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Abstract

The aggregation or oligomerization of amyloid-b (Ab) peptide is thought to be the primary causative event in the
pathogenesis of Alzheimer’s disease (AD). Considerable in vitro evidence indicates that the aggregation/oligomerization of
Ab is promoted in the presence of Zn; however, the functional role of Zn in AD pathogenesis is still not well clarified in vivo.
Zn is imported into the brain mainly through the solute-linked carrier (Slc) 39 family transporters. Using a genetically
tractable Drosophila model, we found that the expression of dZip1, the orthologue of human Slc39 family transporter hZip1
in Drosophila, was altered in the brains of Ab42-expressing flies, and Zn homeostasis could be modulated by forcible dZip1
expression changes. An array of phenotypes associated with Ab expression could be modified by altering dZip1 expression.
Importantly, Ab42 fibril deposits as well as its SDS-soluble form were dramatically reduced upon dZip1 inhibition, resulting
in less neurodegeneration, significantly improved cognitive performance, and prolonged lifespan of the Ab42-transgenic
flies. These findings suggest that zinc contributes significantly to the Ab pathology, and manipulation of zinc transporters in
AD brains may provide a novel therapeutic strategy.
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Introduction

Alzheimer’s disease (AD) is a major neurodegenerative disease

affecting the elderly. The accumulation of amyloid-b (Ab)

peptides, which either form the major component of senile

plaques (SP) or the oligomer state in patient brains, is hypothesized

to be the primary causative event in AD pathogenesis [1–3].

However, what drives the Ab accumulation and how this

accumulation links to progression of the disease is not well

understood.

Increasing evidence indicates that the disruption of metal

homeostasis, particularly in Zn and Cu concentrations, is strongly

correlated with the pathophysiological process of AD [4–6].

Although copper and, to a lesser extent, iron can induce partial Ab
aggregation, they need a mildly acidic condition (pH 6.6) [7]. Zn2+

is the only metal ion available to aggregate Ab at pH7.4-the

normal physiological pH [8–10]. Elevated Zn was found and co-

purified with Ab from AD brain tissues, associated with markedly

high Zn level in cerebral spinal fluid (SP) [11]. Measurements from

well characterized late stage AD (LAD) also showed a significant

increase of Zn in brain sections of hippocampus, multiple

neocortical areas and amygdala compared to age-matched normal

control subjects [4,5,12–14]. Although several reports indicate that

Zn induces Ab aggregation at low physiological concentrations

[8,15,16], later studies showed that higher Zn concentrations are

required for significant fibril formation [17,18]. These pieces of

evidence were obtained mostly from in vitro experiments.

Therefore how Zn status influences Ab pathology in vivo

throughout life course remains unclear. Dietary intervention of

zinc intake with zinc chelators in animals show some encouraging

results [19,20,21]. However, genetic evidence is still lacking. More

importantly, zinc chelators are usually not zinc specific, and may

associate with other nonspecific phenotypes [22], precluding

accurate mechanism analysis.

Transport of Zn into cells is mediated by a set of zinc

transporters called Zrt-Irt like proteins (Zips). Zips are character-

ized as influx transporters that mediate Zn2+ uptake into

cytoplasm from extracellular or vesicular sources [23,24], and

are encoded by the solute-linked carrier (Slc) gene family, Slc39

[23]. At least 14 Zips have been identified in the human genome

[23] and 8 in Drosophila [25]. Most Zips are predicted to have eight

transmembrane domains (TM) with a histidine-rich loop between

TM3 and TM4, and to be located at the plasma membrane [26].

Although the uptake of Zn from the brain’s extracellular

environment to intracellular compartments in neurons and glia

cells is not completely understood, the Zips are thought to be
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involved in this process [23,24]. To our knowledge, the

relationship between Zips and AD has not been explored to date.

Previously we and others have shown that expression of human

Ab42 in Drosophila brains recapitulates the main symptoms of AD

including age-dependent memory loss, formation of amyloid

deposits and neurodegeneration [27,28]. In the current study,

we found that the time course expression change of dZip1, an

orthologue of human Slc39 family transporter hZIP1 in Drosophila,

was reversed in brains of Ab42 flies as compared with normal

control flies. We hypothesize that modulating dZip1 expression

level might affect Zn accumulation in the brain and modify the

AD pathological process. By creating dZIP overexpression and

RNAi transgenic flies, we demonstrated that dZip1 is critically

involved in Ab-induced AD pathological process, and by lowering

dZip1 expression Ab toxicity can be markedly ameliorated.

Results

dZip1 is a putative Zn importer involved in zinc uptake
Using the amino acid sequence of hZip1, BLAST searches

revealed 8 putative Zips in Drosophila, among which CG9428-

encoded putative protein shared the highest similarity with human

Zip1 (29% identity). We designate it as dZip1. Topology analysis

of dZip1 revealed the presence of eight putative transmembrane

domains, a histidine–rich loop between domains 3 and 4 which

was predicted to occur within the cytosol, and extracellular N- and

C-terminals (Figure 1A). All these features are typical of Slc39

family members [23,24].

We measured dZip1 transcript levels in organs of w1118 flies by

semi-quantitative RT-PCR (sqRT-PCR). dZip1 is expressed in the

gut and other organs including the brain (Figure 1B left). To

further explore the physiological role of dZip1 in flies, we created

dZip1 over-expression (OE) and RNAi transgenic flies. We

confirmed elevated and decreased dZip1 transcript levels accord-

ingly by dZip1 over-expression or RNAi in whole body of

transgenic flies driven by actin-Gal4 (Figure 1B Right). We then

tested the zinc sensitivity of these flies. Figure 1C shows that dZip1

OE flies were more sensitive to zinc overdose (t-test, p,0.001),

while dZip1-RNAi flies were more tolerant to zinc overdose (t-test,

p,0.001) in comparison with controls. These results suggest that

dZip1 is indeed involved in zinc uptake.

To test whether brain Zn levels could be changed accordingly

by specifically modulating brain dZip1 level, the pan-neuronal

elav-Gal4 driver was used to drive dZip1 OE and RNAi in fly

brains. Figure 1D showed qRT-PCR results of dZip1 transcript

level in different transgenic fly brains. Two dZip1-RNAi transgenic

lines were used, in which the knockdown effect of dZip1-RNAi #2

transgenic line (,1/10 of the dZip1 transcript level in control elav-

Gal4 flies) was much stronger than dZip1-RNAi #1 transgenic line

(,3/5 of the dZip1 transcript level in control elav-Gal4 flies)

(Figure 1D). dZip1 OE transgenic line showed ,6–7 fold increase

of dZip1 transcript level compared with control brains (Figure 1D).

Inductively coupled plasma optical emission spectrometry (ICP-

OES) result showed that over-expression of dZip1 in the fly brain

markedly increased brain Zn accumulation (t-test, P,0.01), while

knocking down dZip1 via RNAi decreased brain Zn level

compared with the control elav-Gal4 flies (t-test, p,0.05)

(Figure 1E). Therefore, specific manipulation of dZip1 expression

level in fly brains could affect the brain Zn status.

Ab42 affects dZip1 expression pattern in the course of
aging

Ab42 expression in fly brains could induce an age-dependent

formation of amyloid deposits and neurodegeneration which may

correlate with disturbed metal homeostasis, especially for zinc and

copper. We therefore checked native dZip1 mRNA levels in brains

of elav-Gal4.UAS-Ab42 (Ab42) flies and normal elav-Gal4 flies at

different ages. We found that the dZip1 mRNA level was

developmentally altered in Ab42 fly brains compared to elav-

Gal4 fly brains (Figure 2A). The dZip1 mRNA level in brains of

w1118 flies showed similar results as elav-Gal4 flies (data not shown),

indicating that this is not due to the effect of the introduced Gal4

gene. These results imply that Ab expression may indeed lead to a

zinc dyshomeostasis in the fly brains. Of note is that the

endogenous dZip1 expression was lower in young adult Ab flies

as compared to the control, although the brain zinc level of the Ab
flies at the young stage was not significantly different (Figure 2B),

suggesting a complex regulation of zinc metabolism (involving

participants such as other zinc importers and exporters besides

dZip1) is involved in the brain zinc control.

Using ICP-OES we directly measured the Zn content in brains

of 7- and 30-day old flies. By 7 days of age, differences of Zn

content among different groups were still not apparent (Figure 2B).

With ageing, the Zn content in all the brains significantly

increased; however, in comparison with 7-day old elav-Gal4 flies

without Ab expression, 30-day old Ab42 flies increased ,170% of

their Zn level, significantly higher than that of 30-day old elav-Gal4

flies (average ,65% increase of the control Zn). Over-expression

of dZip1 further increased Zn accumulation in Ab42 fly brains,

while dZip1 knockdown slowed brain Zn accumulation during

aging and significantly reduced Zn accumulation compared to 30-

day old Ab42 flies (t-test, p,0.01). By testing Zn content of these

flies at 20-day old (Figure S1), although it’s not obvious as that of

30-day, the trend is already apparent and statistically significant.

These results indicate an intimate connection among Ab42

expression, aging and brain zinc accumulation, and the latter

can be strongly affected by dZip1 expression interference.

Modulation of dZip1 expression correspondingly alters
the course of Ab42-induced neurodegeneration

Next, we used Hematoxylin and Eosin (H&E) staining to

examine whether the extent of brain neurodegeneration in aged

Ab42 flies (visualized as vacuolization in the brain region,

arrowhead in Figure 3) could be changed by modulation of dZip1

expression. Compared to the control, Ab42-expressing brains with

dZip1 knockdown were to a large extent normal (Figure 3C), but

when dZip1 was overexpressed degenerative changes were

significantly more apparent in both the cortex and the neuropil

region, where there were more and bigger bubbles (Figure 3B).

Counting the number of vacuoles in the cortex and neuropil

revealed that over-expression of dZip1 increased brain vacuoliza-

Author Summary

Alzheimer’s disease (AD) is characterized by extracellular
amyloid plaques and altered metal ion (including Zn, Cu,
Fe) concentrations in the brain. Amyloid plaques are the
result of increased aggregation of Ab, while the in vivo role
of metal ions such as Zn remains poorly understood. We
found that the expression of a zinc transporter (dZip1) is
altered in the brains of AD flies. Genetic manipulation of
dZip1 to modulate its expression was accompanied by
altered Ab accumulation, resulting in changes in the
neurodegeneration development, cognitive performance,
and lifespan of the AD flies. These genetic findings support
the zinc role in AD pathology and implicate a new
therapeutic target for treating AD.

dZip1 Affects Drosophila Amyloid Pathology
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Figure 1. dZip1 expression modulation result alteration in Zn sensitivity and Zn accumulation in Drosophila. (A) dZip1 protein belongs
to the Drosophila Slc39 family with eight typical conserved transmembrane domains. The plot shows HMM-TM software predicted dZip1
transmembrane alpha-helicals, which includes eight transmembrane domains (TM 1 to 8) and a long His-rich loop (between TM 3 and 4) inside the
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tion more than 2-fold (Figure 3D, t-test, p,0.001), whereas dZip1

knockdown dramatically decreased brain vacuolization in Ab42

flies (t-test, p,0.001). Meanwhile, no significant different of

neurodegenerative bubbles were found between dZip1 OE alone

and age-matched control elav-Gal4 flies in 20-day old fly brains

(Figure 3E and 3F). To exclude possible off-target effect of the

RNAi action, we confirmed the results with a differently

constructed RNAi line, V3986, from the VDRC stock center.

V3986 exhibited a similar level of dZip1 reduction as our own

dZip1-RNAi line #2 (Figure S2), and could roughly to the same

extent rescue Ab-associated brain vacuolization (Figure S2C and

S2D). These results indicated that modulating dZip1 expression

could change the brain neurodegenerative process.

Modulation of dZip1 expression level affects the climbing
ability and lifespan of Ab42 flies

It has been shown that Ab42 flies start to display locomotor

dysfunction after three weeks of age and their lifespan is

significantly reduced [27,28]. We therefore tried to examine

whether dZip1 expression levels could affect Ab42 flies’ locomotion

and lifespan. Two dZip1-RNAi transgenic lines were used, in which

the knocking down effect of the dZip1-RNAi #2 transgenic line was

much more obvious than the dZip1-RNAi #1 transgenic line

(Figure 1D). Assay of climbing ability demonstrated that Ab42 flies

with dZip1 overexpression started to have a locomotor defect at 15-

day old age comparable with that of the control elav-Gal4.UAS-

Ab42 flies at between 20–25 days (Figure 4A). In contrast, Ab42

flies with decreased dZip1 levels through RNAi (#1) had a delayed

climbing deficit (Figure 4A). This rescuing effect on climbing

ability was even more pronounced when the stronger line dZip1-

RNAi #2 was used. As a further control, we tested the climbing

ability of the transgenic flies without Ab42 expression (Figure 4B).

Only flies with over-expression of dZip1 manifested mild

locomotor defect 30 days after eclosion as compared with the

age-matched control elav-Gal4 flies. Again we confirmed the

climbing rescuing effect with a different RNAi line V3986 and

found it compared similarly with our dZip1-RNAi flies (Figure

S2E). We conclude the locomotion defect as a result of Ab42

toxicity can be modulated through the change of dZip1 expression

level.

Consistent with the result obtained in the climbing assay, the

lifespan of Ab42 flies was shortened by over-expression of dZip1

and prolonged by RNAi-based knockdown of dZip1 expression

(Figure 5A and 5B). The dZip1-RNAi #2 transgenic line exhibited

the strongest rescue, with 33.3% and 88.8% increase respectively

in the median lifespan of Ab42 flies reared at 25uC and 29uC
(Figure 5D). Similar to that in the climbing assay, the lifespans of

flies without Ab42 expression were largely indistinguishable except

for that of the dZip1 OE (elav-Gal4.UAS-dZip1) flies, which

displayed a noticeable 7.2% reduction (Figure 5C and 5D). Our

results indicate that a reduction of dZip1 expression in Ab42 flies

leads to improved locomotor ability and longer lifespan.

Consistently, zinc chelation with clioquinol extended Ab42

survival (Figure S3). Interestingly, clioquinol appeared rescuing

male Ab42 more effectively than females.

Modulation of dZip1 expression ameliorates Ab42-
induced early memory loss

A cardinal defect in Alzheimer’s disease is memory loss. With

extensively characterized Pavlovian olfactory aversive conditioning

[29], a memory defect in adult Ab42 flies started to appear as early

as 5-day-old. dZip1 knockdown significantly rescued memory loss

at this stage (Figure 6A). Paradoxically, overexpression of dZip1

also resulted in obvious memory recovery. As a control, we

examined how alteration of dZip1 expression alone (in the absence

of Ab42) might impact memory scores. Overexpressing or

knocking down dZip1 did not significantly influence memory of

5-day-old normal flies (Figure 6B and 6C), although overexpres-

sion of dZip1 might have a marginal beneficial effect. These results

suggest that modulating dZip1 could alleviate the Ab42 toxicity on

memory ability at early stages.

dZip1 overexpression stimulates while dZip1 inhibition
decreases Ab42 deposition

The aforementioned experiments demonstrated dZip1 expres-

sion modulation can markedly alter the course of Ab-associated

neurodegeneration. Towards further analysis of the mechanism

underlining dZip1 effect on Ab toxicity, we first tried to determine

where Zn was concentrated in these Ab fly brains. We raised 10-

day old Ab42 flies on normal food supplemented with ZnCl2 and

then used Zinquin staining to detect Zn distribution in vivo. The

purpose of applying extra Zn is to enhance the fluorescent signal.

Without Zinquin treatment, little signal was detected (Figure 7B).

Over-expression of dZip1 (Figure 7E and 7F) appeared to produce

stronger signals in the neocortex and neuropile region of the fly

brain compared with control Ab42 (Figure 7C and 7D) flies.

Quantitative analysis of these signal intensities showed a significant

difference (Figure 7K, t-test, p,0.01). Only a faint signal was

detected in dZip1-RNAi fly brains (Figure 7G, 7H and 7K, t-test,

p,0.05 at 40 h and t-test, p,0.001 at 72 h). Staining of the brains

of elav-Gal4 flies without Ab expression showed faint signals similar

to dZip1-RNAi flies (Figure 7I and 7J). These results demonstrate a

positive correlation between dZip1 level and Zn accumulation in

the neocortex and neuropile region of the fly brain where Ab
deposits were revealed (Figure 8).

cytosol. The N- and C-terminals were predicted to be located outside of the cytosol. (B) dZip1 expression analysis. On the left shows dZip1expression
in the brain, gut and whole body minus gut & brain of w1118 adult flies, and on the right dZip1 expression in the whole body of actin-Gal4, actin-
Gal4.UAS-dZip1-RNAi 1# and actin-Gal4.UAS-dZip1 adult flies (right). Expression analysis was performed with sqRT-PCR, with rp49 as the loading
control. (C) dZip1 expression change leads to Zn sensitivity change. Three-day-old flies were exposed to 2.5 mM ZnCl2 or no drug, dZip1 ubiquitous
expression flies (actin-Gal4.UAS-dZip1) were significantly more sensitive to 2.5 mM ZnCl2 treatment than the control flies (actin-Gal4) (t-test,
p,0.001). Inhibiting dZip1 expression (actin-Gal4.UAS-dZip1-RNAi 1#) significantly enhanced flies’ tolerance against 2.5 mM ZnCl2 treatment (t test,
p,0.001). No significant differences were found among all the genotypes when raised on normal food. (D) dZip1 mRNA level can be changed in fly
brains by dZip1 RNAi and over-expression when using a pan-neuronal elav-Gal4 driver. Compared with control elav-Gal4 flies, brain dZip1 transcript
level was repressed nearly twofold in elav-Gal4.UAS-dZip1-RNAi 1# transgenic flies, and was repressed approximately ten fold in elav-Gal4.UAS-
dZip1-RNAi 2# transgenic flies, while it was approximately sevenfold over-expressed in elav-Gal4.UAS-dZip1 transgenic flies. The relative dZip1
expression levels against rp49 were from three independent biological replicates of each genotype and plotted with SEM (error bars). (E) Inductively-
coupled-plasma-optical-emission-spectrometry (ICP-OES) was used to detect the Zn content in 15 day old fly brains. Pan-neuronal expression of dZip1
(elav-Gal4.UAS-dZip1) increased the Zn level (t-test, P,0.01) while dZip1 RNAi (elav-Gal4.UAS-dZip1-RNAi 1#) reduced Zn accumulation (t-test,
P,0.05).
doi:10.1371/journal.pgen.1002683.g001
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Figure 2. Brain dZip1 expression and zinc levels are affected by Ab42 expression and aging. (A) dZip1 expression vs. Ab42 expression and
aging. qRT-PCR was used to test dZip1 mRNA levels in brains of different ages of elav-Gal4 and elav-Gal4.UAS-Ab42 (Ab42) flies. dZip1 transcript level
increased in brains of Ab42 flies, but decreased in brains of elav-Gal4 flies with ageing. In 2-3-day old early enclosed fly brains, dZip1 transcript level of
elav-Gal4 flies was approximately six fold greater than that of the age-matched Ab42 flies. The relative dZip1 expression levels against rp49 are from
three independent biological replicates of each genotype and plotted with SEM (error bars). (B) Brain zinc levels vs. Ab42, dZip1 expression and aging.
Zn content in brains of 7- and 30-day old flies was measured by ICP-OES. dZip1 OE (elav-Gal4.UAS-Ab42/UAS-dZip1) facilitated Zn accumulation in fly
brains compared with control elav-Gal4 and Ab42 flies (elav-Gal4.UAS-Ab42). dZip1 RNAi (elav-Gal4.UAS-Ab42/UAS-dZip1-RNAi) slowed down the
brain Zn accumulation process. Phenotypes are more obvious in 30-day old flies. Data on top of the ‘‘30 dae’’ bars represent the relative increased
percentage of Zn level to 7-day old control elav-Gal4 flies. Data are expressed as means 6 SEM and analyzed by Student’s t-test. n = 3 for each
genotype.
doi:10.1371/journal.pgen.1002683.g002
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To determine if Zinc is causally related to Ab42 deposition, we

overexpressed or knocked down dZip1 under the control of elav-

Gal4 in Ab42 flies and subjected the brains to histochemical

analysis. Ab42 peptides could form diffused amyloid deposits in fly

brains [27,28]. Thioflavin-S (TS) staining of the whole brain was

used to specifically visualize the Ab42 fibril deposits (Figure 8)

[23]. Ab42 deposits were observed in the Kenyon cell body region

of Ab42-expressing brains. The number of TS-positive deposits in

Ab42 flies was significantly increased with aging (Figure 8A and

8A1, 8B and 8B1). Over-expression of dZip1 markedly increased

the number of Ab42 deposits compared with age-matched Ab42

flies (Figure 8A and A1, ,212% at 25-day old relative to Ab42

flies at 25-day old, t-test, p,0.001). Conversely, RNAi-based

knockdown of dZip1 in Ab42 flies significantly decreased the Ab42

deposits compared with age-matched Ab42 flies (Figure 8B and

B1, ,48% at 30-day old relative to Ab42 flies at 25-day old, t-test,

p,0.001). Taken together, our results demonstrate that dZip1

over-expression can increase Ab42 accumulation whereas inhib-

iting dZip1 can decrease Ab42 deposition.

Modulation of dZip1 expression also affects the low
aggregation form of Ab

The above TS staining was used to specifically detect the Ab42

fibril deposits. Recently, an alternative model for the Ab toxicity is

put forth hypothesizing that amyloid oligomers rather than

plaques are responsible for the disease [30]. The oligomer form,

together with the monomeric form of Ab, is soluble in SDS

whereas the fibril aggregate is not. We next investigated how SDS-

soluble Ab was affected by modulating dZip1 expression. Fly brain

Figure 3. Ab42-induced neurodegeneration is ameliorated by dZip1 RNAi but exacerbated by dZip1 overexpression. Paraffin sections
of 20- or 30-day old fly brains were stained with H&E (A–C). Pan-neuronal expression of Ab42 in fly brains (elav-Gal4.UAS-Ab42) induced
neurodegeneration (arrowheads indicate the vacuoles) in both the cortex and the neuropil region. (B) shows that dZip1 OE produced more vacuoles
than the age-matched control (A), while dZip1 RNAi ameliorated neurodegeneration (C). (D) is a statistical analysis of Ab42-induced
neurodegeneration under dZip1 expression modulation. Brain sections across the mushroom body somatic region were chosen for comparison.
Number of vacuoles (diameter.3 mm) on each section was counted and summarized. Significant differences were seen between dZip1 OE (elav-
Gal4.UAS-Ab42/UAS-dZip1) flies and controls (elav-Gal4.UAS-Ab42) (p,0.001), and between dZip1-RNAi (elav-Gal4.UAS-Ab42/UAS-dZip1-RNAi) flies
and controls (p,0.001). (E) shows that dZip1 overexpression alone does not lead to significant neurodegeneration. Paraffin sections of 20-day old
elav-Gal4 and elav-Gal4.UAS-dZip1 fly brains were stained with H&E. Pan-neuronal expression of dZip1 in fly brains did not induce significant
neurodegeneration in both the cortex and the neuropil region compared to elav-Gal4 flies. Vacuoles indicated by arrowheads. (F) is a statistical
analysis of vacuoles (diameter .1 mm) in elav-Gal4 and elav-Gal4.UAS-dZip1 fly brain sections. Data are expressed as means 6 SEM and analyzed by
the Student’s t-test. n = 6–10 for each genotype. Scale bar, 50 mm.
doi:10.1371/journal.pgen.1002683.g003
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Figure 4. dZip1 expression reduction rescues the climbing defect of Ab42 flies. (A) Ab42 expression in fly brains (elav-Gal4.UAS-Ab42)
induced a climbing deficit as compared with the control flies (elav-Gal4). dZip1 OE (elav-Gal4.UAS-Ab42/UAS-dZip1) enhanced the Ab42-induced
climbing defect. dZip1-RNAi (elav-Gal4.UAS-Ab42/UAS-dZip1-RNAi) inhibited Ab42 toxicity with a dose-dependent manner in that dZip1-RNAi #2
exhibited a more significant rescue. t-test, **P,0.01, ***P,0.001 (in comparison with elav-Gal4.UAS-Ab42 flies). n = 4 independent experiments. (B)
In the absence of Ab42 expression, no significant locomotor deficits were found among elav-Gal4, elav-Gal4.UAS-dZip1-RNAi 1# and elav-Gal4.UAS-
dZip1-RNAi 2# flies, but elav-Gal4.UAS-dZip1 flies displayed noticeable locomotor deficits at 30 days after eclosion (dae). t-test, **P,0.01,
***P,0.001 (in comparison with elav-Gal4 flies). n = 4 independent experiments.
doi:10.1371/journal.pgen.1002683.g004

Figure 5. dZip1 knockdown significantly lengthens the lifespan of Ab42 flies. The percentage of survivorship was plotted against the age
(dae). dZip1 OE significantly shortened the life span of Ab42 (elav-Gal4.UAS-Ab42) flies with a 12.5% and a 22.2% reduction in the median lifespan
reared at 25uC (p,0.001, A and D) and 29uC (p,0.001, B and D), respectively. dZip1 RNAi significantly prolonged the life span of elav-Gal4.UAS-Ab42
flies, in which dZip1-RNAi 1# (elav-Gal4.UAS-Ab42/UAS-dZip1-RNAi 1#) flies had a 11.4% and 27.7% increase in the median lifespan over that of the
Ab42 flies at 25uC (p,0.001, A and D) and 29uC (p,0.001, B and D), respectively, and dZip1-RNAi 2# (elav-Gal4.UAS-Ab42/UAS-dZip1-RNAi 2#) flies
had a 33.3% and a 88.8% increase in the median lifespan over that of the Ab42 flies at 25uC (p,0.001, A and D) and 29uC (p,0.001, B and D),
respectively. Without Ab42 expression, the median lifespans of dZip1-RNAi 1# and 2# flies were the same as that of the control elav-Gal4 flies (C and
D), but that of the dZip1 OE flies showed a 7.2% reduction (p,0.001, C and D) when raised at 25uC. Differences shown are all statistically significant
(p,0.001). Reported P values are from Mantel-Cox log-rank statistical analysis.
doi:10.1371/journal.pgen.1002683.g005
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lysates were used for a Western blotting analysis. The result

showed that the SDS-soluble Ab42 (low level aggregation forms)

was dramatically decreased in accordance to reduced dZip1 level

and increased when dZip1 was over-expressed (Figure 8C and

8C1). In a separate experiment, SDS-insoluble but formic acid-

soluble Ab42 (high level aggregation forms) was also examined;

much decreased formic acid-soluble Ab42 level was observed

when dZip1 expression was inhibited (Figure S4), consistent with

the TS-staining result.

Whole-mount immunohistochemical staining with Ab42 anti-

body also revealed a reduction of Ab42 level in the dZip1-RNAi fly

brains (Figure 9). Abundant amyloid deposits were observed in the

Kenyon cell body region of 20-day old Ab42-expressing brains

(Figure 9A, arrow). Such deposits were markedly decreased when

dZip1 was knocked down (Figure 9C) and greatly increased when

dZip1 was over-expressed (Figure 9B). Similar results were found in

30-day old fly brains (Figure 9E and 9F) compared with age-

matched Ab42-expressing control brains (Figure 9D). In the case

of co-overexpression of dZip1 and Ab42, vacuolization became

much more pronounced with aging (Figure 9E). As a control for

the Ab42 antibody, we used it against elav-Gal4 fly brains and

found no meaningful signal, indicating the antibody reacts

specifically with Ab (Figure S5).

Because dZip1 RNAi led to a general reduction of Ab42 level,

we tried to ask whether this was due to Ab42 expression inhibition

or an increase of Ab42 degradation. Ab42 gene was directly under

the control of elav-Gal4, and indeed no changes of RNA

expression under the various genetic manipulations were observed

(Figure 10A and 10B, Figure S2B). We then suspected that zinc

might reduce the rate of Ab42 clearance. Several proteases (NEP1-

3, IDE) were proposed to act in the Ab degradation [31,32] and

we thus explored whether they were affected by dZip1 expression

in the Ab flies. Ab expression brought some changes to the

expression of these genes, but introduction of dZip1-RNAi

transgene in the Ab flies resulted no significant expression increase

of these genes (Figure 10C-10F). We did however, observed some

decrease of NEP2 expression in dZip1 OE/Ab flies. Therefore we

saw little evidence that the observed rescuing effect of dZip1 RNAi

on Ab42 flies is mediated by an increase of these degrading

proteases.

Together, we conclude dZip1 reduction decreases levels of

Ab42, in both the high (fibril aggregates) and low aggregation

forms.

Discussion

Previous studies suggest that heavy metals, especially Zn, have a

close relationship with the development of Alzheimer’s disease [4–

6,8–10]. However, little genetic evidence exists that demonstrates

a functional link between Ab and proteins involved in zinc

assimilation. In this study, we showed that manipulating the Slc39

family protein dZip1 greatly altered the Ab toxicity. In particular,

knocking down dZip1 in brains of Ab42 flies markedly decreased

both Ab42 deposits and zinc accumulation. dZip1 knockdown

ameliorated early memory loss, decreased the number of

neurodegenerative vacuoles, significantly enhanced locomotor

ability and prolonged life-span in Ab42-expressing flies. Taken

together, our results provide strong evidence to support our

hypothesis that knocking down protein dZip1 may mitigate Ab
pathology and Ab-dependent behavioral defects in a Drosophila

model of Alzheimer’s disease.

The accumulation and aggregation of Ab42 peptide in the

neocortex has been suggested to be caused by its abnormal

interactions with neocortical metal ions especially Zn, which is

constitutively found at high levels in the neocortical regions where

they play important roles in normal physiology [11,33,34]. Our

qRT-PCR results showed that the dZip1 transcript level was higher

in brains of young control elav-Gal4 and w1118 flies and decreased

with age, but lower in brains of young Ab42 flies and increased

with age. Paradoxically, dZip1 transcript level was lower in young

adult Ab42 flies than age matched normal flies. Since at this stage

Zn level is not any lower (Figure 2B) in Ab42 flies, we suspect

other Zn homeostasis genes might also be affected. Indeed, besides

dZip1 quite a few other Zip or ZnT (Slc30 family transporter) genes

are also expressed in the brain (data not shown and the Flyatalas:

http://flyatlas.org), likely contributing to Zn uptake or export.

Supporting this notion is a recent report showing that the

expression level of the Slc30 family protein ZnT3 decreased with

age in AD brains [35,36]. Thus the general Zn status is the result

from the combination effect of all these Zn homeostasis genes. It is

possible that Ab42 expression alters the Zn homeostasis starting

from an early stage, although we are not totally clear why dZip1 is

reduced at early stages but increased at late stages. One thing

worthy of consideration is that total zinc level does not reflect well

Figure 6. dZip1 expression modulation ameliorates the Ab42-
induced immediate memory loss. (A) Expression of Ab42 in fly
brains induced an immediate memory loss compared with the control
flies (elav-Gal4.UAS-Ab42 vs. UAS-Ab42) at 5-day-old. Both dZip1 OE
and RNAi in Ab42-expressing fly brains (elav-Gal4.UAS-Ab42/UAS-dZip1
or elav-Gal4.UAS-Ab42/UAS-dZip1-RNAi 1#) significantly ameliorated
immediate memory loss. t-test, ***P,0.001. n = 8 PIs for each genotype.
(B–C) Without expression of Ab42, dZip1 OE and RNAi had no effects on
immediate memory (elav-Gal4.UAS-dZip1 or elav-Gal4.UAS-dZip1-
RNAi 1# vs. elav-Gal4), although dZip1 OE mildly increased the memory
score. n = 6–7 as indicated. All behavior data are normalized to the
control flies. Data are expressed as means 6 SEM.
doi:10.1371/journal.pgen.1002683.g006
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available cellular zinc. In other words, two brains with the same

level of total zinc may have very different levels of zinc for use.

dZip1 expression regulation may reflect the cell’s native response

to its own physiological states-to bring more or less zinc into cells.

Because Ab42 can likely bind to zinc, and monomer and

oligomers may have different binding characteristics, we speculate

that Ab42 can affect zinc homeostasis even in the absence of

noticeable total zinc level alteration. This dyshomeostasis could

result or be reflected by native dZip1 expression changes.

Not all pathogenic effects of Ab in Drosophila correlate directly

with its aggregation. An artificial mutation (L17P) with decreased

Ab42 aggregation tendency is associated with lower toxicities, in

term of locomotor ability and lifespan, but induces even earlier

onset of memory defects than its normal counterpart [37].

Furthermore, although both Ab40 and Ab42 affect learning, only

Ab42 causes degeneration [27]; inhibition of PI3K activity

ameliorated the Ab42-induced early memory loss, but did not

rescue neurodegeneration [38]. These results lead to the

Figure 7. dZip1 overexpression results in Zn accumulation in Ab42-expressing fly brains revealed by Zinquin staining. 10-day old flies
were treated with zinc-rich food (4 mM ZnCl2) for 40 h and 72 h, respectively). Dissected brains were treated with 25 mM Zinquin for 30 min and
then examined with a fluorescent microscope. No fluorescent signal was detected without Zinquin treatment (A–B). dZip1 OE (elav-Gal4.UAS-Ab42/
UAS-dZip1, E–F) led to an obvious Zn accumulation in the neocortex and neuropile region of the fly brains as compared with the control Ab42 flies
(elav-Gal4.UAS-Ab42, C–D). Weaker signal was detected when dZip1 was knocked down by RNAi (elav-Gal4.UAS-Ab42/UAS-dZip1-RNAi 1#, G–H).
elav-Gal4 fly brains showed similar Zinquin signals as dZip1-RNAi fly brains (I–J). Relative Zinquin signals against background in the neocotex and
neuropile region were quantitated using ImagJ software (K). The relative intensity of Zinquin signal, however, is by no menas a quantitative reflection
of zinc levels [42]. Data are expressed as means 6 SEM and analyzed by Student’s t-test. n = 4 for each genotype. Scale bar, 100 mm.
doi:10.1371/journal.pgen.1002683.g007

dZip1 Affects Drosophila Amyloid Pathology

PLoS Genetics | www.plosgenetics.org 10 April 2012 | Volume 8 | Issue 4 | e1002683



dZip1 Affects Drosophila Amyloid Pathology

PLoS Genetics | www.plosgenetics.org 11 April 2012 | Volume 8 | Issue 4 | e1002683



speculation that neuronal dysfunction and neurodegeneration may

be mediated by different mechanisms. In our study, while

knocking down dZip1 and overexpressing dZip1 were associated

with opposite effects on all other aspects of Ab42-induced toxicity,

it is interesting that both knocking down dZip1 or overexpressing

dZip1 lessened Ab42-induced early memory loss. While inhibiting

Zn accumulation in fly brains could promote memory in Ab42-

expressing flies by reducing aggregation of Ab42, the amelioration

of memory loss with dZip1-overexpression is likely due to a

different mechanism. At the moment, we are not certain how this

memory gain with dZip1 over-expression was achieved.

One might ask whether the dramatic effect seen with dZip1

modulation in Ab42 flies could be reproduced with dietary zinc

supplement or chelation. High levels of zinc supplement (such as

2.5 mM) do significantly worsen the viability of Ab42 flies,

however at this level normal flies are also affected (Figure S3C and

S3D). Using a zinc chelator clioquiniol, dietary feeding can rescue

to some extent Abeta flies, interestingly mostly in male flies (Figure

S3A and S3B). Thus genetic intervention is a much more effective

method. We interpret this as systemic Zn overloading may cause

damages to other tissues before enabling a dramatic Zn increase in

the target organ. Likewise, zinc depletion at the organismal level is

generally harmful: zinc is an essential nutrient vital to many

biological processes. Indeed, high levels of clioquinol greatly

impact even the survival of normal flies. Thus, we believe low zinc

level can affect fly development and survival so that overall

beneficial effect of zinc reduction by dietary measures is

significantly less effective than targeted neuronal zinc reduction

through genetic interventions.

dZip1 repression results in less Ab42 level. Although other

possibility cannot be excluded, we favor the model that zinc

induces oligomerization of Ab42, as supported by numerous in vitro

evidences. More oligomers result more fibril deposits. Perhaps the

oligomer and the aggregated Ab42 are more stable than the

monomer, so that the Ab42 level is dramatically reduced in dZip1

RNAi flies, where a larger fraction of Ab42 adopt the monomeric

form more susceptible to clearance (Figure 11).

In summary, we have demonstrated the modulating effect of

dZip1 on Ab42 toxicity in a Drosophila model of Alzheimer’s

disease. We observed Ab42 expression could cause a change of

dZip1 expression pattern during ageing. Through genetic manip-

ulation of dZip1 expression, we can modify the pathological

process of Ab42. These results raise the possibility that Zip1, or

more broadly Zn transporter genes expressed in the brain, could

be a new kind of promising therapeutic target in AD pathology.

Materials and Methods

Drosophila genetics and DNA constructs
Flies were raised and maintained at 25uC or otherwise indicated

temperatures. All general stocks were obtained from the

Bloomington Drosophila Stock Center, which includes Actin-Gal4,

elav-Gal4. UAS-Ab42 transgenic strain was reported previously

[37]. To make UAS-dZip1 transgenic fly, corresponding genomic

DNA including a 76 bp intron was cloned into the pUAST vector.

The primers used for PCR amplification were: UAS-dZip1-F: 59-

CCGAATTCAAGATGAGCGCTACCGC-39 and UAS-dZip1-

R: 59- GGAAGATCTCTA GGAACAGGTTAGGCTG-39. The

UAS-dZip11-RNAi constructs were generated according to Lee and

Carthew [39]. The primers used were: WIZ-dZip1-RNAi-F: 59-

GGGTCTAGAATGAGCGCTACCGC-39 and WIZ-dZip1-

RNAi-R: 59-GGTCTAGACC ACACAGTGCTCACAG-39. All

transgenic flies were generated in w1118 background following

standard protocols.

RNA isolation, semi-quantitative and quantitative RT–PCR
Total RNA was extracted from the brain, gut and carcase

(whole body minus brain and gut) of 10 adults for each sample

using TRIzol Reagent (Invitrogen) according to the manufactur-

ers’ instructions and subjected to DNA digestion using DNAse I

(Ambion) immediately. The concentration and quality of DNAse-

treated total RNA were then tested, and 800 ng total RNA from

each sample was used to synthesize cDNA by using SuperscriptTM

II Reverse Transcriptase kit (Invitrogen) with oligo(dT) primers.

Semi-quantitative RT-PCR (sqRT-PCR) was performed using

primers for rp49 (forward: 59- TACAGGCCCAAGATCGTGAA-

39; reverse: 59- TCTCCTTGCGCTTCTTGGA-39) and dZip1

(forward: 59-ATTATCCTCGCCCTTTCGC-39; reverse: 59-

TCACCCTCCGCT TCGTCAG-39). rp49 was used as the

loading control. For quantitative RT-PCR (qRT-PCR), 20 fly

brains were used for each sample, RNA extraction and cDNA

synthesis were the same as described for sqRT-PCR. Primers for

amplifying dZip1, NEP1, NEP2, NEP3 and Ab42 were listed as

Table S1. Real-time PCR reactions were monitored on an iCycler

(Bio-Rad) by means of SYBR Green (Bio-Rad) dye. mRNA

expression levels were determined relative to rp49 expression by

relative quantification. Statistical analysis was performed using the

Student’s t-tests.

Histology and immunostaining
For immunostaining analysis on paraffin sections, antigen

retrieval was achieved by boiling the samples in 10 mM sodium

citrate (pH 6.6) for 15 min. Immunostaining was performed using

an avidin-biotin-peroxidase complex (ABC) kit (Vector Laborato-

ries). For Ab staining, the primary antibody used was anti-Ab42

(Promega; 1:500). Appropriate secondary antibodies were diluted

1:200, and histochemical detection was done with DAB (Sigma-

Aldrich) color development.

Quantification of neurodegeneration
Adult fly heads were fixed in Carnoy solution (ethanol:chlor-

oform:acetic acid = 6:3:1) overnight at 4 Cu, and then embedded

in the paraffin and sectioned at 6 m thickness. H&E staining was

performed following standard protocols. Neurodegeneration was

assessed by quantification of vacuoles with diameter greater than

Figure 8. dZip1 inhibition reduces the accumulation of Ab42 fibril deposits as well as the SDS-soluble form. (A–B) Thioflavin-S (TS)
staining was used to detect the Ab42 fibril deposits in fly brains (bright green dots). Few deposits were found in control brains (elav-Gal4, A, top panel) at
25-day old. TS-positive deposits were found after Ab42 expression in fly brains (elav-Gal4.UAS-Ab42) at both 25 dae (A) and 30 dae (B). Quantitative
contents of Ab42 deposits based on TS signals were summarized and expressed after normalization to 25-day old Ab42 flies (A1 and B1). The increase of
Ab42 deposits was age-dependent. Overexpressing dZip1 in Ab42-expressing brains (elav-Gal4.UAS-Ab42/UAS-dZip1) significantly increased fibril
deposits at 25 dae (A and A1). However, inhibiting dZip1 (elav-Gal4.UAS-Ab42/UAS-dZip1-RNAi 1#) dramatically decreased deposits density at 30 dae (B
and B1). t-test, **P,0.01, ***P,0.001. Data are expressed as means 6 SEM. n = 6 or 8 hemispheres for each genotype. Scale bar, 15 mm. (C) dZip1
knockdown also decreases the low aggregated form of Ab42. Protein lysates from 30-day old fly heads were prepared for western blotting assay. SDS-
soluble Ab42 were detected in elav-Gal4.UAS-Ab42 flies. Less and more SDS-soluble Ab42 were found respectively when dZip1 expression was inhibited
and increased. (C1) is a quantitative measurement of (C). t-test, *P,0.05. n = 3 independent experiments. Data are expressed as means 6 SEM.
doi:10.1371/journal.pgen.1002683.g008
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Figure 9. Forcible dZip1 expression modulation could alter Ab42 accumulation in the brain. Paraffin sections of 20- or 30-day old fly
brains were stained with antibody against Ab42. Ab42 deposits were primarily accumulated in the neuronal somatic region (arrow). (B and E) shows
dZip1 OE produced more Ab42 deposits than the age-matched control (A and D), while dZip1 RNAi reduced Ab42 deposits (C and F). Scale bar,
50 mm.
doi:10.1371/journal.pgen.1002683.g009
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Figure 10. The rescuing effect of dZip1 RNAi on Ab appears not mediated by affecting Ab42 nor NEP or IDE expression in the Ab42
flies. (A) shows a representative of sqRT-PCR analysis of Ab42 expression in brains of 20-day-old flies. No Ab42 expression was detected in brains of
elav-Gal4.+/+flies. dZip1 RNAi or OE did not significantly influence the expression level of Ab42 compared to control elav-Gal4.UAS-Ab42 flies. rp49
was used as the loading control. (B) Ab42 expression in brains of 20-day-old flies was determined by qRT-PCR. Statistic analysis showed no significant
differences among elav-Gal4.UAS-Ab42, elav-Gal4.UAS-Ab42/UAS-dZip1OE, elav-Gal4.UAS-Ab42/UAS-dZip1 RNAi 1#, and elav-Gal4.UAS-Ab42/
UAS-dZip1 RNAi 2#. t-test, P.0.05 (in comparison with elav-Gal4.UAS-Ab42 flies). n = 3 biological repeats. (C)–(F) shows Drosophila NEP1, NEP2, NEP3
and IDE expression in brains of 30 day old flies. All the four degrading enzymes shows higher expression level in fly brains without Ab42 expression
than that with Ab42 expression. dZip1 RNAi did not significantly influence NEP or IDE expression in Ab42 flies compared to the control Ab42 flies,
while dZip1 OE shows a trend of reducing NEP or IDE expression level, but only statistically significant for NEP2. The relative Ab42, NEP1-3 and IDE
expression levels against rp49 were from three independent biological replicates and plotted with SEM (error bars).
doi:10.1371/journal.pgen.1002683.g010
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3 mm in the fly brains. At least five fly brains were analyzed for

each genotype.

Fibril Ab42 deposit detection
Thioflavin-S (TS, Sigma) staining was performed to detect fibril

Ab42 deposits. Fly brains were fixed in 4% paraformaldehyde and

permeabilized by 2% triton. Brains were then transferred to

0.25% TS in 50% ethanol overnight. After 16wash for 10 min in

50% ethanol and 36 wash with PBS, they were mounted with

focusclear (Pacgen Biopharmaceuticals Inc.) and covered by cover

slips. Slides were inspected with a Zeiss LSM 510 confocal

microscope, aided by LSM 510 analysis software. TS-positive

deposits located in the mushroom body somatic region were

counted for comparison analysis.

Pavlovian olfactory associative memory recording
The training and testing procedures were as previously

described [40,41]. During one training session, a group of 100

flies was sequentially exposed for 60 s to two odors, octanol

(OCT) or methylcyclohexanol (MCH), with 45 s of fresh air in

between. Flies were subjected to foot-shock (1.5 s pulses with

3.5 s intervals, 60 V) during exposure to the first odor (CS+) but

not to the second (CS2). To measure ‘‘immediate memory (also

referred to as ‘‘learning’’)’’, flies were transferred immediately

after training to the choice point of a T-maze and forced to

choose between the two odors for 2 min, at which time they were

trapped in their respective T-maze arms, anesthetized, and

counted. A performance index (PI) was calculated from the

distribution of flies in the T-maze. A reciprocal group of flies was

trained and tested by using OCT as the CS+ and MCH as the

CS+, respectively. PIs from these two groups finally were

averaged for an n = 1 and multiplied by 100. A PI of 0

represented a 50:50 distribution, whereas a PI of 100 represented

100% avoidance of the shock-paired odor.

Western blot analysis
SDS-soluble and SDS-insoluble but formic acid-soluble Ab42

were prepared as previously reported [27]. Lysates from equal

number of fly heads were diluted in SDS sample buffer and

separated by 10–20% Tris-Tricine gels (Invitrogen), and trans-

ferred to nitrocellulose membranes (Invitrogen). Membranes were

boiled in PBS for 3 min. Membranes were blocked with 3% BSA

and blotted with primary antibody. Primary antibodies used in this

study were mouse anti-Ab42 (6E10, Covance Research Products)

and rabbit anti-Actin (Sigma). After washing in TBST for 3 times,

membranes were incubated with secondary antibodies for 1 hr at

RT. After 3 times wash in TBST, membranes were incubated with

ECL working solution (GE healthcare) and developed with films

(Kodak). Data were analyzed with ImageJ sofeware (NIH).

Zinquin staining
10-day old adult flies reared on normal condition were

transferred to vials with normal food supplied with 4 mM ZnCl2.

Fly brains were then dissected at 40 and 72 h after transferring,

respectively. The dissected brains were then incubated with

25 mM Zinquin (Sigma) for 30 min at 37uC, and washed 3 times

with 16PBS buffer for 5 min each time. After that, brains were

examined using conventional epifluorescence microscope (Nikon,

Diaphot 300) equipped with a Nikon 1006, 1.4 NA Plan Apo oil-

immersion objective. Zinquin signals in the neocortex and

neuropile region of fly brains were quantitated by using ImagJ

software.

Metal stress and content assay
For the metal stress assay, Drosophila was fed on normal medium

containing 2.5 mM ZnSO4. Control flies were fed on normal

medium in the absence of drug. Mortality was recorded every 24 h

or a longer intervals. Each vial contained 20–25 flies, and the

experiments were repeated at least three times.

Figure 11. A model to explain zinc’s effect on Ab. Zinc stimulates the polymerization of Ab, resulting more oligomer formation, which in turn
produces more fibril deposit. When zinc is low, less oliogomers are formed. The monomers may be more susceptible to degradation than the
polymers/fibrils so that the observed overall Ab level is reduced when zinc is low.
doi:10.1371/journal.pgen.1002683.g011
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For the metal content analysis, flies were reared on normal food

and fly heads were collected at day 7, 20 and 30 after eclosion. Fly

heads were dissolved in 1 ml 65% HNO3, boiled in 100uC water

bath for 10 min and diluted to 10 ml for metal content analysis

with inductively coupled plasma optical emission spectrometry

(ICP-OES, IRIS Intrepid II XSP, Thermo Electron Corporation,

USA).

Climbing assay
The climbing assay was referenced to Iijima et al. (2004) [27].

Briefly, twenty flies were placed in a plastic vial and gently tapped

to the bottom. The number of flies at the top of the vial was

counted after 18 s of climbing under red light (Kodak, GBX-2,

Safelight Filter). The data shown represent results from a cohort of

flies with four repeats tested serially for 5–50 days. The experiment

was repeated more than three times.

Longevity assay
Flies of two days after eclosion were used for the experiment.

Twenty to 23 flies were placed in a food vial. Each vial was kept at

25 or 29uC, 70% humidity, under a 12-h light–dark cycle. Food

vials were changed every 2–3 days, and dead flies were counted at

that time. At least 150 flies were prepared for each genotype, and

the experiments were carried out more than three times. Percent

increases in life span are based on comparing the median survivals.

Prism (GraphPad) was used for statistical analysis of lifespan data.

Mantel-Cox log-rank statistical analysis was used for testing

statistical significance of the differences between the survivorship

curves.

Statistical analysis
All data were analyzed by Student’s t-test. Statistical results were

presented as means 6 SEM. Asterisks indicate critical levels of

significance (*P,0.05, **P,0.01 and ***P,0.001).

Supporting Information

Figure S1 20-day old Drosophila brain zinc levels are affected by

Ab42 and dZip1 expression. Zn content in brains of 20-day old

flies was measured by ICP-OES. dZip1 OE (elav-Gal4.UAS-Ab42/

UAS-dZip1) facilitated Zn accumulation in fly brains compared

with control Ab42 flies (elav-Gal4 vs. elav-Gal4.UAS-Ab42). dZip1

RNAi slowed down the brain Zn accumulation process (elav-

Gal4.UAS-Ab42/UAS-dZip1-RNAi 2# and elav-Gal4.UAS-Ab42/

UAS-dZip1(v3986) RNAi). Data on top of the bars represent the

relative increased percentage of Zn level to control elav-Gal4.+/+
flies. Data are expressed as means 6 SEM and analyzed by

Student’s t-test. n = 3 for each genotype.

(TIF)

Figure S2 V3986, an independent dZip1 RNAi line, could

similarly rescue Ab-associated brain vacuolization and climbing

defect. (A) shows a representive of sqRT-PCR analysis of dZip1

expression in brains of 5-day old flies.V3986 RNAi line shows

similar knock down effect with dZip1 RNAi 2#, which is better

than v3987 RNAi line. rp49 was used as the loading control. (B)

shows a representive of sqRT-PCR analysis of Ab42 expression in

brains of 30-day old flies.V3986 RNAi line shows similar Ab42

expression level with dZip1 RNAi 2# line and dZip1 OE line, and

no reducing Ab42 expression level was found compared to Ab42

flies. rp49 was used as the loading control. (C) Paraffin sections of 30-

day old fly brains were stained with H&E. V3986 RNAi line

produced similar rescuing effect as dZip1 RNAi 2# line on Ab42

expression induced neurodegeneration (arrowheads indicate the

vacuoles). Scale bar, 50 mm. (D) is a statistical analysis of (C) Ab42-

induced neurodegeneration under dZip1 expression modulation.

Number of vacuoles (diameter.3 mm) on each section was counted

and summarized. V3986 RNAi line produce similar rescuing effect

as dZip1 RNAi 2# line, which has significant less vacuole numbers

than control elav-Gal4.UAS-Ab42 flies (p,0.001). Data are

expressed as means 6 SEM and analyzed by the Student’s t-test.

n = 9 for each genotype. (E) V3986 RNAi line has similar rescuing

effect as dZip1 RNAi 2# line on Ab42 expression induced climbing

defect. t-test, **P,0.01, ***P,0.001 (in comparison with elav-

Gal4.UAS-Ab42 flies). n = 6 independent experiments.

(TIF)

Figure S3 Zinc chelation with clioquinol extends while zinc

addition shortens Ab42 survival. Male (A) and female (B) elav-

Gal4.UAS-Ab42 flies were raised on normal food with DMSO

(control) and normal food supplied with 0.5 mM clioquinol (CQ)

at 29uC. (C) shows the survival curves of elav-Gal4 and elav-

Gal4.UAS-Ab42 flies raised on normal food or supplied with

2.5 mM ZnSO4, at 25uC. (D) was a Mantel-Cox log-rank

statistical analysis of (C) survival curves. The percentage of

survivorship was plotted against the age (dae). Foods were changed

every 2–3 days, and the survival numbers of flies were counted. At

least three biological repeats were used for each genotype.

(TIF)

Figure S4 dZip1 expression reduction decreases both the low

and high aggregated forms of Ab42. Protein lysates from equal

number of 30-day old fly heads were prepared for western blotting

assay. (A) shows a representative of western blot experiments. No

Ab42 was detected in control elav-Gal4 flies. SDS-soluble and SDS-

insoluble but formic acid-soluble Ab42 were detected in elav-

Gal4.UAS-Ab42 flies. Less SDS-soluble Ab42 and no formic acid-

soluble Ab42 were found when dZip1 expression was inhibited by

RNAi. (B) Statistical analysis of SDS soluble Ab42 bands in (A). t-

test, **P,0.01 (in comparison with elav-Gal4.UAS-Ab42 flies).

n = 3 independent experiments.

(TIF)

Figure S5 The Ab42 antibody is specific to Ab42 in the fly

brain. Paraffin sections of 20-day old elav-Gal4 and elav-Gal4.UAS-

Ab42 fly brains were stained with antibody against Ab42. Pan-

neuronal expression of Ab42 in fly brains induced Ab42

accumulation which was primarily located in the neuronal somatic

region (arrow). No Ab42 signals were detected in age-matched

control brains without Ab42 expression. Scale bar, 50 mm.

(TIF)

Table S1 Real-time RT–PCR primers used in this study.

(DOC)
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