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Abstract 

 Association rule learning is a data mining technique that can capture relationships 

between pairs of entities in different domains. The goal of this research is to discover 

factors from data that can improve the precision, recall, and accuracy of association 

rules found using interestingness measures and frequent itemset mining. Such factors 

can be calibrated using validation data and applied to rank candidate rules in domain-

dependent tasks such as link existence prediction. In addition, I use interestingness 

measures themselves as numerical features to improve link existence prediction. The 

focus of this dissertation is on developing and testing an analytical framework for 

association rule interestingness measures, to make them sensitive to the relative size 

of itemsets. I survey existing interestingness measures and then introduce adaptive 

parametric models for normalizing and optimizing these measures, based on the size 

of itemsets containing a candidate pair of co-occurring entities.  The central thesis of 

this work is that in certain domains, the link strength between entities is related to the 

rarity of their shared memberships (i.e., the size of itemsets in which they co-occur), 

and that a data-driven approach can capture such properties by normalizing the 

quantitative measures used to rank associations. To test this hypothesis under different 

levels of variability in itemset size, I develop several test bed domains, each 

containing an association rule mining task and a link existence prediction task. The 

definitions of itemset membership and link existence in each domain depend on its 

local semantics. My primary goals are: to capture quantitative aspects of these local 

semantics in normalization factors for association rule interestingness measures; to 

represent these factors as quantitative features for link existence prediction, to apply 

them to significantly improve precision and recall in several real-world domains; and 

to build an experimental framework for measuring this improvement, using 

information theory and classification-based validation. 
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CHAPTER 1 - INTRODUCTION 
 

The main goal of data mining is to define a process for discovering significant 

patterns or anomalies in a large volume of data.  It has been applied to decision 

support problems in diverse areas such as medical diagnosis, targeted marketing, 

bioinformatics, sociology, networking, and information security, making data mining 

one of the most widely studied topics in intelligent systems. Data mining incorporates 

theory and practical developments from many older research areas such as databases, 

machine learning, artificial intelligence, distributed computing, information retrieval, 

and statistics, and lends an integrative perspective to these research areas.  Due to the 

breadth of both applications and foundational theory in data mining research, it is 

often divided along methodological lines, into tasks such as classification, clustering, 

association, decision support, and visualization. Association rule mining is one of 

these subtopics which have been explored by many research groups. It addresses the 

problem of discovering relationships between instances that originate from 

dependence or interaction.  

1.1 Association rule mining 
Association rule mining is a method for discovering the relationships or 

correlation between items based on measures that are defined over observed items and 

proposed relationships. One of the most important aspects of association rule mining 

is ranking rules by their significance, according to some quantitative measure that 

expresses their interestingness with respect to a decision support or associative 

reasoning task. 

The concept of association rules was first introduced in a 1993 article (Agrawal, 

Imielinski, & Swami, 1993) in which the Apriori algorithm was also presented. Since 

then, association rule mining has become one of the most highly used and studied 

techniques in data mining. The main principal of this technique involves discovering 

the efficient relationship and co-occurrence between items in the data. In other words, 

it discovers and measures quantitative evidence for relationships expressed in the 

database.  

Association rules are expressed in an IF-THEN propositional rule-based format. A 

classic example of this method is market basket analysis. Consider a simple example: 
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“customers who buy product A often also buy product B”.  A decision maker such as a 

shopper or a marketer can access a large volume of historical data from which such 

rules have been extracted, to more confidently draw conclusions and make decisions 

that are well-supported by the data. 

1.1.1 Formal definition: 
Let L = {I1, I2, …, Im} be a set of m distinct attributes (items). Let D be a database, 

where each record (itemset) T has a unique identifier, and contains a set of items such 

that T ⊆ L. An association rule is an implication of the form X→Y, where both         

X, Y ⊂ L, are sets of items called itemsets, and (X ∩ Y = φ) where X and Y are two 

disjointed sets of items. Here, X is called the antecedent, and Y the consequent. The 

rule can be described as when we find all items in X within a transaction it is likely 

the transaction also contains the items in Y (Agrawal, Imielinski, & Swami, 1993). 

The first step in generating the rules is applying frequent item set algorithms over all 

possible rules. The rules will then be selected based on thresholds and measures of 

significance and interestingness. 

1.2 Measurement of Association Rules  
Generating association rules from a certain dataset will lead to a large number of 

rules if we do not specify a threshold for each specific measure. In this introduction, I 

present the two most fundamental association rule interestingness measures, support 

and confidence, which are the basis of the Apriori algorithm. 

1.2.1 Support 
Support is a basic measure related to probability and set theory. It is defined as the 

fraction of transactions in the database which contain all items in a specific rule 

(Agrawal, Imielinski, & Swami, 1993).  This can be written as: 

 

                     Supp(X → Y) = Supp(X ∪ Y) = | 𝑥𝑥𝑥𝑥 |
|𝐷𝐷|

  

Where |xy| is the number transactions (itemset) which contain both X and Y – i.e., the 

probability of (x, y) – and |D| represents the total number of transactions (itemset) in 

the database. 

Minimum support threshold are usually specified in generating the association 

rules which select only the most frequent items in the database.  
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1.2.2 Confidence 
Another measure of the association rules is confidence. This is the strength of the 

implication of a rule and can be represented as a ratio between the transaction 

numbers, including X and Y and those including X, which can be written as:  

 

Conf(X → Y) = Supp (X → Y) 
Supp (X) 

 = | 𝑥𝑥𝑥𝑥 |
| 𝑥𝑥|

 

        Where |x| is the number of transactions (itemset) containing X. 

 

Example of Association rules: market basket analysis, which is analyzing 

customer buying habits by finding associations between items that customers place in 

their “shopping baskets”. 

An illustrative example follows. Table  1-1 depicts part of a market basket 

database.  

 

 

 

Transaction-ID presents the single shopping basket which contains a list of items. 

The first step is to find the frequent items in the dataset with user defined threshold. 

The next step is to use these items to generate the association rules based on co-

occurrences and specific rule measures. 

 Table  1-2  presents some of the measures and rules which have been generated 

from the dataset.  

 

 

 

 

 

Transaction ID Items list 

1 bread, coffee,  tea, candle, BBQ-s 

2 BBQ-s, chicken, bread, flower 

3 bread, coffee,  juice1,  juice2 

4 BBQ-s, chicken, tea 

5 tea, candle, bread, coffee, egg 
Table  1-1 Market basket (example) 
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Measure Value 

Supp (bread) 3/5 = 0.6 

Supp (BBQ-s) 2/5 = 0.4 

Supp (tea) 3/5 = 0.6 

Supp (bread, coffee  ) 0.6 

Supp (BBQ-s, chicken) 0.4 

Supp (tea , candle) 0.4 

Rules  

Conf (bread → coffee  ) 0.75      

Conf (BBQ-s → chicken) 0.667    

Conf (tea → candle) 0.667    
(Supp= Support, Conf= Confidence) 

Table  1-2 Rules and measures (example)    

1.3 Needs and Objectives  
In finding association rules, probability (support) has been used as the main 

character in the process of finding significant rules. In fact, joint probability (of a 

subset) is the measure of how likely two or more items are to appear together. This 

probability can be found in most of the association and correlation measures. 

Association rules are collected over large numbers of transactions or other collections 

of items, and because the number of candidate associations grows quadratically in the 

number of distinct items in the worst case. The need to scale association rule mining 

up to thousands or millions of transactions and items leads to a need for better 

interestingness measures. Many interestingness measures have been derived as a form 

of preference bias, in order to reduce the number of candidate associations that are 

initially generated. However, interestingness measures have variable effects when 

applied to different domains; in some such domains, we are able to measure properties 

of the data. For example, how much variance there is in the sizes of itemsets, to 

capture some meta-knowledge, such as how significant it is that a pair of items 

frequently occurs together among triples. 

This research can be justified by observing several needs. First, even though 

statistical measures of interestingness have been derived, which can be systematically 

applied to generate rules meeting specific requirements, there is still a need to make 

these measures more sensitive to generic properties of the original data. Furthermore, 
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the refined metrics need to be validated by application to different domains. Second, 

we can take advantage of existing data (itemset size) behaviors to improve the quality 

of predictions achieved using a particular interestingness measure - for example, when 

associations are used as numerical features for classification. This quality is measured 

in terms of precision versus recall (sensitivity versus specificity) over tasks such as 

link analysis in the application domain. Moreover, the new method should be 

extendable and compatible with any measures that have been discovered or will be 

discovered. To evaluate an association rule learning system that supports a 

performance element such as link existence prediction, an evaluation framework and 

data flow model must be specified.  

One of the objectives of this research is to derive a normalization factor that takes 

into account the itemset size, to better measure the strength of an association in a 

specified domain. I hypothesize that data-driven calibration of this factor for each 

domain will improve measures of quality such as precision, recall, F-score, and 

accuracy. Using this factor improves the sensitivity of interestingness measures, 

which leads to more significant interesting rules. 

Another objective from the evaluation point of view is present two evaluation 

frameworks. The first one is a framework that can be used to evaluate different 

measures based on attribute’s surprisingness measure (more interesting).  

 

Figure  1-1 Overview of the three phases’ evaluation process (information gain) 

The main processes can be divided into three phases as shown in Figure  1-1. In 

the initial local phase, I generate two different order lists of rules based on two 

different versions of specific measure scores. At the end of this phase, I combine the 

two lists into one global list. In the subsequent global phase, I construct a global list 

from the two local lists without any scores (non-ordered) then I apply independent 

scoring method (Attribute Surprisingness introduced by Freitas (1999)) by using 

information gain to the global list of rules to make a new order, which I consider as a 
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gold standard. The final phase is the evaluation phase. At this point we have three 

lists: two locals and one global. By making selective rules from one of the local lists 

and the global list to get the first comparison result (Result 1), which we can compare 

with the other comparison result (Result 2) resulting from comparing the other local 

list with the global list. At the end the final result will show the differences using 

deferent comparison criteria (in my research I use inversions). I will present the 

details of this experiment design in Section 5.3. 

The other evaluation framework is based on classification methods. The 

LiveJournal data and bioinformatics data sets have been used in this framework, 

because it has the ground truth of friendship relation and protein-protein interaction. 

The main objective of classification is to build a model to predict the class of different 

instances based on given features. This provides a driving problem, a classification 

technique to be augmented using associational features, and a source of ground truth 

by which to measure the improvement attained using these features.  The framework 

contains three phases: pre-processing phase, classification phase and comparison 

phase as shown in Figure  1-2. More details about designing this experiment are given 

in Section 5.1.2 Evaluation through Classification Methods. 

 

 
Figure  1-2 Overview of the three phase’s evaluation process (classification) 

 

The synopsis of the research is as follows. In  CHAPTER 2 - there will be a survey 

of related work and methodologies of interestingness measures and some concepts 

related to the measurement theory and link mining.  CHAPTER 3 - will be presenting 

the item-set-size normalization concept and methods and relatedness to domain 

specific. A survey and related concept of application domains will be presented in 

 CHAPTER 4 - The experiment design includes more details about both evaluation 

frameworks will be introduced in  CHAPTER 5 - . The experiments results will be 

illustrated and discussed in  CHAPTER 6 - includes the interpretations. Conclusion 
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and some possible feature work will be presented in  CHAPTER 7 - More experiments 

materials will be presented in the appendixes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

CHAPTER 2 - RELATED WORK AND METHODS 
 
------------------------------------------------------------------------------------------------------- 

UNotation 
 

Ck set of candidate k-item sets AttSupp attribute surprisingness 

Lk set of large k-item sets InfoGain information gain 

Conf confidence TP true positive 

Supp support FP false positive 

CD concept description FN false negative 

T single transaction TN true negative 

L set of items D set of transactions 

  N total number of transactions 

------------------------------------------------------------------------------------------------------- 

 
In this chapter, I present the problem of deriving interestingness measures for 

association rule mining and that of link prediction and survey related work on both 

topics. I then survey several related classification and clustering methods for the 

supervised and unsupervised inductive learning part of my framework. 

2.1 Association rule interestingness measures  
The need for interestingness measures originates from limitations of the support 

and confidence approach. Even though there is a reasonable concept behind the 

support and confidence approach there are still some cons in using this approach for 

rule extraction. Brin et al. (1997) and Aggarwal et al. (1998) address the weaknesses 

of the support- confidence framework.  

The algorithms of support and confidence generate a very large number of rules 

where many of them are not interesting to the user. Indeed, if the confidence of the 

rule A→ B is equal to the marginal frequency of B ( P (B|A) = P(B) ) which indicate 

that  A and B are independent, then the rule A → B adds no new information (e.g. 

P(A) = 0.7, P(B) = 0.8, P(AB) = 0.56, P(B|A) = 0.8). 

Interestingness measures can be divided into two parts subjective and objective. 

The interestingness measures can be used in three ways; Figure  2-1 shows the frame 

work of those used (Geng & Hamilton, 2006). First, measures can be used to prune 

uninteresting patterns during the mining processes to narrow the search space and thus 
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improve mining efficiency. An example of this would be selecting significant rules by 

setting a threshold for support to filter out the rules which have low support during the 

mining process (Agrawal & Srikant, 1994). Second, measures can be used to rank 

patterns according to the order of their interestingness scores. Third, measures can be 

used during post-processing to select interesting patterns. For example, we can use the 

chi-square test to select all rules that have significant correlations after the data 

mining process (Bay & Pazzani, 1999). 

 
Figure  2-1 Interestingness measures in the data mining process.   

The problem of reducing the number of association rules using different measures 

has been discovered by many researchers to select appropriate measures (subjective or 

objective) for particular domains and requirements. 

2.1.1 Subjective Measures 
A number of subjective measures have been proposed. Over all, subjective 

measures put some facts to generate a smallest possible set of rules which can be 

more interesting and useful by using some of the user knowledge. 

One of the analyzing approaches was proposed (Liu, Hsu, Chen, & Ma, 2000) as a 

subjective approach that assists the user in finding interesting rules by analyzing the 

discovered association rules using the user’s existing knowledge about the domain.  

Liu et al. (1999)  presented a ranking method for mined patterns according to the 

user’s existing knowledge and general impressions. The main disadvantage is that the 

user is required to express his/her knowledge in the specifications, which might not be 

an easy and standard task. 

In other research Tuzhilin and Silberschatz (1996) discussed subjective measures 

depending on two concepts’ actionability and unexpectedness and the relation 

between them. Actionability states that the pattern is interesting if the user can act on 

it to his advantage. Unexpectedness focuses on the surprising factor for the pattern. 

Also, it relates to beliefs which can be defined as logical statements. There are two 
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types of beliefs: hard, which the user is not willing to change; and soft, which the user 

can change if suggested by newly discovered patterns. 

2.1.2 Objective Measures   
Deriving an objective interestingness measure usually involves estimating some 

aspect of a candidate rule’s structure, analytical performance, and statistical 

significance with respect to observed itemset data.  Compound measures are based on 

primitive measures grounded in probability density functions, with some – such as the 

normalization approach described in this paper – based on parametric fusion of these 

primitive measures, while others are based on more ad hoc rules of combination. 

Piatetsky-Shapiro (1991) considered as first proposal  using statistical 

independence of rules as an interestingness measure. More methods have since been 

proposed using different statistical approaches. Brin, et al. (1997) proposed lift and χ2 

(chi-squared) as correlation measures and developed an efficient mining method. 

Hilderman and Hamilton (2001) and Tan, et al. (2002) have comparative studies of 

different interestingness measures and address the concept of null-transactions. 

Because the probability of an item appearing in a particular transaction is usually very 

low, it is desirable that a correlation measure should not be influenced by these 

transactions which they call “null-transactions”, i.e., the transactions that do not 

contain any of the items in the rule being examined. In another study related to the 

correlation. Omiecinski (2003), and Lee, et al. (2003) found that all_confidence, 

coherence, and cosine are null-invariant and are thus good measures for mining 

correlation rules in transaction databases.  

After all these studies, Tan et al. (2002) discuss the properties of twenty-one 

objective interestingness measures and analyzes the impacts of Support based pruning 

and contingency table standardization. This study ends with the conclusion that there 

is no measure that is consistently better than others in all application domains. 

However, some of these measures are correlated with each other.   

Three measures for capturing relatedness between item pairs are proposed by 

Shekar and Natarajan (2004). These measures use the concept of function embedding 

to appropriately weigh the relatedness contributions due to Mutual Interaction, 

complementary and substitutability between items. At the end they propose 

interestingness coefficient by combining the three relatedness measures. All the three 
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measures are calculated based on the probability without taking into account the 

transaction itself (large or small).   
Support 𝑃𝑃(𝐴𝐴𝐴𝐴)  
Confidence/Precision 𝑃𝑃(𝐵𝐵|𝐴𝐴)  
Coverage 𝑃𝑃(𝐴𝐴)  
Prevalence 𝑃𝑃(𝐵𝐵)  
Recall 𝑃𝑃(𝐴𝐴|𝐵𝐵)  
Specificity 𝑃𝑃(⇁𝐵𝐵 

 ⇁𝐴𝐴
)  

Accuracy P(AB) + P(⇁ A ⇁ B)  
Lift/Interest 𝑃𝑃(𝐵𝐵|𝐴𝐴)/𝑃𝑃(𝐵𝐵)  -or-  𝑃𝑃(𝐴𝐴𝐴𝐴)/𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵) 
Leverage 𝑃𝑃(𝐵𝐵|𝐴𝐴) − 𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵)  
Added Value /Change of 
Support 

𝑃𝑃(𝐵𝐵|𝐴𝐴) − 𝑃𝑃(𝐵𝐵)  

Relative Risk 𝑃𝑃(𝐵𝐵|𝐴𝐴)/𝑃𝑃(𝐵𝐵\⇁ 𝐴𝐴)  
Jaccard 𝑃𝑃(𝐴𝐴𝐴𝐴)/(𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) − 𝑃𝑃(𝐴𝐴𝐴𝐴))  
Certainty Factor 𝑃𝑃(𝐵𝐵|𝐴𝐴)−𝑃𝑃(𝐵𝐵)

1−𝑃𝑃(𝐵𝐵) ,  
Odds Ratio 𝑃𝑃(𝐴𝐴𝐴𝐴)𝑃𝑃(⇁𝐴𝐴⇁𝐵𝐵)

𝑃𝑃(𝐴𝐴⇁𝐵𝐵)𝑃𝑃(⇁𝐵𝐵𝐵𝐵)  
Yule’s Q 𝑃𝑃(𝐴𝐴𝐴𝐴)𝑃𝑃(⇁𝐴𝐴⇁𝐵𝐵)−𝑃𝑃(𝐴𝐴⇁𝐵𝐵)𝑃𝑃(⇁𝐴𝐴𝐴𝐴)

𝑃𝑃(𝐴𝐴𝐴𝐴)𝑃𝑃(⇁𝐴𝐴⇁𝐵𝐵)+𝑃𝑃(𝐴𝐴⇁𝐵𝐵)𝑃𝑃(⇁𝐴𝐴𝐴𝐴)
  

Yule’s Y �𝑃𝑃(𝐴𝐴𝐴𝐴)𝑃𝑃(⇁𝐴𝐴⇁𝐵𝐵)−�𝑃𝑃(𝐴𝐴⇁𝐵𝐵)𝑃𝑃(⇁𝐴𝐴𝐴𝐴)
�𝑃𝑃(𝐴𝐴𝐴𝐴)𝑃𝑃(⇁𝐴𝐴⇁𝐵𝐵)+�𝑃𝑃(𝐴𝐴⇁𝐵𝐵)𝑃𝑃(⇁𝐴𝐴𝐴𝐴)

  

Klosgen �𝑃𝑃(𝐴𝐴𝐴𝐴)�𝑃𝑃(𝐵𝐵|𝐴𝐴) − 𝑃𝑃(𝐵𝐵)�,�𝑃𝑃(𝐴𝐴𝐴𝐴)𝑀𝑀𝑀𝑀𝑀𝑀(𝑃𝑃(𝐵𝐵|𝐴𝐴) − 𝑃𝑃(𝐵𝐵),𝑃𝑃(𝐴𝐴|𝐵𝐵) − 𝑃𝑃(𝐴𝐴))  
Conviction 𝑃𝑃(𝐴𝐴)𝑃𝑃(⇁𝐵𝐵)

𝑃𝑃(𝐴𝐴⇁𝐵𝐵)   
Collective Strength 𝑃𝑃(𝐴𝐴𝐴𝐴)+𝑃𝑃(⇁𝐵𝐵|⇁𝐴𝐴)

𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵)+𝑃𝑃(⇁𝐴𝐴)∗𝑃𝑃(⇁𝐵𝐵)
∗ 1−𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵)−𝑃𝑃(⇁𝐴𝐴)∗𝑃𝑃(⇁𝐵𝐵)

1−𝑃𝑃(𝐴𝐴𝐴𝐴)−𝑃𝑃(⇁𝐵𝐵|⇁𝐴𝐴)   

Laplace Correction 𝑁𝑁(𝐴𝐴𝐴𝐴)+1
𝑁𝑁(𝐴𝐴)+2

  
Gini Index 𝑃𝑃(𝐴𝐴) ∗ {𝑃𝑃(𝐵𝐵|𝐴𝐴)2 + 𝑃𝑃(⇁ 𝐵𝐵|𝐴𝐴)2} + 𝑃𝑃(⇁ 𝐴𝐴) ∗

{𝑃𝑃(𝐵𝐵| ⇁ 𝐴𝐴)2 + 𝑃𝑃(⇁ 𝐵𝐵| ⇁ 𝐴𝐴)2} − 𝑃𝑃(𝐵𝐵)2 − 𝑃𝑃(⇁ 𝐵𝐵)2  
Normalized Mutual 
Information 

∑𝑖𝑖 ∑𝑗𝑗 𝑃𝑃�𝐴𝐴𝑖𝑖𝐵𝐵𝑗𝑗 �𝑙𝑙𝑙𝑙𝑙𝑙2
𝑃𝑃(𝐴𝐴𝑖𝑖𝐵𝐵𝑗𝑗 )

𝑃𝑃(𝐴𝐴𝑖𝑖)𝑃𝑃(𝐵𝐵𝑗𝑗 )
�−∑ 𝑖𝑖 𝑃𝑃(𝐴𝐴𝑖𝑖) ∗ 𝑙𝑙𝑙𝑙𝑙𝑙2𝑃𝑃(𝐴𝐴𝑖𝑖)��   

J Measure 𝑃𝑃(𝐴𝐴𝐴𝐴)𝑙𝑙𝑙𝑙𝑙𝑙 �𝑃𝑃(𝐵𝐵|𝐴𝐴)
𝑃𝑃(𝐵𝐵)

� + 𝑃𝑃(𝐴𝐴 ⇁ 𝐵𝐵)𝑙𝑙𝑙𝑙𝑙𝑙 �𝑃𝑃(⇁𝐵𝐵|𝐴𝐴)
𝑃𝑃(⇁𝐵𝐵)

�  
One-Way Support 𝑃𝑃(𝐵𝐵|𝐴𝐴) ∗ 𝑙𝑙𝑙𝑙𝑙𝑙2

𝑃𝑃(𝐴𝐴𝐴𝐴)
𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵)

  
Two-Way Support 𝑃𝑃(𝐴𝐴𝐴𝐴) ∗ 𝑙𝑙𝑙𝑙𝑙𝑙2

𝑃𝑃(𝐴𝐴𝐴𝐴)
𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵)

  

𝛷𝛷-Coefficient (Linear 
Correlation Coefficient) 

𝑃𝑃(𝐴𝐴𝐴𝐴)−𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵)
�𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵)𝑃𝑃(⇁𝐴𝐴)𝑃𝑃(⇁𝐵𝐵)

  

Piatetsky-Shapiro 𝑃𝑃(𝐴𝐴𝐴𝐴) − 𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵)  
Cosine 𝑃𝑃(𝐴𝐴𝐴𝐴)

�𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵)
  

Loevinger 1 − 𝑃𝑃(𝐴𝐴)𝑃𝑃(⇁𝐵𝐵)
𝑃𝑃(𝐴𝐴⇁𝐵𝐵)

  
Information Gain 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝐴𝐴𝐴𝐴)

𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵)
  

Sebag-Schoenauer 𝑃𝑃(𝐴𝐴𝐴𝐴)
𝑃𝑃(𝐴𝐴⇁𝐵𝐵)

  
Least Contradiction 𝑃𝑃(𝐴𝐴𝐴𝐴)−𝑃𝑃(𝐴𝐴⇁𝐵𝐵)

𝑃𝑃(𝐵𝐵)
  

Odd Multiplier 𝑃𝑃(𝐴𝐴𝐴𝐴)𝑃𝑃(⇁𝐵𝐵)
𝑃𝑃(𝐵𝐵)𝑃𝑃(𝐴𝐴⇁𝐵𝐵)

  
Example and Counterexample 
Rate 

1 − 𝑃𝑃(𝐴𝐴⇁𝐵𝐵)
𝑃𝑃(𝐴𝐴𝐴𝐴)

  

Zhang 𝑃𝑃(𝐴𝐴𝐴𝐴)−𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵)
max ⁡(𝑃𝑃(𝐴𝐴𝐴𝐴)𝑃𝑃(⇁𝐵𝐵),𝑃𝑃(𝐵𝐵)𝑃𝑃(𝐴𝐴⇁𝐵𝐵)

  

Table  2-1 Probability Based Objective Interestingness Measures 

Berberidis, et al. (2005) and George, et al. (2006) introduce a data mining 

paradigm, which involves the discovery of contiguous frequent item sets and present 
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level-wise algorithm for finding these item sets, which lead them to generate a two 

level global support (gsup) the first-level support and local support (lsup), the second-

level support. For the evaluation, they introduce new metric (Mutual Exclusion 

Metric) to evaluate the degree of the mutual exclusion between two items.  

Another measure based on information theory (Blanchard, Guillet, Gras, & 

Briand, 2005) designed a rule interestingness measure, Directed Information Ratio. 

This measure filters out these rules whose antecedent and consequent are negatively 

correlated and these that have more counter examples than examples. 

The new survey, (Geng & Hamilton, 2006) reviews the interestingness measures 

for rules and summaries, classifies them from several perspectives and compares their 

properties. They present thirty-eight probability based objective interestingness 

measures for association rules Table  2-1. Another paper by Lenca, et al. (2007) 

studied twenty interestingness measures by using 10 data sets. This study is compared 

to an analysis of formal properties of the measures which make a best choice of user’s 

needs.  

There are some research papers where they tried to improve the measures quality 

by using some existing information. One of these papers Hilderman, et al. (1998) 

proposed a concept of share-confidence and support which involves the quantity and 

price of the items in the confident and support computation. 

 Moreover, in specific application domains some attributes can have very different 

degrees of interestingness for the user, depending on which attributes occur in the rule 

antecedent. Thus, in some applications, different attributes might have very different 

“costs” to be accessed. The typical example is medical diagnosis. For example, some 

health-related attributes can only be determined by performing a very costly 

examination. Suppose that the antecedent (“if part”) of a discovered rule r1 involves 

the result of an exam e1 which costs $200, while the antecedent of a discovered rule 

r2 involves instead the result of another exam e2 which costs $20. All other things 

(including prediction accuracy) being equal, we would rather use rule r2 for 

diagnosis. So the cost of the attribute becomes part of interestingness decision. There 

are some data mining algorithms which take into account attribute costs like what had 

been described in Ming (1993) and Turney (1995). 

From Table  2-1 we can see how the Probability Based objective interestingness 

measures contain joint probability (co-occurrence) as an important part which may 

affect measurement value. However, in the calculation of joint probability, items 
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relations in the dataset itemset are treated equally in all interestingness measures 

without differentiation between one itemset and others. Even if some interestingness 

measures adopt attributes values to adjust the final result, there is still no change in 

the value of the joint probability. I seek to make joint probability based measures 

more sensitive to the relationship between items and each itemset, using itemset size 

to reflect the real relation between items. This is first step in enriching the semantics 

of interestingness measures and increasing their usefulness in some domains.      

2.2 Frequent pattern concepts and Algorithms 
The concept of frequent pattern comes from searching for correlation relationship 

between instances (such as itemsets, sub-graphs) that may lead to further useful 

knowledge. The discovering of more interesting associations between items gets 

attention from many industrial and business decision-makers to assist their decisions 

(such as cross-marketing, user behavior analysis). On the other hand, discovering 

interesting associations improves some recommended systems such as friends’ 

recommendation system in social networks.  

One of the challenges in this area is efficiently discovering frequent items in a 

large dataset. Next is discovering the association between interesting frequent items. 

This section will cover some of the many algorithms used to discover the frequent 

itemsets which is related to my research.  

2.2.1 Apriori Algorithm  
The Apriori algorithm is probably the most well-known algorithm in the area of 

frequent items discovery (Agrawal, Imielinski, & Swami, 1993). The algorithm takes 

advantage of the property that any subset of a frequent item set must be a frequent 

item set. If we have (N+1)-item set then we use the (N)-item set (N is number of 

items in the set) to discover it. Thus, the discovered frequent item sets of the first pass 

are used to generate the candidate sets of the second pass. Once the candidate 1-item 

sets are found their supports are counted to discover the frequent 2-itemsets by 

scanning the database. In the third pass, the frequent 2-itemsets are used to generate 

candidate 3-item sets. Termination condition, where there are no more new frequent 

item set, is found in Figure  2-2 . The algorithm contains two steps: 

1. Join step: 
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The first step is to join all frequent items of size k-1 ( (k-1)-item set) with 

themselves to generate candidate K-item set. As a result the new list of k-item 

sets has been produced. 

2. Prune step: 

 This step come from the Apriori property which states if an item set is not 

frequent, then all its supersets are absolutely not a frequent set. Therefore we 

can prune all Candidate k- item sets by checking whether all its (k-l)-item sets 

subsets are frequent or not. If we find any member of (k-1)-item sets is not we 

can prune its superset from a new list. 

---------------------------------------------------------------------- 

Method: apriori_gen() [ (Agrawal & Srikant, 1994)] 

Input: set of all large (k-1)-item sets Lk-1 

Output: A superset of the set of all large k-item sets 

// Join step 

Ii = Items i 

insert into Ck 

Select p.I1, p.I2, ……. , p.Ik-1, q .Ik-1 

From Lk-1 is p, Lk-1 is q 

Where p.I1 = q.I1 and …… and p.Ik-2 = q.I k-2 and  p.Ik-1 < q.Ik-1.  

// Pruning step 

For all item sets c∈Ck do 

For all (k-1)-subsets s of c do 

If (s∉Lk-1) then 

delete c from Ck 

------------------------------------------------------------------------ 
Figure  2-2 Apriori Algorithm Pseudo code 

 

The main disadvantage of the Apriori algorithm is running time, because the 

algorithm needs to scan the database for every processed level. The performance of 

the algorithm will be unacceptable when the database size is large, however, there are 

many algorithms that have been proposed to solve this problem and improve the 

performance of the processing time of finding the frequent items.  
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2.2.2 FP-growth Algorithm 
Han et al. (2000) proposed the FP-growth algorithm for mining the complete set 

of frequent patterns. This algorithm is based on a new frequent pattern tree (FP-tree) 

structure, which is a prefix tree for storing necessary information about frequent 

patterns. Only frequent 1-item(s) are stored in each node of the tree. The FP-tree is 

applied to restrict generation of a large number of candidate sets. This concept 

eliminates the multi-scan inefficiency the Apriori algorithm. FP-growth is adapted to 

the pattern growth approach to avoid scanning the database for every level of 

frequency and handles a large number of candidate sets. The algorithm begins with 

frequent 1-items which are kept in the FP-tree to perform recursive mining. The 

search technique is a partitioning-based divide-and-conquer method to increase the 

running time efficiency. 

In Figure  2-3 an example of transaction table of market basket where each row 

represents a single market basket with the list of items that have been bought (Han, 

Pei, & Yin, 2000). 

 

 
Figure  2-3 Transactions table 

 

The processes of the algorithm are arganized into these stages :    

1. Scan DB once, find frequent 1-itemset (single item pattern) 

2. Order frequent items in frequency descending order 

3. Scan DB again, construct FP-tree, as in Figure  2-4  

4. Traverse the FP-tree by following the link of each frequent item 

5. Accumulate all of the transformed prefix paths of that item to form a 

conditional pattern base 

6. Construct the FP-tree for the frequent items of the pattern base 
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Figure  2-4 Example of FP-Tree (Han, Pei, & Yin, 2000) 

 

2.3 Association rules interestingness measures 
Discovering correlation relationship from frequent items is the next step of 

generating the association rules. From this step, there are too many discovered rules 

some of them are redundant or not interesting. Early in Chapter 1, I introduced two 

main measures (support and confidence) and Agrawal, et al. (1993) suggests using a 

threshold on confidence to reduce the number of discovered rule. The main problem 

of raising the threshold of these two measures is missing some interesting rules, so 

there is a need for more interesting measures which can rank the rules based on their 

interestingness. However, the effect of interestingness measures can be different from 

domain to domain.  

2.3.1 Interestingness Measures 
There are many interestingness measures, but I will describe some measures that I 

am going to use in this research. 

2.3.1.1 Lift 

Lift measures show the relationship between two or more items when they occur 

together more often than expected, if they were statistically independent. Introduced 

by Brin, et al. (1997). 

                               Lift = confidence / expected confidence  

 Let X and Y are two different set of items then lift can be defend as: 

Lift (X→Y) = Conf (X → Y) 
supp (Y) 

 = Conf (Y → X) 
supp (X) 

 =  P(X ∪ Y) 
(P(X) P(Y)
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The expected confidence is identical to the support of the rule head. It is assumed 

in the definition of the expected confidence that there is no statistical relationship 

between the rule body and the rule head. This means that the occurrence of the rule 

body does not influence the probability for the occurrence of the rule head and vice 

versa. The lift is a measure for the deviation of the rule from the model of statistic 

independency of the rule body and rule head. The lift is a value between 0 and 

infinity:  

• A lift value greater than 1 indicates that the rule body and the rule head 

appear more often together than expected. This means that the occurrence of 

the rule body has a positive effect on the occurrence of the rule head. 

• A lift smaller than 1 indicates that the rule body and the rule head appear 

less often together than expected. This means that the occurrence of the rule 

body has a negative effect on the occurrence of the rule head. 

• A lift value near 1 indicates that the rule body and the rule head appear 

almost as often together as expected. This means that the occurrence of the 

rule body has almost no effect on the occurrence of the rule head (Brin, 

Motwani, Ullman, & Tsur, 1997). 

2.3.1.2 Conviction 

Conviction is one of interestingness measures proposed by Sergey, et al. (1997). 

It was developed as an alternative measure to confidence, which does not capture 

direction of associations effectively, and is defined as: 

 

Conviction (A→B) = P(A)P(⇁B)
P(A⇁B)

 

 
The logical justification for this measure is that A→B can be rewritten as             

⇁ (A ⋀ ⇁ B) now by observing  A ⋀ ⇁ B we can see how different from 

independence and invert the ratio to take care of the outside negation. The value of 

conviction equals 1 when and if the target item is completely unrelated.   
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2.3.1.3 Leverage 

The leverage measure was introduced by Piatetsky-Shapiro (1991), It measures 

the expected dependence between items. According to the paper that introduced 

leverage, leverage and lift measure are similar, except that leverage measures the 

difference between the probability of co-occurrence of A and B as the independent 

probabilities of each of A and B. defined as: 

Leverage (A→B) = P(B|A) − P(A)P(B) 

2.3.1.4 Other Interestingness Measures 

There are many interestingness measures that I listed in Table  2-1 and I am going to 

introduce the ones that I use in some of my experiments such as: 

1. Match 

Defined as: 

Match (A→B) = P(AB )−P(A)∗P(B)
P(A)∗(1−P(A)

 

2. Accuracy 

Defined as: 

 

Accuracy (A→B) = P(AB) + P(⇁ A ⇁ B) 

Each measure has a different way of handling the co-occurrences and the 

independences. 

2.3.2 Information-Theoretic measure (Attribute surprisingness) 
AttSurp or attribute surprisingness, (Freitas, 1999) is a term for measuring rule 

surprisingness. This measure is a reciprocal function of average information gain, an 

information theoretic measure based on condition entropy. The information gain of 

each attribute is defined as the class entropy minus the class entropy given the value 

of the predicting attribute. This is similar to the idea in decision tree-based 

classification that attributes, with high information gain, are good predictors of class. 

These attributes are also considered individually, i.e. one at a time. On the other hand, 

a user who has background knowledge about his/her domain application knows what 

the best predictors (attributes) for this domain are. Thus, rules containing these 

attributes would tend to have lower degrees of surprisingness (interestingness) for the 



19 
 

user.  When an attribute appears in rules with low information gain, which the user 

did not expect, the user will be surprised and therefore the rules will be interesting. 

The AttSurp is defined as: 

                                  AttSupp = 1

�
∑ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 � 𝐴𝐴𝑖𝑖�
𝑘𝑘
1

𝐾𝐾 �
   

 

Where InfoGain (Ai) is the information gain of the ith attribute occurring in the 

rule and k is the number of attributes (more detailed information in  CHAPTER 5 -  

2.4 Classification  
Classification is a data mining task that often applies machine learning-

specifically, inductive learning. The main objective of classification is to build a 

model to predict the class of different instances based on given features. The classifier 

starts with using training set which has correct answers (class label attribute) then 

creating a model by running the algorithm on the training data. This model will be 

used to predict the class of the rest of data.  Finally, it tests the model and measure the 

performance. 

Formally, the problem can be stated as follows: 

 

Given training data {(𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2) … . (𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛)} produce a classifier ℎ: 𝑥𝑥 → 𝑦𝑦  
that maps an object  𝑥𝑥 ∈ 𝑋𝑋 to its classification label  𝑦𝑦 ∈ 𝑌𝑌. 
 
Many classification learning methods have been proposed. Research in this area 

has led to scalable and efficient algorithm for classification. However, the classifiers 

have been built based on different structural models (tree-based classifier, rule-based 

classifiers, etc.). 

2.4.1 Best-First Decision Tree Classifier (tree based)  
One widely-used method in classification is the induction of decision trees 

introduced by Quinlan (1986). A decision tree is a flow-chart-like structure consisting 

of internal nodes, leaf nodes, and branches. Each internal node represents a decision, 

or test, on a data attribute, and each outgoing branch corresponds to a possible 

outcome of the test. Decision trees can be represented as sets of IF-THEN rules 

(Mitchell, 1997). There are many algorithms based on decision trees.  
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Standard decision tree learners such as C4.5 expand nodes in depth-first order 

(Quinlan J. R., 1993), while in best-first decision trees learning first introduced by 

Haijian (2007); the “best” node is expanded first. The “best” node is the node whose 

split leads to maximum reduction of impurity among all nodes available for splitting. 

The algorithm of the best-first tree can be summarized as follows: First, select an 

attribute to place at the root node and make some branches for this attribute based on 

some criteria. Then, split the training instances into subsets, one for each branch 

extending from the root node. Then, this step is repeated for a chosen branch, using 

only those instances that actually reach it. In each step we choose the “best” subset 

among all subsets that are available for expansions. This constructing process 

continues until all nodes are pure or a specific number of expansions are reached 

(Haijian, 2007).  The best-first method always chooses the node for expansion whose 

corresponding best split provides the best information gain or Gini gain among all 

unexpanded nodes in the tree. 

2.4.2 Random Forest Classifier (tree-based) 
Random forest is a classifier that consists of many decision trees and outputs the 

class that is the mode of the classes output by individual trees. The algorithm for 

inducing a random forest was developed by Breiman (2001) 

The Random Forests algorithm grows many classification trees. Than when we 

classify a new object from an input vector, apply each tree in the forest to the input 

vector. Each tree gives a classification, and we say the tree "votes" for that class. The 

forest chooses the classification having the most votes (overall the trees in the forest) 

(Breiman, Random Forests, 2001). Each tree is grown as follows:  

1. If the number of cases in the training set is N, sample N cases at random - but 

with replacement, from the original data. This sample will be the training set 

for growing the tree.  

2. If there are M input variables, a number m<<M is specified such that at each 

node, m variables are selected at random out of the M and the best split on this 

m is used to split the node.  

3. Each tree is grown to the largest extent possible. There is no pruning.  
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2.4.3 OneR Classifier (rule based) 
OneR stands for “One Rule” and is a simple algorithm proposed by Holte (1993) 

which induces classification rules based on the value of a single attribute. The OneR 

algorithm chooses the most informative single attribute and bases the rule on this 

attribute alone which is the rule with the smallest error rate. To create a rule for an 

attribute, the most frequent class for each attribute value must be determined. This 

class is simply the class that appears most often for that attribute value (Holte, 1993). 

In other words, OneR selects the rule with the lowest error rate. The error rate is the 

number of training data instances in which the class of an attribute value does not 

agree with the binding for that attribute value in the rule. Random selection will be 

used if there are two or more rules that have the same error rate. The basic idea of the 

algorithm is as follow: 

For each attribute a, form a rule as follows: 

     For each value v from the domain of a, 

           Select the set of instances where a has value v. 

           Let c be the most frequent class in that set. 

           Add the following clause to the rule for a: 

                  if a has value v then the class is c 

    Calculate the classification accuracy of this rule. 

Use the rule with the highest classification accuracy. 

The interested reader is referred to Holte (1993) for more details. 

2.4.4 IB1Classifier (instance-based) 
IBK (Aha & Kibler, 1991) uses the k-nearest neighbor approach for classification 

where the class of a test item is derived from the training instances that are most 

similar to it. Instance based learning is often referred to as “lazy” learning because it 

stores all training examples in the memory during the learning process. 

IB1 is identical to the Nearest Neighbors algorithm except that it normalizes its 

attributes ranges and processes instances incrementally. According to k-Nearest 

Neighbors, each instance is treated as a point in n-dimensional space where n is the 

number of features that describe the instance. When a new instance is classified, the 

algorithm looks for the k most similar instances (Nearest Neighbors) in the set of 

training examples. The similarity is based on the distance in the k-dimensional space 

between instances. The distance is computed as a Euclidean distance:  
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∆(𝑥𝑥,𝑦𝑦) =  ��(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1

 

 

Where xi and yi refer to value of ith feature of x and y instance. In the case where two 

or more labels are equally frequent the label that is first seen in the training set is 

chosen. Table  2-2 IB1  shows the pseudocode of the IB1 algorithm (Aha & Kibler, 

1991). 

 

---------------------------------------------------- 

CD ← D 

For each x ∈ Training Set do  

       1. for each y ∈ CD do 

                Sim[y] ← similarity(x, y) 

       2. ymax ← some y ∈ CD with maximal Sim[y] 

       3. If class(x) = classs(ymax) then  

                     Classification ← correct 

              else  

                     Classification ← Incorrect 

       4. CD ← CD ∪ (x) 

(CD : Concept Description) 

-------------------------------------------------------------- 
Table  2-2 IB1 Algorithm 

 

2.5 Link Mining 
Link mining is an interdisciplinary data mining technique that lies at the interface 

between other areas such as link analysis, hypertext and web mining, relational 

learning and inductive logic programming, and graph mining (Getoor & Diehl, 2005). 

Some of the earliest work on link mining as an application of machine learning grew 

out of topical tracks on link analysis at research meeting such as the AAAI Fall 

Symposium on AI and Link Analysis (1998). For categorizing the link mining tasks 

there is taxonomy of common link mining tasks described by Getoor (Table  2-3). 
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In this research, my work is more related to the link prediction task. In this area, 

the existence of a link between two or more instances can be predicted based on 

properties, such as shared relational features, that are not commonly available in some 

domains. The main challenge is using suitable data properties and techniques to 

improve the link prediction capability. Therefore, different techniques are proposed to 

address this problem. In addition, the graph structure induced by links between 

entities can be considered as an important property in some domain which can 

improve the link predication. Popescul and Ungar (2003) used statistic learning to 

build robust model from noise data and relational database and applied it to the 

citation prediction in the domain of scientific publications. In another research, 

Taskar, et al. (2003) applied a relational Markov network framework in the graph 

links to predict link existence in the domain of web pages such as the advisor-advisee 

link between a professor and a student, and in a social network domain. 

 

  

1. Object-Related Tasks 
(a) Link-Based Object Ranking 
(b) Link-Based Object Classification 
(c) Object Clustering (Group Detection) 
(d) Object Identification (Entity Resolution) 

2. Link-Related Tasks 
(a) Link Prediction 

3. Graph-Related Tasks 
(a) Sub-graph Discovery 
(b) Graph Classification 
(c) Generative Models for Graphs 
Table  2-3 A taxonomy of common link mining tasks 

However, there are some properties that have not yet been deeply explored within 

a link prediction model. One of my objectives is to utilize unused properties to expose 

unobserved associations that can improve link prediction in applicable domains.  

  2.5.1 Link prediction in social network   
A social network is a collection of associations between  individuals (e.g., people) 

or organizations that can be graphically represented. Links in this graph are based on 

one or more specific types of interdependency, such as values, visions, ideas, financial 

exchange, friendship, kinship, dislike, conflict or trade. The term was first coined by 
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Professor J. A. Barnes in the 1950s (in: Class and Committees in a Norwegian Island 

Parish, “Human Relations”). The information that a social network provides about 

each individual can be used to build prediction models for a recommended link or 

missing link for example. Social network services such as MySpace and Facebook 

allow users to create a profile which contains many aspects related to the user ( e.g. 

lists of interests, communities, schools, and links to friends).  Some services, such as 

Google’s OrKut, are community-centric; others, such as the video blogging service 

YouTube and the photo service Flickr, are related to social media. In other kinds of 

services such as Six Apart’s LiveJournal and Vox, they are organized around text-and-

image weblogs.  

Some studies such as Hsu, et al. (2007) use a friend’s network of LiveJournal to 

predict friendship based on graph features. Other studies such as thoes by Liben-

Nowell and Kleinberg (2003) and Popescul and Ungar (2003), define certain linkage 

measures to  estimate the existence probability of a potential future link. In order to 

use the co-occurrent property through association rules, Schmitz, et al. (2006) propose 

a method of using association rules in Folksonomies 0F

1 as a recommended system (such 

as tags, users, or resources). In my research, I use association measures (based on 

users co-occurence) of some users’ properities as link prediction features (Aljandal, et 

al. (2008).   

  2.5.2 Link prediction in bioinformatics 
Bioinformatics is a new field of science resulting from combining different 

disciplines: biology, computer science, and information technology. The primary goal 

of this field is to understand the biological processes using different techniques in 

computer and information science. Understaning the associations, structures and 

patterns in the huge amount of biological data are the most important tasks in this 

field (Chen, 2005).  

Link prediction methods can be used to provide an expectation of unknown 

relations which come from the massive amount of data related to gene expression, 

known regulatory relationships, RNA, protein sequences, and and protein interaction. 

Association rule mining has been used in this area for discovering associations 

between different concepts with different structures. In order to discover association 

                                                 
1 A folksonomy is a collaborative tagging system allows users to assign (arbitrary) tags to resources. 
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rules, researchers have investigated some special algorithms to handle bioinformatics 

dataset for discovering frequent patterns (Pan, Cong, Tung, Yang, & Zaki, 2003). 

Cong, et al. (2004) introduces different algorithms to mine frequent closed patterns 

and propose new one. GenMiner is an implementation of a special association rule 

generater from genomic data which uses an algorithm called NorDi which is more 

efficent than the Apriori approch as shown in (Martinez, Pasquier, & Pasquier, 2008). 

Other studies by Jiang and Gruenwald (2005) propose a new data structure, BSC-tree 

and FIS-tree, to prepare the gene exprestion data for the association mining step. 

The structure  of association rules can be adobted to meet representtational 

requarments in the area of bioinformatics. Hoan, Satou and Ho (2004) study the 

association between gene regulator network and transcriptional regulatory modules by 

using association rules with the form factorset → geneset . In other research, 

Creighton and Hanash (2003) use association rules of the form Gene1 → Gene2 with 

only support and confdence measures, they restrict their rule generator with some 

criteria to discover rules with one gene on the left-hand side (LHS) of each rule and 

seven or more on the right-hand side (RHS). Similer to previous rule structure, 

McIntosh and Chawla (2005) and McIntosh and Chawla (2007) extract interesting 

gene relationships from microarray data by using association rule with support and 

confidence measures with using MAXCONF method for generating rules. 

MAXCONF is not related to a rule’s measures, but is related to the rule’s structure 

where consequence of discovered rules are not subset of other rules. Discovering 

relations between genes motifs and cell types disccused in (Thakkar, Ruiz, & Ryder, 

2007) using association rules of the form Motif1 → cell type. For example: M8 && 

M10 →neural [Supp =0.27, Conf = 0067,] where M8 and M10 are motifs and nural 

is cell type.   

The problem of protein-to-protein interaction modeling has given rise to several 

research studies for predicting positive interactions and other related properties. Hao, 

et al. (2004) discussed how to identify distinstive patterns to extract protein-protein 

interactions  from biological literatures using dynamic programming algorithms. In 

interaction prediction, Deng, Sun and Chen (2003) consider two methods: the 

neighborhood-counting method and the chi-square method. They use protein-protein 

interaction network to predict protein function. Another approch using a common-

neighbor-based model and a Bayesian framework to predict protein function is 

proposed by Lin, et al. (2006). Mixture-of-Feature-Experts method has been used in 
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(Qi, Klein-seetharaman, & Bar-joseph, 2007) to predict protein-protein interaction 

where they combine a set of features as a mixture of experts. 

Previous work on applying association rules techniques to protein-protein 

interaction has primarily been devoted to building predictive rules of identifying 

function regions pairs engaged in protein-protein interactions (Hung & Chiu, 2007), 

(Oyama, Kitano, Satou, & Ito, 2000), (Oyama- Takuya, 2002). Recently, new 

frequent pattern identification techniques specific to protein networks have been 

proposed by Turanalp and Can (2008) that were used to find patterns for predicting 

protein-protein interaction, specifically recurring functional interaction patterns. 

Kotlyar and Jurisica (2006) integrated association mining approach to integrate 

several diverse types of evidence.  Features of primary structure and associated 

physicochemical properties were used by Oyama, Yoshida, et al. (2003) and gene 

expression profiles, as features, were considered by Oyama- Takuya (2002) with large 

number of protein network and difference among them. The concept of deferential 

association rule mining was introduced by Bock, et al. (2001) and Besemann, et al. 

(2004). 

In my research, I consider the protein-protein interaction network and use 

numerical features to predict protein-protein interaction from only the parent-child 

relationships. However, using further information such as gene expression and other 

protein features, we can improve the prediction module. 

2.6 The K-means clustering method 
K-means clustering is an algorithm to classify or to group a number of objects 

based on attributes/features into K number of group. K is a positive integer and the 

grouping is done by minimizing the sum of squares of distances between data and the 

corresponding cluster centroid (the center).  

The K-means algorithm is: 

1) Decide on the value of K. 

2) Start off with K arbitrary centers.  They may be chosen randomly, or as the 

centroids of arbitrary starting partitions of the case set. 

3) Consider each case in sequence and find the center to which the case is 

closest.  Assign the case to that cluster.  Recalculate the center of the new and 

old clusters as the centroids of the points in the cluster. 

4) Repeat until the clusters are stable. 
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5) Repeat for different initial centers.  Choose the best clustering, in terms of 

minimum within cluster sum of squares. 

In this research I use the K-means clustering in the evaluation phase of the 

information gain framework section to demonstrate a significant measures’ values 

distribution improvement by visualizing the result.  

The relation measurement has been involved in many data mining techniques such 

as association rule and classification. Capturing a real association between items is the 

primary goal in previously described methods. However, interestingness measures can 

adapt any properties to improve prediction quality. The concept of Itemset size and its 

implication can drive further relation information. 

2.7 Concept Hierarchy (Ontology) 
A concept hierarchy or ontology is an explicit description (similar to the formal 

specification of a program) of the concepts and relationships that exist in a domain 

(Gruber, 1994). Ontologies can be seen as metadata that are used to provide a better 

understanding of the data. In my experiments, I use a dataset from LiveJournal, social 

network service that provides personal and social information about its members- 

publicly by default. In social networks, ontologies can provide a crisp semantic 

organization of the knowledge available in the domain. In particular the interest 

ontology can be used to make explicit the relationships between various interests, thus 

helping the process of understanding the data. They can also be used to improve the 

predictive power of the classification algorithms, which otherwise base their decisions 

only on the statistical information in the data. 

Previous work by Hsu, et al. (2006) has shown that the accuracy of predicting 

friendship relationships in a social network is very low if common interests are used 

as features and no graph features are available (Hsu, King, Paradesi, Weninger, & 

Pydimarri, 2006). However, the accuracy can be improved if an interest ontology is 

exploited (Bahirwani, Aljandal, Hsu, & Caragea, 2008) when constructing features 

using association rule measures. 

The hierarchical structure of the ontology enables us to view the connections 

between interests at different levels of abstraction. For instance, a user mentions 

“computers” to be one of his interests and other user lists “laptops” in her interest list. 

In the absence of interest’s ontology, the algorithm for finding association rules 
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considers “computers” and “laptops” to be different interests, obviously a 

semantically incorrect assumption. By analyzing the connection between these two 

interests in the interest ontology, the knowledge that “computers” and “laptops” refers 

to the same concept can be inferred and incorporated in computing association rule 

measures. Thus, I explore the use of the ontologies when constructing features using 

association rule measures and investigate the improvement in performance of various 

classifiers that use the resulting features to predict friends. 

  



29 
 

CHAPTER 3 - ITEMSET SIZE: CONCEPTS AND 
ADAPTIVITY 

 
In this chapter I will present the concept of itemset size-sensitivity and a specific 

method for achieving it. Then I will describe the needs and techniques of using this 

concept in interestingness measures with respect to domains adobtivity. 

------------------------------------------------------------------------------------------------------- 

UNotation 
 

C Constant Ri normalization factor 

ni itemset size q number of target items 

m constant (e.g., minimum itemset size) 
∧

p  propose probability 

 
------------------------------------------------------------------------------------------------------- 

3.1 Itemset size-adaptive interestingness measures 
In a preliminary study, I investigated the problem of tuning and selecting among 

interestingness measures for association rules. I derived a parametric normalization 

factor for such measures that address imbalanced itemset sizes, and show how it can 

be generalized across many previously derived measures. Itemset size is a property 

that has not been involved in any of interestingness measures yet.  

3.1.1 Need for sensitivity to itemset size 
Discovering and predicting relations between items in a set of transactions (each 

one denoted by an itemset) is a technical objective driven by prior background 

knowledge. Some data properties are directly observable such as co-occurrence of 

items, others can be hidden behind the data behaviors. Itemset size is one of these 

properties that can give additional deep information about associations between items, 

which can turn expose more hidden relations.  

In some real-life data, joint probability may not reflect the deep relationship 

between items if there is significant variability in the number of items in each itemset. 

This property will be more effective in some domains, where itemset size reflects the 

intrinsic properties of a domain and is not affected by other characteristics of the 

domain. One limitation of existing binary measures of rule interestingness is that they 

do not account for the relative size of the itemset to which each candidate pair of 
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associated subsets (X, Y) belongs. Moreover, there are some hidden associations 

related to the appearance of candidates in small groups. Therefore, giving some 

attention and weight to these small groups may lead us to a different perspective on 

relationship between items. This kind of data behavior can be seen, for example, in 

domains such as social network where each user’s record consists of features such as 

interests, communities, schools attended, etc. In particular, one of these feature sets is 

a user’s list of interests, each of which corresponds to a list of interest holders.  Some 

interests such as “DNA replication” have low membership; whether this is because 

the interests are less popular or more specialized, it often suggests a more significant 

association between users naming them than between those who have interests, such 

as “Music,” “Art” or “Games” in common.  In general, an extremely large number of 

interest holders tends to correspond to a more tenuous link. The size of the itemsets 

produces further information that can be used to increase the sensitivity of 

interestingness measures applicable to a candidate association. 

3.1.2 Itemset size in statistical probability  
The size of itemsets has been used in statistical probability, specifically in 

randomization theory. Therefore, I am going to discuss the problem of estimating the 

property of relation existence in a random data set and how Itemset size can affect the 

result. 

------------------------------------------------------------------------------------------------------- 

Let L = {x1, x2, …, xk} be a set of k distinct instances (items). Let D be a data 

set that consist of itemsets Ti  1≤ i ≤ M each of which a set of instances such 

that Ti ⊆ L 

Let T1 and T2  ∈ D (itemsets) with size M and N respectively where M > N 

T1 = {x1, x2… xM} 

T2 = { xa, xb… xN} 

Where each of xi ∈ L and 1< i < M and a, b ∈ [1, N] 

If there is a p where 1< p < M and on instance xp  ∈ T1  ∩  T2  such that: 

∃ xp →  xq  ∈ E   where E is a set of existing links and xq  ∈ L 

 Then the prior probability of finding xq  in T1  = 1 M�  (without any further 

information) and finding xq  in T2  = 1 N�  (without any further information) 

------------------------------------------------------------------------------------------------------- 



31 
 

 

As a result, the probability that we find xq in T2 is higher than the probability of 

finding xq in T1  because M > N. However, this assumption is derived from probability 

theory without taking into account any further information about the instances (items) 

just to show how itemset size can be involved in probability. 

3.1.3 Normalization task 
Normalization knowledge has been used to discover the correlation between a 

single numeric feature and multiple intermediate concepts. This concept will make a 

difference to the results’ order, which improves the measure quality. Normalization 

knowledge reduces unrelated correlations making axis-parallel division in the instance 

space more useful (Steven, 1996). 

The main concept of the current objective measures is based on the probability. 

When Hilderman, et al. (1998) proposed a concept of share-confidence and support, 

they believed that accounting for the quantity and price of the items in the 

computational of confident and support would improve measurement quality. In my 

research, the itemset size property can be a part of association measures to improve 

association capture in applicable domains. 

A normalization step is used to sensitize association measures to the popularity of 

a specific property, which is measured by the sizes of itemsets.  Intuitively, it is more 

significant for two candidate instances to share rare properties than popular ones, a 

property which gives itemset size a particular semantic significance in different 

application domains.  

The main idea about using Itemset size in association measures originates from 

modifying the joint probability to reflect the significance of sharing common 

properties. The process starts from computing a normalized factor for each itemset 

based on their size. Then I compute the joint probability of any target items and, 

instead of counting the number of itemset that contain the target items, we add up the 

normalized factor of itemsets that contain the target items. Therefore, the degree of 

involvement of each itemset is related to its size; the smaller their size the greater 

their significance in the resulting joint probability estimates. This allows us to modify 

the joint probability and hence the association rule interestingness measures by 

substituting on itemset size-sensitive joint probability. Therefore, we measure the 

interestingness using a degree of importance of each itemsets based on their size.  
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3.2 Validation-Based Approaches to Normalization 
Joint probability has been used as an important part in the interestingness 

measures. In data mining applications, this may not reflect the true meaning of the 

relationship between some items if there is a large variance among the number of 

items in each itemset. Frequent items in small-sized itemsets may be more 

informative about the relationship between their constituent items than the large ones.  

We now consider how to extend the interestingness measures to take into account the 

size of the itemset to construct a new concept of size-sensitive probability and drive a 

parametric function that can be used in any measures (Aljandal, et al. (2008). In 

addition, we can automatically tune these functions by using various optimization 

approaches.  

3.2.1 Parametric Functions  
In this section I describe the normalization function that I derived from the size’s 

relation between itemset sizes.    

Let m be a constant such as the minimum given itemset size (we can also use a 

trim-mean1F

2), so for each itemset with size ni there is a real number Ci ≥ 1 such that: 

𝑚𝑚𝑐𝑐𝑖𝑖 = 𝑛𝑛𝑖𝑖  

 

𝑚𝑚 =  �𝑛𝑛𝑖𝑖
𝑐𝑐𝑖𝑖 =  𝑛𝑛𝑖𝑖

1
𝑐𝑐𝑖𝑖 ∴ 𝑚𝑚 ∝  𝐶𝐶−1 

 

 

Let Ri = 1 / Ci.  Then: 

𝑚𝑚 =  𝑛𝑛𝑖𝑖𝑅𝑅𝑖𝑖 , 0 <  𝑅𝑅𝑖𝑖 ≤ 1 (1) 

𝑅𝑅𝑖𝑖 =  log 𝑚𝑚
log 𝑛𝑛𝑖𝑖

     →    𝑅𝑅𝑖𝑖 =  log𝑛𝑛𝑖𝑖 𝑚𝑚 (2) 

 
R represents a relational factor that describes the relationship between m and the 

size ni of each itemset.  Moreover, the value of 𝑅𝑅𝑖𝑖  will become more efficient if we 

involve the number of target items in the equation. For example, if the target items are 

(x1, x2, x3) the value of 𝑅𝑅𝑖𝑖  for itemset K should be slightly larger than the value of 𝑅𝑅𝑖𝑖  

                                                 
2 Trim-mean is the average which can be obtained by trimming the largest and the smallest cretin percentage (this percentage can 
vary) of the numbers in a series and then calculating the arithmetic mean for the remaining numbers. 
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of the same itemset when the target items are ( x1, x2 ). Therefore, the qth root is used 

to adjust the value of Ri based on the number of target items q in X  ∪ Y.  Then: 

 

𝑅𝑅𝑖𝑖𝑞𝑞 =  �log𝑛𝑛𝑖𝑖 𝑚𝑚
𝑞𝑞

 (3) 

 
If we consider 𝑅𝑅𝑖𝑖𝑞𝑞  in calculating the joint probability, we can define an item set 

(size)-sensitive joint probability.  Let L ≡ {x1, x2… xk} be the set of items.  Let D be a 

set of transactions (|D| = N), where each transaction T is a set of items such that T ⊆ L.  

Then: 

 

𝑝̂𝑝�𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑞𝑞� ≜  
1
𝑁𝑁
�𝑅𝑅𝑖𝑖𝑞𝑞

𝑁𝑁

𝑖𝑖=1

    

                              ≜   
1
𝑁𝑁
� �log𝑛𝑛𝑖𝑖 𝑚𝑚

𝑞𝑞
𝑁𝑁

𝑖𝑖=1

 

 

 

(4) 

The lower bound of this equation is achieved where the number of items q in one 

itemset is 2, which is also the smallest possible itemset size. In the case where another 

constant has been used (such as trim mean) we will consider all itemset sizes less than 

or equal to the constant have a value similar to the value of the constant.  

3.2.2 The Curve of Itemset Size-sensitive Normalization Function: 
Based on Equation 3, Figure  3-1 illustrates the curve of the normalization factor 

under three assumptions of the size of the target items. When the size of itemset ni = 5 

the value of 𝑅𝑅𝑖𝑖𝑞𝑞= 1 (the max for 𝑅𝑅𝑖𝑖𝑞𝑞 ) which is exactly equal to the normal value when 

we compute the normal joint probability. Moreover, 𝑅𝑅𝑖𝑖𝑞𝑞  is positively correlated with 

(and sublinearly proportional to) the size of target itemsets. We can see from Figure 

 3-1 that the value of 𝑅𝑅𝑖𝑖𝑞𝑞  increased with the increasing of the number of target items q 

which makes 𝑅𝑅𝑖𝑖𝑞𝑞  approach 1. This provides a logical explanation of the relation and 

interpretation of the itemset size and the target itemset size in the new normalization 

factor equation. 
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Let m = 5    and  5 ≤  ni  ≤ 100 

2i
R  = 2

n i
Log m  

3i
R = 3

n i
Log m  

4i
R  = 4

n i
Log m  

 

  
 Figure  3-1 The curve of the normalization function 

3.2.2.1 Example 1: 

In this example I present a small data set of a social network in Table  3-1 to 

demonstrate the effect of the new normalization factor (𝑅𝑅𝑖𝑖𝑞𝑞 ) and explain how this 

factor changes the association rules interestingness measure.  

In this example the smallest itemset size is 2 (m =2) and the target itemset is also 

2 (q =2). The first step is to compute the normalization factor for each row of data 

(basket) based on Equation 3 and the constant given. 

We will  consider only some of the frequent items :  

           P(User20) = 0.8       

     P(User2) = 0.6      

     P(User9 ) = 0.6 

ni 

2i
R

 

3i
R

 

4i
R

  

qi
R  

 5 



35 
 

 

 

 

# Items list Size (n) Ri 

1 
User20, User10, User5, User8, User11, User9, 

User12, User15, User18,  User22  

10 0.549 

2 User2, User4, User20  3 0.794 

3 
User20, User10 ,User11, User9, User12, User21, 

User16, jucie3  

8 0.577 

4 User2, User4  2 1 

5 User14,  User9, User2, User20, User16, User10  5 0.656 
Table  3-1 Market basket (example 1) 

  

The next step is compute the proposed joint probability based on Equation 4 

where the target items = 2. Then we calculate the support and confidence of target 

items based on joint probability (without R) and the proposed joint probability   (with 

R). 

 

Probability  Without R With R 
∧

p  (User20, User10  ) 0.6 0.3564 

∧

p  (User2 ,User4) 0.4 0.3588 

∧

p  (User9 , User12) 0.4 0.2552 

Rules   

Conf(User20 → User10  )  0.75     (1) 0.446    (2) 

Conf (User2,→ User4)  0.667   (2) 0.598    (1) 

Conf (User9 → User12)  0.667   (2) 0.375    (3) 
Table  3-2 Rules and measures (example 1) 

      

From the Table  3-2 we can see how the new definition of size-sensitive joint 

probability affects the order of the confidence for three association rules. The value of  

Conf(User20 → User10) has higher probability without considering the new 

normalization factor (R), but when we use the new size-sensitive joint probability the

∧

p  = probability (Support), Conf = Confidence. ( ): order number 
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∧

p ( User2, User4) reduced because User20 and User10 appear in a large itemset size 

compared with the appearance of User2 and User4 which gives them more indication 

and a higher size-sensitive joint probability.   

3.2.2.2 Example 2: 

The second social network data set Table  3-3 illustrates the effect of a new 

normalization factor when there is no distinguished different in the size of itemset (n).  

Now m = 3 for computing the normalization factor. The same steps we follow as 

the example. 

Table  3-3 Market basket (example 2) 

Probability   Without Ri With Ri 
∧

p  (User20, User11  ) 0.6 0.5084 

∧

p  (User7, User14) 0.4 0.3780 

∧

p  (User9 , User3) 0.4 0.3304 

Rules   

Conf(User20 → User11  ) 0.75     (1) 0.636     (1) 

Conf(User7,→ User14) 0.667   (2) 0.630     (2) 

Conf(User9 → User3) 0.667   (2) 0.551     (3) 
Table  3-4 Rules and measures (example 2) 

From Table  3-4, we can see that the new normalization factor will not make a big 

difference in the order of the three rules because there is no big distinguishable 

difference between the sizes of itemset. However, the sensitivity of the defined joint 

probability makes little difference in the order of the three rules. 

From the previous small examples we can draw a clear picture about the effect of 

the itemset size-sensitive joint probability. In the next chapter I present a number of 

experiments designed to demonstrate this effect in real datasets in different domains.    

# Items list Size (n) Ri 
1 User20, User11,  User9, User3, User7 5 0.826 

2 User7, User14, User20, User8  4 0.890 

3 User20, User11,  User22,  User16 4 0.890 

4 User7, User14, User9  3 1 

5 User9, User3, User20, User11, User23 5 0.826 
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3.2.3 Optimization-based approaches 
In the previous section, I present a parametric function for Itemset size as 

normalization factor. However, changing the threshold (parameter “m”) in parametric 

function (Equation 4) can change the performance measures. In this section I show the 

affects that will occur when we use different constant values for parameter m. 

In parametric function optimization test, I use a Livejournal dataset that contains 

~6000 user pairs with 10 association measures (numerical measures) for both users’ 

common interests and common communities. More details about this dataset in 

Section 5.3.3 but I added one more measure, a 𝛷𝛷-coefficient. I produced 119 different 

classification files that contain normalized measures where each file uses the 

normalization factor with m = {2, 3, 4 ….. 120}. The first test is using Conviction of 

common community as a friendship prediction feature. From Table  3-5 we can see the 

frequency of communities’ membership.  

 

Community 
members Frequency 

1 26677 
2 7623 
3 3238 
4 1784 
5 1100 
6 781 

7-8 841 
9-10 500 

11-20 781 
21-30 191 
31-40 81 
41-50 31 
51-60 24 
61-70 17 
71-80 5 
81-90 5 

91-100 1 
101-110 2 
111-120 4 

>120 9 
Table  3-5 The frequency of communities membership size 
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The total number of communities is more than 43,000 and the maximum number 

of users in one community is 731users (only one community has this number of 

users). The minimum membership’s size is one user which is about 26,677 

communities as shown in Table  3-5. Therefore, I will ignore the communities that 

have only one user because they do not affect the association measures (there is no 

users’ co-occurrence in these communities). Figure  3-2 shows a histogram of 

Community membership size. The majority of communities have at least two users as 

a member. Based on the Itemset size normalization factor concept, if we specify a 

proper threshold, we will reduce the effect of co-occurrences that happened in 

communities with a size larger than the threshold (parameter m).  

   

 
Figure  3-2 Community membership size histogram 

 

Figure  3-3 shows the AUC result of J48 with 10-fold cross validation for each of 

the first 88 files for normalized and unnormalized conviction measure. The value of 

AUC of unnormalized conviction was drowning as a line. We can observe from 

Figure  3-3 that AUC of normalized conviction has a different degree of improvement 

based on chosen m. In addition, the mean of communities’ membership size is 2.45 

and the standard deviation equals 8.2. Thus, we can concentrate on selecting a proper 
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m from the area around the mean with a range close to the standard deviation; this 

should provide a high probability that we find an optimal threshold (m).      

    

 
Figure  3-3 AUC’s result for each file using Conviction of common communities 

 

On the other hand, the AUC value of using normalized conviction measure will 

get close to the value of unnormalized conviction measures when parameter m reaches 

the maximum community membership size.  

In another test, using Φ-coefficient (Linear Correlation Coefficient) measure 

which is defined as: 

𝛷𝛷-coefficient =  P(AB )−P(A)P(B)
�P(A)P(B)P(⇁A)P(⇁B)

 

 

With the J48 decision tree inducer and using the same dataset, I obtained AUC as 

shown in Figure  3-4, which yields the same trends relative to the choice of m, but with 

different strengths.  
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Figure  3-4 AUC’s result for each file using 𝚽𝚽-Coefficient of common communities 

 
Optimizing the parametric function using a proper threshold can be obtained if we 

concentrate in the size of small itemsets. Taking the average or the mean of the small 

itemsets are easy ways to get closer to the optimal result. However, we can involve 

parameter m in the process of features selection using a genetic algorithm (GA).  

3.3 Role of association rules in link mining 
The main objective of the association rule is discovering the associations between 

instances which can be measured and filtered later on. Capturing a relation is similar 

to finding a link between instances. Association measures are descriptive statistics 

computed over rules of the form u → v . This allows us to apply algorithms for 

association rule mining based on calculation of frequent itemsets (co-occurrence), 

which, by analogy with market basket analysis, denote sets of instances who share a 

specific property. Some research focuses on such property, such as Ganiz, et al. 

(2006) and Shanfeng, et al. (2005), to improve link prediction.  

Using association rule mining concepts and measures in link mining can be 

summarized as follow: if two instances X, Y are co-occurring in many cases (P(X, Y) 

is high enough to consider), we can predict that there is a link between X and Y and 

the significance of this link can be measured by using some association measures. 

Getoor et al. (2001) observed that there are often correlations between the attributes 
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of entities and the relations in which they participate in. For example, in a social 

network, people who have the same hobbies are more likely to be friends. Therefore, 

we can use association rule measures as numerical features for building a link 

prediction module. In addition, each association rule measure captures one or more 

desiderata of a data mining system: novelty (surprisingness), validity (precision, 

recall, and accuracy), expected utility, and comprehensibility (semantic value).   

3.4 Domain-specific properties and semantics 
Many objective association rule measures are proposed to meet different users 

needs based on domain characteristics. However, there are many domains that have 

different properties and semantics. This is one of the reasons that some objective 

measures can not be consistently better than others in all application domains (Tan, 

Kumar, & Srivastava, 2002). 

The concept of membership relation in a specific domain can be affected by 

external exogenous variables. Increasingly the number of effects which can not be 

captured as data will lead to a weak prediction result in this domain. For example, in 

market basket customer shopping habits and other personal effaces are either hard or 

impassible to capture. In the case where there are many effects, data properties will 

not have a stable impact which can be taken into account in a mining process to 

improve prediction measures quality.       

We can categorize domains based on some characteristics:    

Non Autonomous 

In this category the instance does not have any control for being in a specific 

group. For example an item in a market basket has external instance which is a 

customer who controls the shopping trip. However, having an external instance gain 

extra causes an item to become a member of a specific basket. This kind of data will 

have some weakness in the mining process if we concentrate in data properties. A 

well-known example of this category is market basket data.         

Semi-Autonomous 

An instance of this category has some control for being in a specific group which 

is sometimes controlled by the neutral. Therefore in general, the number of effects in 

this category will be less than the first category. Dataset examples of this category are 

Bio-informatics, medical information (disease dataset), and demographics dataset.  

Autonomous 
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This category contains domains where the instance has more control for being a 

member of specific group. In this category data properties will not be disturbed by 

that much of external effects like the first category. For example, in social network 

datasets, a user decides to be a member of a particular community. Example of data 

sets this category are social networks and criminological link analysis. 

In my research I use three different domains to cover the three categories: 

• Market baskets 

• Protein-protein interaction  

• Social networks 
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CHAPTER 4 - APPLICATION DOMAINS 
 

In this chapter I present some aspects related to application domain and how it is 

related to my research. 

There are several studies about the domain-orientation in software engineering 

such as Domain-Specific Modeling (DSM) (Cook, 2006) and Domain-Specific 

Information Retrieval (IR) (Kang, Lin, Zhou, & Guo, 2007), but the main concept of 

these studies lie in the domain topic or domain specification. In the area of data 

mining, monitoring data behavior is one of the most important goals. Therefore, in 

association rule mining we need to provide more details about domain characteristics 

and their effects on data properties to take advantage of usefulness of these properties.  

Before we go further, I will define the general concept of the data. I use the words 

“instance” and “group” to indicate the item and basket in market basket dataset for 

example.  The main goal of association rule measures is to capture the association 

between instances by using their appearance in each group. However, an instance’s 

memberships are not always independent from other effects. Therefore, looking 

behind the circumstances that make two or more instances share a membership of one 

or more groups gives an explanation about their data behavior. 

Increasing the number of exogenous variables which can not be captured as data 

will weaken some properties effects on link prediction. One example is market basket 

analysis, which reflects customer shopping habits and other personal property which 

are either hard or impassible to capture such as: quick shopping trip and specific 

shopping trip for BBQ. In the case where there are many effects, data properties will 

not have a stable impact that can be taken into account of the mining process to 

improve prediction measures quality.  

In the case of the itemset size-sensitive property, as implemented using validation-

based normalization of interestingness measures, the effect fails to improve the 

precision and recall of association measures in some domains. As I list in Table  4-1, 

there are exogenous (potentially latent, i.e., hidden) variables existing in some 

domains that affect both itemset size and link existence, hence the reflection of link 

strength in interestingness measures. 
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 Domain Exogenous 

variable Effect 

1 Market basket Shopping mode 
Mode determines co-purchases analysis 

(trip type) as well as number of items 

2 Click stream Search mode 
Mode determines search arguments and 

other choices 

3 Advising 
Temporal 

Relation spread 
out over time 

Concept drift Advisor/advisee topics can 

differ (even intentionally) 

4 Co-authorship 

Discipline Some have more authors per paper 

Inter 
disciplinarity 

More authors for more diverse topics 

Hidden 
relationship 

Funding and co-worker relation 

Historical context 
People who wrote together before are 

likely to do so again 
Table  4-1 Exogenous variables in various domain effects 

 

In the next sections I will describe some domains and their properties.  

4.1 Social Networks 
Most social networking services include friend-listing mechanisms that allow 

users to link to others, indicating friends and associates.  Friendship networks do not 

necessarily entail that these users know one another, but are means of expressing and 

controlling trust, particularly accessing private content.  In blogging services such as 

SUP’s LiveJournal or Xanga, this content centers on text but comprises several 

media, including: interactive quizzes, voice posts, embedded images, and video 

hosted by other services such as YouTube. In personal photograph-centric social 

networks such as News Corporation’s MySpace, Facebook, Google’s Orkut, and 

Yahoo’s Flickr, links can be annotated (“How do you know this person?”) and friends 

can be prioritized (“top friends” lists) or granted privileges as shown in Figure  4-1. 

Some vertical social networks such as LinkedIn, Classmates.com, and 

MyFamily.com specialize in certain types of links, such as those between colleagues, 

previous employers and employees, classmates, and relatives.  As in vertical search 
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and vertical portal applications, this specialization determines many aspects of the 

data model, data integration, and user knowledge elicitation tasks.  

 
Figure  4-1 Facebook’s access control lists for user profile components.  © 2008 Facebook, Inc. 

  

  For example, LinkedIn’s friend invitation process requires users to specify their 

relationship to the invited friend, an optional or post-hoc step in many other social 

networks. 

Friendship links can be undirected, as in Facebook and LinkedIn (requiring 

reciprocation, also known as confirmation, to confer access privileges) or directed, as 

in LiveJournal (not necessarily requiring reciprocation).   

In my research I use LiveJournal dataset where the links present a friendship 

relation between users. For the itemsets I use two user’s properties: users’ interests 

and communities’ membership.  

4.2 Protein-Protein Interaction 
There are different kinds of information related to protein that can be taken into 

account in studying the interaction between proteins. However, the information about 

protein-protein interactions are important for many biological functions and diseases. 

For example, the number of features can be collected from interactions between 

yeasts and features that characterize each protein involved in the interaction. In a 



46 
 

research study by Oyama, et al. (2000) produced more than two thousand features 

from six different types of protein features. In addtion,  protein interaction network 

can be a source of information to build a prediction module for unknown interactions. 

For example, the paper by Schwikowski (2000) and others related to the PPI 

Networks in Rice Blast Fungus (He, Zhang, Chen, Zhang, & Peng, 2008) are useful 

for investigating the cellular functions of genes. 

There are many data resources as catalogs experimentally determined interactions 

between proteins such as: 

• The Database of Interacting Proteins (DIP) (UCLA, 2008) catalogs 

experimentally determined interactions between proteins. It combines 

information from a variety of sources to create a single, consistent set of 

protein-protein interactions.  

• Yeast Interacting Proteins Database (Kanazawa-University, 2001) A yeast 

protein interactome with a Genetic Network Visualization System 

• Domain Annotated Protein-protein Interaction Database DAPID 

(BioXGEM-Lab, 2006) database of domain-annotated protein interactions 

inferred from three-dimensional (3D) interacting domains of protein 

complexes in the Protein Data Bank (PDB) 

In my research, I use a structural property of protein-protein interaction to predict 

unknown (hidden) positive interaction. The main concept is building incomplete 

positive  protein-protein interaction network from a dataset provided by Ben-Hur and 

Noble (2005) and construct some associational features (numerical features) to predict 

the complete network. Therefore, the link of this domain is where protein A positively 

interacts with protein B as (A → B). For itemset, I use the protein Parent-Child 

relation property in positive protein interaction network that I use to construct 

numerical features. The complete design of the experiment presented is in Section 

5.3.5.  

4.3 Other domains surveyed 
There are other domain that I surveyed as possible domains for further 

investigation. Table  4-2  shows these domains and possible itemset that can be used to 

construct the numerical features, and also the possible link property that a domain can 

have. Some of the aspects need to be considered to work in these domains such as: 
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ground truth availability, dataset size and prepare data properties that can be used as a 

prediction base.  

 

Domain Itemset Link 

Movies 
  

Type of Actors 
Type of actors and decade 
Appeared-With other actors 

Appeared-With actors 
Appeared-With actors 
"Knows" -OR- Personal 
relation 

  

Math Genealogy 
  

Thesis type and year of 
graduation 
Thesis type with ontology 

Advisor-of 
Advisor-of 

Epidemiology Diseases expertise 
co-occurrence 
by elicitation 

Citations Bibliographies (cited by others) A cites B 

Spatial Event Events within a radius (tagged) 
Attested -OR- co-
references 

Temporal Event Events with in interval (tagged) 
 Attested -OR- co- 
references 

Blog community Cluster of blog entries 
 

Co-members at 
communities 
Interests 
Party affiliation  

  position on issue 

Protein-protein 
Domains  and other features 
 Interaction chain sequence 
(PPI) 

Interaction 
Interaction 

Collaboration  Co-author list  

Collaboration as 
recorded in Erdos 
number Project 
(Grossman, 2007) 

Text and named 
entities 

Document (named entities 
mentioned in bag of words) 

Page links 
  

Table  4-2 Domain property for future work 
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CHAPTER 5 - EXPERIMENT DESIGN AND 

IMPLEMENTATION 
 

In this chapter, I give a detailed explanation of my overall evaluation approach, 

followed by the derivation of evaluation measures that I use and, at the end of the 

chapter, my experiments design.  

5.1 Evaluation Approach 
Two evaluation frameworks are used to evaluate my approach. The first one is 

evaluation using information gain and rule selection, used for a dataset where ground 

truth is not available. The second one is evaluation through classification methods 

which is used for datasets that have a source of ground truth.  

5.1.1 Evaluation through Information Gain and Rules Selection 
In this section I describe the design of my first experiment framework, which 

consists of three phases as shown in Figure  5-1: Local Phase, Global Phase and 

Evaluation Phase followed by dataset description. This framework is designed for 

domains that do not have a ground truth for a comparison. However, the gold standard 

that I consider can be rebuilt by using any independent measures.     

 
Figure  5-1 Three phases’ evaluation process (using information gain) 

5.1.1.1 Local Phase 

In this phase I generate two list of rules based on two versions of specific 

association rules measured as shown in Figure  5-2. 
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 Local Phase 
 

The first local list: 

--------------------------------------------------------------------------------------------------- 

Input: Dataset D 

Output: Local list ARL-1          // with rank 
-------------------------------- 
Let ARL-1 = Generate association rules (D , 0.2)    // with minimum support ≥ 0.2 

For each rule X in ARL-1 

       Compute lift (X) 

Sort(ARL-1 )            // based on life measure  

Rank(ARL-1) 

End 

--------------------------------------------------------------------------------------------------- 
The second local list: 
--------------------------------------------------------------------------------------------------- 
Input: Dataset D 
Output: Local list ARL-2          // with rank 
-------------------------------- 
                                                     
For each itemset T in D  
        Compute the normalization factor-R ( T ) 
      Let ARL-2 = Generate association rules with-R (D , 0.2)     / / with minimum 

support ≥ 0.2 
For each rule X in ARL-2       //  R is the normalization factor

         Compute lift with-R (X) 
Sort(ARL-2 )                                     //  based on life measure  
Rank(ARL-2) 
End 
 

Figure  5-2 Local phase processes pseudo code 

 

The first list is going to be generated by Magnum Opus 2F

3 with filtering of the 

redundant rules with minimum support = 0.2 and ordering the result by one of the 

interestingness measures (Lift). The output is a list of rules ordered by the Lift 

measure (from high to low), as discussed in Chapter 3. The next step is to substitute 

the lift value with the order number (Rank) for each distinct value (1 is the highest).  

                                                 
3  A pattern discovery Software from RuleQuest data mining tools (http://www.rulequest.com/) 
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The second list will be generated by using the new normalization factor (R) which 

will need to be computed from the market basket. After that I use the same 

interestingness measures (Lift) but this time with the normalization factor (R), which 

is using itemset size-sensitive joint probability instead of the normal joint probability. 

Then I order the result by modified lift measure (with R) which is also going to be 

substituted by the order number (Rank). 

The result from this phase is two local ranked lists of rules. For the next phase I 

choose the union of the two local lists as generating criteria of the Global list. 

5.1.1.2 Global Phase 

 

Global Ranking Attribute Surprising 

Candidates Criteria  Union 

Table  5-1 Global List criteria 

 Global Phase 
 
Producing the Global list: 
--------------------------------------------------------------------------------------------------- 

Input: ALR-1, ARL-2  

Output: Global list ARL-G                                            // with rank 
--------------------------------------- 
 
Let ARL-G  ARL-1 ∪ ARL-2  

For each rule X in ARL-G  

        Compute the attribute surprising ( X ) 

Sort(ARL-G)                                                         // sorted by attribute  

surprising (LHS and ALL) 3F

4.    

Rank(ARL-G) 

End 

--------------------------------------------------------------------------------------------------- 
Figure  5-3 Global phase processes pseudo code 

 

                                                 
4  The attributes located in the left hand side (LHS) are used for first-level sorting and all rule attributes 
as second-level 
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I will refer to the standard list that will be generated in this phase as global list. 

The main reason for creating this list is because some domains lack a ground truth 

such as a market basket domain. There are many criteria for generating the global list 

from two local lists, but in this research I am taking the union of the two local lists, as 

shown in Table  5-1, which have been generated in the Local Phase. This is one of the 

safest ways to generate a non-ordered global list and avoiding adding a penalty of a 

missing rule in the comparison phase.  

From the previous steps I generate two lists of rules ALR-1, ARL-2 using two 

methods and each list has its own order (Ranking). Let ALR-1 ={r1,r2….rn} and  

ARL-2 ={r1,r2….rm} where n and m >1. The global list can be produced as ARL-G = 

⋃ 𝑟𝑟𝑖𝑖𝑘𝑘
𝑖𝑖=1  where k = m + n - z and z = | ARL-1 ∩ ARL-2 | which is removing all the 

redundant rules. The result will be a list of rules without any order (or values) as 

shown in Figure  5-3.  

For ranking method, I am going to use the Attribute surprisingness (chapter 3) as 

standard ranking measure for the Global list:  

 

                                  AttSupp =  
1

�
∑ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 � 𝐴𝐴𝑖𝑖�
𝑘𝑘
1

𝐾𝐾 �
   

Where InfoGain (Ai) is the information gain of the ith attribute occurring in the 

rule and k is the number of attributes. 

The first step in computing the attribute surprisingness is calculating the 

information gain of each attribute in the rule lists. As requiring parameter for 

computing the information gain, I classify the date set (market basket) based on the 

number of items in each instance (itemset). Let Xi be the ith itemset, then the 

classification of Xi is as follows: 

     

    C(Xi) = �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ,     |𝑆𝑆𝑖𝑖| ≥ 2
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,    |𝑆𝑆𝑖𝑖| < 2

� 

  

Where | Si| is the size of the ith itemset. After this step we can compute the 

information gain of each attribute as: 

 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑆𝑆,𝐴𝐴) = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆) −  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆|𝐴𝐴) 
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which is: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑆𝑆,𝐴𝐴) = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆)  − � |𝑆𝑆𝑣𝑣|
|𝑆𝑆|� 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆𝑣𝑣)

𝑣𝑣𝑣𝑣  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (𝐴𝐴)

 

Where 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆) is defined as 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆) =  �−𝑃𝑃 lg𝑃𝑃𝑖𝑖

𝑐𝑐

𝑖𝑖=1

 

Where S is the set of example, Pi is the proportion of S belonging to class i, 

Values(A) is the set of possible values for attribute A, and Sv is the subset of S where 

attribute A have value v (Mitchell, 1997). 

From the previous steps I produce the global list that is going to be ordered 

(Ranked) based on the Attribute surprisingness of the left hand side items of the rule 

(LHS) as first level and for over all items as second level ordering. I am using two 

levels of ordering to make the global list more accurate because there are many rules 

with similar LHS items.  

 

5.1.1.3 Evaluation Phase 

 
Compression 

Candidates 

Number of 

Inversions 

Rank 

Clustering 

Top N Yes ♦ 

ALL Yes Yes 
 

Table  5-2 Evaluation criteria 

 

At this point we already have two local lists of rules with ranking and one global 

list of rules which has been ranked by Attribute surprisingness. The goal of this phase 

is to compare the ranking of the two local lists by using the ranking of the global list 

as a canonical list, as shown in Figure  5-4. There are many compression criteria and 

in the evaluation process we need to apply independent criteria that can only be 

affected by rule ranking, as shown in Table  5-2. In this research I am considering 

inversion of the rules ranking for all rules and top N rules as comparison criteria.  

 

Yes: Available ♦: beyond scope of dissertation 
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 Evaluation Phase 

 

Input : ARL-1, ARL-2, ARL-G 

Output:  INV-1, INV-2                                         //  Total number of inversions  

 ---------------------------------------                   for the two local lists 

Let INV-1 = Compute inversion (ARL-1,ARL-G) 

Let INV-2 = Compute inversion (ARL-2,ARL-G) 

End 

     -------------------------------------------- 

           Compute inversion: 

                   Input: (Local, Global) 

                   Output: N                                             // the total number of inversions 

             ---------------------------------       

                       N 0 

 For each rule X in Local 

          Find X in Global   

                              N  N + | rank of X in local – rank of X in Global | 

                  End  

--------------------------------------------------------------------------------------------------- 
Figure  5-4 Pseudocode for evaluation phase processes  

I considered several other criteria that will be omitted from now on. Example 

include computing edit distance and inversions of the rule indexes to compare 

candidate, because after we get the local lists there are some rules which have the 

same measure value (for example: Lift). This issue makes the order of rules dependent 

on the position. However, these positions are in turn, based on the randomization of 

rule learning system (Weka 4F

5 or Magnum Opus). Therefore, using rule indexes in the 

comparison process with a global rules indexes list it will lead to an insufficient 

result.   

                                                 
5 Weka is a suite of machine learning software written in Java, developed at the University of Waikato. 
(Witten & Frank, 2005) 
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Consequently, the result from this evaluation phase will give an explanation of 

how one of the local lists is more surprising than another by being more similar in 

ranking order to global list.  

5.1.2 Evaluation through Classification Methods  
In this section I present the framework evaluation method using the classification 

measures as comparison measures to show the effect of the new method for the 

prediction of link existence. 

The requirement of supervised learning (classification) leads us to domains that 

have ground truth property such as the LiveJournal data set. In addition, I use the 

classification result as evaluation measures. In this section I describe the framework 

steps using the LiveJournal as an example dataset. However, this framework is 

applicable to any domain for which ground truth data is available.  
 

The main step of this framework is to add new features related to interestingness 

measures (numerical features) with using the original joint probability and itemset 

size-sensitive joint probability, which includes the new normalization factor, as a 

friendship prediction feature.  

In this section I give more details about the experimental design phases as shown 

Figure  5-5 : the pre-processing phase, the classification phase, and the comparison 

phase.    

 

 
 

Figure  5-5 Three phases’ evaluation process (using Classification) 

5.1.2.1 Pre-processing Phase  

In this phase I prepare the datasets that I am going to use for the next phase and 

compute some of the association rule interestingness measures (Support, Confidence, 

Lift, etc) for each instance-pair that I am going to produce as numerical features. 

Comparison phase Classification phase Pre-possessing phase 
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From the row data that we generate, a class presents the actual relation or link (e.g., 

friend or not). The second dataset will be a basket of one of the instance’s 

characteristics such as communities and interests in the LiveJournal dataset. This 

basket presents the common properties between instance-pairs that are going to be a 

key to predicting the actual relation (link) between instances. The next step is using 

the basket (the second dataset) to produce interestingness measures features 

(numerical features) for common properties with two versions (with and without the 

new normalization factor).  

5.1.2.2 Classification Phase 

The inputs to this phase are two datasets consisting of instance pair, with and 

without the new normalization factor. In this phase I am going to use some of the 

classification methods (chapter 3.3) with selected features to show how the new 

normalization factor improves classification measures by using WEKA (Witten & 

Frank, 2005).   

The output of this phase is the classification result for each inducer based on 

selected features. 

5.1.2.3 Comparison Phase 

The comparison is based on the classification result of the two classification files 

that has been produced using the original measures and normalized measures. In this 

phase the results of the comparisons are represented as tables and visualization 

graphs. Comparison criteria are based on the classification measures: 

1. Accuracy  

2. Recall 

3. Precession 

4. F-measure   

5. ROC - AUC (for some experiment) 

5.2 Evaluation Measures   
In the classification tasks, the terms true positives, true negatives, false positives 

and false negatives are used to compare the given classification of an item (the class 

label assigned to the item by a classifier) with the desired correct classification (the 

class the item actually belongs to). 
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5.2.1 Precision and Recall 
Precision and recall are two widely-used measures for evaluating the quality of 

classification results. These measures were first used to measure the information 

retrieval (IR) system (Cleverdon, Mills, & Keen, 1966). Recall is defined as the ratio 

of correct positive predictions made by the system and the total number of positive 

examples. Precision is defined as the ratio of correct positive predictions made by the 

system and the total number of positive predictions made by the system. As shown in  

Table  5-3, the meaning of the terms true positives, true negatives, false positives and 

false negatives has been used to compare the given classification of an instance (the 

class given by the classifier) with the actual classification (the ground truth).  

 
 

  Actual result 
- + 

Predicting 
result 

- TP 
(true positive) 

FP 
(false positive) 

+ FN 
(false 

negative) 

TN 
(true negative) 

Table  5-3 Confusion Matrix 

 
 
Formally, the definition of the Precision and Recall are follows: 
 
 

Precision  =     𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

              ,        Recall  = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 
 

5.2.2 The F-Measure 
The F-measure, first introduced by Van (1979), which combines precision and 

recall measures, with equal importance, into a single parameter for optimization. F-

measure is the weighted average of the precision and recall measures (harmonic 

mean), and is defined as follows: 

 

F =  2∗
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 )

(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 )  

5.2.3 The Accuracy  
 

Accuracy is the ratio of the number of correct classified examples to the total 

number of examples.  
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Formally, accuracy can be defined as follows: 

 

                                   Accuracy  = 𝑇𝑇𝑇𝑇  + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇  + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

 

5.2.4 The ROC–AUC 
 The Receiver Operating Characteristic (ROC) curve (Fawcett, 2006) is a two-

dimensional measure of classification performance that shows the tradeoff  between 

the true positive rate and false positive rate. A ROC graph is a plot with false positive 

rate on the X axis and true positive rate on the Y axis, and the Area Under the Curve 

(AUC) ranges between 0 and 1, where 1 is a perfect score and 0 is a minimum score 

value.  

5.3 Experiment Design 
In this section I describe the design of each experiment and the datasets that I am 

using. The first experiment follows the first framework evaluation in Section 5.1.1 

and the rest of the experiments follow the second framework described in Section 

5.1.2. 

5.3.1 Rules validation and selection 
In this experiment, I generate the rules and validate them based on evaluation 

approach through Information Gain and rules Selection. Information about dataset and 

rules generating is presented in AR: Association rule 

Table  5-4. Statistical information about these data sets is given at the end of this 

section.  

There is diversity in choosing the datasets from the number of transactions, 

number of items and the limitations. Therefore, the evaluation processes will come 

across different data features.  

The first dataset comes from Magnum Opus software as a shopping basket, 

containing 1000 transactions. This dataset represents the shopping baskets of 

anonymous stores. Each shopping basket contains sets of items totaling 16 different 

items. Each record (transaction) in the data set contains information about one single 

shopping basket. First column contain the basket-ID followed by boolean variables (0, 

1) which distinguish if the item is in the basket (1) or not (0).  
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No Topic Source 
Construction 

Method 
Items Transaction 

Number of 
AR 

limitation 

1 
Market 
Basket 

Magnum 
opus 

Original 16 1000 6151 Supp >0.001 

2 
Artifici

al 
Magnum 

opus 
Hand-

modified 
13 10 28 Supp ≥ 0.2 

3 
Artifici

al 
Magnum 

opus 
Hand-

modified 
10 10 44 Supp ≥ 0.2 

4 
Market 
Basket 

Brijs’s 
Dissertation 

Modified 
Sample 

303 1000 6505 Supp > 0.02 

AR: Association rule 

Table  5-4 Data Sets for first experiment 

Figure  5-6, shows the distribution of the total number of items in each shopping 

basket. In addition, there is some statistical information represented in Table  5-5, 

which is about the number of items in each basket. 

 

Max 8 

Min 1 

Average 2.58 

STD 1.463986 

Table  5-5 Statistics information for number of items in single basket (1st) 

 

 
Figure  5-6 Distribution of the number of items in single basket (1st) 
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The second dataset is hand-modified from the Magnum Opus tutorial dataset 

which contains 10 transactions representing the shopping baskets. Each shopping 

basket contains a set of 13 different items. Each record in the data set contains 

information about one single shopping basket. The first column contains the basket-

ID followed by boolean variables that medicated whether the item is in the basket (1) 

or not (0).  

Figure  5-7, shows the distribution of the total number of items in each shopping 

basket. In addition, there is statistics are reported in Table  5-6, for the number of 

items in each basket. 

 

 

Max 7 

Min 1 

Average 3.4 

STD 2.065591 

Table  5-6 Statistics information for number of items in single basket(2nd) 

 
Figure  5-7 Distribution of the number of items in single basket(2nd) 

The third dataset is hand-modified from the Magnum Opus tutorial dataset which 

contains 10 transactions representing the shopping baskets. Each shopping basket 

contains a set of 10 different items. Each record (transaction) in the data set contains 

information about one single shopping basket. The first column contains the basket-

ID followed by variables that medicated whether the item is in the basket (1) or not 

(0).  
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Figure  5-8 shows the distribution of the total number of items in each shopping 

basket. In addition, there is statistics are reported in Table  5-7, for the number of 

items in each basket. 

 

Max 7 

Min 1 

Average 3.2 

STD 2.098 

Table  5-7 Statistics information for number of items in single basket(3ed) 

 

 
Figure  5-8 Distribution of the number of items in single basket(3ed) 

 

The fourth dataset, which is a modified sample from Brijs, et al. (1999) dataset, 

contains 1000 transactions. This dataset represents the shopping baskets data from an 

anonymous Belgian retail store. Each shopping basket contains a set of 303 different 

items. Each record (transaction) in the data set contains information about one single 

shopping basket. The first column contains the basket-ID followed by boolean 

variables that medicated whether the item is in the basket (1) or not (0).  

Figure  5-9 shows the distribution of the total number of items in each shopping 

basket. In addition, there is statistics are reported in Table  5-8, for the number of 

items in each basket. 
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Max 303 

Min 0 

Average 7.72 

STD 20.11509 

Table  5-8 Statistics information for number of items in single basket (4th) 

 

 
Figure  5-9 Distribution of the number of items in single basket (4th ) 

 

5.3.2 Predicting Friendship Relation using User Common Interests 
The first experimental task for this framework is predicting friendship relation in 

social network based on numerical features. The dataset that I use is the LiveJournal 

dataset which is used in Hsu, et al. (2007) for link prediction based on graph features. 

From this study, the authors found that using mutual interests alone results in very 

poor prediction accuracy. Uncategorized interests in LiveJournal (each user indicates 

his/her own interests) increase the weakness of the mutual interests feature because of 

misspellings, or the addition of stop words such as “the” or “of,” or by adding 

symbols such as “underscore.” However, by using the new normalization factor we 

can improve prediction results over previously poor results as shown in claim-1 where 

E is a link existing (friendship). 

Claim (1): 

From the LiveJournal dataset we can construct feature baskets 𝑩𝑩𝒊𝒊  such that  

 𝐵𝐵𝑖𝑖   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛𝜏𝜏     𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜏𝜏 ∈ {𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜… . } 
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𝑢𝑢 
𝑐𝑐𝑗𝑗
→ 𝑣𝑣   𝐹𝐹𝐹𝐹𝐹𝐹 ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑗𝑗   𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 {𝐵𝐵𝑖𝑖}  ⇒   (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸 𝑤𝑤𝑤𝑤𝑤𝑤ℎ ℎ𝑖𝑖𝑖𝑖ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

               where 𝑐𝑐𝑗𝑗   is association rule measure for some 𝐵𝐵𝑖𝑖   

E is a set of connected user pairs (𝑢𝑢, 𝑣𝑣) represent the actual friendship relation. 

 

For classification framework we need two datasets. The first dataset contains 

random user pairs with graph features and have two versions of numerical features 

one with original measures and another one with normalized measures. The numerical 

features will be computed using the second dataset as I introduced in the framework. 

The user pair’s dataset contain 10,000 user-pair where the number of actual friends is 

≈2.2%. These files contain the following attributes:  

 

1. User-Id(v)  

2. User-Id(u) 

3. In degree of u: popularity of the user 

4. In degree of v: popularity of the candidate 

5. Out degree of u: number of other friends besides the candidate; saturation 

of friends list 

6. Out-degree of v: number of existing friends of the candidate besides the 

user; correlates loosely with likelihood of a reciprocal link 

7. “Forward deleted distance“: minimum alternative distance from u to v in 

the graph without the edge (u, v). 

8. Backward distance from v to u in the graph. 

9. Number of common property: the total number of property that both v and 

u have. 

10. Support of common property: the support of the rule v → u. 

11. Confidence of (v, u) common properties: the confidence of the rule v → u. 

12. Confidence of (u, v) common properties: the confidence of the rule u → v. 

13. Lift measure of common properties: the Lift of the rule v → u (same as 

u→v). 
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The second dataset is a basket of users that share specific properties (ex: basket of 

users common interests) this will be like the market basket and will contain the 

following: 

1. Property -Id: the name of each specific property (in case of interests these 

are keywords such as Art, Game, Movieetc.) 

2. User-Id: List of all users that have this property. 

In this experiment there are an excess of dimensions with many options for 

selecting features and inducers. Therefore I restricted the degree of freedom by 

selecting representative options in matter of coverage and range that can be feasible to 

access. However, the options that have “♦” symbol are beyond the experiment scope. 

For the inducers, I select inducers from different classifier system including the 

decision tree, rule generators and statistical analysis as shown in Table  5-9 

 

Inducer 

Features selection 

Common 

interest 
Lift measure All IM  

IM + Graph 

Features 

B-First tree Yes ♦ ♦ ♦ 

IB1 Yes Yes ♦ ♦ 

Random Forest Yes ♦ Yes Yes 

OneR Yes ♦ Yes ♦ 
 

Table  5-9 Features selecting for interests in classification phase 

5.3.3 Predicting Friendship Relation using Common Communities 

Membership  
The second experiment will use communities’ membership information and select 

proper interestingness measures to improve link prediction (friendship). In previous 

research, Hsu, et al. (2007) found that using mutual interests alone results in a very 

poor prediction accuracy using all inducers of their experiment because of the 

weakness of the interest information. In this experiment, I consider all graph features 

with the user communities’ membership information measures as a new feature. In 

addition, I use the community information to construct two versions of numerical 

feature (one with normalization factor and another without it) for predicting 

friendship relation between users. Each measure in the numerical features is a statistic 

Yes: Available,  ♦: Beyond the scope IM : Interestingness measures  
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over the set common communities’ membership of u and v, expressed as a function of 

the rule u → v.   

 

1. The number of common interests:  | Itemsets(u) ∩ Itemsets(v) | 

2. Support (u → v) = Support (v → u) = P(u, v) 

3. Confidence (u → v) = P(v|u) 

4. Confidence (v → u) = P(u|v) 

5. Lift (u → v) = P(v|u) 
P(v) 

 

6. Conviction (u → v) = P(u)P(v)
P(u,¬v)

 

7. Match (u → v) = P(u,v)−P(u)∗P(v)
P(u)∗(1−P(u))

 

8. Accuracy (u → v) = P(u, v) + P(¬u,¬v) 

9. Leverage (u → v)  = P(v|u) − P(u)P(v) 

 

First I use two measures with graph features (numbers 1 and 5) to illustrate the 

improvement of numerical features. For evaluation, I select inducers from different 

classifier models including and selecting all numerical features and common 

communities alone as one prediction feature, as shown in Table  5-10 

Inducer 

Features selection 

Common 

Communities 
All IM  

J48 Yes Yes 

Random Forest Yes Yes 

OneR Yes Yes 
Yes: Available , IM : Interestingness measures 

Table  5-10 Features Selection for common communities’ measures  

Next experiment, I use all numerical features without graph features to compare 

the normalized and unnormalized measures. For the experimental dataset, I use a 

dataset that consists of approximately 6000 user pairs where 50% are positive.  

In another experiment with different setting I use training and test data set 

consisting of ~6000 user pairs each. Training data set consists of about 50% friend 

pairs and 50% non-friend pairs while the test data consists of randomly selected user 

pairs to preserve the original distribution of positive-negative instances in LiveJournal 
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(5991: 9 which is about less than 1% actual friends). I use the nine numerical features 

from the common community and other selected numerical features.  

5.3.4 Ontology Based Refinement of User Interests 
The next experiment addresses the prediction of friendships in LiveJournal using 

the association rule interestingness measures (as numerical features) for users’ 

common interests with the use of the ontology. In related work, Bahirwani et al. 

(2008) have implemented a hybrid clustering algorithm (HAD) to automatically build 

a concept hierarchy of interests. As mentioned earlier, the accuracy of predicting 

friendship links in a social network, for instance, in absence of graph features is very 

low (Hsu, King, Paradesi, Weninger, & Pydimarri, 2006). In our paper (Bahirwani, 

Aljandal, Hsu, & Caragea, 2008), we explore how ontologies can be used to improve 

this performance with the use of a small dataset. 

The first data set that has two version of measures (normalized and 

unnormalized), we use the count of common interests, plus eight AR interestingness 

measures over common interests, as numerical friendship prediction features. Each 

measure is a statistic over the set common interests of u and v, expressed as a function 

of the rule u → v.   

 

1. The number of common interests:  | Itemsets(u) ∩ Itemsets(v) | 

2. Support (u → v) = Support (v → u) = P(u, v) 

3. Confidence (u → v) = P(v|u) 

4. Confidence (v → u) = P(u|v) 

5. Lift (u → v) = P(v|u) 
P(v) 

 

6. Conviction (u → v) = P(u)P(v)
P(u,¬v)

 

7. Match (u → v) = P(u,v)−P(u)∗P(v)
P(u)∗(1−P(u))

 

8. Accuracy (u → v) = P(u, v) + P(¬u,¬v) 

9. Leverage (u → v)  = P(u, v) − P(u)P(v) 

 

The second dataset is basket of users that share specific interests. The basket will 

contain the following: 

1. Interest-Id: the name of interest (Art, Games, Movies, etc.) 

2. User-Id:  List of all users that have interest. 
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For evaluation we apply inducers from different classifier models include Random 

Forest, SVM, Logistic, Random-Tree, ADTree and Decision table. In this experiment, 

the training and test data set consists of 1000 user pairs. The training data set consists 

of about 50% friend pairs and 50% non-friend pairs while the test data consists of 

randomly selected user pairs to preserve the original distribution of positive-negative 

instances in LiveJournal which is about 1% positive and 99% negative. 

5.3.5 Predicting Protein-Protein Interaction Using Parent- Child Relation 
In this experiment, I use a data set containing known protein–protein interactions 

(PPI) used in Ben-Hur and Noble (2005). The goals of my experiments are to predict 

PPI using normalized and unnormalized numerical feature from parent-child 

relationships. My experiment design is modeled after that used by Taskar et al. (2003) 

in the social network domain.   

The data set of PPI consists of more than 10,000 positive protein pairs and around 

10,000 known negative protein pairs. For preparing the datasets both positive and 

negative sets are split into two parts for testing/training and all links (positive pairs) 

that connect the two sets are removed (they are independent). The first step in training 

is to build a graph based on positive PPI and to represent the parent-child relations in 

the dataset like a market basket for similar analysis. The next step is to use 10,000 

protein pairs – made of 50% positive and 50% negative examples – as the training set, 

and construct numerical features from the co-occurrence of proteins in the training 

parent-child dataset. For testing, the positive proteins pairs will be used after hiding 

number of existing links (positive example of PPI) (50%, 75%) and the rest are used 

to build an incomplete graph of positive pairs. Next, we construct four 5,000 protein-

pair-datasets with 1%, 2%, 5%, 10% positive and 99%, 98%, 95%, 90% negative 

examples respectively as the test set. I follow this technique because the real ratio of 

negative examples to positive examples is currently unknown. Finally, from only the 

known part of the graph we construct numerical features based on co-occurrence of 

proteins in the testing parent-child dataset. Therefore, the module will predict 

unknown links (from the hidden part) using numerical features of the known part.  

This experiment uses only the connection structure of the positive PPI. I evaluated 

the normalized and unnormlized numerical features using two classifier models and 

inductive learning algorithms: the k-nearest neighbor approach IB1, and the rule 

based approach OneR (Aljandal, Hsu, & Xia, 2009). 
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User1 

User2 

User3 

Community-1 

5.3.6 Divided-by-N Vs Itemset Size-Sensitive Normalization Factor  
Divided-by-N is a well-known method in graph theory related to a water flow 

concept where the amount of flow into a node equals the amount of flow out of it. In 

the LiveJournal dataset, I consider the set of users that share a property (such as a 

community) as a node that connected to set of other nodes (users), as shown in Figure 

 5-10. Therefore, based on the divided-by-N concept, the importance of this property 

comes from the number of users that share this property. Because the item size-

sensitive joint probability is associated with the size of each itemset, we can see that 

the concept of divided-by-N is the only concept related to the itemset size. So I 

consider divided-by-N a normalization factor and compare it with my normalization 

factor.  

In this experiment I am going to produce two classification files with four 

association rule interestingness measures: 

1. Common Communities 
2. Lift of Common Communities 
3. Conviction of Common Communities 
4. Leverage Common Communities 

 

 

 

 

 

 

 

 

 

 

 

 

The next step is to substitute the original joint probability on each measure with 

item-size-sensitive joint probability (include the new normalization factor) and joint 

probability with divided-by-N normalization factor      

We can define a joint probability with divided-by-N as follows: 

Figure  5-10 Community Graph 
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  Let L ≡ {x1, x2… xk} be the set of items.  Let D be a set of transactions (|D| = N), 

where each transaction T is a set of items such that T ⊆ L.  Then: 

 

𝑝̂̈𝑝�𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑞𝑞� ≜  
1
𝑁𝑁
�

1
|𝑇𝑇𝑖𝑖|

𝑁𝑁

𝑖𝑖=1

    (5) 

 

The dataset in this experiment consist of ~6000 user pairs among which about 

50% are friend. The number of communities is ~ 44,000 communities. I compare the 

two methods by using three classifier models, Random Forest, OneR and IB1, using 

10-folds cross validation. 

5.3.7 Numerical Features for Interest Prediction 
In this experiment I show how numerical features can be used as prediction 

features. By using the same dataset that I used in Section 5.3.4, we constructed two 

types of interest-based features: 

Nominal: measured for grouped relationships for a candidate pair of entities by 

name (e.g., Are u and v both interested in topics under the category of mobile 

computing?). 

Numerical: interestingness measures that are computed across these grouped 

relationships (e.g., how many interests that u is interested does v share, and how rare 

are these interests?). 

All features in these two categories are examples of pair-dependent co-

membership features and can be computed using the ontology.   

We used the 1000-user data set, which includes about 22000 unique interests that 

are shared by at least two users. (Interests held by only one user are of no interest for 

link prediction, so singleton itemsets are pruned as is often done in frequent itemset 

mining.) Hierarchical Agglomerative and Divisive (HAD) clustering, a hybrid 

bottom-up linkage-based and divisive (partitional) algorithm, was used to generate the 

hierarchy. The output, consisting of 19 clusters, is summarized in Figure  5-11; note 

that the level of abstraction can be manually set, as I do in my experiments. I refer the 

interested reader to (Bahirwani, Aljandal, Hsu, & Caragea, 2008) for additional 

details of the clustering algorithm and documentation on the data sources consulted. 
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Figure  5-11 Example of clusters found using Hierarchical Agglomerative and Divisive (HAD) 

algorithm. 

 

From (HAD) clustering we get 19 clusters, resulting a 19 + 19 = 38 nominal 

features for every candidate pair (u, v). To these we add the original 7 graph features 

and the 9 numerical features. We use the integrated, ontology-enhanced data set to 

predict whether an individual user u lists a member of one of the 19 abstract interest 

categories, given the fraction of their friends in the network that also list that category.  

We evaluated the nominal and numerical features using five classifier models and 

inductive learning algorithms: support vector machines (SVM), Logistic 

Classification, Random Forests, J48, and OneR. 
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CHAPTER 6 - RESULTS 
 

This chapter documents the evaluation of the new normalization factor impact that 

can improve the sensitivity of the interestingness measure regarding the itemset size. 

First, I use the information gain framework that I designed in Chapter 5 to 

demonstrate how interestingness measures with new normalization factor provide 

enhanced ranking method compared with the original interestingness measure based 

on attribute surprisingness, even though the market basket domain is one of these that 

has exogenous variables that can affect data properties. In the second experiment, we 

go through another framework based on classification methods that I designed in the 

second section of Chapter 5. This framework uses different datasets to illustrate the 

improvement of accuracy measures when we use the new normalization factor with 

association rule measures as predicting features.       

6.1 Experimental Results for Information Gain and Rules Selection  
In this experiment I use small data sets. Table  6-1 shows the size of each dataset, 

the number of distinct items and the total number of transactions. The association 

rules were generated by using Magnum opus with limitation of support for each of the 

datasets, as show in column “Limitation” in Table  6-1. 

Table  6-1 Datasets information and limitation 

After generating the rules with no redundancy, I use the experiment framework 

that I designed in Chapter 5 to evaluate the result.     

    

# Topic Source 
Constructio

n Method 
Items Transaction 

Number 

of AR 
Limitation 

1 Market 

Basket 

Magnum 

opus 
Original 16 1000 6151 Supp >0.001 

2 Artificial 
Magnum 

opus 

Hand-

modified 
13 10 28 Supp ≥ 0.2 

3 Artificial 
Magnum 

opus 

Hand-

modified 
10 10 44 Supp ≥ 0.2 

4 
Market 

Basket 

Brijs’s 

Dissertation 
Sample 303 1000 6505 Supp >0.02 
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Dataset # 
          Compare  
 

by Candidates 

Inversions (order) 
Different Lift  

(without R) 
Lift 

 (with R) 

First 
dataset 

Top n 
(n=14) 76 79 -4% 

All 163 132 19% 

Second  
dataset 

Top n 
(n=14) 158 140 11% 

All 513 407 21% 

Third 
dataset 

Top n 
(n=14) 158 140 11% 

All 513 407 21% 

Forth 
dataset 

Top n 
(n=2000) 5.367E6 4.916E6 8.% 

All 1.77E7 1.299E7 27% 
Table  6-2 Experiment result (information gain framework) 

Table  6-2 shows the result of the inversion comparison between the two versions 

of Lift measure (one with the normalization factor “with R” and another without it; 

“without R”). For both parts of the candidates, the “top n” and “all rules” the Lift 

measure (with R) record better result compared with the original Lift measure except 

in the first dataset in “top n” option, which is insignificantly different. This happened 

because the number of inversion is very low which indicate that the first N rules 

contained items with strong relationship that normalization factor can not improve the 

ranking. This gives a clear indication that the list that has fewer inversions assigns a 

high score to the more interesting rules based on attribute surprisingness. Therefore, 

using the new normalization factor with the market basket domain can be useful even 

though the domain has some exogenous variables that explain why the improvement 

is not that significant. The improvement can be seen when the normalization factor 

adjust the Lift measure to make it more sensitive to its own data behavior and produce 

more interesting (surprising) rules.  

6.1.1 Rules clustering 
From the previous results, I chose the result of the third dataset in Table  6-1 and 

apply a clustering method to show ranking distribution. Visualizing the clustering 

result in the chart gives a clear explanation about ranking distribution between the two 

local lists and the global one. The resulting local list of rules (locals) have been 

ranked based on two measures, the original lift “without-R” and the lift with the 

normalization factor “With-R.” the global list has been ranked based on the attribute 
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surprisingness (Information Gain) and is subsequently labeled “Global.” I use K-

means clustering discussed in Chapter 3 to group the rules in each list into five 

different groups based on their ranks.   

The result of clustering the rules into five clusters is shown in the Table  6-3. The 

center of each cluster represents the average rules ranking. 

 

        Lists 

Clusters 
Global With-R Without-R 

Cluster 0 5.36 3.59 1.00 

Cluster 1 13.86 9.45 2.20 

Cluster 2 20.50 12.80 4.77 

Cluster 3 25.83 15.50 6.40 

Cluster 4 28.75 17.00 8.00 
Table  6-3 Clustering result 

 

Figure  6-1 Clustering result graph 

In Figure  6-1, we can see the distance between clusters’ centers of the global list 

and the two local lists “with-R” and “without-R” that shows the closeness between the 

centers of the global list in all clusters and the centers of the local list “with-R” 

compared with the distance between the centers of the global list and the centers of 

local list “without-R”. From this result we can indicate that “with-R” list gives better 

distribution ranking than “without-R” list. 

The results from these experiments show that the new normalization factor 

improves the distribution of the Lift measure ranking which makes it a more sensitive 

The distance 
between the 

centers of the 
two local lists 
and the global 

list 
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measure. However, using the new normalization factor with other measures may lead 

to different result based on how these measures handle the joint probability. 

6.2 Experiment of Predicting Friendship Relation Using User 

Interests 
This section presents the result of classification using interestingness measures 

with and without Itemset size normalization factor on Livejournal data set.  

Data set Inducer Accuracy Precision Recall F-measure Features -
selection 

Unnormalized IBl 74.2% 0.418 0.438 0.428 
One attribute 

(Lift) 

Normalized IBl 77.56% 0.491 0.532 0.510 
One attribute 

(Lift) 

Unnormalized OneR 78.65% 0.633 0.071 0.128 One attribute 
(common Interests) 

Normalized OneR 79.44% 0.597 0.203 0.303 One attribute 
(common Interests) 

Unnormalized 
Random 
Forest 

78.73% 0.659 0.070 0.126 One attribute 
(common Interests) 

Normalized 
Random 
Forest 

80.41% 0.599 0.333 0.428 One attribute 
(common Interests) 

Unnormalized IBl  68.59% 0.275 0.260 0.267 One attribute 
(common Interests) 

Normalized IBl 76.02% 0.450 0.401 0.424 One attribute 
(common Interests) 

Unnormalized 
Random 
Forest 

79.15% 0.533 0.428 0.475 IM Features 

Normalized 
Random 
Forest 

80.55% 0.575 0.448 0.504 IM  Features 

Unnormalized OneR 77.67% 0.472 0.124 0.196 IM Features 

Normalized OneR 79.42% 0.594 0.206 0.306 IM Features 

Unnormalized 
Random 
Forest 

96.99% 0.936 0.927 0.931 All- Features 

Normalized 
Random 
Forest 

97.12% 0.939 0.929 0.934 All- Features 

 

Table  6-4 Experiment result for predicting friends using user interests 

 

Table  6-4 contains classification measures (Chapter 3) and results from applying three 

different inducers: OneR, Random Forest and IB1 (Chapter 3). All accuracy measures 

were collected over 10-fold cross-validated runs. On all inducers that I am using the 

IM : Interestingness Measures 
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normalization factor boost the accuracy measures which is a result of improving the 

interestingness measures sensitivity as friendship prediction features. The 

improvement occurs in all accuracy measures in general with different ranges based 

on inducers method. For example, the best accuracy improvement in this experiment 

was achieved when I used the IB1 inducer with one attribute feature (common 

interests). It improves by 10.83% (from 68.59 to 76.02). In another experiment, the F-

measure, which is a combination of Recall and Precision, improved by 239% (from 

0.126 to 0.428) when I used the  Random Forest inducer with one attribute feature 

(common interests). 

Figure  6-2 visualizes accuracy measure in all inducers. This plot shows the 

performance of accuracy percentage for both normalized and unnormalized methods. 

The results of other measures (Precision, Recall and F-measure) are graphed in Figure 

 6-3 , Figure  6-4, and Figure  6-5 consecutively.  

 

 
Figure  6-2 Accuracy graph for classification result 
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Figure  6-3 Precision graph for classification result 

 
Figure  6-4 Recall graph for classification result 

 
Figure  6-5 F-measure graph for classification result 
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From Figure  6-3 we can observe that in two out of six cases, “unnormalized” 

achieves a better precision result both of which are insignificant losses. This result 

can be explained when we go through more detail about each experiment.   

In the next section, I present more detailed results of the OneR with One attribute 

and the T-test to show the significance. There are more detailed results in  Appendix-

A. 

6.2.1 Detailed results of OneR obtained with common interests  
In the classification process I collect accuracy measures over 10-fold cross-

validated runs, so going through each of these folds will give some information about 

the final result. The first experiment is OneR with One attribute (common interest) as 

shown in Table  A-1. In addition, I am going to visualize the detail results in a graph 

and use a T-test for some of the experiments results. 

Fold  
precision- 

WithR 
precision 
WithoutR 

recall 
WithR 

recall 
WithoutR 

F-measure 
WithR 

F-measure 
WithoutR 

1 0.563380 0.722222 0.181818 0.059091 0.274914 0.109244 

2 0.637363 0.653846 0.263636 0.077273 0.372990 0.138211 

3 0.605263 0.724138 0.209091 0.095455 0.310811 0.168675 

4 0.614458 0.526316 0.231818 0.045455 0.336634 0.083682 

5 0.616438 0.593750 0.204545 0.086364 0.307167 0.150794 

6 0.597015 0.529412 0.181818 0.081818 0.278746 0.141732 

7 0.535211 0.520000 0.172727 0.059091 0.261168 0.106122 

8 0.609375 0.650000 0.177273 0.059091 0.274648 0.108333 

9 0.576923 0.761905 0.204545 0.072727 0.302013 0.132780 

10 0.600000 0.708333 0.203620 0.076923 0.304054 0.138776 
Table  6-5 OneR with one attribute (common interests) - for each fold 

 

Figure  6-6 graphs the precision measure for each fold in the OneR (common 

interests) experiment. In some folds the new method (withR) has some improvement. 

But overall the original method (withoutR) records a better result.  
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Figure  6-6 Precision of OneR (common interests)- all folds 

This difference only appears in precision measure which is a ration of true 

positive to the total of true positive and false positive. Thus, when we look at Table 

 6-6 and Table  6-7 which show the prediction rates for both methods (normalized and 

Unnormalized), we can observe that on average the new method (normalized) has 

much better rate for predicting true positive elements than the original method 

(withoutR). The problem is in the false positive where the new method has higher rate 

than the original one. This situation can be acceptable in some applications like 

friendship recommendation systems but not in some medical systems. On the other 

hand, the new method has lower false negative rate (0.797 on average) then the 

original one (0.929 on average).   

Fold TP_rate TP FP_rate FP TN_rate TN FN_rate FN 
1 0.182 40 0.040 31 0.960 749 0.818 180 
2 0.264 58 0.042 33 0.958 747 0.736 162 
3 0.209 46 0.038 30 0.962 750 0.791 174 
4 0.232 51 0.041 32 0.959 748 0.768 169 
5 0.205 45 0.036 28 0.964 752 0.795 175 
6 0.182 40 0.035 27 0.965 753 0.818 180 
7 0.173 38 0.042 33 0.958 747 0.827 182 
8 0.177 39 0.032 25 0.968 755 0.823 181 
9 0.205 45 0.042 33 0.958 747 0.795 175 
10 0.204 45 0.039 30 0.961 749 0.796 176 

Average 0.203 44.7 0.039 30.2 0.961 749.7 0.797 175.4 
Table  6-6 Precision of OneR (common interests)- all folds -"WithR " 
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Fold TP_rate TP FP_rate FP TN_rate TN FN_rate FN 
1 0.059 13 0.006 5 0.994 775 0.941 207 
2 0.077 17 0.012 9 0.988 771 0.923 203 
3 0.095 21 0.010 8 0.990 772 0.905 199 
4 0.045 10 0.012 9 0.988 771 0.955 210 
5 0.086 19 0.017 13 0.983 767 0.914 201 
6 0.082 18 0.021 16 0.979 764 0.918 202 
7 0.059 13 0.015 12 0.985 768 0.941 207 
8 0.059 13 0.009 7 0.991 773 0.941 207 
9 0.073 16 0.006 5 0.994 775 0.927 204 
10 0.077 17 0.009 7 0.991 772 0.92308 204 

Average 0.071 15.7 0.012 9.10 0.988 770.8 0.929 204.4 
Table  6-7 Precision of OneR (common interests)- all folds -"WithoutR " 

 

Even though, the original method has slightly better results in precision measure 

still the new method records a much better result in Recall measures as shown in 

Figure  6-7. In addition, F-measure results shown in Figure  6-8, combine precision and 

recall, show that the new method records significantly improved result compared with 

the original one.      

 

 
Figure  6-7 Recall of OneR (common interests)- all folds 
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Figure  6-8 F-measure of OneR (common interests)- all folds 

 

I use the T-test to assess some of my results specifically to test the statistical 

hypothesis that the mean precision, recall, or F-measure of one experiment is higher 

than that of on other. This analysis is appropriate in my experiment to compare the 

means of the two fold’s results of normalized and unnormalized methods for each 

measure. All of the T-test resulted with 95% confident (with alpha level set at 0.05). 

Table  6-8 shows statistical information with the T-test results for the precision 

measure and we can see the value is negative indicating that the mean of first list 

“Normalized” is less than mean of the second one “Unnormalized”.    

  
precision 

WithR 
precision 
WithoutR 

Mean 0.5955 0.6390 
Variance 0.0009 0.0084 
Observations 10 10 
df 9 

 t Stat -1.4444 
 P(T<=t) one-tail 9.13E-02 
 t Critical one-tail 1.8331 
 Table  6-8 T-test of precision (OneR - common interests) 

Table  6-9 and Table  6-10 show that there is a significant difference between the 

two results. For example the P-value in the recall is “1.10E-07” which is much less 

than the 0.05.  
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  recall WithR recall WithoutR 
Mean 0.2031 0.0713 
Variance 0.0008 0.0002 
Observations 10 10 
df 9 

 t Stat 13.8848 
 P(T<=t) one-tail 1.10E-07 
 t Critical one-tail 1.8331 
 Table  6-9 T-test of Recall (OneR - common interests) 

  
F-measure 

WithR 
F-measure 
WithoutR 

Mean 0.3023 0.1278 
Variance 0.0011 0.0006 
Observations 10 10 
df 9 

 t Stat 14.4041 
 P(T<=t) one-tail 8.02E-08 
 t Critical one-tail 1.8331 
 Table  6-10 T-test of F-measure (OneR - common interests) 

 

6.3 Experiment of Predicting Friendship using Common Community 

Membership  
The second experiment shows that by selecting proper interestingness measures 

with available properties will improve the link prediction. Using communities’ 

membership information with selected features (graph features and two numerical 

features) with and without the Itemset size normalization factor will show the 

superiority of my method for friendship prediction. Table  6-11 shows the J48 

classification results for ~6000 user pairs where 50% are friends and using 10-fold 

cross validation.  

Feature Accuracy (%) Precision Recall F-measure 

GF 92.977 0.932 0.903 0.918 

GF+AR 93.780 0.936 0.919 0.927 

GF + N-AR 94.081 0.941 0.921 0.931 
Table  6-11 Result of accuracy, precision, recall, F-measure for J48 (10-fold CV). 

(GF: Graph Feature, AR: Interestingness Measures, N-AR: Normalized Interestingness Measures) 
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The classification results show how link prediction improves when I use selected 

interestingness measures of user communities as new features. In addition, the 

improvement will be augmented if we use normalized interestingness measures. 

In the classification process I collected accuracy measures for each 10-fold cross-

validations run to illustrate the significance of normalized measures. In the detailed 

results of J48 with different selection of features (GF and GF+N-AR), a significant 

improvement was observed across all measures (Accuracy, Precision, Recall and F-

measure), especially when I use the normalized interestingness measures with graph 

features as shown in Figure  6-9 through Figure  6-12. 

 

Figure  6-9 Percent accuracy for J48 (for each fold) 

 
Figure  6-10 Percent of recall for J48 (for each fold) 
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Figure  6-11 Percent of precision for J48 (for each fold) 

 
Figure  6-12 Percent of F-measure for J48 (for each fold) 

We again use a T-test to evaluate the significance of the results at the 95% level of 

confidence (with alpha level 0.05). Table  6-12 through Table  6-15 show the test 

results for accuracy, precision, recall and F-measure. 

 GF+N-AR accuracy GF-Accuracy 
Mean 94.08104 92.9777 
Variance 1.519662 0.89485 
Observations 10 10 
t Stat 3.61336 
P(T<=t) one-tail 0.00281 
t Critical one-tail 1.83311 

Table  6-12 T-test for accuracy measure on J48 – (all folds) 
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 GF+N-AR precision GF precision 
Mean 0.94091 0.93228 
Variance 0.00027 0.00012 
Observations 10 10 
t Stat 1.99724 
P(T<=t) one-tail 0.03844 
t Critical one-tail 1.83311 

Table  6-13 T-test for precision measure on J48 – (all folds) 

 
 GF+N-AR recall GF recall 
Mean 0.921109 0.90332 
Variance 0.00033 0.00041 
Observations 10 10 
t Stat 3.269366 
P(T<=t) one-tail 0.004846 
t Critical one-tail 1.83311 

Table  6-14 T-test for recall measure on J48 – (all folds) 

 
 GF+N-AR F-measure GF F-measure 

Mean 0.93081 0.91743 
Variance 0.00020 0.000136 
Observations 10 10 
t Stat 3.67845 
P(T<=t) one-tail 0.00254 
t Critical one-tail 1.83311 

Table  6-15 T-test for F-measure on J48 – (all folds) 

 

For all measures, the results of the T-test reflect a significant improvement 

attained by using normalized association rules measures with graph features. 

In the next experiment with a different setting, I use training and test data set 

consisting of ~6000 user pairs. I use the nine numerical features from the common 

community.  

Table  6-16 shows the classification measures from using the nine association 

measures as prediction features based on users’ common communities. The 

normalized measures either improve the prediction measures or stay similar to the 

unnormalized measures. 

Table  6-17 shows the classification measures for normalized and unnormalized 

support and lift of common communities. 
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Inducer Method 
Accuracy 

(%) 
Precision Recall F-Measure AUC 

J48 
unnormalized   96.65 0.015 0.029 0.029 0.65 

normalized 98.23 0.023 0.333 0.054 0.66 

Random 

Forest 

unnormalized   76.31 0.002 0.333 0.004 0.601 

normalized 77.37 0.002 0.333 0.004 0.616 

 OneR 
unnormalized   93.93 0.008 0.333 0.016 0.637 

normalized 94.23 0.009 0.333 0.017 0.638 

Table  6-16 Classification result for nine numerical features of common communities 

 

Inducer Method 
Accuracy 

(%) 
Precision Recall F-Measure AUC 

J48 
unnormalized   96.53 0.015 0.333 0.028 0.65 

normalized 98.15 0.028 0.333 0.051 0.658 

Table  6-17 Classification result for Support &Lift of common communities 

 

The results of the last experiment, shown in Table  6-17 illustrate the positive 

effects of the itemset size normalization factor in association measures (support and 

lift). The best improvement is shown in F-Measure, which increased from 0.028 to 

0.051 which is more than on 80% improvement. However, the low number of friends 

in the test set, which comes from normal distribution, causes the closeness on the final 

result between some measures. I have done a variety of feature selections but overall, 

the normalized measures either improve the result or does not harm the final result. 

6.4 Experiment of Ontology-Based Refinement of User Interests.  
The third experiment addresses the prediction of friendships in LiveJournal using 

association rule interestingness measures (as numerical features) for users’ common 

interests with the use of the ontology. The results of six different inducers are listed in 

Table  6-18 and Table  6-19.  

The itemset size normalized factor works well with a large dataset because the 

dataset will express the skewness of the data. Even though in this experiment I use 
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only 1000 user pairs, the normalized measures improve the classification measurers. 

These normalized measures take into account the popularity that particular interests 

hold in common, where the most popular interests (held by a significant proportion of 

users) being slightly less revealing than rarer interests. Furthermore, I investigate how 

the ontology improves the classification measurers especially when I use normalized 

measures, which boost the measures sensitivity in regards to interest popularity. When 

computing the measures, I modify the interests of users by viewing the interests at the 

“best” level of abstraction as suggested in by Bahirwani, et al. (2008).  

 

Inducer Method 
Accuracy 

(%) 
Precision Recall F-Measure AUC 

Random 

Forest 

unnormalized   67.5 0.015 0.556 0.030 0.688 

normalized 65.3 0.014 0.556 0.028 0.605 

SVM 
unnormalized   89.3 0.038 0.444 0.07 0.709 

normalized 92.3 0.053 0.444 0.094 0.711 

Logistic 

 

unnormalized   74.4 0.019 0.556 0.038 0.678 

normalized 85.5 0.034 0.556 0.065 0.68 

Random-

Tree 

unnormalized   66.4 0.015 0.556 0.029 0.640 

normalized 65.9 0.015 0.556 0.028 0.637 

ADTree 
unnormalized   73.7 0.019 0.556 0.037 0.671 

normalized 78.8 0.023 0.556 0.045 0.694 

Decision 

table 

unnormalized   83.8 0.031 0.556 0.058 0.67 

normalized 82.3 0.028 0.556 0.053 0.689 

Table  6-18 Classification result- without ontology  
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Inducer Method 
Accuracy 

(%) 
Precision Recall F-Measure AUC 

Random 

Forest 

unnormalized   67.6 0.018 0.857 0.036 0.773 

normalized 70 0.020 0.857 0.038 0.829 

SVM 
unnormalized   89.4 0.046 0.714 0.086 0.889 

normalized 89.9 0.048 0.714 0.090 0.893 

Logistic 

 

unnormalized   86.8 0.037 0.714 0.070 0.912 

normalized 89.7 0.056 0.857 0.104 0.894 

Random-

Tree 

unnormalized   66.9 0.012 0.571 0.024 0.606 

normalized 67.5 0.015 0.714 0.03 0.689 

ADTree 
unnormalized   77.8 0.026 0.857 0.051 0.90 

normalized 82.7 0.034 0.857 0.065 0.925 

Decision 

table 

unnormalized   81.8 0.032 0.857 0.062 0.872 

normalized 86.8 0.037 0.714 0.07 0.873 

Table  6-19 Classification result- with ontology  

 

 
Figure  6-13 Result of Accuracy - with ontology 
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Figure  6-14 Result of Precision - with ontology 

 
Figure  6-15 Result of Recall - with ontology 

 
Figure  6-16 Result of F-Measure - with ontology 
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Figure  6-17 Result of AUC - with ontology 

Table  6-18 and Table  6-19 summarize the expected improvements. For example, 

without an ontology, better results are observed for unnormalized measures using the 

Random Forest inducer (in most of the classification measures) but when I modify the 

data according to a concept hierarchy, the improvement using normalized measures 

consistently exceeds that achieved using unnormalized measures which also shown in 

Figure  6-13 through Figure  6-17. 

6.5 Experiment of Predicting Protein–Protein Interaction  
The performance expectation of the result shows how models learned from the 

unnormalized numerical features are able to predict PPI relationships, and how 

performance further improves using normalized measures. In this experiment, I 

present only the significant results for two of the numerical features: Accuracy and 

Leverage. The results shown in Table  6-20 illustrate the classification performance 

measures in terms of precision, recall, F-measure, and area under the ROC curve 

(ROC-AUC, henceforth “AUC”) based on either Accuracy or Leverage features alone 

and 50% observed positive proteins pairs using the IB1 classification method. We see 

that the best AUC recorded was 0.854 in the dataset with 2% positive examples with 

Normalized accuracy.  

When I use the second testing sets with only 25% observed PPI (75% hidden), the 

performance was reduced from the previous case with an AUC of 0.781. Complete 

results are shown in Table  6-21.  
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50% 

 Method Precision Recall F-Measure AUC 

1% 

U- Accuracy 0.304 0.280 0.292 0.637 
N- Accuracy 0.174 0.660 0.275 0.814 

Different -42.76% 135.71% -5.82% 27.79% 
U- Leverage 0.319 0.300 0.309 0.647 
N- Leverage 0.288 0.340 0.312 0.666 

Different -9.72% 13.33% 0.97% 2.94% 

2% 

U- Accuracy 0.458 0.270 0.340 0.632 
N- Accuracy 0.320 0.740 0.447 0.854 

Different -30.13% 174.07% 31.47% 35.13% 
U- Leverage 0.492 0.310 0.380 0.652 
N- Leverage 0.468 0.370 0.413 0.681 

Different -4.88% 19.35% 8.68% 4.45% 

5% 

U- Accuracy 0.624 0.212 0.316 0.603 
N- Accuracy 0.505 0.640 0.564 0.804 

Different -19.07% 201.89% 78.48% 33.33% 
U- Leverage 0.648 0.236 0.346 0.615 
N- Leverage 0.622 0.276 0.382 0.634 

Different -4.01% 16.95% 10.40% 3.09% 

10% 

U- Accuracy 0.761 0.204 0.322 0.599 
N- Accuracy 0.667 0.630 0.648 0.799 

Different -12.35% 208.82% 101.24% 33.39% 
U- Leverage 0.778 0.224 0.348 0.609 
N- Leverage 0.753 0.256 0.382 0.624 

Different -3.21% 14.29% 9.77% 2.46% 
Table  6-20 IB1-Classification measures for 50% hiding 

 (U- : Unnormalized, N- : Normalized) 
 

Figure  6-18 shows the comparison between normalized and unnormalized 

accuracy features based on AUC from the 50% observed data. The superiority of 

normalized features came from their ability to capture the rarity of childhood and 

parenthood of positive proteins. In addition, with every decrease in precision result we 

get, there is high improvement in recall and F-measure, which is a similar effect to 

that observed in some of the social networks experiments. 
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Figure  6-18 AUC result for 50% observed data for normalized and 

unnormalized Accuracy 

 
Figure  6-19 presents the AUC measure for 75% hidden pairs. The result shows that 

the unnormalized measure is affected more when hiding more pairs that are positive. 

Table  6-21 show the complete compression result for the Accuracy measure. 

 

 
 Figure  6-19 AUC result for 75% hiding data for normalized and 

unnormalized Accuracy 
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75% 

 method Precision Recall F-Measure AUC 

1% 

U- Accuracy 0.118 0.480 0.189 0.722 
N- Accuracy 0.135 0.600 0.221 0.781 

Different     14.41% 25.00% 16.93% 8.17% 
U- Leverage 0.117 0.380 0.179 0.676 
N- Leverage 0.138 0.760 0.234 0.856 

Different     17.95% 100.00% 30.73% 26.63% 

2% 

U- Accuracy 0.211 0.480 0.293 0.722 
N- Accuracy 0.238 0.600 0.341 0.781 

Different     12.80% 25.00% 16.38% 8.17% 
U- Leverage 0.192 0.340 0.245 0.656 
N- Leverage 0.235 0.730 0.356 0.841 

Different     22.40% 114.71% 45.31% 28.20% 

5% 

U- Accuracy 0.381 0.444 0.410 0.704 
N- Accuracy 0.416 0.548 0.473 0.755 

Different     9.19% 23.42% 15.37% 7.24% 
U- Leverage 0.381 0.352 0.366 0.662 
N- Leverage 0.445 0.760 0.561 0.856 

Different     16.80% 115.91% 53.28% 29.31% 

10% 

U- Accuracy 0.554 0.448 0.496 0.706 
N- Accuracy 0.601 0.578 0.589 0.770 

Different     8.48% 29.02% 18.75% 9.07% 
U- Leverage 0.545 0.342 0.420 0.657 
N- Leverage 0.617 0.762 0.682 0.857 

Different     13.21% 122.81% 62.38% 30.44% 
Table  6-21 IB1-Classification measures for 75% hiding 

(U- : Unnormalized, N- : Normalized) 
 

In addition, we can observe another effect in the Leverage measure as shown in 

Figure  6-20 and Figure  6-21 that presents the AUC measure for 50% and 75% hidden. 

The result shows that the unnormalized measure is affected more when hiding more 

pairs that are positive. Table  6-21 shows the complete compression result for 

Leverage measure. 
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Figure  6-20 AUC result for 50% observed data 

for normalized and unnormalized Leverage 
Figure  6-21 AUC result for 75% hiding data 

for normalized and unnormalized Leverage 

Using all numerical features, in the case where we hide 50%, we see the 

difference between the normalized and unnormalized measures as shown in Table 

 6-22. In the next case where we hide a 75%, there is no difference as shown in Table 

 6-23 because the skewness of itemsets size becomes insignificantly recognizable. In 

general, the numerical feature records a significant result where the AUC record 

between 0.973 and 0.98 with 50% hidden datasets and between 0.873 and 0.89 in 75% 

hidden datasets. 

50% 
% method Precision Recall F-Measure AUC 

1% 
U- Accuracy 0.222 0.96 0.361 0.963 
N- Accuracy 0.221 0.980 0.360 0.973 

Different     -0.45% 2.08% -0.28% 1.04% 

2% 
U- Accuracy 0.359 0.940 0.519 0.953 
N- Accuracy 0.364 0.990 0.532 0.978 

Different     1.39% 5.32% 2.50% 2.62% 

5% 
U- Accuracy 0.586 0.952 0.726 0.959 
N- Accuracy 0.588 0.988 0.737 0.977 

Different     0.34% 3.78% 1.52% 1.88% 

10% 
U- Accuracy 0.739 0.952 0.832 0.959 
N- Accuracy 0.742 0.994 0.850 0.980 

Different     0.41% 4.41% 2.16% 2.19% 
Table  6-22 OneR-Classification measures for 50% hiding 

The results further show the usefulness of using numerical features with proteins 

that share properties. The results obtained using normalized features are superior to 
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those obtained using the original features (Aljandal, Hsu, & Xia, 2009).  

 
75% 

% method Precision Recall F-Measure AUC 

1% 
U- Accuracy 0.365 0.760 0.494 0.873 
N- Accuracy 0.365 0.760 0.494 0.873 

Different     0.00% 0.00% 0.00% 0.00% 

2% 
U- Accuracy 0.532 0.750 0.622 0.868 
N- Accuracy 0.532 0.750 0.622 0.868 

Different     0.00% 0.00% 0.00% 0.00% 

5% 
U- Accuracy 0.747 0.780 0.763 0.883 
N- Accuracy 0.747 0.780 0.763 0.883 

Different     0.00% 0.00% 0.00% 0.00% 

10% 
U- Accuracy 0.857 0.794 0.825 0.890 
N- Accuracy 0.857 0.794 0.825 0.890 

Different     0.00% 0.00% 0.00% 0.00% 
Table  6-23 OneR Classification measures for 75% hiding 

(U- : Unnormalized, N- : Normalized) 
 

In my future work, I will continue working in the domain of protein-protein 

interaction by adding more numerical features extracted from repositories of 

biological information. In addition, there is a possibility of using a genetic algorithm 

(GA) to select from structural and biological features, which may lead to a further 

incremental boost in prediction quality.   

6.6 Divided-by-N vs. Itemset Size-Sensitive Normalization Factor 
In this experiment, I compare the divided-by-N as normalization factor with the 

itemset size-sensitive normalization factor (normalized using R) by using the 

classification framework. I use three inducers for classification Random Forest, OneR 

and IB1 where they are from different classification based models. On the other hand, 

in the LiveJournal dataset I have a large number of varieties of attributes’ selection. 

Therefore, I have selected a number of attributes as friendship prediction features to 

represent experiment objectives which is a comparison between the two methods. I 

use four different attribute selections and present the classification result for each one 

(all result using 10-fold-cross validation): 

 The first result with the following attributes: 
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a. Support of Common Communities 

b. Lift of Common Communities 

c. Conviction of Common Communities 

d. Leverage of Common Communities  

Inducer Method 
Accuracy 

(%) 
Precision Recall F-Measure AUC 

Random 
Forest 

Divided by N 59.88 0.546 0.426 0.479 0.6 
Normalized  

by R 
67.24 0.66 0.501 0.569 0.691 

Percentage Different     12% 21% 18% 19% 15% 

OneR 
Divided by N 62.06 0.606 0.349 0.443 0.588 
Normalized  

by R 
70.72 0.878 0.375 0.526 0.668 

Percentage Different     14% 45% 8% 19% 14% 

IB1 
Divided by N 54.58 0.475 0.471 0.473 0.537 
Normalized  

by R 
61.34 0.553 0.557 0.555 0.607 

Percentage Different     12% 17% 18% 17% 13% 
Table  6-24 Classification result obtained using four attributes (divided-by-N & itemset-size) 

 

 

 

Figure  6-22 Accuracy obtained using four 
attributes (divided-by-N & itemset-size) 

 

Figure  6-23 Precision obtained using four 
attributes (divided-by-N & itemset-size) 
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Figure  6-24 Recall obtained using four 

attributes (divided-by-N & itemset-size) 

 
Figure  6-25 F-Measure obtained using four 

attributes (divided-by-N & itemset-size) 

 
Figure  6-26 AUC obtained using four attributes (divided-by-N & itemset-size) 

 

Superior results are achieved using my normalization factor compared to the 

divided-by-N method as shown in Figure  6-22 through Figure  6-26. The first result 

used four different attributes as friendship prediction features that are related to 

communities’ membership (users’ common communities). Table  6-24 shows the 

classification result with a percentage difference between the two methods (respect to 

my method). The percentage difference range for all classification measures are 

between 7.45% and 44.88% which shows the superiority of my method. 
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The second result has the attribute:  

a) Leverage of Common Communities 

Inducer Method 
Accuracy 

(%) 
Precision Recall F-Measure AUC 

Random 
Forest 

Divided by N 55.32 0.467 0.236 0.313 0.553 

Normalized  
by R 

67.21 0.811 0.315 0.454 0.62 

Percentage Different     22% 74% 33% 45% 12% 

OneR 
Divided by N 55.75 0.478 0.252 0.33 0.521 

Normalized 
 by R 

62.78 0.656 0.293 0.405 0.588 

Percentage Different     13% 37% 16% 23% 13% 

IB1 
Divided by N 50.82 0.429 0.417 0.423 0.497 

Normalized  
by R 

59.02 0.528 0.495 0.511 0.579 

Percentage Different     16% 23% 19% 21% 17% 
Table  6-25 Classification result for Leverage (divided-by-N & itemset-size) 

 
 
 

 
Figure  6-27 Accuracy obtained using 

Leverage (divided-by-N & itemset-size) 

 
Figure  6-28 Precision obtained using 

Leverage (divided-by-N & itemset-size) 
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Figure  6-29 Recall obtained using Leverage 
(divided-by-N & itemset-size) 

 

Figure  6-30 F-Measure obtained using 
Leverage (divided-by-N & itemset-size) 

 
Figure  6-31 AUC obtained using Leverage (divided-by-N & itemset-size) 

 

The second result used one attribute as a friendship prediction feature which is the 

Leverage of users’ common communities as shown in Figure  6-27 through Figure 

 6-31. Table  6-25 shows the classification result with the percentage difference 

between the two methods (respect to my method). The percentage difference records 

superior results using the Normalized by R method in all measures and the range for 

that difference in all classification measures are between 12.12% and 73.66% which 

shows the superiority of my method.   
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The third result has the attribute:  

a) Lift of Common Communities 

Inducer Method 
Accuracy 

(%) 
Precision Recall F-Measure AUC 

Random 
Forest 

Divided by 
N 

59.35 0.987 0.061 0.114 0.529 

Normalized 
by R 

69.98 0.919 0.335 0.491 0.644 

Percentage Different     18% -7% 449% 331% 22% 

OneR 

Divided by 
N 

59.38 0.988 0.061 0.116 0.53 

Normalized 
by R 

70.97 0.92 0.36 0.518 0.668 

Percentage Different     20% -7% 490% 347% 26% 

IB1 

Divided by 
N 

49.64 0.442 0.623 0.517 0.511 

Normalized 
by R 

53.20 0.473 0.712 0.568 0.553 

Percentage Different     7% 7% 14% 10% 8% 
Table  6-26 Classification result obtained using Lift (divided-by-N & itemset-size) 

 
 
 

 

Figure  6-32 Accuracy obtained using Lift 
(divided-by-N & itemset-size) 

 

Figure  6-33 Precision obtained using Lift 
(divided-by-N & itemset-size) 
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Figure  6-34 Recall obtained using Lift 
(divided-by-N & itemset-size) 

 

Figure  6-35 F-Measure obtained using Lift 
(divided-by-N & itemset-size) 

 
Figure  6-36 AUC obtained using Lift (divided-by-N & itemset-size) 

The third result used one attribute as friendship prediction features which is the 

Lift of users’ common communities as shown in Figure  6-40 through Figure  6-36. 

Table  6-26 shows the classification result with the percentage difference between the 

two methods (with respect to my method). The percentage difference records superior 

results to Normalized by R’s method in all measures except in precision of two 

inducers Random forest and OneR, but when we look at the results we can see those 

who divided-by-N record a very low recall (0.016 in both inducers) compared with 

my method (0.335 in Random Forest and 0.36 in OneR). This is a more than 450% 

difference for both cases. However, the F-measure, which is a combination of 

precision and recall, shows superiority to my method in all inducers.  
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The last result has the attribute:  

a) Support of common communities   

Inducer Method 
Accuracy 

(%) 
Precision Recall F-Measure AUC 

Rando
m 

Forest 

Divided by N 59.38 0.988 0.061 0.116 0.529 

Normalized 
 by R 

71.17 0.959 0.348 0.511 0.666 

Percentage Different     20% -3% 470% 341% 26% 

OneR 
Divided by N 59.388 0.988 0.061 0.116 0.53 

Normalized  
by R 

71.17 0.958 0.349 0.511 0.669 

Percentage Different     20% -3% 472% 341% 26% 

IB1 
Divided by N 49.67 0.442 0.623 0.517 0.512 

Normalized  
by R 

53.88 0.478 0.721 0.575 0.561 

Percentage Different     9% 8% 16% 11% 10% 
Table  6-27 Classification result obtained using Support (divided-by-N & itemset-size) 

 
 

 

Figure  6-37 Accuracy obtained using Support 
(divided-by-N & itemset-size) 

 

Figure  6-38 Precision obtained using Support 
(divided-by-N & itemset-size) 

 

0
10
20
30
40
50
60
70
80

Random 
Forest

OneR IB1 

A
cc

ur
ac

y 
(%

)

Divided by-N Normalized by R

0

0.2

0.4

0.6

0.8

1

1.2

Random 
Forest

OneR IB1 

Pr
ec

is
io

n

Divided by-N Normalized by R



101 
 

 

Figure  6-39 Recall obtained using Support 
(divided-by-N & itemset-size) 

 

Figure  6-40 F-Measure obtained using Support 
(divided-by-N & itemset-size) 

 
Figure  6-41 AUC obtained using Support (divided-by-N & itemset-size) 

 

The last result used one attribute as friendship prediction features which is the 

Support of users’ common communities as shown in Figure  6-37 through Figure  6-41. 

Table  6-27 shows the classification result with the percentage difference between the 

two methods (respect to my method). The percentage difference records superior 

results to Normalized-by-R method in all measures except in precision of two 

inducers Random forest and OneR (as the previous result), but when we look at the 

result we can see that in these cases divided-by-N achieves a very low recall (0.016 in 

both inducers) compared with my method (0.348 in Random Forest and 0.349 in 

OneR). This is more than 470% different for both cases. However, the F-measure, 

which is a combination of precision and recall, shows super result using my method 

with all inducers.  
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6.7 Numerical Features for Interest Prediction 
In this experiment, I evaluate the nominal and numerical features using five 

classifier models and inductive learning algorithms: support vector machines (SVM), 

Logistic Classification, Random Forests, decision trees (J48), and decision stumps 

(OneR). Table  6-28 and Table  6-29 list the results for SVM and Logistic 

Classification, which achieved the highest ROC-AUC score using all available 

features. The overall highest AUC was achieved using numerical features along with 

Logistic Classification, although the precision is still improved by the inclusion of 

nominal features for other classifier models as showen in Table  6-30, Table  6-31 and 

Table  6-32 (Aljandal, Bahirwani, Caragea, & Hsu, 2009). 
 

Nom Num Precision Recall F-Measure AUC 

* 
 

0.617 0.693 0.601 0.558 

 
* 0.829 0.826 0.817 0.918 

* * 0.833 0.838 0.829 0.921 
Table  6-28 Classification results using SVM for interest prediction 

(Nom: Nominal, Num : Numerical) 

 
Nom Num Precision Recall F-Measure AUC 

* 
 

0.618 0.684 0.611 0.570 

 
* 0.838 0.846 0.839 0.924 

* * 0.845 0.844 0.843 0.919 
Table  6-29 Classification results using Logistic classifier for interest prediction 

 

 

Nom Num Precision Recall F-Measure AUC 

* 
 0.623 0.721 0.646 0.529 

 
* 0.849 0.805 0.816 0.845 

* * 0.828 0.817 0.820 0.838 
Table  6-30 Classification results using J48 for interest prediction 
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Nom Num Precision Recall F-Measure AUC 

* 
 0.613 0.671 0.638 0.572 

 
* 0.801 0.819 0.810 0.878 

* * 0.818 0.843 0.829 0.894 
Table  6-31 Classification results using Random Forest for interest prediction 

 
Nom Num Precision Recall F-Measure AUC 

* 
 0.565 0.684 0.600 0.513 

 
* 0.825 0.805 0.812 0.807 

* * 0.825 0.805 0.812 0.807 
Table  6-32 Classification results using OneR for interest prediction 
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CHAPTER 7 -  CONCLUSIONS AND FUTURE WORK 
 

In this chapter I present conclusions drawn from my framework development 

process and experimental results, and relate these findings to previous work. Then I 

will discuss some areas of research that are worth investigating as future work.  

7.1 Conclusion  
Discovering associations from data is one research challenge that needs more 

sophisticated measures that can capture interesting patterns. Previous work in the area 

of subjective measures for association rules reveals a great diversity of applicable 

statistical methods these can be applied to build different measures to meet users’ 

needs in different domains. Deriving an objective interestingness measure usually 

involves estimating some aspect of a candidates rule structure, analytical performance 

and statistical significance with respect to observed itemset data. Compound measures 

are based on primitive measures grounded in probability density functions, with some 

– such as the normalization approach that I described- based on parametric fusion of 

these primitive measures, while others are based on more ad hoc rules of 

combination. 

 In this dissertation, I investigated the property of the itemset size and drive a 

normalization factor that increases the sensitivity of joint probability. Also I 

demonstrated an improvement achieved by driving a generic itemset size-sensitive 

joint probability that is compatible with several existing interestingness measures. 

Related work in this area began with Piatetsky-Shapiro (1991), who first proposed 

using statistical independence of rules as an interestingness measure. The Itemset size 

property has not been involved in any of the objective measures. More methods have 

since been proposed using different statistical approaches. Brin, et al. (1997) proposed 

lift and χ2 (chi-squared) as correlation measures and developed an efficient mining 

method. Hilderman, et al. (2001) and Tan, et al. (2002) have comparative studies of 

different interestingness measures. Therefore, I showed that normalized measures 

(using itemset size-sensitive joint probability) increase the sensitivity of the 

interestingness measure to the distribution of data in the context of itemset size, thus 

improving upon different measures. As a consequence of the Tan, Kumar and 

Srivastava’s (2002) study that ends with the conclusion that there is no measure that is 

consistently better than others in all application domains, I have used this method with 
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several datasets in different domains such as market basket, social network and 

bioinformatics (domains with an autonomous or semi-autonomous property). 

Regarding some exogenous variables in some domain which may affect the property 

of itemset size, the result that I obtained is statistically significant in improving the 

sensitivity of interestingness measurers and enhances numerical features in link 

prediction problem using classification methods. In addition, I use ontology to make 

explicit relationships between various interests in item sets, because my normalization 

method is related to the itemset size. Therefore, I showed an improvement using this 

interest’s ontology for predicting link existence such as friendship relations in the 

LiveJournal data set.   

The problem of link prediction in most real-world domains depends upon the 

availability of features that can assist in building effective classification models. In 

previous work, different classification approaches as have been proposed, such as 

“simple yet general” the collective classification algorithm (Bilgic, Namata, & Lise, 

2007) which addresses problems in object classification and link prediction. In 

another study, using graph features as done by Hsu et al. (2006), can be useful in 

some domain. In this dissertation I investigated using interestingness measurers as 

numerical features. However, using numerical features, which are association 

measures for some instance properties, extend the improvement achieved by other 

features such as graph features. In addition, I achieved further improvement with 

using itemset size-sensitive normalized measures in some domains. As I showed in 

predicting friendship relation in LiveJournal data set, the results that Hsu et al. (2006) 

achieved by using graph features are further improved when I add normalized 

numerical features with ontology. The quality of results consistently exceeds that 

achieved by using unnormalized measures. 

 In the area of bioinformatics, numerical features in my experiments (overall) 

show a significant prediction result. In my experiments, I used numerical features 

(association measures) from parent-child relationship in protein-protein interaction 

network to build a prediction model. The results of constructing a variety of numerical 

features from different data properties give support to our view about this technique 

and the ability to be adopted in different domains.     

This research shows the effectiveness of using Itemset size properties with 

interestingness measures in some domains. The resultant effect is to increases the 

sensitivity of the interestingness measure to the distribution of data in the context of 
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itemset size. Although, as I discussed in Chapter 4, there are some domains affected 

by uncontrollable exogenous variables that weaken the item size property effects. 

However, it will be important for our future discovery methods to capture some of the 

domain-specific semantics of links and itemset membership systematically. Finally, I 

introduce two evaluation frameworks based on principles of information theory and 

classification models, to cover both domains that have ground truth and this that lack 

it.  

7.2 Future work  
There are many opportunities and challenges for continued investigation related to 

link mining and classification using association rule mining techniques and measures. 

With my research there are many points that can be extended in future research. 

• Association rule mining and domain specific: I have studied the itemset size 

property and the effect that can be taken in account when we are looking for 

associations in some domains. Still, there are many domains that need be 

investigated which raise the key question that I am continuing to explore: how 

the domain-specific semantics of links and itemset membership affect the 

mining process in some of the domains as I mentioned in chapter 4.1. 

• Investigate the impact of the Itemset size normalization approach on other 

interestingness measures, datasets, and association and classification tasks. 

Therefore, the Table  4-2 shows some domains and possible links and itemset 

preparation that can be used.   

• Itemset size-sensitive joint probability derived from itemset size relation. One 

of my future goals is to optimize the equation that I introduced to another 

equation derived from a learning model.  

• In the section where I used a user interest ontology in social network, some 

possible future work can examine how to extend the framework to incorporate 

multi-word user interests and technical definitions. There are other 

memberships that may also benefit from ontology discovery. Examples of 

pair-dependent attributes include measures of overlap among common: 

o Communities, forums, groups 

o Fandoms (fan of), endorsements (supporter of) 

o Institutions (schools, colleges and universities, companies, etc.) 
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In particular, fandoms and communities have their own description pages 

and metadata in most social networks that make it worth investigation. 

Ontology that includes temporal fluents such as part-of (“Blogger became 

part of Google in 2004”) and use them to infer relational fluents (“u and v 

have been Google employees since 2004”) will allow us to construct 

semantically richer feature sets that I believe will be more useful for link 

existence and persistence prediction.  

In another aspect, structure of ontology hierarchy can be used as a 

description of a multi level semantic relation. This aspect can be seen, for 

example, in user interests in social network where users who are interested in 

“JAVA” and others interested in “C#”, are all interested in “Computer 

Programming Language” based on semantic concepts (i.e. ontology). 

However, the relations between users who share interest in low level “C#” 

are suppose to be more interested than relations between users who share 

interest in higher level “Computer Programming Language”. It is worth 

investigating whether taking into account hierarchy levels in relation 

discovery, can increase prediction sensitivity.    

The association rule mining approach and the semantics of itemset size 

extend naturally to different domains, making these a promising area for 

exploration of ontology-aware classification in order to be able to account for 

the relationship between membership popularity and significance towards 

link existence. 

• In the area of bioinformatics, there is a massive amount of data still needing to 

be processed. I use a numerical feature constructed from link structure (parent-

child relation) to predict protein interaction. However, there is more 

information that we can construct numerical features from such as Protein 

functions, domains and sequences.   

• The problem of link prediction in different domains such as social networks 

and bioinformatics can be addressed by using a variety of features, e.g. 

interest-based features and graph-based features. I have shown that 

incorporating semantic knowledge into interest-based features helps improve 

the performance of classifiers trained to predict friends for example. However, 

the area of link prediction using numerical features of some available 
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properties can be more permissible in some domains which make this a 

researchable area.   
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Appendix A - DETAILED RESULT FOR PREDICTING 
FRIENDS USING INTERESTS 

 
 

A-1 Detailed result of IB1 with One attribute (common interest) 
Table  A-1 shows the detailed results for each fold. I visualize the result in the 

Figure  A-1, Figure  A-2 and Figure  A-3 for precision, recall and f-measure 

respectively. We can see from the figures that the new method “Normalized” record 

better result for most of the folds.  

Fold 
precision- 

WithR 
precision 
WithoutR 

recall 
WithR 

recall 
WithoutR 

F-measure 
WithR 

F-measure 
WithoutR 

1 0.458333 0.263598 0.300000 0.286364 0.362637 0.274510 
2 0.520468 0.296928 0.404545 0.395455 0.455243 0.339181 
3 0.257410 0.221106 0.750000 0.600000 0.383275 0.323133 
4 0.550725 0.555556 0.345455 0.068182 0.424581 0.121457 
5 0.562963 0.355140 0.345455 0.172727 0.428169 0.232416 
6 0.596386 0.414634 0.450000 0.231818 0.512953 0.297376 
7 0.542857 0.277273 0.345455 0.277273 0.422222 0.277273 
8 0.525926 0.228346 0.322727 0.263636 0.400000 0.244726 
9 0.570423 0.255000 0.368182 0.231818 0.447514 0.242857 
10 0.557047 0.653846 0.375566 0.076923 0.448649 0.137652 

Table  A-1 IB1 One attributes (common interest) -for each fold 

 
 

 
Figure  A-1 Precision of IB1 (common interests)- all folds 
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Figure  A-2 Recall of IB1 (common interests)- all folds 

 

 
Figure  A-3 F-measure of IB1 (common interests)- all folds 

For the T-test results are shown in Table  A-2, Table  A-3 and Table  A-4 for 

precision, recall and F-measure respectively. All of the T-test results are computed at 

the 95% level of confidence (i.e. set alpha level of 0.05). The T-test result shows that 

there is a significant difference between the two results. For example the p-value of F-

measure test is 0.00004 and the recall’s p-value for recall is 0.001. All results of the p-

value are less than 0.05, which is the significance threshold.  

 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3 4 5 6 7 8 9 10
Folds

recall WithR recall WithoutR

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10
Folds

F-measure WithR F-measure WithoutR



111 
 

 
precision- 

WithR 
precision 
WithoutR 

Mean 0.51425 0.35214 
Variance 0.00950 0.02164 

Observations 10 10 
df 9 

 t Stat 3.72336 
 P(T<=t) one-tail 0.00237 
 t Critical one-tail 1.83311 
 Table  A-2 T-test of precision (IB1 - common interests) 

 

 
recall WithR recall WithoutR 

Mean 0.40074 0.26042 
Variance 0.01684 0.02383 

Observations 10 10 
df 9 

 t Stat 4.29377 
 P(T<=t) one-tail 0.00100 
 t Critical one-tail 1.83311 
 Table  A-3 T-test of Recall (IB1 - common interests) 

 

 

F-measure 
WithR 

F-measure 
WithoutR 

Mean 0.42852 0.24906 
Variance 0.00176 0.00516 

Observations 10 10 
df 9 

 t Stat 6.77389 
 P(T<=t) one-tail 0.00004 
 t Critical one-tail 1.83311 
 Table  A-4 T-test of F-measure (IB1 - common interests) 

 

A-2 Detailed result of Random Forest with One attribute (common 

interest)  
Table  A-5 shows more details regarding application of the Random-Forest inducer 

with one attribute. In this experiment the precision measure recorded better results in 

Figure  A-4 for the original method “Unnormalized” which is the same situation as in 

the 5.2.1 experiment. However, recall and F-measure have more significant 

improvements are achieved for using the new method “Normalized” as shown in 

Figure  A-5 and Figure  A-6. These improvements have been validated using the T-test.  
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Fold  precision- 
WithR 

precision 
WithoutR 

recall 
WithR 

recall 
WithoutR 

F-measure 
WithR 

F-measure 
WithoutR 

1 0.5816 0.7222 0.2591 0.0591 0.3585 0.1092 
2 0.5613 0.7200 0.3955 0.0818 0.4640 0.1469 
3 0.6228 0.6818 0.3227 0.0682 0.4251 0.1240 
4 0.5966 0.7500 0.3227 0.0682 0.4189 0.1250 
5 0.6396 0.6061 0.3227 0.0909 0.4290 0.1581 
6 0.6800 0.5000 0.3864 0.0773 0.4928 0.1339 
7 0.5564 0.6087 0.3364 0.0636 0.4193 0.1152 
8 0.5652 0.6250 0.2955 0.0455 0.3881 0.0847 
9 0.5802 0.8000 0.3455 0.0545 0.4330 0.1021 
10 0.6198 0.7308 0.3394 0.0860 0.4386 0.1538 

Table  A-5 Random Forest for One attributes (common interest) -for each fold 

 

 
Figure  A-4 Precision of Random Forest (common interests)- all folds 
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Figure  A-5 Recall of Random Forest (common interests)- all folds 

 

 
Figure  A-6 F-measure of Random Forest (common interests)- all folds 
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negative result. For example the p-value of F-measure test is “8.83E-11” also the 

recall’s p-value is “9.40E-10”. The result of the p-value is less than 0.05 which is the 
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significance point. The last two results (recall and F-measure) are much less than the 

first one for the precision measure.  

 

  
precision- 

WithR 
precision 
WithoutR 

Mean 0.60036 0.67446 
Variance 0.00158 0.00788 
Observations 10 10 
Df 9 

 t Stat -2.0504 
 P(T<=t) one-tail 0.0353 
 t Critical one-tail 1.8331 
 Table  A-6 T-test of precision (Random Forest - common interests) 

 

  recall WithR 
recall 

WithoutR 
Mean 0.33257 0.06951 
Variance 0.00157 0.00021 
Observations 10 10 
df 9 

 t Stat 23.8960 
 P(T<=t) one-tail 9.40E-10 
 t Critical one-tail 1.8331 
 Table  A-7 T-test of Recall (Random Forest - common interests) 

 

  
F-measure 

WithR 
F-measure 
WithoutR 

Mean 0.42672 0.12531 
Variance 0.00136 0.00055 
Observations 10 10 
df 9 

 t Stat 31.1681 
 P(T<=t) one-tail 8.83E-11 
 t Critical one-tail 1.8331 
 Table  A-8 T-test of F-measure (Random Forest - common interests) 

A-3 Detailed result of OneR with One attribute (Lift)  
Table  A-9 shows more details about applying OneR inducer with one attribute 

(Lift). In this experiment all measures (precision, recall and F-measure) record a 

better result for the new method “Normalized” comparing with the result of original 

“Unnormalized” as shown in Figure  A-7, Figure  A-8 and Figure  A-9. 
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Fold  precision- 
WithR 

precision 
WithoutR 

recall 
WithR 

recall 
WithoutR 

F-measure 
WithR 

F-measure 
WithoutR 

1 0.56338 0.45455 0.18182 0.11364 0.27491 0.18182 
2 0.63736 0.49315 0.26364 0.16364 0.37299 0.24573 
3 0.60526 0.46809 0.20909 0.10000 0.31081 0.16479 
4 0.61446 0.54054 0.23182 0.09091 0.33663 0.15564 
5 0.60811 0.44262 0.20455 0.12273 0.30612 0.19217 
6 0.59701 0.43284 0.18182 0.13182 0.27875 0.20209 
7 0.53571 0.46667 0.20455 0.12727 0.29605 0.20000 
8 0.59375 0.50000 0.17273 0.14091 0.26761 0.21986 
9 0.57692 0.54839 0.20455 0.15455 0.30201 0.24113 
10 0.60000 0.38462 0.20362 0.09050 0.30405 0.14652 

Table  A-9 OneR One attributes (Lift) -for each fold 

 
 

 
Figure  A-7 Precision of OneR (Lift)- all folds 
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Figure  A-8 Recall of OneR (Lift)- all folds 

 

 
Figure  A-9 F-measure of OneR (Lift)- all folds 

 

For the T-test results shown in Table  A-10, Table  A-11 and Table  A-12 for 

precision, recall and F-measure respectively. All of the T-test result with 95% 

confident (set the alpha level at 0.05). The T-test results show that there is a 

significantly positive difference between the two method results in all measures. For 

example the p-value of F-measure test is “1.05E-05” also the recall’s p-value is 

“1.51E-05”. The result of the p-value is less than 0.05 which is the significant point.  
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  precision- WithR precision WithoutR 

Mean 0.59320 0.47314 
Variance 0.00081 0.00246 
Observations 10 10 
df 9 

 t Stat 6.81860 
 P(T<=t) one-tail 3.87E-05 
 t Critical one-tail 1.83311 
 Table  A-10 T-test of precision (OneR  - Lift) 

 
 

  recall WithR 
recall 

WithoutR 
Mean 0.20582 0.12360 
Variance 0.00070 0.00064 
Observations 10 10 
df 9 

 t Stat 7.69480 
 P(T<=t) one-tail 1.51E-05 
 t Critical one-tail 1.83311 
 Table  A-11 T-test of Recall (OneR  - Lift) 

 

  F-measure WithR 
F-measure 
WithoutR 

Mean 0.30499 0.19498 
Variance 0.00097 0.00115 
Observations 10 10 
df 9 

 t Stat 8.05481 
 P(T<=t) one-tail 1.05E-05 
 t Critical one-tail 1.83311 
 Table  A-12 T-test of F-measure (OneR  - Lift) 

A-4 Detailed result of IB1 with One attribute (Lift)  
Table  A-13 shows more details about applying IB1 inducer with one attribute 

(Lift). In this experiment all measures (precision, recall and F-measure) achieved a 

better result using the new method “Normalized” compared with the result of original 

“Unnormalized” results shown in Figure  A-10, Figure  A-11, and Figure  A-12.  
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fold 
precision 
WithR 

precision 
WithoutR 

recall 
WithR 

recall 
WithoutR 

F-measure 
WithR 

F-measure 
WithoutR 

1 0.466960 0.428571 0.481818 0.381818 0.474273 0.403846 

2 0.514286 0.391304 0.572727 0.450000 0.541935 0.418605 

3 0.500000 0.382353 0.513636 0.413636 0.506726 0.397380 

4 0.447552 0.415730 0.581818 0.504545 0.505929 0.455852 

5 0.443089 0.388889 0.495455 0.445455 0.467811 0.415254 

6 0.537383 0.422111 0.522727 0.381818 0.529954 0.400955 

7 0.510204 0.393574 0.568182 0.445455 0.537634 0.417910 

8 0.469136 0.385650 0.518182 0.390909 0.492441 0.388262 

9 0.483193 0.406699 0.522727 0.386364 0.502183 0.396270 

10 0.518349 0.384259 0.511312 0.375566 0.514806 0.379863 
Table  A-13 IB1 for One attributes (Lift) -for each fold 

 

 

 
Figure  A-10 Precision of IB1 (Lift)- all folds 
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Figure  A-11 Recall of IB1 (Lift)- all folds 

 
 

 
Figure  A-12 F-measure of IB1 (Lift)- all folds 

 

In conclusion, the results of these experiment shows how the itemset size-sensitive 

normalization factor (withR) affects the final result and makes the interestingness 

measure more sensitive to the behavior of data. I used this method with a small set of 

data and observed a positive result of improvements for the interestingness measures. 
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However, the new method can have a different effect when we use it with other 

interestingness measures based on how these measures deal with joint probability.   
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