,VS*)  being the optimal quarantine cut and the result 

follows.  

 
 

Continuing the OQIP process, if the four nodes in the bottom right are removed 

from the quarantine region as Figure 4.14, then there is still a feasible quarantine.  The 

objective function becomes  

19((0.02)+(0.06)+(0.07)+(0.04)+(0.04))+1((0.90)) = 5.27. 
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Figure 4.14: 2nd Iteration Z = 5.27 

 
Notice that the objective value has improved from 5.47 to 5.27.  This is because 

the average probability of these four nodes is 0.0475 which is less than the threshold of 

0.05.  Theorem 4.7 formally describes why removing the previous four nodes improves 

the objective value.   

 

Theorem 4.7:  Let VQ’ be any quarantine partition with VS’ as the corresponding saved 

partition.  If S ⊆ VQ’ such that (VQ’\S, VS’ ∪ S) is a quarantine cut and 

then the value of the quarantine cut (VQ’\S, VS’ ∪S) is strictly better than the value of (VQ’, 

VS’). 

 
Proof:  Let (VQ’,VS’) be a quarantine cut with value Z’.  Let S ⊆ VQ’ such that  (VQ’\S, VS’ 

∪ S) is a quarantine cut and 









+
<∑ ∈ sq

q
Sp

Sj j
.  The value Z”  of the (VQ’\S, VS’ ∪ S) 

quarantine cut is the value of the (VQ’, VS’) cut minus the penalty of having S in the 

quarantine partition plus the penalty of having S in the saved partition.  Formally, Z” =Z’ 

+∑j єS s(pj) - ∑j єS q(1-pj)) = Z’ + s∑j єS (pj)- q|S| + q∑j єS pj = Z’ + (q+s) ∑j єS (pj) - q|S| < Z’ 

,








+
<∑ ∈ sq

q
Sp

Sj j
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+ q|S| - q|S| = Z’.  The inequality follows from 








+
<∑ ∈ sq

q
Sp

Sj j , which implies 

(q+s)∑jєS (pj) < q |S|.  Thus, Z” <Z’ and the results follows. 

 
 

 Since the last node in the quarantine has a probability of 0.1 which is larger than 

the threshold, it should be kept in the quarantine region.  A naïve person may think that 

this is the optimal solution to this example because the most possible nodes are in the 

saved region.  However, when evaluating the objective function which is based on 

penalties, this is not true.  This example shows that it is not always optimal to remove a 

group of nodes with an average probability that is less than the threshold.   

 Figure 4.15 shows that in fact the nodes at the bottom of the graph should not 

have been included in the saved region.  If they are added back into the quarantine as the 

figure suggests, the objective function becomes 

19((0.02)+(0.06)+(0.04))+1((0.90)+(0.96)+(0.93)) = 5.07. 

 
 

 
Figure 4.15: 3rd Iteration Z = 5.07 
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 As you can see, the optimal solution does not always include the most nodes in 

the saved region.  In fact, this shows it is not always optimal to remove a group of nodes 

whose average probability is less than the threshold.  The following theorem discusses 

this scenario. 

 

Theorem 4.8: Let VQ’ be any quarantine partition with VS’ being the corresponding saved 

partition.  If Q ⊆ VS’ such that (VQ’ ∪ Q, VS’\Q) is a quarantine cut and 










+
>∑ ∈ sq

q
Qp

Qj j
, then the value of the quarantine cut (VQ’∪ Q, VS’\Q) is strictly better 

than the value of (VQ’, VS’). 

Proof:   Let (VQ’,VS’) be a quarantine cut with value Z’.  Let Q ⊆ VS’ such that  (VQ’∪ Q, 

VS’\Q) is a quarantine cut and 








+
>∑ ∈ sq

q
Qp

Qj j .  The value Z”  of the (VQ’∪ Q, 

VS’\Q) quarantine cut is the value of the (VQ’, VS’) cut minus the penalty of having Q in 

the saved partition plus the penalty of having Q in the quarantine partition.  Formally, 

Z” =Z’ - ∑j єQ s(pj) + ∑j єQ q(1-pj) = Z’ - s∑j єQ (pj)+ q|Q| - q∑j єQ pj = Z’ - (q+s) ∑j єQ (pj) + 

q|Q| < Z’ + q|Q| - q|Q| = Z’.  The last inequality follows from 








+
>∑ ∈ sq

q
Qp

Qj j , 

which implies (q+s)∑jєQ (pj) > q |Q|.  Thus, Z” <Z’ and the results follows. 

 
Figure 4.15 shows the optimal solution to the example graph.  This example 

shows that there is a trade off when removing a node from a quarantine region.  In terms 

of penalties, when removing a node from the quarantine, you subtract off the probability 

of a healthy node being in a quarantine region multiplied by this penalty, but you gain the 
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probability of an infected node being in a saved region multiplied by this penalty.   

Therefore, to determine the change in the objective value for moving a set nodes from the 

quarantine region to the saved, the value q(pi)-s(1-pi) for all nodes moving should be 

subtracted from the previous objective value.  In the example above, notice that this 

marginal value is equal to 0.20 for all iterations.  

Clearly if the sum of probabilities is equal to the threshold, then it is the 

digression of the decision maker to either keep the group quarantined or move them to 

the save zone.  If the decision maker wants to be conservative, he/she should keep the 

group in the quarantine.     

 

4.5.1 Heuristic 
 

 In a real life scenario, it would be infeasible for a government agency to run an 

integer program to find the optimal quarantine region even though the integer program is 

TUM and runs quickly.  The goal of this section is to provide real-time guidelines for 

finding near optimal quarantine regions through a heuristic, called Greedy Quarantine 

(GQ).  Although GQ may not find the optimal quarantine region, it provides a rapid 

method for a decision maker to adapt a quarantine area in a dynamic scenario.  

Greedy Quarantine 
 
Initialization:   

Given a geographic ellipsoidal graph with weighted nodes and a defined threshold 

τ = q/(q+s).   

Set oj := the outdegree vj ∈ VQ∀ vj ∈ V. Let VS := ∅ and VQ := V. 

Set Flag:=True 
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Main Step:   

While Flag = True 

 Flag:=False 

if there exists a node vi with oi = 0 and pi< q/(q+s)  

VS:=VS  ∪ {vi},  VQ:=VQ  \ {vi} 

For all (vj,vi) ∈ A set oj := oj-1 (update the outdegrees of VQ) 

 Flag:=True 

  else 

Run a subroutine or several subroutines to add multiple nodes to VS. 

If the size of VS has changed, update the outdegrees of VQ and Flag:=True 

End else  

     End While loop  

     Go to termination 

Termination 

 Report (VQ,VS) as the optimized quarantine cut. 

 
Subroutines to add multiple nodes to VS 

 
The first heuristic, Interior Greedy, starts with the nodes with the smallest probability 

of infection.  With this, a breadth first search is run to a degree zero node.  If the average 

probability of the nodes encountered by this breath first search is less than the threshold, 

then the nodes are added to the saved region.  This heuristic utilizes this low probability 

node so as to have a greater chance of finding a group of nodes that have a lower average 

probability than the threshold.   

Interior Greedy 
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Let vi ∈ VQ such that pi is minimum and pi<q/(q+s). 

Let C be the set of all nodes can be reached from vi (run breadth first search from vi) 

If ∑ 
i ∈ C

 pi < (q/(q+s))|C|, then  

VS:=VS ∪ C, VQ:=VQ  \ {C} 

 
The next heuristic, Greedy Exterior Greedy, starts with the node that has the smallest 

probability and is a degree zero node.  From this node reverse breadth first search is run 

to the root node.  Within the nodes encountered, take the node with the smallest 

probability and run breadth first search.  This breadth first must include the starting node 

with the out-degree zero.  If the average probability is below the threshold add it to the 

quarantine.  This heuristic is greedy by choosing the smallest probability node with out-

degree zero and the smallest node encountered by a reverse breadth first search.  

Greedy Exterior Greedy 

 Let vi ∈VQ such that vi has outdegree zero in VQ and has the minimum pi value of all 

such nodes. 

Let D equal the set of all nodes that must be quarantined if vi is quarantined (run 

reverse breadth first search from vi). 

Let vj be the node in D with the smallest pj value.  Let C be all the nodes encountered 

by running breadth first search starting with vj.  

If ∑ 
i ∈ C

 pi < (q/(q+s))|C|, then  

VS:=VS ∪ C, VQ:=VQ  \ {C} 
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 The goal of a heuristic is to be close to optimal and run fast.  Since we have 

established that a government agency would not realistically use an integer program to 

find the optimal quarantine, the next section discusses how accurate the agency could be 

if they used the theory mentioned in the previous section.  

 
4.6 Comparison of Heuristic to Optimal 

 
 The motivation for this section is to compare the performance of the heuristic, 

GQ, to the optimal solution found by OQIP.  Since a government agency implementing a 

quarantine region would most likely not use an integer program to find the quarantine, 

the following study shows how accurate this agency can be if it uses the logic provided 

by the heuristic and theorems discussed in Chapter 4.   

 To compare these two objective values, a basic SIR model on a random 

geographic graph was chosen.  In this study, 30 random graphs were used.  To see how 

the size of the graph affected the optimal value versus the heuristic value, three different 

sizes of graphs were used.   Also, three different variations of the penalties were used to 

see their effect.   

 To find the probabilities that a node is infected, a thousand replications of each 

random graph were run.  The probability of infection for each node is cumulated for these 

replications and divided by 1,000 to find the average.  Thus, if vi contracts the disease in 

100 of the 1000 replications, then pi = 100/1000 = 0.1.  These probabilities are used in the 

ellipsoidal geographic graph, which is then used to determine the quarantine cut. 

As you can see for a graph size of 100 nodes, the average percent error is the 

highest.  This is because as the graph size increases to around 500 nodes, the probability 

of infection is higher.  This means it is easy for the heuristic to decide that everyone 
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should be quarantined.  Tables 4.1 – 4.3 show the average results for the 30 random 

graphs.   

n 
Avg. Zh Avg. Z* Avg. % Error

q=1,s=19 46.48 45.42 2.34%
q=1,s=9 36.23 34.06 6.35%
q=1,s=4 22.09 21.67 1.91%

100

 
Table 4.1: Comparison of Heuristic to Optimal n = 100 

 
n 

Avg. Zh Avg. Z* Avg. % Error
q=1,s=19 157.49 157.34 0.10%
q=1,s=9 148.44 147.17 0.87%
q=1,s=4 127.91 125.21 2.16%

250

 
Table 4.2: Comparison of Heuristic to Optimal n = 250 

 
n 

Avg. Zh Avg. Z* Avg. % Error
q=1,s=19 219.33 219.33 0.00%
q=1,s=9 218.68 218.64 0.02%
q=1,s=4 211.56 211.29 0.13%

500

 
Table 4.3: Comparison of Heuristic to Optimal n = 500 

 
 It is important to note that if the probabilities of infection were closer to the 

threshold, the heuristic value was further from optimal.  This is because it is harder for 

the heuristic to make the optimal decision.    

This study confirms that with large graphs, GQ performs with less than 1% error 

of the optimal value.  These results also show that the number of nodes in the graph and 

the penalties has an effect on how well GQ performs.  In general, the further the 

probabilities of infection are from the threshold, the better GQ performs.  In cases where 

the probabilities are close to the threshold like in Table 4.16, GQ performs with less than 

10% error of optimal.  

These results show that government agencies should utilize the theory in this 

research.  Although they may not run an integer program to find the optimal decision, 
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they can achieve close to optimal quarantine regions by utilizing the decision making 

tools provided in this research. 
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CHAPTER 5 – Conclusion and Future Work 

One of the main results of this thesis was the development of a core simulation 

that rapidly simulates the spread of an epidemic on a contact network.  Although the 

simulation core was developed by a team, I have made significant contributions to it.   

The goal of this simulation was to create a simulation that can be easily adapted to 

any disease.  Given a contact network of individuals, this simulation core can be modified 

to model any disease in less than an hour.  If a contact network is not given, the 

simulation core has the capability of generating a random contact network with various 

parameters.   

The simulation created for this research uses random number distributions to 

generate numbers for different factors such as, how rapidly a subject transitions through 

each stage of the disease and the links between each subject.  With this randomized 

model, the simulation is run for multiple replications.  With these replications, the 

average probability of infection can be found and an ellipsoidal geographic graph is 

created. 

This research provides the first definition for a quarantine cut and an ellipsoidal 

geographic network.  This thesis uses the ellipsoidal geographic network to determine 

what is, and what is not a feasible quarantine region.  The quarantine cut is a new 

approach to partitioning quarantined and saved individuals in an optimized way.   

To execute the quarantine cut, an optimum quarantine integer program, OQIP, 

was developed.  The objective function of OQIP is focused on minimizing the penalty of 

having infected individuals in the saved region and having saved individuals in the 
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quarantined region.  This integer program is proven to be totally unimodular and thus, 

runs in polynomial time. 

Since OQIP is not practical for a real-life scenario, a heuristic, Greedy Quarantine 

(GQ), and some theoretical results were created.  The results provide decision makers 

with ample knowledge of how to apply this research in a real life scenario.  After 

performing a study on the how well GQ’s value is to the optimal value, I can conclude 

that GQ performs with less than 10% error of optimal when the threshold is close to the 

probabilities of infection.  If the threshold is not close to these probabilities, GQ performs 

even closer to optimal.   

 

5.1 Future Work 

 The development of OQIP and the various accompanying theorems and heuristics 

provide implementable principles and exhaust majority of the theoretical approaches to 

this research.  Any future work on this research should be performed on real-life 

applications. 

It is vital for our society to continue to model the spread of disease as a way to 

safely understand them.  Given a specific disease, a complex simulation study could be 

conducted.  This would include adjusting various parameters to see how each effect the 

spread of the disease.  The results of this in-depth study could then be compared to actual 

disease spread data. 

In the future, this research can be used to model the spread of any disease in 

animals such as skunks.  The simulation core of this research could also be used to model 
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the spread of information in a contact network.  Another real world application that could 

be simulated would be the spread of viruses on a computer network.   

Additional future work could be conducted on the effect of pre-clustered graphs.   

This would show how a quarantine line could change if contact clusters are established.  

To demonstrate how a media broadcast of a quarantine region affects people’s actions, a 

simulation could also be conducted.  This might entail reducing each person’s number of 

edges because they would be unwilling to leave their home.   

To model the spread of disease to rural towns, each town could be considered a 

single node.  This model would operate under the assumption that if a town is infected, 

the entire town should be quarantined.  This would provide a high level quarantine for 

multiple rural towns.   

As Nobel Prize winner Joshua Lederberg, Ph.D, stressed “The single biggest 

threat to man’s continued dominance on the planet is the virus.” [Zimmerman (2002)]  

The future work conducted in this field will save lives, and it is imperative for humanity’s 

survival. 
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