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* 1.0 INTRODUCTION

The priﬁcipal.gurpcse in the development“af_failure models 1s to
make predictioms abeﬁt the fuéure-behavior of the system under scrutiny.
The better the ag:eeﬁent between a model and fhe ﬁast failurg{datﬁ;for'
the system, the betteé one feels about his description of the sté¢hastic
nature of the failure mechanism, particularly when the de?eldﬁment
cof the failure mndel.is based on reasonable pﬁysical aséumptions. Many
different statistical failure models can be propesed which are based oa
different assumptions for the failure mechanism such as, type of féilures,
relation of one failure to another, the dependence of one part of the
system on another, the different time evolution of the system parameters,
etc.

Of considerable importance in the safety analysis of nuclear power
plants are methods to estimate the probability of failure-on-demand,

p, of a plant component that normally is inactive and that may fail

when activated or stressed (e.g., an emergency diese1.generator). The
probability of failure-on-demand for such a component is defined as

the probability that it will fail to perform its designed task when
needed. To evaluate this failure probability for a particular component,
some kind of experiméntal data from that component is génerally needed.
For example{ one may test a standby emergency diésel generator by trying
to start it n times during which the generator fails to start k times.
The number of attempts and the observed number of failures to start

glive a type of attribute teggjdgtafﬁhiéh can then be used to estimate

the failure probability of the diesel generator.



From this type OE'éttribute failure data, the failure pfobability
of a component can be computed in a variety of ways depending on the
type of statistical failure rate model one wishes to use to describe
the actual physical system. Several models are described in the next

two sections.

1.1 Statistical Failure Models

(a). Homogeneous Model

In the standard classical description of a component, the failure
probability is ﬁsuélly regarded as an unknown constant and the outcome of
each attempt to activate the component (e.g., start the diesel generator)
is assumed to be independent of any other attempt. Thus the probability

of obtaining k failures in n testings is given by the binomial distribution

f(klnsp) = [:J Pk(l-p)nﬁk‘ y k=0,1,2,...,0n (1.1)

Often severai similarlcdﬁﬁbneﬁts.aré}tregEéd as a single class and

are assumed to have the same fﬁi}ure probability p. “Thus repeated
demands on the same component is‘gquivaleq;_;o the same number of

separate demands on diﬁfereﬁt.components in thé cléss if all components
are further assumed to be-independeﬁt. These assumptions then yield

Eq. (1L.1) as a failure.rate model which is“often termed the "homogeneous
model.'" By applying the maximum likelihood method to the binomial distri-~
bution [1], an estimator of failure probability p, is obtained as the
ratio of the total number of failures over the number of tries, i.e.,

k/n. Only data derivéd from test or field experience on the particular

component of interest is used to calculate this classical estimator [2].



For a component, which is intentionally designed'to have a high
probability of performimg its assigned task- whén neaded, very often

no failure is observed, particularly for a sma&l numher of. demauds.-

From such data, standard classicai statistical methods would esffﬂiffﬂ
the expected failure probability of that component to be zero which for
many applications, is unrealistic. To obtain more data and‘hepce-gpi
better estimate of the failure probability, the failure data ffbw'
similar components are often lumped together and a homogeneous model
assumed. TFor this homogeneous model, the max1mum likelihood estimator
of the failure probability is simply the ratin of the sum of all
failures to the sum of all demands for all. components in the class.
However, some wﬁiters have mentioned that in‘tEEif-experience such grouped
failure data may exhibit a greater wvariation than would be expected
from the homogeneous binomial model [3]. Therefore, alternatives to
the simple homogeneous classical method are needed to give more reason-
able results for components with inherent low failure probability
characteristics.

(b) Compound Model

A more sophisticated failure model, to wﬁibh the bulk of this work
is devoted, is one in which the failure probability p among components
lumped into a single class, is itself regarded as a random variable with
a distribution g(p); i.e., the parameter p is assumed to be constant for
each component in the class but will have different values from component
to component., The distribution g(p) is often termed the "prior" distri-
bution since this probabilit? density function for p is usually obtained

by previous knowledge of the components in the class under consideration,



If g(p) is known, then the joint probability density of obtaining
a component from the class with a failure probability in unit p'about P
and which will experience k failures in n tries is [4]
; " O<p<l .
P(p,k|n) = £(k|n,p) 8(@) , " © R €y
) Lo B k=__0,l,2,...,n Si o .
where the "conditional" distribution f is given by the binaﬁi&1[  4
distribution of Eq. (1.1). Uponsiﬁtegrationnover all possible values
of p, one then obtains the probability that a component randomly

selected from the class will'experience k failures in n demands, i.e.,
1

h(k|n,g) = L} £(k|n,p) g(p) dp, k=0,1,...,n (1.3)

This discrete compound distribution is termed the "marginal" distri-
bution and is the basis for the compound model used to describe a class
of similar components but each of which may have different failure
probabilities. Should each component in the class have the same failure
probability Py then the prior distribution becomes a delta functionm,
i.e., g(p) = 5(p—p°}, and the compound model of Ed. (1;3) réduces to
the homogeneous model of Eq. (1.1).

With the compound model of Eq. (1.3), one may obtain a closely
related distribution. The distribution of p for a component randomly
selected from the class described by g(p) and for which k failures

in n demands are observed is
£(p|k,n) = g(p) £(k|n,p)/h(k|n,g), O<p<l . (1.4)

This "posterior” distribution on p combiﬁes both the prior information

g(p) and the failure data (k,n). From this posterior distribution one




could then estimate the probable range (probability interval) for the

-fallurq parameter P of’ ﬂ‘amponent which is knﬂwn‘tc belong to a. given

“_prio: class and which haﬁ: xperienced k failures in n demands.. 

(c) Use of the Compound Mo&%l in Bayesian Analysis

The insertion of extraneous information is the cornersfqgéféf the
Bayesian method [Sj which over the past few years has been incﬁgasingly
used in the analysis of components with low failure probabilities. In
a Bayesian analysis, the failure probability p is also treated as a
random variable characterized by a prior probability distribution. The
prior distfibution may be used to describe both‘the physical variation
of p among components as well as the uncertainty of the analyst about
what the actual values of p are. Before any actual experimental data
are observed for a component, the prior distributiﬁn provides some
information about the expected failure probability of the component.
The prior distribution is thus an a priori probaﬁility model for the
failure probability. This distribution represents the totality of the
analyst's prior knowledge-and assumptions about a component's failure
probability and it should reflect the analyst's beliefs concerning
the likely values of the failure probability before the observed data
are obtained. Some methods which are used to construct the prior
distribution will be discussed in Section 1.3.

In the standard application of Bayesian methods, the prior distri-
bution represents a subjective judgement or bias towards a component.

As such, the prior distribution'één be thought of as the analyst's




uncertainty or prejudice for a particular component. It is this
combining of subjective opinion (or bias) wiﬁﬁ:daterministic
probability models (e.g., the binomial distribution) that has dome
much to initiate the controversy between Bayesian and classiqal
techniques.

The classical analyst, on the other hand, wishes to avoid all
subjective aspects in his probabilistic models and to use only observed
failure data., Nevertheless, a classical analyst can also use prior
information to improve his predictions about a particular component
with a low failure probability. Rather than treat each component
in isolation, he may assume (subjective?) that-the component of concern
belongs to a class of similar components whose constant failure prob-
abilities are distributed according to some (pridr) distribution.

Each componenf in this class is still assumed to have a constant failure
probability. One may then combine the prior information (the distri-
bution of failure probabilities in the class to which the component

of concern belongs) with the observed data for the component in
question. Such was thewbasis fo; the compound model developed in the
previous section. -

In both the classical compound model analysis and the.Bayesian
analysis information about the disgributiqn;pﬁ Ehe failure probability
must 5e obtained. In‘a BayéSiéﬂ #ﬁalysi; this iqfﬁrmation is often
obtained from expert opinion, while in a‘c;assical compound éodel
this information is given either a prié@%hgﬁfﬁust be established

from data observed for the components in the class. In both analyses



the subsequent developﬁgp; Qf the failure 9rbbahility model for a

partibular component_isfiéaﬁﬁical to that'dégéfibed in the prévigus
section.' In summary;wthe differeggggbetweeﬁ:ﬁﬁeraayesian apgro#ch
and the compound model of glgssiga;vagalysis.;s.the'inte:pf@té&?og

50

4

attached to the prior dist;ibﬂ#%gﬁ;

and the methods used to-esti

1.2 Models with a Betngrior Diﬁtrihutiﬁn?

To obtain the marginal or.pnsterior diSt;ibution for ;he compound
failure model (Egs. (1.3) or (1.4)), the explicit form of the prior
distribution must be known._ The.parametef.of interest in this work
is a failure probability whose possible values range from 0 to 1;
therefore, in principle, any probability distribution over the inter-
val [0,1] could serve as a prior model. Since the prior distribution
in a Bayesian frameworklrepresents'the analyst's beliefs about the
possible values df a failure probability and éifferent people may
have different prior information or different opinions, the prior
distribution model should be able to accommodate a wide variety of
shapes, dispersion, mean values, etc., so as to be able to represent
a wide variety of states of prior infcrmati&n. Similarly in a classical
compound model analysis, the prior distribution must be able to assume
many different shapes so as to be applicable to many different types
of components.

A major difficulty in tﬁe applica;ion of the compound model is
to carry out the intggration in Eq. (1.3) to obtain explicitly the

marginal distribution. If f and g are not fairly simple mathematical



functions,it may be quite difficult to evaluate the integral of Eq. (1.3)
even numerically. This integration ideally should be carried out
analytically; otherwise, numerical evaluation with its inherent errors
would be necessary. Because of this potential difficulty, "conjugate"
prior distributions, which are families of prior distributions that
ease the computational burden when used with particular conditional
distributions are widely used in a compound model analysis. In additiom,
use of a conjugate priorﬂdistributiog results in a posterior dis;ri-
bution which is also a member of the same conjugate family. This properﬁy
is the basis for the term conjugate.

For the failuré—un-daﬁand proBlem, the.cdﬁditibnal distribution is
specified to be the binomial distriﬁution. &he conjugate prior for
the binomial distributipn is_the beta distribution [6,7],

alg-p®t

g(pla,b) = B2 , a,b>0, 0<p<l, (1.5)
where _ '
1
_[* a-1 b-1 ., _ [(a)l'(b)
B(a,b) _Jo $5 goa®t go s J}.@%—)— , (1.6)

with the gamma function defined as

I'(y) EI 71 e™ qu, y>0. (1.7)
o
The mean, u, and variance, 02, of the beta distributionm are given by [6]

a
- 2 (1.8)

02 - {%b i (1L.9)
' (a+b) " (atb+1)



or

Q
il

= TH(l-w, o (1.10)

-where

s
1

(o) ™, (1.11)

' Once the conditiomal distributipn'and"the;priorfdistribution are
chosen, the marginal distributioﬁ can then be evalﬁated.' Upon sub-
stitution of Eqs. (1.1) and (1.5) as the conditional distribution and the
prior distributioﬁ, reépectifély, into Eq. (1.3), the marginal distri-
bution becomes

1
h(k|n,a,b) = I £(k|n,p) 8 (p|a,b) dp
0

n
1
k a+tk~1 b+n-k-1
& fu d
B(a,b) Jo e e ?
[ M | ongen. aan

Equation (1.12) gives the probability of obtaining exactly k failures
in n tries for a component randomly selected from a sample whose aistri-
bution of failure probabilities is described by the beta distribution.
This particular marginal distribution is called the "beta-binomial"
or "hyperbinomial" whose mean and variance are given by [3]

E(k) = nu, £1.13)

V(k) = ap(l-p) [I+r(n-1)1, (1.14)

'where p and r are defined in Eqs. (1.8) and (1.11).
Finally, the posterior distributibn can be obtained by substituting

the appropriate distributions from.Egs. (1.1), (1.5) and (1.12)
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respectively into Eq. (l.4) to give

E(plk,n,a,b) = f(gtgigzgfg£a,b)

+k= ~k~-
oL kel

B(atk,b+n~k) s P (1.15)

This posterior distribution is also a beta distribution with

3

E(p) = 2 (1.16)
and
Var(p) = (a+k)(g+n-k) : (1.17)
(a+b+n) " (a+b+n-+l)

Often E(p) from Eq. (1.16) 1is used as an estimator of the failure
probability for a component experiencing k failures in n starts and
which belongs to.a class whose féilure probabilities are distributed
according to a beta function with parameters a and b. It can be seen
from Eqs. (1.8) and (1.16) that after the actual data are observed,
the estimator of a failure probability, k/n, is revised by using the
mean of posterior distribution, i.e., one simply adds the number of
failures to the numerator and number of tries to the denominator of
Eq. (1.8). This advantage of the prior conjugate concept makes
successive uses of Eq. (1.4) simple.

It should be further npted that, while posterior is also a beta
distribution, it has larger parameters (atk and b+n-k) than does the
beta prior. These larger parameters produce a smaller variance which
corresponds to more knowledgg-cr more certaingy about p. This is in-

tuitively reasonable since thﬂ”désgriptian of p is based on both prior
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information and actual experimental knowledge. Consequently, one
would expect a higher degree of certainty about p for this case than
the case in which only prior information or only actual experimental
knowledge is used.

The posterior distribution of the failure probability describes
a particular component which has experienced k failures in n attempts
and whose prior distribution 1s assumed to be the beta distribution
with parameters a and b. The prior, on the other hand, describes
the variatlion or uncertainty in ﬁhe failure probébility for that component
before the new information is observed. Therefore, before observing
sample data, the failure probability, p, may be estimated by the mean
of the prior, while after the sample data observed, the failure prob-

ability, p, is calculated from the mean of the posterior.

1.3 Construction of Prior Distribution

As previously stated, any probability distribution over the
interval [0,1] can serve as a prior model. There are no rigid rules
for selecting a particular prior model. Some analysts may simply
choose the prior model with specified parameters which they believe
to be the best representation of their knowledge about the failure
probabilities of concern. If an analyst is willing to use the beta
prior model, parameters a and b of the beta distribution can be deter-
mined by the method proposed by Martz and Waller [8]. This method uses
expert opinion to quantify some aspects of the prior distribution, and
from this quantification, values for the prior parameters are then de-

duced. Suppose an engineer can estimate the mean, 95-percentile and
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S5-percentile of the prior distribution, then any two of these values
are sufficient to specify values for a and b. However, when estimators
for three of these values are given, no unique solution for the parameters
which is compatible with all the information is generally possible.

In the preceding analysis’, the prior distribution was determined
totally by one engineer's belief. Two analysts will not necessarily
come up with the same distribution for a given problem owing to different
degrees of belief concerning a failure probability. 1In an effort to
remove some subjectivity from the analysis, empirical Bayes methods
have been developed. These techniques use observed historical data to
estimate either the parameters of a given prior model or to estimate the
prior model itself. A brief intréductory expésition on the empirical
Bayes methods has been presented by Krutchkoff [9]. Suppose a sequence
of N attribute test data have been measured for the same or similar
components. Further, suppose an analyst is not willing to assume
any particular functional form of'the prior distribution. With the
assumption that each set of attribute test data is obtained independently
and can be described by the same distribution, these data can be used to
estimate the prior distribution. Several techniques to estimate the
prior distribution soley from observed data have been proposed by
Copas [10], Griffin and Krutchkoff [11], Lemon and Krutchkoff [12]
and Martz and Lian [13]. The simplest method, suggested by Lemon [14],
approximates the unknown and unspecified prior model by a discrete

probability model (or frequency distribution) of the data.



As an alternative to a purely empirical approach, an engineer may
decide that the beta. prior model is sufficiently flexible in shape
and can thus adequately reflect his prior beliefs about the failure
probability distribution for a particular class of components. The
only problem remaining is to estimate the parameters a and b of the
beta distribution from previously observed attribute data. In essence,
this intermediate approach assumes a functional form for the prior
distribution but bases the ﬁalues for the parameters solely on
empirical failure data.‘ Iq‘this way the often contradictory expert
opinion is no longer uséﬁ. However, with thié aébroach there is no
known 'best" method to obtain values for the prior parameters from the
observed failure data. Several methods are possible each of which can
yield different values for the prior parameters for the same observed

failure data.

1.4 Scope of Study

It is the objective of this study to determine the 'best” techniques
for estimating the parameters a and b of the prior beta distribution from
observed failure data. Shultis and Eckhoff [15] investigated three para-
meter estimation techniques, namely, the prior matching moments, the
weighted marginal matching moments, and the marginal maximum likelihood
method. These techniques were used to analyze failure data obtained
from standby diesel generators at many U.S. nuclear power plants. The
results of this study shows that the different estimation techmiques
often produce quite different values for the parameters of the prior

distribution.

13
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In this study the properties of these prior parameter estimation .
techniques are invéstigated'in detail. To determine which parameter
estimation technique is the most conservative or yields parameter
estimators closest to ﬁhe true values, it is ﬁecessary to determine the
- distribution of the #axameter estimators for each estimation ﬁathod.
Two additional estimation methods, namely, the prior maximum likelihood
method and a weighted marginal matching moments method are also investi-
gated in this study. The details of these five methods will be presented
in the next chapter.

For this investigation, multiple sets of failure data in various
sample sizes (pairs of failure data - number of failures and
number of attempts) were generated randomly from a known beta-binomial
distribution. With these simulated failure data, the distribution of
the prior parameter estimates are determined.empiricglly for each esti-
mation technique, and from these distributions many properties of the
five estimation techniques are then determingd. Iniparticular, the
biasedness, mean-squared error and median of each estimation techmnique
are examined. The distribution of the mean and variance of.a failure
probability are also investigated. Also presented are the distribution
of 95-percentiles of the failure probability and the distribution of
the probability that a failure probability is greater than the true
95-percentile. PFinally, both exact and aﬁproximate methods for ob-
taining lower bounds of the variances and covariance of the parameter
estimators are computed. These bounds, which are based on the Cramer

Rao-Frechet inequality for a covariancgﬁmAtrix, are compared to the



values of the variances and covariance obtained from the simulated

’ datan
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2.0 PRIOR PARAMETER ESTIMATION TECHNIQUES

Before a Bayesian analysis or compound classiéal analysis éan be
performed for a set of components, the prior distribution for the set
must first be determined. In this study, the analysis of failure~oa;
demﬁnd attribute data is considered, and thus, because of the advantages
afforded by using a prior conjugate to the likelihood distribution (as
ié discussed in the previous chapter), a beta'diétribution is assuﬁed
for the prior distributioﬁ. Moreover, this family can assume a wide
variety of shapes for different values of its two parameters, and thus
can approximate almost any realistic prior distribution.

The parameters "a'” and "b" of the beta distribution in Egq. (175)
must be given definite values in order to specify uniquely a particular
prior distribution. The problem, therefore, is to determine point esti-
mators of the prior distribution pg;ame;ers ag?ropriate to a given
class of components. In general fhis parameter estimation is done
by (1) intuitiom, (ii) past experience, or (iii) from a fit to experi-
mental failure'data,fz@ﬁ_;imilar céﬁponents or‘gést;teSt data from a
single component. “

In using methods (i) and (ii), an expgrihgﬁter chooses the values
of the beta parameters so that thé beta distribution takes a form which
he believes best represents his prior knowledge about the failure
probability "p" of a class of component. If on the basis of engineering
judgement and experience, he believes that, for example P(p> 0.13) =

0.05, the prior distribution should exhibit this property. This is

16
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a subjective step in{tﬁe analysis since the values of parameters a
and b depend solely upon an experimenter's belief. 1In an effort

to remove some of this Subjectivity and to be more compatible with a
compound classical analysis, method (iii) is uséﬂ in this study t§
estimate the prior parameters.based only upon observed failure data.
Such a technique which uses only observed historical data are commonly
referred to as an empirical Bayes' method or a compound classical.
analysis.

For any particu;af plant component, given only its number of
failures -and total nuﬁber‘of starts, the data are not sufficient to
estimate a and b. Hdwevgf, if one believes several sets of data be-
long to the same class and consequently have the same prior distri-
_bution, thenfthe.qﬁservéd data can'ﬁe matched to ;heiassumed form of
the prior distribution, _Gengrally, there is no unique way to fit the
prior distribution tb'fhe observed historicali&étg.' In the following
sections, five empirical methods are presented.

2.1 Method of Matching Moments of the Prior Distribution to Data
Moments (PMM)

One method for determining poinf estimators is to equate sample
moments found from the observed data to the éorresponding expressions
for the prior model involving the distribution parameters. From a
statigtical point of view, a moment is defined as the average deviation
of a set of data about a pqint. Usually, moments about the mean are of

interest (the mean itself is a first moment about the origin, i.e.,

p = EX)

where X is the random variable).



Formally, the k-th moment about the mean (M) of a random variable
X is defined as E(K-u)k, which can be determined by using the usual

rules of expectation as

) xk P(X=x) if x is discrete

B =
Jm Xk £f(X) dX if x is continuous.

-0

These moments are measures used to describe characteristics of
the distribution of X; for example, a mean (i.e., a first moment about

the origin) is a measure of the central location, a variance (i.e., a

second moment about a mean) is a measure of dispersion, a third moment

about a mean is a measure of the skewness.
In case of a beta distribution, the mean and variance are given

by (Eqs. (1.8) and (1.9))

= Ei_b (2.1a)
0% = ;" : (2.1b)
(a+b) “ (a+b+l)

Suppose from past data of N components, k failures out of n tries for
the i-th component were observed. By the assumption that these data

belong to the same population and are hence described by the same beta
distribution, the observed mean and variance (which are the estimators
of mean and variance of the beta distribution) can be calculated from

the sample data by the following expressions:

=5 1e o S (2.9
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N
aob = ﬁ%z_igl(pi ﬁqb) s (2.2b)

where 1 is the failure probability of i-th component and is esti-

mated by the proportion ki/ni.

Since ﬂob and aib are the estimators of u and a? respectively, it

is not unreasonable to match the observed values, which depend onlf the

observed data (Eqs. (2.2a) and (2.2b)), to the expressions for the
theoretical mean and variance of the beta distribution (Eqs. (2.la)

and (2.1b)) as follows:

- IR |
and
2 _ .2 ab
aob o (2.3b)

" (a+h) 2(atbtl)
The above relations can be solved.for a and b in terms of ﬁob

2
and aob to give

2
a= —%h (l-ﬁob) - fi

aob

als (2.4a)

b-—ﬁ-gb-(l-ﬁ)+ﬁ-1 (2.4b)
62 ob ob * '
ob

One disadvantage of this method is that component failure prob=

ability is not actually observed, but is estimated by the ratio of

the number of failures to the number of tries. This estimation of b

may appear to introduce a questionable approximation especially for
low probability events with a small number of tries, o, for which

one is likely to observe zero failures. For the beta distribution,

19



20

the major advantage of this moment method is its simplicity and the
existence of a closed-form solution for the parameter estimators.
However, these solutions for the parameter estimators do not necessarily
yield positive values as are required for the beta parameters unless
a (usually unrestrictive) condition is satisfied.
To derive this 1imitation, rewrite Eq. (2.4a) for a as
fl
ob a5
a ﬁob {;E— (1 uob) 1]. (2.5)
ob
Obviously the term’(l-ﬁob) is always positive. Therefore, Eq. (2.5)
yields positive value of a if and only if
f
ob
ob
or

2
ﬂob(l-ﬁob} > eob . (2.6)

Finally, if the estimate for a is positive, then so must be the
estimate of b since from Eq. (2.3a)
a(l-0,)

b =
ﬂob

>0 if a>0. (2.7)

Nevertheless, for low failuré probability case, it can be shown
that this estimation technique almost always give positive and hence

realistic values for the parameter estimates by rewriting Eq. (2.4a) as

fi
a= “%E [ﬁob - ﬁz

8ob

2
ob. = Sople



2
Upon substltuting for ﬁob and 60b

fromeqéf (2.2a) and (2.2b)

the above relation becomes

eib 1 i (N-1)N® 1
a=3ﬂ-i[2p-' a p)}+ % ___ (7 p.)?
o2 NG Pi N-1 Pi ezén—-l)nz Ve By
8
1, ob N
N2 L A-ggepl
ob ’

The right hand side of this inequality would be positive, if 0 <y
f_gzl. For the most restrictive case (N=2), positive estimates of a
are always obtaineﬂ if 0 f,pﬁ_f_%-which is very likely to occur for
low failure probability daéﬁ; As the.éample size (N) becomes larger,
the upper limit on Py becomes even higher. TFor sufficiently large N, the
restriction on th%ﬁpi.va%ge‘yanighegE-_Fur;hermggéi;ggt“(2.7) shows that
estimatés of b §1wéys taﬁé'the_saﬁe,éign.és?:ﬁa;iagga.

Finally, it should hﬁlmentianed that this restriction for realistic
estimates arisés ﬁecéuﬁe-of'the definition of the sample variance. If
the observed variance of Eq. (2.2b) had been defined with the factor
1/N rather than the usual 1/(N-1), then the same analysis as presented
about would show that estima£es for a and b given by Eqs. (2.4) ﬁould

always be non-negative.

2.2 'Maximum.LikelihoedeéthqgvBased an-thg=£ria; Distribution (PML)

The maximum likelihood method is one of the most popular methods
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to estimate parameters of probabi%ity functions from observed sample
data. For many distributions the method of maximum likelihood, developed
by Fisher in the 1920's, gives about as accurate estimates aé are
possible from a given set of data [ié}.

The method of meximum lfkelihood estimates the valua of & dfstribition
parameter by selecting the most likely samplg space from Which # given
sample coﬁld have begﬁ drawn. In other.words;,thé~=ample spaée is |
selected which wquld yield the observed gample more frequently than any
other sample space. The distribution parameter corresponding to this
space is called the maximum likelihood estimator.

Suppose that a random variable X has a distribution which is described
by the known probability density function £f(X,c) with unknown parameter
¢. A sample of N independent observations is drawn,.prodqcing the
gset of values (xl,xz,...,xu). A likelihood function of this particulgf
sample is defined by the relation

N
it

£(z;,c). (2.8)
i=1 '

L(xl,xz,...,xN]c) =

Equation (2.8) is simply the joint probability of obtaining
XysXgyeeeaFy in the same sample set provided that each sample is
drawn independently. The maximum likelihood estimator ¢ is the
value of ¢ which maximizes the likelihood function. Mathematically,

& is the solution of

B (x1xys e eaxyle) = 0. (2.9
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In many cases it-i§ ﬁ§fé:cbnvenient to maximize the logarithm of
L rather than L itself. Tﬁié trﬁnsformation_wiil not change the optimal
solutioﬁ, but very often will make finding.themderivative easier. The
values of ¢ at which L and InL have extrema are identical. Thusuafalso
can be obtained from solution of | |

3lnL

3c (xlsxzs---sxnl‘:) =0 . (2.10)

For m parameters, the maximum likelihood estimators are the
solution of m simultaneous equations found by setting to zero the
first derivatives of logarithm of likelihood function with respect to
each parameter, i.e;,

%—?‘u 0, i=1,2,...,m . (2.11)
i
 The maximum likelihood estimator has several desirable properties
6ther than the intuitively appealing property that it ﬁaximizes the
likelihood function. Among; the most important features of this method
is the behavior of the likélihéod"fﬁnction as the number of data points
(N) becomes large (the so=-called ésfmptotic properties). For large N,
the estimators*ﬁrdm'thig{ﬁethod{posségé'ﬁﬁ%@‘of.the‘&asirable properties
of a good estimator, i.e., unbihsed, minimum.vagianCe,.mbst efficient
and consistent {17].H'Fufthermnre,'§he iikg;ihbod fu;ctien approaches
a normal distribution with mean & and variénce IYIE{(E%%EQZ}] which is

the Cramer-Rao lower bound for any unbiased variance estimator deter-

mined by any method [17].
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However, for small sample sizes, the maximum likelihood estimator
is not always unbiased and many of its other desirable asymptotic
properties are lacking. Moreover, it frequently happens that the
likelihood equation (Eq. (2.11)) is not solvable analytically. 1In
such cases numerical or graphical methods must be used to obtain tﬁé
maximum likelihood estimators.

In this section, the maximum likelihood method is used to cbtain
estimates of the prior parameter; by constructing a likelihood function

based on the beta distribution (or the prior) as given by

N
L(pysPyse-+sbylasb) = T glp,|a,sb) (2.12)

i=1
where g(pi|a,b) is the beta distribution from Eq. (1.5).

This likelihood funection is the probability of observing PysPyseees
P, as values for the failure probabilities from components 1,2,...,N
respectively witlk the assumption that each component is observed in-
dependently. As mentioned in Section 2.1, the compoment failure
probability is not directly observed for the failure-on-demand problem
considered in this study but is estimated by ki/ni (which is the maximum
likelihood estimator of pi). The maximum likelihood estimators 4 and B
are calculated in such a wa? that the probability of obtaining the
observed values of ki/ni is maximized, i.e., they are chosen as the
values of a and b which maximize the likelihood function (Eq. (2.12).

Thus, mathematically, the estimators & and ﬁ'are the solution to



.;§;¢HL(a,b) =0 (2.13)
2 tnita,b) = 0
3b , .

Upon substitution of the explicit form of the beta prior funmctionm,
g(pila,b) from Eq. (1.5), the likelihood equations (Eq. (2.13)) be~-
come
4 N
¥(a) - ¥(ath) - N~ ] Inp =0
i=1

N
¥(b) - Y(ath) - N T iZlZﬂ(l-pi) =0 (2.14)

where Y(z) = d [inT(z)]/dz is the digamma function.
The solution to these simultaneous equations cannot be obtained
analytically; however, if 4 and b are not too small the following

approximate results may be used [ 6].

N . N N _
a:1/201- 1 QppM1- 1 o M- 1 (1p ¥y
i=1 1=1 1=1
bru2m- 1o M- @ o, ¥ 1 sy, 2.15)
i=]1 . i=1 i=1

This approximate solution may also be used as:starting‘values for
an iterative numerical solution of the likelihdod:equatians.

One major disa@vagtage.of the maximum likelihood method based on
the beta prior.distfibﬁtibn is that when the'number of failures k is ob-
served to be zero, the failure probability of that component is also
estimated to be zero, and the ani term used in Eq. (2.14) becomes

singular. Since it is quite probable to observe zero failure for a

25



small number of tries, this ﬁethod is not suitable for the analysis
of data from components with expected low failure probabilities.

Consequently, little use was made of this technique in this analysis.

2.3 Method of Weighted Marginal Matching Moments (WMMM) [ 3]

The bias of this method is the same as that of PMM (i.e., matching
moments). In the PMM method, the effect of different wvalues of n, is

ignored, because only the ratio of ki/n is used to calculate the sample

i
statistics. From the fact that the variance of k with a larger n is
smaller than that with a smaller n, the sample with the larger n should
intuitively have more wvalue in comput%ng sample statistics used in the
parameter estimation. To do so, a weighting scheme which is a function
of n is incorporated into the estimation procedure to favor samples with
large n. This concept was originally proposed by Joel C. Kleinman [ 3 ].

In this section, the weighted marginal matching moments theory

is reviewed. Kleinman proposed the following statistics: (13)

N k
A 1l i
P= LW, — (2.16)
w i=1 i ni
N k
s= ] w {p--27, (2.17)
i=1 i
N
where w = Z Wy and w:L is the weight assigned to the i-th sample for
- i=1

this derivation (wi is quite arbitrary). Recall from Eqs. (1.13) and

(1.14), the mean and variance of a beta-binomial distribution are given

by :
E(k) = nu , (2.18a)
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Var(k) = nu(l-u) [1 + r(n-1)], (2.18b)
‘where

u=a(ath) and r = (a+b+1)-1.

Then rewriting Eqs. (2.18a) and (2.18b) in term of k/n,-ﬁhichiisa

the estimator of p, 5, one obtains

E(k/n) = n ‘ (2.19a)
" Var(k/n) = ;} ¢« u(l-p) [1+r(a-1)]. (2.19b)

Further, expectations of the statistics from ﬁqs. (2.16) and (2.17) are

+

given by Eqs. (2.193) and (2.20) [see Appendix A],

() = u(l-u) If hE R ( [lf 1y
E(S) = p(1l-u — - =) + ru(l-n) w, (1 -—
11 By v ju1 T w
N w W
-y La-H. (2.20)
i=1 %4 LS

By setting the statistics in Eqs. (2.16) and (2.17) equal to
their expected values, (Eqs. (2.19a) and (2.20) respectively),

the following relations are obtained:

~

P=u (2.21)

and
s = E(S). - (2.22)
Substituting for E(S) on thﬁ;right‘héﬁd side of Eq. (2.22) by

Eq. (2.20) and rearranging, one obtains
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W

s-ﬁarz L1 -
T = - w q w w , (2.23)
isa[Z v, Q-2 - 7 2 c1-—>1
qmy - 1 w i=1 “1

where § = 1-p.
The estimates for the prior mean and variance are given by Eq. (2.22)
and
2
= (1-f) & . (2.24)

Upon substitution of ¥ from Eq. (2.23), the estimate of variance

becomes w
s-aa[Z -*c1--)1
= {1(1-0) % i=l 4 . (2.25)
g1 w <1-——)- Z i(l—-*)]
i=1 i-l i

Once #l and 62 of the prior distribution are calculated from Egs. (2.21)
and (2.25), the parameter estimates & and b are found by the same way
as in Section 2.1.

Kleinman chose the weight Wes used to calculate statistics p and S
in Eqs. (2.16) and (2.17), to be the inverse of variance of Py (pi=ki/ni)
from Eq. (2.19b), namely

2y

1 u(l-w) [1+r(ni-l)]

w (2.26)

Since the term u(l-u) is the same for all Vs the expression for the
weight is reduced to

i =m . (2.27)



To calculate {I and 32, the weight, Wi must be known, which
from Eq. (2.27) implies that r (or 62), must be specified.

One possible way to obtain values of fi aﬁd 62 is to use an
iteration process. The following iteration scheme was adopted in
this study:

1. Choose r=0, therefore w =0, from Eq. (2.27),

i
2. Solve for fi and 62 from Eqs. (2.21), (2.16), (2.17) and (2.25),¢

3. Use values of {Il and 62 from step 2 to calculate new values of r
and v, from Eqs. (2.24) and (2.27),

4., Continue iterating steps 2 and 3 until fi, 62 and w, converge to

i
certain values.

Kleinman [ 3 ] suggests that better estimates of {i and 62 are ob-
tained if S in Eq. (2.25) is replaced by (N-1)S/N. This suggestion
was incorpérated in the numerical procedures developed for this work.
In practice the calculation procedure of this method is rather compli-
cated and a solution for the estimate is not always obtained or

is sometimes unrealistic.

2.4 Method of Unweighted Marginal Matching Moments (UWMMM)

In Kleinman's method QWHMM), components with more number of
startups or tries n received more emphasis in the calculation of the
parameter estimators. It might be argued that it is unjustified to
pay more attention to one comgonent over another, particularly if each
component is viewed és haviﬁg its own distinet, but unknown failure
probability. A more reasonable approach may be to apply the same weight

to every component.
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Upon substitution of wi=1, i=1,2,...,N into Egqs. (2.16),

 (2.17), and (2.25), one has

N k
A i
p= L =,
=1 g
N ok,
§= Z (;g:" P)z ’
{=1 %4
and
S N1y L
B4 N % H,
6% = n(1-n) -
1 1
(N-1) [1 -3 ] =]
Va1 ™y

where § = 1-f. With the above relations and Eq. (2.21), estimators of
i and 62 can be obtained. Then the parameter estimators of & and b can
be evaluated iIn the same way as was done in Section 2.1.

By using the same weight, the previous iterativé.scheme used
with the WMMM method is unnecessary which is a major computational advan-
tage of this method over the WMMM. Moreover, as will be shown, the UWMMM

method often yields better results than does the WMMM.

2.5 Maximum Likelihood Method Based on the Marginal Distribution (MML)

In Section 2.2, parameter estimates are obtained by using the
maximum likelihood technique based on the beta prior distributiom.
However, the problems encountered with this technique for a case of zero
number of failure makes this method unsuitable to a low failure prob-
ability situation. An alternative to the technique of Section 2.2 is

to define the 1ikelihoo& funetion in terms of the beta-binomial marginal



distribution., This alternate approach is also appealing because
the actual observed data (i.e., number of failures ki out of n,

tries) are used, whereas in the previous prior based maximum likﬁii*};w

hood method of Section 2.2, the failure probabilities Py were:;éq
(which were not actually observed) and had to be estimated as-ki?hi}j"

The likelihood function is defined as
N

L(kl,kz,...,kN[nl,nz,...,nN,a,b) = inl h(kifni,a,b) (2.28)
where h(kilni,a,b) is the beta-binomial marginal distribution given
by Eq. (1.12). This likelihood function is the probability of obtaining
kl,kz,...kN failures in 0y sTgseeesly tries from N components each of
whose failure distribution is described by the beta-binomial marginal
distribution of Eq. (1.12) with parameters a and b under the assumption

that data from each component are obtained independently. Substitution

of Eq. (1.12) into Eq. (2.28) yields

L(a,b) = [(a,blkyseeeslgs nyyeeemy)

N &
T'(a+b) N T(atk, )T (b¥n.-k,)
( ] > o il (2.29)
. &

T'(a)T (b) Elci T(atbta,) '
where the binomial coefficient is given by

[ni] ) F(ni+l)
P

(9]
[

The values of a and b which maximizé-the.aBOVe likelihood function

are called the marginal maximum likelihood estimates, 4 and b, As

in Section 2.2, a logarithmic transformation makes the subsequent numerical

LT
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computation easier. Theféfbfé, 4 and b are obtained from solutions

to
3
52 InL(a,b) = 0

E—-ZnL(a,b) =0

b
or explicitly
N
N[v(atb)-¥(a)] + [V(atk)-¥(atbin ] = 0 (2.30a)
i=1
and
N
N[ (atb)-¥(b)] + } [¥ (b+n =k ) =¥ (atbin )] = 0 (2.30b)
i=1 5

where ¥(z) = %; [inT(z)], the digamma function. The numerical solution
of these two simultaneous is obtained by standard numerical techniques
[such as the Newton-Raphson method, with the PMM estimators (Section 2.1)
as the starting values].

This method, unlike the PML method (Section 2.2), is seen to pre-
sent no special difficulties for the case of zero number of failures.
However, it is found that a solution from this method is not always
obtained since for some samples the maximum point of the likelihood
function is a=b=«=. Also, the MML estimators, when they exist,
occasionally are much too large to be accepted as  reasonable,

Finally it should be pointed out that of the five methods investigated
in this study, the maximum likelihood methods are the most complicated
and, as will be shown in the next chapter, they do not always yield the

best results for small sample sizes.



2.6 Lower Bounds on the Variances of Prior Parameter Estimates [16,17]

One of the most attractive features of the maximum likelihood
method is that, besides yielding estimates of the parameters, this
method also fields lower bounds for the variances and the covariance
of the parameters. These lower bounds can often be used as useful
approximations to the variances and covariance of the estimates.

For N independent observations, xl.xz,...,xN, where each obser-
vation is from a distribution f(x,c), the likelihood function is de-

fined by

N

Lglxysxyseeenxy) = 121 £(x,,¢) (2.31)

where x and c represent the sample random variable and parameter
vector of size M, respectively. The maximum likelihood estimators of
c are denoted by ¢ which are those values of the parameters which maxi-

mize L, i.e.,

3%— L(g|xl,x2,...,xN) ., =0, 1i=12,...,M {2.3%)
i c,=c
i1
or equivalently maximize InL, i.e.,
TG CIE N NS =0, 1=1,2,...,M . (2.33)
i c1=ﬁi

The elements of the information matrix [I] are defined [10] as

{11

3%, 3%
Iij(g) E[{‘é?;}{-—-}], : B, | S SRR | (2.34)

ch

where g = ZnL(gjxl,xz,...,xN), and the expectation is with respect
to the likelihood function L. These elements of the information matrix

may be written in alternatiﬁe form as [17]
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I .( --E[if*—-—] 1,§51,2,...,M
ij E.) aciacj ’ ’j 9&9 sy (2.35)

By definition of expectation, the elements of the information matrix

Iij(E) can thus be computed from

I ) = -E __EEE_ = d d _23&__ |
:t.j(E = aciﬁcj = | dxy jdxy=== fdxy aciacj L{glx 5%y, 00aXy),
1,3=1,2,...,M - (2.36)

where the integration (or summation in the case of a discrete distri-
bution) is over all possible values of variables XpsXpyeeesXye
If one assumes that the distribution of the likelihood function with
respect to each parameter is symmetrical, then [17]
2 2
E[ az].ﬁ.[ 3“2 )

aciacj Bciacjj

. (2.37)

c=2
One of the most important theorems about the maximum likeli-
hood method is known as the Cramer-Rao-Frechet inequality [17] which

states that if & are any unbiased estimators of ¢, then

[s] > [A] , (2.38)

where elements 9y

variances of parameters c

1 and 9442 i#y; 1,3=1,2,...M of matrix [g] are

1 and covariances of parameter ci and cj

respectively, and matrix [A] is the inverse of the information matrix.
In other words, lower bounds for any unbiased variances and co-

variance of the parameter estimators € can be obtained from the elements

of the inverse of the information matrix as

var{e,y=o,. <&, . .,
i ii ii (2.39)

and

A A - U < .
cov(ci,cj) 14 —-Aij



As stated in the previous section, among the most important
Features of the werhdiof wecnm Ifkdifiesd iy e bubavior of
the likelihood function as the number of data pﬁints, N, becomes
large. For large N, the likelihood function approaches a normal
distribution with mean ¢ and variances

~ %31 T A1
Asymptotic properties of the likelihood function guarantee that

1lim

e Eld=c (2.40)

lim w

i var[ci] Aii P (2.41)
and

1lim

5 cov[ci,cj] = Aij " (2.42)

In addition, the approximation of Eq. (2.37) is'valid when N is
sufficiently large.

To apply the above results to the problem of estimating the
variances and covariance of the two parameters of the prior beta distri-
bution, the information matrix is constructed for Eq. (2.28) which is

the likelihood function based on the beta-binomial distribution, as

2 2
92 3 %
, Etaaz] E[aaab]
[I(a:b)] = - (2.43)
32 32 |’
Bl—=1 Ef~—5]
| 9adb abz ,

= The second derivatives of the logarithm of the like-

where & = InL(a,b).

lihood function are given by

822

Baz

N L
N {p'(atb)=p"(a)} + ) {9 (atk,) - " (atbin)}  (2.44)
i=1
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2 N
3—% =N (¥ (@D)-4' (1)) + [ (4" (b k)b (atbin)} (2.45)
3b fm1
smap = W' (atb) - izlw‘(a+b+ni)' . (2.46)

where ¥'(2Z) = dz[ZnI'(Z)]/dZ2 is the trigamma function.
For the failure-on-demand model of this work, the likelihood
function is a discrete distribution, and thus the expectation wvalues

for the matrix elements of Eq. (2,43) are calculated by

e T Oy
Elyl= 1 ! ... I vL(@a,b), (2.47)
k =0 k=0 k =0
N
where L(a,b) = I h(ki[ni,a,b).
i=1
S.’i.nce n .
I hee,
h(k,.|n,,a,b) = 1,
k=0 1My

the substitution of the explicit form of the likelihood function and
subsequent simplification gives the following results for the elements

of the information matrix:

n

2 N i
E[—Lg-] = N{y'"(atb)-y'(a)} + Z Z lp'(a+ki)h(ki|ni,8,b)
da i1 &, %0
N
) Y (atbtn,) (2.48)
i=1
2 N M
E{a"%] = N{y'(ad)=p'(®} + ] ] ' (bt -k )h(k,|n,,a,b)
ab 1=1 k=0
N
- 1 ¥'(atbin) (2.49)

i=]1
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32y : N _
E[aaaﬁ] = Ny'(atb) - 121 V' (atbin,) (2.50)

The numerical'evéluation of the expected values of the elements
of the information matrix can be quite time consuming expecially
when N and the n, are large. Application of Eq. (2.37) allows a

much more expedient, but approximate, evaluation of these matrix ele-

ments. Specifically one has

) a2y . ) N i o
E[;'z‘] = [_Z]a.g = Np'(&+B) -NU'(3) + ) {¢'(a+ki)-w’(a+b+ni)}, (2.51)
a da 2y i=1

b=b

3%y 3% . § 2 34D
E[—-—-] x {—] L = W' (ED)-N(B) + L Tu! (bm -k )-¥" (B+b4my) ), (2.52)

3b2 3b2 ::E i=1
2 2 N
32 ) 3% i .
-] A = - + . .
E(BaBbJ [BaBb]a=§ Ng ' (a+b) i§1 VAN E b+ni) (2.53)
b=b

Finally, from Egs. (2.39) one has the following approximations for the

variances and covariance of the maximum likelihood estimators:

11

var(8) = [17°(a,8)1;;, - (2.56)

(17,51, (2.55)

var (b)

and

cov(a,b) = [:‘lca,ﬁnu. (2.56)
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3.0 SIMULATION STUDY OF PRIOR ESTIHATIﬁN TECHNIQUES

Five methods for estimation of the prior parameters were presented
in the previous chapter. Previous results of using three of these methods
with actual failure records of standby diesel enéines from some nuclear
power plants exhibited significant differences in the estimators.[lsl. How-
ever, it is not reasonable to conclude which of the five methods yields
the best estimators from the few results obtained. To determine many
important properties of the various estimators, their distributions are
needed.

To construct such distributions, multiple sets of attribute failure
data are necessary. With data being randomly chosen from a known beta-
binomial distribution, the distribution of the prior parameter estimators
could be determined for each estimation technique. From these distributions
of the e?timators many properties of the five estimation techniques can
then be investigated. To have some criteria to determine the 'best"
estimation method, some_dggirable properties of a good estimator will
be reviewed in the nekt Qéﬁiiﬁn. The simulation teéhnique for the

generation of failure data will then be presented in Section 3.2,

3.1 Desirable Prnég:&ieg_of-an‘EstiQator [18]

A major objective.of this study is to determine the best method of
the five‘estimation'rechniques discussed in the previous chapter.
Good estimators should possess all or most of the following propefties:
unbiasedness, consistency, efficiency and sufficiency.

3.1.1 Unbiasedness

Assume that a sample statistic G is used as an estimator of a
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parameter 8. The statistgé?G is then said to be an "unbiased estimator"
of 0 if

BGYy=0. .2t ¢ . (%B)
where the expectation islyith respect to a-joiﬁg density functiﬁn of
random variables used to calculate the statistic G.

In other words, suppdée that random saﬁples are taken repeatedly and
the value of G is evaluated for each sample. Then in the long run, if
the average value of G is 6, the estimator G has the property of unbiased-
ness.

3.1.2 Comnsistency

An intuitively attractive property for an estimator to possess is
that the sample estimate should have a higher probability of being
close to the population value 6 for a larger sample size. A statistic
that has this property is called a "consistent estimator". More formally,

the statistic G is a consistent estimator of 6 if for any arbitrary e,
P(|G-8] <€) — 1 as n= (3.2)

where n is the sample size.

An important distinction between unbiasedness and consistency is
that the former is a fixed-sample property (if an estimator is unbiased,
it is unbiased for any fixed sample size), while the latter is an
asymptotic property (i.e., it is concerned only with what happens as
the sample size becomes very large).

3.1.3 Efficiency

Between two statistics G and H both of which are assumed to be un-

biased estimators of a parameter 8, G is the more "efficient estimator"
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if it has a smaller variance than G. This concept of efficiency is
restricted to unbiased estimators only. A more general concept is
that of "minimum mean-squared error". If G is an estimator of 6, the

mean-square error of G is

MSE(G) = E(G-8)% . (3.3)

Note that if G is unbiased, the mean-square error is identical to the
variance of G.

3.1.4 Sqffic;encg

A statistic G is s;id to be a "sufficient" estimator of the para-
meter 6§ if G contains allhqf the relevant information available in the
data about the value of 6. In other words a statistic satiffies the
criterion of sufficiency when no other statistics which can be calculated
from the same sample provides any additional information as to the value
of the parameter to be estimated.

For example, if we have a set of observations X that we know comes
from a normal population, sufficient statistics are 2xi andzxi. No other
information is needed to estimate u and 02. Several theorems used

to determine the sufficient statistic are discussed in details in Ref. [4].

3.2 Generation of Simulated Failure Data [19,20]

To construct the distribution of estimators by empirical means,
it is first necessary to produce a large number of failure data pairs
(i.e., number of failures k out of number of tries n) in which the
number of failures k are distributed according to a known beta—biﬁomial

distribution with parameters a, b and n. The failure data pairs can then
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be grouped into sets of sgéeified sizes and each set used with the various
parameter estimation techniéues to obtain parameter estimators. By
analyzing a large number of data sets, the distribution of the estimators
for each esfimation mechod:can then be detérmined empirically.

_The sequence for generating synthetic’failure data is performed
by the following two steps:

1. A number of tries n is selected randomly from a discrete uni=-
form distribution between ny and n,.

2. Then, with the value of n from step 1, the number of failure k

is chosen from a beta=-binomial distribution

n] I(atb) , I(a+k)T (bin-k) (3.4)

h(kln,a,b) =[k T'(a)T(b) T'(at+b+n) *

where a and b are specified parameters of the beta-binomial distribution.
This procedure is simply a random sampling from a discrete uniform
distribution and a beta-binomial distribution.

One widely=-used concept of random sampling technique is the "in-
verse transformation". This method makes use of transformation of a
"random number" from a uniform distribution between 0 and 1 inclusively
to a random variable from a specified distribution. Once a random
number is generated, the desired random variable can be obtained by
the appropriate transformation. To find this transformation, suppose
f(x) is a probability density function for a required random variable.

The associated cumulative probability function F(x) is

X

Fix) = I  £(s) ds. (3.5)

-0
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In particular, the cumulétive probability function of a uniform

distribution (g(u) = 1 for u between 0 and 1) is

u
G(u) = J g(v) dv = u. (3.6)
0

A random variable u which is described by a uniform distribuﬁion
g(u) can be easily generated from any random number generating computer
routine, such as RANDU [21], therefore a value of u or G(u) is kﬁawn.
A known value of u is transformed to a random variable x which is
governed by a probability density function £(x) by using the fact that
x and u have the same probability of being observed or a cumulative

probability function F(x) is equal to G(u), i.e.,

X u
f(x")dx' = J_ g(u')du', (3.7)
J O 0
or
X : :
f(x")dx" = u. (3.8)

In Eq. (3.8), £(x') and u are known. Therefore by solving
Eq. (3.8) for x, the required random variable is obtained. The de-
tails of variable transformations from a unifurm distribution to
number of failﬁres-and number of tries will be presented in the next

two sections.

3.2.1 Genmeration of Number of Tries, n [20]

In this study, ﬁ is assuﬁe& to be uniformly distributed between two
positive integers erand MZ' ' To obtain each value of n, a random number
u, is generated fruﬁ"the routine RANDU [Zi].which.is-then transformed

to value of n by the following algorithm:
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Ml + integer([u/p] , u¥p
n= (3.9

Ml + integer{u/p]-1 , u=p
where p = (Mz-Ml—l)-l (the probability of obtaining any integer between

Ml and Mz inclusively). Explicitly, the above algorithm is equivalent

to
rM]_ ’ 0<uc<p
Y41 o Puz?p
n= ‘.H1+i s ip < u < (i+l)p (3.10)
Mz ’ (I-p) <u<l .
\

3.2.2 Generation of Number of Failures k

Once the number of tries, n, is selected randomly from a uniform
distribution between Ml and MZ’ a new random number, u is generated and
changed to the number of failures,k, by making use of the cumulative
distribution, F(k), for a beta-binomial distribution, h(k), from
Eq. (3.11), i.e.,

k
F(k) = )} h(m|n,a,b), k=0,1,...,n. (3.11)
m=0
A value of k is computed in such a way that k is the minimum integer fcf

which u < F(k), or equivalently,
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0 , 0<wu<F(
s F(0) <u<FQ)

i, F(i-1) < u < F(i) (3.12)

. n 4 F(u-1) <u < F(n) =1

In essence this method requires sequential evaluation of the
cumulative distribution, F(k). Use of Eq. (3.11) for each calculation
would be very time-consuming if large amounts of simulated failure
data are to be generated. However, considerable computation effort
may be saved in the'sequential evaluation of F(k) by using the following
recursion relations:

F(k+1) = F(k) + h(k+l|n,a,b) , (3.13)

where

(a+k) (n=k)
(b+n-k-1) (k+1) °

h(k+l|n,a,b) = h(k|n,a,b) (3.14)

In a low failure probability case for which a small value of
k would be expected, the sequential search of Eq. (3.12) is best begun
at k=0. Similarly, if a large value of k is expected (e.g., for a com-
ponent with a high failure probability), then the search should be begun
from k=n. More generally, to minimize the length of sequential search,
the search should start near the mean of the beta~binomial distribution of
interest. However, this optimal search method requires that the integer
nearest to the mean, the density and cumulative functions [h(k[n,a,b)
+ F(k)] at that integer be initially evaluated and stored for all possible

value of n. This refined search algorithm is outlined in Table 3.1.



Table 3.1. Algorithm for Optimal Calculation of Number of Failures, k,
by the Inverse Tran Transformation Teﬁhnigu“.
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Part I: Selection of Starting Values for Sequential Search

1. Calculate means, ’i, of beta-binomials for all poasible n,
(i.e., for n, = ny, nl+l,...,n2)

2. Round off means to nearest integer,'Mi

3. Calculate F(M, ;) and h(¥ [ni,a b)

4. Store values of M. F(M ) ‘and h{M ) in a vector to be used as

i’
starting points in sequential search.

Part II: Sequential Seérch_tb Calculéte k for Given n,
1. Generate u from a uniform distribution on (0,1) by RANDU
2, Ifu-= F(Mi), then k = Mi

3. Otherwise, set K = M, h(K) = h(Mi) and F(K)aF(Mi)

4. If u<FQM) go to step 6 '

5. Compute: (a+K)(n =)
h{EtL) = H(K) oK (R

Ff‘(K+l) = F(K) + h(K+l)
If u < F(K+l) then k = K+l,and exit; otherwise set K=K+l
and go 5ack)to beginning of step 5.
6. Compute
F(R=1) = F(K) - h(K)
If u>F(K-1) then k=K-1 and exit; otherwise calculate,

K (n i—K-l-b)

B&-1) = B(K) T7T+a) (a, %))

set K=K-1, and go back to beginning qf step 6.
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4.0 RESULTS AND DISCUSSION

The main purpose of this study was to ﬂind‘ﬁ:om the distri-
butions of estimators which of the five empiricél estimation techniques
described in Chapter 2 is the "best". To investigate the properties of
the estimators from each method, simu}ated failure data were generated
by methods describeﬁ in the previous chapter and grouped into several
different sample sizes. Based on these simulated data, estimates for
the beta prior parameters from five methods were calculated by the five
methods discussed in Chapter 3. With these estimates, their distributions
were obtained empirically from which properties of estimators from each
method were then investigated.

Since this study was concerned primarily with low failure probability
events, a beta prior with parameters of a=1.2 and b=23.0 was used as
the basis for generating the majority of the simulated failure data.
{These particular values of a and b were the estimates calculated
from observed data for emergency diesel generators.) The number of
tries, ., was randomly selected from iz discrete uniform distribution
between 30 (Ml) and 300 (Mz) inclusively, using the technique described
in Section 3.2.1. For each randomly chosen ni, the associated number
of failures, ki’ was selected randomly from a beta~binomial distribution
with the parameters a and b specified above according to the procedure

in Section 3.2.2. Many different values for n, and ki were produced in like

i
manner, In all, l,ﬁgﬂasamplas of size 5 (i.e., five pairs of ki and

ni), 10 and 20 were generated;-:Additionaily, 500 samples of size 50

-
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were also computed. With these simulated data, estimates of the param-
eters a and b by the five estimation methods were calculated. As
mentioned in Chapter 2, these methods did not always yield solutions

for each sample. The observed number of samples yielding solution and
percentage of success f6r<each of the five methods are given in Table 4.1.

The PMM method which is the simpleét estimation method always
yielded successful results for all samples, reéardless of.sample size.
All three of marginal-based methods occasionally failed, particularly
for small sample sizes (N s 10). However, for ﬁ > 20 all three marginal-
based methods always yielded results. On the other hand, the PML method
tended to fail increasingly as the sample size increased such that no
parameter estimators were obfained fof‘samples-of size 50. All samples
which failed to yield PMtholutions contained at least one kiao (a
likaiy occurrénce fbf the: low failuré'probébility case studied) which
is the major deficiency of the prior maximum likelihood technique when
used for low failure probability data.

Table 4.2 displays some simulation data samples for which no parameter
estimators could be obtained by the marginal-based estimation techniques.
No noticeable features about these particular data seem to distinguish
them from other data samples for which the estimation methods yielded

solutions.

4.1 Distribution of Prior Parameter Estimators

4.1.1 Mean and Variance

The frequency distributions of the estimates § and b as calculated

by the various estimation techniques for the four sample sizes were con-



Number of successful solutions and failures for prior

Table 4.1.

s Sl parameter estimates from the simﬁiation failure data
for the five estimation techn:lquesf (outliers are con-
sidered as s,glutions) :

Sample L1151 S Prior " PETNE
Size Sol. No-Sol. % Success Sol. No-Sol. % Success
5 1383 117 92.20 1500 0 1100.0
10 1499 1 99.93 1500 0 100.0
20 1500 0 100.0 1500 ¢ 100.0
50 500 0 100.0 500 0 100.0
Sample Marg. Max. Likelihood Prior Max. Likelihood
Size Sol. No-Sol. % Success Sol. No-Sol. % Success
5 1349 151 89.93 850 650 56.67
10 1497 3 99.80 466 1034 31.07
20 1500 0 100.0 157 1343 10.47
50 500 0 100.0 0 500 0.00
Sample . TTWMMM
Size Sol. No-Sol. 7 success
1415 85 94.30
1497 3 .99.80
1500 0 100.0
500 0 100.0
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Table 4.2. Simulated féi;ﬁre déta[ki] from a beta-binomial

(a=1.2,b=23) for which the marginal-based esti-
mation. methods yielded no solution.

Sample Size N=5

1. Data for which MML, WMMM, and UWMMM methods gave no solution:

(82 72 72 44 178 80 175 146 207 164)
L4 3 2 1 7 2 7 3 4 8
(235 156 46 112  90) 95 53 125 299  69]
. 8 4 1 3 o0 1 o 3 2 1
(285 247 152 237 228 72 186 243 105 73]
. s 2 2 2 6 1 7 4 5 2
232 72 82 238 105] 271 191 197 270 283

20 3 6 24 10 5 2 3 3 4
209 207 76 62 117 [254 225 298 120 220)

10 8 2 4 2 10 10 19 6 12

2. Data for which only MML and WMMM methods failed:
[103 104 84 48 230 153 242 289 49 30
Lo 3 4 1 8 4 11 18 3 0
298 208 149 225 246] 261 148 60 197 223
8 1 5 & 7 22 5 6 17 17
91 72 165 161 87 (212 117 120 39 151
1 4 5 2 2 | . 6 3 7 0 6
239 222 76 182 79) (50 58 41 68 51]
12 16 1 12 5 .2 0 0 3 1
69 85 291 246 91 (136 294 259 56 111]
5 3 13 11 1 L 6 14 13 0 4

3. Data for which only WMMM and UWMMM methods failed:

32 39 150 97 208 60 33 253 151)
2 2 10 4 6 2 7 1 10

89 209 248 122 130 53 247 155  45)
3 5 3 2 6 1 3 4 1

87 123 269 63 [16 59 61 104 150)

——
N
wn

[ =)
=

Qo
o0 PO Wk VW MW

6 7 6 3 4 3 6 12

6
5

249 207 99 172) 92 263 225 71 146)

5 0 2 4 3 18 11 2 4

y,

2

61 77 227  47)
0 1 7 1

128 46 175 223
2 1 1 7

w

S o ey
Lo




Table 4.2 - continue&:'

4. Data for which only MML and UWMMM methods failed:

None

5. Data for which only the WMMM method failed:
[246 249 227 167 225 193 192 292
12 13 4 8 14 11 8 22
119 150 133 282 262 86 216 139
5 7 2 12 5 0 4 0
6. Data for which only MML method failed:
(184 63 42 48 196] (124 183 229
. 6 5 0 & 10 L7 6 3
(169 44 63 260 182] (239 281 168
(15 2 4 0 15 (20 18 14
(219 160 202 249 31] (969 - 40 81
.3 3 2 3 3 (26 3 2
(298 234 115 209 113] (214 82, 116
10 9 2 13 3 Lo 5 11
(35 72 45 130 50| 67 38 133
1 2 2 & 5 L0 3 3
7. Data for which only UWMMM method failed:
156 58 159 276 292) 60 256 40
1 1 2 10 5 3 4 3
86 122 289 245 281) 39 64 152
2 3 1 71 9 2 3 3
49 284 67 136 271) 173 144 201
2 5 2 4 17 11 2 11
39 219 203 276 202 [133 63. 116
1 2 6 9 10 6 2 2
127 167 53 147 227 56 36 137
6 5 2 11 7 5 3 4

277
11

189

200
183
118

14
84

133

37
236
19
94
252

63
4

zs&}
12

33}
0

240)

4

191]
14

169)
19,

225)




Table 4.2 - continued

Sample Size N=10

1. Sample for which only WMMM and UWMMM methods found no solution:

225 85 73 .71 238 167 245 91 187
7 1 2 0 7 4 4 1 0

2, Sample for which only UWMMM method fai;ed;
63 195 34 293 42 70 276 295 264
3 1 1.t 35 2 3 10 10 - 2
170 221 241 236 178 45 244 201 69
5 13 8 7 10 1 5 5 . 3

3. Sample fbr which only MML method faiiédrr
40 111 108 273 217 207 254 31 284
0 6 8 14 8 10 7 0 14

36 206 254 97 95 99 276: 233 253
1 10 8 3 7 10 15¢ 11 11

152 86 85 206 75 88 267 279 111
10 8 4 12 11 4 18 11 3

67
1

51
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structed empirically anﬁ,thé_reéults are shown in Figs. 4.1 through 4.4.
These frequency distrﬁb§§i§ﬁs show some cbmmqn characteristics. All
distributions exhibit a%&iawly decaying tail at high estimate values.
Bias and variance-deeraaée as the sample size increases.
For small sample sizes ( N ¢ 10 ), there were obtained an
appreciable number of inordinately large estimates or "outliers” from
the marginal-based estimation techniques. Pfesence of these outliers
caused some difficulties in the computation of statistics from the dis-
tribution of estimates since they are often orders of magnitude greater
than the true parameter values. If the outliers are included, values of
statistics of the estima;or distributions would be determined principally
by the outlier values. For example, the distribution for N=5 for esti-
ﬁator 4 from the MML method (Fig. &.1)'yie1ds a mean a = 7.16 and a
variance var(d) = 2581 if all data are used,while if the 14 outliers
(& > 100a) are suppressed, a mean a = 3.79 and a variance var(d) = 59.4
results (the true value of a is 1.2). 1In this stﬁdy, those outliers
which are greater than one hundred times the true values were classified
together with those samples which yielded no.solutiou and hence
were not used in the computation of statistics unless explicitly specified
to the contrary. |

In Tables 4.3 and 4.4, means, variances and covariénces of parameter
estimates without outliers is presented along with the values when the out-

liers are 1ncluded,Tﬁe:qumBer_cf outliers,if any,is shown in sguare brackets
in Table 4.3. The means of the‘parametér'estimator distributions are

always greater than tﬁe,ﬁtue‘?3r§meter‘¢3;“es except for the mean calculated
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Mean and number of solutions of parameter estimates for
different sample sizes and estimation techniques. True
beta parameter values are a=l.2 and b=23.0. Results for
marginal-based methods are presented with and without _
outliers (& > 100 a or b>190b) included.

Sample

Prior Ma _hi ' Momenrq

Prior Maximum Likeiiho&é“

Size a b # of sol. S b
5 1.91 43.9 1500 3.02 . 64.4
10 1.32 27.1 1500 1.87 34.8
20 1.18 23.4 1500 1.67 29.7
50 1.06 20.4 1500 - -
WMMM w/o Qutlietsr WMMH.with Qutliers
Sgiple a b # of sol. a b # of sol.
ze
5 4.28 93.3 1364 16.4 372, 1383 [19]*
10 2.43 51.7 1498 2.53. 53.7 1499 [ 1]
20 1.68 34.0 1500 1.68 34.0 1500 [ 0]
50 1.36 26.4 500 1.36 26.4 500 [ 0]
Marg. Max. Like. w/o Outliers Marg. Max. Like. with Outliers
Sample El b # of sol. a b # of sol.
Size
5 3.79 83.7 1335 7.16 199. 1349 [14]*
10 2.046  44.3 1495 3.43  71.1 1497 [2]
20 1.52 30.8 1500 1.52 ; 30.8 1500 [0}
50 1.30 25.2 500 1.30 25.2 500 [0]
WMMM wlo: Guﬁiierﬁ UWMMM with autliers
Sample a % # of sol a b # of sol.
Size
5 3.55  80.4 1407 5.37 116, 1415 [8]*
10 2.20 7.0 ‘1497 2.20 47.0 1497 (0]
20 1.60 32.2 1500 1.60 32.2 1500 [0]
50 1.33 25.8 500

-1.33 . 25.8 500 [0]

*?igure in the bracket is number of outliefs obtained from that sample

size.



Table 4.4 Variances and covariance of parameter estimators for different

sample sizes and estimation techniques. True beta parameter
values are a=1.2 and b=23.0. Results for marginal-based methods
are presented with and without outliers (&>100a or b>100b)
included. '

Prior Matching Moments Prior Maximum Likelihood
s§$§ig, var (&) var (b) cov (4,B) wvar (&)  var (b) cov (4,b)
5 4.42 3.79 (3) 1.03 (2) 9.29 8.44 (3) 2.23 (2)
10  5.50 (-1)* 2.86 (2) 1.01 (1) 8.40 (1) 4.39 (2) 1.63 (1)
20 2.11 (-1) 9.97 (1) 3.79 2.02 (-1) 1.08 (2) 3.81
50 6.72 (-2) 3.05 (1) 1.23 - - =
Sample WMMM w/o Outliers WMMM with Outliers .
Size var (&) var (b) cov (&,b) wvar (&) var (b) cov (&,b)
5 5.20 (1) 2.50 (4) 9.90 (2) 8.15 (&) 3.41 (7) 1.64 (6)
10 1.23 (1) 5.76 (3) 2.51 (2) 2.69 (1) 1.15 (&) 5.40 (2)
20 8.01 (-1) 4.49 (2) 1.69 (1) 8.01 (-1) 4.49 (2) 1.69 (1)
50 1.75 (-1) 8.13 (1) 3.44 1.75 (-1) 8.13 (1) 3.44
Marg. Max. Like. w/o Outliers Marg. Max. Like. with Outliers
S:izie var (&) var (b) cov (a,b) var (&) var (b) cov (&,b)
5 5.94 (1) 2.74 (4) 1.15 (3) 2.58 (3) 6.39 (6) 1.18 (5)
10 5.60 4.09 (3) 1.37 (2) 2.89 (3) 1.08 (6) 5.59 (4)
20 5.70 ( -1) 3.39 (2) 1.22 (1) 5.70 (-1) 3.39 (2) 1.22 (1)
UWMMM. w/o OQutliers UWMMM with Outliers
S;?ﬁie var (a) var (b) cov (4,b) wvar (8)  var (b) cov (&,b)
5 5.00 (1) 2.78 (4) 1.07 (3) 1.44 (3) 3.30 (5) 1.97 (&)
10 1.35 (1) 6.58 (3) 2.82 (2) 1.35 (1) 6.58 (3) 2.82 (2)
20 8.54 (-1) 4.31 (2) 1.73 (1) 8.54 (-1) 4.31 (2) 1.73 (1)
50 1.7

J71 (-1)  7.92 (1)  3.36 1.71 (-1) 7.92 (1) 3.36

*Read 5.50 x 10°
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from the results of the PMM method. For sample size 20, the mean from
the PMM method is almost exactly the same as the true parameters, but
- the PMM method tends to!u@dereatimate for larger sample sizes.

Another important fﬂa:ure of these estimator distributions is their

variances,i.e.,a measure=u spersion of thé estimators. For a given sample

size the minimum varianceéqgsfglﬁﬁys obtained with the PMM method, which

is also the simplest technique Efjthose studied. These estimation

methods based on the marginal distribution always yielded considerably
larger variances, a result of the more slowly decaying tail of the
distributions at large & and b values. Moreover, the covariances of &

and b were always observed to be positive"wﬁichiindicates a positive

linear relationship between & and b (i.e., 1érge values of & are associated
with larger values of ﬁ). Finally, as would be expected, the variances

and covariances for all estimation techniques decrease as the sample size
increases, and the means approach the true vﬁlues.

4.1.2 Bias of Prior Parameter Estimates

The degree of bias inherent in any parameter estimation technique

is often of concern. The bias of an estimator, §, is defined as,

E[8-8] = 6-6 (4.2)

Bias

where 6 is the true value of the parameter (e.g., a or b) and 8 is the
mean of the estimators. All of the estimation techniques investigated
in this study were found to yileld biased estimates of the prior para-
meters, especially for small sample sizes.

In Table 4.5 the results are presented of the bias of the beta para-

meter estimators for each estimation method considered. The variation of



- Table 4.5 The bias or deviatiun of mean of estimators from true
parameters [a=1.2, b=23,0]. Each data set consists of
500 simulation samples.

Sample  Data Set - = - =
Size (). No. | _aﬁé b=b ata ,.b b
o 1 0.566  16.5 2.76  63.1
5 2 0.739  21.9 2.08  30.6
'3 0.835 2.41 2.91 68.4
1 0.124 3.72 0.887 21.2
10 2 0.104 3.72 0.772 19.2
3 - 0.125 4.82 0.872 23.5
1 -0.0238  0.0602 0.325 7.37 0.479 6.07
20 2 -0.0574  0.299  0.268 6.71 0.439 6.48
3 0.0118  1.44 0.373 - 9.34 0.491 7.38
50 1 -0.142 -2,58 ~ 0.100 2.22  * *
WM UWMMM
Sample ~ Data Set - -l =, .
Size (N) _No~ oo a f . b=b a-a b=b
5 1 3.24 76.2 2.67  63.4
2 2.68 61.8 °  1.77 42.
3 3.30 72.8 2.59 66.1
1 1.20 26.3  0.989 22.7
10 2 1.12 26.5 0.966 23.6
3 1.38 33.1 1.03 25.4
1 0.471 10.2 0.380 8.34
" 20 2 0.412 9.50 0.318 7.63
3 0.568 13.4 0.496  11.8
50 1 0.164 3.40 0.132 2.82

- .
Method always failed for sample size N=50 since each sample
contained at least ome ki=0.
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the bias in 4 and b with éaﬁpie-size is shown in Fig. 4.5. Notice fhaﬁ
as the sample size increases, the bias of the-estimator from the mafginal
maximum likelihood method decreases towards zerb'és would be expected
from the consistency.prcperty of the maximum likelihood method. The
estimates from both of the marginal matching moment techniques also ex-
hibited this consistency property. The bias for the prior-based maximum
likelihood method, on the other hand, is poor for large sample sizes since
for the assumed prior beta many of the simulated samples contain at

least one ki-O which makes this estimation mefhod fail (see Table 4.1).
However, it will be shown for the symmetric case (a=b=5.0) that the.
estimator from the prior maximum likelihood method can possess a con-
sistency property when all samples are used.

From Fig. 4.5 it is seen that all of the methods except the simplest
method, the PMM, always yield a positive bias. The bias of the prior
matching moment results has a positive value forISmall sample sizes but
becomes negative for sample size of greater than 20. More importantly,
the PMM method has the smallest bias of all’fiye.methods‘investigated

in this study for sample size (N) less than or equal to 50.

4.1.3 ﬁggﬁ;&&ua;eQ:Erro:.of‘Estimgtdggﬁ :

For safety analyses the mean squared error of an estimator is
generally of concern. Although é_garticular'method may have a small
bias, the variance of tﬁé éstimateé.maj;ﬁe-&ﬁite lérge and hence the
analysis of an individual sample could lead to parameter estimates
which are significantly different from the true values. For safety

considerations in which only a few samples are to be analyzed it is
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- important that the mean square error of the estimates be small even -

. if the estimates are slightly biased.

 For the simulated

a the mean squared error (MSE) is estimated
as Iy
)

e value.

where 6, represents the es

i
From éhis equgtion, it is

& or b and 8 represents the tru
?3oﬁtlieéé (i:é.;'esﬁiﬁhgéégﬁg;h
‘are far‘iemoved from the-irue:valué) wili éhaﬁge the valﬁé éf,tﬂé ﬁﬁan
squared error greatly, and that estimates close to the true value have
little influence. From the distributions of § and b shown in Figs. 4.1-
4.4, it is seen that there are typically several outliers produced by the
marginal-based estimation methods, especially for small sample sizes. To
compare the mean squared error for the different estimation methods, these
outliers were suppressed by ignoring those values of § or b which were more
than one hundred times the true values of a and b. The results of the
mean squared error analysis for the simulated failure data are presented

in Table 4.6 and in Fig. 4.6.

From these reéults it is seen that for small or moderate sample sizes
(Ns50) the prior matching moment estimation techniques yields the lowest
mean squared error. The three estimation methods based on the marginal
distribution produce the poorest results, i.e., the largest mean squared

errors., These large errors are a direct result of the occasional high

estimates of a and b obtained with these methods.

4.1.4 Median of Estimators

To suppress naturally the effect of outliers without actually



Table 4.6. Mean squared error about the true beta parameters
(a=1.2, b=23) for the simulated failure data. Each
data set contained 500 samples.

PMM MML PML
Sample Data Set ~ » A n A
Size (N) Yo. MSE(4) MSE(b) HSE(&)‘ MSE(b) MSE(3&) MSE(b)
1 2.57 1,740 77.6 35,000 6.76 3,780
5 2 6.43 4,860 43.4 - 21,000 17.1 11,500
3 5.80 6,050 77.1 37,100 14.9 15,100
1 0.629 308 7.12 4,670 1.52 524
3 0.535 310 7.12 5,860 1.14 639
1 0.215 95.3 0.618 314 0.422 125
20 2 0.185 89.1 0.680 382 0.288 128
3 0.235 115 0.781 503 0.520 193
50 1 0.0874 37.1  0.123 63.1 - -
WMMM ' UWMMM
Sample Data Set 2 _ "
Size (N) No. MﬁE(a)- MSE(Db) MSE(&) MSE(b)
1 55.9 33,200 75.9 37,800
5 2 58.0 27,500 39.7 19,200
3 70.8 28,900 50.2 36,000
1 11.7 4,880 12.2 6,600
10 2 7.61 4,480 14,6 7,610
3 22.0 10,400 16.6 7,230
1 0.971 472 0.835 409
20 2 0.806 455 0.688 384
3 +Le33 782 1.51 756
50 1 0.201 92.7 0.188 87.0
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ignoring them, the median of the empirical distributions for & and b

were calculated. The results for the medig#lof the distributions are
given in Table 4.7 and the variation of the median with sample size is
gshown in Fig. 4.7. In the calcﬁlation of the median values, the outlier
estimators were included. For small sample sizes (N<10) ﬁhe:simple prior
matching mamentsjmethod yields‘mé&ian values which are closest to the
true values of the parameters. However, for larger sample sizes the
prior matching moment methods gives a median which is smaller than the
true value. Only the estimation methodé based on the marginal distri-
bution appear to yield medians which approach the true value .as the

sample size becomes very large.

4.1.5 Comparison to Results from a Symmetric Beta Prior

The results in the previous section were estimated from simulation
failure data based on a specific beta prior distribution which was highly
skewed towards low failure probabilities (the mean of the beta prior
= a/(ath) = 1.2/(1/2+23) = 0.043). To determine whether or not the
results obtained for the estimators of this particular beta prior are
applicable only to similarly skewed beta priors or to more generally
distributed beta priors, failure data were simulated for a symmetrically
distributed beta prior with parameters a=b=5 and consequently with a
mean of 0.5. Simulated failure data sets of 500 samples of size 5,
10 and 20 were generated from this symmetric beta distribution. The
five estimation techniques were used to analyze these data.

From this analysis of failure data generated from a symmetric

beta prior, it was found that three marginal-based estimation techniques



Table 4.7. Median values for the estimates 4 and b for different
' sample sizes and estimation techniques. For sample
sizes of 5, ‘10 and 20, 1500 simulated failure data
‘were used, and for sample gize 50, 500 simulated data
were used. The true value of the parameters are a=1.2
and b=23.0.

Sample MM Prior Match. Mom.
size (M) i b d a b
5 2,22 46.3 1.31 278
10 1.72 33.5 1.76 23.0
20 1.47 28.4 1.10 21.4
50 1.28 24.4 1.02 19.6
_ Sample " Marg. Max. Like. Prior Max. Like.
Size (N) 3 b a 5
5 1.77 36.9 2.09 39.2
10 1.47 28.9 . 1.65 29.9
20 1.33 25.6 1.67 29.2
50 1-23 23-3 - -
Sample TwWMMM .
Size (W) a b
b 1.69 35.0
10 1.49 29.2
20 1.37 26.8

50 1.25 23.9
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,jialded numerical solutions for a larger fraction of the samples than

,_  they did for the nonsymmetric case. For example, 98.8% of the siae

5 samples yielded results with the weighted marginal matching f et

98.0% of the same samples: { successfu11y analyzed by the mgr

maximum likelihood methd : ~99 GZ of success were obtained fﬂﬁmfthe
unweighted marginal matching mﬁments techqiue. For the nonsymmetric

case these success rate percentages were (see Table 4.1) 92.2%, 89.92

and 94.3%, respectively., Unlike the nonsymmetric case, no data samples
of size greater than 5, which did not yield solutions, were found. More-
over, only two outliers were obtained, one from the weighted marginal
matching moments (&4 = 636, b = 219) and the other from the unweighted
marginal matching moments (& = 502, b = 396). In case of a symmetric
beta prior, none of the simulated failure samples contained a ki=0

(or k,=n ), and hence, unlike the skewed beta prior case, the prior

i
maximum likelihood estimation method produced p#rameter-estimates for
all samples.

The results for the bias and the mean squared error of the esti-
metor produced parameter estimates for all samples. Figures 4.8 and
4.9 show the variation with sahple size of the bias and mean squared
error, respectively. Bgcause_the true beta parameters are equal (a=b=5),
one would expect the plots of the bias for & to be the same as for . In-
deed the small observed differences in Fig. 4.8 or in Table 4.8 are a
result of statistical uncertainties arising from the relatively small
number of samples (500) used to comstruct the distributions of & and b.

From Fig. 4.8 all five methods appear to give zero or very small

‘blas if the sample size becomes sufficiently large. As with the skewed
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Table 4.8. The bias and mean squared error of the estimators of
the parameters for a symmetric beta prior distribution
(a=b=5) as calculated by different estimation techniques
from simulated failure data of various sample sizes.
Each data set consisted of 500 samples.
Sample WMMM Prior Matching Moments
Size (N) & . _ _ .
d-a b-b MSE(4) MSE(b) a=-a b-b MSE(4) MSE(b)
5 10.98 10.8 1076. 1092. 3.68 3.38 164.0 124.1
10 2.50 2.56 69,1 94.9 0.535 0.533 12.3 13.2
20 0.79 0.764 6.36 5.91 0.110 =0.13 3.47 3.19
¥
Sample Marginal Maximum Likelihood Prior Maximum Likelihood
Size (N) =, {-p MSE(2) MSE(P) a-a  b-b MSE(4) WMSE(b)
5 10.3 9.99 936. 862 6.16 5.80 272, 210.
10 2.65 2.70 75.3 102. 1.3 1.30 16.7 12.8
20 0.827 0.805 6.19 5.74 0.208 0.186 3.89 3.51
Sample _ __ UWwvMM .
Size (N) a-a b-b MSE(4) MSE(b)
5 7.53 7.14 901. 702.
10 1.60 1.64 46.6 63.1
20 0.460 0.436 5.60 5.15
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case, all five methods tend to overestimate the prior parameters for
small sample size, and only the simplest method, the prior matching
moments technique gives a slight negative bias for samples of size
greater than about N=15. Also, as was seen with the skewed case, the
two estimation techniques based on the marginal distribution give
essentially identical results which are considerably poorer than those
obtained with the prior based methods. Thus the prior matching moments
techniques had a performance which was as good or better than the other

techniques in this symmetric case also.

4.2 Distribution of Estimators for the Mean and Variance of the
Prior Distribution

For small sample sizes (N$20) all five parameter estimation tech-
niques investigated in this study tended to overestimate values of the
parameters a and b for the beta prior distribution. In fact, for very
small sample sizes (N=5) and for data generated from the beta prior
distribution skewed towards low probability values (a=1.2, b=23),
occasional estimates of a and b were obtained from the marginal-based
techniques which were several orders of magnitude too large.

As previously stated, it was observed that whenever an inordinately
large value of one beta parameter was obtained, the estimate for the
other parameter was also very large. For these overestimation cases,
it was observed that a reasonable estimate of the mean of the beta
prior was obtained even with these large parameter estimates, since

the mean depends only on the ratio a/b, i.e., from Eq. (1.5)

U= (1+b/a)T, (4.4)



The empirical distributions of the estimate of the prior mean was

calculated for different sample sizes, by using the estimators & and b in

Eq. (4.4) previously obtained with the simulated failure data for the
skewed prior case (true mean = (1 + 23/1.2)-1 = 0.0496). These distri-
butions are shown in Figs. 4.10-4.13,and the mean and variance of these
distributions are given in Table 4.9. Because of the inability of the
prior maximum likelihood method to treat low failure probability cases,
this method was not included in the analysis.

From these distributions of mean estimators it is seen that no
apparent outliers are present. Further the mean of the distributions
are all within a small percentage of the true value, although a very

slight bias to overestimate the mean is noted. As would be expected,

the variances of the distributions decrease as the sample size increases.

The most important feature, however, of these distributioms of {I is that

78

all four estimation techniques appear to give nearly the same distribution

for a given sample size.

Although the presence of outlier estimators for a and b does not
affect the distribution of the mean estimators, the high a and b
estimates will have a profound effect on the estimation of the variance
of the beta prior distribution. The variance of the beta prior is

given by (Eq. (1.6))
2 -1 .
o? = [(1 +b/a)(1 + a/b)(a + b + 1)] (4.5)
which becomes very small as a and b both become large. Thus the use of

outlier estimators 4 and b to produce an estimate of the variance for

the beta prior will give unrealistically small values. In Figs. 4.14~
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Fig. 4.13 Distribution of the means of the estimated beta prior distributions
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Table 4.9. Mean and variance of the estimators for the mean of
the beta prior (a=1.2, b=23) for different sample
sizes. True prior mean is 0.0496.
Sample Prior Match. Mom. Marg. Max. Like.
Size* Mean Variance Mean Variance
5 0.0488 0.000423 0.0497 0.000415
10 0.0500 0.000221 0.0498 0.000218
20 0.0496 0.000114 " 0.0495 0.000112
50 0.0499 0.0000419 0.0499 0.0000419
Sample WMMM UWMMM
Size* Mean Variance Mean Variance
5 0.0500 0.000416 0.0496 0.000417
10 0.0500 0.000218 0.0500 0.000221
20 0.0496 0.000113 0.0496 0.000114
50 0.0500 0.0000422 0.0499 0.0000419

*
1500 samples were used for size 5-20 results; 500 samples
were used for size 50 results.
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4.17, the distributions of the variance estimators for the prior beta
are shown for different sample sizes.

Notice that for small sample sizes (e.g., Fig. 4.4) for which
outlier values are expected for the marginal-based estimation methods,
the empirical frequency distributions of the variance estimators (Eq.
(4.5)) are peaked towards the low end. However as the sample size
increases, outlier values for a and b are no longer obtained, and the
variance estimator distribution becomes increasing centered around the
true variance of 02 = (0.00187. Finally it should be noted from these
variance distributions that the distribution produced by the prior
matching moments results is always slightly more skewed towards the
high values as compared to the distributions for the three marginal-
based methods.

In Table 4.10 the mean and variance of these variance estimator
distributions are given. It i1s noted that the mean of the distribution
is always slightly less than the true prior variance (62 = 0.00187) but
approaches the true value as the sample size increases. The means of
the prior matching moments distributions, however, always overestimate
the true mean. More importantly, these overestimates do not appear
to approach the true value even as the sample size increases, but rather

appear to remain about 20%7 higher than the true value.

4.3 Distribution of 95-th Percentile Estimators

Of considerable interest in safety analysis is the estimation
of the prior distribution at high failure probabilities. One widely

used measure of the high probability tail is the 95-th percentile,
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Table 4.10.

Mean and wariance of the estimators for the variance
of the beta prior (a=1.2, b=23) for different sample

sizes.

True prior variance is 0.00187.

Sample

Prior Match. Mom.

Marg. Max. Like.

Size* Mean Var. [xlOS] Mean Var. [x107]
5 0.00207 0.507 0.00171 0.393

10 0.00227 0.295 0.00185 0.225

20 0.00222 0.145 0.00181 0.102

50 0.00227 0.0558 0.00188 0.0406

WMMM UWMMM

Sample : 5 5

Size* Mean Var. [x107] Mean Var. [x107]
5 0.00141 0.298 0.00180 0.478

10 0.00167 0.215 0.00189 0.275

20 0.00172 0.116 0.00183 0.134

50 0.00184 0.0468 0.00188 0.0517

*
1500 samples were used for sizes 5-20 results; 500 samples
were used for size 50 results.
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i.e., the failure probability, s above which there is only a 5%

Pgs5
chance that the true failure probability lies for a component described
by the prior distribution, g(p). For the beta prior distribution used

in this study, the 95-th percentile, Pgs» is the solution of the follow-

ing equation:

795 I'(at+b) 795 a-1 b-1
0.95 = J g(p)dp = T(a)T J P (1-p) dp. (4.6)
Or equivalently
0.95 =1 (a,b), (4.7)
Pys5
where the incomplete beta function is defined by
. _T(atb) (* a-1 ., . b-1

Equation (4.7) is readily solved by standard numerical root finding
techniques. In this analysis, subroutine RTMI [16] which solves for root
of a non-linear equation by Muller's method was used to find the root of
Eq. (4.7).

For each simulated failure data set generated for the beta prior
which was skewed towards the low probability end (a=1.2, b=23), an
estimator of the 95-th percentile was obtained by using the estimators
4 and b for each set in Eq. (4.7) and solving numerically for the 95-th
percentile. The distribution of the 95-th percentile estimators so
obtained are shown in Figs. 4.18-4.21 for the four estimation tech-
niques suitable for analyzing low probability failure data. The mean,
variance and median of these distributions are presented in Table 4.11.

Reom a safety viewpoint, one would like to use an estimation

technique which has a low inherent probability of yielding 95-th per-
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Table 4.11. Median, mean and variance of the distributions of the
95-th percentile estimators. True 95-th percentile =
0.13586.

Sample Prior Matching Moments Marginal Max. Likelihood

Size* Median Mean Var. Median Mean Var.

5 0.121 0.130 0.0035 0.113 0.121 0.0032
10 0.136 0.140 0.0021 0.125 0.129 0.0020
20 0.138 0.141 0.0011 0.129 0.131 0.0010
50 0.144 0.145 0.00044 0.134 0.135 0.00042

1 WMMM UWMMM
Sample Median Mean Var. Median Mean Var.
Size*

5 0.106 0.114 0.0029 0.115 0.123 0.0035
10 0.119 0.124 0.0020 0.125 0.130 0.0022
20 0.125 0.128 0.0011 0.128 0.131 0.0012
50 0.133 0.134 0.00045 0.134 0.135 0.00047

*1500 samples were used for size 5-20; 500 samples for size 50.
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centile estimates which are very much less than the true value. In
other words, if the estimator is biased, then it would be better if
it were biased so as to yield overestimates of Pgs (with hopefully
small minimum mean square error). Further, there should be little if
any chance of yielding outliers or values of §95 which are orders of
magnitude less than the true value. For the present case the true
value of the 95-th percentile for a=1.2 and b=23 is p95=0.13586. In
Table 4.12, the number of simulated data samples which yielded estimators
greater than or less than the true Pgs are given., Notice that for small
samples all four estimation methods are non~conservative (Prob{ﬁ95<p95}>0.5),
while as the sample size increases, the prior matching moments becomes
increasingly conservative while the medians for the other three methods
approach the true p95 value,

From Table 4.11, all three methods are seen to yield distri-
butions for ﬁ95 with almost equal variance. However, the three marginal-
based estimation techniques yield distributions with means and medians
smaller than the true value for all sample sizes although as the sample
size increases the medians and means increase and approach the true value
of PQS' The simple prior matching moments techmique also yields distri-
butions of ﬁ95 whose mean and median also increase with increasing sample
size, but unlike the other techniques, for sample sizes greater than
about seven, the means and medians become greater than the true values,
i.e., the distribution becomes conservative. Further for very large
sample sizes this positiﬁe bias does not disappear, although the bias

may not be significantly large.



Table 4.12,

Number and percent of simulated failure data samples
which yielded estimated 95-th percentiles greater
than (GT) or less than (LT) the true value of

0.13584.
Sample Prior Match. Mom. Marg, Max. Likelihood
‘Size LT GT LT GT
No. % No. % No. % No. 4
5 890 59.3 610 40.7 873 74.7 476 35.3
10 755 50.3 745 49.7 883 59.0 614 41.0
20 701 46 .7 799 53.3 820 54.7 680 45.3
50 176 35.2 324 64.8 261 52.2 239 47.8
WMMM TUWMMM
Sample LT GT LT GT
Size No. % No. % No. % No. %
5 978 70.7 405 29.3 908 64.2 507 35.8
10 953 63.6 546 36.4 882 58.9 615 41.1
20 873 58.2 627 41.8 893 59.5 607 40.5
50 277 55.4 223 44.6 270 54.0 230 46.0
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For small sample sizes (N=5) (see Fig. 4.18) all four methods yield
gome estimators 595 in the lowest value bin (0-0.04). These values are,
of course, not conservative. Of considerable concern is how these low
estimates are distributed in this low end bin. Since the marginal-based
estimation techniques occassionally yield very large estimators for a and
b, i.e., outliers, the resulting estimated prior distribution will have a
very small variance and hence the 95-th percentile will be only slightly
greater than the mean. If the mean should turn out to be very small, the
595 values for these outliers could be very much smaller than the true
value. Clearly such a feature of these estimation techniques would pre-
clude their use in safety analyses. In Table 4.13, the lowest 5 values
of ﬁ95 found in the present simulation study are listed. It is seen that
only three estimates are smaller than 10% of the true value, and hence
the possibility of obtaining in the §95 distribution severe outliers
which are orders of magnitude smaller than the true value does not appear
to be very likely.

4.4 TFraction of the Estimated Prior Distribution Above the True
95-th Percentile

The extent of the high probability tail of the estimated beta
prior distribution is of considerable concern in safety analysis. 1In
the previous section the distribution of the 95-th percentiles of the
estimated prior distributions was discussed. An alternative perspective
is to consider the fraction of the estimated prior that is supported
above the true 95-th percentile, i.e., the probability that the estimated
failure probability is greater than the true 95-th percentile. This

quantity is given by



Table 4.13. Smallest 95-th percentile estimators observed
for simulated failure data samples of size N.
True value of the 95-th percentile is 0.13586.

Weighted Marg. Matching Moments .

N=5 N=10 N=20 N=50
0.0193 0.0362 0.0428 0.0863
0.0206 0.0364 0.0446 0.0871
0.0221 0.0371 0.0503 0.0881
0.0223 0.0387 0.0533 0.0845
0.0234 0.0395 0.0554 0.0922

Prior Matching Moments

N=5 N=10 N=20 N=50
0.0115 0.0385 0.0592 0.0974
0.0196 - 0.0451 0.0622 0.101
0.0242 ) 0.0491 0.0658 0.101
0.0243 0.0500 0.0673 0.101
0.0256 0.0509 0.0695 0.102

Marginal Maximum Likelihood

N=35 N=10 N=20 N=50
0.0152 0.0269 0.0426 0.0848
0.0154 0.0306 0.0461 0.0870
0.0170 0.0360 0.0503 0.0892
0.0209 0.0369 0.0505 0.0922
0.0239 0.0400 0.0572 0.0924

Unweighted Marginal Matching Moments

N=5 N=10 N=20 N=50
0.0124 0.0291 0.0417 0.0870
0.0131 0.0355 0.0498 0.0877
0.0218 0.0360 0.0544 0.0893
0.0227 0.0389 0.0563 0.0903

0.0235 0.0392 0.0564 0.0905
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1
true
‘P =
rob {estimated p 3_995 } thrue gest(p) dp , (4.9)
95

t
where pg;ue is the 95-th percentile of the beta distribution used

to generate the simulated failure data (a=1.2, b=23), and gest(p) is
the estimated prior distribution for a particular failure data sample
(i.e., a beta distribution with a=3 and b=ﬁ).- Equivalently Eq. (4.9)

can be written in terms of the incomplete beta function as

Prob {estimated p > pii"®} = 1 - 17¥€ (4,f) (4.10)
= Pgs
where I;rue(ﬁ,ﬁ) is incomplete beta function defined in Eq. (4.8).
95

If the estimation technique used to analyze the failure data should
yield estimators & and b equal to the true values of the beta prior, then
the probability given by Eq. (4.9) would equal 0.05. Of course, the
estimation techniques will not in general yield exact values for the
beta parameters, and those methods which tend to yield estimated priors
skewed more towards higher probability values than the true prior are
preferred for safety analysis since the resulting estimated failure
probabilities will be overestimated and hence conservative.

The distribution of the probability estimates given by Eq. (4.9),
for the four parameter estimation techmiques suitable for analyzing
low failure probability data, are shown in Figs. 4.22-4.25. It is seen
that all four estimation methods yield a considerable portion of values

of Prob{p 3_p;§ue

} below the ideal value of 0.05. As the sample size
increases, these distributions become increasingly centered about 0.05.
However, the distribution for Ng20 are all highly skewed towards small

probabilities with a long slowly decaying behavior at high values. The
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Fig. 4.22 Distribution of the fraction of the estimated beta prior
distribution that lies above the 95-th percentile of the beta
function used to generate the simulated failure data(a=1.2,b=23).
Size of samples used to obtain estimates was N=5,
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Fig. 4,23 Distribution of the fraction of the estimated beta prior
distribution that lies above the 95-th percentile of the beta
function used to generate the simulated failure data(a=1,2,b=23).
Size of samples used to obtain estimates was N=10.
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Fig. 4.24 Distribution of the fraction of the estimated beta prior
distribution that lies above the 95-th percentile of the beta
function used to generate the simulated failure data(a=1.2,b=23).

Size of samples used to obtain estimates was N=20.
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Fig. 4.25 Distribution of the fraction of the estimated beta prior
distribution that lies above the 95-th percentile of the beta
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function used to generate the simulated failure data(a=1.2,b=23).

Size of samples used to obtain estimates was N=50.
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prior matching moments method in all cases appears to be slightly more
conservative by giving a distribution which is not as concentrated at
the low probability values as compared to the distributions obtained
with the other three estimation techniques.

The median, mean and variance of these distributions are presented
in Table 4.14, From these results the variances for all four methods
are within a few percent of each other although the mean for the prior
matching moment distribution is considerably higher than that for the
distributions produced by the marginal~based methods. Moreover, even
for large sample sizes the mean of the distribution for the prior match-
ing moments method is about 20% greater than the ideal value of 0.05.
The marginal-based methods, in contrast, appear to approach the ideal
value as the sample size becomes sufficiently large.

4.5 Comparison of Maximum Likelihood Variance Bounds to Measured
Variances

In Section 2.7 expressions for the variances and covariance of the
parameter estimators were derived for the marginal maximum likelihood
method. Although these expressioné are strictly asymptotic values,
the expressions are often used as actual estimators of the variance or
covariance of the parameter estimates for finite size data samples. Since
the values of the variances and covariances of the parameter estimates are
important for error propagation one would like to know how close these
maximum likelihood estimated values are to the true values of the variances
and covariance.

The actual variances and covariance for the parameter estimators

found in the simulation study are listed in Table 4.4. Because of the
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Table 4.14., Median, mean and variance of the distribution for the
Prob{p 3_p§§ue}. For samples of size 5, 10, and 20,
1500 simulated failure data sets were used, while for
the size 50 sample, 500 sets were used. Beta prior
parameters are a=1.2 and b=23,
Sample Prior Match. Mom. Marg. Max. Like.
Size Median Mean Var. Median Mean Var.
5 0.0321 0.0570 0.0045 0.0230 0.0493 0.0043
10 0.0498 0.0616 0.0027 0.0363 0.0511 0.0026
20 0.0532 0.0595 0.0015 0.0415 0.0489 0.0015
50 0.0596 0.0618 0.00065 0.0478 0.0508 0.00065
WMMM UWMMM
Sample Median Mean Var. Median Mean Var.
Size
5 0.0142 0.0425 0.0041 0.0242 0.0508 0.0044
10 0.0287 0.0462 0.0025 0.0350 0.0516 0.0027
20 0.0367 0.0456 0.0015 0.0400 0.0484 0.001s6
50 0.0467 0.0491 0.00068 0.0473 0.0502 0.00070
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presence of estimator outliers for small sample sizes (N<10) obtained
with both marginal-based estimation techniques, the experimental values
of variances and covariance depends greatly on how these outliers are
treated. 1In this study estimators greater than 100 times the true beta
parameter values (a=1l.2, b=23) were ignored.

To evaluate the effectiveness of using the maximum likelihood
expressions as estimators, simulated failure data samples were selected
which produced either excellent or very poor parameter estimates. With
these data samples the marginal maximum likelihood wvariance bounds were
calculated from Eqs. (3.54)-(3.56). The results for the "good" and
"nad" data samples are shown in Table 4.15 and the data samples them-
selves are given in Table 4.16. From these results it is seen that
the "bad" data samples which yield inordinately large values for & and ﬁ,
also produce extremely large estimates for the variances and covariance
and are much larger than the empirical estimates in Table 4.4.

The maximum likelihood estimates for the '"good" data samples appear
much more reasonable and are generally smaller than the empirically
observed variances listed in Table 4.4. To compare these maximum like-
lihood estimates to the variances and covariance measured from the
distributions of the parameter estimators, the ratio of the measured
value to the likelihood bound was calculated. These ratios are presented
in Table 4~17 for each of the four estimation techniques suitable for
the low failure probability case studied. From these results it is
seen that the empirical variances of the parameter estimator as deter-

mined by the prior matching moment technique are much closer to the
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Table 4.15. Variance bounds [bnd(&d) and bnd(b)], and the covariance
bounds [bnd(3, b)] for parameter estimators [4 and b], as
calculated by the marginal maximum likelihood method
for selected simulated failure data samples. True values
of the beta parameters is a=1.2 and b=23. The selected
data samples are given in Table 4.16.

 Sample ID . 5 . « X
g?gee No. a b bnd (&) bnd (b) bnd (4,0)
1 1.2444 22.823  0.89839 393.129 16.179
3 2 528.92 11338. 3.0843x10°  1.417x10™'  6.6111x10°

1.2673  23.541  0.42806 193.50 7.8072

10 2080.8 40183. 3.9119x10°°  1.4580x10%2  7.s5545x10%%
S 1.2248  22.720  0.20962 94.534 3.8150
20 7.1495 137.61 19.074 7309.5 366.41
7 1.1728 23.094 0.076788 39.481 1.4846
>0 §  2.8889 58.522 0.67451 308.08 13.580




Table 4.16. Selected simulated failure data samples used to estimate
variance bounds in Table 4.15. Data were simulated from
a beta binomial with parameters a=l1.2 and b=23. Data are

read from left to right with the number of failures, k,,

following the number of tries, n, . 1

Sample ID
Size No. (ny5ky)

5 45 4 216 5 213 25 92 260 9
246 12 249 13 227 4 167 255 14
3 [ 100 3 109 9 83 11 242 5 287 19
10 . 247 4 116 6 248 5 195 21 256 0
4 45 3 265 14 43 1 164 7 288 14
L 44 4 180 15 247 13 163 4 247 8
46 4 43 1 276 35 139 0 168 16
5 160 3 34 g 175 2 169 0 219 13
264 37 271 22 247 12 111 4 106 1
20 L 243 16 111 1 191 9 105 1 228 9
(227 4 91 5 287 17 18 3 121 10
6 264 26 137 6 286 8 255 9 118 8
175 7 128 3 31 2 225 12 150 11
. 166 3 34 3 150 11 188 10 173 7
[ 261 20 33 0 281 11 237 29 203 8
157 35 227 7 4 1 245 6 59 1
155 8 176 10 48 2 192 14 82 1
241 7 150 25 255 4 265 3 131 4
7 119 14 148 6 102 8 103 5 87 7
266 0 137 0 178 1 261 34 280 2
144 4 227 11 284 7 244 6 56 1
184 3 101 & 196 2 213 3 125 16
137 0 172 0 122 19 218 8 261 9
50 L 80 7 60 2 254 16 241 5 263 6
(209 2 77 2 158 13 168 18 213 1
209 19 63 0 196 9 30 2 104 1
224 8 173 11 155 5 143 7 266 20
250 27 42 0 290 17 153 7 101 4
3 286 18 213 15 132 6 56 1 62 4
68 3 273 14 199 2 116 4 80 3
142 14 140 9 208 7 243 13 235 19
287 12 204 0 167 8 300 16 262 8
226 13 142 6 227 2 169 6 124 6
| 165 7 267 3 97 8 163 15 193 1

109
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Table 4.17. Ratio of measured variances and covariances of the
parameter estimators (listed in Table 4.5) to the
marginal maximum likelihood bounds (bnd) (listed in
Table 4.15) for the "good" data samples.

Prior Matching Moments Marg, Max. Likelihood

Semrile var(d) var(b) cov(d,b) var(d) var(b) cov(d,b)

gﬁe bnd(2) bod(B) bnd(a,6) ©bnd(a) bnd(b) bnd(&,b)
5 4.92 9.64 6.36 61.1 689.7 71.1
10 1.28 1.48 1.29 13.1 21.1 17.6
20 1.01 1.06 0.993 2.72 3.59 3.20
50 0.875 0.773 0.829 1.48 1.48 1.53

Sample var(d) var(b) cov(d,b) wvar(d) wvar(h) cov(é,@)
Size bnd(a) bnd(b) bnd(a,b) bnd(d) bnd(b) bnd(&,b)

5 57.9 63.6 61.2 55.7 70.7 66.1
10 28.7 29.8 32.1 315 33.9 36.1
20 3.82 4,57 4.43 4.07 4.56 4.53

50 2.28 2.06 2.32 2.23 2.01 2.27
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likelihood estimates than are the variances for the estimators as deter-
mined by either of the marginal based techniques. The marginal-based
estimators, 4 and ﬁ, have empirical wvariances which are many times
.larger than the likelihood expressions for samples less than 20 in size,
although the variances still appear to approach the bounds as the sample
size becomes very large.

It should be emphasized that the above conclusions hold for
particular examples of "good" failure data. Whether they hold true
on the average for all data samples is the subject of further investi-
gation., However, it is seen by the "bad" data samples used here, that
the likelihood hounds are capable of yielding completely unrealistic
values, and hence for the analysis of a single failure data sample,
care must be used in using the likelihood bounds as estimates for the

variances of the prior parameter estimators.
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5.0 CONCLUSIONS

Based on simulated failure data which were generated from both
skewed and symmetric beta-binomial marginal distributions, it has
been found that the beta prior parameter estimators A and b, obtained from
the prior matching moments estimation techniques possess the least
bias and mean-squared error among the five estimation methods investi-
gated for small sample sizes (N<50). Moreover, only this method has
closed-form expressions for the parameter estimators and always yields
realistic prior parameter estimators for all simulated data sample of
various sizes. The results also showed that the prior maximum likeli-
hood method is not suitable for low failure probability case since this
method is infeasible for amy féilure data sample for which a single com-
ponent with zero failures is observed. The two most complicated methods,
the weighted marginal matching moments and marginal maximum likelihood,
had the biggest biased and mean-squared errored estimators. In additiom,
these two technigues would occasionally fail to yield parameter esti-
mators or yield outlier estimators which were much too large in size.
This deficiency was more severe for smaller samples and for data generated
from a beta prior skewed towards low failure probabilities than those
from a symmetric beta. However, for the large sample size, these methods
showed the tendency of having the consistency property while the prior
matching moments technique yielded negative bias for sample sizes
bigger than 20. The estimators from the unweighted marginal matching
moments yield moderate results in terms of biasedness but the same

order of mean-squared error as the two most complicated methods.



The distributions of the estimated prior mean and variance were
also obtained. The distribution of the prior mean estimator was found
to be nearly identical for the four estimation techniques considered
(excluding the prior maximum likelihood), because the mean of the beta
distribution depends solely on the ratio of beta parameters b/a.

However, the variance of the beta distribution with bigger values of
parameters a and b has smaller variance than the distribution with
the smaller parameters;

From the estimated prior distributions, the distribution of the
estimated 95-th percentiles and the distribution of the fraction of
the estimated prior distribution greater than the true 95-th percen-
tile were examined. The prior matching moments method appears to be
slightly more conservative from a safety viewpoint since slightly
higher values of the means of both distribution are obtained with this
method than with the others.

Based on the results of all the statistics considered in this study,
the prior matching moments technique appeared to be the best of the
five methods for estimating the beta parameters from the sample data
whose size is equal to or less than 50. However, it would be interesting
to investigate further for sample sizes larger than 50, because the three
marginal-based techniques showed a tendency to yield comparable or better

results to the prior matching moments method for large sample sizes.
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8.0. APPENDICES



APPENDIX A
Derivation of Expectation of Statistiec S of Eq. (2.20)

From Eq. (2.17) a statistic S is defined by

s = f v, (357 (A.1)
i=1
where
—
P; = o,
i

From Eq. (3.19a), M=E(P) and consequently

S 2
s= 1w 10 - Gt

or

S = ? [, -1)2-2 (B,-1) (p-1) + (3-1)?]
= i Wi Pi - pi p P .

Expectation of the statistic § can be computed as
N

N
2 .
E(S) = ¥ w.E(B.,-u) -2 )} w,E[(P,-w)(D-u)] +
i£1 i =1 ¥ 1 1=1

By definition E(ﬁi—u)z is the variance of ﬁi, and thus the first term

of Eq. (A.2) is

N 3_ 3 .
P wiE@ -0 = L ow var(d).
1=1 1=1

Also by definition E[(ﬁi-p)(ﬁ-u)] is the covariance of ﬁi and

P, and therefore the second term of Eq. (A.2) becomes

N
» 2
g wiE(p—u) ‘
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(A.2)
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N
-2} wiE[(f)i-U)(f:-u)] -2 Z W GOV(pi,p)
i=1 i=1

WP TPy = tupdy
w

= -2 Z w
i=1

1 cov(p ,

= =2 Z w, cov(p,, —)
=1 i i

W,

—i-cov(p

e E Yiw

i=1
)
= ? —= var(p,) (A.4)
1=1 v 1 '

."

Finally, the last term of Eq. (A.l) can be expressed as

z W, E(p—u) z W, var (p)
i=1 i=1

]

var(p) E Wy

= w var(p)

wiP Pyt === +wby

w

)

w var(

2
Y
= Z == var(f,) (A.5)
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Upon substitution of Eqs. (A.3), (A.4) and (A.5) into Eq. (A.2),

one obtains
2 2

; U
E(S) = w.var(p.) - 2 — var(p,) + — var(p,)
1=1 i i i=1-w i =1 W i
% r
= w, var(p.) - —= var($.)
a1 T B 1
N w
3. i
= 3 wi(l— ;ro var(pi) " (A.6)
i=1

 From Eq. (2.19b), the variance of ﬁi is given by
var(y) = 23 4 ) -3 . @D
oy o0y

Thus, Eq. (A.6) becomes

N w
BS) = 1w (- 20 B4 e - D)
i=1 i i
N w w N W
i 1 i
e ulew) 7 - F e Y Q- ) w - D)
1=1 %4 w =1 LT oW
N w w N W N w. W,
i i i i i
= u(l-w) ) = (@-D A [ Lw, (A=) - I = (1- ]
1=1 %4 w i=1 T W i=1 B4 v

(A.8)
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Appendix B

Evaluation of Polygamma Functions

In the Newton-Raphson evaluation of the numerical solution of
the maximum likelihood estimates by Eqs. (2.30a) ana {2.30b), both the
diagamma function and its derivative, the trigamma function, must be
evaluated over a wide range of arguments. The procedure used in this
study is based on a power series expansion of these functions for large
arguments, and a recursion relation for small agruments [25,26].

The polygamma function wm(z) is defined as

wm(z) _ dm¢(z) _ dm-+1
m m+1
dz dz

[InT(z)].

The digamma function and trigamma functions are special cases of the poly-
gamma function (m=0 and 1 respectively). These functions may be

evaluated accurately by the formulae below:

1. Digamma (m=0):

10 B
1 2k -2k
z>8 v(z) = lnz - - - E -z
2z k=1 2k
s 4
z <8 (z) =ylatz) - ] (ztk-1)
k=1
where B2k are the Bernoulli numbers.
2. Trigamma (m=1):
10
1 . als 1 -(2k+1)

2z k=1

n
2<8  olz) = vi(mtz) + ) (zH-1)72
k=1
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3. Polygamma (m>1):

+ +

z28  Y(2) = (-1) ey

m-1,(m-1)! m!
[ m
z 2z

T B (Ztm-1)1  -(2k+m)
2k - (2k)!  Z

n
z2<8  U(z) = ¢®(2+) - (L% m §  (z#k-1)"L
k=1



APPENDIX C
Evaluation of the Incomplete Beta Functions

The incomplete beta function Ip(x,y) is calculated from the

following expression [27]:

_ INFSUM p* T(PS+x)

+ P¥ (1-P) I (x+y) FINSUM

I (x) I'(y+1)

where INFSUM and FINSUM represent two series summations defined as

follows:
© x(1-PS), _j
INFSUM = Z ——x+—"*l E—; , where
o i 3!
j=1
1,3i=0
(1-Ps) =
I'(1+y-PS)/T(1-PS) , j > 0O
and

[yl
FINSUM = § Yool i) 1
j=l (x"'Y"l) (X+Y‘2) S (m-:l) (1_P)J

where [y] is equal to the largest integer less than y. If [y]=0, the

FINSUM=0, The quantity PS is defined as

1 if vy is integer
PSS =
v - [y], otherwise.
The above algorithm (combined with scaling to avoid numerical in-
accuracies encountered when using the gamma function with large argu-
ments) was incorporated into a FORTRAN program MDBETA by Bostem and

Battiste [27]. This program (modified in accordance to remarks

made by Pike and Soo Hoo [27]) was used in the present analysis.
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The program MDBETA is significantly more accurate than the widely used
program BDTIR [21],'especially at large arguments. For example, in the
case p=0.5, x=y=2000, MDBETA gives the correct value, 0.5, while BDIR

gives 0.497026.
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APPENDIX D

Computer Program Listings



ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
- COPY AVAILABLE
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Listing of Computer Program Used to
Generate Simulated Failure Data

(a=1.2, b=23)



Cexx BUSIM=RANDU kb ddd kbt sk s 0 d kb bt ¥ e b b h ks bbbt R udt kb kp e ki ¥

C* PURPOSE : GENERATE RANDOM VARIATE FRDM DISCRETE UNIFORM *
o DIST. RANGING FROM LL TO L2 »
Ce AND BETA-BINCMIAL DISTRIBUTION WITH PARAMETERS A L B *
C* BY USING SUBROUTINE RANDU ¥
C* [INPUT : *
Ce CARD 1 (I[10} *
Cx iX STARTING VALUE FOR SUBROUTINE RANDU *
Ce (SEE SUBROUTINE RANDU FOR DETAILS) *
C* CARD 2 (415.2G10.3} *
ix ti.L2 LGWER & UPPER LIMITS CF THE DISCRETE UNIFORM DIST. *
C* NS NG. OF SAMPLES REQUIRED *
C#* NSS SAMPLE SIZE *
C* SUBROUTINE REQUIRED ! RANDU ¥
C* NOTE ¢ THIS ROUTINE 1S USED FOR PARAMETERS A=1,2,B=23.0 *
W P RS S R R R R R R e e P R e 2

IMPLICIT REAL#*8(A-H,0-2)
DIMENSION NT(30}.KF(30)
PRINT 600
600 FORMAT({"1*)
CHFHREAD STARTING VALUE FOR RANDU
READ S501.1X
501 FORMATI(ILO)
PRINT 601,1X%
501 FORMATITS,*RANDU STARTING VALUE = *,19/)
100 READ{5+500,END=999 )L 1,L2+N5+NS5,A,8
CexeNS NO.OF SAMPLE REQUIRED
Ce*3*NSS SAMPLE SIZE
500 FORMAT{415,26G10.3])
PRINT 605+A,B.,L1,L2
605 FORMAT(TS, *SIMULATION'/
*T5,'FROM BETA-BINOMIAL DISTRIBUTION®/
®T5,"WITH PARAMETERS A = ' ,Gl4.7/
2[5! B = *".Gl4.7/
*T5,'AND DISCRETE UNIFORM DISTRIBUTION'/
*¥T5, "RANGING FROM' ¢ I Xo13,2X, 'O, 2X,137}
P =1.0D000/(L2~-LL+1)
00 900 INS=1,NS
DD 700 [NSS=1,NSS
SxexGENERATE RANDOM NUMBER
CALL RANDU(IX,1Y,U)
IX=1Y
C**x*TRANSFORM TO DISC.UNI.DIST,
upP=u/pP
1P=yp
uipP=1°p
NT(INSS)=LLl+1P
IF{UIP.EQ.UP.AND.U.NE.QO.0DUOO) NT{ INSS)=NTIINSS)-1
C***GENERATE RANDUM NUMBER
CALL RANDUILIX.LlY,U)}
IX=1Y
C***TRANSFORM TD BETA-BINOMIAL DIST.{(METHDOD I1)
KFLINSS)=0
AGLl=NT(INSS5)+8B
AG2=NT( INSS)+A+B
BE1=DL3AMA(A+B)Y+DLGAMA{AG]) -DLGAMAIB)-DLGAMA[AG2)
BB=DEXP(BB1)
CB=AB
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200 IF{U.LE.CB) GO TD 700
AGL=IKF{INSSI+A)*[NTLINSS)-KF (INS5))
BO=DB#+AGL/UINTUINSS)I—KFIINSS)+B=-1}w (KF{INSS)+1))
CB=CB+BB
KFUINSS)=KF(INSS)+1
GO TO 200

700 CONT I NUE

C**xPUNCH FAILURE ATTRIBUTE DATA

C#*¥NT ND.OF TRIES

CeaxKF NO.OF FAILURES
PUNCH BOL,(NTUI) KFII1)s1I=1sNSS)

801 FORMATI(2014)

200 CUGNTINUE
GO TO 100

999 PRINT &00
5TapP
END
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OO0 OO DO OO OO0 ONOOOMNO 0NN OOONOOODOP OO0 00

R AND

Geeesssssacccsamsessasacacs s sesaetssassarsstsentrasncasaasesnsenssRAND

SUBROUT INE RANDU

PURPOSE
COMPUTES UNIFORMLY DISTRIBUTED RANDOM REAL NUMBERS BETWEEN
0 AND 1.0 AND RANDOM INTEGERS BETWEEN ZERO AND
2*%x3]1, EACH ENTRY USES AS INPUT AN INTEGER RANDUM NUMBER
AND PRODUCES A NEW INTEGER AMD REAL RANDCM NUMBER.

USAGE
CALL RANDUCIX.IY.YFL)

DESCRIPTION OF PARAMETERS
IX = FOR THE FIRST ENTRY THIS MUST CONTAIN ANY ODD INTEGER

R AND
R AND
R AMD
R AND
R AHD
R AND
RAND
RAND
RAND
RAND
R AND
R AND
R AND
R AND

NUMBER WITH NINE DR LESS DIGITS. AFTER THE FIRST ENTRY,RAND
[X SHOULD BE THE PREVIDUS VALUE OF IY COMPUTED BY THIS RAND

SUBROUTINE.

R AND

1Y = A RESULTANT INTEGER RANDOM NUMBER REQUIRED FOR THE NEXTRAND

ENTRY TO THIS SUBROUTINE. THE RANGE OF THIS NUMBLR [$§
BETWEEN IERDO AND 2%#3]

YFL~ THE RESULTANT UNIFORMLY DISTRIBUTEDs FLUATING POINT,
RANDOM NUMBER IN THE RANGE O TO 1.0

. REMARKS
THIS SUBRMOUTINE IS SPECIFIC TO SYSTEM/360 AND WILL PRUODULE

RAND
R AND
R AND
R AND
R AND
RANU
R AMD

2%%29 TERM> BEFORE REPEATING. THE REFCRENCE BELOW DISCUSSESRAND

SEEDS (65539 HERE). RUN PROBLEMS. AND PROBLEMS CUNCERNING
RANDOM DIGITS USING THIS GENERATION SCHEME. MACLAREN AND
MARSAGLIA, JACM 12, P. B3-89, D]SCUSS CONGRUENTIAL

R AND
R AND
R AND

GENERATIGN METHODS AND TESTS. THE USE OF TWO GENERATURS OF RAND
THE RANDU TYPEs ONE FILLING A TABLE AND UNE PILKING FRUM THERAND

TABLE, IS OF BENEFIT IN SOME CASES. 65549 HAS BEEN

R AND

SUGGESTED AS A SEED WHICH HAS BETTER STATISTICAL PROPERTIES RAND

FOR HIGH ORDER BITS OF THE GENERATED ODEVIATE.
SEEDS SHOULD BE CHOSEN IN ACCORCANCE WITH THE DISCUSSIUN

KR AND
R AND

GIVEN IN THE REFERENCE BELOW. ALSC, [T SHOULD BE NOTED THATRAND

IF FLOATING POINT RANDOM NUMBERS ARE DESIRED.AS ARE
AVAILABLE FROM RANDU, THE RANDOM CHARACTERISTICS OF THE
FLDATING PUINT DEVIATES ARE MOODIFIED AND IN FACT THESE
DEVIATES HAVE HIGH PRDOBABILITY OF HAVING A TRAILING LOW
GRDER ZERD BIT IN THEIR FRACTICNAL PART.

SUBROUT INES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

ME THOO
POWER RESIDUE METHUD DISCUSSED IN IBM MANUAL C20-8011.
RANDOM NUMBER GENERAT ION AND TESTING

R AND
RAND
R AND
RAND
RAND
R AHD
RAND
RAND
R AND
R AND
KR AND
R AND
RAND

R R I R B R R N sasssssses osRAND

SUBROUT INE RANDUCIX.IY.YFL)
REAL*B YFL

[Y=IX*65539

IFCIY15.646
[Y=1Y+2147483647+1

YFL=1Y

YFL=YFL*.4656613E-9

RETURN

END

R AND
R AND
R AND
RAND
RAND
R AND
RAND
R AND
R AND
R AND
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290
300
310
j2a
330
340
350
360
370
180
390
400
410
420
430
4410
450
460
470
480
494
500
510
520
530
540
545
550
Sud
570
5480
59Q
&V0
‘b6l



C*sx SUPPLY-BUSIM-RANDU 2 *96xt #¥ dd b3 d s r s s d R dbdpdup o s bbb o dk hdha ke da k¥ %

Cs p
C*
Ce
C*» 1
C»
C*
ce

500

200

210

100

CaEp
Ceesy
CexeN
CoasF
Cex2C

800

URPOSE : COMPUTE MEAN,PROBABILITY FUNCTION.CUM.PROB.

OF THE BETA-BINOMIAL DIST.
TO USE WITH THE FOUTINE BUSIM-RANDU 2

NPUT :
CARD 1 (2610.5.2151
A.B PARAMETERS OF THE BETA-BINOMIAL DIST.

NI.NJ LOWER & UPPER LIMITS OF THE DISCRETE UNIFORM DIST.
CHFRRIEARRF AR ER RN ER R R BRI AR ER AR SRR E RN P IR R TR RIRA R EF S H R bk R R DRk k

IMPLICIT REAL*8[A-H,0~-1)

DIMENSION C{300).F(300)KF{300),NF{300)
READ 500,A.8+NI+NJ
FORMAT(2G10.5.215)

NN=NJ-NI+1

00 100 I=1.NN

N=NI+[-1

NFE(TI )=N

AVG=N#*A/(A+B)

KAVG=AVG

K=0

AGl=N+B

AG2=N+A+B
BBl=0LGAMA(A+B) +DLGAMALAGL) -DLGAMA(B)-DLGAMA(AG2Z)
B8B=DEXP(RBIL)

CcB=88

IF(K.GE.KAVG) GO TD 210

AGl=(K+A)* [N-K}/{IN-K¢B-1)*({K+1)]}
Ba=8B*AG1

CB=CB+88

K=K+l

GO TO 200

Ctl)i=CB

Fll)=R8

KF{l)=K

CONTINUE
UNCH OQUTPUT
F MEAN OF THE BETA-BINUMIAL DIST.
F NO.UF TRIES

PROB.FUNCTIOUN
CUM.PROB. FUNCTIQON

PUNZA BOOUKFLLI)4NFLI)FLT)4C(1)oI=1.NN)
FORMAT(215,2025.16)

STOP

END

FUNCTION

>
*
*
*
*
*
*
*
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Listing of Computer Program Used to
Generate Simulated Failure Data
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CHkx BUSIM-RANDU 2 R¥* 2322330 b 30 AP R o u R R SR AR Rd kb ke ddpd kb kR R rd kN e bR bk k

C* PURPUSE : GENERATE RANDOM VARIATE FROM DI SCRETE UNIFORM *
Ce* DIST. KANGING FROM L1 TO L2 *
C* ANL BETA-BINUMIAL DISTRIBUTIUN WITH PARAMETERS A & B *
Cx BY USING SUBRUUTINE RANDU *
C& INPUT : *
C=* CARD 1 (I10) *
C* IX STARTING VALUE FOR SUBROUTINE RANDU *
C» { 5EE SUBROUTINE RANDU FOR DETAILS) b
C* CARD 2 (415.2610.3) *
C* Ll.L2 LOWER & UPPER LIMITS OF THE DISCRETE UNIFORM DIST. *
C* NS NO. OF SAMPLES REQUIRED *
C#* NSS SAMPLE SIZE *
Ce CARD 3 {2[5.,2025.16} *
Cx KeN:FoCL OUTPUT FRUM THE ROUTINE SUPPLY-BUSI M-RANDU 2 *
C* SUBROUTINE REQUIRED : RANDU *
C+* NOTE : THIS ROUTINE I35 USED FCR PARAMETERS A=8= 5.0 *
Creprrphardd Rkkkiddidgoy g dor dk dok o ddokofkofoopaopg g ol pdrrdkoeofox ek Ry ¥

IMPLICIT REAL*B(A-H,0-2)
DIMENSIUN NT(30).KFI130)
DIMENSION C{300).K{300),FI{300).1(300)
PRINT 600
500 FORMATI('1")
C*+#«READ STARTING VALUE FOR RANEBU
READ 501.,IX
501 FORMATI([10]
PRINT 601.1X
501 FORMAT{TS5.: *RANDU STARTING VALUE = ',19/)
100 READ{5+500, END=999)L1+L2+NS+NSS+A.B
C#xENS NG.UF SAMPLE REQUIRED
C#xxN5S SAMPLE SIZE
500 FORMAT(415.2G10.3)
NN=L2~L 1+l
READ 510, (K{L).N{I}.FIL),Cl1).1=1,NN)
510 FORMAT{215.,2D25.161
PRINT 605.A48,L1.L2
605 FORMAT(TS,*SIMULAT JON'/
#*T5,'FRUM BETA-BINOMIAL UISTRIBUTION'/
®T5,*WITH PARAMETERS : A = '.G14.7/
®TS,!? B = ',Gla.7/
*75,*AND DISCRETE UNIFORM DISTRIBUTION'/
*TS,"RANGING FROM" e1X4 132X "TO' e 2X413/)
P =1.0000/(L2-L1+1)
DO 900 INS=1.N5
00 700 INS55=1,NS5
C***GENERATE RANDOM NUMBER
CALL RANDULIX.1Y,U)
IX=1Y
C#**TRANSFORM TO DISC.UNI.DIST.
UP=U/P
1P=upP
ulpP=1pP
NTEINSS)I=L1+IP
IF(UIP.EQ.UP.AND.U.NE.O.UDOO] NT(INSS)=NTIINSS)-1
Ce*#GENERATE RANDOM NUMBER
CALL RANDU(IX,1Y,U)
IX=1Y
C**sTRANSFLRM TO BETA-3INUMIAL DISTLIMETHOD (I11)

132



610

|9 8]

115
1lé

125

T00

NX=NT{INSS)~-LL+L

KF{INSS ) =K{NX}

IFINT{INSS)LEQ.NINX)) GU TO 11O

PRINT 610«NINX])

FORMAT(T2,'#%3> DATA MISORDER AT N = ! ,[4,7 #x%1)
STOP

BB=F [ NX)

CB=C{NX]

IF(U-CINX)) 115.700.125

CB=CB-88

1F{U.67.LB) GO TO 700

AGIL={NY { INSS)-KFIINSS}+8) *F{ INSS)
BB=8B+AGLI/{(KF{INSS)I-1+A)#{ NT{INSS)-KFUINSS1+1})
ce=CB-BB

KFIINSSI=KF{INSS)-1

GO TO 1lé

AGLl={KF{ INSS)+A}*{NT{INSS)=-KF (INSS)}
BR=8B%AGL/{(NT{INSS)~KF{INSS)~-1+BI*(KF{INSS)+11}}
CB=Cb+88

KF{INSS)=KF{INSS)+1

IF(U.LE.CB) GO TO 700

GO TD 125

CONTINUE

CHRAPUNCH FAJLURE ATTRIBUTE DATA

Ca%xaNT
CeekKF

801
900

999

NO.OF TRIES
NO.OF FAILURES
PUNCH BOL«{NTUI} KF{1} 1=14NSS)
FORMAT(2014}
CCONTINUE
GO TO 100
PRINT 600
sToep
END
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Listing of Computer Program Used to

Compute Beta Parameter Estimates
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CHEResrhdkd b s rde e eerytrbkhdhkdr BETA [ [ *#¥Ie2F222 06 3RRhRBhEINRRed o pRrrha®k

Ce
Ca*
Cc*
Ce
C»
C*
C*
C*
C*
C*
Cs
Cx
C*
C*
C*
Ce
C*
Cw
C*
Cc*
C
(]
(o]
Ce
(4]
C*
(W
Ce
C*
Cw
C*
(o
C*
Cce*
C*
(o
C*
C*
C*
cr
C*
C*
C*
C*
Cc*
C*
C*
Ce
C*
C*
Ce
c*
C*x
C*
C*
(o
Ce

THI S PRUGRAM

- CALCULATES THE PARAMETERS A AND B OF AN ASSUMED BETA MIXING
DISTRIBUTION BY FOUR TECHNIQUES: (1) MATCHING MCMENTS OF THE EXPER IMENTAL
DATA TO THJISE UF THE MARGINAL DISTRIBUTICN, {2) MATCHING MOMENTS OF THE
DATA TO THOSE OF THE PRIOR DISTRIBUTION, 13) THE MAXIMUM LIKELIHOUOD
METHOD WITH BETA-BINUMIAL OISTRIBUTICN.AND (4} ThHE MAX IMUM LIKELIHOOD
METHOD WITH BETA DISTRIBUTION

- ALSQ CALCULATES AND PLOTS BETA DISTRIBUTICN IBUTH PROBABILITY DENSITY
FUNCTION AND CUMULATIVE OISTRIBUTION FUNCTION)
FOR EACH METHOD AND COMPARISON OF FOUR METHODS.

INPUT DATA:

CARD 1 (2044)
TITLE = THE TITLE OF THE PROBLEM (80 COLUMNS)

CARD 2 {315,5G610.31
NITER = MAXIMUM NUMBER OF ITERATIGNS FOR METHCD 1 AND FOR NUMER ICAL
SOLUTION IN METHOD 3&4.1F =0 ONLY MOMENTS METHODS
CALCULATIONS ARE PERFORMED.

Iour = 1 jJF INTERMEDIATE OUTPUT 15 DESIRED FCR THE ITERATIONS IN
METHOD 1 AND FUR THE NUMERICAL SOLUTION IN METHOD 384;1F =u
ONLY FINAL RESULTS FUR ALL FOUR METHODS ARE PRINTED QUT.

IPROB = 1 IF A CUMPARISON OF THE CLASSICAL AND BAYESIAN FAILURE
PROBABILITIES FOR EACH COMPONENT IS DESIRED; [IF =0 THES
GPTIGN IS BYPASSED.

Yl = INITIAL GUESS FOR A IN METHOD 3; IF =0 RESULT FRGM METHOD 2
WILL BE USED FOR INIT1AL GUESS.

Y2 = [NITIAL GUESS FOR B IN METHOD 3:i [IF =0 RESULT FROM METHOU 2
WlLL BE USED FUR INITIAL GUESS.

EPS = CONVERGENCE PARAMETER FOR METHODS 143 & 4. IN METHGOD 1

TERATIONS CONTINUE UNTIL PRIOR MEAN CHANGES BY LESS THAN
EP3+IN METHOD 3G4 NEWTON-RAPHSON ITERATIONS CONTINUE UNTIL
DERIVATIVES ARE < EPS.
1 = INITIAL GUESS FOR A IN METHOD 4; IF =0 RESULT FROM METHOD 2
WILL BE USED FOR INITIAL GUESS.

22 = INITIAL GUESS FOR B IN METHUD 4; IF =0 RESULT FROUM METHOU 2
WILL BE USED FUR INITIAL GUESS.
CARD 3 14610.3,715}

PIPJePKyPFLeNI NJNL, IXOUT, IVAL ,IPL,IBETA
IBETA = 03 COMPUTED VALUES & PLOTS OF BETA DISTRIBUTIUNS ARE
IGNURED «
IBETA = 13 COMPUTED VALUES & PLOTS OF BETA DISTRIBUTIONS ARE
i DISPLAYED ( SEE IVAL & IPL FOR MURE DETAILS).
SEE MORE EXPLANATION IN SUBROUTINE BETODIS.

CARD 4... (1615}
NN = NUMBER OF PAIRS OF DATA PUINTS TO BE READ
N{I),K(I) = NUMBER (F TRIES, NUMBER QF FAILURES FOR I-FH PLANT
NN PAIRS OF N{I) AND K(1) ARE TO DE ENTERED.

SUBROUTINES REQUIRED:
NEWRAL - NEWTON-~RAPHSON S3OLUTICN OF TWO SIMULTANEQUS EQUATIUNS
FNDATA - READS IN STARTS AND FAJLURES, N(I) AND KI(IJ. ALSU CALCULATES
THE LIKELIHUOOD FUNCTION AND 175 DERIVATIVES

E R SR IR IR SRR BE U BE R N CEECEE RN SRR ONE R IR OEE S IR N R R SR R B SR N SR S N EE R N R R AR I R R



C*
c*
C*
C*
L
C*
Cw
Cex
C*
cr
Cr
C*
C*
C*

FBT

POLGAM -

VARMLE
APPMLE
BETDIS
GPA

PLOT
MOBET A

C* REMARKS:
DIMENSION LF P,PBsNsN,K ARE NN

C*
C*

Ctt***t******t******t#*‘*#*#i##**#‘*#**##**#******#**’t###tt*ttt*t*t#tt*t**#i*t

c
Ckkk¥
99
12
13
10
150
14
17
[

REAL*8
REAL*8
REAL*»8
REAL*8
REAL*8
REAL*S
REAL*8
REAL*8

(BETA-BINOMIAL UISTRIBUTION)
= CALCULATES THE LIKELIHOOD FUNCTICH AND ITS DERIVATIVES
{BETA DISTRIBUTIINI}
CALCULATES THE PULYGAMMA FUNCTIDN

]

ESTIMATORS (EXACT EXPECTATION VALUES;BETA-BINDMJAL D157.!
CALCULATES VARIANCES AND COVARIANCE OF MAX [MUM LIKEL IHOOU

ESTIMATORS (APPROX. EXPECTATION VALUES;BETA-BINCMIAL DIST.)

CALCULATE AND PLOT BETA DISTRIBUTION (PROBABILITY DENSITY
FUNCT ION AND CUMULATIVE DISTRIBUTIUN FUNCTIGN!

- USED IN SUBROUTINE BETDIS

~ USED IN SUBROUTINE BETDIS

USED IN SUBROUUTINE BETDIS

Y1sY2,AA BB EPS oF,GoMEAN,SIG,P,PB(50) ,DFLOAT
SIGA,SIGB,DSQRT ,VARP,VARSIG,Al4),TITLEL12Q),DABS
RBARyW(50) ,WW,PBAR,5,0BAR,SUML,SUM2,555,BA,PPBAR
HEMTL1120)HEMT2(20) ,HEMT3(20) ,HEADT(4,20),DA{4),08B(4}
p!lPJiPKIVI1rVZZuVerHillHZZ!leval ¢
21,22,HEMT4(20])

VARA,VARB ,VARAND, VARBNDO,SI GAND, SIGBND

XPBAR, XUBAR ; X549 XPQ, XSUM X516, XRBAR ;XAA, XDB

COMMUN/DATA/NN,NI50) K(50)

COMMON

ff P{50)

EXTERNAL FNDER,FBT
DATA HEMTL/*MATC'y 'HING*, " DAT*,*A MD',"MENT*, 'S TO',' MAR','GINA'
#,0L DI*,'STRIT,"BUTI' ,"ON M*,*CMEN® ,*TS * 6%} vy

DATA HEMTZ/TMATC', "HING*,* DATY,'A MO',"MENT', 'S TQ*,* PRI','OR L'
® P ISTRY ,CIBUTY (Y JON ¢, "MUMEY,; *NTS v, T#? 'y

DATA HEMTI/'MAXI Y, *MUM * " LIKE?,*LIHU* ' 0D M' ,*ETHU*,*0 WI*y'TH 8
#,ETA=1,'BINU®, "MIAL®, " DIS",*T. ',7%°* I/

DATA HEAMT&/VHMAXI' ('MUH ", LIKE®,*LIHO®,'0D M*,'ETHO','D WI*,'TH 8¢

¥y *ETA ', "DISTY, . R AN v/

READ IN THE PROBLEM TITLE“AND DATA
READ (5,12,END=98) (TITLE(1),I=1,20)

FORMAT
PRINT
FORMAT

(2044}
13 {TITLEIL)sI=1,20)
('11,2044)

READ 10,NITER,IOQUT,IPROB,YLl,¥2,EPS,21.22

FORMAT

1315+5610.3}

READ 150)P1,PJsPKsPFLs NI NJaNL,IXOUT, IVAL,IPL, IBETA

FORMAT

14610.3,715)

CALL FNDATA(YLl,Y2,F:sGsA)

PRINT
PRINT

L4y IN{I)sI=1,NN}
17. {K[l)|1=l'NN)

FORMATISX,* TRIES: t42315,/115X%,2315))
FORMAT(S5X, "FAILURES: ',2315,/(15%X,2315])
NITE=NITER .

NOM=0

CALCULATES YARIANCES AND COVARIANCE OF MAXIMUM LIKELIHOOO

136

*
*
*
*
*
]
*
*
*
*
*
*
*
]
*
*
*
*

C**x CALCULATE THE PRIOR PARAMETERS BY MATCHING DATA MUMENTS TU MARGINAL DISIRI-
C*»% BUTIONS MUMENTS.

PRINT

610



610 FORMAT('OMATCHING MUMENTS OF DATA TO THOSE OF MARGINAL DISTRIBUTIU

*Ng 0
NMAX=NITER
ITINMAX.EQ.O) NMAX=20
ITER=0
MCONV=0
: DO 51 [=1,NN
S1 P(I)=DFLOATIK(I)I/NLI)
XPBAR=0.000
DO 300 I=1,NN
300 XPBAR=XPBAR+PI(I]}
XPBAR=XPBAR /NN
XQABAR=1.00U-XPBAR
X5=0.000
D0 305 I=1,MNN
a5 XS5=XS+{P{]1)-XPBAR)**2
XP = XPBAR*XQBAR* (NN-1)
XSUM=0.0D0
DO 310 I=1,NN
310 XSUM=XSUM+1 .000/N{ T}
XSUM=XSUM* X PU/NN
XRBAR={ XS5=-XS5UM} /{ XPQ-X SUM])
IFlXRBhR.LE,0.0DO! GO TQ 315
XSUM=XRBAR® XPBAR*XQDAR
XS 16=DSQRT{XSUM}
IF{XPBAR®XQBAR.LE,XSUM) GO TO 316
XPQ=1.000/xRBAR~1,.0D0

SIGMA=",115.8,

R 15 NEGATIVE®}

XAA=XPBAR*X PQ
XBB=XQB AR* XPQ
PRINT 612,XPBAR,XS1G:XAA, XBB

612 FORMAT(' HU WEIGHTING 1 4EAN=? ,G15.8,'
*;9,7X, 'PRIOR PARAMETERS: A=',G15.8,* B=',G15.4)
GO TO 320

315  PRINT 613,XPBAR

613  FDRMAT(' NO WEIGHT ING ! MEAN=',GLl5.84"
GO TO 320

316  PRINT 614,XPBAR,XSIG

614 FORMAT(* NO WEIGHTING : MEAN=',G15.8,'

wtgt, TX, "PRIOR PARAMETERS: A&LB ARE NEGATIVE')
320 CONTINUE
PPBAR=10.0D0
RBAR=0,000
50 TTER=ITER+]
C*e* CALCULATE THE WEIGHTS
WW=0.0D0
DO 52 I=1,NN
W{II=MCTJ/(1.000+RBAR*{NL]1}=1))
52 WW=WW+Wi1)
C**% CALCULATE PBAR AND 5
PBAR=0.000 .
Do 53 [=14+NN,
53 PBAR=PBAR+W{1)tP(]1]
PEAR=PBAR/HH
QBAR=1.0D00-PBAR
§=0.000
OU 54 I=1.NN
54 S=5 ¢ WI[)#(PL])~-PBAR])»¥}
S={NN=-1)*5/NN

SIGMA="',(G15,8,

137
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C**+ CALCULATE MEAN OF PRIUR AND REBAR

SUM2=0.000
DD 55 I=1.NN
SSS=W{l)¥(1.000-W({I}/WK]
SUML=SUML+555/NI(1)

55 SUM2=SUM2+55S
REAR={S5-PBAR*QBAR*SUML )/ (PBAR*QBAR¥ (SUM2-5UML))
IF (RBAR.LE.0.0DO) RBAR=0.000

C¥** CHECK FGR CONVERGENCE

555=DA3S{{PBAR-PPBAR) /PBAR]
1F(SSS.LEL.EPS5) MCONV=1|
PPBAR=PBAR

C#** CALCULATE THE A AND B PARAMETERS OF THE PRIOR DISTRIBUTILN

as

IF{RBAR) 56 ,56457

57 AA=PEAR*{1.000/RBAR-1.000]
BB=QBAR* (1 .0D0/RBAR~1 .000)
S1G=DSURT(RBAR*PEAR? QRAR)
IF (ITER.GT.2) GO TU 59
IF ({TER.EQ.L) PRINT 65,PBAR,S51G,AA,BB
1F (ITER.EQ.2) PRINT 66+PBAP,S51G,AA,BB
G0 To 81

59 IF{10UT.EQ.1) PRINT 69,PBAR,SIG,AA,BB

Bl IF (MCONV.EQ.l) PRINT 67,PBAR,SIG,AA,BB
IFI{ITER.EQ.NMAX) . AND. (MCCNV.EQ.O0}} PRINT 68,PBAR,S1G,AA,BB
IF((MCOVNV.EQ.)).OR.LITER.EQ.NMAX)) GO TO 85
GO 10 50 .

56 BA=1.000/PBAR - 1.0D0
IFLITER.GT.2) GO TO sl
IF (ITER.EQ.1) PRINT 75,PEAR,BA
IF (ITER.EW.2) PRINT T6,PEAR,BA
GO To 82 :

61 IF(IOUT.EQ.1) PRINT 79,PEAR,BA

82 IF [MCONV.EQ.l) PRINT 77,PBAR,BA
IF{{ITER.EQ.NMAX) . AND. (MCONV.EQ.0)] PRINT 78,PBAR,BA

65 FORMAT(®* BINUMIAL WEIGHTING ¢ MEAN=',Gl15.8,"' SIGMA=",
2615.8,'3",7X, " PRIOR PARAMETERS: A=',Gl5.8,* B=',G15.8)
66 FORMAT(' EMPIRICAL WEIGHTING: MEAN=',Gl5.8,' SIGMA=",
LG15.8+" 3"+ 7X:"PRIOR PARAMETERS: A=',G15.8," B=*t,G15.8)
67 FORMAT(' CONVERGED RESULT ! MEAN=',Gl5.8,' SIGMA=",
1G15.8," ;' 7X, "PRIOR PARAMETERS: A=',(G15.8,' B='4G1l5.8}
68 FORMATI' NOU CONVERGENCE 2 MEAW="',GLl5.8," SIGMA=",
1G15.84° 3"+ 7X, "PRIOR PARAMETERS: A=',615.8," B=',G615.8)

69 FORMAT(23X,"'MEAN="',G15.8," SIGMA="*,
1G15.8,0; ', TX, "PRIOCR PARAMETERS: A=',G15.8,"° B=1,G15.8}
75 FORMAT(' BINOMIAL WEIGHTING : MEAN=',Gl5.8,"' SIGMA=",

23X "NEGATIVE' ,8X," PRIUR PARAMETER B/A=',Gl5.8)
T6 FORMAT(' EMPIRICAL WEIGHTING: MEAN=*,Gl5.8,"' SIGMA=",
13X "NEGATIVE"® 4 8X," PRIUR PARAMETER B/A=',G15.8)
T7 FORMATU(' CONVERGED RESULT t HEAN=',Gl5.8,"' SIGHA="',
13X, "NEGATIVE',8X," PRIOR PARAMETER B/A=',(G15.8])
78 FURMAT(' NU CUNVYERGENCE ! MEAN=",Gl5.8,' SIGMA=",
13X *NEGATIVE' ,BX,' PRICR PARAMETCR B/A=',G15.8)
79 FORMAT(20X,'  MEAN=',(Gl5.8,' SIGMA="',
13X "NEGATIVE'!,8X,"' PRIOR PARAMETER B/A=',Gl5.8)
IFIMCONV.NE.] .OR.PBAR.LE.0.0000) GD TOD 86
NOM=NOM+ 1

DAINUM) =AA



110

C**
86

38

&

34

35

40
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DB{NOMI =BB
00 110 I=1,20
HEADT (NJM, [ )=HEMTL( 1)

CALCULATE A AND B BY MAICHING THE DATA MCMENTS TO THUSE UF THE PRICR.
MEAN=0.0D0¢ ‘

$164=0.0000

$16=0.000

D0 3% I=L,NN

PC1I=DFLDAT(K(L)]/NCT)

MEAN=MEAN+P (1)

MEAN= MEAN/NN

DO 35 I=1,NN

SI1G4=SIS4+(P(1)-MEAN]I»*4

S1G=51G + (PLI1}-MEAN)*»2

S16=516/{NN-L)

S1G4=SIG4/NN

AA=(MEAN*#2/5S1G)*(1.0D0-MEAN) - MEAN

BB={1.0D0-MEAN]*AA/MEAN

$55=DSQRT{SIG)

[F{NN.LE.2] GO TG 40

VARP=5]G/NN

VARS 1G=2.0D0*SIG**2/(NN-1)

VAR=[SIG4—{NN=3)¥S1G**2/(NN-1))/NN

VARA= ({{(2.000-3.0DO*MEAN}*MEAN/SIG)~1.0D0) **2) #YARP
1+ VARSIG*(MEAN##2#(] .,0D0-MEAN)/SIG#*2)*%2

SIGA=DSQRT{ VARA)

VARB=VARP*{ ((1.000-4.0D0*MEAN+3, ODO*MEAN**2)/SIG1+1.000) **2 +
2 VARSIG* [{MEAN®{1.0D0-MEAN)#%2)/(SIG*%$2])#%2

5168=DSQRT (VARSI

VARAND= . ((((2.0000-3.0D00*MEAN) *MEAN/SIG)=-1.0000) #*2) *VARP
@ +VAR®(MEAN®*2#({1.0D00-MEAN] /51G*#2)*#2

SIGAND=DSQRT (VARAND)

VAR3ND=VARP*( {(1.0D0-4 .,0D0*MEAN+3 .0DO*MEAN*#2]/51G) +1.000) #%2 +
2 VAR® [ [HEAN®( 1 .0DO-MEAN)*%2)/{SIG#*2))*%2
SIGBND=DSQRT(VARBND)

PRINT 37,MEAN;555,44,88

PRINT 38,VARA,VARB,SIGA,S1GByVARAND,VARBNO,SIGAND,SIGBND
FORMAT(' VARIANCE AND STANDARD DEVIATICN ESTIMATES (ASSUMING NURMA
*L DISTRIBUTION) :*,792,'VAR(A)=",G13.6,"VARIB)=",G13.6/
$792,'SIG(A) = ,G13.6,"S1G(B)=",613.6/

*1' VARIANCE AND STANDARD DEVIATION ESTIMATES (DISTRIBUTION INUEPEND
$ENT) :',T92,°VARIA)="',G13.6,"'VAR(BI=",G13.6/
£792,'51G(A)=",G13.6,"SIG(B)="',G13.6]

GO TO 39

PRINT 37, MEAN,555,AA,BB

37 FORMATL'O*,//'OMATCHING MUMENTS OF THE DATA TO THGSE LF THE PRIOR

39

129
c

LOISTRIBUTION:',/* PRIOR MOMENTS: * 48X, 'MEAN=',G15.8,:5X, *SIGHMA=",
2G15.8,'3",7X,'"PRIOR PARAMETERS: A=',Gl5.8," B=Y,6G15.8)
NOM=NOM+ |

DA(NOM) =AA

DB(NOM)=BB

DO 120 [=1,20

HEADT{NUM, 1 )=HEMT2(I)

C+** CALCULATE A AND B BY MAX.LIKELIHOOD METHOD WITH BETA-BINUMIAL DISTRIBUTIUN

IF{NITER.EQ.O0) GO TO 41
IF{Y1.EQ.0.0D0) GO 10 32
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PRINT L1, Y1,Y2,EPS,NITER
11 FORMAT('0',/'OMAXIMUM LIKELIHCGD METHCD WITH BETA-BINUMIAL DISTRIB
*UT[UN: ",
1/5X,*INLTIAL STARTING POINTS',2G15.8,/5X, ACCURACY PARAMETER=
2G12.44/5%; "MAXIMUM NUMBER UF {TERATIONS=',14)
GO 10 33
32 Yl=AA
Y2=88
PRINT 36,Y1,Y2,EPS,NITER
36 FORMAT{'U*,/*OMAXIMUM LIKELIHOOD METHGD WITH BETA-BINGMIAL DISTRIB
*UTION:Y,
1/5X, " INITIAL STARTING POINTS CALCULATED BY MATCHING MCMENTS TO PRI
20R*,2G15.8,/5X, "ACCURACY PARAMETER=",G12.4,/5X, 'MAXIMUM NUMBER OF
3ITERATIUNS=! ,14)
C*  SOLVE FOR A AND B BY THE NEWTON-RAPHSON METHOD
33 10T=10UT
CALL NEWRAL(YL,Y2,F:G,FNDER,EPS,NITER,1QT}
MEAN=YL1/ (Y1+Y2)
SIG=DSAATIYI*Y2/L{ YL+ V2411 % (Y14Y2)*22])
IF 1071 15,20,15
15 PRINT 16,Y1;¥2,10T
16 FORMAT(5X, *SOLUTION CONVERGED TO: A=',G15.8,' AND B=',Gl5.8,
1 AFTER' ;13,' ITERATIUNS.')
PRINT 24, MEAN,SIG,Y1,Y2
24 FURMAT(' PRIOR MOMENTS:',8X, 'MEAN=",G15.8," SIGMA=",
1G15.8,%3' , 7X,*PRIOR PARAMETERS: A=*,G15.8,' B=',G15.8)
C ### CALCULATE VARIANCES & COVARIANCE OF MAX. LIKELIHOOD ESTIMATURS
CALL VARMLE(YL,Y2,NN,NsV1l,¥22,v12]
CALL APPMLE(YLeY2,NN,N,Ky WLl W22, W12)
NOM=NOM+ 1
DA(NUM) =Y1
DBINOM)=Y2
DD 130 I=1,20
130 HEADTUNOM, [ }=HEMT3(I]
60 10 241
20 PRINT 21, Y1,Y2
21 FORMAT(5X,'SOLUTION DID NOT CONVERGE —- LAST VALUES OF A AND B ARE
1*42615.8) |

BA=Y2/Y1
PRINT 25, MEAN,BA
25 FORMAT(' PRIOR MOMENTS:',8X,'MEAN=",Gl5.8,"* SIGMA= 'y
1"NOT DEFINED PRIOR PARAMETER B/A=',G15.8)
NITER=0

c
C¥**CALCULATE A AND B BY MAX.LIKELIHOOD METHOD WITH BETA DISTRIBUTIUN
241 IF(Z1.NE.0.000}) GO TO 232
I1=AA
12=88
PRINT 231,21,22
231 FORMAT('0Q® , /' OMAXIMUM LIKELIHOOD METHOD WITH BETA DISTRIBUTION:?Y,
1/5X, ' INITIAL STARTING PUINTS CALCULATED BY MATCHING MOMENT3 TO PRI
*0R';2G15.8)
GO TO 233
232 PRINT 211,221,422
211 FORMAT('0Q",/'OMAXIMUM LIKELIHOOD METHOD WITH BETA DISTRIBUTIUN:?®,
*/5%: *INLTIAL STARTING POINTS!,2G15.48)
C* REJECT THE DATA SET CONTAINING O NO.OF FAILURE
233 D0 210 1=1,NN
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IF(K(I).G6T.0) GO TUu 210
PRINT 615
615 FORMATIT2,'THIS DATA SET IS REJECTED BECAUSE OF O NU.UF FAILURE')
GO 10 41
210 CCNTINUE
C* SOLVE FOR A AND B BY THE HEWTON-RAPHSGN METHOD
1oT=10ur
CALL NEWRAL{ZL,22,F:G,FBT ,EPS,NITE, 10T}
IF(10T)215,220,215
215  PRINT 16,21:12.107
MEAN=Z1/{21+12)
SIG=DSQRT(21%22/ (LZ1+Z2+1)%(ZL+22)%%2))
PRINT 24,MEAN,516,21,22
NOM=NOM +1
DAINUMI =21
DB INOMI=/2
DO 230 I=1,20
230 HEADT(NOM, 1)J=HEMT4(I)
GO TO 41
220  PRINT 21,211,212
BA=Z22/11
PRINT 25.MEAN,BA
c
C¥** CALCULATIUN UF CLASSICAL AND BAYESIAN FAILURE PROBABILITIES FOR EACH
c COMPUNENF USING RESULTS OF METHODS 2 AND 3
41 IF(IPROB.EQ.C} GO TO 140
PRINT 31
PRINT 42
42 FORMAT('0',///'0ESTIMATED FAILURE PROBABILITY FOR EACH CCMPONENT.
1 BAYESIAN ESTIMATE BASED GN RESULTS OF MATCHING MUMENTS TO PRIUR')
PRINT 46
46 FORMAT(4TX,'TRIES. FAILURES PMEAN-CLASS. PMEAN-BAYS.')
DG 45 I=1,NN )
45 PB(1}=(AA+K(1)}/(AA+BB+N(I)}
PRINT 47, (NIIJKCI)4PCI),PBII) I=1,NN)
47 FORMAT(48X,13+7X,134616.3,614.3)
IF (NITER.EQ.Ol GU TD 140 .
C#+¢ CALCULATION FROM THE A AND B OF THE MAX. LIKELIHOQD FUNCTION SOLUT IUN
PRINT 43
43 FORMATI'OESTIMATED FAILURE PRGBABILITY FOR EACH COMPONENT. BAYES!
LAN ESTIMATE BASED ON RESULTS FROM MAXIMUM LIKELIHOOO CALCULATIONS.
21) :
PRINT 46
D0 48 I=L1,NN
48 PBUII=(YL+K{1)] /{YL+Y2+NIID)
PRINT 4T, (NCI) K{1)sPUT),PBLTY;I=1,NN}
C**x CALCULATE AND PLOT BETA DISTRIBUTION
140  IFUIBETA.EQ.0J GU TO 99
CALL BETDIS(NOM,HEADT,CA,OB)NI1,NJyNL, IXOUT, IVAL,PT,PJ PR LPL,
&TITLE +PF1)
GO TO 99
C#*
98 PRINT 31
31 FORMATI('11)
STOP
END



c

C** READ IN THE PLANT FAILURE DATA
READ 10NNy IN{L1)sKL]1),[=1,NN}

10

C
Caes

20

Ches

30

SUBROUT INE FNDATA(Y1:Y2:F+G,A)
REAL#*8 Y1,Y2,X1,X2,X34F+G¢A(4) SUML,SUM2,5UM3, POLGAM
COMMUN/ DATA/NN,NISO) ,K{50!}

FORMAT{1615)
RETURN

BEGIN THE CALCULATION OF THE DERIVATIVES

ENTRY FNOER{YL.Y2:FsGyAl
SUML=0.000

SUM2=0.0D0

SUM3=0, 000

DO 20 I=1,NN

Xl=Y1+K!{1)
x2=Y2+Nl1)-K(1)
X3=Y1+Y2+NL])

SUML=SUML + PULGAMIX1,1)
SUM2=SuUM2 + POLGAMIX2,1)
S5UM3=5UM3 + POLGAMIX3,1)
X1=POLGAMI{YL+Y2,1)

A(1)=NN*(X1-POLGAM(Y1,1}) + SUML - SUM3
+ 5UM2 - SUM3

AL4)=NN& ([ X1-PULGAM(Y2,1))
Al2)=NN#X]1 -~ SUM3
Al3)=A(2)

CALCULATE OUNLY THE VALUE OF THE F AND G FUNCTICGNS

ENTRY FNONLY(Y1,Y2,F,G)
5UML1=0.000

SUMZ2=0.0D0

SUM3=0.000

DO 30 I=l,NN

X1=Y1+K(1)
X2=¥2 440 1)-K( 1)
X3=Y14Y24N(1)

SUML=SUML + POLGAM{X1,0)
SUM2=5UM2 + POLGAM(X2,0)
SUM3=5UM3 + POLGAM(X3,0)
X1=POLGAM(Y1+Y2,0)

F=NN& (X1 - POLGAM(Yl,0)) + SUML1 - SUM3
G=NN#*(X1 - POLGAM(YZ2,0)) + 35UM2 - SUM3

RETURN
END
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Cs
C#
C#*
C*x
C*
C*
C*
C#*
Ce
L
C*
C*
Ce
Cx
C*
C*
C*x
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SUBROUTINE NEWRALIYL,r2,FyG.FN,EPS,NITER, ICONV)
CHERRERERRFPh bR H R RBRRRBI TR RN FE R IR RS G R ah kR R REH RS AR RN TE AR DI S R kIR SIS RS F T RV RN &

THIS SUBRJUTINE SOLVES TwU SIMULTANEOUS EQUATIONS OF THE FORM FI(YLl,Y23=0
AND GlY1,Y21=0 BY THE NEWTON-RAPHSON METHOD.
WRITTEN BY J.Ke. SHULTIS, SEPTEMBER, 19Té6.

INPUT PARAMETERS:

Yl
Y2
£
G
FN

EPS
NITER
1CONY

= STARTING ESTIMATE CF Y1.

*
*
*
*
*
*
%
STARTING ESTIMATE OF Y2. 3
FINAL VALUE OF THE FUNCTIGN F(Yl,Y2). *
FINAL VALUE OF THE FUNCTION G(Yl,Y2). L
*
*
*
*
*
*»
*
*
*

[T I R |

NAME OF THE FUNCTION SUBROUTINE WHICH CALCULATES VALUES

OF F AND G AND ITS DERIVATIVES.

CUNVERGENCE CRITERION ~- ACCURACY OF S0LUTION

MAXIMUM NUMBER GF ITERATICNS DESIRED.

1 IF OQUTPUT FOR EACH ITERATION 1S5S DESIRED, =0 OTHERWISE.
THIS PARAMETER 15 SET TO O IF CONVERGENCE 15 NuT ACHIEVED
OR 70 THE I[TERATION NUMBER FOR WHICH CONVERGENCE OCCURRED.

c**#‘*‘**‘*****‘*******‘******‘...*****‘*******#****‘.*****‘*****‘**‘**********
REAL*8 Y1,Y24sFyGyEPSsA(4)+X14X2,DET,DABS,CONVA,COUNVE

IPRINT=ILONY

IF {IPRINT.EQ.l} PRINT 4D

FORMAT({*OJTERATION * TXy "Y1 134, 0Y2" X, *FIYL, Y2} 46X,'GIYL,¥2)"]

c

40

THE NEXT TwWD

10

41

30

20
11

ICUNVY=0

00 30 l=1,NITER
ICONV=ICONV+1

CARDS ARE TQ BE INCLUDED ONLY IF Y1 AND Y2 MUST B8OTH BE >0

IF (Y1l.LT7.0.000) Y1=DABS{Y1)
[F (Y2.1T.0.000) Y2=DABSI[Y2)
CALL FN{YLlsY2:FsGsA)
DET=A(L)*A{4) - Al212A(3})

IF {DET] 10:20,10

XL=(F*A{4) - G*A{3)}/DET
X2=(G*A(1) =~ F*A(2))/UET

IF (IPRINT.EQ.L) PRINT 4l TCONY,YL,Y2,F,G
FORMATI[5,5X,4615.8)
CONVA=DABS I1X1/Y1)
CUNVB=DABS(X2/Y2])

IF (CULNVA.LT.EPS) GU TO 1

GO TO 2

IF (ZONVB.LT.EPS) GO TO 3

¥Yl=Yl-X1
Y2=Y2-X2
ICONV=0
RETURN
PRINT 11
1CONV=Q

FORMAT{®* DETERMINANT [S ZERO =- NO SOLUTICN®*)

RETURN
END



Ck®xe FRT *w%
SUBROUTINE FBT{XA (X8 (F sG4A)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(4)

CUMMON /DATA/ NN,N(501,K({50)
COMMON /727 P(50)

C**+CALCULATE DERIVATIVES
DUM=POLGAM (XA+XB,y 1)
AL1)=NN#*{DUM-POLGAM{XA41))
Al2)=NN*OUM |
A{3=4(2)
Al4)=NN*{DUM-POLGAMI XB ,11}}

C¥3#CALCULATE VALUES OF THE FUNCTIONS
SUM1=0.0000
SUM2=0.0000
DO 100 1=1,NN
SUM2= SUM2+DLOGI 1. 00D0O~P{ 1))

100 SUML=SUML+DLOG{P(I))
DUM=POL3AM( XA+ XB ,0)
F=SUM1+NN*(DUM=POLGAM( XA,0)}
G=SUMZ2+NN* {DUM-POLGAMI XB,01}}
RETURN
END
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SUBROUTINE VARMLE(Y1,Y2,NN¢N,V11,V22,V12)
4 Ly T T e R P T

C* *
‘C* PURPOSE ¢ CALCULATE VARIANCES AND COVARIANCES *
c* . GF MAXIMUM L JKELIHOOD ESTIMATORS *
C* OF PARAMETERS A AND B »
Ck OF BETA PRIOR DISTRIBUTIUN ¥
C# PARAMETER DESCRIPTIUN : *
C* Yl ESTIMATOR OF A *
C* Y2 ESTIMATOR OF 8 *
C* NN MUMBER OF OBSERVED DATA *
C# N{l) NUMBER OF TRIES *
C* V1l VARIANCE(A) *
Cs ¥22 VARIANCE(B) *
C* V12 LCOVARIANCE(A,B) *
C* SUBROUTINE REQUIRED : *
C* POLGAM CALCULATE POLYGAMMA FUNCTIONS *
c* REMARK : *
C* USING EXACT EXPECTATIUN VALUES *
C* *
Cit**#*##t#‘t't#*tit*tttﬁttt tREEERT R 2R R RS LR R R SRR 2SRRI ES PR RS LS ETEL BE L

IMPLICIT REAL*8{A—H,0-2)
DIMENSIUN N{50)

C #%*% CALCULATE INFORMATION MATRIX
HL1=DLGAMALYl+Y2)~DLGAMA(YL)-DLGAMA(Y2]}
PGl=POLGAM(Y1+Y2,1)
ELL=NN+*(PGL-POLGAM(YL,1})
E22=NN*( PG 1-PULGAM(Y2Z, 1))
E12=NN#*PGl
DO 200 t=1,NN
AGL=N{I)+1
AG2=YL+Y2+N(I)
HL2=0DLSAMA (AGL) -DLGAMALAG2)
PG2=POLGAM(AGZ,1)

Ell=E11-PG2

E22=E22-PG2,

El2=E12-PG2

N1=N{])+]

DO 200 KK=1,NI

Kl=KK-1

AG3=Y1+K]

AG4=Y2¢N( ) K]

AGS=K ]+l 1

AGE=N{1)-KI[+1

HL3I=0LGAMA (AG3) +OLGAMA (AG4) ~DLGAMALAG5 ) ~DLGAMA (AGE)

H=DEXPUHL) +HL2+HL3 )

El1=ELl1+PULGAMIAG3,1)*H

E22=E22+POLGAMIAG4, 1 )*H
200 CONTINUE !

Ell=-E1l

E22=-E22

El12=-E12

PRINT 50

606 FORMAT(T1O0,'EXACT SOLUTION')
PRINT 620,E11,E12,E12,E22

620 FORMATITLO,' INFORMAT ION MATRIX 1 *,{T35,2(2X,G13.¢€)))

C #%¢ CALCULATE VARIANCES AND CGVARIANCE
DET=Ell*E22-E12%El2
Vll= E22/DET
V22= EL1/DET
V12=~-E12/DET
PRINT 630,V1l,v22,V12

630  FORMATI9LX,'VAR{A)=?,G13.6,'VARIB)=",G13.6/
€8N, "COVAR{ A, 8)=%,G13.6)

RE TURN
END
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REAL FUNCTION POLGAM*3(Z,M)
o e LR e e e T e L R e R T e T YT T

C*

C* THIS FUNCTION CALCULATES THE POLYGAMMA FUNCTIGN FCR REAL POSETIVE ARGUMENTS *
Cx USING AN ASYMPTOUTIC SERIES EXPANSION FOR LARGE ARCUMENTS, AND THEN A RECUR- #*
C* SION RELATION FUR SMALL ARGUMENTS. THIS METHOD IS ODESCRIBED BY A. TADEU DE *
C* MEDEIRDS AND G« SCHWACHHE IMy, COMM. ACM, 12 (1969) 213. CODE PREPARED HY =*
C* J.K. SHULTIS, JULY 1976. x
c* ) ‘ *
C* [NPUT PARAMETERS: : b
C* Z = REAL POSITIVE ARGUMENT FOR POLYGAMMA FUACTION »
C* M = INDEX OR DERIVATIVE ORDER OF THE POLYGAMMA FUNCTION *
C* *
C**i#'***t#*-tt*#*t*‘f’****##t*#*it*####*ﬁ*#**##t*!#*t**#‘#*#***#*tt**it‘*‘*.‘*#

REAL*8 B(10)+2,X¢DLOG,DGAMMA,PSI,TRTJNFAC,ARGL,ARGZ, AA
c
Ce#*x* [NITIALIZE THE YECTOR B TO THE EVEN BERNOULLI NUMBERS
NBERN=10 .
IF(Z.GT 100,000} NBERN=1DINT{10.0D0/DLOG{(Z)) + I
Bl1)1=0.166666666666£67D0
B(2)=-0,3333333333333330-01
B{3)=0.2360952380952380-01
B(4)=-0,3333333333333330-01
B8(5)=0.757575757575758
B(6)=-0,253113553113553
BUT)=1.16666666666666T
B(B)=-7,09215686274510
BlS)= 54.97117794486215
B{l0)=-529.124242424242
: 1F (M-1) 12;13,20
C
Ce** CALCULATE THE DIGAMMA QR P51 FUNCTION (M=0)
Cx*¢ CALCULATE WHETHER 2 > 8
12 NN=2 ‘
N=8-NN
N=MAXO(O,N)
X=I+N i
C*** CALCULATE PSI FIR X > 8
PSI=0.0D0
DO 10 K=1,NBERN
I=2%K
10 PSI=PSI + B{K}/(KEXex])
PSI=DLOG{X} ~ 0.5D00*%({1.00/X% + PSI)
C*#* CALCUATE FOR I< 8 IF NECESSARY
IF {N} 15,15,14
14 00 16 NN=1,8
16 PSI=PSI - 1.DO/(Z+Nh-1)
.15 POLGAM=PSI
RETURN
C
C***x CALCULATION OF THE TRIGAMMA FUNCTION {M=1)
13 NN=Z
N=8-NN
N=MAXQL{0,N)
X=1+N
C**x CALCULATE FOR Z >8
TRI=0.0D0
DO 17 K=1,MBERN



T=2%K +]
17 TRI=TRI+ BI(K}/X##*]
TRI=1.D0/X + 0,500/X**2 + TR]
Cx¥* CALCULATE FUR Z < 8
IF {(N) 18,18,19
19 DD 11 NN=1,N
11 TRI=TR! + 1.0DO/(Z+NN-1)%+2
18 POLGAM=TRI
RETURN
C
C*** CALCULATION OF THE GENERAL POLYGAMMA FUNCTION (M > 1)
20 NN=Z
N=8-NN
N=MAXO0{0O,N)
X=I+N
POLGAM=0.0D0
MM=H+1
ARG l=MM
NFAC=DGAMMA{ARG 1}
ISIGN=4#(M/2) = 2%M ¢ |
C#*+ CALCULATE FOR, Z > 8
DO 27 K=1,NBERN
1=2%K+M :
ARGLl=1]
ARG2=2¢K+1
27 POLGAM=POLGAM + B{K)*DGAMMA(ARGL) /{DGAMMA[ARG2 }*X*%])
POLGAM=~[SIGN* [NFAC/ {M*X%%M) + 0.SDO*NFAC/X*¥MM + POLGAN)
C*** CALCULATE FOUR 2 < 8
IF (N) 28,28,29
29 AA!0.000
DO 21 NN=1,N
21 AA=AA + 1.0D0/{Z+NN-1)**MM
POLGAM=PULGAH - ISIGN*NFAC*AA
28 RETURN '
END
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SUBRUUT INE APPMLELA 8, NNyN,K,ULL,U22,U12)
R L E T S R TR R R P PR P e P P R e e R b b P T L T T PR e

C* *
c* PURPUSE : CALCULATE VARIANCES AND COVARIANCES *
c* LF MAXIMUM LIKELIHOGO ESTIMATORS *
c* UF PARAMETERS A AND B *
C OF BETA PRIOR DISTRIBUTIUN *
C* PARAMETER UESCRIPTION : *
c A ESTIMATOR OF A *
cr B ESTIMATOR OF B *
C* NN  NUMBER OF DBSERVED CATA *
C* N{I) NUMBER OF TRIES *
o ULl VARIANCE(A) *
ce U22 VARIANCE(B) *
(o] Ul2 COVARIANCE(A,B) *
ce SUBROUT INE REQGUIRED : *
Ce POLGAM CALCULATE POLYGAMMA FUNCT ICNS *
C* REMARK ¢ _ *
Ce APPROX. EXPECTATION VALUES BY 2-ND DERIVATIVES OF *
(2 LIKELIHOOD FUNCTIGN *
(4 *
(R E2 RS2 R RN 2RPRT R PR R RS RR L2 22 PR R PR RS2 2R AR RS R S E LYY TE Y 2

. IMPLICIT REAL#B{A-H,0~1)
DIMENSION N(50),K(50)

C *%# CALCULATE INFURMATIUN MATRIX
Wl1l=NN®(POLGAM{A+B,1 )-POLGAM(A, L))
W22=NN#{ POLGAM{A+B,1)-POLGAM{B,1))
W12=NN*PULGAM{A+B, 1)

DO 100 I=1,NN

AGl=A+K (1)

AG2=A+B+N{ )

AG3=B+N{ I)-K(1)

Wll=W1l+PULGAM(AGL, 1)-POLGAMIAG2,1!}
W22=W22+POLGAMIAGS ¢1 )-PULGAMIAG2,1)
Wl2=W12-PULGAMIAG2,1)

100  CONTINUE

: Wll==Wll
W22=-W22
Wl2=-Wl2
PRINT 605

605 FORMAT(TLO,.'APPROXIMATE SOLUTION')
PRINT 620sW1lleWl2,W12+H22

620  FORMATITLO,' INFORMAT [UN MATRIX : *,(T735,2(2X,613.6))}

C *#% CALCULATE VARIANCES AND CCVARIANCE
DET=Wll#Ww22-Wl2%W12
Ulls W22/DE
U22= W11/DET
Ul2=-wl2/DET
PRINT 630,U0ll,u22,U12

630  FORMAT(91X,'VAR[A)=*,G13.6,*VAR(B)=",Gl3.8&/

*87X,*COVAR(A,B) =" ,G13.6)
RETURN
END
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e s L e L e g e T e et
C* SUBRDUTINE BETDISINOC,HEADT A,B,NI,NJ,NL, IXOUT,IVAL,P1+PJsPK,IPL,CBT,PFL)*

C* PURPOSES @ *
C* - COMPUTE BETA DISTRIBUTION : *
C* ~ PLIT BETA DISTRIBUTION *
C* - COMPARE BETA DISTRIBUTION OF DIFFERENT PARAMETERS *
C* (BOTH PROBABILITY DENSITY &ND CUMULATIVE DISTRIBUTIUN FUNCTIONS) *
C* DESCRIPTION OF PARAMETERS : *
Cc* HUC - NO. OF BETA DISTRIBUTIONS TO BE COMPARED IN LNE FIGURE *
C* HEADT- DESCRIPTION FOR EACH DISTRIBUTION *
C* CBT — COMPARISUN CHART FEADING *
C* A8 - BETA DISTRIBUTIGN PARAMETERS *
(2 IVAL - CONTROL PARAMETER FOR DISPLAYING RESULTS *
C* IVAL=-1 PRINT CUMPUTED VALUES CNLY *
Cr IVAL= 0 PLCT COMPARISON FIGURE ONLY;IF NOC=1,PLOT 1 CURVE *
C* IVAL=l PRINT CGMPUTED VALUES,PLOT INDIVIDUAL CURVE *
C* AND COMPARI SON CHART ¥
C* IPL - CONTROL PARAMETER FOR PLOTTING *
Cs IPL=0 PLUT NI DATA POINTS FROM Pl TO PJ {IF NI=0,NI=51 15 USED} *
C* IPL=1 PLOT NJ DATA POINTS FROM PJ TO PK {IF NJ=0,NJ=2 [S USED) *
Ce IPL=2 PLOT NI+NJ-1 DATA POINTS FRCM PI YO PK *
c* Pl = lNDEPENDENT VARTABLE (FIRST DATA POINT) *
Ce PJ -~ INDEPENDENT VARIABLE {INTERMEDIAT DATA PUINT} *
Cx PK - INDEPENDENT VARIABLE {LAST DATA POINT) *
Ce IPLyPI,PJyPK — USED IN COMPUTING & PLOTTING DENSJITY FUNCTIUN *
Cs IX0UT- PRINT MARK ON BASE-VARIABLE AXIS EVERY IXUUT DATA POINT *
Cs IX0QUT=0,PRINT EVERY 5 DATA POINTS. *
cr NL - NO. OF LINES USED FOR PRINTING BASE-VARIABLE AXIS *
[ IF NL=0, 51 LINES WILL BE USED *
Ce PFL — FIRST DATA PUINT (=0 USUALLY) USED IN COMPUTING & PLGTTING *
Ce DISTRIBUTION FUNCTICN. *
Cx SUBRQUT INE REQUIRED : GPA,PLOT & MDBETA *
C* REMARKS 3 *
C* DIMENSIUN OF GsP,GXsPX4F,PF ARE NI+NJ-1 *
Ce DIMENSIONS OF AA,AAA,FF SHOULD BE 5 TIMES OF GyP+GXPX,FsPF *
(ITEEE IR 2SR R R R 22 E R R S PSR R R TR E RS 2 EA R ER R SR RER SR 22 EE R E2 22 2 20

SUBROUT INE BETDIS(NUC, FEADT ¢As8,N1,NJyNLy IXOUT s IVAL 4P 1,PJsPK,IPL,
#CBT,PF1)

IMPLICIT REAL*8(A~H,0-2)

DIMENSIUN HEADT (4,200 4A(4),B(4)

DIMENSIIN G(53) 4P{53) JHEAD{20),GX(53) ,PX{53)
DIMENSION CBT(20)+AA[265),AAA(265])

DIMENSION F(53) ,PF(53) \FF(265)

DATA FAX/'F(P)'/

DATA NS/0/,M72/

DATA XAX/'P'/,YAX/'GI(P) '/

DATA GMINsGMAX ,FMIN, FMAX/3+40.0000,1.0000/

IF(1XOUT .EQ.0) IXOUT=5
IFINI.EQ.0) NI[=51
IF{NJ JEQ.0) NJ=2
DO 9J0 NU=1,NOC
0O 100 1=1,20
100 HEAD(I1)=HEADT (NOy1)
: BAB=DEXP{DLGAMA{AINU)) +OLGAMA{BINQ) ) -DLGAMALA(NO) +B(HUI))
IF(IVAL .EQ.0) GO TO 200
PRINT 600
600  FURMAT(*L1')



150

PRINT &02,HEAD
602  FORMATU//TL15,2044)

PRINT &05,A{NOJ,.B{NU)
605  FORMAT(//T15,'PROBABILITY DENSITY FUNCTION',

&/T15,°0F BETA DISTRIBUTIUN'//

*T15, "WITH PARAMETERS ¢ A = *,G15.7/7313,'B = ", GL5.7)

PRINT 610,BAB
610 FORMAT(T33,'B(A,B} = *,Gl38.10)

CALL GPAILAINO),B(NO})

PRINT 612
612  FURMATIZTL5,600°=7)/T22,%P1,T45,'GIP)*/T15,40(%=1]1/7]
C *%& CALLULATE LENSITY FUNCTION
200 CALL GPAIPI4PJyNI,AINO),B{NO),P,GsIVAL,BAB]

PRINT 622
622  FORMAT(S 1)

CALL GPAIPJPK NJyAINO)4BIND) yPX,GXs 1VAL ,8AB)

DO 150 I=2,NJ

NC=Nj+1-1

PINC)=PX(1]}
150  GINZI=GX(I)

IFUIVAL.EQ.0) GO TO 250

AREA=AREAL+AREA2

PRINT 444 |
C ¢+ PLOT INDIVIDUAL CURVE OF DENSITY FUNCTION
250 IFL]PL-1) 253,252,251
251  NT=N]+NJ-1

IP=0

GO TQ 255
252 NT=NJ

GO TO 254
253 NT=N]

254  1P=IPL
255 IF{lVAL.EQ.-1) GO TO 399
00 300 I=1,NT
ID=NI*lP-1P+]
AALI)=P{ID)
AAINT+I)=G110)
AAACTI=P(ID)
300  AAAINT¢NO+1)=G(ID)
IFIIVAL.EQeD.AND.NUC .GT.1) GO TO 399
CALL PLOT (NG, AA,NT My NLr NS HEADy XAX: YAXy I XOUT, GMA X, GMI N}
PRINT 660,AIND) ,B(NO)
CALL GPAI(AING),B(ND})
C *%& CALCULATE DISTRIBUTIUON FUNCTION
399  NF=NT
NIl=N1-1
DPF=(PJ=-PF1i/NIL
PFI1)=PF1
PFINL)=PY
DO 400 I=2,NLL
400  PF({1)=PF{1-1}+DPF '
DU 401 [=2,NJ
NC=NI+I-1
401  PFINC)=P{NC]
N1=N1#NJ-1
DO 410 I=1,Nl
410  CALL MOBETA(PF(1),A(ND).BINC)I,FII),1ER)
IF(IVAL.EQ.0) 6O TO 450
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PRINT 600
PRINT 602 ,HEAD
PRINT 60&,A(NDJ,BINO}
606  FORMAT(//T15,°CUMULATIVE DISTRIBUTION FUNCTION',
*/T15,%0F BETA DISTRIBUTION'//
#T15, 'WITH PARAMETERS ¢ A = 1,G15.7/733,'8 = 4,G15.7)
PRINT 670 = |
670 Foanart/rls.ﬁoi--')/!22.'P'.Tas.'FtPa'1115.401'~'l/)
00 420 1=1.NI
420  PRINT 415,PFUL) .F(1)
415  FORMAT(T14,G1l5.74739,G15.7}
PRINT 622
DO 421 1=NI,NL
421  PRINT 415,PF{I}.FI(I)
PRINT 444
444  FORMATL/TL5,40('='})
C **& PLOT INDIVIDUAL CURYVE OF DISTRIBUTION FUNCTION
450 CONTINUE |
IF(1VAL.EQ.~1] GO TO 900
DO 455 I=],NF
1D=N1*1P-1P+]
AA(1)=PFLID)
AAINF+1)=F(1D)
FFUI)=PFLID}
455  FFINF*NO+1)=F(ID)
IF(IVAL.EQ.0.AND.NOC.GT.1} GO TO 900
CALL PLOTINUsAA NF ¢ M NLyNS ,HEAD X AX , FAX, 1XOUT , FMAX, FHIN)
: PRINT 660,A(NOJ,BIND)
900 CONTINUE

C *** PLOT COMPARISON CURVES
IF{IVAL.EQ.-1) RETURN
IF{NDC.EQ.1) RETURN
NO=NOC+1 '
CALL PLOTIND:AAAGNT NG 4NL,ANS,CBY ¢ XAX, YAX, [XOUT ,GMAX , GMIN)
DO 350 1=1,NOC
PRINT 650,1{HEADT(1,d),J4=1,20})
650  FORMAT(T20,1[2,' ~ ',20A4)
PRINT 6604,A({1),8{1)
660  FCRMAT{T26,%A = *,G13.6,2X,'B = ',G13.6)
CALL GPAI(AL}}:BL1))
350 COUNTINUE o
CALL PLITUNDFF ¢NF yNOyNLyNS,CBT,XAX,FAX, I XOUT,FMAX,FMIN)
DO 360 [=1,NOC,
PRINT 65041, {HEADT(I,J),J4=1,20)
PRINT 660,A(5).B(1)
360  CONTIMUE
RETURN
END
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SUBRUUTINE GPA{PL,P2,N;AsBsP,G, IVAL,BAB}
(LIRSS IR SRS RIS R R R RS AL RS AR S LA R R 2 R e R R 2 2R R 22 R S R R RS 22 R RS R L L 2
c* PURPOSESTHIS PROGRAM IS USED IN CONJUNCTION WITH BETDIS ONLY *
it 2R EATE ETS tt#tt?tt##t###t*#' EEE T ET IR EEEREFE S SRR EFER RIS IR RS SRR EREST S EF
IMPLICIT REAL*8(A-H,0-1)
DIMENSION G{53) ,P(53)
DP={P2-PLl}/(N-1]
C **% CALCULATE DENSITY AND DISTRIBUTION FUNCTIONS
P{1)=Pl
PIN)=P2
Nl=N-1
DO 105 1=2,Nl
105 - PUI}=PLI-1)+0P
DO 110 I=1,N
IF(PII).LT.L.0D00.AND.PC{I).GT.0,0D00} GO TO 106
GO TD 107
106  GI=(A-1.00)¢0LIG(P(I)}+{8~1.D0)*0LOGI1.D0-P{1)}-DLOG(RAB]
IFIGI.GT.~{68.000) GO TO 107
G11)=0.0000.
GD TO 110
107 Gll)-P(IJ'*lA—l DO)*{1.D00-P(I))**{B-1.00)/BAB
110 CCNTINUE
IF(IVAL.EQ.O} Reruau
DO 120 [=1,N
120  PRINT 620,P11)sG(})
620 FORMAT{T14,Gl5.7,T39,615.7)
RETURN

. ENTRY GPAL{A:B)

C **% PRINT REMARK UN EACH BETA u:sratadrzon
IFIA-1.0000) 400,410,420

400 IF{B~1.0000) 461.402,402

401  PRINT 501

501  FORMAT(T26,'G(P) GOES TO INFINITY AT P EQUAL O AND 1')
RETURN

402  PRINT 502

. 502 FORMATIT26,'GIP) GOES TO INFINITY AT P EQUAL 0%}

: RETURN ,

410 IF(B-l1.0000) 411,412,413

411  PRINT 511

511 FORMAT{T26,%GIP) GOES TO INFINITY AT P EQUAL 1"}
RETURN _

412  PRINT 512

512 FORMAT(T2&,9G{P} IS UNIFORMLY DISTRIBUTED')
RETURN

413  PRINT 513

513  FORMATIT26,'G{P) 15 MAXIMUM AT P EQUAL 0')
RETURN

420 1F(B-1.0D00) 311,422,423

422  PRINT 522

522  FORMAT(T26,'G(P) 15 MAXIMUM AT P EQUAL 1°}
RETURN

423 PMAX=(A~1.0000} /({A+B~2.0000)
PRINT 523, PMAX

523 FORMAT(T26,'G(P) 15 MAXIMUM AT P EQUAL *,F10.7)
RETURN
END
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SUBROUTINE MUBETA(X, P, Qs PROB: IER}
CHARBIEEMBNFE RN E NI EH TR R AR R SR AT IR RPN TR R R R AR R SRR R R CR R RN ke R R R RS Pk RN RN I G K

C* *
C* FUNCTION: EVALUATE THE INCOMPLETE BETA DISTRIBUTIGN FUNCTIGN *
C* *
C* PARAHETERS' *
C* X VALUE TO WHICH FUNCTION [S TO BE INTERGRATED. X MUST BE IN THE *
C* RANGE (0,1) INCLUSIVE. *
cx P - INPUT [157) PARAMETER (MUST BC GREATER THAN 0) *
C+ Q - INPUT (2ND) PARAMETER (MUST BE GREATER THAM 0) *
C* PROB - UUTPUT PROBABILITY THAT A RANDOM VAPIABLE FRGM A BETA DISTRIBUTIUN *
C* HAVING PARAMETERS P AND Q WILL BE LESS FHAN OR EQUAL TOU X. *
C* 1ER ~- ERRUR PARAHETER. *
C* JIER = U INDICATES A NORMAL EXIT *
Cr TER = 1 INDICATES THAT X IS NOT IN THE RANGE (0,1) INCLUSIVE *
Ce IER = 2 INDICATES THAT P AND/OR Q 15 LESS THAN OR EQUAL TO 0. *
C* *
C+ CODE BASED ON SIMILAR CODE BY N. BOSTEN AND E.BATTISTE AS MODIFIED By *
C¥ M. PIKE AND J. HOO. *
Ce ’ *
(M2 P TR I IR PR E RIS L2 ER I SRR SR TS 202 SR R EE R ER 2 RS 2R R R AR RER 222 £ 2 20

DOUBLE PRECISION PS,PX,Y,PL,DP,INFSUM,CNT,WH, XB,0Q,C,EPS+EPS1
DOUBLE PRECISIUN ALEPS ,FINSUN,PQsDA,OLGAMA
DOUBLE PRECISION X,P,Q.PRUB
C DOUBLE PRECISION FUNCTION DLGAMA
¢ MACHINE PRECISION
DATA EPS/1.0-6/
C SMALLEST POSITIVE NUMBER REPRESENTABLE
DATA EPS1/1.D-78/
C NATURAL LUG DF EPS51
DATA ALEPS/-179.6016D0/
C CHECK RANGES OF YHE ARGUMENTS
Y = X
IF ({X.LE.1.0) .AND. (X.GE.0.0)) GO TO 10
[ER = 1
GO 10 L4
10 IF {(P.GT.0.0) .AND. (Q.GT.0.0)! GO TO 20
IER = 2
GO TO 140
20 IER =0
IF (X.6T.0.5) GO TO 30
INT = 0
GO TO 40
C SWITCH ARGUMENTS FOR MURE EFFICIENT USE OF THE POWER
C SERIES
30 INT = 1
TEMP = P
P =qQ
Q = TEMP
Y-IODO"Y
40 1F (XWNE.0s «AND. X.NE.l.) GO TO 60
C SPECIAL CASE - X I5 0. OR 1,
50 PROb = 0,0000
GO TO 130
60 1B = Q
TEMP = |8
PS = Q4 -DFLDATLIB)
IF (Q.EQ.TEMP) PS = 1.D0
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op
0Q
PX

P
Q
DP*OLOGIY )
PQ = DLGAMA{DP+DQ)
Pl = DLGAMA(DP)
C = DLGAMA(DQ!}
04 = DLOGIDP)
DLGAMA IS A FUNCTION WHICH CALCULATES THE DOUBLE
PRECISION LJIG GAMMA FUNCTION
XB = PX + ULGAMA(PS+DP) - DLGAMA(PS) - D4 - Pl
SCALING '
18 = XB/ALEPS
INFSUM = 0.D0
FIRST TERM JF A DECREASING SERIES WILL UNDERFLOW
IF (IB.NE.U) GO TO 90
INFSUM = DEXP(XB)
CNT = INFSUM*DP
CNT WILL EQUAL DEXP{TEMP)*(1..D0-PS)T#P#Y*+[/FACTORIAL (I}
WH = 0.0D0
BO WH = WH + 1.00
CNT = CNT#*{WH-PS}*Y/WH
XB=DP+WH
IFICNT.LE.XB*EPSL} GO TO 90
XB=CNT/XB
INFSUM = INFSUM + XB
IF (XB/EPS.GT.INFSUM) GO TQ 80
DLGAMA IS A FUNCTION WHICH CALCULATES THE DOUBLE
PRECISION LOG GAMMA FUNCTION
90 FINSUM = 0.0D0
IF {DQ.LE.1.D0) GO TQ 120
XB = PX+ DQ*ULO3{1.DO-Y) + PQ - Pl - DLOG(DQ) - C
SCALING
1B = XB/ALEPS
1F (IB.LT.0) 1B = O
C = 1.00/11.00-Y)
CNT = JEXP(XB-OFLOAT(IBI*ALEPS)
PS = DQ
WH = DQ d
100 WH =WH =-1.00
If (WH.LE.0.0DO) GO TO 120
PX = (PS#C)/ (DP+WH)
IF (PX.GT.l1.0D0) GO TO 105
IF (CNT/EPS.LE.FINSUM.UR.CNT.LE.EPSL/PX) GO TO 120
105 CNT =CNT#PX
If (CRT.LE.1.D0) GO TO 110
RESCALE
1B = I8 - 1
CNT = CNT#EPSL
110 PS5 =KH
[F (IB.EQ.0) FINSUM = FINSUM + CNT
G0 TO 100
120 PROB =FINSUM + INFSUM
130 IF (INT.EQ.0) GO TO 140
PROB = 1.0 - PROB
TEMP = P
P =q
Q = TEMP
140 RETURN

END

LI B I}
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PLOT
CDII...!....-O.I.-Il'll.‘..l..'.‘...l...l.-.-..‘l‘..oll..l'.l.l.-.PLUT
PLOT
SUBRUUTINE PLOT PLUT
: PLOT
PURPDSE PLUT
PL3IT SEVERAL CROSS-VARJABLES VERSUS A BASE VARIABLE PLOT
PLUT
USAGE pPLAT
CALL PLOT (NDsAysNyMyNLNS,COT s XAXy YAX, [ XOUT yAXMX JAXMN}
PLOT
DESCRIPTION DF PARAMETERS PLOT
ND - CHART NUMBER (3 DIGITS MAXIMUM) PLOT
A - MATRIX UF DATA TO BE PLOTTED. FIAST COLUMN REPRESENTS PLOT
BASE VARIABLE AND SUCCESSIVE COLUMNS ARE THE CROSS- PLOT
_VARIABLES {(MAXIMUM IS 9). PLOT
N - HUMBER OF ROWS IN MATRIX A PLOT
M~ NUMBER UF COLUMNS IN MATRIX A (EQUAL TOU THE TOTAL PLOT
NUMBER OF VARIABLES). MAXIMUM IS 10. PLOT
NL — NUMBER OF L INES IN THE PLOT. IF O IS SPECIFIED, Sl PLOT
LINES ARE USED. PLOT
NS - CODE FOR SORTING THE BASE VARIABLE DATA IN ASCENDING PLOT
ORDER PLUT
0 SUGRTING 1S NOT NECESSARY [ALREADY IN ASCENDING PLODT
ORDER) . PLOT
1 SORTING IS5 NECESSARY. PLOT
COT~- CHART DESCRIPTION {BO CHARACTERS,DIMENSIUN 20)
XAX~- BASE VARIABLE-AXIS DESCRIPTION (& CHARACTERS)
YAX- CRDOSS VARIABLE-AXIS DESCRIPTION (6 CHARACTERS)
IXOUT - MARKS ON BASE VARIABLE—AXIS WILL BE PRINIED
EVERY 1XOUT DATA PUINTS
IXQUT=0 PRINT MARK ON EVERY DATA POINT
AXMX - MAXIMUM VALUE ON THE CROSS VARIABLE AX1S
AXMN - MINIMUM VALUE ON THE CROSS VARIABLE AXIS
IF AXMX & AXMN = 0.0DO0,MAX.E MIN. VALUES
IN THE MATRIX A WILL BE USED
PLOT
REMARK S ' . ‘ pLUT
NINE PLOT
PLOT
SUBROUTINES AND FUNCTIGN SUBPROGRAMS REQUIRED PLOT
NONE PLOT
PLUT
....l‘......l...'.".l..lI.O...-I.‘.O."...‘..‘...'0..............PLOT
PLOT
SUBRUUT INE PLUTINO jA, N,M,NL NS,COT,XAXsYAX, [XOQUT ; AXMX ¢ AXMN}
IMPLICIT REAL*8(A-H,0-1)
OIMENSION QUT(LOL) ,YPRILL) 4ANG(9],A(2651
DIMENSION CDT(20)
DATA BLANK/Y 9/ ANG/ Y1t 929,939,949 ,150 spe o709 180 951/
PLOT
FORMATI1HL , 37X, "CHART ', 13,4X,20A4/)
FORMAT(LH o L6Xs '+ 410( ' —mmmmmmm +%) 45X A6)
FORMATU{LH ,9Xs11F10.4) PLUT
FORMAT{LHO ;15X AG/)
pPLOT
..QI....I.’...-.Iﬂl..-.l'.‘..“l.-....l.....‘..‘l.....I....‘..-.I-.OPLUT
PLUT
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260

270
280
290
300
310
320
330
340
350

380

460

470
»80
43U



C

C

c

C
10
11
12
14
15

C

C

c
16
ls

c

c

C
20

c

C

C

C

c

c

22
26
28
30
40

41

c

C

c

90

IF{IXOUT.EQ.0) IXQUT=l
NLL=NL

IF(NS) lor 16, 10

SORT BASE VARIABLE DATA IN ASCENDING CRDER

DO 15 I=1.M

DO 14 J=,N
IECALTII=ALJ)]) 14y 14, 11
L=I-N ;

LL=J-N

D0 12 K=1l,H .

L=L+N
LL=LL+N
F=A(L)
AtLI=A[LL)
AlLL)=F
CONTINUE !
CONT INVE

TEST NLL

IF(NLL) 20, 18, 20
NLL=51

PRINT TITLE
WRITE (64 1JNO ,COT

FIND SCALE FOR BASE VARIABLE
XSCAL={A(NI-A(1])/(NLL-1)

FIND SCALE FOR CRUSS-VARIABLES

IF (AXMX.LELAXMN) GU TO 22
YMIN= AXMN

YMAX=AXMX

60 TO 41

M1=N+1

YMIN=A(M1)

YMAX=YYIN

MZ=M*N

DO 40 J=ML,M2
IF(ALJI-YMIN) 284+26,26
IF{A(Ji-YMAX) 40,40,30
YMIN=A{J)

GO TO 40

YMAX=AL J)

CONT INJE

YSCAL=( YMAX-YMIN}/100.0000

PRINT CROSS-VARIABLES NUMBERS
YPRI1)=YMIN

DO 90 KN=1,9
YPREKN+1)=YPRIKN}+YS5CAL*10.0D00

PLAT
PLLT
PLOT
PLOT
PLOT
PLOT
PLOT
PLOT
PLOT
PLOT
PLOT
pLOT
PLOT
pLOT
PLOT
PLOT
PLOT
pLOT
PLOY
pPLOT
gLaY
pLOT
PLOT
PLOT
PLOT
PLOT
PLOLT

PLUT
PLOT
PLOT
pPLaT
PLUT
PLOT
PLOT

PLOT
PLOT
PLOT
PLOT
PLOT
PLOT
PLUT
PLOT
PLUT
PLUT
PLOT
PLUT
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5uc
S10
520
530
540
550
560
570
580
590
6u0
elu
620
630
640
650
6560
670
680
690
700
710
720
T30
740
750
160

B&O
810
880
890
900
910
92Q

930
340
50
g6V
970
980
990
1u00
loto
10620
1030
LU40
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ABSTRACT

To use the compound beta-binomial probability model in the analysis
of component failure data of the failure-on-demand type, specific values
are first needed for the parameters of the beta function which serves as
the prior distribution of component failure probabilities. Five methods
for estimating the beta parameters from observed failure data are examined
in this work: (i) matching moments of the prior distribution to data
moments, (ii) maximum likelihood method based on the prior distribution,
(iii) weighted marginal matching moments, (iv) unweighted marginal
matching moments, and (v) maximum likelihood method based on the marginal
distribution. The distribution of the beta estimators for each method
was obtained empirically by using various sized samples of simulated
failure data that were randomly generated from a known beta-binomial
distribution skewed towards low failure probabilities.

From these empirical distributions, many properties of the estimators
were examined. It was found that the prior matching moments method,
which is computationally the simplest and which almost always yield
parameter estimates, gives the smallest bias and mean squared error in
the parameter estimates for small sample sizes (s 10). This method also
yields estimated prior distributions which are more conservative from a
safety viewpoint than those obtained by the other estimation methods.
Moreover, the other estimation methods occasionally fail either to give
any parameter estimates or to produce realistic parameter estimates from
failure data of small sample size. For large sample sizes (z 20), the
marginal maximum likelihood estimation method becomes superior while the
prior maximum likelihood method amost always fails to give any parameter
estimators and hence is judged unsuitable for the analysis of failure

data from components with low failure probabilities.



