THE DESIGN AND IMPLEMENTATION OF PRONTO

PROCESSOR FOR NATURAL TEXT ORGANIZATION
by
Steven Michael A__nderson

B.S., Kansas State University, 1961

A MASTERS' REPORT
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department af Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

7 b’m@ﬂ

1983

Major essor

2 66 ¥
lf‘f ‘f -
1757 TABLE OF CONTENTS
A5 3
e
CHAPTER
I. Introduction. . « . « « v v v v v o v« .
LI, Te¥h Organiz2aliom. o « « o« « o v o w o o wowow = g
A. Text Structure
B. Text Delimeters
C. Used/Mentioned Text
0. Text Processing
III. PRONTO Design Primitives. . . . « + « « « « + « .
A. Basic Classes and Functions
B. Syntactic Structures
C. PRONTO Restrictions
IV, PRONTO Functions. . « . v v & v ¢ & & o & &
A. Find
B. Display
C. Copy
D. Move
E. Insert/Add
F. Delete
G. Name
H, PCM
V. PRONTO Structure. . . & ¢« & ¢ &+ ¢« v o s o «
A. Preprocessor
1. Design
2, Functions
B. Command Interpreter
C. Post Processor
VI. PRONTO Modules . &« & & v o o o o « o = s » « « »
VII. An Example PRONTO Program . . « « ¢« ¢ v ¢ o« & o & « o« o &

th

PAGE

13

19

All202 57v201¢c

CHAPTZR 1
INTRODUCTION

The purpose of tnis report is to describe the design of a program-
ming language, using natura]l language as its base. This language is aimed
at providing a tool for knowledge representation.

Knowledge engineering is a growing discipline in the area of artifi-
cial intelligence (Al). Much of the current focus in knowledge representa-
tion is in the development of high level languages to aid in providing
structures for "patterns of inference.” These knowledge representation
languages are usually supported by embedding in host languages! The most
common of these host languages is LISP, which is a powerful symbol manipu-
lation language capable of supporting knowledge representation. Although
LISP supplies a powerful modeling tool, it is not the first phase in de-
signing knowledge descriptions. Most descriptions are formulated using
natural Tanguage; thus the purpose of this new language is to develop a
friendly user tool for natural knowledge descriptions.

Several approaches to natural language processing have been at-
tempted over the years. Much of the focus of knowledge engineering has
been aimed at developing intelligent systems. This area of knowledge
engingering is extremely useful and will prevail as such, but the present
state of the art has focussed much of its efforts on present computer

languages and tools. These present tools have sufficed in offering a

means for studying human and computer interfaces in areas such as know-
ledge engineering, but growing trends indicate needs for more sophisti-
cated tools. Natural Tanguage would appear to be ideally suited to the
task, as it is a natural first step in the development of knowiedge
descriptions. The goal then is to develop a sophisticated natural lan-
guage processor (NLP) to meet the growing needs for better knowledge
engineering tools.

There are several computer ianguages and language tools presently
available to use in developing NLP's. A very modest, but practical ap-
proach to use would be to choose an embedded language well suited to
handling natural language text. Current machine architectures support
this idea, as is seen through many word processing machines. Well written
word processors support almost all of the basic data operations needed
for such an NLP to be built. Additions will need to be added to make
such a new language a proper virtual maqhine processor. However, a
readily available base machine has been established.

This new language for Al based on a sophisticated word processing
virtual machine is called PRONTO, or Processor for Natural Text
Organization. PRONTO is a symbol manipulation language much Tike LISP,
which incorporates both uniforﬁity of program and data. Like LISP,
PRONTO features high user accessibility in both program and structure.
These structural features can be embedded in LISP; for example, MACLISP
and INTERSLISP supply these capabilities. The goal of PRONTO, however,
is to provide this structural feature as a basic attribute.

PRONTO provides the same structure for both program and data, 1ike

a word processor, where all text can be easily made visible using

standard display commands. The command seguence is simply part of the
text; thus, there is only the need in defining a text interpreter which
can handle these command sequences.

The development cycle of most Al interpreters can easily be imple-
mented in most languages such as LISP or SNOBOL. The development cycle
usually takes the form:

1. Host Language
2. Editor
3. Debugger

INTERLISP features this type of structure. Why PRONTO? Syntax is a
major drawback in using LISP. Long, deeply nested S-expressions provide
for difficult reading, even for well oriented LISP users. Another major
drawback to LISP is its difficulty in arriving at user friendly and

easily accessible data structures. PRONTO, then, is designed specifi-

cally with this in mind.

CHAPTER II

TEXT ORGANIZATION

A, TEXT STRUCTURE

Most attempts at natural language processing are aimed at analyzing
textual content. The goal here is not to survey textual content, but
to understand the content's underlying structure. Knowledge Engineering
relies heavily on how well the data is presented both in content and
structure. The structure supplies emphasis to the content which enables
the structure to describe the casual flow. PRONTO'S concern is defining
the structure syntactically in hopes of understanding the underlying
description.

Natural language provides its own hierarchy of categories. The
levels are, at the most primitive, a character, word, phrase, sentence,
paragraph, section, chapter, part, volume, book, series, subject, library.
It is obvious that many more levels may be added. It is also very clear
that some of the hierarchy may not be necessary or even desirable. (fig. 1)

Numeric types could easily be introduced in normal fashion.

B. TEXT DELIMITERS

In analyzing this structure, it must also be noted that each cate-
gory in the hierarchy has a unique separator associated with it. Some
of these separators are not readily apparent, but are very much evident
when associjated with content or textual layout. Several separators are

4

Char Char Char
W Word Wo
e Phrase Phras

c auae 01iﬁj:/ji}use

Sentence Sent. Sent.

Paragraph P 2o

Sectlcn Sectlon action

Text Tex?t

Archlve

This nine level structure may not ve adequate (LISP has ability
for indefinite number of levels). New levels may bte introduced
by adding more symtactic conventlons (LISP uses brackets for
determining levels). This is what we do in Natural Language

Text anywvay.

fig 1. DATA TYPES

clear in their usage, such as & period or comma and & blank, which depict
sentences or phrases respectively. Conceptually, it would be easy to
define mnemonic separators for those separators not readily apparent.

The category abbreviations:

Character Eoch (A null -- dummy separator)
Word Blank

Phrase, Clause Comma, Colon, Semi-Colon

Sentence Period, Exclamation, Question Mark
Paragraph Eopara

Section Eosect

And so on.

Needless redundancy is avoided by not inserting lower level separators
where higher Tevel separators exist. A notable exception, however, is a
period at the end of a paragraph, section, chapter or higher. This might
be explained by saying an "eopara" is equal to a "period" plus some formal

layout specific notion.

C. USED/MENTIONED TEXT

The hierarchy is incomplete without mention of the need for a refer-
ence category. The need for a category to indicate named items or refer-
enced objects is needed in all languages, espacially computer languages.
There are several ways these reference objects may appear in text; for
instance boldface notation or italics provide different types of print.
Underlining and capitalization provide another means to highlighi or
reference pieces of text. This use/mention type of distinction is
probably best explained by showing how computer languages use referenc-
ing. Variable declarations and keywords are prime exampies (DCL VAR)
or (if-then-else). Natural language may be parallelled to this by show-
ing how the title of a book names a book's contents or how a paragraph

title names the section of text following the header.

Text can and does contain partial descriptions of the text it is
conteined within. Many of these partial textual descriptions are based
highly on content. This supplies another use/mention distinction of a
different kind. For instance, the use of two or more naming conventions

to both describe and then to detail what was previously described.

D. TEXT PROCESSING

Text is naturally processed by reading left to right and front to
back in a linear type fashion {at least in English). References within
the text can detour readers to pictures or other such reference points,
but to return to the flow and time passage of the text, the reader must
return to the point of departure. This processing parallels the action
undertaken in typical computer languages when subprograms or subroutines
are involked. The subprogram is called and a detour to the routine is
taken. When processing finishes, the subprogram returns to the place
from where it was called.

Natural text fails to process procedural definitions without suf-
ficient structural support. Text procedures incorporate the use of
naming (numbering) conventions to handle this aspect, such as a numbered
sequence of instructions. Computer languages, however, are well suited
to procedure handling. PRONTO is not solely natural text, but a product

of the structure that underlies the text.

EXAMPLE 1. Use/Mention Self Referenceing Text & Partial Text Description

"This is the first sentence of the second paragraph."

The semantic context contains references (uses) of TEXT STRUCTURES.
These references, are themselves, contained within a TEXT STRUCTURE. First
sentence refers to the self-contained structure. Second paragraph refers
to a higher order text level, further describing the "Text Structure."

EXAMPLE 2. Self referencing Text
"This sentence contains five words."

Sentence refers to the structure; five words refers to the same struc-
ture. The text type and the text type's contents are both USED in describ-
ing the structure.

EXAMPLE 3. Natural Text Procedural Description
What to do when you get & flat tire on your car.

The first thing to do when encountering a flat tire is to
locate the spare tire. Once the spare tire has been located,
usually it is in the car's trunk, rempve the spare tire and
locate it near the flat tire. The next step is to find the
jack and all of its parts. Among the jack's parts is usuaily
a lug nut remover/tightener. Remove first the hubcap and
then begin unscrewing the Tug nuts. After all lug nuts have
been loosened a 1ittle, insert the jack under the bumper closest
to the flat tire, etc. etc.

It should be easy to see that the description above is content driven.
Unless PRONTO specifically describes keywords or phrases as syntax pro-
cedural, processing using Natural Text structure will be impossible.

PRONTO uses text structure to support procedural processing.

EXAMPLE 4. Structure by Sequence of Events

Find the spare tire

Remove spare tire and place near flat tire

Find the jack and its parts (*assemble the jack*)
. Loosen the lug nuts

e PO -
. v .

etc.

The numbers indicate the specific steps to follow, each in sequence by
structure, for PRONTO these numbers would be NAMED text executed by
primitives.

CHAPTER III
PRONTQ DESIGN PRIMITIVES

A. BASIC CLASSES AND FUNCTIONS

PRONTO is designed around the concepts of word processing architec-
tures. MWord processor operations are similar to most other conventional
data operations. Conventional systems manipulate bits, bytes and words
with operations such as add, shift and move. Word processors manipu-
late characters, phrases, and sentences up to text with operations such
as move, copy and display. Both word processors and conventional lan-
guages support a finite set of basic primitives. PRONTO, to manipulate
text, must also support this finite set of data operations contained
in word processor structures. The goal of PRONTD is to incorporate as
many characteristics of natural language text in its design, without
degrading the ability to process descriptions procedurally.

A basic set of text handling primitives consists of:

1. move 4, insert
2. copy b. delete
3. find 6. display

For these text operations ito be complete, the concept of a cursor
has been added showing location and flow of processing.

PRONTO must also be able to handle descriptions processing using
conventional methods. A subroutine call is added to handle procedural

processing. PRONTO also uses a second cursor to handle sequence control.

This cursor, & program cursor, serves a similar function as & program
counter in conventional systems.

To round out the language's primitive functions, a naming conven-
tion is added. This naming convention serves the purpose of allowing
PRONTO to have the equivalent of an assignment statement.

This complete set of primitive functions make up the PRONTO lenguage.
The data types these functions perform their work on consist of text
and text class delimeters {fig. 2). A PRONTO program consists of a se-

guence of PRONTO primitives strung together toc produce a desired behaviour,

B. SYNTACTIC CONVENTIONS

PRONTO not only uses the text classes and text class delimiters
seen in fig. 2, but incorporates several other features defined to aid
in seeing how the primitive functions will do their work. PRONTO names
are handled much the same way that LISP variables are handled -- by
direct binding of identifier to value. This means that the text after
the name is the value of the variable. Variable bindings become explicit
in both name and value. Structure within text is provided by punctuz-
tion marks and every data type is terminated by one of a few terminators
directly related to it or by any terminator associated with a data type |
higher in the hierarchy (fig. 1). Each piece of text can then be de-
scribed as the portion of text between relevant separators, much Tike
LISP'S usage of parenthesis.

Delimited parameters are used in function calls and subprogram
calls. The convention employed is fo double quote named text and text

class descriptors. Single quotes are used within subprogram titles to

ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE

ToxT TiT AZTUAL DEFALLT
CLA3S CIA433 IIPLEME TATION VALUES
DELIMNITER USAGE
: WORD H SPACE i SFACE § SPACE :
: : or : : H
H H BLANK 1 : :
: THRASE : COMA s COMMA : QoA :
H CLAUSE s COLON s : or 3 H 3 :
: s or SEMI-COLON: 3 H
H H : : :
: SESTENIE s PEEIOD : . : PERICD H
: H EXCIAMATION: or { H . :
: : QUESTICH : or 7 H :
: : s s 3
s+ PARAGRAPH ¢ FERIOD : eopara ¢ PERIOD $
: s & : # " :
5 : ecpara : ' :
: SZCTION : FERITD : eosect s FERICD H
: H & 5 3 $ N !
H] eosect] % s
§ PART s PERICD : eopart ¢ PERIOD H
: : & H % : . H
: s eopart H H :
: BOCK : BEnd of Text: EOT H EOT :
: or : : / 3 / :
H FILE H 1 3 H

fig. 2 FRONTO Text Classes

The USE/MENTION feature employs an '@ " symbol to delimit
KAMED text,

Each text class is both preceeded and succeeded by its class
delimiter or a delimiter of a higher class, Named text
delimiters are not in the hierarchy, therefore do not allow
replacement or substitution of separators.

delimit parameters. Comments are handled by the use of angle brackets.
Comments are ignored in normal processing reguirements.

Text descriptors are defined as:

(eow, blank) end of word

(eoph, eocl) end of phrase, end of clause
(eos) end of sentence

(eop) end of paragraphy

(eosect) end of section

(eoch) end of chapter

(eopart) end of part

(eob) end of book

(eot) end of text

When used, text descriptors are quoted.

C. PRONTO RESTRICTIONS

PRONTO is currently being implemented &s an interpreter written in
LISP. Several programming conventions have been adopted to deal with
current LISP implementation and computer facilities available. A1l text
delimiters are explicitly portrayed as non alphanumeric printable
characters. Numbers are not part of the current PRONTO hierarchy as
LISP treats numbers in a separate way. Single character manipulation is
not implemented under the current LISP-PRONTO environment. Storage
management is left to the host language. Full screen diagnostics are not
implemented in this version of PRONTO, although the design supports the

need for full screen capabilities.

CHAPTER IV
PRONTQ FUNCTIONS

A. FIND

Finding a pattern in the context of a PRONTO program produces a Boo-
Tean result of success cr failure. Sequence control is a primary function
of the find primitive. In conjunction with find is usually a move com-
mand. The program cursor is usually the item moved. A special function
(PCM) moves the program cursor to the desired location pending the de-

sired success or failure of the find search.

EXAMPLE 1:
Given the sentence sequence:
. The hat is blue. Find shoes, PCM para back.

Current *PC*

And the program segment:
find "hat",

PCM "sentence" success

Results in:
. The hat is blue. Find shoes, PCM para back.
PC

Transfer of control, where Find shoes, becomes the next
instruction.

13

14

In the context of the PRONTO System, the find primitive is responsi-
bie for locating and distinguishing between named text, subroutines and
character strings of varied length. In addition to finding these PRONTO
text structures, & specialized command will find the current scope under
which the command is being executed. This is simply the current named
text hierarchical class.

The find primitive is the primary function involved in controlling
the sequence of execution that underlies the PRONTO machine. The find
routine establishes the conventions used in placement of the cursors.

The find command will aiways find the previous item to which the find
parameter suggests. This convention is adopted for purposes of scoping,
error checking only need be done when the find wishes the first item
within a scope.

The find command searches forward within the scope of the command
from the initial text cursor location. If the match is not made by the
end of the scope, find searches from the top of the scope back to its
initial search start. The result of the find is success or failure ex-
cept when finding the scope. On finding the scope the text cursor is
reset to the beginning of the current scope and processing proceeds from
there. _ |

Find takes one parameter, be it a string or word, name or subroutine.
The parameter of the find command may be quoted or unquoted. Quoted
parameters are usually processed quicker because the quote acts as a
delimiter.

The find command may be executed from the editor at execution level

or from a subprogram. The find scope command is executable only at the

execution level.

B. DISPLAY (Text; Class or Structure)

The PRONTO display routine invokes the find primitive to locate the
display parameter 1ist for the desired match. If the match is made, the
display primitive prints the structure from where the match was made,

otherwise the parameter 1ist is displayed.

EXAMPLE 1: Sentence: THIS is a sentence.
Result: Display "THIS"

THIS is a2 sentence.

EXAMPLE 2: Sentences: (eop) PARAGRAPH with a sentence.

this is the second one (eop)

Display "Paragraph”
Result: PARAGRAPH with a sentence.

This is the second one.

The display function supplies any lower order text class delimiters
that are not stored internally as is the case in Example 2, where a
period is placed as the final character. Indentation is handled when
paragraph delimiters are encountered. Capitalization occurs for the
first character {non-blank) following an end of sentence delimiter.

The display function, like the find function, may receive its para-
meters guoted or unquoted. The display always returns a result no matter

whether a parameter has been matched or not. Unmatched parameters return

16
as entered. This function has entry points at the subprogram level and

the execution level.

C. Copy

The PRONTO copy function invokes the find primitive to search for
the text to be copied. A temporary copy buffer is issued upon success-
fully finding the text. Failure results in an appropriate message. The
copy is placed directly following the text cursor making the copy of
text the next text cursor. Failure to copy leaves the text cursor where
it was. Copy uses 1ist surgery when copying text to form a new permanent
text structure.

Copy is accessible at both the subprogram level and the execution
level. Quoted and unquoted parameters are accepted. The temporary
copy buffer is left for the LISP garbage collector. A1l other global

registers are preserved while copy takes place.

D. MOVE

At this stage in PRONTO design, move is not implemented. Move is
just a copy that uses two 1ist surgeries to move blocks of text from one
section or subprogram into another section or subprogram. Move is destruc-
tive to the original text buffer, but builds a new text buffer keeping all

pointers untouched by the move intact.

E. INSERT - ADD
PRONTC add is used only at the execution level. Its purpose is to
reinitialize input programming. A1l adds are done to the end of the text

buffer. To make a change, with add, a move or copy function must follow.

with the scope of PRONTO, in supplying only primitives to accomplish all

user functions.

Fa BELELE

Delete is not currently implemented under PRONTO. Delete is just
a move to a null area where the garbage collector will take over. Delete
will be accessible at both the subprogram level and the execution level.

List surgery is involved; changes to original text are permanent.

G. NAME - UPPER/LOWER

The PRONTO naming scheme relies on a look up table implemented as an
association list under LISP. Design changes were made to this module
due to the present system's inability to convert uppercase to lowercase,
and vice versa. Permanent upper case involves finding the target text,
copying this text and replacing current text through 1ist surgery.
Lowercase involves the same process. The text named by a change from
lowercase to uppercase, is determined by the preceding textual class
delimeter. The command interpreter determines the name's scope. No
additional changes need be made once the néw text replaces the old

text.

H. PCM - Move Program Cursor

Program cursor moves control command execution. The program cursor
may move either backwards or forwards within its scope. Program cursor
moves require temporary forward and backward pointers to be established.
Like find, PCM wraps arocund within its scope and does not move unless
a move can be made.

Program cursor moves can be made at both the execute level and the

17

subprogram level. At the execute level, PCM's allow the user to execute

subprograms.

This is done in combination with an execute commanc.

18

CHAPTER V

PRONTO STRUCTURE
A. PREPROCESSOR

1. Design Reguirements:

The main characteristics of PRONTO require abilities to both
interpret text and»to procedurally manipulate text. PRONTO, 1ike LISP,
is a2 symbol manipulation language that incorporates uniformity of pro-
gram and data. Most implementations of LISP start as interpreters;
all word processors are interpreters; PRONTO being a text oriented lan-
guage naturally starts off this same way.

Word processors rely on the user to provide control, although
some global features allow for internal context testing. For PRONTO
to be & proper virtual machine, it must provide procedural control.

The text and commands, in PRONTO, are part of the same text structure.
The language primitives and functions are designed to be simply part
of the text.

A complete PRONTO system is then:

Word Processor
+ Command Sequences
+ Command Interpreter

Command sequences are simply part of the text. The PRONTO interpreter

is simply a text interpreter, providing command interpretation using the

19

20

text's natural structure as its guideline.

2. Functions
The goals of PRONTO preprocessor are to provide:
(1) a simple and convgnient means of inputting characters, and
(2) an easily accessible storage structure, capable of re-

trieving these characters as text.

Several features must be included for handling named text de-
scriptions, text hierarchical classes, syntax and procedurality. Although
implemented using LISP, the goal is to define in terms of PRONTO all pro-
cessing reguirements and structures.

The preprocessor is an interpreter designed to accept text a charac-
ter at a time. Each character is then analyzed and stored in an easily
accessible structure, a simple text buffer. There are only two classes
of characters to analyze:

(1) natural text separators, and

(2) the remaining alphanumeric characters.

For convenience and logic, normally non-printable separators such as
end-of-paragraph, end-of-chapter, end-of-text, etc. are required to be
explicitly input. These separators appear in natural text through skipped
Tines or skipped pages or like means. Storage requirements are kept
simple by represehting these separators through single characters.

The PRONTO preprocessor (fig. 3) serves as a monitor to control
character input. The flow control follows two generally simple paths:

(1) processing of natural separators, and

(2) processing of all other non-separator characters.

For handling the remaining text features, simple conventions are

CHARACTER
MARKING CONTROL

regular character
flow path.

MARK REGULAR add separators
CHARACTERS

add all characters
1o the word buffer

to make single words.

if char. is special
acknowledge it
as geparator.

MARK SEPARATOR
CHARACTERS

PRONTO WORD BUFFER

whenever a special cha.acter
is proceseed the WORD ZUFFER
deposits its data into the

main storage area, the TEXT .UFFER

PRONTQ Data Store *TEXT BUFFERW*

fig 3. PRE-PROCESSCR FLO7.

21

added to PRONTO'S syntax. The conventions used allow for flow along the
described processing paths.

(1) Named Text Descriptions - These USED character groups are

handied by adding a new unigue separator to the natural text separators.
PRONTO incorporates this separator as an explicitly input character,
much like the other non-printing separators. Logically, this is a syn-
tactic convention, but from a natural text standpoint, this USE distinc-
tion is itself a separator. HNatural text incorporates highlighting,
italics, bold face, underlining or a similar method to distinguish this
text. Flow control follows the path for all separators.
(2) Procedurally - Keywords are used in most conventional program-

ming languages. PRONTO introduces separators for:

{a) Comments -- This implementation incorporates the usage of

angle brackets <comment> , treating the angle brackets as a

special case of the separators.

(b) Parameters -- Single quotes denote the use of parameters

in PRONTO. Flow control on input follows the separator's

path.

(c} Primitives and Name References -- Double quotes are used

as separators for reference to USED text, or to reference text

classes.

EXAMPLE 1: "eps"

"sentence"

22

Double quotes also delimit PRONTO function primitive parameters.

EXAMPLE 2: Find "hat", where hat denotes the object for the
primitive to perform its action.

(3) Text Classes -- Procedurally, a simple lookup tabie is used to

handle the order of precedence of the class separators.

EXAMPLE 1:
CLASS FOLLOWED BY
Word Space
Phrase, Clause Comma, coion or semi-colon
Sentence Period
Paragraph Eop (*Special Character¥)
End of Text Eot {*Special Character*)
The hierarchical strength is depicted as the table flows
downward.
EXAMPLE 2: Find “eoph"

(1) This is a very shert sentence.

{2) The second sentence, unlike the first sentence,
contains a clause.

If the cursor is somewhere within the first sentence, the find
operation will stop at the higher text class. In this case, the end of
sentence will halt the find.

Name descriptions are not contained as part of the hierarchy,
although it should be noted that named/used text contains not only the

name separator, but natural text separators surround the name as well.

EXAMPLE: This SPECIAL sentence contains a named word.

*Where SPECIAL is all capitals is delimited by blanks
on both sides.

Storage conventions adopted by the PRONTO preprocessor are kept
simple, allowing for easy regeneration of input and minimal text charac-
ter storage. Text is stored by:

(1) keeping only the highest order separator needed to regenerate

other contiguously input separators, and

(2) single characters are formed into single words before being

piaced in PRONTO's permanent texti store.

EXAMPLE:
7. Desire Output
CHAPTER ONE
THIS IS A SECTION
This is the first sentence in the first paragraph. This is a

short paragraph.

The second paragraph is still shorter than the first one.

2. Input Would Be

(eochap) (eoname) chapter one (eoname) (eosect) (eoname) this is a
section {eoname) (eopara) this is the first sentence in the first
paragraph. This is a short paragraph. (eopara) the second para-

graph is 5ti11 shorter than the first one. (eot)

The input characters in brackets represent explicit non-printing
characters., Each word separated by a blank, represents the word and its

implicit end of word terminator.

3. Storage
The text and separators are stored as a simple linear 1ist.
Names are stored as sublists within the larger 1ist. Parameters, single
quotes as delimiters, within a named piece of text are stored as further

sublists of the name sublist.

24

29
OUR EXAMPLE:

(eochap (chapter one) eosect {this is a section) eopara this is the
first sentence in the first paragraph. This is a short paragraph

eopara the second paragraph is still shorter than the first one eot)

A1l text in PRONTQ, is surrounded by a header and tailer, which de-
pict the text class to which pieces of text belong. Natural text pro-
vides this structure be it implicitly, through Tine skips or indentation or
similar methods, or explicitly with periods, blanks and commas. PRONTO,
like all word protessurs, makes all text and text classes explicit.

The PRONTO preprocessor uses two buffers to manipulate and store
data. The first buffer is used to build words between separators; the
second buffer (fig. 3) is to store the separators and formed words. Pro-
cedural matters are not considered until all input has been stored in

the permanent text store.

B. THE COMMAND INTREPETER

The command interpreter is designed to process PRONTO function primi-
tives from both execute level and subprogram level. The command level
allows the user editor access to PRONTO's data store. The subprogram

level is tontained within the PRONTO store. Subprqgram execution must

initiated from the command level.
The command level functions as a PRONTO editors. Available

commands are:

1. Copy -~ Copies words, sentences, paragraphs or any other

Z,

3

4.

5.

Move --

Add --

Find ~--

Display =--

member of the hierarchical text clesses to the
current program cursor. Copy is used, normaily,

in conjunction with a move cursor command.

Like copy except the block of data moved is replaced
by a null character. 'The MPC command supplies the
destination for-the move. Data may be deleted by
moving to an unused storage area.

The add command is used to transfer control back to
PRONTO's preprocessocr, Normal preprocessor text in-
put takes place. To Add to text without leaving the
editor, the copy command is invoked. The copy com-
mand processes original data as well as existing data.
At the editor level searches for desired text or text
class. Upon successfully finding the text the active
cursor is moved to that location. Find is still a
success or fajlure function at this level. However,
the move cursor command is automatically invoked and
cursor movement follows upon success. Currently

find only works for subprogram levels.

Uses the subprogram find to locate the starting loca-
tion for the display command to use. Upon success-
fully finding the data, the desired text is displayed
in easy to read, pretty print format. At present,
only design work has been completed to print the
pretty-print version on the printer., The same pretty-
print can, however, be printed through the underlying

LISP machine.

26

6. Open -- Reads in an entire file using the preprocessor. After
completion of the read, the level remains the same,
the editor commands are all still accessible.

7. Close -- Prompts the user for a name tc fill with, and then
proceeds to write to that named text all characters
explicitly within the class of the close parameter.
'Close text' will terminate the entire PRONTO session.

8, PCM -- The program cursor move command is invoked to move the
cursor for: displaying, copying to, or moving to
desired location of action, for which all editor com-
mands do thier work.

9. Execute --The execute command attempts to process the current
cursor location. Subprogram control is attained when

the cursor is placed on an appropriate PRONTO program.

A1l editor-command level functions are applicable at the subprogram
level, with the exceptions of add and execute. Add and execute cause con-
trol to be shifted only from within the editor. The subprogram interpre-
ter behaves much differently from the editor. The subprogram level in
PRONTO consists of a full PRONTO program making strictly subprogram calls.
Each subprogram may in turn invoke other subprograms. Strict stoping

rules must apply. The design of the subprogram level is:

1. Program Calls -- From the PRONTO program, the first subprogram call
is initiated. Subprograms are named pieces of
text within the PRONTO store. However, subpro-

gram calls are not necessarily named calls. The

2

28
PRONTO program is simply a series of subprogram
references. The references are by name, not value,
and usually refer to & named subroutine. The com-
mand interpreter must perform a simple match be-
tween unnamed subroutines. Since named text is
special, & special buffer is maintained holding
the tocations of all named text. The primitive
function find with option "subroutines", is issued
to search linearly the special buffer area. Upon
successful match, program control is shifted to
the location designated by the resulting pattern
match.

Program Execution--The resulting pattern match ignores all parameters
in its search. Parameters are determined within
the subprogram. These parameters are ¢lassified
by type in the program calls, although, reference
to parameters in the body of the subprogram is

made by position.

EXAMPLE: PRONTC PROGRAM

Sub 1 'sentence'

Sub 2 'word' to 'word'

*Ppsition of parameters is the important aspect.
A11 references within subprograms are by position.
i.e. 'first sentence'

or 'second word'

ra
o

Scoping rules are dynamic, but could be explicit if so indicated by

the paramster reference.

EXAMPLE: Find '‘word 1' (in sentence 1 {in paragraph 2)).

The scope is the current named piece of iext where the program cursor

is active. The entire scope could, in theory, be allowed to further change
within this scope by allowing each text hierarchical class ip denote a
different scope. The initial design allows for scoping only named areas
of text, thus allowing further potential for future growth. The scope may
be changed by moving the program cursor to a named piece of text. Normal
program cursor moves disallow this, because movement is usually made within
the current scope. A set scope command can be employed, to allow shift-
ing from one USED text area to another.

Automatic scope changes take place upon subprogram calls. Since
pach subprogram is a USED block, transfer of control to new blocks emits
a new scope. The old scope is maintained by saving a second cursor in the
scope of text referencing each new subprogram call. This allows for con-
ventional programming to take place while maintaining the use of the

natural text structure.

€. POST PROCESSOR

The PRONTO post processor is the preprocessor in reverse. The pre-
processor does all the difficult work of syntax and name checking. The
post processor simply writes the PRONTO text buffer to a book (a file)
for system storage.

The post processor does not pretty-print the file, nor does it

30
keep all characters in the text store. Further storage optimization takes
place by throwing away any excess characters the user has manually put
in that the preprocessor couid have generated itself. The post processor
stores the data in minimal form required for the preprocessor to regene-

rate the user file,

CHAPTER VI

PRONTO MODULES

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

32

PEE_PROCESSOR

Calling FPunctions: PRONTO
Paraneterss EXPLICITLY - NONE :
IMPLICITLY - CHARACTER

Punctiouss MARK
DISFLAY

FURCTION DESCRIPTION

GLOBAL BUFFER *COMMAND* IS INITTALIZED
TO "INPUT". THE PARAMETER CHARACTER IS
ISSUED TO ACCEPT THE FORTE CCMING INFUT.

CASE *COMUAND* OFg
INPUT, USED or MENTICONED : MARK
EXECUTING : DISPLAY

This function moniters text input, Processing
is transferred between the PRE_PROCESSCOR aud
the EXECUTION level. The processor moniter
does not analyze characters, but issues space
for new input and mornitors whether or not the
USED/MENTIONED distintion is on or off, The
MARK function retums all character information
to *command* for PRE_PROCESSOR analysis,

MARK (CH)

Calling Function; PRE_PROCESSOR

Parameters: CHARACTER

Punctions Calleds GET_RDMACRO
MARK CHARACTER
MARK_SPECTAL

FONCTION DESCRIPTICN

The CHARACTER parameter is in fact a
new character. The CH receives the
value of the character "HEAD INY" from
ths Text Input Stream(TIS).
CASE CH ofr .
"SEPARATORS"™y MARK SPECIAL
"COMMENT": GET HDMACROC
Otherwise:s
MARK_CHARACTER

This function performs the actual system level
"READ". The new CHaracter is then analyzed to
determine which of the text flow paths te follow.
Processing occurs through the subroutines called,
USED/MENTIONED distinction is monitored, and
results are passed to the PHE_PROCESSCR.

33

MARE SPECTAL (T TYPE)

Celling Functionss MARK
Parametersy T TYPE ;Text type

Functions Called: GENERAL_APPEND
MARK CHARACTER

FUNCTION DESCRIFPTTON

If #COMMAND* is USED & T _TYPE Not 'eow!
MARK CHARACTER(T TYFE)

ELSE .
GENERAL APFEND 3 clear out word
I 3 tuffer
Add the Word Buffer te #TEXT#*
endif "

Return te MARK & set up for next Input.

This function processes all PRONTO *SEPARATORS*.
Named text, seta the *COMMAND* to USED, the
#COVMAND* remains USED until the next "eoname"
character is received, DBuffer conirol takes
place in the form of emptying the word buffer
through the call to GENERAL_APPEND, the *TEXT#*
buffer is updated to include the new word and
the succeeding *SEPARATOR.

¥»

MARK CHARACTER (NEWCH)

Calling Functions; MARK
MARK_SPECTAL

Parametexrs: NEWCH .

Functions Calleds NONE unless. *CQOMMAND* is USED
-If TUSED Then UPS
=UPS simply replaces the NEWCH
with its uppercase squivalent.

FONCTION DESCRIPTION

If #COMMAND* USED & Not Empty Word Buffer
TP (NEWCE) '

endif.

Add all NEWCE's to. Word Buffer, ignoring

(eow) tlamks, Blank characters are used

to empty the word buffer, except when USED

in Named Text. USED text does not dump the

Word Buffer until an “"eoname' *SEPARATOR* is

encounterd,

Each NEWCE issimply put into the Word Buffer until
MARK CHARACTER is called by MARK SPECTAL. When
#SEPARATCRS* are encountered, *TEXT#* is updated.
Taxt Cursor movement is monitored at this level,
mostly for future full screen implemetation. The
#TC* (text .cursor) points towards each new input,
with the exception of blanks, which are not stored.

36

GENERAL_APPEND

Calling ¥FUnctionss MARK SPECIAL
COMMENTS
GET_RDMACRO

Paramesters: NONE :

Functions Called: TUsed-or-Mentioned

¥ o

FUNCTION DESCRIPTION

Invoke LISP "IMPLODE" to make an Atom(word).
Add the new word;
If new word is USED Then
TUsed-or-Mentioned
Else
Add word to #TEXT¥ and Empty
the Word Buffer(*BUFFER*).

USED~OR-MENTIONED?
Calling Functionss GENERAL_APPEND
Parametersy NONB

Functions Called: NAME-IN-BUFFER

i FONCTION DESCRIFTTION

If *COMMAND* is MENTICNED Then
make ¥BUFFER¥® an individusl List for
Internal Storage of PRONTO.

Elae
NAME-TN-BUFFER

NAME-IN-BUFFER
Calling Function: _USED~OR-MENTIONED

FONCTION DESCRIPTION

This fu.ncti’o; a.ad.a another LIST level to
the contents of the *BUFFER*. PRONTO stores
TUSED text as SUBLISTS within *TEXTH*,

COMMENTS

Calling Function: GET_RDMACRO

Parameters: NONE

Functions Calleds GENERAL APPEND

FUNCTION DESCRIPTION

GENERAL_AFPEND . (% dump *BUFFER* to *TEXT#* *)
Initialize temporary tuff. with comment
delimeter " ",
WHILE character NOT comment delimetar DO
READ in character
ADD character to local temporary buffer
when blank character is reached ADD
local wvuffer to *BUFFER*., CLEAR
local buffer.
EOW. (% end of vhile ¥)
ADD %BUFFER* with comment, to *IEXT#* and
clean out *BUFFER¥* for new input.

This function handles all btuffer manipulatien and
all input once the initial comment delimeter is
encountered. Reads are separated to prevent PRONTO
from mis-interpreting the special text, provided
threugh commsnts.

31

GET_RDMACRO(CHAR)

Calling Functions MARK

Parameters: CHAR

Functions Called: GENERAL_APPEND
COMMENTS
PARANS/PRIMS
EOT

FOUNCTION DESCRTPTICN

CASE char (F:
comment delimiter: COMMENTS
Parameter delimiter: PARAMS/PRIMS
Primitive delimeter: PARAMS/PRIMS
End of Text Marker: EOT

end case.. - :

If CHAR is "eot" Then
Return "eqt"

Else

GENERAL_AFFEND

EOT (END_TEXT)
Calling Functions MARK
Parameters END_CHAR

Punctions. Called: GENERAL APPEND

FUNCTION DESCRIPTION

Thig fuction closes out the *EUFFER¥*, GENERAL APPEND
The #*text* buffer is complete, all *COMIZANDSH*

are updated.

#TC% is set to the start of the *TEXT* buffer.

PC i3 set to the start of *TEXT*.

#COIMAND* is set 4o "Executing", *SCOPE* is
globally established, and set to *TEXT¥.

PARAMS/PRIMS

Calling Functien: GET_RDMACRO
Parameters: NONE

Functiens Called: NONE

FUNCTION DESCHEIFTION

While FOT Parameter or Primitive
delimiter DO
Fead character
If character Used, UPS

Add character to local
temporary tuffer,
excess blanis are
ignored.
If local buffer full Then
Add local wbuffer to *TEXT¥,
reinitiglize local
buffer and proceeds
end WHILE.

This function simply treats parameters and
primitives like they are comments, with one
major exception. All USED text and Params/Prims
inside of other Used text are made into sublists.
Params/Prims within other Named text are nested
two lista deep.

Ex: (cther text "eon" (THIS (word) IS NAMED)

~ where "eon" iz stored as the first level
gublist brackets, and the imnner list

repreaents a parameter,

3

DISFLAY(TEXT TYPE)

Calling Functions: PERE_PROCESSOR
GET_EXEC_COMMAND

Parameters: TEXT TYFE
Functions Called; F_SCOPE
PARAMS _OR_PRIMS

DISPLAY_IT
GET_ITS_VALUE

FUNCTION DESCRIPTION

If TEXT TYFE net a list, mgke it a list.
CASE TEXT _TYPE OF:
If TEXT _TYPE length more than one word
Then GET _ITS_VALUE
First character equal
paTameter/primitives PARAMS_OR PRINS
Otherwise
TEXT_TYFE
end case.s
DISFLAY IT
Return a blank.

This function is designed to print out its paramster,
whether it is part of the ¥TEXT#* or not. Control

ia passed upen determination of how te handle TEXT TYPE.
TEXT_TYPE a8 a member of *TEXT¥. is displayed in a
Natural Text fermat, with indentation, line feeds and
punctuation supplied by PRONTO.

4o

DISPLAY_IT(TEXT)

Calling Functions: DISPLAY
Parameters: TEXT

Function Called: F_SCOPE
DISP_NAME
DISP_TEXT_CLASS
- DISP_TEXT_AS_READ

FUNCTION DESCRIPTION

CASE TEXT QFs
*SCOPE*g DISP_NAME&*SCOPE*)
¥NAMES*: DISP_NAME(TEXT)
#SEPARATORS*: DISP_TEXT_CLASS(TEXT)
Otherwise
DISP_TEXT AS_READ(TEXT)
end case.
DISPLAY_IT simply determines the type
of TEXT to be displayed, and then gives
contrel to the appropriate display handler.

This function anslyzes to determine text classification
for printouts to be displayed. DISPLAY IT acts as

an intermediary between the DISPLAY monitor function
and text-type specific functions. The F_SCOFE routine
is used here to reset the starting text cursor (*TC¥)
locatien, for the current *3COPE¥, thus allowing a view
of current activity.

b1

GET_ITS VALUE(TEXT_LIST)

Calling Functiens: DISPLAY
FIND

Parsmeters: TEX LIST

Functions Called: PARAMS OR_PRIMS

FUNCTION DESCRIPTION

If length of TEXT LIST is one Then
‘PARAMS COR PRH&S(TEXT LIST)

Else
we need to figure out what i=
between the frent and. rear delimiters.
If there are ne delimiters, then the
routine returns the TEXT LIST as it
was received. I there are delimiters
they are removed by extracting the
first and last characters, returning
a new text-list. Extensive checking
is performed to insure that if delimiters
are present, that both are there, front
and rears As of yet, this function uses
several nested LISP functions to work
effactively. For future PRONTQ works,
this function should be refined.

This function returns a useable text list to ifs calling
functione The TEXT LIST returned aids the finding and
displaying of PRONTO Text.

L2

DISP_TEXT AS_RFAD(TYPE)

Calling Functiens: DISPLAY IT
FIND
CLOSE_FILE
DISP_TEXT CLASS
* DISPLAY

Parameters: TYPE (* text type *)

Functions Calleds DISP TEXT AS READ ¥RECURSIVELY*
PRINT LIST A4S READ

FORCTICN DESCRTPTION

Get length of TYFEe If length is cne Then
just print the TYFE out as is.

If length is greater than one, or if the
TYFE is & list Then there are twe paths

to follow.

l. NON-LIST type, recursively call
DISP_TEXT AS_READ until length becomes
Z8To

2. If the type contains a list, then get

; the inner list and call DISP_TEXT AS_READ
giving it the inner list. The recursive
call backs out ssarching for any other
sublists within the same structure.

This primitive subprogram may be used in place of the
LISP print command, for displaying errors as well as
displaying detug statements. For closing a file, this
functien simply types out the LISP-PRONTO storage
area as is. Any numbsr of parameters may be given to
this process.

DISP_TEXT CLASS (CLASS)

Calling Functionss DISFLAY IT
P

Paramaterss CLASS

Functioms Called: FPRINT_IT
DISP_TEXT AS_FEAD

FUNCTION DESCRIPTICN

If "eot" fhen set ¥IC* to just prior

te end of ‘hex‘t.

WHILE CLASS Not equal te next occurrance
of equivalent or higher text class DO

PRINT_IT(CLA.SS)
and while,
Return a blank

This function monitors the actual system print routine.
Processing requires lnowledge of the current *TC* and
alse requires knowledge of a text #SEPARATOR*, An
iterative loop is employed to print text class pieces

eone at a time. Fermatting of the actual print takes
place in each individual call te the routine PRIRT IT.

A simple look up table is maintained for detemmining

text class hierarchy. Another simple look up table is
maintained for text class *SEPARATORS* and there synonyms.

ex: "eos", "sentence" or "sent" are equivalent
to a single "." (period,exclamation,question
mark), Each class hasits own table.

L5

PRINT_IT(TYPE)

Calling Functiens DISP_TEXT_CLASS
Parameters: TYFE (* PRONTQ *SEPARATOR¥* FOR PRINT %)

Functiens Called: HNEW_PAGE
TITLE
CENTER_60
DISP_TEXT AS_FEAD
PRINT_ATOM
PRONT_SEPARATOR_PRINT

FUNCTION DESCRIPTION

- CASE TYFE OF:

If List : DISP_TEXT_AS_READ ‘
WEQT" ¢ DISP_TEXT_AS READ(End-of-Text)
Non-Separator: PRINT_ATOM

Separator : PRONT_SEPARATOR_PRINT

end case.

This function sets up for the initial formatting of
PRONTO's *TEXT*., Each individual text type is separated
out to allow individusl treatment when printing. PRINT_IT
performs basic moniter functions, by determining which
class each character type belongs to,

NEW_PACE
- Calling Functian: PRINT_PART
o PRINT _END_BOOK
Parameters: NONE
Function Calleds NONE
FUNCTICN DESCRIPTION
Counts lines (*LINES* Buffer) and Skips
to the top of a new page or screen.
CENTER_60(TAB-NAME)
Calling Function: TITLE
Punctions Calleds DISP_TEXT_AS_HEAD
FONCTION DESCRIPTION
Counts to middle of page, divides TAB-NAME
by twe and counts that far baclkwmards, placing
the #2C% for next printing character.
| TITLE(TEXT_TITLE)
Calling Functionss PRINT_EOSCT
PRINT_PART
PRINT_END_ BOOK
Functions Called: DISP_TEXT_AS_READ

FUNCTION DESCRIPTICN

Piints out the TITLE using the DISP TEXT_AS_KEAD
routine.” Named text and parameters are printed
out without ther intermal brackeis.

LT

PRONT_SEPARATOR_PRINT

Calling Functiom: CLOSE FILE
PRINT_IT

Parameters: NONE

Functiens Calleds PRINT_EOW
PRINT_EOS
PRINT_EOCL
PRINT EOP
PRINT_EOSCT
PRINT_PART
PRINT_END_BOOK

FOUNCTION DESCHIPTION

The #TC* or a temperary cursor, peints
to the next text class character te be
pﬂnted-o

CASE #IC* (OF:

YEOS® type : PRINT_EOS
"EOW" type : PRINT_EQW
YEQCL" type : PRINT_EOCL
"EQP" type 3 PRINT EQFP

- WEOSCT" type : PRINT_EOSCT
YEQPRT" type ¢ PRINT_ PART
"EOB" type : PRINT_END_BOCK

end. cas9.

This functien performs basic monitering of text
separator print modules. Each *SEPARATOR* is

handled separately, providing for individual formatting.
No parameters are needed, the print curser supplies all
naeded lecation information.

PRINT_EOW
Calling Function: PRONT_SEPARATOR_PRINT
Functions Called: NONE
FONCTION DESCRIPTION
Prinfs a blank between words
PRINT EOS
Calling Functiens PRONT SEPARATOR_PRINT
Functions Calleds STAB

FUNCTION DESCRIPTION

Printe a period., as separator by default,
however it also prints other "eos" separators.
After each peried STAB - taba twe blank characters.
PRINT_EOCL
Calling Function: PRONT_SEPARATOR PRINT
Functions Called: STAB
FUNCTION DESCRIPTION
Prints a comma by default, phrases are
not handled separately. Each phrase or
clause separater is followed by a single tabe
PRINT_EOP
Calling Functions FPRONT_SEPARATOR_PRINT
Functiens Called:s STAB

FONCTION DESCRIPTION

An automatic new line is inserted after a
period. The first character of the next
sentence is automatically capitalized.

L8’

ks

PRINT_EOSCT

Calling Function: PRONT SEPARATOR_PRINT

Functions Called: TITLE
STAB

FUNCTION DESCRIPTION

Prints a period followed automatically
oy twe new lines. TITLE is called when
the next #TEXT# item is USED.
PRINT_EQPART
Calling Function: PRONT SEPARATOR_PRINT

Functiens Called: NEW_PAGE
TITLE

FUNCTIOX DESCRIPTION

Prints a nempé.ge and closes the preceeding
part with a period. TITLE is inveked
as in PRINT_EOSCT.
PRINT_END_BOCK
Calling Functions PRONT_SEPARATOR_PRINT

Functions Calleds XNEW_PAGE
TITLE

FUNCTION DESCRIPTTON

This functien closes preceeding text
classes. At present "EOB" is equivalent
to "EQT" (end of text). The "EQB" or
"EOT" ex input causes processing to be
shifted te the command level. DISFLAY
.will then, print the entire *TEXT*.

% TT SHOULD EE NOTED TEHAT ANY NUMEER OF TEXT
- LEVELS COULD BE USED, THESE ARE JUST A FEV
USED IN THIS IMPLEMETATION.

50

FPIND(TYPE)

Calling Functions: DISFLAY
DISFLAY_IT
DISP_TEXT CLASS
DISP_NAME
COPY
MOVE
F_SCOPE
PCM
POST_PROCESSOR

Parameters: TYPE (* any text type *)

Punctions Called: FIND_NAMES
FIND_IT
F_SCOrE
GET_TITS_VALUE

FUNCTION DESCRIPTION

If #COMMAND* TYPE Is F_SCOFE Then
find locates current #SCOPE*.
CASE TYFE 0F:

#NAMES* (USED) : FIND_NAMES
#SEPARATORS* ¢ FIND_IT
Otherwise
FIRD_TIT:
end case.
Return is "success or Failure"

This functien is the: heart of PRONTQ processing.
CentTol is maintained through & series of type checks
resulting in specific FIND routines being invoked.
This command, edit and subpregramming function is used
in defining ether PRONTO primitives. COPY, PCM, MOVE
OPEN, CLOSE and DISPLAY all issue finds teo locate
#SCOPE*, *NAMES* and #SEPARATORS* (text classes).

FIND_NAMES(N TYPE)

Calling Functions FIND
: DISP_NAYES

Parsmeters: N_TYPE (* gives the *NAMES* stored *)

Functions Called: XNONE

FUNCTION DESCRIPTION

If NTE(T*, #TC*, %¥EC*, o *SCOPE* is
the N_TYFE Then set *3COFE* if
N_TYPE is Name within these buffers.
#SCOPE* is determined in FIND, therefere the
search feor names takes place enly within that
#SCOPE+*,. ’
WHILE not found DQ or "EQT" or end of *SCOFE*
If next ¥PC* is a name Then
Is name our name? -— gucesss
or -- failure.
Else
#PCH* moves to next instruction
Result of success, halts search
#PC* i3 restored and further instructions
centinue.

This function searches the named (USED) text enly.
Processing other ¥IEXT# requires different FIND calls.
Find-Names does not destroy any PRONTO buffers, but
instead copies new buffers for local usage.
Optimization of FIND_NAMES, would involve a more
sophisticated AMES* buffer, using this buffer as

a dynamic location name store. This implemetation
keeps track of *NAMES* by existance.

51

FIND_IT(TYPE)

Calling Function: FIND

Parameterss TYPE (* non-named *TEXT#* *)

~

Functions Calleds F_SCOPE
BELP FIND_IT

FUNCTICN DESCRIPTION

Find current *PC*'s *SCOPE*, F_SCOPE
Save all PRONTO btuffer areas.

Invoke HELP FIND_IT, to actual search
far TYPE. ’

HELP_FIND_IT(WHEFE?)

Calling Function: Find IT
Functiens Called: GET_ORDER

FONCTION DESCHIPTION

While NOT Feund DO
CASE WHERE? OF:

Current temp *PC* : found is now true

"EQT" er "EOB" s+ Print error message
YFATLURE'
Return nil

Otherwise

Get next *PC* and Search

52

F_SCOPE

Calling Functionss FIND
FIND_NAMES
DISPLAY
_ DISP_NAMES
PCM
FIND_IT

PARAMETERS: NONE

Finetions Called: TONE

FUNCTION DESCRIPTION

Set up temporary curser at start of *TEXT*
WEILE cursor NOT #SCOPE¥* DO
" Search Text "
If cursor EQUAL *SCQPE* Then
" Maxk it Found "
Else
"Continue linear search "
cursor =— curseor PLUS cone
end while.
Tf not found then *SCOPE* deoes not changs.

This function performs a linsar sesrch of the

entire PRONTQ #TEXT#* buffer. The ssarch is optimized
by looking only for named *TEXT¥*, ss this version of
PRONTO allews scoping only for USED *TEXT¥,

The future goal, however is to provide scoping oy
text class. The development stages considered this
aspect, but it was decided to forge this in favor of
an over all view of more features.

53

Sk

FIND_SUBS()

Calling Functiona: FID
GET _EXEC_COMMAND

Pagrameters: Expli.citljr - none
Implicitly - *BUFFER#*

Functiens Called: FIX_S_NAME
EXEC
TRY_TO_MATCE

FONCTION DESCRIPTICN

"Search" the MTAMES* Puffer for single word
match. If 2 single word match is successful
try to match the remainder of the name.

EXs W#NAMES* (THIS IS TEXT)
"SEARCHING FOR" THIS WAS TEXT

gingle word match is successful with "THTIS"
TRY_TO_MATCH -- FAILS, becuase of the mis-
match on the second charactsr.

EX2: *NAMES* (TEIS (IS) TEXT)

"SEARCEING FOR" THIS''was' TEXT

single word match succeeds, TRY_TO_MATCH
also succeeds. Parameter matching is by
substitution, thus the only time the parameter
- i8 of significance is when in the subprogram
itself.

Subprograms are executed, upon successful match
through PRONTO's Exec handler. TEE EXEC handler
sinmply determines processing of edit level coumands
versus Subprogram (PRONTO PROGRAYS) level coumands.

PCM(WHEERE?)

Calling Functionse GET_EXEC_COI'MAND

Parameters: WHERE? (* Destination and Direction *)

Munctiensi Called: DISPLAY
FIND

FONCTION DESCRTPTTON

The Parameter WHERE? is first analyzed
te determine, destination {BY TEXT CLASS)
and direction (Forward or Backward). 3Beth
optieons do net have to be present, defaults:
a‘:a-‘:"womﬂ & "FOR\NAE)"’
If WHERE? is (member of Text Class) and direction
is Ferward or default, Then
FIND "Text Class"
If found Then set #*PC#* %o SEARCH Locatione.
Else DISPLAY "NOT FOUID"

Else

Mark search start,

F_SCOFE, (* puts cursor behind current local *)

Scan Forward until matching Text Class, Mark it

Scan FPorward until another occurrance of match
unless we pass the starting MiRK,

The last Mark before the start now holds the
reverse peinter.

endif.

This function empleys previously defined PRONTC primitives
te move the #PC* to a desired location.

85

CHAPTER VII
AN EXAMPLE PRONTO PROGRAM

The PRONTO VM defines a rather primitive language. Its main use is
intended to be the implementation of high-level description languages.
However, a simple example will illustrate some of its potential. The
chosen algorithm is a simple spelling checker. The dictionary resides
in a book (file) called DICT and the text to be checked in a book called
JEXT. The program is written out as it would appear on the screen

rather than giving its rather confusing internal representation.

SPELLER

Prepare the dictionary "DICT".
Read in the text (to be checked) "TEXT."
For each word in "TEXT" check against "DICT".
End.
PREPARE THE DICTIONARY 'word’

Open book 'first word', find "ecchap" <the end of this program>, copy
'first word'. <the dictionary is now appended to the program>
READ IN THE TEXT 'word'

Open book 'first word', find "eochap" <the end of this program>, copy
‘first word'. <the text is appended>
FOR EACH WORD IN 'word' CHECK AGAINST 'word'

57
<DICT is organized as a paragraph of sentences, each one of which
has the entry as its first word >
Find 'first word', find "ecname". Find "eopara" in 'character', end on
success.

Copy next, Jook for next in 'second word', pcm 'sentence' on
success, print next not found. Find next (in 'first word')}, delete 'word',
find "eoword", find "eochar", pcm 'paragraph' back. NEXT #**n¥*,

LOOK FOR 'word' IN 'word'

Find 'second word', find "eoname". Find 'first word' in 'sentence',
end on success, find "eosent”, find "eopara" in 'character’, pcm 'sentence'
back on faijlure, end failure.

_PRINT 'word' NOT FOUND

Display “word not found", display 'first word', display "eoline".

1.

2e

3.
4e

5.

EEFEHENCES

Charnial, Zugzene; Riesveck, Chritopher K.; LcDer=zott, Dresw Ve,
ARTIRICIAL INTELLIGENCE PROGEAMTING , Lawrence Eilbaun
Associates, Zublishers, Hillsdale, Naw Jersey, 19380.

Wembley, De Te and Naly, G.'Behavieral Aspects of Text Zditorst
Computing Surveys, Vol. 13, No. 1, JMarch 1981,

Allen, Jehn, ANATOMT LISP, McGraw Zill, New York, 1973

Barr, Avron, and Feigenbaum, Bdward A., The ELNDI0OT of
ARTIFTCIAL INTELLIGENCE, Volume 1, Heuris Tech Press, Ssanfond
Califormiae

Hartley, R To. PRONTO Pregrams and Zxamples,

THE DESIGN AND IMPLEMENTATION OF PRONTOD

PROCESSOR FOR NATURAL TEXT ORGANIZATICN

by

Steven Michael Anderson

An Abstract
submitted in partial fulfiliment of the
requirements for the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1983

ABSTRALT

The foliowing implemented virtual machine design, is intended to further
develop research in the area of descriptive languages. The only data structure
supported is natural organized text., The design incorporates word progcessing
and basic editor functions to procedurally manipulate text.

The machine is designed and impliemented using LISP, the goal however, is
to define PRONTO (Processor for Natural Text Organization) in terms of its text
handling. PRONTC naturally incorporates many features found in LISP, uniformit
of Program and data between internal and external representations and hierachic
text capablliities, to name just two. PRONTQ is designed to remove some of the
tedious aspects of LISP, such as syntax and structure. LISP provides no easily
accessfble data structures, without extreme manipulation of its primitives.
PRONTO is aimed at supplying uniformity of data and simplicity of structure,
through its own set of basic primitives.

PRONTO is a low level machine type language. The PRONTO machine incorpor-
ates word processor and conventional programming primitives. Programs, in
PRONTO, are written as text to be procedurally and texturally manipulated. The
initial implementatign, is designed to be enough to show capabilities of

designing such a virtual machine,

