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CHAPTER 1
INTRODUCTION

A great deal of work on wave propagation withiﬁ a
tunnel structure has been carried out in the past few years,
The purpose of this work is to search for an understanding
of the wave behavior inside a real tunnel through study
of some idealized structures, and then to find an optimum
condition for long distance communication within a tunnel.
Firstly, the wave propagation problem along an infinitely
long straight wire located inside a rectangular waveguide
with perfectly conducting boundaries was investigated by
Mahmoud(l) in 1973, ﬂe deduced a modal equation for the
propagation constants along the wire., This conducting wire
is obviously important if the freguency is sufficiently
iow that the modes for the empty guide are cut off, because
the presence of the wire allows a TEM mode to exist inside'

(2) considered the

the guide, About the same time, Wait
tunnel as a circular cylinder in a lossy dielectric medium,
A relatively thin metal conductor was located within this
uniform tunnel. Then he calculated the complex propagation

constants of the dominant modes of the structure., It is

evident that the transmission of electromagnetic waves in



a real tunnel structure is very complicated, but it is
worthwhile to investigate these idealized models of the
situation,

Then Wait(s)

carried out an analysis of the axial
propagation characteristics of a two-wire transmission line
in a circular tunnel bounded by lossy dielectric media,

The two transmission-line modes corresponding to wire
currents which are either in phase or 180° out of phase
received a great deal of attention, Wait discovered that
the attenuations of the two transmission-line modes are

not equal and that one of them is strongly dependent on

the location of the conductor, while the other is relatively
insensitive to the conductor location., The excitation of
the transmission~line modes in a circular tunnel was

(4) in 1974, He found that the mode with

examined by Hill
higher attenuation rate is much easier to excite by an
antenna placed in the tunnel than the mode with lower
attenuation. o

Wait(53

considered wave propagation along a braided
coaxial cable in a circular tunnel, He developed an appro-
ximate impedance boundary condition at the surface of

the cable which can be used in the formalisms which had

been developed for axial conductors in tunnels.

In this paper we shall use a recently developed model



(6)

of the coaxial cable in the analysis of wave propagation
inside a circular tunnel, The external impedance of the
coaxial cable has been determined from this cable model,
The propagation constants of the transmission-line modes
can be determined through the solution of an appropriate
boundary-value problem; In order for the solution to be
valid, the radius of the cable should be small compared
with the distance to the tunnel wall, The fields in the
vicinity of the cable are assumed to be uniform. In addi-
tion, for simplicity the propagations of the transmission-
line modes are assumed to be unattenuated; i.e., the
structure is taken to be lossless. We shall consider that
a dipolé source is located inside the tunnel, and the
fields radiated by this source which are coupled to the

_ coaxial cable will be investigated in this paper.

In the next chapter, we shall introduce two shielded
coaxial cable models and describe the cable characteristics
of these two models. In chapter 3, we shall formulate
the problem and investigate the excitation and propagation
problem inside the tunnel., Chapter 4 will present some

numerical illustrations, and chapter 5 concludes the paper.



CHAPTER 2
THE SHIELDED COAXIAL CABLE

2.1 Physical structure of leaky braided-shield cable

The physical structure of the coaxial cable which
we shall deal with in this paper consists of four parts.
They are the center conductor, two dielectric layers, and
the conducting shield., The center conductor with radius r
is covered by a dielectric layer with free space permea-
bility w, and permittivity g, ; this dielectric layer is
called the inner dielectric and it extends from p=r to p=p£,.
The outer part of this cable is another dielectric layer
called the outer jacket, extending from p=p, to P=b.
This jacket has permittivity g, and permeability «,. The
conducting shield of this cable is located between the
inner dielectric and the outer jacket. In the model we
consider in this paper, the shield consists of two mul-
tifilar helical sets of conducting wires whose radii are
much smaller than that of the cable. These two sets of
shield wires surround the inner dielectric and make pitch
angles t¥ with the axis of the cable., The geometry is

illustrated in Fig, 1, Here we assume that the optical
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coverage of the Shield is less than unity, which means
that the shield does not completely cover the surface
at p=p£.

We shall briefly consider two models for these leaky
coaxial cables in subsequent sections of this chapter,
following a discussion of the transmissioniline parameters
which are used to describe these cables in greater detail,

and in which the cable characteristics will be formulated.

2,2 Transmission-line equations
The transmission-line equations we are going to solve

in this paper may be written in the form:

av c

&% = -2I - 2 I, (2.1)
aI . ¢! ;

qz = -YV + Jwi'éQt (2.2)

As usual, the time dependence exp(jwt) of all the field
guantities is understood; and it will be suppressed through-
out this paper. Here we use the cylindrical coordinate
system; i.e., the (p,¢,2) system, and z is the axial
coordinate,

In these eguations, V denotes the voltage of the

center conductor with respect to the shield, and T is the



current on the center conductor, Z and Y denote respectively
the series impedance and shunt admittance per unit length
of cable, Zs is the transfer impedance per unit length of

cable, r; is the dimensionless capacitive coupling coecffi-

c
t

total current and the total charge per unit length on the

cient per unit length, I  and Qi are respectively the
cable,
From the continuity eguation, we have

aI

c
S - . - (2,3)

The following relations will be found to be useful:

1 ] 1 . ‘

= = + == (2.5)

Y Yc YS

ana = L (2.6)
S

where Y _, Y., Z,, and Z, are the transmission~line para-
meters of the coaxial cable. Y, and ZC are principally
characteristic of the cable interior and the center con-
ductor, while YS and ZS are principally characteristic

of the shield.



In section 4 of this chapter, we shall introduce the
expression for the external impedance %ex in terms of these
four transmission-line parameters which will be used in our
analysis, The external impedance is the series impedance of

the cable evaluated on its outer surface, and is defined by

A A AC
Zex(h) = Ez(h)/lt(h) | (2.7)

where ﬁz is the average Fourier-transformed axial electric
A .
field at the cable surface, and Iz is the Fourier transform

of the total current'Ig. h is the transform variable,

2,3 ‘Wait's model for shield; Z__(h)

The physical structure of the coaxial cable model which

(5)

was considered by J.R.Wait is illustrated in Fig. 2.

Conductor

Lossy Film

Fig., 2 Wait's Coaxial Cable Model

As in the model we introduced in section 2.1, the center

conductor has radius r, and is covered by a layer of perfect



insulation of radius p, with dielectric constant g, and
free-space permeability u,. The outer jacket with permi-
ttivity g, and permeability s, surrounds this inner
dielectric and the center conductor, and extends fromp= g
to g =b.

The differences between this model and that which
we consider in section 2,1 are that the braided shield
at p=p, is assumed uniformly smoothed-out and that there
is a thin outer layer of conductive material covering
the cable, Furthermore, the uniform braided shield is
assumed to be described by a transfer impedance Zj, and
the external lossy film has transfer impedance 25, ohms
per meter,

From this coaxial cable model, Wait developed an
expression for the external impedance %ex(h). In the low
frequency case, his expression is given by
2; (2, + Zy)

ZL + ZZ + Zb

A
Zex(h) N (2.8)

ZT(zl + Zi)

where 2, = (2.9)
b ZT + Zl -+ Zi

k2 = h?

o S L
znjw&; r
k2 - n? b
and 22 = = "Z-EJ—ZJE—Z-— ln(—'—) k2 = My E,

(2,10)

With Z e kl mwllﬂoe: [res e

{2.,11)
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In Fig. 3 we show the equivalent network for this
external impedance, Note that the terminating element a5

is the impedance of the center conductor while the shunt

& | e | | Sy |
b2 —_ | S
22 Zl
2 2 z Z
ex "L T i

Fig. 3 The Egquivalent Network for Wait's Model

elements Z, and Z; are the transfer impedances of the

2y
braid and the external lossy film. Zl and Z, as given in

(2.10), (2.11) depend on the properties of the two dielectric

layers.

2,4 Casey's model for shield; 2 x(h)

e
The analysis for the cable model which was introduced

in the first section of this chapter has been done by

K.F.Casey(6). He reached an expression for the external

impedance of the cable, which is
(z, + 2;)(2_, + Zq)

W
> (2.12)
2yt Dy + Dy, + 2

% (h) =z
ex -T2 *

g

where Z,, Z, are given in equations (2,10), (2.11) respect-



b P |

ively.
7 = - jwﬁ%ﬁeCWln(l—e_”c°/2) - h2c05w1n(l-e_ﬂc°/2) (2.13)
s 4TM ATMjwE, *
z Sec’y (2.14)
and  Zg, = TN

where ¢, is the optical coverage of the shield, and 2M

is the number of the helices of shield wires. Furthermore,
E.= % € + g, )

and Zw denotes the impedance per unit length of shield
wire, The equivalent network of this external impedance

is shown in Fig. 4.

— ]

N>
—
N
(=

ex

Fig, 4 The Equivalent Network for Casey's Model
Compare this result with the equivalent network from

Wait as shown in Fig. 3. We may appreciate the differences
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between these two models, In Casey's model, the outer

lossy film has been ignored, so %, is infinite, Further-
more, the shunt element representing the shield differs
from that of Wait, Casey's results show that the capacitive
coupling of this cable is important, especially when the
optical coverage ¢, is small ( i.,e., when the cable is
sparsely shielded ), The effect of the capacitive coupling
is expressed in the last term of equation (2.13), That is

2
h*/Y,, where

_ 4TF.M"}¢«J Easacly ;
1n(1-e" "¢/ 2) (2.28]

The shunt impedance 2wt in Fig. 4 can be expressed

q
eguivalently as

(2.16)

-re, /2
_ jwssecyln(l-e = e’ ")
where Z = - e + st {2.17}

The equivalent network in Fig. 4 becomes
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L 3

B>

ex

Fig. 5

Note that if Y_ goes to infinity in this model; i.e.,
if the capacitive coupling becomes small; then this network
is the same as Wait's medel in Fig. 3, and Z_  is eguivalent
to ZT'

The other two transmission-line parameters Y., and 2z

are derived by Casey also; they are

_ 2TjWE,
Yc T In(A /r) (2.18)
_ dws A (2.19)
Zc 2T lnr * Zi

‘ ‘ A
His final result for the external impedance Zex(h)

expressed in terms of the transmission-line parameters

is

2 2
-1 (h"+Y 2z ) (h"+¥_2Z )
s

(2,20)

Z (h) = 2.(h) + (Y _+Y
ex 2 c P -1
h +(ZC+ZS)(1/YC+1/YS)
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Furthermore, if we consider perfectly conducting materials
for the center conductor and the shield wires; i.e,, z,=0,

and z =% =0, then

3 ~e, /2

_ . Jwisec¥ln(l-e ~°’ )
"8 AL (2.21)
e ~ ;zé" Hn ? - (2.22)

Substitute (2,15), (2.18), (2.21) and (2.22) into (2.20);

we have
) j(kiuhz)(quS-hzss)ln(F}/r)
4 2Twe (L _~hs )-1n( P /r)w{h”~k])
: . (2.24)
where Ly = ZS/Jw,
r (2.25)
Ss - JMVYS
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CHAPTER 3
THE TOTAL CURRENT ON THE CABLE

3.1 Geometry of the circular tunnel

In this chapter we shall evaluate the total current
on the cable, namely Iz. First, we shall consider the
waveguide model of the circular tunnel, The geometry of

this problem is illustrated in Fig. 6,

Y
Hertzian Dipole Antenna

Cable(p= P, ¢_o)

2a

|
Y e
€.

\\\\\\\\\\\\‘N\\\\\\\\\\\\\\\\\\\\ .

Fig., 6 The WavegpidemMpdg} Qf“the Circular Tunnel
The tunnel radius is a while the cable is located
at.a distance p from the tunnel axis., There exists a
Hertzian dipole source inside the tunnel atp=p, $=¢,.

We assume that the interior region of the tunnel is free
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space, and the tunnel wall material has a complex permi-

ttivity €y} i,e., it is a lossy dielectric material,

3.2 The expressions for & and &F
We may construct the field components from the
Hertz potentials & and . They are solutions of the

scalar Helmholtz egquations:
2 2, [®
(= + k%) EJ =0

where i yields the TM part of the field, and & yields
the TE part of the field,

Furthermore, ¥ and g cén be expressed as the inverse
Fourier transforms, §a and _23: respectively: here é and 2

are functions of the propagation constant h,

Flz) =J§z(h) e IPZ an (3.1)
-
Flz) -_-Jé(h) e~IhZ gp (3.2)

or briefly, we can write

2] \Eo) g,
&(z) &(h)
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It is obvious that we need appropriate forms for
and & in order to construct the field components., We
construct the following expressions for ¥ and Z:

(1) Inside the tunnel:

E=§d+§c+§:‘i : &= §l (3.3)

whereQd and_gc are due to the dipole antenna and the
cable respectively, and gi andéi are due to the images

of the dipole and the cable., We have

A o . -
By=208 5 (e 82 (5 g expl-in@-gy)) el
i;c =n=2'ir£§§ Jn()\o P<c) HI(I21 (Ao P:c) exP(—jngﬂ (3.5}

ﬁzi = ﬁBn Jn(«\a p) exp(-jng)

N =-pa
i-%i = =D, J {x p) expl-jng)

d ,cC ;
where A, A_, B, and D are constants to be determined.

Furthermore,

-y

P)-d'-: max(P! Pd)
P:-cz mBX(P' P.-; )

8d= min(P, Pd)
.= min(P,a)
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(2) Outside the tunnel:

Similarly, for ¥ and & outside the tunnel, we have

__.%_0 =§.¢Cn Hr(lz)()xdp) exp(~jnd) (3.7)
A = (2) o
@ = =F, H" (yp) expl-ing) (3.8)

where Cn and En are constants. Also,

A2 =k - n? ; k2 = wiu,e,
3.3 The boundary conditions on the tunnel wall
Now, 8uppose Ag and A: are known: we want to solve
B and D in terms of them, so that the field components
can be found inside the tunnel. For doing this, we must
usé the houndary conditions that the tangential E field and
tangential H field are continuous on the tunnel wall,
Firstly, the E field and H field relate to I and &

as follows:



T o oa 3 1 ‘ =
E = Vxﬁaz-iujwevxvxgaz
H= VxXxE3 +—-vVvxVxEa

z Jedst z

After some vector operations, we reach the following

equations for the field components.

p 28, 1 o’a

‘P T 8P " jwep dFoz
1 2 . @

E, = SwE (k= + azz)_@'

o
u
=
+
W
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(3.9)

(3.10)

{3.11)

(3.12)

Consider the case where a>p>Q>p;; then equations

{(3.4) and (3.5) become

. (2)
H==pe 11 Jn (Ao Pd) Hn -

g, ==
T e =a° I (R ) Héz)(?\ap) exp{-jng)

So, from egquations (3.1) and (3.2)

[

(n p) exp(—jn(¢—q%))
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0o o . X
A ~jhz = d (2) .
= b exp(-jhz)dh

(rg €118 ) (3 prexp(-ing)exp(~jhz)dn

bo Do
_ _ -jhz w [ 2.6
Z, = |Z.e a0 = [=ajy
(2]

A _'h . )
@y =J§Eie INZ3n =jZB J (a\op)exp(-anb)exp(—jhz)dh

g2 3
ki

i

&, = J'é‘.e-thdh j%Dan(f\op)exp(-jngb)exp(—jhz)dh

Then from equation (3.3)

&y
Z mi_%_ngJn()\oPd)H:lﬂ(Aop)exp(jnpﬁd)-i-AﬁJn(}\oPC)HI(IZ)()\OP)
+Bydp (NP exp (=3 (ng+hz)) dh (3.13)
& =8 = %Dan()xop)exp[—-j(ngiq-hz)]dh (3.14)

Substitute (3.13), (3,14) into (3.9), After perfoming
some straightforward algebraic manipulations, we reach

the .following expression for Eg:

uh A . |
"¢ ziggtDﬁonﬂ(AOP)d jui%p hng ) exp(-j (ng+hz)] dh
where ,%i =fASJn(AOFa)HéZ)(kop)exp(jn¢a)+A:Jn(A0fE)Hiz)(AOP)
BT (Ne))

or, we may write in a more cfficient form

’
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By (P, #,2) =_§§j§¢n<h>expz-j(n¢+hz)]dh

where

A i _ 1 i
Byn(h) = DTN P) ~ = hnd

Similar results can be obtained for E_, ﬁ?, and H_  from

equations (3,10) (3.11) (3.12) (3.13) and (3.14). We may

make a summary of these results:

When axp>P.>Pq, We have

E¢(

z)

Ez(z)
H¢(Z)
Hz(z)

where

1>

an

gy

$n

Zn

and

(h)

(h)

(h)

=2Z

—po

1l

o
ik =[A§Jn()\opd)H

=bo

. h
- (Jw;LO + jwso)ﬂi

P

Em(h)
l:zn(h)
H¢n(h)

zn(h)

exp[-j(n¢+hz)) dh

>

—
-

1

A1
jw&o\o hng™ = [(3,15)

A
E¢n(h) = D AT (X p) -

2

A1

1 ai . d {2)1 ;
- TJ}EF hng - [a T (AN PIXH.“T (x plexp(ing,)
c (2)° .
+BT (N PIAH T (N PI+B N T N P))
. Z a5
- (Jwe+ jwﬂoﬁ

(2)
n

(2)

& (Aprexp(jn¢h)+Aan()bFE)H

()xop)

+B_ 3 (xp))
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21
27 = Dan(}\oP)

Next, consider the case where P»a; by eguations (3.6)—(3.8)

and (3.9)—(3.12) we have the following results:

Fp(z) By (h)

Ez(Z) =£§ Ezn(h) exp [-j(ng+hz)] dh

He(z)| -+ H, (h)

Hz(z) _wnm(h)

A (2) 1 20

where E¢n(h) = E AgH, (X P - Toegp hni (3.16)
2 4

A : h 20

Ezn(Ah) = = (Juwpy + jwed@

A 1 Ao (2)!

qun(h) = - TP hng™ - C AH 7 (A;p)

A h2 20

Hzn(h) = = (jweg + jwﬂd)é

and | $° = C.H 1(12)(9\(19}

20 (2)

g = EBjHy (rgP)

The boundary conditions on the tunnel wall reqguire

that the tangential E field and tangential H field must
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be continuous at f=a. Hence, the two expressions for nﬁn'

equations (3,15) and (3.16), must be egual if we putp=a

. P A A
in both of them; this is true also for E s H¢n' and H

Consequently, we obtain the following four eguations

with four unknowns Bn' Cn' Dn' and En.

(2)

1 20

1 ai .
Dn)quI;()\ a) - Tue s hn@P=a = E A1 ()\da} jwada hnqu:a
2
. . h 20
- (Jqpb Jwa = = (Japy + moadgypza

(2)!

gl (803, (n ey ”) (nga)expling ) +aSa (n R.)

Jqﬂoa
* H(z) ()\ a)- an)\oJr'l()\ all= - jwlida hngf)’:a
¢ agH 2 (aa)
2 2 n’
- Gwey + jwﬂo)§9=a - ey 3“f‘d)§9 =4

Solving these equations for Bn and Dn is a tedious but

straightforward algebraic operation. We obtain

B, = _{EMZ +Py Ly L3y Py /My /My 5+ Py 5Ly g0y 11’“15}‘“

C
=y p 4P, S T3Py ) /My ) /(Mg 5Py oL gLy 11/M11]} (3.17)
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Dy ”{Pu[‘ll(Mzﬁplzl‘lll‘aipn/”ll} /My (M) 4P oL Ly 1 Py g /My )

d

11/, 32t 2q +{Pyy L1 (Myy+Py 9Ty 1 L3 Py 1 /M 3/

My (M) 4P Ty gLy Py /My ) =Py /My Lo b Al

2
where Myqi= Ly~ (Juweg X ol'31 22)/(3&}5 3 12)

2 .
Moo= Ly~ (JWEgN L Lo 5 )/ (Gug ngly o)

My1= 21 (J“‘Wd Ly3Lgo)/ Gis ngty 5)

2 .
My o= Aol I ALy 1T, )/ (Gwe AT )

g D ; 2 ;
Pyq= ()\OR)/(JwaOA&)—R/JwaO

2 ‘ 2 ;
Pyo= INSR)/ (G Ng ) -R/ Fwe
R= hn/a
= Jn()\oa)
(2)

L, ,= ()\da)

= Jr'l()\oa)



(2)
L..= Hn (Aaa)

22
Lig.= J_(A P)}HZ)(A a)exp(indg,)
317 "n"o'd" n (o} plInegy
(2)
Ly,= Jn()\oPc]Hn ()\oa)

Lyp= Jn()\oPd))\oH:IZ) ()\oa)exp( jnsﬁd)

(2)

4
Ly,= d (XN ))\oHn (~,2)
3.4 The total current on the cable; Iz(z)
Suppose the radius of the dipole antenna is much
smaller than the radius of the tunnel; this is always

true in the actual situation, as in Fig. 7.

antenna

Fig., 7
Then the boundary condition for the azimuthal magnetic

field Hy requires that

25
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H - H¢ =J {3181

where Hgyt means the azimuthal magnetic field evaluated
on the dipole surface which is closer to the tunnel wall,
and Hi? is the same field component on the dipole surface
which is closer to the axis of the tunnel, Ji is the
z-directional surface current density on the dipole.

From eguation (3,11)

— ——— ————— | S

H¢ T Jwup edgez oe

we have
Hout _ (._._.l__.. .Q?__...g) - _@_f‘;—’- AdJ (X )H{Q)(% ) (ing,)

+A§Jn()‘oP)EI:12 ) (AOPCHBan()\OP)] exp(-j{ng+hz)) dh} p=p,

(3.19)

and
2 (o d
1 3 2 1\
- ) - Z[A°g
Jwap 2¢ az-ﬁ"S P=g {ap_;w’: nn

i 2) .
H;P = ( (Aop)Hi (Abfﬁ)exp(3n¢é)

(2) :
.yAﬁJn()\oP)Hn ()\0 Pc)+Ban(.>\°P}] exp[-j(ng+hz)} dh} =g,

(3.20)
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Substitute (3,19) and (3,20) into (3.18): then

(2)

+23
d - a
Je “iar’_ (a0 n

(2) d :
()\OP)Hn ()\OPd)—Aan(/\o fylH ()\OP)] expfjnqbd)

n

exp[-j(nd+hz)] dh}?=f-;| (3.21)

Take the Fourier transform on both sides of equation (3.21):

(2)

d 2 d .
3 ( )(AoPd)-Aan()\oPd)Hn (AOP)]exp(Jnth)

- |
Je :i:;f,_zw[Aan(AoP)Hn

exp( -jn¢)}P;Pd

Hence
ad »=. d , (2) (2)°
Je(h) = Za A (3 0 RH T (A g1 =T (N B E DT (N /)
exp[-j(n¢-n¢d)] (3.22)
- s (2) .
y definition, H “'(x) = J (x) - 3N _(x)

. (2) (2) : . g
(Jn(x)Hn (x)-0 (x)H “° () = JUI (XN (x) - I/ (x)N (x)]

21

...,n_x

so that equation (3.22) becomes

Ad g ,d : 21
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SO
. |
Znlexpl-j(ng-ng)3= 37 (n) 1;-5.-5’- (3,23)

Ad
t

Now, we must find the expression for J, _(h).

Let Si(h) = K(h) 3(¢—<%J : where & denotes delta
function ,

then

217

(h)pyad = jK(h) S(é-4,) e8¢ = K(h) g,

and

k(h) = 13(hi/p,

55 =[En)/p,) 8(8-4y) - (3.24)

From (3.23) an @ (3,24)

L . ad R
=A exp(-j(ng-ng )3 = I (h) 8(¢—¢d) 23 | (3.25)
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In egquation (3.25) the left hand side is the Fourier series

expansion of the right hand side, and Ag are the coefficients:

4 1 It(h)W ,
An = ".'2".,'? "'"éT'_“" 3(¢—¢d}exp(jn(¢—¢d )I d¢
o

ad
1L (h)
43

4a
so An(h) =

The same procedures can be applied to the coaxial cable,

and a similar result will be reached:

%(n)
c t '
An(h) &= 43 (3.26)

5 ,
In order to solve A, explicitly in terms of the dipole
moment p of the antenna, we argue that the dipole antenna
has length d carrying uniform current Io on it; i.e.,

p=I°d. If we let 4 approach zero and Io approach infinity,

we may write
Ii(z) -~ pS(z)

take the Fourier transform:

[ Lad

] ) d , 1 ;
Ii(h) = o5 It(z)exp(th)dz = oF pélzlexp{jhzldz = gﬁ

—po -t
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q A
hence, A = 8§j (3.27)

For evaluating the total current on the coaxial
5.

cable Ig(z), we apply the relation between It and the
electric field outside the cable, that is

A A AC

E (p:, 0, h) =2 (h) I (h) (3.28)

ﬁz denotes the average axial electric field component

at the outer surface of the cable. ﬁex(h) is the external
impedance of the cable which has been introduced in
Chapter 2, Here we set pézpb—b.

From equation (3,10)

2
1 2 o
- k e
E, Jwﬁb( o F Bzzlﬁ

We have the expression for ﬁz as follows:

5 (pon) = (mjum - 2y 20285 (n poE'2) (n_pexplins. )
2 Cr % = =JeA, jwe == 270 o fa B 0P/ EXPL IN%y
c (2) .
+Aan()~.op)Hn (Ao B )+Ban()\OPD exp(-jng)

S0
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2

JwE,

- P | (2) .
);E[Aan()bFa)Hn (Aopé)exp(3n¢h)

5 (Pyr 0, h) = (=Jwpu -

c el 2) |
+Aan(>~opc)Hn (AOPCH-Ban()\Opc 13 (3.29)
From equations (3.28), (3.29), (3.17), (3.26) and (3.27)

we have

2
4 ac , h S P (2) " .
2oy (MIL(R) = (=Juu - ngo’-"";(arern“‘of’d’Hn (2 pL)exp(ing,)

8 (n)
"t
r Jn(AOFE)HQZJ(Abf%)

+

(Mpy+Py oLy L3y Py /My )P

- - J (X p)
(M) p*P1 o011 F11/M,J B3 00T

Ac
[M22+P12L11L32P11/Mll]lt(h)

(Mg p+Py ol 3y Py /My 1343

U OSEOR)|
; . ac
Solve this eguation for It(h):

ac _Jpoae (2) \ ; N i
Teth) = g5 {Zl, O gH, " (g p)explingy) -3, (npL) (M +

Pyolyqlay Ppp/Myg)/(My 4Py oLy Ty Py /My Y/

; 2 .2 i L vee02)
{[Qex(h)jwso/“‘o_h ) _(4j)-2:‘-IJn()\oPc)Hn ('\opc)-
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T (N PL) (Mg 4Py Ly 1Ly Py /My 1 )/ (Mg 5 4Py oLy J Ly Py /My 0 I (3.30)

Next, to simplify this expression, we consider the tunnel

wall as a perfectly conducting material, so thatl&drbwy
|—>\dl-¢m and
bl jE’

21 Jwe f’; 31

A o .hn_
12 aJWu,

hn
P11 - ajwe
o
~t
Mgz & Aglay
2
y Xo [Ba
12 JwE f;
Hence

M..4P..L..L..P.. /M
2 Sl e B e » ol o e B /L, (3.31)

My otPyo0y1191P117/ My, 31

and similarly,

My #+Py ol DgoPy /My (3.32)

2 n../L
M12 Pl?LllLllPll/M 327711
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Substitute (3.31) and (3.32) into (3,30): we have

A
(h) = F(h)/(Z_ (h)-G(h))} . (3.33)

g |
where

- = (2) , :
F(h) =[x -h )/Jwgg%[Jn()\oPd)I'ln (XN L) =T (A PLIT (N )

HAZ)(Aoa)/Jn(Aba)39xp(jn¢a)

G(h) = (1/43) [(k2-h2) /30 E15_(n pE 2V O p)=3_ (0 p2)
o

' (2) (3.34)
I (N R (zba)/Jn(>ba)J
From (3.33) we have
bo
(3.35)

xf:(z) . g%.—J[F(h)/(ﬁex(h)-G(h))] exp(-jhz)dh

bl o

C
t

We have expressed the total current on the cable

3.5 The evaluation of I

c
t
this integral, we must find the poles of the integrand,

I in an integral form as equation (3,35). To evaluate
and then calculate the residues of the integrand at these
poles, To find the poles, we must find the roots of the

equation ﬁex(h)—G(h)zo. From eguation (3.34)
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G(h) = (1/49) [k2-h2) /3021 S0 (e /3 (a8 2 ()
o go't’" n oc’"n’o n Ay

(2)

Jn(AOa)-Jn(AOPC)Hn (xal)]

Since J_,= (-—l)an and H_(_rzl}z (~L)"H " ,
2 B (2)
6(h) =[(h%-k2) /480 (A L) /T4 (2@ 01" (A B )T (Ag2)
o et (n e 4250, (A e1) /3, (x alii 2 gy)
O o'cC O o) ~pa™ I o' C n < n o'C
J (xa)-J (A P 12 (a a)l
n o) n o'c n (o]
Substitute Jn(xJ—an(x) for HAZ)(X) +  we have
6n) = {(h?k2)/awz) § 13 (A PL)/T4 (33 NITG LA, B I (252)
Fo-3
- o (A3 (X £ +23'E;[Jn()‘o pé)/Jn(Aoa)J[Jn(Ao £.)

N_(xja) ~J_ (X2 N (N B, )J}

For large n, the summand [Jn(AoPé)/Jn().oa)][Jn()\oPC)Nn()\oa)—

2 i n_
Jn()\oa)Nn()\o pc)] can be approximated by (1/nmw) [(pc/pc)

(g Q/az)nj
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then

219, O p2) /T, (A2 NI, (A PN (A 2) =0, (A2 )N (A R =

E{[Jn(Aopé)/Jn()\oa)J[Jn (.,xo Pc)Nn()\oa)-Jn(/\oa)Nn()xo pc)) -
(1/nm) [py/0,) (6, 0 /a” ) (/) Inlt1-£, p/a”) /(b/p,))

The summation on the right hand side will converge more

rapidly than the summation on the left hand side,
G(h) =[(n®k2)5/4083]l (X £1) /3, (N300 (5, €,IN, (x,2)
=3 (0 AN (A BT +2Z LT (N @) /T, (X 2)) (T (XN )N, (X a)

—3_ (A2 (X €,))=(1/nm) ((pr/p, ) = (P pa/a”)™)] +

(2/m)1n (1-p pr/a’)/(b/p N (3.36)

As we shall see later, the roots h of %ex(h)—G(h)=O are
alﬁays greéter than L this means that the values of *o
which satisfy this equation must be imaginary, because
A°=(k§—h2)% and therefore the arguments of those Bessel
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functions in G(h) will be imaginary when G(h):%ex(h)
is satisfied. But to deal with the Bessel functions
with imaginary argument is not easy, so we use the
following relations to convert the Bessel functions
with imaginary argument into the modified Bessel
functions with real argument:

. .y =N
Jn(jx) = In(x)(—J)

. 2, .y=(n+1) . .
Nn(Jx) =[(5) Kn(x)-Jn(jx)J/J
Then equation (3.36) will become:
6(n) =[h%-k2)35/4wR I (xfp) /T (AtallI_(Aa)K (A e.)
' - o' &l Lot 2o e o' o o'"o o' ™o e

L] L] n-g- 1 ' 1 1
—I (A BIK (N a) +2§["(In(>~opc)/ln()~oa))(In(.xoa)

; o VA ) ; n_ y /22,0
K (2! )=T, (A RIK_(A1a))=(1/nm) ((pe/p )"~ (p py/a”) ™))

+(2/m)1nl(1-p_p1/a®)/ (b/p N} (3.37)

.
where Aéﬁ(h ~ko) is real number.
We have used ANL(Argonne National Laboratory) sub-
routines BESI and BESK for evaluating the values of

modified Bessel functions with wvarious order and arguments,
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From eqguation (3,37), the eguation Qex(h)~G(h)=0

will become

]
= “Z.iSUP-’lMAND 4+ ZHI =0 (3.38)
where

2 ' ] J L] 1 — 1
SUMMAND = (I (A pL)/T (Aja)) (I (XNJa)K (N g )-T (AR)

K, (rga))=(1/nm) ((py/p ) = e, e, Czat ) (3.39)

ZHT = %tlo“\é PLY /T N AT (N3 K (N P ) =T (AL B VK (A3a))

+ Hnl1-e py/a?)/b/p )1+ B, (h)?g—g-‘f’—“’-*‘w—— (3.40)
h*=k7)
where ﬁex(h) is the external impedance of the cable
given in eguation (2,23).

We have developed two subroutine programs for calcu-
lation of the summation in equation (3.38). They are
cailed BSUM and CSUM(APPEN), where BSUM calculates the
sum of SUMMAND (equation (3.39)) from n=1 to n=NS, and

CSUM finds the sum from n=NP=NS+l1 to n=NN, The calling

arguments of these two subroutines are
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BSUM(X,RC,RCP,NS5,BS)

CSUM(X,RC,RCP,NP,NN,CS)

where széa is the only variable which contains the
propagation constant h implicitly, and RC and RCP stand
for f%/a and Fé/a respectively, The sum of BS and CS
equals é%SUMMAND for appropriately chosen integers NS
and NN, Note that the parameters are all normalized
with respect to the tunnel radius a, such as f%/a, pé/a
etc,. |

We develop another routine for calculating the
value of ZHI(APPBN) (eguation (3.40)), The calling argu-

ments of this routine are

ZHI(X,RC,RCP,R1,R,KA,EP1,EP2,LSP,SSP,2)

where

Rl = pl/a
R = r/a
KA = koa
EPl= él/ao
EP2= 52/5b
LS P= LS
SSP= S
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Then the equation Q=0 {(egquation (3.38)) can be solved
by using linear interpolation as we have done in sub-

routine ROOT(APPEN);

ROOT{X1,X2,RC,RCP,R1,R,KA,EP1 ,EP2,LSP,SSP NS ,NP,NN , XROOT)

where X1 and X2 are two initial values used for approaching
the root.
Finally, we shall get two roots for the equation

*
gex(h)wG(h)=0. They are denoted by hl and h, respectively

2
as shown in Fig., 8, where the poles on the imaginary

axis correspond to the perturbed empty waveguide modes.

3.6 The two transmission-line modes in the circular

waveguide

Consider equation (3,35) which we rewrite as follows:

Tglz) = gas|(E()/ (2, (h)~G(h))] exp(~jhz)dh

e

* Actually there are an infinite number, corresponding
to the two transmission=-line modes plus all the waveguide
modes,. In this paper we are concentrating on the trans-
mission~line modes, as these are most strongly influenced

by the presence of the cable.
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Fig., 8 The Propagation Modes in the

Circular Tunnel
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The integral of this integrand aéound the contour closed
in the lower half plane will be egual to -2wj times the
sum of residues of the integrand at the poles within the
contour; namely, we should have

f?[F(h)/(%ex(h)-G(h))]exp(—jhz)dh = ~2Nj=residues at h,

and h2 -2wj=residues at waveguide poles " (3.41)
Furthermore, suppose that the frequency we consider is
below the cut-off frequency of the dominant aneguide

mode of this circular tunnel., Then all the waveguide

modes will be attenuated rapidly with increasing =z,

Since for waveguide modes, the propagation constants

f 2 .2 . ; i
hnl =% ko"kcnl will be pure imaginary numbers, these

. gt ; .
modes will behave like e izt where:&:)kinl—kg is

positive, As shown in Fig. 8, the poles on the imaginary
axis are due to the waveguide modes of the tunnel itself
perturbed by the presence of the cable. The two real

poles hl and h, due to the presence of the cable corre-

2
spond to the transmission-line modes which will propagate
without attenuation. That is the reason we use coaxial

cable for low-frecquency communication inside a tunnel,

Since the contributions from the waveguide modes
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can be neglected for large z, equation (3.41) can be

expressed as

)

+j' = =2n%j=residues at transmission-line poles
P oo

But the second integral will vanish, so we have

Po

S[F(h)/(%ex(h)—s(h))]exp(-jhz)dh = -2Tj=residues at

-bo

h and h

and the total current on the cable Iz (eguation (3,35))

will be

Iz(z) = =P—[-27j=residues at h

BT 1 and h2)
or .
~-jh_ z
F(h,) a’ e 1
c p_ 1
It(z) = T 5 5
I a%a g _a sLG[
5 dh “ex heh, j dh " |h=h,
-jh,z
F(h,) a’ e 2
+ 2 2 J
a“d_ s _a Q_GI
5 dh “ex h=h2 j dh h=h2




43

We have developed three routines FHK, DZH, and
g  APPEN)

D to calculate the values of F(h)az,
a’d_ s (h). 4 Eig-—c;(h) tively. Then th
5~ ah Zex , an 3~ dah respectively. en e
total current is
FHK
Ii(z’ = ET[ DZH -h;Zé e T
J h=h h=h
1 1
FHK h=h,, -jhzzJ
+ e — (3.42)
DZH h=h2 - DGH h=h2

Egquation (3.42) is our final result for the total current

1. the numerical examples will be given in the next

tl
chapter, The calling arguments of subroutines FHK, DZH,

and DGH are

FHK(XK,RD,RCP,PHID,K NS, FH)
DZH(XK,RC,RCP,KA,A,EP1,EP2,LSP,SSP,R1,R,ZH)

DGH(XX,RC,RCP,KA ,A,NS ,NN,GH)

—— 1
where XK = Aok a

‘ 2 2 % _
Aok = (hk - ko) hk = hl or h2
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CHAPTER 4
NUMERICAL RIESULTS FOR THE CABLE CURRENTS
4,1 Introduction

In the last chapter, we found that the total current

on the coaxial cable is

. -jh.z -jh.z
c _pi 1 2
I {z) =4 [Il e + I, e J (4,1)
where
- FHK )
Ix = "DZH - DeH Edyd
h=hk

represents the normalized magnitude of current for the
two transmission-line modes correspondigg to hl and h2
respectively. In the following sections, we shall
invegtigate the dependences of Il and 12 on the various
parameters, The geometrical and electrical parameters
of the cable are assumed to be

r ; 0.10 cm

Py = 0.35 cm

b = 0,50 ¢cm

61 2,25 50

&

2 3.50 &,



Let the shield be constructed of (2xM) strands
(M is an integer) of #36 B and S gauge Cu wire with
pitch angles 96=125°. The radius of the tunnel is
assumed to be 2.0 m .

Now consider the case M=10, We find that the op-

tical coverage is

c, = 0.01275 x M = 0,1275 ; and from equations (2.21),

(2.24)
L, = 18.8 nHn © ; from equations (2.15), (2.25)
S, = 0.484 GnF™

4,2 The magnitude of current with respect to change

of Pc_

First, we investigate the relations between the
currents and the location of the cable. Namely, we
calculate the values of currents I, and I2 for different
values of FE with the other parameters fixed, As men-
tioned previocusly, 173 is the distance between the cable
and the axis of the tunnel.

Assume -the operating frequency is 1 MHz, so
X_ =0.,021 m Y ; and let
Pd = 0.5m

o
g = 30
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Then the relations between Il; I, and P, aré shown in
Fig. 9. Note that I, is smaller than I,. In fact, Il;
which corresponds to the bifilar mode, is the sum of
the current in the center conductor and the return current

in the conducting shields. So I, is approximately equal

1
to zero, while I, corresponds to the monofilar mode

which has its return current flow through the tunnel

wall, Compared to 12; we find that Il is almost constant
with respect to changes of FE' Note also that the currents
decrease when the cable is moved away from the dipole

source,

4,3 The magnitude of current with respect to change

of Pa _

In this section, we change the values of @, rather
than €,. Let P, egual 1.6 m, and all the other parameters
except Py take the same values as in section 4.2. Then
we have the results for Il and 12 as shown in Fig. 10
and Fig. 11 respectively. Again, note that Il and I2
have a similar behavior; they all reach a maximum value

at py=l.1 m, but I, is much smaller than I,. In Fig. 10

1
and Fig, 11 we have

1

M = 10; ¢ = 0.1275; L= 18.8 nHm *; S = 0.484 omF T

! s



£ =1 MHz; k= 0.021 m
- 0
¢d" 30

4,4 The magnitude of current with respect to change

of ¢d

Fig. 12 and Fig. 13 are plots of I, and I, respec-
tively:; but this time they are functions of ¢d. We may
expect that these curves will be symmetrical about the
vertical lines ;=0 and ¢d=n# and the currents have
maximum and minimum values at ¢d=0 and ¢d:n respec-—

tively. In Fig. 12 and Fig. 13 we have

M= 10

= 1 MHz
Pu= 1.6 m
Pgq= 0.5 m

4,5 The magnitude of current with respect to change
of fredquency
In Fig. 14 we show the linear relationship be-
tween Il and the operating fregquency., We have
M = 10

Pg= 0.5 m

il



- (o)
¢d_ 30

4,6 The magnitude of current with respect to change
of M

Fig. 15 shows the dependence of Il on the values

of M, As in section 4.2

c = 0.01275 x M: and
7 -rc_/2

L = - 1,103 x 107/ 1n{1-e ° )/m

~-fc /2

2 1n(i-e ° y/m

S = - 2.833 x 10

and in addition,

f = 1 MHz
Pl l.6 m
Pa= 0.5 m
¢5= 30°

Note that when M is increased, which means that
the cable is shielded more completely, the coupling from
the exterior fields to the interior fields of the cable
is reduced. Consequently; the current will be reduced

as shown in Fig. 15.

49
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4,7 The propagation constants hl and h2
In Fig. 16, Fig., 17, and Fig. 18 we show the re-

lationships between h the propagation constant of the

1
bifilar mode, and P.. M, and frequency respectively.

The propagation constant of the monofilar mode h2 should
have similar relationships with these parameters, but

it is greater than hl’ Besides, we find that h, and h,

do not depend on the values of Py and ¢,.

4,8 The solutions to the transmission-line eguations
After we find the total cable current Iz(z], we are
in 2 position to solve the transmission-~line eguations;

i.e., equations (2.,1), and (2.,2)

av c
dI . c
qz =~ YV + jldréQt (2.2)

Differentiate equation (2.2) with respect to z; we have

21 (4.2)

Substitute equation (4.2) into eguation (2,1); then
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2 ags -
a1 _ _ t c
———d 5 - 2YI = jw g = + A YT (4.3)
z
From equations (2,3) and (4.1)
ar’s ~jh.z jh.z
c t 1 K
Jth = - "&E‘" = - E[hlll e + thz e 2]
dgi Bir 2 -jh,z ) -3h,z
de—z—- + 7 [hlIl e + hZIZ e ]
So eguation (4,3) becomes
2 ~jh, 2 . ~3h

a'I _ _ri 2 1 2] 2
5 - ZYI = Il[ZSY + [yhil e + g I2[ZSY + ]’Shz] e

(4.4)

The solution of equation (4.4) can be written as

ri . 2 i ri ] 2 g
;4 I,[2 Y+ Tghy) . jhyz - I,[2. Y+ T h5] . jh,z
=T - 2

2
h1 + ZY h2 + 2¥Y

4 em Z + CZ e“m z : {4.5)

+ C

-JzY z

where the last two terms, Cle“zY % ana C,e , corre-
gspond to the transmission-line modes of the cable. For
the case we are considering, these two terms can be

ignored. So we have



K2

<) 2 : ' 2 .
o [z, v+ h]] -jhz _-E'lIz[st+[‘éh2] e—jhzz

+ Z¥Y hg + ZY

(4.6)
h

= pof

and the ratio of center conductor current to total current

is
2
-w.hi-2_Y .
/1 = —5 1.8 for the bifilar mode, and
t 2
h, + 2Y
1
c -r;h;—z +
1I/1° = = for the monofilar mode
t 2
h2 + ZY
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CHAPTER 5
CONCLUS IONS

The excitation and propagation of waves along a
coaxial cable located within a circular tunnel have
been examined in this paper, When the operating freguency
is low enough such that it is below the cut-off freguency
of the waveguide modes of the empty tunnel; there remain
two transmission-line modes which can propagate inside
the tunnel, These two modes; which due to the presence
of the cable, are called the bifilar mode and the mono-
filar mode for obvious reasons. The bifilar mode has
its return current flow in the conducting shield of the
coéxial cable rather than the surrounding tunnel wall;
so its attenuation rate should be smail compared with
that of the monofilar mode, which has its return current
.flow through the lossy dielectric tunnel wall.

It is obviously desirable to use the bifilar mode
in long distance communication within a mine tunnel
owing to its low attenuation rate, But the difficulty
we have to face is the excitation problem of this bi-
filar mode. A very useful technique(3) has been devel-

oped for use in Belgian coal mines which is to convert
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the monéfilar mode, which can be excited strongly; to
the bifilar mode, |

The main point of this paper has been t§ show the exist-
ence of these two propagation modes and to illustrate
their behaQiors as functions of some of the parameters
of the problem, We start with a model of the leaky
braided-shield cable in which the capacitive as well as
inductive coupling mechanisms are included. From this
model an eguivalent surface impedance of the cable called
the external impedance can be deduced., Then we use this
result to match the boundary condition on the cable sur-
face, so we can express the cable current in terms of
two componénts which come from the bifilar mode and the
monofilar mode respectively.

As a numerical illustration, we have considered a
typical coaxial cable with a perfectly conducting mate-
rial as the center conductor and the shield wires. We
have investigated the behaviors of the cable current
when the various parameters are changed. Finally, the
cufrent on the center conductor has been found through
the transmission-line equations; and the ratios of the
center conductor cufrents to the total cable currents
for the transmission-line modes have been found. Ideally

this ratio for the bifilar mode should be much greater
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than that for the monofilar mode, but this is probably
not possible in practice,

There are two subjects beyond those considered in
this paper that we'may suggest for future study. The
first of these is to remove the assumption of a perfectly
conducting material for the tunnel wall as well as the
center conductor and the shield wires of the cable. Then
the attenuation rates of the two transmission-line modes
can be found. The second is to neglect the capacitive
coupling of the shielded coaxial cable, in order to illus-
trate the influence of capacitive coupling on the wave

propagation problem.,
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The wave propagation and excitation problem for a
coaxial cable within a circular tunnel is examined in
this paper. Through study of an idealized model we may
obtain understanding of the complicated propagation
phenomena inside a real tunnel structure. The tunnel
wall is assumed to be perfectly conducting. Within the
tunnel is located a dipole antenna and a shielded coaxial
cable which are used as excitation Source and wave trans-.
mission mediuﬁ respectively, Two shielded coaxial cable
models are introduced; from which the external impedance
of the cable can be determined. By matching the boundary
conditions on the cable surface, we can evaluate the
total currenﬂfon the cable, This current is expressed in
terms of two components, those of the bifilar and the
monofilar modes, In order to understand the wave behavior
inside the tunnel, we investigate the variation of the
cable currents of these two modes with respect to the
various parameters., Finally, the transmission-line egua-

tions are solved, and the current on the center conductor

is found.



