
SOME ASPECTS OF NONLINEAR STABILITY

by

JOHN PAUL DOLLAR

B. S., Kansas State University, 1956

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1966

Approved by:

Major Professor



L-D ±1

TABLE OF CONTENTS

C

INTRODUCTION 1

Defining Stability 2

THE DESCRIBING FUNCTION APPROACH 8

ANALYSIS BY MEANS OF SINGULAR POINTS 23

DIRECT METHOD OF LYAPUNOV'AND VARIABLE GRADIENT
METHOD FOR STABILITY ANALYSIS 3>k

REFERENCES h$

APPENDIX A i\.l

The Method of Krylov and Bogoliubov J4.7

APPENDIX B ..... 56

Analysis of Singular Points £6



INTRODUCTION

Solutions to problems involving systems containing nonlinear

elements are seldom clear-cut. All approaches to solutions of

problems of this nature are laced with approximations and as-

sumptions which, while simplifying the solutions, are, to the

degree of the approximations and assumptions, inaccurate.

The observation (l) may be made that the coefficients in

equations describing physical systems are never known to a high

degree of accuracy. These coefficients must be found empiri-

cally as a result of experimental measurements which are always

subject to error. Especially in nonlinear systems where the co-

efficients are functions of the operating conditions, it is

difficult to determine values of the coefficients to a high de-

gree of accuracy. Additionally, the physical parameters are

often subject to change with ambient conditions such as time,

temperature, and the like. Changes of this sort are probably

not included in equations describing the system. As a result,

the coefficients are subject to considerable uncertainty. Thus,

depending on the nature of the nonlinearity and the method in-

volved in the solution, the solution may or may not be of a

high degree of accuracy. Consequently, there is reason to ques-

tion whether or not the solution finally obtained actually ap-

plies to the physical system under study.

The obvious question which arises when a physical system

subject to the above observations is involved is: despite the

uncertainty inherent in the given data and the method of solution



of the problems involved, is there an approach that will give

enough insight into the problem that corrective action can be

taken on the system to insure a reasonable interpretation, on

the part of the system, of the desired performance?

The answer to this question lies in definition of the word

"reasonable". ' In general the minimum requirement for a reason-

able performance on the part of the system is the requirement

that the system be stable. This in turn requires definitions

of system stability.

Defining Stability

The following is an attempt to integrate the ideas of

Hughes (2) and Cunningham (l) regarding definitions of stability

The definitions are for three types of stability: Asymptotic,

orbital, and structural.

Perhaps the original essence of the stability idea asks:

if a system is initially at rest or else operating in a steady

state, either of which is to say that the system is operating at

some equilibrium point, and a small perturbation is applied to

the system, does the system return to its initial state, depart

in a monotonic increase with time from the initial state, or

achieve some ultimate state different from the initial state?

At first glance this seems to be a fair evaluation of what can

happen to a system and for a linear system it is quite adequate,

the key words being "equilibrium point".



To see the significance of this, note that a physical sys-

tem may be described by a set of simultaneous differential

equations of the form:

dx-j/dt = x1 = r
1
(x1 , x2 , x^, . . . , xn )

dx2/dt = x2 = f2 (x-j_, x2> x 3> ' ' •> -^n^

dx^/dt = xn = fn (x ]_,
x2 , x^, . . .,3^)

with t the independent variable. In this case x^, x2 , . .., xn

are the dependent variables, and functions f-^, f?, ..., fn are

generally nonlinear functions of the dependent variables. The

simplest equilibrium points are those points where x-^, x2 ,

. .
. , x^ are all zero simultaneously. The system is then at

rest since all of the dependent variables are constant and un-

varying with time.

For a linear system, functions f-,, f
2 , ..., fn are linear

functions only and when the derivatives are set equal to zero;

the linear functions give the conditions for equilibrium as:
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and the a.- • coefficients are constants arising from the param-

eters of the physical system. Generally the determinant of the

coefficients does not vanish; i.e.,



1*.

11 In

* o

lnl nn.

In this linear case, then, it is apparent that the vari-

ables Xj_ satisfying the system equations must all be zero. Thus

a linear system has but a single" equilibrium point at which all

the dependent variables vanish.

For a linear system the previous definition for stability

is rigorous since the necessity for considering equilibrium

points other than zero is unnecessary. For a linear system this

type of stability is the so-called "asymptotic stability".

For the nonlinear system, f-,, fp, fo, ••-, fn are nonlinear

functions and lead to nonlinear equations in place of the linear

set. These nonlinear equations may lead to solutions for the

Xj_ which are not zero and additionally, more than a single set

of solutions may exist, which is equivalent . to saying that non-

linear equations may have many equilibrium points.

From the above, asymptotic stability which characterizes

the system as stable if it returns to the initial state, un-

stable if it continues to diverge from the initial state, or

"neutrally" or "conditionally" stable if it attains some new

equilibrium state, does not describe adequately some conditions

which may appear in nonlinear systems. For the nonlinear sys-

tem it is necessary to specify that the initial disturbances of

the Xj_ be small enough to keep them in the region of the



equilibrium point in question. This definition may be shown

graphically. If a system under study is operating about some

equilibrium point and a small but finite perturbation is applied

such as shown on the phase portrait in Fig. 1, then if P repre-

*-*—
> Perturbed motion

AP'

Unperturbed
motion

Fig. 1.

sents an unperturbed moving point on the phase portrait and P'

represents the corresponding point on the perturbed portrait,

and if

<&im

t —> od
P _ pi

the system is said to be asymptotically stable. The motion

shown is periodic but periodic motion is not necessary for the

argument

.

The significance of structural stability may be shown as

follows (L(.) : for nonlinear problems normally encountered, it

is often necessary to express some nonlinear function of a var-

iable and its derivatives with a finite number of terms of a

power series. Consider, for example, a second order system

whose phase portrait is described by

dVb A(Va , Vb )

dV Q B(V , Vh )

(1)



with A and B simply functions of Va and Vb . Also consider a

slightly different system in which the phase portrait is de-

scribed by

dVb A(V a , Vb ) + a(V a , Vb )

dV. B(V
fl

, Vb ) + b(V
a , Vb )

(2)

with a(V
Q , Vb ) and b(V

a , Vb ) functions of V
a

and V-^ and very

much smaller than A(V
a , Vb ) and B(V

a , Vb ) , respectively. If the

phase portraits of these two equations are plotted simultaneously

with the same initial conditions, the plot might appear as shown

in Fig. 2.

nitial point

V,

Equation 2

Equation 1

Fig. 2.

If these two phase portraits are qualitatively similar in

nature, the original system may be defined as structurally

stable. The above differential equations are really expressions

of the nonlinear function as a finite polynomial in the regions

of interest. The addition of the terms a(V , V"b ) and b(V
a , Vb )

means simply that the coefficients of the polynomials used to

represent A(V , V\ ) and B(V , V^) may vary slightly. If these

slight variations markedly change the system behavior as evi-

denced by the phase portrait, then the method used to approxi-

mate the nonlinear functions is of doubtful validity. Use of



power series approximations and incremental solutions is thus

complicated by structural instability. The indication is that,

at best, incremental solutions must be much more precise in

order to get a reasonable ' determination of system character-

istics .

Finally, consider a system having a steady-state oscilla-

tory motion represented as a closed curve in the phase plane as

in Fig. 3. If the given motion is slightly perturbed and the

new motion remains within the immediate vicinity of the old

ndisturbed trajectory

Small initial separation
^ V„

Disturbed trajectory

ter separation growing
with time

Fig. 3.

motion, then the system is said to be orbitally stable. More

rigorously (2) in the case of periodic motion, a system is orbi-

tally stable if for a given perturbation o there is a number 6

such that the distance between two corresponding points on these

two phase portraits is never greater than 5. In view of this

definition and the definition for asymptotic stability, a con-

servative nonlinear oscillating system is not orbitally unstable,

although it is asymptotically unstable.



The purpose of this report is to review some of the methods

of determining stability aspects of nonlinear systems.

THE DESCRIBING FUNCTION APPROACH

The so-called "describing function" is an application of

the principle of harmonic balance to various nonlinear elements.

The background for the principle of harmonic balance and the

describing function is discussed in Appendix A. Describing

functions for many types of nonlinearities have been derived,

as in Kuo (3) and Gibson (5). As an example of the derivation

of a describing function, which will be used in a stability

study, take the case of a transmission element saturating

abruptly ( 1)

„

Many physical transmission elements have the property of

saturation. The output quantity is related linearly to the

input quantity so long as the input magnitude is less than some

critical value. If saturation is assumed to take place abruptly,

the input-output relation can be described simply in terms of

several linear algebraic equations. If the input instantaneous

value is x and if the output instantaneous value is y, they may

be related as in Fig. ij..

These relations are

-xc < x < + xc - y = kx

x > + xc - y = +kxc

x < - xc - y = -kx
c

where k is a positive constant. Electronic amplifiers often



saturate abruptly in this fashion

Fig. 1^.

The describing function H may be found for this type of

element by assuming that the input quantity varies in a simple

harmonic fashion as x ~ X cos cot, where X is the amplitude and

co is the angular frequency. The output quantity will also vary

in a simple harmonic fashion if X < xc , in which case

y = kx cos cot. If X ? xc , the output quantity is not simple

harmonic but must be expressed as a Fourier series. The com-

ponent of fundamental frequency is the one of interest and it

is found in the usual manner. If the input and output quanti-

ties are plotted as functions of time, the result is shown in

Fig. £.



10

+x

[2-k-*)

w
GOt

Fig. 5-

The relationships for the first half cycle are:

< cot < -<

°< fr COt £ 71 - «<

7t - <X £ COt < 71

X > + X,

-xc < x < + xx

X,

y = +kx
c

y = +kx cos cot

y = -kxc
X,

where »< Is the angle for which cos «< = — and X > xc . The
x

second half cycle is symmetrical with the first, and thus it is

unnecessary to consider it in the Fourier analysis. Because of

the symmetry only cosine components appear in the output wave.

The amplitude of the fundamental cosine component is:

A i
=

•7t-»<

kx~ cos cot d(cot) +

'0

kx cos cot d(cot)

'*<

,7t

(-kx
c ) cos cot d(cot)

(tc--0

Carrying out the integration,



11

A
±

= - i kx,
71

cos cot d(cot) - cos cot d(cot)

/(n-0
+ kx cos cotd(cot)

L )

A, =
2 * •rc

- kx
c

sin cot - sin cot

71
(lt--<)

2 "l 1
(ic--<)

+ - kx — sin cot cos cot + • cot

71 _2 2
</

A-, = r
2

kx I 1 - — (»< - sin »< cos «<)

L ^

If X = x , then ^ = and A, = kx . If X >> x . then
c' 1 c c'

71

-4 ' ' and A-. —>
2

1
71

A
1

The describing function is then the ratio H = — and is
x

X^ x
c

X > xn

H = k

H = k 1 - — («* - sin <a cos «<)

71

X,

where cos =< = — . The describing function depends upon the in-
x

put amplitude but not upon the frequency. It is a real number

having magnitude but zero angle. It varies as a function of the
X

ratio — as shown in Fig. 6.

xc
The describing function may be put to further use in a

stability study after some preliminary remarks about Nyquist's

criterion and the stability of feedback systems.

Assuming a knowledge of the Routh-Hurwitz criterion (7) for

stability and the characteristic equation, this criterion may be
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1

H/K -

Pig. 6.

stated simply by saying that the requirement for stability is

that the characteristic equation and its coefficients be posi-

tive, and further that the characteristic equation have no roots

with positive real par us (or no pure imaginary roots, in a prac-

tical sense). The Routh-Hurwitz criterion, however, does not

give any information concerning methods of improving the system.

The Nyquist criterion possesses the following features which

make it particularly desirable for the stability analysis of

feedback control systems (3).

1. It provides the same amount of information on the

absolute stability of a feedback system as the Routh

criterion.

2. In addition to the absolute system stability, the Ny-

quist criterion also indicates the degree of stability

of a stable system and gives information about how the

system stability may be improved if necessary.

3. The Nyquist locus gives information concerning the

frequency response of the system.

The Nyquist method is based on conformal mapping of complex
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quantities and stripped of its rigorous background is quite

simple to use.

Note (1) that the characteristic equation may be written

n-1 n-2
a n-l^ + a n = °fU) = a \

n
+ a 1\

L1 ~ ±
+ a 2A

J

The value of X in the characteristic equation is generally a

complex number and can be represented on the complex plane as

in Fig. 7 with ~k = 5 + jco. Any value of X that is a root of the

characteristic equation and leads to an unstable solution has a

Fig. 7.

positive real part and would be located on the right half of the

complex \ plane. This region is shown shaded in Fig. 7. Its

boundaries can be traced out by starting at the lower end of the

jco axis where X = -jco -

—

> -jso , moving up this axis until

A = jco —>+ j c-3, turning clockwise through a right angle, and

returning to the starting point along a semicircle of very large

radius. At the starting point, a second clockwise right angle

turn is needed to begin retracing the original path. The shaded

region is always to the right of this boundary as it is traced

in the direction indicated.

The algebraic function f (A) is involved in the characteristic
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equation. Plot this function on the f plane as shown below as

X traces out the boundary of the figure just described for

f(X) = X + gX + h, g and h constants. X is allowed to be pure

imaginary and takes on successive values between -joo and +jo£> .

Corresponding values of f(jco) are calculated and plotted. This-

leads to the heavy curves shown on the X plane (Fig. 7) and f

plane (Pig. 8) . The dotted curve of the f plane is found by

tracing the solid curve to the point co —v + c*=?
f
turning clock-

wise through a right angle and returning to the point co

—

> - *3

along a circular path. As the boundaries in either the X plane

or f plane are traced in the directions indicated, the shaded

areas correspond and are located to the right of the path.

co + oo f plane

f(H=o

f( jco)

CO- - o&

-»» real

j imag.

Pig. 8.

Since the polynomial f{X) is of degree n in X, each point

on the f plane has corresponding to it n points, generally all

different, in the X plane. By the same token, a given point on

the plane has only one point corresponding to it on the f plane

Any point in the shaded region of the X plane must have corre-

sponding to it a point in the shaded region of the f plane.
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These points represent values of A. which would lead to unstable

solutions

.

The characteristic equation is f(X) = 0, which is repre-

sented by the origin of the f plane. Thus the roots of the

characteristic equation, which determines properties of the

solution for the original differential equation, are represented

by those points in the X plane which correspond to the origin of

the f plane. Instability is indicated and at least one of the

roots has a positive real part if the origin of the f plane is

in the shaded area.

In the analysis of feedback systems the equation being
PiU)

studied often involves fractions of the form f(X) = 1 +
P2 U)

where P]_(X) and P2(X) are polynomials in X. Here f(X) may

become infinite for certain values of X = jco such that Pg^)

= P2(jco) = 0. These are the poles of f(X). The procedure for

mapping is to avoid the poles of f(X) by following a small semi-
k

circle around them. If f(X) = 1 + , where k and 2 are
X(\ + I)

constants, a pole is located at X = 0. This is analogous to

the case already discussed. The path to be followed is shown

in Fig. 9a, where a small detour is needed around the origin

of the X plane. The corresponding path in the f plane is shown

in Pig. 9b, where a large semicircle appears corresponding to

the small semicircle about the origin of the f plane. In each

case as co increases from negative to positive values, a clock-

wise right-angled turn is made as the semicircular path is

entered. Figure 9 again indicates a stable system. Typically

the Nyquist method involves considerable numerical calculation.
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\ plane

co = -o<s>

*- 5

Fig. 9a.

imag

GO—> -o-=*

*- Real

Fib. 9b.



17

Another remark is. in order concerning the application of

the Nyquist criterion. Block diagrams as shown in Fig. 10 are

frequently used in describing feedback and other systems.

*b
*r\—U~

H

Fig. 10.

The system above may be represented by the equations

x2
x
l ~ *0 " x

3
~

0(D)
= Xq - H(D)x

2

G(D)xq
or x2

1 + G(D)H(D)

where G and H are generally functions of the derivative
d

operator D = — .

dt

Asymptotic stability of the system is determined by what

happens in the absence of any input signal to the system, so

that Xq = 0. With Xq = 0, x
2 (l + G(D)H(D)) = 0. Typically, a

solution for this differential equation is assumed as x2 = Xe ,

where X is an arbitrary constant and A is the characteristic

exponent. Substituting the solution into (l + G(D)H(D))x
2

=

yields f(X) = 1 + G(A)H(A.) = 0. Thus the system stability may

be tested by the Nyquist method. In applying the Nyquist plot

it is slightly simpler to plot not f(jco) but rather the curve

representing just the product G( jco)H( jco) . Stability is governed

by the relation of this curve to the point at -1 + jO . In
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addition, any physical system is a low-pass device so that the

product G( jco)H( jco) approaches zero as go approaches infinity.

Therefore the curve representing the product closes on itself.

The system is stable if the curve for G(jco)H(jco) does not en-

close the point -1 + jO . The system is unstable if the point

is enclosed.

In applying the Nyquist criterion as described, functions

G and H for the parts of the system become merely the transfer

functions defined with simple harmonic variations. If some

part of the system is slightly nonlinear, its transfer function

becomes the describing function as previously noted. Provided

that the nonlinearity is not too great and that the wave forms

in the system are essentially sinusoidal in shape, a prediction

of this kind may be essentially correct. Testing the stability

in this manner is open to question if the system is such that

the wave forms depart considerably from a sinusoidal shape.

In view of the preceding discussions, an analysis may be

made of a system containing a nonlinear element utilizing the

techniques described (1). The circuit shown in the block dia-

gram in Fig. 11 consists of an electronic amplifier. with a

phase-shifting network connected between its output and input

terminals. Since any practical amplifier saturates if the mag-

nitude of the signal voltage applied to it becomes too large,

the amplifier becomes nonlinear in the large signal node.

Assume at first that the amplifier is linear without

saturation effects, that is, operating in the small signal mode.

The limiter is thus not considered, and therefore e2 and e^ are
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O Ampli-
fier G Limiter H

Phase
shifter H,

'3

Fig. 11.

identical. A number of phase-shifting networks may be employed

with oscillators of this type. The one shown is sometimes used.

The transfer function for this phase-shifting network is (l\.) :

Gk 1

H2 (D) = 3 = = =

e
3

(RCD)-^ + 5(RCD)^ + 6(RCD) + 1

Attenuation and phase shift both occur on a signal passing

through this network and both increase as frequency increases.

Specifically, take the amplifier as a single-stage vacuum-
e 2

tube* circuit with voltage amplification G - — = 3?. Typically,
e l

this amplifier would reverse the polarity of the signal,

justifying the negative sign on eu and the algebraic signs of

the equations. In this case, then, the stability of the system

is given by

1 + GH
2 U) =

and the test for stability consists of, in part, plotting

35
GH

2 (jco) =

[_-5(RCa)) 2 + l] + j[-(RCoo)3 + 6(RCoo)]

as co varies from -<*a to + o£> . This curve is shown as Fig. 12.
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GU, (jo)

*» Real

RCco = 0.2

Pig. 12.

As co increases in the' positive direction, the point -1 + jO is

always to the right of the curve and is completely circled by

the curve. The system is asymptotically unstable, and oscilla-

tion will occur with increasing amplitude.

A practical amplifier always saturates if the applied sig-

nal becomes too large. The saturation effect can be considered

by including a limiter following the ideal amplifier as was

shown in Fig. 11. A simple limiter was the object of one of the

preceding discussions and the results will be used here. The

limiter is assumed to saturate abruptly when the magnitude of

the input voltage e
2
becomes too large; that is, exceeds a

critical value e
Q , so that the following relationships apply.

-e c
< e 2 < + e c : e

3
= e 2

e 2 ^ e c : . e
3

= +e c

e 2 £ -e c : e
3

= -e c

These are the relationships of the describing function example

with k replaced by unity. With a sinusoidal input voltage of

amplitude E 2 applied to the limiter, the describing function

for it has been shown to be
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E 2 < e c : H = 1

E 2 > e c : H =

where *c = — and k =

Eo
1 .

1 - — (-< - sin -< cos «<)

71

The stability of the system including the limiter is

accordingly governed by the relation

1 + GH(E 2 )H2 (A) = (1)

This is the equation

f(X) = 1 + H 1 (A)H 2 (A) with E± = GH(E 2 )

where H(E 2 ) is the describing function for the limiter. The

equation can be put into more convenient form for study by

writing

1
= -H(E 2 ) (2)

GH2 U)

which is the equation for steady-state oscillation. For this

example G = 35, H 2 (M was previously given with D replaced by

X, and H(E 2 ) is given by the final figure (Fig. 3) with k = 1

and X = E
2 . In Fig. 13 are plotted two curves representing the

two sides of equation (2) with X replaced by jco. The left side

of the equation is a curve with certain values of the quantity

RCgo indicated along it. The right side of the equation is

simply that portion of the negative real axis lying between the

2
point -1 + jO and the origin. Certain values of the ratio —

e c
are indicated along this line. Equation (2) is satisfied when

the two curves intersect, and conditions determined by the

intersection point correspond to steady-state conditions in the

nonlinear circuit. Essentially the effect is this: because of



22

the asymptotic instability, the amplitude of oscillation in-

creases from an initial small value; however, the limiter re-

duces the effective amplification until at steady state the

effective amplification plus limiter is just sufficient to over-

come attenuation in the phase-shift network.

n Imaginary axis

RCco = 2.8

RCa)= 2.1+5
H(E 2 ) = .83
E2/e = 1.1+3

+ .2

> » Real axis

- -.2

Fig. 13.

The intersection of the curves above with the circuit

parameters used in the example indicates that steady-state

oscillation should occur with a frequency of RCco = 2.1+5 and an
E2

amplitude such that — = 1.1+3. The flat-topped wave of the
Sc-

output as shown in the section on the describing function should

be somewhat similar to the limiter output wave form. The

limiter output is a sinusoid with a peak 1.1+3 times the limiting

level. Since the phase-shifting network is a low-pass filter,

the wave form at the input of the amplifier should be nearly

sinusoidal. If this is the case, the prediction based on the
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describing function for the nonlinear element should be fairly

accurate. If amplification G were increased, a larger quanti-

tative error could be expected. As can be seen from the output

in the section on describing functions, the greater the gain,

G (X in that discussion) , the more nearly the output approaches

a square wave and the less applicable the describing function

method becomes.

ANALYSIS BY MEANS OP SINGULAR POINTS

The tunnel diode is an example of a two-terminal resistance

in which the instantaneous current ir and instantaneous voltage

e p are related by a curve similar to that of Pig. II4. (1, 9).

Other means are possible to obtain this curve. Utilizing the

ideas in Appendix B concerning singular points and considering

the nonlinear element as being composed of several linear ele-

ments, a stability analysis can often be made.

,^ir=f(er )
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The functional relationship is i = f(e p ) and may possibly

be found by experiment or expressed in analytic form. In the

central region the variational resistance is negative, implying

a source of power. For the tunnel- diode, the region between

points b and c on the curve represents a decrease in the tunnel-

ing effect with subsequent decrease in current as the valence

band in one region of the diode is raised to a position opposite

a forbidden band in the other region by the increasing voltage

(9). The variational resistance at any point on the curve is
1

defined by r =
dJL.

de-

Consider the circuit in Fig. 15 for an analysis by means

of singular points where the components other than the box are

linear and a constant voltage E is applied to the circuit.

L R
•R

i C E -±r-

Fig. 15-

Let ipj be the battery current and i the current through

the nonlinear element. The current through the capacitor is

thus ( ipj - ir ) . The loop equations are

1

C

-e r = - f(er ) ip fdt
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de.

dt
- f(e T.) (1)

C L

and
Ldi

E = RiR +
R

dt
+ [ (iR - ir )dt

diR 1
= - (E - RiR - e r )

dt L
(2)

di R
The singular or equilibrium points exist where = and

de.

dt

dt

= simultaneously. Thus at the singular points:

E = RiRS + e rS

iRS - f(e r ) = ir c

The fact that at a singularity iRg = i rg indicates that the

capacitor current is zero.

A conventional technique can be used to determine the

singularities. From a point on the e r axis corresponding to

steady voltage E, a load line may be erected with slope deter-
1

mined by resistance R. The slope of this line is - — . The
R

intersection of f(e r ) with this load line determines the singu-

lar points. The singularities are thus dependent not only upon

the nonlinear characteristic but upon the applied voltage and

loading resistor as well. Cases of special interest have an

intersection in the negative resistance region. In Fig. 1 two

cases are shown; the three intersection and single intersection

cases. There is a basic difference in operation in the two

cases, the first case being a switching operation and the

second case leading to an oscillation.
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Following the routo described in Appendix B, near a

singularity the substitutions can be made:

i,R
= iRS + i and eR = e rS + e

where i and e are small changes. Equations (1) and (2) thus

become

:

de 1

dt C

1

i - (-)e
r

di 1— - (-) C-Ri - e)

dt L

' (3)

(w

or

di

de

1

(-)(-e - Ri)
L

1
r

1
-)\ -(-

(5)

(-) -(-)e + 1

C I r

From (5) coefficients may be written:

1 1 1 R
a = -(-)C, b = - , C = , d =

r C L L

and the characteristic roots are:

X
l>

A
2 = -\ - [— +

'J ±
2 \ rC L/

11
_i_

R

Arc L
+

k

LC,

f R

i r

,1/2-

(6)

An analysis can now be made for various conditions in terms of

the characteristic roots X-i and ^-2*

Now consider the straight-line approximation to the true

characteristic shown in Fig. l6 . The figure may be divided into

three regions. Taking as a first case the situation where E and

R are large enough so that three intersections occur, the varia-

tional resistances are -r^, +r2,and +r-> in regions 1, 2, and 3,
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respectively. The slope of the load line is -l/R in all regions

Now the types of singularities in each region may be examined.

In region 1 the slope of the load line, -l/R, is less in magni-

tude than the slope of the negative resistance characteristic,

-l/r-,. Thus R > Pn, Substitution into equation (6) indicates

if /i R\ F/i Rr ij.

Xt, \o = ""
\

~
\
— + _ ]±'( — + — + — (positive number)

2 I ArC L/ [VrC L/ LC

l/2

and the characteristic roots are real and of opposite sign. The

singularity in this region is a saddle and unstable.

Region No.

2

Region No. 1 Region No. 3

Pig. 16.

The variational resistances are +T2 and +ro in regions 2

and 3, respectively. Substitution into equation (6) indicates

that the singularities in these regions are stable and are
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either nodes or foci depending upon the relations among the cir-

cuit element values. The circuit used under these conditions

can be the basis for certain types of triggering circuits char-

acterized as having two stable states separated by an unstable

state, the triggering action coming from suitable influences

applied from outside.

Several solution curves for small variations in current and

voltage are shown sketched in Fig. l6 . Since the types of singu-

larities are known, the only additional knowledge necessary is
di di

that — = along i = -e/r, the resistance load line, and — =co
de de

along i = e/r, the characteristic of the nonlinear resistance

element, plus the slopes of m-^ and rri2 near each singularity.

As noted, in regions 2 and 3 the singularities are stable and

are now assumed to be nodes. The curves represent the way small

variations i in the current in and e in the voltage ep change

with time following some small initial disturbance of the system.

Within any one region the system is assumed .linear so i and e

are not necessarily limited to small values. If the system

starts at some initial point it does not necessarily come to

rest at the equilibrium point nearest the initial- point , as may

be seen by observing point P in Fig. l6; but the system will

come to rest at one of the two stable points.

If it is specifically assumed that the .circuit is in the

stable state characterized by the singularity in region 2 and

voltage E is then raised by an amount AE sufficient to cause

the load line to shift, a possible situation is shown in Fig. 17.

AE is actually a large voltage for the condition shown. The
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Region 2

mi \ m
2

Region 1 Region 3

Fig. 17.

singularity in region 3 has moved to position 3'. However,

singularities associated with regions 1 and 2 have moved outside

these regions. If the straight-line characteristics of the non-

linear resistance are extended, however, "virtual" singularities

can be located as shown in Pig. 17. Virtual singularity 1' is

associated with region 1 even though it is actually located in

region 2. By the same token, 2' is associated with region 2

even though it is located in region 1. The singularities are

of the same type as before the change in E and solution curves

are sketched as before.

In the case where only one intersection occurs, R < r-, .

Figure 18 indicates this situation.

The singularity is located in the negative resistance

region. Extending the portions of the characteristic with
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Region 2 Region 1 Region 3

Fig. 18.

positive slope two virtual singularities may again be found,

this time in region 1. If it is possible for the components to

be chosen such that r^ < L/RC, the magnitude of the resistance

in the region of negative slope is less than the impedance of

the parallel LCR circuit at its resonant frequency. Again sub-

stituting in equation (6) indicates that X^_ an<^ ^2 mus "k have

positive real parts in region 1. Since R < r^, the singularity

cannot be a saddle and must be a node or focus. If it is a

focus,

k LC/ V

>
l<

1 R

and oscillations are implied. For the virtual singularities the

argument is: r > 0, \-^ and X2 have negative real parts from (6),

and the operation is stable.
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In Fig. 18 it is assumed that an unstable focus exists with

singularity 1 while stable foci exist for both 2' and 3'. The

solution curves relating instantaneous values of ip and e r are

spiral curves, spiraling outward from singularity 1. When the

curves cross into regions 2 or 3, they become spiral curves go-

ing inward toward virtual singularities 2' and 3' • An important

result of these actions is that eventually a closed solution is

reached, as indicated by the elliptical path in Fig. 18. This

closed curve is the "limit cycle" and appears only in systems

having nonlinear negative resistance. Quantitatively, the ex-

istence of the limit cycle may be justified. If initially the

amplitude is very small, the solution curve is entirely in region

1 and the amplitude must grow. Alternatively, if an extremely

large amplitude were to exist initially, the solution curve

would be mostly in regions 2 and 3, where the amplitude decays.

Such a small portion of the curve would be in region 1, with

increasing amplitude, that the net effect would be decay. There-

fore initial large amplitude decays, initial small amplitude

grows, and there must be some intermediate amplitude which

neither grows nor decays.

Experiments with a circuit similar in nature to that of

Fig. 15 containing a tunnel diode, voltage source, magnetic

coil, and resistance in a configuration such as Fig. 19, indi-

cate that at least the inductance or capacitance of Fig. 15

must be considered for the switching or oscillation operations.

By means of Fig. 17, an attempt can be made to show why

these actual components or else parasitic reactances must be
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Tunnel
diode

Fig. 19.

utilized. Figure 17 indicates that at least one reactive ele-

ment is essential for an explanation of what takes place during

the interval of triggering. During this interval the path fol-

lowed must be the point relating instantaneous values of ir ,

and e p must be the characteristic of the nonlinear resistance

element. If no reactances were present, the point relating in-

stantaneous values of i-^ and e would have to move along the

straight-line path of the resistance load line. Without re-

actance, ip must equal ir and points corresponding to these

two currents must coincide. As previously noted, this is not

the case except at singularities and triggering between singu-

larities could not occur. Thus a difference between paths could

not occur except through a component of voltage drop across the

series inductor or because of a current through capacitor C.

Possibly only one of the reactive elements is actually

necessary, in which case a single first-order equation is suf-

ficient to describe the circuit. The equation describing the
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circuit if L = is

de Re
C — + r + —

dt eR

where r is -Ft, +^2, or +n, depending upon the region of opera

tion. There is a single characteristic root:

1
-

(r + R)

rR

In region 1, r < 0, and R >
|
r so that X > and the system is

not stable. In regions 2 and 3, r > so that X < and the

system is stable. Assuming the inductance present but C = 0,

yields

L [
—

J
+ (R + r)i =

Vdt/

.
(R + r)

In this case, X = - . In region 1, r < 0, and R>
j
r[,

L

so that again X <• and the system is stable. In regions 2 and

3, r > so that X ^ and the system is stable. This result,

however, is a contradiction of the previous analyses which were

experimental in nature, and the conclusion seems to be that a

capacitance in parallel with the voltage-controlled resistance

is necessary in obtaining the operating characteristics of the

circuit

.

Finally, it seems apparent from the solution curves that

whatever reactances are present in the circuit play a part in

the time to trigger from one stable state to the other. Gen-

erally it is desired to keep this time at a minimum and it is

possible that parasitic or stray reactances are sufficient to
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serve the purpose without the insertion of actual reactances

of larger magnitude.

DIRECT METHOD OF LYAPUNOV AND VARIABLE GRADIENT
METHOD FOR STABILITY ANALYSIS

Stability information about a system may at times be ob-

tained without actually solving the differential equations de-

scribing the system (5, 6, 8, 10). For linear systems the

Routh-Hurwitz criteria provide an approach of this nature. The

core idea of the direct, or second, method of Lyapunov is that

it is sometimes possible to form functions of the system

equation(s) and time which possess certain properties useful in

the analysis of the system. Chief items of interest are several

theorems leading to a "Lyapunov" function or "V" function, the

generation of this function, and the analysis of the function.

The equations exhibited in the introduction form what is

sometimes known as a "canonic form" and are again presented

here

.

dx1 /dt = X]_(x]_, X2, .. . . , xn )

dXp /dt — Xp { x-j , Xp , . . . , x. )

dx
n
/dt = Xn (x1 , x

2 , . . . , xu )

The first theorem attributable to Lyapunov regarding these equa-

tions may be stated.

For a set of first-order differential equations of the form,
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x. : a. lXp ^2 , • • • , ^\J **•'*•» <- > • • >
n

and such that,

1. x
i

= X
i
(0, 0, . . ., 0) = i = 1, 2, . . ., n

2. The functions X^ are continuous with respect to all

variables x- in the entire state space.

Then there exists a real-valued scalar function

V(x-,, X2> . . ., x^) with the properties:

a. V(x3_, X2, . . ., xR ) is continuous and has continuous

first partial derivatives.

b. V(x-j_, X2, . . ., x ) > except when x^ = for

i = 1, . . ., n; (i.e., V is positive definite).

c. V(0, 0, . . . , 0) = 0.

2
r

d. V(x
1 , x

2 , . . ., xJ-900 for (2- x
±
*j ~> c

dv n. /pv d*-i\ n
e. V = — = £_ • 1 < - e 21 *i

dt 1=1 V^xi
dt / 1=1

(i.e., V is negative definite).

Then the system is asymptotically stable in the large. Asymp-

totic stability in the large assures that for any real finite

initial conditions on the system the output of the system

will approach the equilibrium state of x - 0, x = 0, as t—»cx=>

Some further definitions are necessary here. The function

V is called positive definite or negative definite in a given

region about the origin if at all points in this region it has

the same size (positive or negative), and, except at the origin,

is nowhere zero. The function V is called semidef inite if it

has the same sign throughout the region except at certain points
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at which it is zero; it must be zero at the origin as well. The

function V is called indefinite if in the given region about the

origin it takes on varying signs.

As a simple example of the use of the theorem, consider

the V function (without considering for the moment how it was

generated) :

1 2 2
V = — (Ipt-, + x

]_
x2 + x2^

It may be readily verified that conditions (a), (c), and (d) of

the theorem are satisfied. The question arises then as to

whether the quadratic form above is positive definite. For the

general quadratic form

F(x-,, Xp) = ax-, ^ + 2bx-,Xp + cxp

and a necessary and sufficient condition for it to be positive

pdefinite is that a > and ac - b > 0. For the form above,

a = 1.33, b = -33, a^id c = .33, and condition (b) of the theorem

is satisfied. In order to determine whether condition (e) is

satisfied

:

» •

8 . X]_X2 xpx! 2

V = — X]_xj_ + + + — xpxp
3 3 3 3

In general, there will be a relationship between x^_ and xp

.

Let Xo = (~3x? " 3x-, ) , Xp - x-j. Thus

lx2 2p
xl^ -*

V = -(x-, + + - xp )

3 3

The last line above is also a quadratic form and, in addition,

is negative definite. Since all 'the conditions of the theorem

are satisfied, it is asymptotically stable in the large by
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Lyapunov's direct method.

An analogy may be drawn between the potential energy of a

system and the Lyapunov function, V. The positive V and nega-

tive V correspond to a system that dissipates energy. The re-

sponse to any initial condition will cause the system to dissi-

pate energy until the energy is zero. Conditions (1) and (2)

of the theorem are satisfied by this condition. Herein lies a

possible key to the generation of V functions but there are a

number of analytical methods of generating these functions

which appear more promising.

A geometric interpretation may be placed on the theorem

and this interpretation can be most easily shown in two-dimen-

sional space. Assume a V function of two variables that satis-

fies conditions (a), (b) , (c), and.(d) of the theorem. If

V(x, , Xp) is set equal to a constant C, then the resulting equa-

tion describes a closed bounded curve in the x-,, Xp (state)

plane. If V(x-,, Xp) is a quadratic form, then the curves are

ellipses. If C is allowed to have different values, i.e.,

< C-j_ < O2 < Co, ..., V(x-]_, X2) would appear as in Fig. 20.

If the time derivative of V(x-,, Xp) is taken, the result is

dv PV dxx 2V dx2

dt ^x-l dt 2x2 dt

Consider a phase trajectory crossing the curve

V(x-,, Xp) = G, at point P. The partial derivatives may be

written:
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^^-Phase trajectory--
Cl stable system

-Normal to V=Co curve
at P and positive in

direction shown

Thus

dv

dt

Fig. 20.

V fdl fdV
2'

+^ LV^X1

5V

1/2

cos

'.V
2

9*2

Jx2/ -

2W2

f

+

>li/2 r

cos

+

«?x2 /

dx-i dx2
cos $ + cos 9

dt dt

The second factor on the right represents a projection of the
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tangential velocity along the trajectory at point P onto the

normal of the V(x-,, Xp) - C, curve at point P. It is obvious

that if V is negative, then

dx-[_ dxp
cos + cos 9

dt dt

must be negative and that the point P crosses the V(x,, Xp)

curves from outside to inside. This is sufficient to assure

that as t—5» o° , the state variables x-^ and X2 will approach

zero and the discussion may be considered a rough proof of the

theorem for the two-dimensional case.

If a system is unstable, Lyapunov's direct method may be

used to establish this also. A theorem to do this is identical

to the theorem previously stated with the exception that in

condition (e), V is required to be positive • definite (that is,

of the same sign as V) . This theorem may be stated in a some-

what different manner also. For a system described by the

canonic set previously shown, if there exists a real valued

function V(x-,, Xp, . . ., x^) with the following properties,

(1) V(x-,, Xp, . . ., x ) is continuous and (2) the time deriva-
dV

x

tive — is negative definite, then:
dt
1. The system is unstable in the finite region for which

V is not positive semidefinite

.

2. The response of the system is unbounded as t —> oo

if V is not globally positive semidefinite

.

A graphical interpretation could be made of this also as for the

stability theorem with the net effect of showing the point P of

the phase trajectory crossing the C. curves from the inside out.



ko

A definite point should be made concerning the stability

criteria obtained by Lyapunov's direct method which is that they

are sufficient to establish stability; they are not necessary

criteria. This is much the same as saying that if a function

cannot be discovered which will either satisfy the conditions

for stability or instability does not mean that the function

does not exist; further, a Lyapunov function which establishes

a stability or instability for a system is not unique.

It is apparent from the stability and instability theorems

that the major problem is tne actual generation of V functions

in order to test for stability or instability. A promising ap-

proach to the generation of V functions is called the variable

gradient method. The method is summarized below.

If a system is stable in a given state space, then a V

function exists for the system. This statement follows the

stability theorem and discussion following it. Provided only

that V exists, its gradient VV exists. The last statement is

discussed in reference (6) and a discussion of the proof given.

Thus given the gradient, both V and V may be calculated.

Actually, the approach is round about as would be suspected from

the use of VV rather than V. Without, as yet, specific know-

ledge of "V V except that it will be some function of the state

variables, we proceed to determine V from \?V. Thus

<?V dx1 dV dx2 3V dxn
V = + + . . . (1)

^x-^dt <?x2 dt
<
9xn dt

The system canonic equations may now be inserted for the x.j_ and

V put into vector form:
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V = V V • x (2)

Now V may be obtained by the line integration of equation (2).

r(x1 ,X2, • •
.
,xu )

V = V . dx (3)
'0

This line integration is independent of the path. The sim-

plest path of integration and perhaps the easiest for actual

integration is:

/ xl
f
x2

V =± I V1 (yi , 0,0, ... 0)dV
1

+ I V
2
(x

x , /
2

, 0,0, ...0)d/,

xn
+ . . . + Vn (x-L, x2 , ..., xn-1 , /n )d/tn (W

o

where the subscripts on the V^ under the integral sign refer to

the rows in the matrix representation of V V. Reference (10)

discusses a uniqueness theorem which states that for a unique

scalar function V to be obtained by a line integration of a

vector function VV, the generalized curl equations

or

3 x
j 3 *i

x v v = ° (5)

must hold. This is the n dimensional representation of Stokes'

theorem. Proceeding, an arbitrary column vector VV is con-

structed with coefficients which are themselves functions of

the state variables.

/' a llxl + a 12x2 + ••• + a lnxn
)

VV =
{

21 1 22 2 2n n
(6)

anlxl + a n 2 x2 + • •
• + a nnxn
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Reference (6) discusses the coefficients a., which are restricted
11

to functions of x. only while a nn is set equal to 2 to simplify

the process of closedness. The a • . are composed of a constant

part ajik and variable part a i ? v ( *]_ , x2 , ..., *n -±) •

In summary, the outline for formal application of the

method is:

1. Assume a gradient 'of the form of equation (6).

, 2. Prom the variable gradient form: V =VV • x

( equation 2) .

3. In conjunction with and subject to the requirements

of the generalized curl equations, equation (5),

constrain dV/dt to be at least negative semidefinite

.

[|_. From the known gradient, determine V and the region

of closedness of V.

5. Invoke the necessary theorem to establish stability.

As an example, following the steps indicated above,

consider the system shown in Fig. 21. Let the nonlinear

r(t)=p

t >
^ NL

3

G
-x

lement be y = x^ and G =

Fig. 21.

1

If it is assumed that
S(S + 1)

the equations of motion written in state variable form are
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Xn =
1 = x2

Xp ~ — Xp — X-i

then:

Step 1

VV =

a ll xl + fl 12 x2

8 p -i X-i t 8ppXp

"W-

Vv,

Step 2

V = (a-nXn + a-,pXp)x-i + (ap-,x-i + 2x9 )x11A1 a 12^2 y ^l 21^1 ^2' 2

V = Xn x2^ a ll " 2x
l ~ a 21^ + x2 ^ a 12 ~ ^^ ~ a 21 xl

Step 3

To constrain V to be at least negative semidefinite, the

coefficient of x-. x
?

in the last equation in Step 2 can be set

equal to zero and also < a-^ ^ 2. a2]_ can be any positive

numb e r . Thu s

V = -x
2
2
(2 - a 12 )

- a i2xi > an = a 21 + 2x-

and

Vv
a 21xl + 2xl + a 12 x2

S q -i ^v -
]

"t" ^ -X-Q

= a 12 < 2

For simplicity let a-,p = 1

Then

2 x2 ^ xl

implies
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1 =
P(a 21x1 )

a 21x + a-21v
+ x

l
{
a 21v}

and if a21v ~ ^ an<^ a 21x ~ ^' ^e a^ove relationship is

satisfied. Finally,

W

Step ij.

V :

2x-^ + x-]_ + X2

X. + 2X

/ Xl
= f (2Xl3

x2
+ x-^)dx^ +j (x-i + 2x2 )dx2

3xl^ x
l

V = + + xlx2 + x2
2 2

.

Step 5

Since V is positive definite and V is negative definite,

the conclusion is that the system is globally asymptotically

stable. Other valid choices of a-,
2
yield other valid V func-

tions .

In summary, autonomous systems seem to be the largest field

of application of the variable gradient technique. The method

is applicable to single valued continuous nonlinearities where

the nonlinearity is known as a polynomial,, a specific function

of x or a curve determined from experimental results. The

method generates V functions to suit the problem at hand.
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APPENDIX A

The Method of Krylov and Bogoliubov

1. General . The method of Krylov and Bogoliubov (1, 2, $)

is a series approximation technique for determining the free

periodic oscillations of second order (and with a more general

approach, higher order) systems. It is of some interest not

only as an introduction to their principle of harmonic balance

and the describing function technique which is. based upon it,

but also for itself.

Since the method in its more general application is an

equivalent linearization process leading in some cases to a

kind of "transfer function" for a nonlinear system, it will be

of some merit to briefly review the linear transfer function

concept.

The transfer function is defined when simple harmonic var-

iations with respect to time exist. It is the complex ratio of

the resulting response to a driving force. Depending upon the

particular situation, the driving force and response may be

either currents or voltages in any combination (or other physical

analogs to these quantities) . The transfer function may there-

fore have dimensions of impedance, admittance or pure numeric

and consists of real and imaginary parts, or magnitude and

angle. Both parts are generally functions of frequency but not

of amplitude for a linear system. Transfer functions are usually

not difficult to derive; for example:
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L
E-

Hf

R E«

1 rnL

mC
1
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R
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+ -
[
— + mL) — + mLl

R ^ mC / mC

1

R

1 —- + mL
mC

1 o\

1

V- i

R

A 11 A12\

A 21 A
22j

E- R

E
1 A 11 1

R + j(coL - )

coC

where E-^ = input voltage

E2 = output voltage

co = frequency of input

m = jco

In the course of analyzing a nonlinear system, it is often

desirable to separate the linear and nonlinear elements so far

as possible. The transfer function may be found in the usual

way for linear elements. A kind of equivalent transfer function

is found for the nonlinear elements considering fundamental com-

ponents only. This equivalent transfer function is called the

describing function for the element. Generally it is a function

dependent upon amplitude which may or may not depend upon
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frequency . It leads to results of useful accuracy and has mean-

ing only in the event that the nonlinearity is such that the re-

sponse to a simple harmonic driving force does not itself dif-

fer too much from being simple harmonic.

2. The Krylov and Bogoliubov Method for Second-order Systems

Consider the following equation:

x + P(x, x) = (1)

x = the control (state variable

F(x, x) = a nonlinear function in which linear terms

are contained if they arise.

Put F(x, x) in the following form:

F(x, x) = u)
2x + u.f(x, x) (2)

Equation (l) may now be written:

x + co
2x + u-f(x, x) = (3)

The approximations below require that u. be small. A solu-

tion is desired of the form:

x = a sin(a)Q,t + <i)

x = a coq c o s ( coq t +
(f))

with

a = a(t) (6)) unknown

= 0(t)
. (7)/

For equation (5) to hold, special conditions must be im-

posed. For [i = in (3), the solution is simple harmonic motion

of the form given in (1+) with a and <j)_ constant. For u. ^ 0, the

solution is no longer simple harmonic motion. Functions (6)

and (7) permit correction of nominal frequency o)q and if they

can be found, equation (I4.) can be rigorously correct. This is
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no mean task and an approximation to a(t) and $(t) is usually

sought.

Apparently the actual frequency at any time is:

0) = co + — w
(8)

dt

What conditions are necessary if (5) is to hold? First

differentiate equation (I4.) with respect to time.

da ' d

x = — sin(o) t + 0) + a /cos(o) t + 6) (coq + —
dt L ' dt '

da d0
x = — sin(a)Qt + (j)) + a — cos(o>Qt. + 0) + ao)oCos(o)Qt + ffi) (9)

dt dt

If (5) is to hold:

da d<b— sin(a) t + $)+a — cos(o) t + ®)=0 (10)
dt dt '

Also differentiate (5) with respect to time.

:.
da d<P

x = — coq cos(coQt + 0) - a Ua j
sin(o)Qt + 0) (coq + —

)

dt ^ dt

da
x = — coq cos(a)ot + 0) - a o)q sin(o)Qt + 0)

- a goq — sin(o)Qt + 0) (11)
dt

Insert (10) and (11) into (3) with z = (con t + 0), yielding:'0

da
. o d^ 2

dt ." " dt
o)q cosz - acoQ smz - ao)Q — sinz + o)q a smz

+ u-f(a sinz, ao)Q cosz) =

da d(j)— 0)0 cosz - ao)Q — sinz = -u.f(a sinz, ao)Q cosz) (11a)
dt dt
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da d(f— sinz - a — cosz = (10)
dt dt

Multiply (10) by o)q cosz and (11a) by sinz and add,

yielding:

d(j) 1— = |xf(a sinz, scoq cosz)sinz (12)
dt aa)Q

Multiply (10) by goq sinz and (lla) by cosz and add,

yielding:

da 1

dt (jOq

|af(a sinz, ao)Q cosz)cosz (13)

a(t) and $(t) could not be found by integration, but an approxi-

mate solution for the set must usually suffice. Equations (12)
da d(j)

and (13) indicate that if u- is small, — and — are small, and
dt dt

that a(t) and ^(t) are slowly varying functions which may be

considered to be constant at their average values over a

single cycle. Thus:

da _ 1
f
2%

— =
I u-f(a sinz, a6)Q cosz)cosz dz ( ll\.)

dt 2-jigoq /q

dp _ 1
f
2li

— ==
/ u-f(a sinz, ao)Q cosz) sinz dz . (15>)

dt 2naco /

Under the integral, _a is assumed constant so the integra-

tion is not overly difficult. If (2) is integrated:

F(x, x) = GOq x + u-f(x, x)

F(x, x) - C0q x = u-f (x, x)

P(a sinz, aooQ cosz) - coq ( a sinz) = u.f(a sinz, acoo cosz)
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da

dt

2ti

27lO) )

P(a sinz, aa)Q cosz)cosz dz

2 /2it
0)

"O 271
/

a sinz cosz dz

da

dt

2%

= - I P(a sinz, ao)Q cosz) cosz dz
27lO) /

Employing the square of (8) with (15) yields:

(16)

9 . o d0 /d0^
0)^ = o) + 2oo — + —

dt V dt,

2ti

co^ = goq + 2o)q

2Ttao)o

P(a sinz, ao)Q cosz)dz
'0

.. 2 ,.271

na j

a sin 2 z dz

a)
2 =

1
2n

F(a sinz, aa)Q cosz)cosz dz (17)
Tta /

With (l6) and (17) the response of a system of the form of

(1) may be found in the form of

x = a ( t) sinz ( t)

where a(t) and z(t) are given by

da a

dt 2co

b(a, co ) (18)

dz

dt
= go

2 = g(a, oo ) (19)

and where, approximately,

'"271

F(a sinz, acoQ cosz)cosz dz
Tia lQ

b(a, o)n ) = — (20)
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l f^
g(a, coq) = — F(a sinz, acog cosz)sinz dz (21)

na /

3. Generalization of the Method . In the above form, solu-

tion may be obtained for nonlinear equations in which the non-

linearity was of the form

F(x, x) = g(a, co)x + b(a, co)x

and as developed applied to second-order systems. It is appar-

ently possible to' obtain solutions of a similar nature to higher

order systems with a more general approach; however, for demon-

stration of the method the second-order system is illustrative.

Now consider the nonlinear function y = F(x, x) and let

x = a sin cot . Then :

y = F(a sin cot, aco cos cot)

Let u = cot and expand in a Fourier series.

1
f
2^

y = — F(a sin u, aco cos u)du

f
1

(

2%
, \+ j— J F(a sin u, aco cos u)sin u dur sin cot

U 'o )

/i (
2%

\+
\
—

J
F(a sin u, aco cos u)cos u dur cos cot

+ higher harmonics

If the nonlihearity is symmetrical, the first integral in the

series is zero. This is not always so. For a symmetrical non-

linearity, neglecting higher harmonics, a function is achieved

of the form:

b( a, co) x
y = g(a, co)x + (22)

co
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where x = a sin cot, x = aco cos cot from the last section;g(a, go)

mid b(a, co) are given by equations (21) and (20), respectively.

Equation (22) is linear even though the original y = F(x,x)

is nonlinear. In connection with this, note that what has been

found thus far by the method of Krylov and Bogoliubox are ap-

proximation functions which replace a nonlinear function by an

equivalent linear function, and thus the appellation "equiva-

lent linearization". The approximations are useful if the non-

linearity [i is small so that the amplitude and phase charac-

teristics of the nonlinear element may be considered constant

for some period of time. In other words, a nonlinear element

may be approximated by an equivalent linear one and the approxi-

mation is useful if the original nonlinearity is not too large.

The approximation may be accomplished by means of a truncated

Fourier series.

l\.. Example . The object of equivalent linearization in

conjunction with the principle of harmonic balance, then, is to

choose the linear replacement element such that the fundamental

slnz and cosz components are the same for both linear and non-

linear elements under a simple harmonic motion. The equivalent

linear element may be denoted by a function which is a "describ-

ing function" for the nonlinear element subject to the restric-

tions of the approximations.

As an example, consider a combination of electrical dis-

sipatlve and reactive nonlinear elements (or possibly just a

term in a differential equation) for which the voltage is some

function of both the current and its first derivative. Thus:
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di
v - f(i, —

)

dt

For an equivalent linearization of this function, the linear

function is:

di
v = gi + b —

df

If it is assumed that the current through the element is sinu-

soidal and described by

i = I c o s ( w t + 0) = I c o s z

the voltage across the nonlinear element or term is:

v = fl I cosz, -col sinzj

The fundamental sine and cosine terms are respectively, .

1
(
2*

Vs;l = — ) f(l cos z, -col sin z) sin z dz
n /

1
f
2*

Vc-|_ = —
I f(l cos z, -col sin z)cos z dz

The voltage across the equivalent linear element is:

v = (gi cos z) - (bco I sinz)

By the principle of harmonic balance the values of g and b

may be found.

. 1 z
2*

g = —
J

f(l cos z, -co I sin z)cos z dz

1 /
2*

b = — I f(I cos z, -co I sin z)sin z dz

di
The function v = gi + b — is thus a function describing the

dt
relationship between current and voltage for this combination of

elements, or a "sort of" transfer function.
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APPENDIX B

Analysis of Singular Points

The analysis of the singular points of a differential equa-

tion is an extension of phase plane analysis and can be useful

in determining the properties of the solution. Qualitative as

well as some quantitative aspects of the solution can be had

through a study of the locations and types of solution curves

existing near singular points. It is usually desirable to have

appropriate equations relating the variables of the system al-

though in some cases relations available only in graphical form

may be used (1,2).

A graphical representation of solution curves on a plane

surface with two dimensions is conveniently used in a study of

singularities; thus such a study is limited to the case of two
dy Q(x,y)

variables. If a differential equation of the form — =
dx P(x,y)

is investigated, where P ( x, y) and Q(x, y) may be nonlinear

functions of x and y, the equation is equivalent to the two

equations

:

dx dy— = P(x, y) — = Q(x, y)
dt dt

and is obtained by eliminating the independent variable t.

dy Q(x, y)
Elimination of t makes — = an autonomous equation and

dx P(x, y)

limits it to situations where any forcing function is either

entirely absent or extremely simple.
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dy Q(x, y)
Singularities of — = are those values of x and y

dx P(x, y)

for which both P and Q, become simultaneously zero. At the

singular point x = x s and y = y s and P(x a , y s ) = 0,
dy

Q(x g , y s ) = 0, and — becomes indeterminate. There may be a

dx
number of singularities if P and Q, are nonlinear. Since

dx dy— = and — = at a singularity, the singularity is always a

dt dt

point of equilibrium. As was noted in the introduction, the

nature of solutions near a singularity may be explored by sub-

stituting x = x s + u and y = y s + v, where u and v are small

variations. With these substitutions,

dy Q(x, y)

dx P(x, y)

becomes

:

dy dv Q(x s ,y s ) + Cu + Dv + C 2u
2 + D 2 v

2 + F2uv

dx au P(xs ,u s ) + Au + Bv + A 2u
2 + B 2v

2 + E 2uv +S> ^S

A, B, C, D, real constants. A Taylor's series expansion

may be necessary. The most important terms in determining the

solution near a singularity are the linear terms in u and v.

The kind of singularity depends only upon the linear terms,

provided these terms are present if nonlinear terms are present.

In other words, if C 2 j in the numerator so that a term u 2

appears, the linear term Cu must be, present with C j for the

singularity to be simple. The same condition applies in both

numerator and denominator for both u and v. Under this condition

with a simple singularity, the properties of the solution near a

singularity depend upon the equation:
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dv Cu + Dv
(1)

au Au + Bv

Only linear terms appear. If there are higher power terms in

u and v present, a study cannot be made from this equation alone.

Equation 1 is equivalent to the pair of simultaneous first-

order equations:

dvdu— = Au + Bv
dt

= Cu + Dv
dt

This pair of equations is a simple case of the more general set

of n simultaneous first-order equations.

A slight digression here for a discussion of a technique

which simplifies matters later is in order. The set of n first-

order equations may be written

x
l

= a llxl + a 12x2 +
* ' '

a lnxn

x2 = a 21xl + a 22x2 +
' • •

a 2nxn

(2)

*n ~ anlxl + an2x2 + • •
a nnxn

where x-, .

Moreover

:

. x are the n dependent variables

a] =

x =
dx

dt

(
x) - K}

(3)

'11 a 12 * '
. a In

'nl
a n2 • • • 8nn
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Solutions for equations of the form (2) are well known and

involve exponential functions which retain their form upon dif-

ferentiation. Thus

f
x

j

=
{

c x] exP (^
A. is a constant determined by the coefficients in the differ-

ential equations. Differentiating the solution and substituting

into (3) yields

X(x) = |A]{x}

which may be written
1

[a]- x [i]J= fo)J

where I is the identity matrix. The equation may be satisfied,

except for the trivial case, only if

r

lM x il
L J

= O

where the A's are the characteristic roots or eigenvalues.

Physical systems can often be described by differential

equations of the form of (l) and usually the right sides of the

equations involve several of the dependent variables. A system

in which there is no coupling would have, on the right side of

each equation only the single variable which appears on the

left. Such an equation is said to be in normal form. A system

with coupling may be converted to one having no coupling by the

mathematical process of changing the variables through an ap-

propriate linear transformation. Thus

xl
= Pil*l + Pl2^2 + • • . Pln^n

x
2 = P21S1 + P22^2 +

• ' • P2n^n

*n = Pnl^l + Pn2^2 + Pnn-^n
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In matrix form, |xj = j_BJ /y| , P-j_
^
are constant quantities.

Rewritten

:

r-1
{t)- = DT W> *l*°

Rewritten

:

Thus:

[pj^i) = {yj = pj
1
[AJ (x) = QP]-

1

pQ^ (yj

(U)

A solution for (I4.) has the form jy| = \CY Jr exp(At) and

the characteristic roots of (I4.) are given by: [j3J
- X« rij = 0.

Thus
<-l ,-1

[B] - ,B [I] = [p] [A] [P] - ,B |V| [I] [P]

=w 1

[m - ^ pa]m
The determinant of both sides must vanish. Since P f and

P" 1
f 0, it must be that [jT\ - AB |~I^[ = 0. Therefore the

transformation [_Pj changing [~-A~j to [~B"j does not change the set

of roots for the set of equations.

"If the transformation matrix PPJ is chosen properly, [_B_{

can be made a diagonal matrix with all the elements not on the

main diagonal zero. The set of equations described by QbJ are

then said to be in normal form . The eigenvalues of I Bj are the

same as those of FaJ . The elements on the main diagonal of [j3j

must be the eigenvalues. Thus the set of equations in normal

form is:

71 = *i7i

y2 = \2J2

yn = ^n7n
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Lb] =

X-

X,

A n

If two roots happen to form a complex pair as X-^ = 6 + jco,

X 2
= 6 - jco, these two elements of |_B J would be complex quanta

ties. Often it is desirable to have only real quantities ap-

pear. An equivalent form for the equation when X-j_ and X 2 are

complex quantities is
*

71 = 12

y 2
= -(5 2 + a)

2
)y 1 + 2 5y 2

[b] =

Jn = Xn?n

1

-(6 2 + go
2

) 25

X n

The alternate form is usually preferable when complex roots

occur. The original set of equations jxj = lAj/xj , has solu-

tions {xj = jCxl exp(Xt) . In normal form f yj = (Cyj exp(Xt).

The only feature of the solutions which can be determined from

the differential equations alone are the eigenvalues which are

the same in each case. The coefficients (Cxf and jCyl can be
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found only from initial conditions. Solution in terms of x and

y can then be said to be equivalent, at least so far as quali-

tative properties are concerned.

Now the second-order system is described by just two equa-

tions. The matrix [_PJ needed to reduce this kind of system to

normal form is quickly found. Consider the use of the follow-

ing symbols.

W-O m :

b

d
t»

* (3

6

(
y ?

i

*1

y 2
j

[B] =
A-

\<

m - * dh =

Originally, only |x) and [~Aj are known, and [_Bj , [_PJ , and fyl

must be found. The characteristic equation is

a - A b

c d - A

or A^ (a + d)A - (be ad) = 0. The two characteristic roots

are

:

1
( r 2 -i

1 I2

(A 1 , A 2 ) = - (a + d) ±1 (a + d) + ij.(bc - ad)
2 (

where, in all that follows, A-, is the root found with the posi-

tive sign. If the roots are real, A-, is always the more positive

root. These values of X-, and A 2 serve to determine matrix [j3J .

Matrix [V] must satisfy [bJ = []PJ [Y] [V] . Therefore

|_P]] JJETJ = [~A^j £p^ . When these matrix products are found, the

result is:
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*x-

i\-

p\ 2

6X 2

-<a + Vb pa + 6b

-<c + Vd pc + 6d

Since corresponding elements of equal matrices must be iden-

tical, the following simultaneous equations exist:

/
-<\]_ = -<a + /b ; Y^i ~ "<c + d̂ ' The ratio — defined as m-^ is:

// X-i - a c

mi = — =
+ b

5

P

X 2 ~ a

A.-L
- d

In a similar manner, the ratio — is defined as m2 and is:

mo = —
A
2

- dp b

Both forms are necessary on the right-hand side of the above

equations since sometimes one form is indeterminate. The ratios
y 6
— and — are fixed by these equations and thereby fix the ele-
=< p

ments of matrix P within constant factors. The coordinate

transformation is fxj = j_PJ jyj , or

*1 = ^1\ + Py2

*2 = ?7l + &J2 = ^l^Jl + ^2^2

The types of singularities of a second-order system can now

be investigated and classified. -The simplest cases are those in

which the two characteristic roots are real. Equations for the

system in normal form are:

\.

and
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y 2 • ^2^2 d^2

yi x iyi d^i

Possibilities may be listed as follows where X-, designates

the more positive root.

1. Both Roots Real and Positive .

A 2
< X

2 < X 1 ;
< — < + 1

The equation for a curve representing a solution for the dif-

ferential equation on the y-,yp plane can be found directly by

integration:

C is an arbitrary constant dependent upon initial conditions.

These curves are generally parabolic in shape, with the exact

x
2

shape determined by — and constant C. The slope of the curves

dy 2 ^2 ((x P \n)-l) . .

may be found from = C — y-,
c ± and near the origin,

dy]_ ^!

dy 2 A 2
?• oo as j-\ * 0, since — < + 1. Thus all solution

dyi X
x

curves have a definite direction near the origin, being paral-

lel to the y 2 axis. Shown below is the case where values of
\ 2

A. 2 and A. 2 are not far different, i.e., <<— <1. The curves
X l

represent the locus of points determined by corresponding

values of y-^ and y 2 . As independent variable t increases, the

point relating instantaneous values of y, and y 2 moves along

the curve in the direction of the arrowheads. Initial condi-

tions determine the value of constant C, and thus the quadrant
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-+
• y-

within which a particular ' solution lies. Since the roots are

positive, both y-, and yp increase without bound as t increases

and this type of singularity is said to be unstable. On the

other hand, if y-, and yp were both to vanish as t increased, the

singularity would be called stable. One of the important fea-

tures of a singular point is the question of its stability.

Node is the name given to this type of singularity, referring to

the fact that the- solution curves have a definite direction near

the singularity. Either the y-, or y ?
axis can be a solution if

the initial conditions are such that one of the variables y-j_ or

yp is exactly zero. The axes then represent special cases of

solution curves to correspond to special initial conditions.
X 2

If the values of \-^_ and Ap are such that < — <r<l, "the

x l
solution curves take the shape of the figure below. These curves

show a similarity to the curves above, but as they change direc-

tion the breaks are much sharper.

A ^2

t
*• y i
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Consider the following solutions of the form:

y 1
= Cj_ exp(X 1 t) ; y 2

= C 2 expU 2 t)

dy 2 A 2C 2 exp(A. 2 t)

= < X 2 < < A.]_

dy-j_ ^ic i exp(X 1 t)

If t is large and positive:

\it . w Xpt ,
^2

e -1- > > e d and &
dyx

If t is large and negative:

A.it ^ j- \ot ,
y 2 ^

e x < < e * and — P°

Thus if X-j_ and A 2 differ sufficiently in magnitude, transition

between these two occurs suddenly and solution curves are essen-

tially two straight lines with a sharp break joining them.

2. Both Roots Real and Negative .

x 2
\n «= \i '<

; — > + 11
*1

Solution curves for the normal form are again parabolic,
dy2

but near the origin = and the curves are parallel to the
dy;

y-. axis. The singularity is again a node, but since negative

eigenvalues lead to ultimate disappearance of y-, and y 2
with

increasing t, the node is stable. For increasing t the point

representing corresponding values of y-, and y ?
moves closer to

the singularity at the origin but reaches it only at the infinite

value of t. The y-, and y ?
axes are again special solution curves

3. Both Roots Real and Opposite in Sign .

x
2

X ? < < X-, — <
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In this case
dy 2 X 2 12 U?Ai I— (— ) and y 2 ^l

= c - Solution

curves in the y^y2 plane are hyperbolic in shape and generally

pass by the singularity at the origin. Now X-^_ i- 3 positive and

y, ultimately increases without bound and the solution is un-

stable, even though y^ ultimately vanishes. This singularity

is the saddle.

Lj.. Roots Pure Imaginaries .

A-l = +jco

\ 2 ~ -J'w
5 =

d^2 9 Yl
The equation for a solution curve can be found from = -co^ —

dyi y2
? o o

as co y-i + Jn = C; the equation is that of an ellipse about the

singularity at the origin. The figure below shows a general

case. This type of singularity is known as a vortex. The solu-

tion is a periodic oscillation in time with no change in amplitude

4 ^2

*1

There is neither growth nor decay; the solution has a "neutral"

stability and the amplitude and size of the ellipse are deter-

mined by the initial conditions.

5- Roots Complex Conjugate s .

A-[_ = 6 + jo) ; A
2

= 6 - jco

In this case the normal form for the equations can be
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written

1

-(S 2 + GO
2

)

1

26

yi

dy
2

-(6 2 + 0)
2
)y 1

+ 2 5y 2

dy x y

and solution curves depend upon this equation. Integration is

possible following an appropriate change of variable. The qual-

itative nature of its solution curves, however, may be obtained

more easily from an observation of lines of equal slope. The

following seem evident from the equation:

2'
dy2

dyi

dy
2

dyi

dy2

dyx

= along y 2
=

(5^ + oo^)y 1

25

- oC along y 2
=

= 25 along 71

These isoclines carrying directed line segments of appropriate

slope are shown below and typical solution curves sketched.

4 y?

yi

3>o
§<:o
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The curves form spirals about the singularity at the origin

which is designated as a focus. If 6 0, the solution ulti-

mately grows without bound and is unstable. If 6 0, the

solution ultimately vanishes and is stable.

For simple singularities, then, of two first-order linear

equations, there are only four possibilities: node, saddle,

vortex, and focus. The node and focus may be either stable or

unstable, the saddle is always unstable, and the vortex is

"neutrally" stable. Only the types of solution curves associ-

ated with these four singularities can exist.
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Three approaches to investigations of nonlinear stability

are described in this report. The three approaches are: The

Describing Function Method , Analysis by Means of Singular

Points , and The Variable Gradient Method of Generating "V"

Functions used in conjunction with certain theorems attribut-

able to Lyapunov.

In Appendices A and B some derivations and descriptions

are contained which provide background material applicable to

the describing function and singularity point analysis ap-

proaches, respectively. The main body of the report was then

utilized to exhibit some results of the various approaches

applied to nonlinear stability problems.




