
0*

/TECHNIQUES TO FACILITATE THE DEBUGGING OF

CONCURRENT PkOGRAMS/

by

HUNG YAU CHUA

B. S.i Kansas Stale University) 19U3

A MASTER'S THESIS

submitted in pa r t i a I fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan) Kansas

1986

Approved by :

Major Prcfessor

A112D7 53b3Efl

^ TABLE OF CONTENT:
xu v
' , Abstract IV

tire
CUtf List of figures V

''*• List of tables VI

Acknowledgement . . . , VII

1 Introduction 1

2 History ana survey of debuggers 7

2.1 History of debuggers 7

2.2 Symbolic debugger 1C

2.3 Survey of four debuggers 11

2.3.1 adb 12

2.3.2 d b x

2.3.3 Tandem Nonstop II debugger, INSPECT 15

2. 3.

A

PASCAL/32 17

2.3.5 Summary of t ne four Debuggers 17

2 . 'i Future debuggers IS

3 Low-level debugging 20

3.1 Software support 2G

3.1.1 Low-level debugger 21

3.1.2 imp I err entat i on of low-level debugger 22

3.2 Hardware support for low-level debugging .. 24

3.2.1 Availaole nardware tools 24

3.2.2 Usage of haroware tools 27

4 Current techniques in enhancing a debugger 31

4.1

4.2

'<.3

4.3.1

4.3.2

4.4

5.1

5.2

5.3

5.

A

5 . 4 ,

1

5.4.2

5.4.2.

5.4.2,

5.4.2,

5.4.2

5.4.3

5.4.3

5.4.3

5.5

5.5.1

A DataBase model of debugging 31

Graphical supports for debugging 38

knowledge-based n,odel of debugging 42

PROUST (PROgram Un aer stand cng for STudent) 43

FALOSY (FAult localization SYstetn) 4b

Summary and conclusion 49

Feature and implementation issues of a

oeougcer for Corcur rent C 52

Introduction 52

Categories of errors 52

Inadequacy of sequential debuggers in

dealing with concurrent programs 55

basic features for a Concurrent C debugger 55

" Cv er a I I -v i ew" approach of processes
during debugging • 5 b

Process states 58

1 uperating System's view of a process' state 58

2 Concurrent C's view of a process' state .. 59

3 The selected process states of a process . bC

4 Importance of the selected process states 62

Suspension of a group of processes 64

1 hays to trigger suspension of a group of

processes 64

2 Importance of suspending all processes
during a breakpoint ••••••• 67

Implementation of basic debugging features 71

Layout of a CRT screen in representing
a Concurrent C program 73

- Ill -

5.5.2 Comparison of Concurrent C Window Manager
with tne implemented debugging features .. Tt

5.5.3 I mp t erne nt a t i o n of states transition 78

5.4 User interface 81

5.6 The role of a compiler in building a

uebugcer 81

5.7 Tracer versus debugger

6 Future research and conclusion 85

6.1 Application of the tracing facility 85

6.2 Future research in Concurrent C debugging 86

6.3 Conclusion , 90

Bibliography 92

Appendix - User's Manual ICO

ABSTRACT.:

The differences between sequential and

concurrent programs are identified. These

differences dictate how the design of a debugger

for concurrent programs must differ from a

sequential debugger. Different techniques to

facilitate debugging of concurrent programs are

discussed. The implementation of a tracing

facility for Concurrent C programs is presented.

This implementation enables all of the processes

in a Concurrent C program to be presented by icons

on a CRT which keeps tracK of their individual

process state. Furthermore! trie ability to

breakpoint a process and at the same time suspend

all the other existing processes within a

Concurrent C program is implemented in this

f a c i I i t y .

LIST OF FIGURES:

Figure Page

1.0 An example ot time dependent
program in pseudo Concurrent C *t

1.1 An example of interleaved execution
due to trie lach of atomicity •• 5

2.0 Comparison table of the four debuggers 12

3.0 Real-time monitor hardware 28

4.0 Organization of debugging in OMEGA ... 35

4.1 The fault localization process 44

5.0a A deadlock witn all process states
being visible 57

5.0b A deadlock with partial process
states being visible 58

5.1a Deadlock in a multiple processor
sys ten b8

5.1b Deadlock in a single processor
system 70

5.2 A representation of a process by

an i con 73

LIST OF TABLES :

Tabl e

1

2

Sub states

Comparison of Concurrent C

Manager ana the author's
implementation

Page

75

77

ACKNOWLEDGEMENT!

The well polished and presentable form of

this thesis is indebted to Dr. Richard A. McBride

for the time consuming reviews of this thesis and

many helpful suggestions. I also greatly

appreciate the helpful guidance and suggestions

from Dr. Virgil E. nallentine and Dr. David A.

Gustafson. Without the financial support from my

parents) brothers and sisters during my

undergraduate career. this thesis will not be a

reality. Last but not leasti the moral support

and encouragement from my friends are greatly

apprec I at ed

.

Chapter 1

Introduction

Generally! a computer program is developed

tnrough a sequence of steps. These steps can be

divided intu (our phases namely:

1) un oer stand i ng the problem»
d) uesigning a solution!
3) implementing the solution and
i) testing tn e solution.

The first phase is concerned with the

specification lobjective) of a solution.

Understanding a proolem is accomplished by

studying the docurr.entat i on surrounding the problem

in detail so that a programmer can comprehend

tnoroughly what is to oe solved. The design phase

is concerned with how the specification can be

achieved. This is normally done by laying out the

logical flow or general structure of a program.

Furthermore! it may involve selection of data

structures to make the program more efficient so

that the program executes faster or requires

minimal iremcry space. Tne implementation phase

deals with tne conversion of the designi derived

during the second phase into real programs. This

third phase involves coding and compilation. The

testing phase is usea to ensure that the

spec i t i ca t i on is accomplishes. This involves the

execution, verification ana debugging of a

comp i I ea proq ram.

The debugging process dLring the testing

phase of a program development is the focus of

this thesis. In fact, this thesis presents ways

to make a programming environment conducive for

concurrert programming.

In order to focus on debugging, one needs to

understand sose cf the terminology associated with

debugging. When a program is said to contain a

bug, then that program has an error. Debugging

is the process of locating the cause(s) of an

error and fixing the error(s). Debugging is

necessary wnen the cause of errors is not apparent

to a programmer. But how does one know that there

is an error in the program? Errors are discovered

when the behavior of a program does not conform to

its specification (assuming the specification is

correct).

In order to study the behavior of a program,

test data are needed. with a 'proper' formulation

- J -

of test datdi all of the desired behavior of a

program can be reviewed. Unfortunately, the

formulation of 'proper' test data which reveals

all of the behavior patterns or a program is very

difficult to accomplish when the program is

comp lex.

Concurrent programs are always more complex

to debug than sequential programs. This is

because the behavior of a sequential program is

independent of time whereas a concurrent program's

behavior can be time dependent. A concurrent

program is composed of two or mere seauential

programs that may execute concurrently as parallel

processes. During their execution, these

processes may occasionally interact witn each

other. The act of occasional interaction via

synchronization and cooperation is called

asynchr on i sm . The processes involved in this

interaction are called asynchronous processes. A

classical example of asynchronous processes

involves producer and consumer processes where a

producer produces as fast as possible until it has

to wait for the consumer to catch up with it or

vice versa.

An exairple of a time dependent program is

illustrateu belowt Let x ana y Be tne two

processes which share a common variable! s. The

pseudo Concurrent C [GEHANI £ ROOME 84a] code for

tne two processes is shown in Figure 1.0.

Process x

:

{ local variables
XI t X2 ;

XI « si

x2 = xi + 10

;

s = X2;

Process y '•

C local variables
Yl, Y2

;

y i = s

;

Y2 = Yl + 20;
s = Y2!

Figure 1.0: An example of time dependent program
in pseudo Concurrent C

Assume that the initial value of s is 1 and

that this vari2Dle is shared by both processes.

Alsoi assume that both processes start at the

same time. Nowi consider that process y

executes faster tnan process x» i.e.* y has

executed s = Y2 before x executes XI s. In this

scenario! XI gets the value of 21 and X2 is set

equal to 31. Cn the otner hand! suppose process

x executes faster than process yi i.e.! x has

completely executed before y is started. In this

case! XI gets the value of 1 and X2 gets 11.

Thus the values of Xl and X2 are different in both

scenarios because of the speed of execution of

- 5 -

each process. This phenomenon is called 'race

con a i t i en •
'

Another possibility of 'race conaition 1 is

the interleaved execution aue to the lack of

atomicity (see hi cure 1.1). In this c a s e i the

initial value of x is 50. But the value of x in

process 1 can oe <tC or 20 depending how the

assignment statements are executed. The value of

x in process 1 can oe <iCi if the assignment

statement is executed first* without interleaving

with process 2's assignment statement.

x = 50;

Process 1: Process 2:

x » X — XOi x=x-20i

Figure l.l: An example of interleaved execution
due to the lack of atomicity

The major difference between concurrent and

sequential urograms involves synchronization.

Synchronization is the constraint imposed on

autonomous processes within a concurrent program

to coordinate them and to keep them from

interfering with each other. This is often called

the timing constraint [ANDREW £. SCHNEIDER 83).

[DEITEL 8<i] .

With an unuer stano ing of the terminology of

debugging ana concurrent programming. the reader

may now proceed to tne gist of the paper. To aid

tne reader, here is how the remainder of this

thesis nas been organized. In chapter 2> a

historical survey of debuggers is presented.

Also, four existing debuggers are presented in

order to show different features that are commonly

found in debuggers. Chapter 3 covers "low-level"

debugging incluaing a discussion of hardware

supports for debugging. Chapters 4 presents

current techniques from different areas in

computer science that might be incorporated into a

debugger. In particular, applicable techniques

from databases and techniques associated with

artificial intelligence are covered in chapter 4.

Chapter 5 deals with the difficulties of debugging

a concurrent program, and includes ideas and

approaches for concurrent program debugging. The

last chapter, comments on future research In

debugging especially for concurrent programming.

Cnap ter 1

History and survey or debuggers

Nornally> when you talk about a subject) it

would be ideal to cover the history of that

subject. History is a useful tool in helping to

diagnose wnat has gone wrong and try to teach us

how to avoid the same pitfall again) and possibly

providing a solution wher a researcher follows the

same path as a prior one. This diagnosis may also

stimulate different avenues of approaching how to

solve similar problems. As a result) this

chapter starts off with an account of the history

of oeDuggers and then a survey of four existing

deb ug ge r s .

2)1 ; HiSifiLY 2i asai(35SIi

In the lino's and 19s0's» debuggers were

nonexistent. This was partly due to the lack of

hardware ana software technology. Furthermore)

computers were net used on a large scale a rd those

who used their were either professicnals or

researchers. At that time> an assembly language

was considered an easy language to use as compared

- a -

to flip-flop switches. It was only in the middle

195C's that high level larguages were invented.

With the understanuing of constructing a compiler

and wore demand for 'user friendly' programming

environments, debuggers started to emerge in the

early lS60's and Doomed in the 1970's. Initially,

storage dump and output traces were the only ways

to help in debugging a program. with better

developec hardware, hardware interrupts were

possible which permitted stepping through a

program. From single-step breaKpointing, a more

sophisticated approach was incorporated and

resulted in conditional br eakpo i nt i ng

.

Conditional br eak po i n t i ng is a facility in which a

breakpoint will be triggered if the associated

conditionls) is met. In order to provide an

interactive debugger with user friendl iness, the

symbolic debugger were developed. A symbolic

debugger is capable of interpreting the symbols

employed Dy a user in his/her program during a

debugging session, whenever a reference to a

storage location is desired. Further explanation

of symbolic debugger will be provided in the next

section.

In the 1970*s, almost all of the debuggers

for a language were developed after the

program.Ting language itself and this created some

ad noc ways of i mp I erne nt ing a debugger. Moreover?

all those debuggers were for sequential programs

only. In fact) more recent debuggers which were

developed in parallel with a language are more

powerful than their counterparts which were

developed after a language was already

implemented. This power is due to features like:

switcning a nebugging session to another terminal

(to save important debugging information) as when

the terminal is limited to a certain buffer size)»

scoping of debugging commands (to elirrirate

lengthy commands* anc express commands

unambiguously if variable names are duplicated in

multiple pr oce cur es/ f un ct i ons) » and adopting the

same language constructs for debugging commands

that are present in the associated high level

language (to eliminate learning a new set of

syntax). Furthermore) if a system is designed

w i tn the consideration of incorporating a

debugger* then tnat debugger is more powerful

because special features to facilitate the

debugger have already been incorporated into the

system.

- 10 -

Only in tne late 1970's aia debuggers for

concurrent programs start to exist. This is

partly due to the lack of hardware support before

and partly because there was not much demand for

concurrent programming with high-level languages.

Currently) there are many debuggers (both

sequential and concurrent) tailored for specific

systems) but most of them are not designed with

po r tab i I i t y in [find.

2.2: Symbolic Qebygae£

A symbolic debugger is one which can

understano symbols employed by a user in his/her

program during a debugging session instead of

storage addresses. These symbols can be

variables) constants) procedure or function

names) etc.) whicn are declared within a program

itself. In oroer for the debugger to understand

all those symbols) a symbol table is required in

order to interpret them. Normally) this table

consists of the attributes of each symbol.

Attributes like type of declaration) addressing)

value) range of values) upper and lower bcunds

of array subscripts are ustally kept in the table.

- 11 -

Furthermore) a symbol Ud Ic is generated during a

compilation if it is requested Dy the user. The

table's generation is optional since the symbol

table could be very large depenaing on the size of

the program and is useless if debugging is not

needed .

2.3: Sy£Y.£y. a! Fayr. QsUyaaati

The four debuggers to be discussed are UNIX's

adb anj dbx, Tandem Nonstop II's INSPECT and a

PASCAL32 debugger. The reasons for choosing these

are:

1) they reside in different environments and*
2) they exhibit different features? especially

from the aspect of user-friendl iness.

A comparison table for the four debuggers is shown

in Figure 2.0. Tne features chosen for comparison

are partly based on criteria for interactive

debugging suggested by Seidner [SEIDNEk £ TINDALL

831 .

12

[Debugger 1 ado 1 dbx 1 INSPECT ! PASCAL/32!

[User friencliness ! ! X ! X !
X i

1 Eas y to use ! !X! X 1 X
!

{Descriptive Operators! ! X ! X !
X

!

[Source level debugging! ! X ! ! •

[Symbol ic debugging ! X ! X ! X 1
X

!

[Interactive debugging 1 X [X 1 X !
X i

[On-line help 1 !X! x ! 1

[Low-level debugging ! X 1 X] X 1 X !

[ASCII display 1 [X ! X IX !

[Teririnalin dependent ! ! ! X ! t

[Concurrent Prograrr 1 ! ! X ! X i

IDeDugg i ng III 1 1

Figure 2.0: Comparison table of trie four debuggers

2.3.1: £db.

ado [TUTHILL 65b] was the first general

purpose debugger on UNIX system. It is not user

friendly at 3ll and the fundamentals of its usage

are quite haru to grasp. As usuali the

accompanying documentation for these UNIX system

programs are very brief and quite difficult to

comprehend if user is not famil iar with the system

- 13 -

[UNIX 831. Tne syntax ot trie debugger is quite

foreign to UNIX's host language, C, and other

high-level languages like PASCAL, FORTRAN, LISP,

etc. The syntax is closer to an assembly language

with weird symbols like '.', '*', ' il ' ,
'?',

etc. But it allows user to set breakpoints,

define action to be taken when the breakpoint is

reached, display tne content of memory, display

the stack which keeps track of call sequences,

etc. Programs can be debugged without the

insertion of any user interface routine in the

program .

adb provides a controlled environment for

debugging. When a program needs to be debugged,

it must be compiled and the object file produced

must then be submitted to a ub . SymDolic debugging

is available only if a program was compiled with

symDol table option ircludec. An analysis of a

crashed program can be performed when a core image

of that crashed program is avai lable. Aab enables

a user to display the contents of physical

registers in a manner reminiscent of a memory dump

in an IBM environment. For details about 'adb',

refer to AOBll) of UNIX Programmer's Manual

[TUTHILL 85bl . NOTE: novices are strongly

- 1<I -

advised NOT to use ado at all because it can

become frustrating very guicKly. Novices should

use the nsxt debugger! CDx instead.

2.3.2: flfcx.

ubx is a debugger capaole of debugging a

program at the source level under UNIX operating

system. Currently! it supports Fortran 77 and C

programs. It. is a symbolic debugger. Qbx is also

a source level debugger! which means that

interaction with source text during debugging is

possible. ror irstancei displaying source text»

during debugging to see which line the program has

just executed and which line is to oe executed

next is permitted. This kind of tecnnique is a

step towards instituting a "paperless programming"

environment. For a truly "paperless programming"

env i romrent , a multiple screens capability is

essential on a terminal ICiU) to permit different

portions of a program to be displayed at the same

time on the CRT screen. This feature would

eliminate the snuffling of a program listing.

obx uses English verbs like 'run 1
! 'trace'!

etc.! to name and introduce its functions. with

- 15 -

this me i hod of naming! a user can recall a

function easily* Tracing of statements*

variables and procedures or functions are possible

and optional predicates associated with them.

Br eak po in t i ng at statement) variable and

procedure/function levels are also available. The

reporting of all trace and breakpoints that are

set in a program can be invoked. Of course,

modifying and displaying of any symbol's value is

allowed ana an inquiry can be made about the

attribute of any symbol.

If a user has the desire to debug the program

at machine instruction level, he/she is permitted

to oo so. User friendly commands like on-line

help for a synopsis of dbx command and 'aliasing'

for shortening command expression are also at

user's disposal. The major difference between dbx

and aob is that dbx has a higher level user

interface tnan adb ITUThlLL 85a]. For more detail

aDout dbx. refer to 1>3X(1> of UNIX Programmer's

"lanua I .

2.3.3: Isaflsa Naosisc II Qsbvaasi' 1NS£££I

The symbol ic debugger of Tandem Nonstop II

- 16 -

computer system, 'INSPECT* enables a user to

initiate a ueDugqmy session at a terminal and

then routes the input or output of that deougging

session to a different terminal on the same or

cifferent Tandem system(s). This capability is

accomplished by the concept of a program running

as a process and 'INSPECT' running as a process

also. INSPECT is as user friendly as dbx except

that it does not allow source text to be displayed

during the deDugying session. However, it has

other good features like FILES (which displays the

status of opened files within the program), TERM

(which can be used to switch INSPECT session to

different terminal), HIGH and LOW (switches

INSPECT between nigh-level programming language

and assemoly language mode), RADIX (sets the base

for numeric conversion), SCCPE (sets the scope

for subsequent commands i.e., allow a query about

the value of variables outsiae the current scope

of a section of code) and COMMENT (adds comments

to tne log file or to command files). As it is a

symbolic debugger, a symbol table is generated

during compilation whenever the '?SYMB0L'

directive is included in tne source code. For

more detail about 'INSPECT', refer to INSPECT

Interactive Symbolic Deougger User's Guide [TANDEM

- 17 -

83].

2 . 3 . A: PAS.C.AL./32

PASCAL/32 is a symbolic debugger for

sequential ana Concurrent Pascal. It has almost

the same capabil ities as dbx and INSPECT except

for a few features which are unique to dbx or

INSPECTS. Nevertheless! it has features for

debugging concurrent programs. "SUMMARIZE" is a

command which produces a summary I ist of the

status of all active processes. The summary

consists process PCB address) the current process

statei the current program counter. global basei

etc. Another concurrent program debugging command

is "TRACEBACK" which proviaes a tracebach listing

all of the active processes starting from the main

process (whicn initiateu all of its child

processes)

.

2.3.5: i^ii^ii 0.1 1Q2 tauL iS.tLU22B.LZ

As time elapses. depuggers are becoming more

user-friendly as proved by the evolution from adb

to dbx. This is so because user -f r i end I i ne ss is

demanded in all software. and more advanced

technology is available now than before.

- 18 -

Fur therrror e , aeuugqers seem to be easier to use

and a "paperless programming" approach las evident

by source level debugging) can be adopted.

However) each debugger has its own salient

features. These features are system dependent.

Qn the whole. debuggers are thdught to be a piece

of software which facilitates a user in debugging

a program. Thus. all debuggers are built with

the intention to nelp a user as much as possible

in debugging his/her program.

2.4: Fu.iu.is. f2£b,uidS£rs

Besides symbolic debuggers using the

operating system capabilities of the environment)

debuggers are beginning to make usage of different

tools in recent years. Tools such as databases)

multiple-window software/hardware* graphical

har dwar e/ sof twar e and knowledge-bases or Al have

been incorporated into debuggers. With the

incorporation of databases and know I edg e-bases)

back-tracking and English sentences for queries

during debugging are now often possible. On the

other hand) multiple-window layouts and graphical

features enable programmers to debug their

programs with little or no hard-copy. With all

- 19 -

these new ideas* future debuggers should Be very

easy to use.

Unfortunately* little work has been Cone on

debug ging concurrent program, ^iill the knowleage

of debuggers for sequential programs help in the

construction of an adequate debugger for

concurrent programs? This problem is addressed in

the subsequent chapters.

20

Chapter 3

Low-level debugging

"Low-level" debuaging is concerred w i tn

memory dumps ano the interactive examination of

memory [HAMLET B3J. At this level, a user is

often overwhelmed with data ano must be able to

extract the pertinent data to fulfill his/her

requirement* otherwise the data are useless. The

difference Detween "low-level" and "high-level"

debugging is the ease witn which relevant data can

be extracted by the user. For instance? in

"low-level" debugging the user has to know the

relative position of a variable declared in a

program in order to locate its content from the

associated memory dump of data segment. Un the

other hand, in "n i gh- 1 e ve I
" debugging all the

user has to do is to specify which variable is to

have its value oisolayed.

3.1: iSliaaLS 5u.DO.ciI

Software Support is concerned with software

packages avai lable to users which can faci litate

in the debugging of their programs.

- 21 -

3.1.1: Loa-isvej. y.eoug.q.er.

Both the memory dump ana interactive

examination of rueirory rely on br eak po in t i ng.

Breakpoint iny is the temporary halting of an

executing program. Br edk po i n t i nq is usually

accomplished by the insertion of a "pre ak po i n t"

instruction, »hicn is supported by the hardware

in the appropriate segment of the executable code

of a program.

In the case of a memory dump, the breakpoint

is set immediately after the point where the

program needs to oe diagnosed and the state of the

program is preserved for dumping. At that time,

the program is also terminated anc the state is

printed (dumped). However, in the case of

interactive examination of memory, conditional

br eakpo i n t i ng is necessary because the setting of

br eakpo in t< s) dynamically by a user during the

debugging session is possible.

The approach to implementing conditional

breakpo in t i ng is hardware dependent. ail of the

approaches use some sort of exception handling

which is availaule on the hardware.

- 22 -

Unfortunately) breakpoints are extremely

difficult to errceu in code produced froir nracros

because they represent preoefinec sets of code

[GENTLEMAN f. hOcKSMA 831. The same is true for

library routines called by user's program.

3,1.2: i2ki£!I££iaii£iD 2l l2ii-.Lsy.2i 2£Ey.g.g.er

Exception cetection is essential in hardware

because potential disaster due to an execution

error of a user's program can be avoided in

advance. To preserve tne integrity and to enforce

the robustness of a system) some restrictions are

imposed oy the operating system on a user's

program in the form of exception conditions.

Whenever one of these conditions is fulfilled by a

user's program) the hardware automatically

generates an irterrupt. When this interrupt is

triggered) trie supervisor takes control of the

CPU and executes the appropriate interrupt

handling routine ana a user's program is

terminated.

This interrupt handling routine can be user-

defined i.e.) a user can specify what actionts)

will be taken wnen an irterrupt occurs. Actions

- 23 -

such as noting »nere an error occurred ana

printing out error messages are possible. But

note that only actions whicn can be performed by a

user's program are allowea! otherwise cascading

interrupt nandling calls can result. The system

or default interrupt handling routine usually

gives an exception code and gracefully terminates

the user's program. Examples of exceptional

events are: illegal irstruction (i.e.. an

instruction unknown tc system), privileged

operation (i.e.. an instruction which must be

executed through the operating system),

addressing (i.e., the specified address of

instruction or data for storing and fetching is

out of oouno), specification (i.e., something is

wrong with the way in which an operand is

specified in an instruction), data (i.e.,

illegal data format for certain operation),

arithmetic overflow and underflow, and so forth

[STKUBLfc 75).

Since a memory auinp is a copy of the

program's state at the time tnai program is halted

by an interrupt, the dump is normally in the form

of numbers lot certain base) instead of

descriptive messages with appropriate values

- 24 -

associated. This is because not much conversion

neeas to be done to convert the machine

representation of a program state to a duirp.

Within this dump. there is a completion code

(norrrally part of Program Status Word. PSW) which

indicates the reason for halting the program. The

contents of registers (general and floating-point)

are also avai lable. Through the values of these

registers. a Better insight of what that program

was doing and what it had done can be achieved.

but only with a lot of sweat. Furthermore,

knowledge of the usage of each register must be

known .

3.2: tiziiaaLe. iucuati lar. Lam-leis! Qfifcussiau

Since hardware is the foundation of software.

it is importart to investigate how hardware

supports can be employed to facilitate software

support for debugging.

3.2.1: &y.a.iJ.a.b.l£ daCUaaiS iBSlS

Some hardware supports which are avai lable

include: probes to detect signals to and from the

microprocessor. a fifo buffer for logging events,

comparators for matching patterns (used for

- 25 -

cond i t i ond I breaKpo i n t i ng) » timers for

performance measurement and counters for measuring

events [GENTLEMAN £ H0EKSM4 83]. Most hardware

tools have been useo for logic level and

functional unit level hardware debugging.

Commercial ir.-circuit emulators for

m i cr opr cce sso r s are now avai lable [INTEL 78J»

[TEKTkONIX 81]. These emulators are just like

probes but run unaer a secondary computer

(microprocessor). Sucn emulators can monitor

signals i.e.t generate signals to the

microprocessor as if they were generated from the

rest of the circuitt or generate signals to the

rest of the circuit as if they come frorr the

microprocessor! or they can generate both types

of signals. These emulators have been useo widely

for debugging simple microprocessor applications

sucn as a protocol for peripheral control.

Nevertheless? the application of these emulators

to high-level debugging is not very clear because

tney are net widely usee. Certainly. usage of

in- circuit emulators is a good candidate for

concurrent deougsiny because it supports an

independent process running on a different

processor rather than the system executing the

- 26 -

concurrent processes that are being debugged.

Tnusi witn tne inclusion of this independent

processor, the behavior of a concurrent program

can be preserved. In other words, the corcurrent

program can be deouggeo without any modification

at all.

For instance, suppose a concurrent program

is running on a systerr and an emulator is

integrated (into that system), which "listens

to" the transactions occurring between the target

processor I the CPU which runs the concurrent

program) anc other parts of the system. With this

setup, every instruction executed by the system

is "overheard" by the emulator. Furthermore, the

emulator is an autonomous system, its listening

will not affect the targeted program because the

emulator is not interacting with the running

program. Consequently, the concurrent program

can run uninterrupted as if the emulator was not

ttiere as opposed to a conventional debugger which

is embedded (i.e., the debugger is running on the

same processor as the concurrent program).

This mere acility to "listen" withcut any

interference by the emulator will preserve the

- 27 -

Behavior of tne concurrent program. This will

definitely nail down the buy residing in the

targetec system because there shcula not be any

side effect produced by the emulator. Since we

are interested in debugging a concurrent program?

whatever tools we employ must not create any

problem so that the program can Be correctly

debugged; otherwise the bug(s) is not eradicated.

The next section covers a detailed application of

such emulator in a real environment.

3.2.2: Usage, fli Ha.£2w.a££ I22J.S

with that brief introduction to the hardware

supports for debugging. we are now ready to see

how they can be incorporated into a system for

debugging purposes.

The use of anotner computer to monitor real

time programs is described in [PL^TTNER 84]. He

uses a probe for "listening" to the transactions

occurring Between the target processor and other

part of the system. and a dual port Ipnantom)

memory wnich is a memory that can be accessed by

both monitor process and target processor

interface. The phantom has the same wcrd size and

- 28 -

the same adcressing range as the target processor.

Tne structure of his monitor is given in Figure

3.0.

Moritoring System

BreaK po i n t register

>! i

I LocK/Un lock/ \

V FIFG ! :

I Mon i tor ! _ _ _ ! !

: :<

! Pr ocess ! ! !

(Bus I i s tene r)

Tar get
Processor
Interface

FIFC

/ \

/\
\ /

FHANTUM
MEMURY

Figure 3.0: Real-time monitor hardware.

with the target processor interface in the

monitoring systerr connected to the target

processor) all memory transactions generated by

the target processor's CPU are "listened to." The

information involved in the memory transactions

viz.i its adaress* content ana whether the

location is read/write, are queued in the FIFO.

The queued data then f lows into the phantom

- 29 -

memory. Tne monitor process may read the content

of tne phantom memory at any time. It iray lock

tne flow of data from tne FIFO to the phantom by

locking the FIFO. During such a period) arriving

information to the UFO is queued. If the FIFO is

unlocked then data again can flow to the phantom

memory. Since the monitor process is "observing"

the targeted processor state and evaluating the

predicates (commands) that were suomitted by an

operator. the ironitor process has to interpret

on-line the low level (close to machine)

information availaole in the phantom memory and

perhaps at the output of the FIFO in order to

construct a hign level (close to target prograrr

source level) image of the target process' state.

The interest of now to construct a hign level

image is a totally different topic from our

discussion of concurrent debugger but for

interested reader please refer to [PLATTNEK 84).

However) to speed up the monitor process) a

multiple oreakpoint register is connected to the

output of the FIFO. This oreakpoint register

reports to the monitor any memory transactions

referencing a location belonging to a previously

defined set of memory locations for breakpoints by

a programmer who is observing the behavior of the

30 -

target processor

After the irtegration of these componerts»

how are we going to Know that the rronitoring

system will work correctly? Definitely, testing

of the monitoring systetr is also required. If

there is any error encountered during the testing

then dedugging the system is necessary.

Approaches to debugging a hardware system without

having to resort to expensive coirmer c ia I ly

available ceve I ocmen t systems is descrioeo in the

monograph compiled uy Noordin Gnani and Edward

Farrel! [GUAM i. FARRELL oC].

31

Chap t er 4

Current Tecnniques In Enhancing A Debugger

As time elapses? more technology is

invented. Consequently this new technology may be

usea to enhance existing systems if the technology

is suitaDle. With the advancement of database

systems, graphics? and Know I edge-oasea (expert)

systems? radical enhancements for debuggers seem

prom i s i ng.

In this chapter? we investigate the prospect

of such technology being used to enhance a

debugger. First? we cover how the knowledge from

database systems can be employed in the debugging

process. Secondly? graphics technology is

reviewed and thirdly? knowledge engineering is

invest i gat ea.

a.i: a Uaiauais Causi al UekuaaLna

A database is a repository of highly

organized information wnich provides for easy

retrieval and maintenance of the information. The

system which facilitates the retrieval and

- 32 -

maintenance of Mgnly organized information is

called database management system (DBMS),

Retrieval and maintenance of information in a

database is accomplished through the query and

update facilities provided by a database

management system.

In debugging a program, it is necessary to

have access to information about the source

program and the execution state of that program.

If we could somehow translate the necessary

information for debugging a program into a form

that could reside in a Database, then debugging

could be accomplished by performing queries and

updates on a database representing a program.

Currentlyi there exists such a programming

system, called CMEGA [POWELL £. LINTON 83), which

stores all the information of a program (parse

tree, symbol table and so forth) into a relational

database system. In this environment, a program

is treated as a group of objects from different

classes such as variables, statements,

procedures ana so forth. In order to relate these

classes together in an effort to represent the

semantics of a program, relationships among these

- 33 -

classes need to be e s tat. I i s ne d .

For example) some of the relations could be

procedures (name) parameters? statements)
statements (statement.categoryi symbols)
variables lnaciie> type? value).

In tnis example. tne 'procedure' relation

has three attributes viz.i name) parameters and

statements. each tuple of the relation

corresponds to a procedure in a program. A

procedure has a rame» some parameters (possibly

none) and an ordered list of statements which

represent the body of a procedure. In the

'statements' relation* we have a

sta temen t_ca tegor y (assignment) control)

invocation and so forth) and a list of symbols

making up a statement. On the other hand) the

'variables' relation has three attributes. The

first attribute is "name)" which can be a

procedure name cr a symbol in the symbol list of

'statements' relation. The second and third

attributes of 'variables' relation hold the type

property of a variable (such as integer) real)

boolean ana so forth) ana the value of a variable

if it has one.

3<i

A query language is used to forrrulate

questions aoout information in a database. For

instance, if we want to find all the statements

where procedure 'Dugs' is invoked. we could

express the query as follows in a naive version of

QUEL (the query language tor INGRES) [INGRES B5]

as follows:

range of p is procedures
range of s is statements
retrieve Is. all) where

s.statenent.category = 'INVOCATION'
and s.symbolil] " 'bugs'.

In this example, we assume the procedure

ndme is stored in the first position of the symbol

list if the statement is an invocaticn statement.

Furthermore, a user is expected to know how the

relationships are set up, especially the

attributes in each relationship and how the

relationships are linked together to represent the

entire program. As a result, a user has to know

the detail of the database like the name cf each

relationship, the key to each relationship. Also

knowledge cf the compiler mignt be helpful

especially in understanding how the relationships

are constructed out of the grammar of the

- 33 -

programming language.

In order for a user to debug his/her prograir»

the information about the program's state must be

incorporated into the database so that a query can

be performed. However i dynamic information is

NOT actually stored in the database! but

accessible only from the memory.

The organization of debugging in OMEGA is

depicted in Figure <t.u.

Code
Genera tor

' Ccn, pi I e"

USER <#**#******
a * Pr ogr am

Program
quer i es

* Input/Output

Editor/
Query

Processor

Ex ecu t i ng
Program

Relational
quer i e s

Access
prog rair

state

DBMS

Access a

static !

data I

V

Pr og ram
Database

< >

Access
runt i iii e

information

P r ogr am
M o n i tor

Figure 4 . : Organization of debugging in OMEGA.

- 3d -

In this desiyn, the catabase system

interacts w i t h the program monitor (aebugger) to

acquire tne dynamic state of an executing program.

The prograii. rrcritor provides relations such as

valueof (variablelD, value) which is transparent

to a user but Knohn tu the database system as

collection of relations that are physically

separate from the rest of the database. For

instance, tc display the value of a variable

during a debugging session» a user queries the

system to retrieve the attribute "value" from the

appropriate tuple in the 'variables' relation.

range of v is variables
retrieve v. value where v. name » 'var.name'

Tne DBMS then sends a request to the program

monitor for the value portion of the appropriate

tuple. The monitor then returns the variable's

value from the executing process by looking up the

value attribute associated with that variable in

the 'valueof' relation in the monitor. That value

is returned to the DBMS and displayed in the

appropriate format for the type of variable

defined in 'variables' relation.

In this environment, a user is allowed to

specify a set of actions to be executed whenever

- 31 -

tne condition (event) specified Dy a user is

reached. An event is a condition which the user

is interested in and is expressed as a relational

qualification. A condition is specified in a

'when' clause. For exairple. to have the

program's line number displayed when the procedure

'Dugs' is invoked. we might have a query like

range of ap is active-procedures
when I ast (ap

)

.procedure "bugs" do
display last(ap).

end .

Here we assume that the debugger keeps track

of a relation for active procedures which is

defined to oe ordered in such a way that the first

tuple represents the main procedure and the last

tuple is for the currently active proceoure In a

call chain which behaves like a stack.

With this type of query. some questions that

cannot be structured in a conventional debugger

con now be handled elegantly. Examples of such

questions include: "when will procedure P be

called from procedure U?" and "What are the

parameters associated with procedure P?".

Unfortunately? a query is quite wordy and

- 38 -

this approach is not very user-friendly at all.

Consequentlyi Powell and Linton prefer a visual

interface so that a user can construct a query

from objects in several windows on the screen by

using a mouse. In order to use multiple windows

some graphical tool is necessary! otherwise

management of windows is intractable.

4,2: Graphical Supports £21 Debugging.

A visual interface to debugger is very

attractive because it aids in creating a user-

friendly environment. The user-friendliness

arises from the ease of systeir interaction by

using graphical objects on the screen (thereby

hieing details) and the selection of graphical

objects by using a pointing device such as a

mouse. The use of graphics and a pointing device

make the process of interaction simple and

natural. Graphical objects can be icons,

windows. graph, etc. Such graphics is made

possible through the ability to allow the

brightness of every discernible point in the

displayed image to be independently controlled.

For an introduction to computer graphics, please

refer to [It, GALLS 81 J.

- 39 -

with the graphics technology at our disposal,

multiple ninaows o(various sizes on a screen are

attainable. Further more, the overlapping-window

paradigm for a user interface developed Dy Alan

Kay [KAY t. uGLDbEKG 77], allows information from

different sources to be displayed simultaneously

while, at the same time, screen space is used

econo,:ii ca I I y [TESLEk 81] .

To manage these multiple windows, windowing

systems are built from the concept of multiple

losus running concurrently. Each task represents

a Different window anu so can be switched freely

between tasks by switching between windows. Such

multiple windows tasking are supported by

SMALLTALK [TESLEK 61) and XEROX'S LOOPS [6CBR0W £

STEFIK 83]. Consequent I y , this approach is of

great value in debugging because the user's need

of information simultaneously gathered from

different sources for debugging is now available

on a single CRT* This approach is used in

instituting a "paperless programming" environment

whereby program listings or information is no

longer needed during every phase of the

development and rraintenance of programs.

40

The idea ot "paperless programming" is being

applied in the Blit debugger [CARG1LL 83] for C

programs. The olit debugger uses a multi-

processing bitmap terminal. When Slit (teririnal)

is connected to a oort IRS232) of a UNIX systemi

a program in Blit's ROM may be used to comirun i cate

witn the UNIX host and download binary code for

execution in blit. Furtnerirorei if a small

multi-processing nemeli rtpx* is loaded to 8lit>

Mpx can run in cooperation with corresponding

software invoked on the UNIX host. Mpx allows a

user to define and manage a set of possibly

overlapping windows. Alsoi Mpx runs a simple

process which communicates with a copy of the

standard UNIX command interpreter SHELL. As a

result, a user can treat each window as a

separate terminal and engage in several

simultaneous conversations with UNIX and remote

machines connected to the host. Furthermore, the

terminal processes may be replaced by arbitrary

programs downloaded from tne host to exploit

Blit's graphics ano local processing.

Essentially, these processes execute

* Designed and implemented by Rob Pike.

- 41 -

asynchronously while Mpx arbitrates the use of the

keyooarc ana mouse> ana multiplexes corcir.un i ca t i on

with t no host.

The aecugger is aiviuea between two

communicating processes i.e.) one in the Bl it ana

the other in the host (UNIX). The process in the

Blit interfaces with the keyboard) mouse and

display) ana has access to the process being

debugged ana Mpx. The communicating process of the

debugger in Blit acts as a front-end) carrying

out commanos issued Dy the host process. Since

Mpx manages the keyooarc and display (CRT)) the

debugger's I/O will not interfere with that of the

process being debugged even when both are active

simultaneously. However) logical control of the

debugging rests with the communicating process on

the host. The communicating process of the

debugger on the host) has access to the file

system and thus the symbol tables of the program

being debugged anc has responsibility for almost

all aecisions calling for semantic interpretation

of the program Deing debugged.

The debugger can be loaaec whenever it is

requirea and applied to any desired process for

- w -

debugging. Once it is in blit, it can be

retained and applied to different processes in

turn. This is possible because Mpx can pass the

debugger a pointer to the process descriptor of a

window picked by a user.

4.3: linaji.I.e.dcje.-b.a.S.e.d Qflflsl 2i DsEuaaiflS

The research in Artificial Intelligence (AI)

is now being applted to other areas. This

technology includes the areas of problem solving,

Knowledge representation! natural language

understanding, perception, learning, etc. For

further information about this technology, refer

to LR1CM S3 J.

Currently, tne main AI technique being

applied to program debugging is the concept of

know I edge-basec systems. Two knowledge-based

systems that deal with program bugs are: PRDUST

(Program Understander for Students) [JDhNSON i.

SOLUWAY 85] and FALUSY (Fault Localization System)

[SEbLMEYER et al b3 J .

A Know I edge-oase is a repository of

declarative or procedural cefinitions of Knowledge

- A3 -

ana is dynamic [Sl*« B 't j . Declarative Knowledge

is concerns d with tne "what" or "knowing that"»

whereas procedural Knowledge is concerned with the

"how" or "knowing how". As an example) [SIMON

691 cited tne following two specifications for a

circle ip. 111).

A circle is tne locus of all points equidistant
f r om a a i ven point.

To construct, a circlet rotate a compass with one
irrr. fixed until the other arm has returned to

its starting point.

The first sentence is a declarative knowledge

while the seconu is a proceoural one.

Now» what is the difference Between a

database syslerr [4.1] and a knowledge-based

system? John Sowa [SOWA B<t > 277] differentiates

the two as follows:

In database systemsi "the user must know what

to ask for ana what to do with the results."
In knowledge-based systemsi the systems "keep
track of the meaning of the data and performs
inferences tu uetermine what information is

needed even when it has not been explicitly
requested."

A. 3.1: PRytJiT (Program on de£s tande r for Siudent)

- -il -

PR0U5T is a k now I e eg e-base d system that

attempts to t i no cugs in PASCAL programs written

Dy novice programmers, linen a bug is aetectedi

PROUST determines how the oug can be corrected and

suggests why the oug arose. PRCUST accomplishes

its goal by employing a knowledge base of common

programming "plans." These "plans" are selected

to tackle a specific programming problem which has

been defined into PkOUST's problem description.

This knowledge of a problem's definition

makes the variaoil ity of novice solutions more

manageable ana provides important information

about the programmer's intentions. To supply

PROUST with descriptions of the programming

problems* a problem description language is used.

Each problem description is a paraphrasing of the

English-language problem statement that is hanaed

out tc students. The problem description consists

of programming goals and sets of data objects.

Programming goals are the principal requirement

that must be satisfied; sets of data objects are

the data that the program must manipulate.

An example of how goals are extracted from a

problem statement is demonstrated by the following

<»5

[JOHNSON I SOLOWAY a 5 1 p 1831!

Problem statement :

Write a prograir that reads in a sequence of

positive numbers* stopping when 99999 is

read. Compute the average of these numuers.
Do not include the 99999 in the average.
3e sure to reject any input that is not

pos i t i v e .

Ex trac ted goa I s :

- Read successive values of New, stopping
when a sentinel value, 99999 is read.

- Make sure tnat the condition New <-

is never true.
- Compute the average of New.
- Output the average of New.

* Note : Sentinel value is a value
which signals the end of input.

From these goals, a problem description is

generated for PROUST. In the problem description,

each data object to which the goals refer is named

and declared. Also each goal, extracted from the

problem statement, is recorded In the problem

description. With these goals identified, plans

must be selected from the Knowledge base to

implement these goals. PROUST uses a frame-based

[MINSKY 7b] programming knowledge which consists

of goals and plars. Plans are stereotypic methods

for Implementing goals.

Once a problem description is defined and

before any analysis of goals and plans takes

- 46 -

placet a student's PASCAl program is parsea ana a

parse tree is produced. This parse tree is then

operated on during subsequent analysis of the

program. when PkfjUST analyses a program) it

selects goals from the problem description one at

a time. As a soal is selected. PROUST retrieves

from its programming Knowledge base. plans that

could be used to implement the goal. If the plan

matches the program. then PROUST proceeas and

selects tne next goal; otherwise a different plan

is retrievec. If none of the plans matches the

program. PROUST must look for bugs that account

for tne it i s match in one of the plans.

when PROUST encounters plan differences. it

does not give up on the plan; instead. it tries

to find a way of interpreting the plan differences

as bugs. Plan differences are explained by means

of bug rules. Eacn bug rule has a test part which

examines the plan differences to see whether the

rule is applicable. and an action part. which

explains the plan differences.

<t.3.2! fausi (Eauii Lasaliialiaa ixsisa)

FALOSY is 3 very specific fault locating

- 4,7 -

system limited to master file update. The general

master file update programs involve the updating

of appropriate taster records to reflect the

activities represented Dy the cor

r

espon c i ng

transaction records from a set of master files and

a set of transaction files respectively. FALOSY

identifies the statement of master file update

program statements whicn cause anomalous behavior.

This identification of statements is accomplished

by a knowledge-based model which includes the

integration of prototypic ano causal reasoning

about faults and a r ecogn i t

i

on-baseo mechanism for

program abstraction. The methoc of abstraction is

done by using a recognition method in which source

statements are matched tc functional prototypes.

Eacn functional prototype consists of four

component s name I

y

a) a set of recognition triggers,
b) a description of intencea behavior?
c) a description of expected structure and

d) a list of constraints which must be satisfied to

ensure that the candidate structure represented an

instance of the prototype.

To uetect a fault, analysis of output

discrepancy is needed. Through this analysis, an

initial localization tactic is selected. The

localization tactic is a method used to focus

- <>d

attention on suspicious program statements. Tn i s

analysis procuces a description of the differences

between expected and observed outputs. It also

generates a set of fault hypotheses» which

consist of a functional prototype and an expected

defect. Fault hypothesis is tested by determining

if the expected defect is present. If a defect is

detected through that hypothesisi then the

hypothesis and the erroneous program state mentis)

is output ana the program stops! otherwise

current localization tactic is reevaluated to

select next available fault hypothesis. If a

localization tactic is retained then it is used to

generate the next nypothesis; otherwise a new

tactic is selected. However) if no more

plausible hypothesis can be mace then localization

terminates with an appropriate message. The logic

of this fault localization prccess Is depicted in

F i gure 4.1.

YES

/ ADandor, \

\ Tactic? / NQ

Select
Tactic

Generate
Hyp o thes i s

set

/ Hypotnesis\
->/ set \.

\ empty'; /

\ /

V MO

Propose
Hy pothes i s

./ Hypothesis \

\ Verification/

YES

V YES

Report Fault
Ana lysis

(

Repor t

Fa i lure
(_.

Figure 4 . 1 : The fault localization process.

+ •*' SHE II! 3.I* iiuJ £i30£lUii20

K i tfi the aatabase model of debugging* it is

- 50 -

possible to construct some powerful queries

(complicateu ones) that cannot be carried out by a

conventional debugger because the information of a

program is properly organized for easy retrieval

and maintenance. Unfortunately! a query is quite

woroy and a user needs to Know now the database is

organized so that a proper query can be

constructed to retrieve pertinent i nf o rrra t i en .

Graphical supports for debugging is an

excellent form of interface between user and the

debugger. Morecveri "paperless programming"

seems promising witn the help of computer

graphics.

with the ability to represent some Knowledge

of a program in a debugger* debugging a program

can be automated <inj suggestions can automatically

be generated concerning possible remedies to

correct a program's behavior. But current

"automated" debuggers are tailored for only

specific programs and not generic ones.

ConseqLentlyi a database model is good for

constructing powerful queries and could be of

great nelp In uebugging a concurrent program

51 -

because multiple processes are involved. These

multiple processes are often instances of a

specific process type. Thusi each instance can

be representee as a record in a database file for

tnat specific process type with process

identification as key to each record. Graphical

support is definitely an asset in debugging a

concurrent program because the source text of each

process can be viewed simultaneously when rrultiple

windows are possible. Furthermore) knowledge-

based mocels of debugging will be of interest in

debugging concurrent programs so that concurrent

semantics checking can be automated to forewarn

user of potential problems.

- 52 -

Chap t er 5

Feature and implementation issues of

a debugger ror Concurrent C

5.1: iQir.fld.^c.tifin.

The differences Between a concurrent program

and a sequential ore are: i) a concurrert program

is composed of multiple sequential programs

running concurrently* and iil these multiple

sequential programs typically communicate Between

themselves via messages llike Concurrent C) or

shared memory (as with Concurrent Pascal).

Consequently* errors encountered in sequential

programs are alsc possible in concurrent programs.

However, some other errors that CANNOT happen in

sequential programs can occur in concurrent

programs .

5.2« Cai£fi£Li£5 ai slieis

Errors can De placed into two main

categories* namely, concurrent errors and

sequent ia I errors.

Concurrent errors are errors that can occur

ONLY in concurrert programs and NOT in sequential

- i —

programs. Concurrent errors can be subdivided

into two groups which are race conditions and

deadlocks. A race condition error is concerned

with an error which arises due to a timing problem

(refer to Chapter 1 for more details about timing

problems). A deadlock errcr is concerned with the

non-progress of an executing concurrent program.

(ton-pr osress means a subset or all of the multiple

sequential programs within a concurrent program

cannot make any progress. Essentially? these

sequential programs are waiting for some events to

occur before they can proceed.

Sequential errors can occur in both

sequential and concurrert programs. These errors

come in many forms but me common ones which have

been encountered oy the author are:

initialization error? misiratched error, pointer

error, range error, arithmetic error, and

output error.

An initialization error arises due to a

missing or wrong initialization of some program

variables. This type of error could cause, for

example, infinite looping and subscript error.

- 54 -

A mismatched error is concerned with an error

which arises because a condition NEVER Decorres

true. Such error could result in the failure to

exit a loop (infinite looping), or an unintended

execution path to be followed.

Pointer errors arise due to incorrect

addressing. A pointer error could cause, for

instance, system interrupts (i.e., a type of

exception handling) or coce to be overwritten.

A range error is mainly concerned with some

subscript Being out of bound or an invalid value

for 3 variable. Its effect is a system interrupt

or corrupted data retrieval during indexing.

An arithmetic error is concerned with

arithmetic overflow/underflow and division by

zero. Its effect includes precision problems and

a system interrupt.

Uutput errors arise cue to a computation,

logic or forrratting errcr. Sucn errors could

cause the program to Be rewritten, personnel to

point fingers at one another, etc.

55

5.3: lQiiiisisiyaG.* si S£o.y.£Qiial astijuasis in 2£iiiaa
ilia iii^ijLLiii Li^aijii

With the identification of possible errors in

concurrent and sequential programs! it is obvious

tnat the mechanisnr employee in a debugger (or

sequential prograrrs is NOT capable of debugging

concurrent programs. This is because a sequential

debugger lacks ihe ability to handle multiple

processes [sequential programs) at the same

instance. For example? dbx (a debugger for C)

cannot be used to debug a Concurrent C program.

Howevert the features exhibited in sequential

debugyers can be employed to debug parts of a

concurrent program. This is possible because a

concurrent program is composed of multiple

sequential programs. Nevertheless? additional

features whicn are essential for debugging

concurrent programs must also be incorporated.

5.4: miQ. l£ a lulls. io.i a C.p.nc.yr.r.e.nl C. jfitjuiiJiil

Since a concurrent program is composed of

multiple sequential programs called processes lin

Concurrent C and Concurrent Pascal)> the ability

to visualize the state of each and every process

at any one instance is essential in debugging a

- 5b -

program. This capaDility is essential In oraer to

pinpoint which processus) is causing the program

to Behave anomalously by examining the state of

each process. Furthermore) these processes can

communicate among themselves which makes debugging

more difficult and often very tedious. The

availability for examination of each process'

state at any instance will facilitate

identification of the culprit process by a

relative comparison of the state of each process.

This ability is very useful in assisting in the

localization of deadlock or detection of an

unwanted race condition) both of which are

frequently ercountered in concurrent programming.

5.4. li "Cie.I2il-Y.iSH" acc£0ic.h at B.r.oc.e.s.s.e. s. tiUtilMI

d euug.sin£

with tne state of each and every process

visible at any one instance) we can deduce the

cause of a ceadlcck or unwanted race conaition.

The comparison of these states will help to reveal

tne events causing the deadlock or unwanted race

cond i t ion.

As an example) assume that we have four

processes whicn simulate a token ring network

- 5 7 -

environment with each process representing a node

of the network (see Figure 5.0a). The state of

processes A, C» ana reveal that they are

waiting on the token and there is a token

currently on the network ring since process b is

in an active state.

accept F RUM_C
---[A]

[B] active [CJ accept FR0M_D

• [D] I

accept FRCM.B

Figure 5.0a: A deadlock with all process states
D e i n g visible

with tne state of each ana every process

being v i s i o I e at this timet we can infer that

process B is tre process responsible for the

deadlock. This is because processes A? C and D

are w a 1 1 i n g » and the ONLY active process at this

time is B. Thus> B is the process which never

releases the token! Consequently? the other

processes cannot proceed and the result is

dead lock.

Suppose* for a moment* that only two

processes' states are visible instead of all four.

- 58 -

If processes C and D are the processes with

visible states (see Figure 5. Obit then we nave no

iaea which of the other two processes (i.e.> A

and B) is the culprit.

[Al-

io] CO accept FRUM_D

; [o] !

accept FRCM_B

Figure 5.0b: A oeadlock with partial process states
being visible

5. a. 2: Piassss siaiss

To support the state of each and every

process being visible at any one instance, we

neea to identify the necessary states which will

highlight the statLS of a process. Unfortunately,

the state of a process is Dependent upon the

context in which it is used.

5. 4. 2.1: QEiLSiiQ2 SYii-Sffi's Y.i£w.D.o.j.I)l. at a iiats
£i a o.rcces.s

Fron the operating system's viewpoint, a

process can be in only one of the following

states. namely: reaay, running, blocked or

hdltec [DEITEL n't). A process is in the ready

state it it is waiting tor a CPU. A process is in

a running state if it currently possesses a CPU.

When a process is said to Pe in tne blocked state»

it is waiting for soire event to happen Isuch as an

I/O completion) before it can resume. Lastly, a

process is in the halted state if it has run to

completion. These four states are needed just to

facilitate the scheduling of a process oy the

operating system.

5.4.2.2: Concurrent C '
s. visa 2l a Q.L.£ces.s. ' SiSiS

On the other hand* the Concurrent C system

is aware uf UNLY three states for any process.

These states art;: active, completed, and

terminated [GEHAI.I L KGOME 8 k] . An active state

is attained whenever a process is created and the

process remains in this state while executing the

statements specified in the corresponding process

body. A completed state is reached whenever a

process executes a 'return' statement in its

process body or when it reaches the end of its

body. Finally, a terminated state is a state in

wh i ch a process has completed and all the

processes created by it (i.e., its child

processes) have terminated, or when a process

- 60 -

executes a r eao y-to- ter m i nat e alternative in a

'select' statement within a process body. These

states are employed in Concurrent C system so that

transaction calls to active or terminated

processes can oe detected. With this detectiont

invalid transaction calls> deadlockt etc.» can

be handled gracefully.

5.4.2.3: IUfi i£l££i£2 CI£££SS SlSlSi flf S CI2ESSS

The states neeoeo to support the capability

of each process 1 state being visible to a

programmer in Concurrent C at any one irstance are

ouite similar to those mentioned earlier. Those

previously mentioned states have been refined and

can be placed into four categories viz..

a

)

active

b) communicating (rendezvous)

c) delayed and

d) terminated

An active state is a state in which the

process is executing some instructions but which

may be interrupted for swapping. When a process

has started up (Dy the 'create' primitive in

- 61 -

Concurrent C). it is in ar active state. Once in

the active state. a process could go to any of

the other states depending on its source code.

When it is corrrrun i cat i ng with another process

(i.e.i by executing a transaction call or an

'accept' primitive), its state is said to be

•communicating.' »hen a process executes an

'accept' primitive, it is delayed until there is

a corresponding transaction call targeted to this

'accept' - a mechanism for rendezvous in

Concurrent C tGEHANI t ROOKE 841. Similarly,

when a process executes a transaction call Iwhicn

is not a timed transact ion I i it is delayed until

tne transaction call is complete (i.e., until a

rendezvous with corresponding 'accept' has taken

place and a return f r o rr the rendezvous has

occurred). In a timed transaction call, the

process calling the transaction is allowed to

withdraw the transaction call if the targeted

process ooes net 'accept' the transaction within

tne specified period [GEHANI E. ROOKE 81], A

process is in a delayec state only when it

explicitly executes a 'delay' primitive in

Concurrent C. A terninatea state is in effect

whenever a prccess executes a 'terminate'

primitive or reveries tne end of its source code.

62

5.4.2.4: liieaLiaDtfi at ins sslscisfl ctflssss

iiaifii.

The reasons why the previous four states are

important in facilitating the debugging of a

Concurrent C program are now described. An active

state is needed so tnat we know tor sure that a

process has started and is running. Communicating

and oelayed states are needed just to give the

programmer involved in debugging a sense of where

the process is executing at a particular time - it

is a kind of a sign post indicating the relative

line of code Deing executed within a process.

These two states are chosen because they are usea

very often in Concurrent C as means of

synchronizing anc c ommun i ca t i na with otner

processes. Lastly) we need the terminated state

just to notify the programmer that a particular

process is no longer of interest to nim/her

because it has alreaoy terminated. with these

four statesi we are able to hide details which

are unimportant to a programmer at the stage of

locating the malicious process(es). This is an

approach to state aostraction.

Since »e do not Know which of the processes'

- 63 -

states are necessary in orcer to facilitate in

debugging) every process' state is displayed at

all times. Furthermore. any one of the processes

within a concurrent program has a potential to be

the culprit which causes ar error. Thus. some of

the processes' states may be redundant. but

certainly the amount of information presented is

adequate to infer the immediate cause of a

cascading error. A cascading error refers to an

error which propagates through one or more

processes. The last prccess in this chain of

errors is tr.e one which could not cope with the

error and so was designated as the immediate cause

of the cascading error.

This approach will help pinpoint the

malicious process but it does not pinpoint the

specific line of code within a prccess that

inherited the cascaaed error(s).

To really nail down the error to a particular

line of code. an examination of tne value of

variaoles involved in tne suspected process needs

to be carried out. The neea to examine the values

of variables is because a process is partly

composed of variaules anu trie value of each

64 -

variable oeterrrines the Behavior of a process. In

this fashion, he are employing two levels of

abstraction - a zooning-in approach.

5.4.3: iusESQSiac 2l H HL2UB C.1 CLSJiSiSSS

Besides the four states, we still need

another mechanism to help in debugging a

Concurrent C program. This mechanism is concerned

with how to temporarily suspend the execLtion of a

concurrent program. The purpose of this

suspension is to permit checking the value of some

variables or even the state of each process in an

attempt to nail down a trouolesome statement.

5.4.3.1: £a.y.s. Is lliS2££ iUSB£Dii£n at a SI.flii£ fit

u,r ocess.es

Fortunately, there are a several ways to

trigger suspension of a group of processes or a

concurrent program.

Une method to trigger suspension of a group

of processes is to hardcode a "oreakpoint"

instruction in each piocess body. This way is

static ana NOT flexible at all. Furthermore, the

source cede nceas to be recompiled every time

- 65 -

there is a change in trie position of any

breakpoint in the code.

A better approach is ty Broadcasting iressages

to all of the existing processes involved. The

process executing the breakpoint instruction has

to broaccast a m e s s a g e > to all existing processes

(within the Concurrent C program)) to suspend

themselves. In order to broadcast the message»

there must be a global table which indicates which

processes are available so that the broaccasting

process Knows where to senc the messages. This

capability of knowing where to access the global

table ana how to send the messages irust be

included in eacn process. This approach is a

decentralized approacti as opposed to a centralized

approach which will be presented later.

The time delay for each process to receive

and act on the messace may be different. The

difference in time delay is due to the

configuration uf the processes and the system's

loau. Fortunately) this aporoach is dynamic and

su more flexible. It is dynamic because the

message to be sent is determined by the global

table which is updated while a concurrent program

- 6b -

is being executed. Moreover* it is flexible

because the routing of the broaccasting messages

need not be harocooed as the routing is driven by

the content of the global table. The only

drawback with this approach is that its

implementation will be quite hard. This is

because each process within a concurrent program

needs to have a way to receive the broadcasted

rressage. Apparently this approach is not easily

accorrp I i shed with the 'accept' primitive of

Concurrent C as a spontaneous receipt of a message

is impossible. However, there is a way to

overcome that problem. The solution is that

whenever a process wants tc senc a tressage related

to a debugger command to other processes. that

message is sent to a "nail box" process which acts

on benalf of the receiving processes. In order

for this solution to work correctly, a process

must periodically check in with the "mail-box"

process

Yet another way to trigger the suspension of

a group of processes is by usina a bottleneck

approach. In this case. there is a centralized

process which provices a variety of services to

the other processes. This centralized process

- 67 -

will accept a request from all trie other processes

which intenJ to execute a "Breakpoint" instruction

or other debusing comrancs handler) o y the

centralized process. Once a "Breakpoint"

instruction is executed) all other requests to

the centralized process are queued. Consequently)

all other processes will Be suspenoed or delayed.

This method is quite flexible and easy to

implement. For example* in the kernel approach

to structuring Q n operating system* a numoer of

operating system processes are created to serve

users' processes so that the utilization of a

system's resources can be improved [OEITEL 63].

Thus the centralized process can Be created as one

of the system processes to serve the corcurrent

processes of a concurrent program.

5.4.3.2: IHP.ort.ance of. suspending, ail ELS££S^es
3yiiES si ElSStE.SiQ.i

S i nr e a concurrent program is composed of

multiple processes* a temporary suspension of a

process MUST also stop all of the other processes

frciii executing lest suspension violate some timing

factors involved in a concurrert program. Such a

timing violation is sure to occur if the processes

are running on a iru 1 1 i -processor environment) But

- 66 -

the violation is. net so obvious in a 'quasi-

parallel' environment (multiplexing of single

processor).

For instance! if we have a concurrent

program whose source code Ipseudo Concurrent C>

see Figure 5.1a) is running in a two-processor

environment, then a deadlock* is SURE to happen

because processes 2 and 3 in processor B are NOT

progressing due to the suspension of prccess 1 in

processor A.

Processor A

:

[Pr oce ss 11

V

BkEaK (suspension)
i

i

V

PRDC_2.f roro.l

Processor B

:

[Process 21

V

i

V

accept f rorr_l ()

!

v

PR0C_3.f rom_2

(s wapped out)

[Process 3]

V (deadlock)
accept f rom_2 I

)

Figure 5.1a: Deadlock in a multiple processors system

* It is not a temporary blocking of all processes
because if the breakpoint is not resumeo in some finite
time then a deadlock will be detected by the Concurrent

C system.

69

Similarly) in a single-processor environment

(see Figure 5.1b) the dead I ock uill also arise but

it will take a longer time. This is so because

tnese three prccesses are utilizing the same

processor. Thus the deadlock is NOT obvious until

sometime later. In this exairple, the deadlock

will not occur if the break pointing (suspension)

of process 1 will also cause the rest of the

processes (2 and 3) to stop through the bottleneck

approach for providing suspension. Howevert the

situation will get worse if processes can be

prioritized because it complicates the analysis of

swapp i ng ,

70

S ing I e-pr ocesso r

:

[Process 1]

i

V > swapped out [Process 2J

i

V

swapped out <

-> swapped out > [Process 31

V

[Process 2] <— swapped out <-

V

< swapped out <

V

[3RE 4K > swapped out > [Process 3!

;
i

. V

: < swapped out <

: V

: accept from 1 (...) — > swapped out —MProcess 3]

accept fr om_2 (...)

(dead I och) !

PKDC_3 f rGn._2 (...)

Figure 5.1c: DeadlocK in a single processor system

Though these three basic features (namely,

(i) overall vie* approach of processes during

debugging, (ii) the selected process states and

(iii) suspension of all processes during a

breakpoint uy a process, are quite simple) they

are language dependent. The next section

describes tr.e implementation of these features in

a trace facility or rudimentary debugging package

71

for Concurrent C .

5.5: Iffljjlsififitatian ai Easia dsEuaaiaa iealuiss

To be able to visualize the overall states ot

a concurrent program in terms of the individual

component processes) a kina of icon is employed

to represent each process and its state. This

implementation decision was made in order to allow

all processes to be presented on the CRT screen

simultaneously. Since Concurrent C is an

enhancement of Ci it can invoke any of the C

library routines dna packages [GEhAMI L ROCME 84J.

To implement the process "icons"? a screen

package [ARNOLD 83] available or UNIX system is

employee. Each process can be represented by a

rectangular box and each box possesses three

pieces of information: process name> process type

and status istate).

A process name is composed of a number which

represents the position of a process in the

sequence of processes that have been createo in a

program ana the process variable name associatea

with that process. For instance? '1: b_ngr' in

Figurt 5.2 means this process is the second

72

process created within this concurrent program and

the process variaDle narre associated with this

process is o_mgr

.

A process type is one of the process types

defined within a concurrent program. In this

case? the word "manager" en the second line in

Figure S.2 represents the type of process,

"manager", declared for this particular process

b_myr

.

The status component represents a process

state and any relevant information related to that

state. For example, the last line of Figure 5.2

means this process is about to execute a 'select'

clause. In this case, the word 'before' is a

relevant piece of information related to the state

S ('Select'). Anotner example of relevant

information relateo to a state such as

'communicating' will be the name of a transaction

call and whether the state is before or after the

transaction call.

_ 73 -

! 1 : D_iT.gr

{manager
IS: before

Figure 5.2: A representation of a process by an "icon"

5.5.1: ______ of. _ _RT screen _n representing _

£______£G_ £ ___3_2_

Unfortunately! due to the size of a terminal

screen (<!4 x 80 characters)! tne maximum number

of boxes that can be aisplayed at any one time is

ONLY eighteen. However! whenever a process has

terminated) its box is salvageo for later use by

another process if there is one.

As a common practice! a programmer should

always start off with a small number of processes

and increase the number once it is certain that

they work in a small number. By the time one gets

to a large number oi processes) normally further

debugging is not neeuea as errors have been

discoverer] while executing a small number of

processes. This argument is only valid if the

small number of processes are independent of each

other (i.e.! there is no interaction between any

of them) anc the environment where these processes

are running has no limitation on the number of

existing processes at any one time. However)

many versions of UNIX enforce a limit on the

number of processes that one user can run at a

time! typically this limit is set to about 20

processes [GEHAN1 E KOOfE 8*]. Tnus, the

limitation of eighteen boxes should not hinder any

concurrent programmer. Furthermore) if a

programmer neeus more than eighteen boxes) the

rest of the processes' information are

automatically cisplayed in the message area on the

same screen i.e. (line sixteen to twenty-one of a

screen instead of an 'icon' and these six lines

are scrollable.

5.5.2: iiamaaciaiih st c.p.£c.u.r.i§n.i £ ijiD^EH Bacasst
turn lbs ioicisuiEDlsfl asiiuaaioa isiiuiss

In contrast w i tn the Concurrent C Window

Manager [THOMAS 84]) which allows only uo to eight

processes' states to be displayed at any one

instance) this implementation allows up to

eighteen. hith tne Winoow Manager) output from

the process(es) is displayed on the four

rectangular boxes assigned to four selected

processes. On the other hand) the author's

implementation allocs all output from the

- 75 -

processles) to De displayed on the bottom section

of a CRT screen. However, there are eight

process states employed by the Concurrent C window

Manager whereas there are only four main process

states and many substates supported in this

implementation (refer to Table 1).

Aobreviation

P:

S : before

S : after

D: before

D : after

A : - x X > :' > x

R:

TP:

bCi xxxxxx

aC : xxx xx

x

tT:

I', e a n i n g

Process is created ana running.

Before 'select' statement.

After 'select' statement (impossible
if 'terminate' is an alternative).

Before delay statement (impossible
if 'delay' is an alternative).

After delay statement.

Immediately after an 'accept' statement
with the first seven characters of a

transaction name, xxxxxxx.

Before a 'treturn' statement in an 'accept'.

Before a transaction pointer statement
is used for a call.

Before a transaction call with the first six

characters of a transaction name, xxxxxx.

After a transaction call with the first six
characters of a transaction name, xxxxxx.

Before a timed transaction call.

Table 1: Substates

unfortunately, the Concurrent

7fa

Manager aoes not allow any stepping except by

using the Control-s keystrokes for the inaccurate

and temporary suspension ot a concurrent program.

This implementation, however, does support

stepping but only at output statements to a CRT

screen ana at every change ot any process state.

It automatically breakpoints at every output line

and at any change in any of the processes' state.

Moreover, a user has the ability to skip as many

breakpoints as he/she likes by specifying a number

as prompted for after each breakpoint is executed.

The prompt is displayed on line twenty-three of a

screen. Refer to the following table (Table 2)

for other comparisons between Concurrent C Window

Manager and the author's implementation.

- 77 -

Concurrent C window Manager

1. Uses screen-package.

2. Invoked by manual
insertion.

The author's implementation:

1. Uses screen-package.

2 • I nvoked through
a preprocessor.

3. E i gnt processes are
visible.

4. Process' output to
a CRT sc r een i s

displayed in one
of the four
r ec tangu lar boxes.

5. Free up the process
box when a process
is t e rm i na ted .

6. Freedom of switching
process ' out put to a

CRT screen be cisplayed
on the tour rectangular
boxes .

3. Eighteen processes
are visible.

4. Process* output to a CRT
screen is displayed
at the lower portion
of a CRT screen .

5. Free up the icon when a

process is terminated.

6. All output to a CRT
screen are displayed on
the iower portion of a

CRT screen .

7. Eight distinct states, 7. Four distinct states and
many subs t ate s .

Br eak by Contr o I -s. 8. Break by Control-s or at
each screen output
statement and at every
change of any process
s tate .

9. So "single" stepping,

10. Capable of refreshing
a CRT.

11. Can be aborted by a

Con t ro I -C .

10.

Single stepping at screen
output s t atemen t

.

Unable to refresh a CRT.

11. Can be aborted by
a Con t r o I -C .

Table 2: Comparison of Concurrent C Window Manager and
the author's implementation

5.5.3: lffiulSOiSIJisiiaD fll SlalfiS lL3D5ili2Q

In order for the tracing facility to present

the state of each process to a programmer, the

tracing facility has to know the state of each

process at any instance. This can tie ac coirp I i s he d

by updating the respective box of each process

whenever a process changes its state. As

mentioned earlier in section 5. 4.2. 3, we are

interested ONLY in states like active,

communicate, delayed, ana terminated. To enable

a tracing facility to reflect these states, the

source code of a concurrent program has to be

modified to include some updating statements at

the appropriate places where a state transition

takes place. Such places include tne beginning of

a process, communication statements (viz.,

transaction call and 'accept' statements), delay

statements and terminate statements,

respectively.

The first three states can Oe done easily,

but the last state, "terminated", is very hard.

A process in Concurrent C can terminate whenever

it reaches the end of a process body or executes a

"terminate" statement within a 'select' clause.

- 79 -

The hardest parti or an impossible one* is when

it executes a "terminate" statement. This is Cue

to the implementation of Concurrent C in which the

"terminate" statenent is required to be all by

itself textually> i.e.) it CAI\NCT be preceded by

any other statement except "or"> and consequently

whatever statements follow it are ignored. Thusi

there is no way tc insert any update statement to

reflect whether a "terminate" statement will be or

has been executed. If this approach is desired?

the only way cut is to modify the Concurrent C

compiler. Nevertheless. the terminated state can

be representee by wiping out the icon representing

a process which has terninated. To detect whether

a process has terminated) a Concurrent C Pui It-in

routine called c_active can be invoked [GEHANI i.

ROUilE 8<i).

Last but not least) the implementation of

suspending prccesses whenever a process is

breakpointed can oe achieveo by queueing up all

processes' requests to update their respective box

in a process. This is essentially a bottleneck

approach. This is auite easily accomplished) but

is not the most efficient approach. For example)

the scenario aepicted in figure 5.1b can never

- 80 -

result in a deadlock. This is because the

breakpoint request will have to request an access

to the bottleneck process before the breakpoint is

granted anc the rest of the processes must also

request an access to the bottleneck process before

an update of a process state can take place. Thus

all incoming requests will be queued and sc all

the involved processes will be suspended.

For this implementation) a fronteno

debugging process is automatically Inserted into

each concurrent program. This debugger prccess is

tne bottleneck process we have been talking

about. It handles the update request anc any

other debugging request subnitted by a programmer.

This approach will still preserve the semantics of

a concurrent program even with the debugging

process included. 1 n i s is because every process

has to go througn tnat debugging process to

perform state update. screen 10 and breakpoint.

So every process will oe affecteo in one way or

another about tne same amount. Doviously> the

overall behavior of the concurrent program will

appear slower and it will consume more cpu time

when the bottleneck process is introduced.

- 81 -

5. 5. 4: lj££L iQl££iase

The tracing facility is implemented as a

preprocessor which parses the source text of a

Concurrent C program. During the parsing* it

writes to an output file the parsed source text.

Furthermore. whenever a state transition

statement (such as transaction callj "accept")

"delay". "select". etc.) is parsed, some

screen update statements are appended to the

output file. Consequently, a user's source

program is not modified but a copy of the original

program with added screen update statements is

generated. The detailed instructions of how to

use tne tracing facility are illustrated in the

Appendix - User's Manual.

5.6: IQe. L2.1S. of. a. saamilSI in Du.iidiD.2 a. deoyaaef.

As we Know. the purpose of a compiler is to

translate a programming language (source language)

to executable codes (the object or target

language) lArfO (. ULlMAN 79]. With the existence

of a compiler. we do not have to worry about the

idiosyncrasies of register usage and assembly

instructions; let alone about customizing

- 82 -

assembly language interface routines. Some

interface routines are needed to allow a user's

prosram(s) to interact with the operating system

for utilizing services not supported by the high-

level language in whicn a user writes prograir(s).

However, if the source code of a compiler is

available, then we can ennance the compiler by

implementing some features which are important for

a debugger [YtllilsG 811. Features like symbolic

debugging use an elaborate symbol table whereas

source level debugging uses line number ano code

mapping. Since a compiler can parse a program in

sequence of lines and generate a symbol table, we

need only to ace some more cooe to the compi ler to

accomplisn the two features (symbolic aeDugging

and source level debugging) just mentioned.

Furthermore, we can understand how the program is

organized at memory level oy studying the

executable coces whicn are generated after a

successful compilation. By analyzing the

executable codes, we will be able to know how

much space (memory) is allocated for each

variable, for example. Moreover, we will be

able to know how tne variables are kept

(addressing!, and the convention on using the

registers, etc. Only with such Detailed

- 83 -

knowledge cf trie conpl ien can a modification be

carried out to include some debugging features.

Unfortunately! the source code for

Concurrent C's compiler is NOT available to Kansas

State University at tnis time. Thus* it is very

haru to incorporate a deougger to Concurrent C»

unless one desires to re-invent the wheel for

Concurrent C by writing a new compiler. However,

one can still look at how the compiler of

Concurrent C generates assembly code to configure

a concurrent program by examining the assembly

output of the compiled program (with a -S option).

Once we know how they are configured) we still

CANNOT insert any code into the compiler to

generate the necessary adoitional code required to

facilitate the implementation of a debugger. But

there is a solution to this> i.e.) we could

parse the assembly output and insert into that;

unfortunately the chances of making mistakes are

very great and cost too much time.

Consequently) the intention of building a

debugger for Concurrent C has been discouraged.

However> to get a teel of now hard it is to build

a debugger) a tracer has been implemented instead

- fi't
-

which incorporates the basic features described In

section 5.4. The differences between a tracer anc

a debugger will be discussed in the next section.

5.7: l£S£££ vSLilii fl£D.ug.S,e.£

A tracer is essentially a highlighter which

reports the necessary information a programmer

neecs in order to determine the behavior of a

program undergoing execution. But a debugger is a

powerful tool tnat allows a programmer to probe

the program he/she is running. It has more

capabilities than a tracer. It allows a

programmer to manipulate the state of a program,

set breakpoints to skip irrelevant information,

etc. Essentially, a debugger is a friendlier

tool to use than a tracer Because a debugger

presents ONLY information requested by a

programmer. Since a tracer can assist a

programmer in nailing down a malignant prccess,

it can be used as a first step in the act of

debugging a program.

- 85

Chapter o

Future research and conclusion

After an introduction to concurrent

programming and a presentation of approaches to

debugging Concurrent C programs) it is now time

to comment on the applications of the implemented

tracing facility and to comment on future research

in Concurrent C debugging.

6.1: AEEii;jiion 0.1 tne ira.c.ine3 lasiiii*

Since there is no debugger tor Concurrent C

anc the Concurrent C Window farager is hard to

use) tne Implemented tracing facility is intended

to assist a novice or experienced Concurrent C

programmer to overcome the frustration of

debugging a Concurrent C program. With the

"over a I I -v i en" approach of presenting each and

every process state of a Concurrent C program on a

CkT) this approach will greatly help a programmer

in identifying tne two notorious errors in

concurrent programming viz.» deadlock and

unwanted race condition. Furthermore, with the

ability to breakpoint at every output statement

and at every cnanye of a process 1 state within a

Concurrent C program. a user can trace through

his/her Concurrent C program at his/her own pace.

Moreover, a user has the ability to skip as many

breakpoints as ne/slie likes by specifying a number

in response to a prompt after each breakpoint is

executed. The total number of Breakpoints is

displayed whenever a Breakpoint is executed. Thus

a user can save some time and some keystrokes to

arrive at a state where he/she suspects a

Concurrent C program is going tc misbehave or

crash.

6.21 Future Research j.n Corcurrent £ fiep.ug.2ing

Since the source code of Concurrent C

coirpiler is not available, a debugger for

Concurrent C has not been implemented. Instead,

a tracing facility tor Concurrent C nas been

implemented. In the future, if the source code

is available then the tracing facility can be

extenoeo to provioe all of the capabilities

required by a debugger. Inasmuch as the tracing

facility is incorporated into a Concurrent C

program by passing that program through a parser

to insert necessary screen package routines ano

some tracing processes, some portions of this

parser's cooc can be adoed to the compiler so that

- 87 -

insertions can De done while con-piling a

Concurrent C program. Thus> the work aone on the

tracing facility can De reused.

besioes implementing the presented

approaches! one might wart to pursue the idea of

how a datatase model of deougging would be

beneficial to Concurrent C programs. At this

moment? a cataoase model of debugging seems very

promising because instantiation of process types

can be handled elegantly with relational database

model. This way of handling is cue to tne fact

tnat each prccess type is just a cistinct database

file in wnich each record represents an instance

of the process type and each record is keyed by

the process iaentif ication* which has been

defined in Concurrent C. The fields in each

record of the process type can be the variables

local to the process* actual parameters involved?

etc. The only other problem is how to set up the

relationship to represent tne possible interaction

between oilferent processes. One possible way>

perhaps? is to setup relationships based on the

access rights of each process type with regard to

other processes. The rest of the relationships

wouM be just the same as these presented in

- 88 -

Chapter 4 for OMEGA system except for a few

relationships caused t>y concurrency constructs

like "accept", "terminate"* "select", "uelay",

etc. Thus, it will be interesting to see how

these relationships work together to represent the

semantics of a Concurrent C program and how easily

the program can be aebuyged.

With more advanced technology for graphical

tools avai lable In the near future, graphical

supports for deOLyging will be widely employed.

This is because tne cost of such supports will be

greatly reduced and will stimulate more research

in that avenue. If such breakthrough is achieved

then "paperless programming" and graphical

interface will oe highly appreciated by users.

Research in user interfaces using graphics ir.ay be

cf great interest oecause it is hard to create an

interface that can easily be used without much

confusion and irucn learning and at the same time

sel f-exp laratory.

Another future area of research is concerned

witn the possibility of a knowledge-based model of

debugging for Concurrent C programs. As stated in

- 89 -

Chapter <*, the hardest part is to represent the

kno. ledge ol the interaction between the processes

in a Concurrent C program. Cnce tnat is

accomplished then debugging a Cor.current C program

will be very easy as localization of error can be

automated. To accomplisn this automated task)

tne debugger must have a knowledge of the goal of

the concurrent program. The tough part is

determining how to represent the goal to the

debugger. As a stepping stone* one can allow the

debugger to checu whether a process is performing

the correct task tnat was intended by a

programmer. This can te accomplished by supplying

the specifications of a process and letting the

system verify that the process behaves in

accordance with its specification. Any

discrepancy encountered during this verification

will be reported. The specifications should

incluae with which prccessles) a process will

communicate ana what it will communicate. This

Information is needed just to verify the access

right between processes. Once these processes are

verified, the debugger should then verify that

the goal of this concurrent program is met i.e.,

the net effect cue to its processes interaction.

90

6.3: £2Li£lUiiaQ

Constructing a debugger for concurrent

programs is irore difficult than for sequential

programs. The difficulties arise because

concurrent programs are composed of multiple

sequential programs and these sequential programs

can interact with each other. As £ result,

additional mechanisms (other than the ones found

in sequential program debuggers) are needed to

construct a debugger for concurrent programs.

One of the additional mechanisms is the

"overall-view" capability. with this capability)

trie state of each and every process is visible at

any instance. This mechanism is neeoed to solve

the two most common errors which occur in

concurrent programming viz., deadlock and unwanted

race condition. with this mechanism, a user can

identify the two notorious problems quickly.

Another required mechanism is the capability to

suspend all existing processes in a concurrent

program if one ot them executes a breakpoint.

Tnis suspension mechanism is the most crucial one

in concurrent programming because a timing

violation by other processes is possiDle if

- 91

suspensi on of other processes is not enforced.

^ith these two features supplementing the

mechanisms from a seauential debugger) a powerful

concurrent debugger can be constructed.

- 92

uiauiiiSMiiHi ;

[AHQ I ULLMAN 79] Alfred V. Aho and Jeffrey D.

Ullman, Pr.in£±fii.£S 2i £20!Eil§t 2£Si2Q <
Addison-

Wesley, 1979.

[ANDREWS i SCHNEIDER 83] Gregory R. Andrews and

Frea B. Schr, eideri Concepts and Notations for

Concurrent Programming, QgEEylioa S.u.ty£.Y.S' Vo1 -

lb, no. l, Karen 1983, pp S-'tS

.

[ARNCLD 031 Kenneth C. k. C. Arnold, Screen

UcfJaiina aoa iuisai Sflssffisni jjciimazaiicn: 4

Lj.br.a.r_y_ EafiisaSS' Computer Science Division,

Department of Electrical Engineering and Computer

Science, University of California, Berkeley,
Berkeley, California, 1483.

[BAIARDI et al 8b 1 Fabrizio Baiardi et al,

Development of a debugger for a Concurrent

Language, IEE,fc IiaDSaSlifiOS 2D S.2li*ar.£

E.Hain£££iDS> Vol. SE-12, No. 4, April 1986, pp

547-553.

CBDBRDW E HAYES 85) Daniel G. Bobrow and Patrick

J. Hayes, Artificial Intellegerce - where are we?

atli.lJ.Ciai. lQi£lii3£D££ Vol. 25, 1985, pp 375-415.

[BOoRUW I S r EFIK 831 Daniel G. Bobrow and Mark

StefiK, Ihe. LUQP.S BaBAjal' Xerox PARC, December,
1983.

[BROWN i. SAMPSON 73) A. R. Brown and W. A.

Sampson, Program DeuysaiEa 1 iDS E£.£verjtion and

£UI£ 21 2r_2±>j:a m. £L£fir.S' Mac Dona Id and American
Elsevier, 1973.

93

[b<!uWN £ SEDGEW1CK ob] Marc H. Brown and Robert

Sedgewick, Techniques for Algorithm Animation,

!£££ ioiiBiie, Vol. 2, No. 1, January 1985. pp
28-30 .

[CARGILL 831 Thomas A. Cargilli The BLIT

Debugger, T,ne Jo.ur.nai £i Systems and S_of.tware,

Vol. 3, NoT 4, December 1983, pp 277-284.

[DEITEL 83] Harvey H, ueitel An JQiLCflyiiiaQ ifi

QESLaiiDa Systems, Acd i son-tres 1 ey , 1984.

[DIuNNE £ MACKwuRTH 781 Mark S. Dionne ana Alan

K. Mackworth, ANTICS: A system for animating LISP

programs, £o.rrp.y,.t.e.r SI2P.Qi.££ 3U!l il3S£ £IS> ce.s.s.in3,,

Vol . 7, 1978, pp 105-119.

[GARCIA-MOLINA et al 65 1 Hector Gar c i a-Mo I i na et

al, Debugging a distributed Computing System,, IEEE

lL2I!S£i:li2Q5 £ iiiiiaSLS £naiD££LiDii' Vol. SE-10,

No. 2, March 1984, pp 210-219.

[GARMAN 81] John R. Garman, The "BUG" heard
•round the world, hZH SlfiSQEI' Sailaaie.

firJ2iQ.eerj.na !i!2 i e s , Vol. 6, No. 5, October 1981,

pp 3-10

Gehan i and Is. D

.

Bell Lauor a t or i es

,

[GEHANI £ ROOME Stiil N. H. Gehani and ft'. D.

Roome, Qoncurrenj Q - P roars, rrrring. Exa.m.£.J.e.s. , AT£T

Bell Laboratories, 1984.

[GEhAM £ RCOME 84a] N. H.

Koome , C.o.Ic.ULf.e.a.1 £, AT&T
1984.

94 -

[GENTLEMAN and hQEKSMA 63] « . Morven Gentleman

and Henry Hoeksma* Haro.are Assisted High-hevel

Debugging* ACM S I GSCEl/ilGPLAN Notices: iy.mEO.sxum

fib. UetJiii£inaT
_
VoTT

_
J ~March, 1983), pp 140-1** •

[GHANI and FAKRELL 60] Noordin Ghani and Edward

Farrell, MicroEL£££s so r 5y.st.em Debugjaincj, Research

Stud i es Press* I960.

[HAMLET] Kich G. Hamlet, Debugging "Level":

Step-Wise debugging, AC.M S.IG.SGFI/S.LQPL.AN. N£ii££s:

S^EafiSium Q0 UStuaaiDsj, vol. 3 (March, 1963)* pp

4-8.

[HAUSEN 73] Brine n Hansen, Testing a

rru I t iprograirm ing system, Sat tw a r.e.-Pj;a.c.iic.e. sod.

£i<UexiSn££, Vol. J, 1973, pp 145-150.

tHECHT 77] Matthew S. Hecht, Eifiw. ADaliSiS fil

Com£uter Prc^rams, Nor t h-Ho I land .New York, 1977.

[HOARE et al 76) C. A. R. Foare et alt

Quas ipara I I e I programming, iailhaiS-ELatiiSfi 302

S2E£Li£I!£e, Vol. 6, 1976, pp 341-356.

[1NGALLS 61] Caniel H. Ingalls, The Smalltalk
graphics kernel, BYTE, Vol. 6, No. 8, August

1961, pp 168-194.

[INGRES 85] Ingres, Reiere.n.ce. manual" ve.r.£ifin 7,

I2£ 5.

[INTEI 7o] Intel Corp., IC£-35 iD-£it£Uii
EnuialEI LJfi.iLa.iiGS lESiLfifiliP-QS tat 15.15.-11 USSLS'
Intel Corporation, 197H

.

- 95

[JACOB 851 Robert J. K. Jacob. A state

transition ciagran language for visual

prog ramm i ng, £21CC!Ji£I' Vo I • 18 ' N °* B ' August

1^65 , pp 51-59.

[JAN50N 85] Philippe A. Janson, Ql£iaiiD2
5l5i£!Di : iir.iJ£lUL£5 anil m£c.Qa.n,is.m,s., Academic,

1985.

[JOhNSOis £ SULOUAY 85] k. Lehis Johnson ana

Elliot Soloway, PkCUST, Artitic.ia.1 loitili ££"££

'

Vol. 10, No. 4, April 1985, pp 179-190.

[KAY I GOLDBERG <7] A. Kay and A. Goldberg,
Personal Dynamic Media, vo.rr EUiSI' March, 1977.

[LE00UX 85] Carol Helrgott LeDoux, A knowJ.e.c;.a,e.-

baseo S_y_stem f_or debugging £oncurrent soUjare,
PhD thesis, Computer Science Department, School of

Engineering and Applied Science, University of

California, Los Angeles, CA 90024, 1985.

[LEDOUX £ PARKEk o5] Carol h. LeDoux and D. Stott
Parker, JR., Saving Traces for ADA debugging, A.D.A,

il! US£, Proceedings of the ADA International
Conference, Paris, i4-lo, May 1985, pp 97-108.

[MAID et al 85] A. Di Maio et al, Execution
monitoring ano debugging tool for ADA using
Relational Alyeora, A,U£ j.n use, Proceedings of the
ADA International Conference, Paris, 14-16, May

1985, pp 1U9-123.

[f.AUCER f. PAMMETT 85] Claude Mauger and Kevin
Pammett, An evert-ariven debugger for ADA, AgA j.rj

U5£ > Proceedings of the ADA International
Conference, Paris, 14-16, May 1985, pp 124-135.

- 96 -

[MINSKY 751 Marvin Minsky, A framework for

representing knowledge, Ihe Ps.ychoioax fit £om E yter

Vj.s.io.0, McGraw-Hill? 197b.

[iviEnSTED et al 8X1 Peter R. Newsteo et all The

impact of programming styles on deougging

efficiency, A.C.B. 51S5QEI, SaLiHatS ED.3iQ££LiDfl

Notes, Vol. 6, No. 5, October 1981, pp 14-18

[PERROTT t RAJA 77i R. r-. Perrott and A. K.

Raja, Cuas ipara I le I tracing, S2itwaL£-ELac.tic£

a.na. £ x E£ ri £ nc£, Vol. 7, 1977, pp 183-192.

[PLATTNER 81] Bernhard Plattner, Real-Time

Execution Monitor, IEEE lUOSBSlifiS £C SftUlM£.fi

Enaineetina SE-10 (November, 1961), PP 756-761.

[POWELL 6 LINTON b3a] Michael L. Powell and Mark

A. Linton, D.a.ia.b.as.£ impart tfi£ ELJiSLMffiiaa

£nvir 2DI!!£Qti' l q ° 3 Database week: Engineering

Design Application, May 23-26, 1983, San Jose,

pp 63-70.

[POWELL I LINTON 83bJ Michael L. Powell and Mark

A. Linton, A Database lode I of Debugging, Ib£

IfiULDfll at S*5i£IE5 and. iaHj»fl£Si Vol. 3, No. 1,

December 1983, pp 295-3C0.

[RAEDER 85] Georg Raeder, A survey of current

graphical programming techniques, C.omc.yie£, Vol.

18, No. 6, August 1985, pp 11-25.

[RICH 83] Elaine Rich, Ar.liiiS.Ul J.£!l£lli2£nc.£>

KcGraw-Hi I I , 1983.

- 97 -

[RUST1N 71] Randall kustin, Qs£yaoiQ2 IfiEjnn. j.c.u.e.s.

iD LjLSs; S.yil£ES> Courant Computer Science
Symposium li Prentice Hall. 1971.

[SIMON 69] Heroert A. Simcn, Ifce. S£i£C£gs g.1 ijifi

SLiiliEiaii 111 Press, Canoridge, MA., 1969.

[SEOLMEYEk et al 83 J Rooert L. Sedlmeyer,
Know I edge-base c Fault Localization in Debugging,

IDS i£yi2ii £l £l£i£E5 3 no io^tware, Vol. 3, No.

4, December 1583» pp 301-306.

[SEIDlNck ana TINDALL 63] k i ch Seianer and Nick
Tinoall, Interactive Debug Requirements, A.£fl

S.ICSGFT/Sla£LAN £ a i i. c. e. s. : S.v.ma.0 s.j.um o.n DeSyS3iQa>
Vol. 3 (March, 1983), pp 9-22.

[SOWA 8<t] John F. Sowa, LSD£££luai SiLtl£iUI£5 :

iLliarmaiJ.an processing jn mind and machine,
Adoi son-Wes ley , 1964.

[STkUBLE 73] George w. Struble, fiSkSal)l£I

Lanasuat Er-saiamiDS aiiQ ics IttB Sxsisoi/262 acd
27£, Addi son-ives I ey , 1975.

[TANDEM 83] Tandem Non-Stop II Systems, iuslLSiiU
BESLSliliH iiil£!l ElSaLSEmica 2§01i3i> Volume 1 and
Z, 1983.

[TAYLOR 83] Richaro N. Taylor, A yen era I -pu rpo se

Alqoritnm for Analyzing Concurrent Programs,
Cominyrjica tj^cns of AC.M, Vol. 26, Mo. 5, May 1983,
pp 3fc2-37b.

[TEKTr.OUlX 61) TeKtronu, Inc., 8.£5£ &±£.LSi!k2.<]iSLUi.£L

- 98 -

Development Lab - SifiiJII User's Sa.nu.aJ., user's

Guide" 7DUS/50 Version l.xli Tektronix Inc..

1981.

[TESLER 811 Larry Tesler, Trie Smalltalk

env ironirent, Byte., Vol. 6, No. 8, August 1981,

pp 90-147.

[THEAKER t. BRDDKE5 6 3 j Colin J. Theaker and

Graham R. Brookes, £ £r.n£li£Si CtyLifi 20 UEiLitiiQa

Systems, The nacMillan, 1963.

[THEBAUT et ai 85] Stepnen M. TheDaut et al,

Identifying error-prone software - An eirpirical

Study, lf-fcE Tra.ns. a c.li2D.5 BD SiiiHfilS EE2iD£5£iD2'
Vol. Sc-lli No. <t, April 1985, pp 317-32'..

[TUTH1LL 85al bill Tuthill, Getting the bugs out

with dbx, UNIX Review, Vol. <i» No. 1, January

198b, pp 78-85.

[TUTHILL 85b) bill Tuthill, Debugging with aob,

UU18 feyjew, Vol. 3, No. 12, December 1965, pp

66-71.

[UNIX 83) 4.2 oerkeley Software Distribution,

Virtual VAX-11 Version, Ufjii £I29£d2ni£I 'i fcauUfli'

Computer Science Division, Department of

Electrical Engineering and Computer Science,

University of California, Berkeley, Berkeley,

California, August 1983.

[WEONER I SMOLKA 63] Peter Wegrier and Scott A.

Sirolka, Processes, tasks, and monitors: A

comparative study of Concurrent Programming

Primitives, ltfcfc IXS05S£iii2ai 2D SfiiisaLS

EaaicssiinS' Vo1, st-s» no. 4, July 1983, pp

99

4<t6-4b2.

[YOUNG 81a] Robert A. Young, EotaQCSISClS 12 ib£
E8tllia-£ifllfi£ £aS£3i QflEflilfil 1£ £UCIi2Ll itifi

5ll!!£2ii£ ^£2yaa£L> Department of Computer Science,

Kansas State University, ftarcn 1, 19bl.

[YOUNG Bib] Robert A. Young, Pr.0ar9.rt! i2Si£ dSDual
IaL ih£ Slastal SIE£2 lie. DsfiuaSSL' Department of

Computer Science, Kansas State University, March

1, 1981.

- 100 -

Appendix - USER 'S KANUAL

This tracing facility is intencecl to assist

Concurrent C programmers to debug their Corcur rent

C programs. It enables a Lser to visualize the

overall states of a Concurrent C program in terms

of tne individual component processes. Each

process anc its state are represented by an icon.

This implementation decision was made in order to

allow all processes to be presented on the CRT

screen simultaneously. Since Concurrent C is an

enhancement of Ci it can invoke any of the C

library routines and packages tGEHANI £. ROOKE 8<<].

To implement the process "icons"i a screen

package [ARNOLD 83) available on UNIX system is

employed. Each process can De represented by a

rectangular box and each box possesses three

pieces of information: process name> process type

and status I state)

.

A process name is composed of a number which

represents the position of a process in the

sequence of processes that have been created in a

program anc the process variable name associated

with that process. For instance? ' 1 ! b _ m g r ' in

Figure 1 means this process is the second process

- 101 -

created within this concurrent program and the

process variable name associated with this process

i s b_mg r

.

! 1 : D_mg r

! manage r

! S : De f or

e

Figure l: A representation of a process by an "icon'

A process type is one of the process types

defined within a concurrent program. In this

casei the word "manager" on the second line in

Figure 1 represents the type of process,

"manager", declared for this particular process

b_mg r .

The status cornponert represents a process

state and any relevant information related to that

state. For example, trie last line of Figure 1

means this process is about to execute a 'select'

clause. In this case, the word 'before' is a

relevant piece of information related to the state

S ('Select').

The details of all the iwplementated process

states for this facility are depicted in Taple 1.

102

Abbr ev i at I on

P:

S : before

5 : after

D : before

D: after

A : * x xxxx x

R:

TP:

bC

:

xxxxxx

aCi xxxxxx

tf:

Kean i n

g

Process is created ana running.

Before 'select' statement.

After 'select' statement (impossible
if 'terminate' is an a I ter ra t i ve)

.

3efcre delay statement (impossible
if 'oelay' is an alternative).

After delay statement.

Immediately after an 'accept' statement
with the first seven characters of a

transaction name. xxxxxxx.

Before a 'treturn' statement in an 'accept'.

Before a transaction pointer statement
is used for a call.

Before u transaction call with the first six

characters of a transaction narret xxxxxx.

After a transaction call with the first six

characters of a transaction ramei xxxxxx.

Before a timea transaction call.

Tab I e 1 : Subs ta te s

Unfortunately. due to the size of a terminal

screen (2 * x oO characters). the maximum number

of boxes that can be displayed at any one time is

ONLY eighteen.

l£ y££ it!£ iaciiit^, the ioiicw|ng. step_s £y;S.T b.£

je sure ihot your Concurrent C program

- 103 -

does not have any compilation error, but warnings

are tolerable.

2. To enable the tracing capability be

included in your Concurrent C program, you have

to invoke a preprocessor. To invoke the

preprocessor, use the following command:

/usrb/chua/oeta/TPP filename

where 'filename' is tne file name of your

Concurrent C program (BE SURE that it has

the '.cc' extension).

3. The preprocessor will produce two files

called 'filenameT' and ' f i

I

enameTRACE '

.

'FilenameT' is actually the name of your

Concurrent C program with a 'T' inserted just

before the '.cc' extension whereas ' f i I enameTRACE '

is a fi le n3ii.e of your Concurrent C appended with

the woro 'TkACE'. For example the name of your

Concurrent C program is 'test.cc' then the file

name for ' f i I enameT ' is 'testT.cc' and the file

name fcr ' f i lenameTRACE ' is ' tes t . ccTRACE '

.

'FilenameT' is a file which has tne tracing

- 104 -

Information annotated into your original

Concurrent C program. Cn the other h a n d »

' f i I enaineTRACE ' may contain an error message which

is resulted from an error encountered during the

conversion and halted the conversion. This error

message always specifies which line of your

Concurrent C program that the error was detected.

This error arises because the Concurrent C

compiler is very liDeral on syntax checking,

Howeveri a report aoout the number cf static

processes within this Concurrent C program is

always included in the 'filenarreTRACE.'

4 . If there is an error message reported in

the ' f i I enameTRACt ' then the output file,

' f i I enaineT ' i is incomplete! Thus you have to

correct the proolem to eliminate the error. It

you think tne problem is in the preprocessor)

report the error to the personnel in-chargea.

5. If there is no error at all ir the

' t i I enameTRACE ' then you may now proceed to

compile the outputted file, ' f i I e name T
' . To

compile ' f i I enaineT' < type the following command:

- 105 -

/usrb/chua/beta /COM PILE '
f i lenameT '

INote! Do not include tne single quote in

the command)

6. If there is any compilation error, try

to fix it yourself. Please IGNORE any compilation

warning especially "warning: g_temp_pia not

used. "

7, It the compilation was successful then an

object file, 'a. out', would have been produced.

6. To rar the object file, just type the

object file narre, 'a. out'.

9. Jurinc tne execution of your object file,

a suspension will L; e taken whenever an output to

the CRT or a change in any one of the processes'

state is exeucted. During this suspension, a

prompt for a number to represent how many output

statements to the CR1 and how many changes of

process' state before the next suspension is to be

taken, will be prompted. Furtheuore, a number

- 106 -

representing the number of output statements and

tne numDer of changes in processes' states

executed so far is displayed. If you respond with

a '-999' then the program will be executed to

completion or to wnerever it cannot proceed.

Houeveri if you respond with a positive number

tnen the next suspension will not occur until the

sum of the number of output statements and the

total number of processes' state changes equal to

that number you submitted. Any other respond will

be treated as a positive one.

10. If your object file does not run to

completion with tne below message displayed)

i<4««««« NORMAL TERMINATION' **#*"

you have to reset your terminal by typing the

c o m m a n d J

1 / us rb/chua/ beta /UNDO CRT'

before any other commands! otnerwise your

terminal will behave strangely!

!J5£L ££iiLi£ii£Ui

- 107 -

a) User's "include" files CANNCT De included in a

user's Concurrent C progratr.

b) All transaction calls issued by global

processes co not have any tracing information

annotated with them in order to ciscourage usage

of global processes.

c) Timed transaction calls may not work very well

because irost of them will be expired before

rendezvous csn occur as processes will oe slow

down by any "breakpoint."

d) If a user's crogram is too large (i.e.) about

3b Kbytes of compiled code)) compilation error is

very likely with the error message "internal

/usr / I oca 1/ I i b/ccpp error: input buffer overflow."

e) Use the built-in constants null_pidj for

null process ic instead of the value zero.

f) Du NOT use a "soefine" to define any reservec

symbols (like "{"» ">" i etc) or words (like

'select') 'accept') etc).

g) DO NOT use a "typedef" to define any process

types but a "typedef" may oe used to define any

types of transaction pointers.

- 1U8 -

h) All screen I/O statements (like "printf",

"scant", etc) must be in a process Bocy and NOT

in a function.

Esi£r,£D££ !

[ARNOLD 63J Kenneth C. k. C. Arnold, S_c.ie.£Q

LliiSSiiDii 2D£! Cursor Movemeant Se iimaza t j.on : £

LLbLiLX. tS£haS£' Computer Science Division,

Department of Electrical Engineering and Computer

Science, University of California, Berkeley,

Berkeley, California, 1983.

[GEHANI I RuOME 84] N. H. Genani and W. D.

Roome, iUD£iir.L£Ci £. > ATtT Hell Laboratories,

1984.

TECHNICUES TO FACILITATE THE DEBUGGING OF
CONCURRENT PROGRAMS

oy

HONG VAU CI-UA

S.i Kansas State University! 1983

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for tne degree

MASTER UF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan* Kansas

1966

The differences between sequential and

concurrent programs are identified. These

differences dictate how the design ol a debugger

for concurrent programs must differ from a

sequential debugger. Different techniques to

facilitate debugging of concurrent programs are

discussed. The implementation of a tracing

facility for Concurrent C programs is presented.

This implementation enables all of the processes

in a Concurrent C program to tie presented by icons

on a CRT which keeps track of their inoividual

process state. Furthermore, the ability to

breakpoint a process and at tne sarre time suspeno

all the other existing processes within a

Concurrent C program is implemented in this

facility.

i

