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Abstract 

 

Realistic strength assessment of reinforced concrete structural elements, especially 

columns in bridges and tall buildings is a critical need not only at design time, but also 

when an accurate evaluation of the strength is needed for decisions such as retrofit or 

replacement of an existing structure.  

Assessment of the flexural strength of a column under a specific axial load level is 

usually done by constructing the axial force-bending moment interaction response curve 

of the section. This assessment can be done using the code procedure. However, the 

code does not consider the confinement effect, and is based on the “stress block” 

assumption for a pre-assumed failure strain for concrete.  

It has been shown by various experimental and analytical studies that the performance of 

a reinforced concrete section is affected by different factors such loading history and 

material behavior. A realistic performance assessment should consider not only proper 

models for the monotonic and cyclic response of the material, but also analytical 

methods and procedures that can capture the effects of loading pattern and provide 

realistic predictions of the section capacity. 

Accuracy of the analytical methods in strength assessment of reinforced concrete 

sections was explored in a comparative study. These methods were compared and 

validated against the existing experimental data. The factors considered in these 

analytical procedures, included the effect of confinement, and the method employed in 

assessment of the axial-force-bending moment interaction response of a column section. 

The experimental data were collected from tests conducted on circular and rectangular 

columns under a constant axial load.  

It has been shown that the axial force-bending moment interaction curve, constructed 

based on the moment-curvature response of a section using a more detailed analytical 

method such as fiber-model, considering the confining effect of the lateral 

reinforcement, represents the most realistic and optimal response of a cross section. 
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Preface 
 

Reinforced Concrete (RC) columns play an important role in stability and strength of 

reinforced concrete structures, such as buildings and bridges. So, refined, realistic 

performance assessment of these structural members is a critical need. This need is more 

pronounced when an important structure is designed based on the emerging 

performance-based design method. Besides the models used for monotonic and cyclic 

behavior of the material; different analytical methods are used to predict the 

performance of RC columns. These methods are explored in this report to find the 

procedure that yields the best realistic prediction of the performance of the RC columns. 

 

The axial force-bending moment interaction response, referred to as F-M in this report, 

is commonly used as a strength indicator of the RC columns; different analytical 

methods are employed to construct the axial force-bending moment (F-M) response of a 

section. The results of these methods are compared to each other and validated against 

the existing experimental data. 

 

The first chapter is an overview, including an introduction to reinforced concrete 

columns and their behavior under combined axial load and uniaxial bending moment; as 

well as the basic concept of concrete confinement. The second chapter includes a 

literature review of the topic, and provides the details of the material model used in the 

analytical work for plain and confined concrete. This chapter also covers the 

computational procedure of F-M diagrams based on the different analytical methods 

explored in this study. 

Next, the third chapter addresses the computations of the confined and unconfined F-M 

diagrams, based on these analytical methods. The fourth chapter, includes the 

comparison of the results obtained using the aforesaid analytical methods. The results of 

the analytical methods are also validated against the existing experimental data in this 

chapter. Finally, the summary and conclusions of the research is covered in the fifth 

chapter.
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Chapter One- Overview 

 

1.1- Introduction: 

 

Concrete structures are commonly used for various types of structures all over the world, 

including a wide range of buildings, bridges, dams, etc. Moreover, they are designed and 

constructed in different climates and seismic zones. In general, overall performance and 

behavior of concrete structures under applied loads depends on the response of their 

force resisting systems. Behavior of the force resisting systems, in turn, depends on the 

response of the individual structural elements, such as reinforced concrete columns. 

Specifically, deformation capacity or the so-called “ductility” of these force resisting 

systems is an important parameter that influences the performance of structures under 

various loading conditions. 

In particular, RC columns are important structural elements, and play a significant role 

in overall ductility and capacity of the reinforced concrete structures. Not surprisingly, 

accurate performance assessment of a reinforced concrete structure is closely tied to 

realistic assessment of the strength and performance of its columns. Different indicators 

are used for prediction of the strength and performance of RC columns. Three 

commonly used strength and performance indicators to evaluate the concrete columns’ 

behavior are the axial force-bending moment interaction response, moment-curvature 

response, and the Force-deflection response. 

Realistic assessment of the performance and strength of reinforced concrete columns 

using these indicators is significantly affected by load pattern and history, analytical 

method used in the assessment analysis, and the material models employed to analyze 

reinforced concrete (RC) columns. 

It has been shown that the load pattern and history significantly affect the performance 

and capacity of reinforced concrete columns [1] [2] [3], which means a reasonably accurate 

and realistic assessment of the strength and performance of a reinforced concrete 
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column, using the aforesaid indicators, requires the study to address the effects of the 

load pattern in the process.  

Second, material models implemented in the analytical procedure are of great 

importance in the accuracy of the results. For instance, models used to determine the 

monotonic stress-strain relationship of confined concrete play a vital role in the final 

results[4].  

A third important aspect of a realistically accurate analysis is the procedure employed in 

the analysis. As an example, the axial force-bending moment interaction response of a 

section can be evaluated by assuming a specific compressive strain at one side of the 

section and generating the curve by changing the strain at other locations, such as tensile 

steel. However, this procedure will not lead to a realistic value, as will be shown in this 

study. The more accurate and realistic moment capacity of the section for a given axial 

load is the maximum moment achieved in a moment-curvature analysis under that axial 

load.  

In this study, several commonly used methods and procedures for strength assessment of 

reinforced concrete columns are explored, and their accuracy has been validated against 

the existing experimental results. Notably, the effects of load pattern and history as well 

as the type of the material model used in the analysis are not addressed in this study.  

The dominant method used in strength assessment of columns is the axial force-bending 

moment interaction response, as authorized by the code [ 5]. However, this method does 

not consider the effects of confining material, and the predictions using the method 

prescribed by the code lead to extremely conservative results. 

 

In general, all of these methods are based on strain compatibility and force equilibrium. 

However, results using these methods defer widely, and there is a need to find a method 

that can provide a reasonably accurate and realistic prediction of the capacity and 

performance of a RC column. This is critical for replacement, retrofit or repair of an 

existing and apparently deficient column. 

Therefore, this study explores various methods and proposes the one that can provide an 

optimal realistic prediction of the response of reinforced concrete columns subjected to 

monotonic axial load and uniaxial bending moment. 
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1.2- Concrete columns and their behavior: 

 

Columns are structural members that support axial load with or without bending 

moments; however, if the member supports axial load and moment, it is called a beam-

column. These structural members can be horizontal, vertical or inclined. In this text, by 

columns we mean vertical structural members that support axial load with or without 

moments. In a structure, these vertical members support the loads of floors and roof and 

eventually transmit these forces to the structure’s foundation. Although concrete 

columns can have several types of cross sections, such as rectangular, circular, T-shape, 

L-shape, this study considers only the RC columns with circular and square cross 

sections. Also, based on the type of the lateral reinforcement used in these RC columns, 

they are divided into two main categories of tied columns and spiral columns. 

Tied columns have individual hoops (stirrups); spiral columns are those that their hoops 

have the form of a spiral. Figure 1.1 shows tied and spiral column. 

 

 

Figure 1.1. Tied and spiral columns [6]. 

  

All rectangular columns are tied columns while the circular columns can have either tied 

stirrups or spiral hoops. Tied columns are less ductile than spiral ones and, consequently,  

tied columns are subjected to brittle failure[7]. 
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In tied columns, which are mostly used in non-seismic regions, the ties (stirrups) are 

spaced so apart from each other that the core concrete is not effectively confined; 

therefore, in the result of lateral strain, the ties are bent, the longitudinal reinforcement 

buckles, and the concrete crushes in a brittle manner. However, in spiral columns the 

pitch (indicated as (s) in Figure 1.1) is small, and the spirals provide sufficient lateral 

pressure on the core concrete to prevent buckling of the longitudinal reinforcement, 

consequently, preventing the sudden collapse of the core concrete[7]. 

As stated, RC columns can be under both axial load and bending moments. If the 

column is under the axial load only, its behavior can be analyzed simply. The capacity 

of concentrically loaded concrete columns can be found by summation of the strength of 

the concrete and the strength of the reinforcement used within its cross section.  Figure 

1.2 shows this procedure. 

 

 

Figure 1.2. Capacity of concentric axially loaded concrete column [7]. 
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However, evaluating the response of concrete columns under axial load and bending is 

not that simple. Consider a column made of linear and elastic materials with a maximum 

allowable compressive stress of maxf . This column will fail if the compressive stress is 

more than maxf . According to  mechanics of material: 

maxf
I

My

A

P
     Eq. 1.1 

Where P  is the applied axial load, M is the applied bending moment, y  is the distance 

between centroid of the section to the most compressed fiber, A is the area of the cross 

section, and ( I ) is the moment of inertia of the cross section[7]. 

In Eq. 1.1 , the maximum axial load maxP  that the cross section can curry occurs when 

the bending moment M is zero; similarly, the moment capacity of the section is at its 

maximum value if the applied axial load is zero. Thus, 

maxmax fAP      Eq. 1.2 

maxmax f
y

I
M      Eq. 1.3 

1
maxmax


M

M

P

P
   Eq. 1.4 

Eq.1.4 is called the interaction equation for a linear and elastic column because it shows 

the relationship between bending moment and axial load at failure [7]. Figure 1.3 is the 

plot of Eq.1.4 for a steel cross section that is within its elastic range. In Figure 1.3, any 

point that is located outside the shaded area is considered as failure of the column. While 

an accurate interaction diagram can be drown for a linear and elastic column by plotting 

Eq.1.4, the F-M diagrams for concrete columns are not so simply feasible because 

concrete behavior is not elastic within the whole range of compressive axial strains. 

Nevertheless, different analytical methods can be used to construct the F-M diagrams for 

RC columns; this will be explained in more detail in this text. 
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Figure 1.3. F-M diagram for an elastic steel column [7]. 

Another way to assess the response of a concrete column is to use its Moment-Curvature 

(M-C) diagram. The relation between moment and curvature of a linear and elastic cross 

section can be written as: 

EIM    Eq. 1.5 

In this equation, M  is the applied bending moment on the cross section, E  is the 

modulus of elasticity of material, ( I ) is the moment of intarsia of the cross section, and 

  is the curvature. In Eq.1.5 as long as the EI  term is linear, the relation between 

moment and curvature is linear. This statement is true for a steel cross section that is 

stressed below its yielding point. 

This concept and definition can be applied, with little modifications, on concrete cross 

sections. A simplified M-C diagram for a concrete column consists of three straight lines 

with different slopes. The first line is from zero point up to the cracking of the concrete; 

the second line is the portion of the graph from cracking point up to the yielding of the 

steel reinforcements, and the third line connects the point of yielding to the ultimate 

point. Each of these moment-curvature (M-C) diagrams is plotted for a given axial load 

applied on the reinforced concrete (RC) column. There are, also, several analytical 

methods used to obtain the M-C diagram for RC columns. Additionally, both the M-C 

and F-M responses are used to predict and evaluate the behavior of RC columns. 
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1.3- Concrete Confinement, strength, and ductility: 

 

The relationship between stress and strain for an isotropic material that is within its 

linear and elastic range can be expressed by Hooke’s law. The generalized Hooke’s law 

for a cubic element of a linear and elastic isotropic material subjected to normal stresses 

in three orthogonal directions can be written as [8]:     

EEE

EEE

EEE

zyx
z

zyx
y

zyx
x






























  Eq. 1.6 

Where x , y , and z  are strains, and x , y , z  are the normal stresses in x , y  and z  

directions respectively;   is the Poisson’s ratio for the material and E  is the modulus of 

elasticity of the material. As indicated in Eq.1.6, a negative (compressive) stress in a 

normal direction will cause a normal negative strain in the same direction and some 

positive strains in the other two orthogonal directions depending on the Poisson’s ratio. 

This phenomenon that will usually lead to a change in volume is called dilatation. 

Likewise, a RC column subjected to axial stress induced by axial load experiences 

dilatation. For concrete, lateral strain associated with the axial strain can be expressed 

as[9]: 

ct                    Eq. 1.7 

Where   is the dilatation ratio for concrete, t  is the transverse (lateral) strain, and c is 

the compressive axial strain in concrete. In this formula, the dilatation ratio that relates 

the transverse strain to axial strain is a function of the modulus of elasticity of the 

concrete cross section and the compressive axial strain level[9]. 

This lateral expansion of concrete is prevented, to some extent, by confining the cross 

section; this confinement can be provided in various ways, such as with Fiber-

Reinforced-polymer (FRP) and/or with conventional lateral reinforcement. Preventing 

the lateral expansion of concrete with a confining material produces a lateral pressure on 
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the confined portion of the concrete. This lateral pressure is called confining pressure. 

This process is illustrated in Figure 1.4. 

 

Figure 1.4. Confinement pressure generated by confinement [9]. 

The confining pressure produced on the core concrete by a confining material together 

with the axial compressive stress can be treated as triaxial loading of the concrete 

specimen. 

As evident form Eq.1.6 the compressive stress for a given compressive strain in one 

direction, such as x , is more if the strains in the other two orthogonal directions, y and 

z , are zero, and less if dilation is allowed. However, for a confined core, we have partial 

dilation that activates the lateral confining pressure, leading to enhancement of the 

compressive stress in the other direction, here referred as x . 

Richart et al.[10] were among the first researchers who conducted some tests on small 

size concrete columns under constant lateral hydrostatic pressure. These tests were done 

to predict the strength enhancement of concrete under applied axial loads. Richart 

showed that the axial compressive strength of concrete columns increases as the lateral 

pressure is increased. He proposed the following equation for the confined concrete 

stress. 

31 1.4'   cf          Eq. 1.8 

Where 1  is the axial compressive stress, 32    is the lateral stress due to lateral 

pressure, and cf   is the axial compressive stress of unconfined concrete under uniaxial 

loading. Figure 1.5 shows the relation between the axial compressive stress and lateral 

confining pressure, σ3. In this figure, the compressive stress of unconfined concrete is 

3000 psi [7]. 
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Figure 1.5. Axial stress-strain curve for concrete subjected to triaxial compression [7]. 

 

Two important characteristics are evident in Figure 1.5. First, the compressive strength 

of concrete increases when the lateral pressure is increased. Second, the compressive 

axial strain capacity of concrete is amplified as a result of confinement pressure. So, the 

confinement that creates a constant lateral pressure on the concrete specimen can 

enhance the concrete compressive strength, depending on the level of confinement 

provided within the cross section. Also, since the compressive axial strain capacity as 

well as the compressive strain under the maximum achieved axial stress of the core 

concrete is improved by confinement, the ductility of the core concrete column is also 

improved. 

In real world situations, concrete confinement is, commonly, provided in two different 

ways. The first is conventional lateral reinforcement, and the second is Fiber-

Reinforced-Polymer (FRP) used as a confining material. Also, a combination of these 

two can be seen for cases where a deficient RC column with conventional lateral 

reinforcement is retrofitted by FRP material. Several researchers have proposed different 

stress-strain models (stress-strain curves) for concrete confined by FRP and by lateral 

reinforcement; this will be discussed further in the next chapter. 

Although the strength and ductility of concrete are improved by considering 

confinement, some of the design codes, such as ACI[5], have implicitly incorporated the 
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ductility enhancement of confined concrete but have not considered the strength gained 

by confinement. More details will be given in the second chapter. 

 

 

1.4- Research significance: 

 

As it was mentioned earlier, the assessment of a RC column’s response and behavior can 

be affected by different parameters, such as load pattern and history, material models, 

and analytical methods. Acknowledging the effects of these parameters on the 

assessment of the performance of reinforced concrete columns, this study is limited to 

exploring the role of various analytical procedures, and all other factors are kept 

constant. As an example, in the course of this study, the load pattern is monotonic and 

the monotonic models used for stress-strain relationship of plain and confined concrete, 

steel, and their hysteresis rules are fixed. The reinforced concrete columns to be 

analyzed in this study are considered to be under combined axial force and uniaxial 

bending moment. 

The main objective of this research is to find the analytical procedure that will predict 

the best realistic performance of a reinforced concrete column, subjected to combined 

axial load and uniaxial bending moment. 

To do so, various analytical methods are used to construct the axial force-bending 

moment (F-M) diagrams for two concrete columns, one with a square cross section and 

the other with a circular cross section. The F-M diagrams are obtained for both confined 

and unconfined cross sections. The analytical methods used in this study are the 

conventional simplified method, fiber-element method, and curvature-based method. 

These methods are applied for both confined and unconfined cross sections. 

Axial force-bending moment diagrams that are derived using these analytical methods 

are, then, compared to each other. At the end, the aforementioned analytical methods are 

validated against the existing experimental data[11] to find the analytical procedure that 

has the most realistic prediction. 
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Chapter Two- Literature review 

 

2.1- Chapter opening: 

 

Materials stress-strain models that represent the relationship between the stress and 

corresponding strain provide important information about materials behavior under 

applied loads. Massive studies have been conducted to model the stress-strain 

relationship of the material forming the reinforced concrete structures and structural 

members. When analyzing reinforced concrete (RC) elements, there are three material 

models to be used in the analysis; the stress-strain model for steel reinforcement, the 

stress-strain curve for unconfined (plain) concrete, and the stress-strain model for 

confined concrete. Also, there is a need for the cyclic (hysteresis) rules for the cyclic 

behavior of plain concrete, confined concrete and steel. Following is a brief review of 

the material models for steel reinforcement and confined concrete. 

a- Stress-strain model for steel reinforcement: 

Researchers proposed several models for reinforcing steel. For example, Mander et 

al.[12], Dhakal and Maekawa[13], Raynor et al.[14] are among those who have proposed 

stress-strain models for steel reinforcement bars. Dhakal and Maekawa[13], have studied 

the “reinforcement (bar) stability” and suggested an analytical method to determine the 

buckling length of the longitudinal reinforcement steel bars of RC structural members; 

their model takes into account the buckling effect of reinforcement. While these models 

are developed for monotonic loadings only, Chang and Mander[15] and Hoehler and 

Stanton[16]  have proposed cyclic stress-strain curves for steel reinforcement. 

b- Stress-strain models for concrete confined by FRP: 

Concrete confinement by Fiber-Reinforced-Polymers (FRP) has been a hot topic during 

the last two decades; hence, various stress-strain models have been proposed.  Mirmiran 

et al.[17], Samaan et al.[18] Lam and Teng[19], Teng and Lam[20], Teng et al.[21], Wu and 

Wang[22] have all proposed stress-strain models for FRP confined concrete that can be 

used to monotonic loadings. Shao et al.[23] have proposed a stress-strain model that can 

be used for cyclic loadings. However, the most commonly used model for FRP 
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confinement is the Lam and Teng[19] model; this model has been adopted by the 

Concrete Society (2004) in England and also by ACI-440-2R (2008) with some 

modifications[24]. 

c- Stress-strain models for concrete confined by steel reinforcement: 

Several different material models exist in the literature for conventional confinement 

due to steel reinforcement. For instance, Sheikh and Uzumeri[25], Mander et al.[26], 

Legeron and Paultre[27] are some the investigators who have proposed stress-strain 

curves for concrete confined by lateral reinforcement under monotonic loadings. Mander 

et al. [26], Martinez et al.[28], and Sakai and Kawashima[29] are some of the researchers 

who have come up with stress-strain models for conventional confinement due to the 

steel reinforcement under cyclic loadings.  

Although the idea of confinement due to transverse reinforcement was originated by 

Richart et al. in 1929[30], the first primarily stress-strain model was proposed by Kent 

and Park in 1971[31]. In this model which was for concrete columns with rectangular 

cross sections, the strength gained by confinement was ignored; however, the 

improvement in ductility due to confinement was incorporated in this model. 

The model by Sheikh and Uzumeri[25] which takes into account the enhancement of both 

strength and ductility due to confinement has three separate equations; one of these 

equations that is a parabolic equation is used to find the curve up to the maximum (pick) 

confined stress, and the other is a straight line with zero slope, while the third equation is 

also a straight line but with a descending slope. In this method, for the first time, the 

concept of effective core area was used. 

The Mander[26] model is the most commonly used stress-strain model for steel-confined 

concrete and is used for both circular and rectangular cross sections. Furthermore, only 

one equation is used for the entire curve; in other words, the model is a unified one. The 

model accounts for different configurations for longitudinal and transverse 

reinforcement, and it uses the effective core concrete area. More details about this model 

are given latter in this chapter. 

Although the Mander model is the most commonly used model, Sheikh and Yeh[32] have 

shown that this model overestimates the moment capacity of columns with square cross 

sections. They drew this conclusion from testing and experimental data for 15 square RC 
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columns with different arrangement of longitudinal and transverse reinforcement. This 

study also showed that the model that is proposed by Sheikh and Uzumeri[25] had a 

better prediction of actual behavior of square columns than did the Mander model[26]; 

however, the model by Sheikh and Uzumeri[25] can be applied to concrete columns with 

square cross sections only. Thus, each of these models has its own deficiencies and 

strengths. 

The stress-strain relationship for unconfined concrete can be obtained using the 

aforementioned stress-strain models for confined concrete due to the steel 

reinforcement; this is done by assuming zero lateral pressure (confining pressure). 

In this report, the Mander[25] model is used for unconfined and confined concrete, and 

the model developed by Esmaeily[2] is used for steel reinforcement. 

Even though the behavior of confined concrete has the attention of many investigators, 

most building codes over the world have not yet suggested any specific model for 

reinforcement-confined concrete to be used in design of concrete structures. However, 

some of these codes have some limitations on the size of concrete column cross sections 

and on the amount of longitudinal and transverse reinforcement within the cross section. 

For instance, the American Concrete Institute (ACI)[5] design code suggests minimum 

and maximum amount of longitudinal and lateral reinforcement for elements of concrete 

structures. Also, the amount of transverse reinforcement is different for those columns 

that will not be subjected to seismic loads compared to the columns in seismic regions; 

more detail is provided in section 2.3. The Uniform Building Code (UBC)[33] is another 

code that considers the improvement of ductility of concrete structures due to concrete 

confinement. As the ductility of a structure is improved, this code suggests a reduction 

of the seismic forces induced on the structure; this is also discussed further in section 

2.3. 

In this chapter, Mander model will be discussed in detail, and the requirements and 

limitations of both the ACI code and the UBC for ductile behavior of concrete structures 

will be explained. After that, the discussion continues about different analytical methods 

for obtaining the axial force-bending moment diagrams for reinforced concrete columns. 

 

 



14 
 

2.2- Mander material model : 

 

The Mander model for confined concrete is based on experimental data from “nearly 

full-size circular, square and rectangular reinforced concrete columns” [26]. Mander has 

considered both static and dynamic loading, either monotonic or cyclic, in his research. 

Unlike other confined concrete models, this model is considered to be constructed by 

employing a single formula; this means that this strain-stress curve is a unified curve [26]. 

In this section, the formulations that Mander has come up with to derive his proposed 

stress-strain curve are presented. 

The compressive strength of confined concrete is proposed to be obtained by the 

following formulas: 
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In the above equations, ccf   is the maximum compressive strength of confined concrete, 

c  is the compressive strain of plain concrete, cof   is the maximum compressive strength 

of unconfined (plain) concrete, cc  is the compressive strain of confined concrete 

corresponding to the maximum compressive strength of confined concrete, and co  is 

the strain corresponding to the maximum compressive strength of plain concrete. In 
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these equations, the unit for compressive strength is in M.Pa. Figure 2. 1 shows the 

strain-stress curve for both confined and plain concrete as proposed by Mander. 

 

Figure 2. 1. Mander model for confined and unconfined concrete. Adopted from [26] 

 

As stated, the Mander model can be used for both circular and rectangular cross 

sections; therefore, he proposed specific equations for computing the confinement 

pressure of circular and rectangular cross sections. The following formulas are used to 

calculate the lateral confinement pressure of transverse reinforcement for circular cross 

sections. 

lel fkf '    Eq. 2. 7 

In this formula lf   is the effective lateral confining pressure, ek is the effectiveness 

coefficient, and lf is the lateral pressure provided by transverse reinforcement. 
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Where eA is the effective area of confined core concrete for circular cross sections, ccA is 

the area of the concrete core enclosed by centerlines of spirals or hoops,  and cc is the 

ratio of the area of transverse reinforcement to the area of the core concrete. 
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 ccscc dA 
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2   Eq. 2. 11 

Where, sd is the diameter of transverse reinforcement bars and s is the clear vertical 

distance between the transverse reinforcement, the lateral confining pressure that is 

produced by the transverse reinforcement can be obtained as: 
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Where ytf is the yielding strength of transverse reinforcement, stA is the cross section 

area of the transverse reinforcement, and (s) is the center to center distance between 

spirals or hoops. Similarly,  Eq.2.12 can be written in terms of the ratio of volume of the 

lateral reinforcement, spirals or hoops, to volume of the confined core concrete as: 
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   Eq. 2. 13 

Where s is the ratio of volume of lateral reinforcement to the volume of confined 

concrete core, and is equal to: 
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With lf  from Eq.2.7, we can find the maximum compressive strength of confined 

concrete for circular sections as: 
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To obtain the maximum compressive strength and the lateral confining pressure for 

rectangular cross sections, following formulas are employed. 
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Where sxA and syA are the transverse reinforcement area in x and y directions, 

respectively. The parameters ( cb ) and ( cd ) are shown in Figure 2. 2. 

 

Figure 2. 2. Parameters of confined rectangular cross section. Adopted from [26]. 
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ytyly ff      Eq. 2. 20 
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lyely fkf '    Eq. 2. 22 

Where lxf  and lyf   are the effective lateral confinement pressure in x and y directions, 

respectively; for rectangular cross sections yxs    and ek  is obtained using the 

following equation. 
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Where iw is shown in Figure 2. 2. 
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The typical values of ek  are  0.95 for circular sections and 0.75 for rectangular sections. 

Obtaining lxf  and lyf  from Eq.2.21 and Eq.2.22, and having cof   ( maximum strength of 

unconfined concrete), we can sue figure 2.3 to compute the maximum compressive 

strength of confined concrete ( ccf  ) for rectangular cross sections. 

 

Figure 2. 3. Determination of maximum confined concrete strength for rectangular cross 

sections. Adopted from [26] 

 

The concept of equivalent stress block for confined concrete is also suggested by 

Mander et al. Figure 2.4 shows the Mander equivalent stress block and its parameters for 

confined concrete. 

 

Figure 2. 4. Equivalent stress block for confined concrete. Adopted from [ 26 ] 
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In Figure 2. 4, )/( cocc ffK  , ccc ff  , cucm   . 

To obtain the stress-strain curve for unconfined concrete based on the Mander model, 

we set lateral confining pressure lf  equal to zero. Then, employing the previous 

equations, we can construct the unconfined stress-strain curve. 

 

 

2.3- Codes and confinement: 

 

Lateral loads, such as earthquake loads, are the devastating loads for concrete structures. 

One of the methods to avoid absorbing seismic energy is to design the structure with 

dynamic properties that leads to natural frequencies as different as possible from the 

frequency content of the earthquake excitation in a specific region. Moreover, a good 

energy dissipation mechanism in structures plays a vital role in mitigating destructive 

seismic effect. Although there are many ways to increase the amount of energy 

dissipation in structures during an earthquake, conventionally the energy dissipation 

mechanism is provided by ductility (displacement capacity of the structure without 

failure) of the structure itself. Therefore, increasing the ductility of a structure increases 

the dissipated energy. 

The ductility of concrete structures depends on many factors, such as the compressive 

strength of concrete used in the structure, the type of the horizontal force resisting 

system used in the structure, and the amount of steel reinforcement used in the structural 

elements. If the amount of longitudinal steel reinforcement in a concrete cross section 

gets higher than a certain limit, the behavior of the concrete becomes brittle and its 

ductility decreases. On the other hand, the transverse (lateral) reinforcement has a 

significant effect on the ductility of the structure; the higher the level of transverse 

reinforcement in a RC cross section, the higher its ductility.  

Based on these considerations, ACI-318-08[5] has divided the “seismic-force-resisting 

systems” into three broad categories; Ordinary, Intermediate, and Special resisting 

systems; this classification is, mainly, based on the ductility of the force-resisting 
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systems. Special-moment-resisting systems are one of the force-resisting systems that 

support both lateral and gravity loads. In these systems columns and beams are the main 

elements for resisting loads.  

ACI 318-08[5] recommends some limitations for RC columns in concrete special 

moment-resisting systems. These reinforced concrete (RC) columns should be specially 

detailed and designed; the area of longitudinal reinforcement shall not be less than 0.01 

Ag or more than 0.08 Ag. Additionally, the following suggestions are made in ACI for 

transverse (lateral) reinforcement: 

Section 21.6.4.3 of ACI 318-08: 

The spacing of transverse reinforcement shall not be more that the smallest of the 

following three values: 

a) One fourth of minimum dimension of the cross section. 

b) Six times the diameter of the smallest longitudinal bar within the member. 

 

c) S0 :  
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Where xh  is the longest horizontal distance between the legs of transverse 

reinforcement. 

The spacing mentioned in ACI section 21.6.4.3 should be provided for within the length 

of  0l  ; this is defined as follows. 

Section 21.6.4.1 of ACI 318-08: the value of 0l  should not be considered less than the 

largest value of the following: 

a) “The depth of the member at the joint face or at the section where flexure yielding is 

likely to occur” [5]. 

b) One-sixth of the column clear span. 

c) 18 in. 

While section 21.6.4.3 ACI addresses the minimum spacing of transverse reinforcement, 

section 21.6.4.4 of ACI-318-08 puts some limitation on the volumetric ratio of 
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transverse reinforcement in special moment resisting frames; these limitations are as 

follows: 

a) The volumetric ratio of the circular hoops or spirals shall not be less than the 

following : 

1. Section 21.6.4.4:  
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Where S  is the center to center vertical spacing of the ties, chA is the cross section area 

measured outside to outside of the transverse reinforcement, 21 ccch bbA  , and other 

parameters are shown in Figure 2. 5. Furthermore, ACI code has some limitations on the 

transverse reinforcement beyond the length 0l . ACI section 7.10 suggests that the 

maximum and minimum clear spacing between the spirals shall be 3 in. and 1 in. 

respectively. Moreover, this section indicates that the minimum spacing of the ties shall 

be taken the smallest of: 16 times diameter of the longitudinal bar, 48 times the diameter 

of the tie bars, or the smallest dimension of the cross section. According to ACI section 

7.10, the minimum spiral diameter should not be less than 3/8 in. 
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Figure 2. 5. Transverse reinforcement details. Adopted from [5] 

 

UBC-97[33] is another building code that considers the effects of confinement. UBC-

97[33] also classifies the lateral-force-resisting systems into three categories, Ordinary, 

Intermediate, and Special. These categories are defined in ACI 318-08 based on their 

ductility. Given UBC-97, the base shear force produced by ground motion, i.e. an 

earthquake, is computed by the following equation. 
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    Eq. 2. 29 ( UBC Eq.30.4) 

The maximum design base shear force is calculated by Eq.2.30 and the minimum base 

shear force for seismic zone 4 is computed by Eq.2.31; equation 2.32 gives the 

minimum design base shear force for seismic zones other than zone 4. 
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23 
 

The value of R (Response Modification Factor) depends on the type of lateral-force-

resisting systems, and is given in table 16-N of the UBC-97[33]. Specifically, the value of 

R  is 3.5 for ordinary concrete moment-resisting frame systems and 8.5 for special 

moment-resisting frame systems. Therefore, in special moment-resisting frame systems, 

the seismic base shear force is reduced by 50% compared to that of the ordinary 

moment-resisting frame systems. Thus, the limitations that the ACI[5] code applies to the 

special lateral force resisting system along with  considerations of CUB-97 improve the 

ductility of the system and, consequently, decrease the level of seismic force induced on 

these types of structures.  

In recent years, AASHTO[38] has permitted considering the confining effects directly in 

analysis of reinforced concrete sections . In section 5.7.2.1 it states that “If the concrete 

is confined, a maximum usable strain exceeding 0.003 in the confined core may be 

utilized if verified. Calculation of the factored resistance shall consider that the concrete 

cover may be lost at strains compatible with those in the confined concrete core.” In 

C5.7.2.1 the research by Bae and Bayrak [39] has been cited showing that “for well-

confined High Strength Concrete (HSC) columns, the concrete cover may be lost at 

maximum useable strains at the extreme concrete compression fiber as low as 0.0022. 

The heavy confinement steel causes a weak plane between the concrete core and cover, 

causing high shear stresses and the resulting early loss of concrete cover.” 

 

 

2.4- Analytical methods for obtaining F-M diagrams: 

 

As it was stated earlier, various analytical methods can be used to evaluate the behavior 

of reinforced concrete columns under applied loads. In this section, the procedure 

needed to obtain axial load-bending moment (F-M) diagrams, which are used as the 

capacity indicators of RC columns, is described. The procedure is explained for each 

analytical method separately. 
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2.4.1- Simplified method for unconfined concrete: 

 

This method which is recommended by ACI code considers the concept of “equivalent 

stress block”. Based on this concept, the strain at the most compressed edge of the cross 

section is assumed to be constant and equal to 0.003; this is said to be the ultimate 

compressive strain of the unconfined concrete. For obtaining F-M diagrams based on 

this method, compressive strain at the extreme fiber is taken to be constant while the 

strain at the tension reinforcement is variable. Figure 2. 6 shows different states of strain 

distribution of the RC column cross section. 

 

Figure 2. 6. Different stages of strain distribution on the column cross section. 

 

In this figure, stage (a) indicates that the cross section is completely under compression 

while stage (b) shows that the steel reinforcement has reached its yielding strain and the 

compressive strain in the concrete remains constant.  In stage (c), the cross section is 

under pure tension. From stage (a) to stage (b) and from stage (b) to stage (c), small 

incremental values of strain for steel reinforcement are considered, and for every 

incremental value of this strain, the axial load and bending moment in the cross section 

are computed. The smaller is the incremental values of strain at the bottom layer of 

reinforcement, the more accurate is the F-M diagram. 

In general, a simple F-M diagram can be drawn by defining six important points while a 

more accurate diagram can be constructed if the number of points on F-M is increased. 

These six points are the pure compression point, the point where the strain in the bottom 

layer of reinforcement is zero, the point at which the strain in the bottom layer of 

reinforcement is equal to 
E

f y
 , the point where the strain at the bottom layer of 
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reinforcement is -0.005, the point at which the axial force is zero, and the pure tension 

point. These points are shown in Figure 2. 7. 

 

Figure 2. 7. Six important points on F-M diagram for concrete column. 

 

The computation process for obtaining the coordinates of these points is described next. 

 

Coordinates of the first point (Point 1): 

At the first point, the cross section is completely under compression and the value of 

compressive force is defined based on ACI section 10.6.3 as: 

 yststgcn fAAAfP  )('85.0   Eq. 2. 33 (ACI Eq.10-1) 

Where nP  is the nominal axial force, cf   is the maximum compressive strength of the 

concrete and yf is the yielding strength of steel reinforcement. Therefore, the 

coordinates of this point on the F-M graph is ( nM , nP ) = ( 0.00 , nP  ). 

 

Figure 2. 8. Column cross section and strain distribution for the first point. 

 



26 
 

Coordinates of the second point (Point 2): 

At the second point, the strain at the bottom layer steel reinforcement is zero. This 

condition is described in figure 2.9. In this stage there is no tension force in the section, 

but the capacity of the column is decreased because of the existence of the bending 

moment. 

 

Figure 2. 9. Stress and strain distribution for the second point. 

 

Following is the procedure for computing the coordinates of the second point: 
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In these equations,  c   and  a  are the depth of neutral axis and the depth of compressive 

stress block, respectively. st  is the tensile strain in the bottom layer of tension 

reinforcement, s   is the strain in the compression steel reinforcement, si is the strain in 
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the reinforcement corresponding to the depth ( id ), E is the modulus of elasticity of steel, 

sF  , and sF are forces in compressive and tensile reinforcement, respectively; cC is the 

compressive force in concrete stress block, and β1 is the factor that adjusts the depth of 

the compressive stress block. 

Having calculated cC , sF  , and sF  , we can compute the coordinates of the second point 

as follows: 
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These are the nominal coordinates for the second point. 

 

Coordinates of the third point (balanced point): 

Obtaining the third point’s coordinates requires the same procedure that was used for the 

second point. But for this point, the strain-stress distribution is different; the strain at 

bottom tensile reinforcement is equal to the yielding strain of the steel, that is (

E

f y
st  ). Since the strain in concrete is at the ultimate level and strain in the 

bottom layer of tensile reinforcement is at the yielding level, this point is characterized 

as the point of balanced failure.  

Note that the depth of neutral axis decreases as the strain in the tensile steel increases. 

Nominal axial force ( nP ) and nominal bending moment ( nM ) for this point can be 

obtained using Eq.2.34 to Eq.2.42 by considering (
E

f y
st  ). 
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Figure 2. 10. Stress and strain distribution for the third point. 

 

Coordinates of the fourth point (Tension-controlled point):  

The coordinates of this point are calculated in the same manner as for third point except 

that here the value of strain in tensile steel is (-0.005). The fourth point is called the 

tension-controlled point because the steel fails prior to the crashing of the concrete. 

 

Coordinates of the fifth point: 

This is a pure bending point where the axial load is zero. For the preceding points either 

the depth of neutral axis or the strain in the tensile reinforcement was known. For this 

point, the depth of neutral axis (c ) can be found by putting the Eq.2.41 equal to zero. 

Next, having ( c) the strain in the tensile reinforcement can be obtained by Eq.2.39.  

Having c and strain in reinforcement layers, the coordinates of the fifth point are then 

computed in the same way as was the third point.  

 

Coordinates of the sixth point: 

For this point, the entire section is in tension and, thus, the tension force is calculated as 

followings. 

)( ssyn AAfP     Eq. 2. 43 

Where sA  and sA  are the area of the tensile and compression reinforcement, 

respectively. The bending moment ( nM ) is zero for this point. 

To obtain a more accurate interaction diagram for a RC column, the number of points on 

this diagram should be increased. To increase the number of points, different depth of 

neutral axis ( c ) should be considered; the smallest is the incremental values of ( c ), the 
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more accurate is the F-M diagram. Consequently, for each value of ( c ), the axial load (

nP  ) and the bending moment ( nM  ) are calculated employing Eq.2.34 through Eq.2.42. 

To calculate the F-M diagrams for cross sections with more than two layers of steel 

reinforcement, we can compute the general coordinates of the points by the following 

equations. 
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    Eq. 2. 44 
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  Eq. 2. 45 

In these equations, cC is defined in Eq.2.34, a  is defined in Eq. 2.35, x is the distance 

between centroid of gross cross section to the most compressed edge of the cross 

section, siF is the force in the steel reinforcement, and it is defined as: 

isysiisi AfAEF      Eq. 2. 46 

Where i is the strain in the layer ( i ) of the steel reinforcement; i  that is positive for 

compression and negative for tension is computed based on Eq.2.39 ; and siA  is the area 

of reinforcement of the ith layer of reinforcement. 

Preceding paragraphs discussed the computation of axial force-bending moment (F-M) 

diagrams for rectangular cross sections. Now, the (F-M) diagrams for RC columns with 

circular cross sections can be constructed similarly. Incremental values for neutral axis 

depth are selected while the compressive strain at the extreme fiber is set equal to 0.003. 

The only differences are the area of compressive stress bock and the distance from the 

centroid of the cross section to the center of this stress block area. 

Having the depth of the neutral axis c, the depth of the compressive stress block, a, can 

be obtained using Eq.2.35. Then, following equations are used to calculate the area of 

the compressive stress block and the distance from the centroid of the cross section to 

the center of this stress block area[5]. 
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Parameters θ and y are shown in Figure 2. 11. 

 
Figure 2.11a- Strain and stress distribution of circular column. Adopted from [7] 

 

Figure 2. 11.(b). θ and y . Adopted from [7] 

 

Notably, the preceding discussion and formulation are applicable only to RC columns 

under axial loads with/without uniaxial bending moment; throughout this report, the F-

M diagrams that are constructed using on this method are called simplified-unconfined 

F-M diagrams. The procedure of analysis of those columns supporting the bending 

moment in two directions (biaxially loaded in bending) is quite different and is not 

covered in this study.  
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2.4.2 – Simplified method for confined concrete: 

 

This method also uses the concept of “equivalent rectangular stress block”; however, the 

parameters of this stress block are different from those of the ACI equivalent stress 

block since confinement is considered in this method. In this method, the ultimate 

compressive strain is found from the stress-strain model used for confined concrete, and 

the other parameters of equivalent rectangular stress block are obtained from figure 2.4. 

With the confined equivalent stress block, the procedure employed in previous method 

is applicable for this method to obtained F-M diagrams. 

However, to compute confined F-M diagrams based on this method, some parameters of 

the cross sections are different from those used in unconfined ( plain ) concrete sections. 

The ultimate compressive strain of confined concrete ( cu ) is much higher than for the 

unconfined one, and its value is given by Eq.2.16. In this method, we assume that the 

cover concrete does not exist; thus, only the core concrete is considered to be effective. 

Figure 2.12 shows the parameters of core concrete used in the analysis procedure. 

 

Figure 2. 12. Parameter of the cross section for the confined concrete. 

 

Since in this method the concrete cover is considered to be crashed, the height and the 

width of the cross section will be changed. The shaded area in figure 2.12 is the confined 

core concrete and its dimensions, h and b , are shown in the figure; these are the 

effective dimensions of the cross sections. 
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We should also change the rectangular stress block parameters; that is to find the 

relevant stress block for confined concrete. Considering the equivalent stress block as 

shown in figure 2.4, we can find the compressive force of confined concrete as: 

bcfbcfKC cccc
 
  

Eq. 2. 49 

In this equation, ccf  is the maximum compressive stress of confined concrete given in 

Eq.2.15 for circular sections and from Figure 2. 3 for rectangular cross sections, β and α 

can be found from Figure 2. 4, b is the width of the core concrete indicated in Figure 2. 

12, and ( c ) is the depth of the neutral axis obtained by the following formula. 

n

stcc

cc dc 

















    

Eq. 2. 50 

Similarly, the pure compressive axial force of the confined concrete cross section can be 

computed as: 

 ysteccn fAAfP  )('                   Eq. 2. 51 

Where eA is the effective area of the cross section. 

Thus, to find the F-M diagrams for confined concrete columns, the equations 2.49 

through 2.51 are employed to include the core concrete dimensions and the confinement 

effects into the computations. Also, the computation procedure is the same as for 

unconfined cross sections; the F-M diagrams obtained using this method are called 

simplified-confined F-M diagrams within this report. Figure below shows three different 

stages of strain distribution in a confined cross section. 

 

Figure 2. 13. Strain distribution for confined concrete cross section. 
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In stage ( a ), the section is under pure compression; stage ( b ) is the balance situation, 

and stage ( c ) is the pure tension state of the section. From stage ( a ) to stage ( b ), the 

strain in the reinforcement decreases from cc to the Ef y / while from stage (b) to 

stage ( c ) the compression strain in the concrete decreases from cc  to Ef y / . This 

procedure works best by selecting small incremental values of strain in the bottom layer 

of reinforcement to generate a more accurate F-M diagram. For each value of the depth 

of the neutral axis, the values of nominal axial force ( nP ) and nominal bending moment 

( nM ) of the cross section are computed using the confined equivalent stress block and 

the procedure given in section 2.4.1. 

 

 

2.4.3- Simplified curvature-based method: 

 

As discussed, F-M diagrams based on the simplified method are constructed by 

assuming that the strain at extreme compression fiber is constant and equal to the 

ultimate strain. Then, several values of the depth of the neutral axis help render a graph 

representing the axial force-bending moment response of concrete columns. However, 

the axial load-bending moment diagram for concrete columns can be constructed in a 

way that the compressive strain at the extreme compressed fiber is not constant but 

variable; this is done by using the M-C diagrams for obtaining the F-M diagrams. For 

each axial load level for a concrete column, there is a unique M-C diagram for the 

columns. Having the axial load level of the cross section, the corresponding maximum 

bending moment and the corresponding maximum compressive strain are obtained from 

the M-C diagram. 

The Moment-Curvature (M-C) responses of RC columns are more realistic than the F-M 

responses; this is because deriving the M-C diagrams requires no pre-assumed 

compressive strain for the cross section. Consequently, the maximum compressive strain 

in M-C diagrams that are computed by equilibrium of forces in the cross section can 

have different values for different axial load levels. 
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This section explains the procedure of obtaining the F-M diagrams based on M-C 

diagrams. The F-M diagrams derived using this method are called simplified curvature-

based F-M diagrams in this text.  

 

 

2.4.3.1- Moment-curvature (M-C) diagrams for columns: 

 

The basic equation for obtaining the curvature of a concrete cross section is given as[7]: 

x

c 
   

Eq. 2. 52 

In this formula, c is the compressive strain at the extreme compressed fiber, and x is the 

corresponding depth of the neutral axis. 

Equation 2.52 can be written in terms of bending moment and flexure rigidity of the 

section as [7]: 

EI

M
    Eq. 2. 53 

Equations 2.52 and 2.53 are valid as long as the behavior of the cross section is linear. 

Having the values of c  and x , curvature,  , is obtained from Eq.2.52; then, the 

corresponding bending moment can be calculated using Eq.2.53. 

As Eq.2.53 shows, the bending moment is dependent on two parameters; the curvature 

  and the flexure rigidity, EI , of the cross section. For a linear and elastic material, 

such as steel, it is assumed that the EI is constant through the analysis procedure; 

however, for a material, such as concrete, whose analysis goes very far from its elastic 

limit, EI  is not constant. The flexure rigidity of the concrete cross section has different 

values through its M-C response; this is so because throughout the M-C diagram, the 

value of compressive strain goes up to the ultimate limit. Therefore, the flexure rigidity (

EI ) of the cross section is large before cracking of the concrete, and afterwards, its 

value decreases drastically. 
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Figure 2. 14. Curvature of a cross section. 

 

The general procedure for development of a M-C diagram for a concrete column under a 

given axial load is as follows: first a value for compressive strain at the top of the 

section is selected; then, the depth of the neutral axis ( c ) is assumed. After assuming 

the value for ( c ), curvature can be obtained; after obtaining the curvature, we can find 

the strains in concrete and steel reinforcement layers. Having the strains in the concrete 

and steel reinforcement, we can find corresponding internal forces of the crass section. 

After computing the forces in concrete and steel, we should check the depth of the 

neutral axis by equilibrium of forces; if the forces induced on the cross section were not 

in equilibrium, another depth of the neutral axis must be assumed and so on until the 

equilibrium of internal forces is met. Then, the value of c , at which the equilibrium of 

the cross section was met, along with the selected value of strain, are used to compute 

the bending moment and curvature of the cross section. This procedure is continued for 

other compressive strains; the procedure should be continued until the compressive 

strain is equal to the ultimate strain (or any intended value) of the concrete. The smaller 

the increment of the compressive strain, the more precise the M-C diagram[34]. 

For a concrete cross section, there are four important points in the moment-curvature 

diagram. The first point is the point just before cracking point; the second is the point 

just after cracking; the third point is the yielding point (the point where the bottom layer 

of reinforcement yields), and the fourth point is the ultimate point. From the first point 

to the second there is a jump in the M-C diagram; this is because the moment of inertia 

of the section reduces when the first crack happens. This jump can occur either in the 

moment or in the curvature. If the moment is kept constant, the jump occurs in the 

curvature value; if the curvature is kept constant, the jump takes place in the moment 
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value. If, in a M-C diagram, the moment has the same value in the first and second 

points, the diagram called force-controlled M-C diagram while if the curvature has the 

same value in these two points, the diagram is said to be displacement-controlled M-C 

diagram. 

Figure 2. 15 shows the simplified force-controlled and displacement-controlled M-C 

diagrams. There, the nonlinear behavior of concrete is simplified to linear; that is the 

diagrams consist of four straight lines. 

 

Figure 2. 15. Simplified M-C diagrams. (a) Displacement-controlled (b) force-

controlled. 

 

The simplified M-C diagrams are usually plotted by knowing the coordinates of four 

important points. The procedure for computing the coordinates of these points is 

described next. The coordinates of point one through point three are the same for 

confined and unconfined concrete because the lateral confining pressure is assumed to 

be negligible in this region [5]. However, the coordinate of the fourth point is different for 

confined and unconfined concrete; this is because the fourth point is the point where the 

ultimate compressive strain occurs, and so the property of the cross section and the 

strength of the cross section are different for confined concrete compared to unconfined 

concrete at this point. Below is the computation procedure for obtaining the coordinates 

of these four pints. 

 

Starting point: 

The start point is a point with zero coordinates. 
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Coordinates of the first point: 

This point is right before cracking of the cross section; here, the maximum stress in the 

concrete should be equal to the modulus of rapture, rf , of the concrete. The cross 

section is uncracked at this point, and the moment of inertia is equal to the moment of 

inertia of the gross cross section. The coordinate of this point is calculated for a given 

axial load ( nP ) using the following formulas[6]. 
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n       Eq. 2. 56 

cr ff  5.7      Eq. 2. 57 

Where gI is the moment of inertia of the gross cross section (including the 

reinforcement), rf  is the modulus of rapture of the concrete, sE  is the modulus of 

elasticity of steel reinforcement, cE is the modulus of elasticity of the concrete, y is the 

distance from the bottom tension fiber to the neutral axis, b  is the width of the cross 

section, h  is the height of the cross section, and nP  is the axial load applied on the cross 

section. 

 

Coordinates of the second point: 

Since we intend to construct a force-controlled M-C diagram, for this point, the bending 

moment is equal to the moment of the first point, M1, and the curvature is computed by 

the following equations[6]. 
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    Eq. 2. 59 

Solving these two equations ( Eq. 2.58 and 2.59) simultaneously, renders the depth of 

the neutral axis, c, and the curvature for the second point, 2 . Note that these equations 

are just for two layers of reinforcement, top and bottom. If several layers of 

reinforcements are used within the cross section, the general formulas are: 
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    Eq. 2. 61 

Where id is the distance of the ith layer of reinforcement from top edge of the cross 

section, siA   is the area of ith reinforcement layer that is in compression, and siA  is the 

ith reinforcement layer that is in tension. Figure 2. 16 shows more details about these 

parameters. 

 

Figure 2. 16. Parameters of the generalized formula. 

 

Coordinates of the third point: 

For this point, the tensile steel in the extreme tension fiber has yielded; the tensile strain 

at this location is 
s

y

y
E

f
 ; following are the equations[6]. 
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Where 3M and 3 are the coordinates of the third point. 

 

Coordinates of the fourth point for unconfined concrete: 

For this point, the strain at the extreme compressed fiber is equal to the ultimate strain of 

the concrete, that is 003.0c . 
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If the steel in top and bottom has yielded, instead of 003.0



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 , yf  is used. Solving Eq.2.66 through Eq.2.67 the coordinates of the 

fourth point, the ultimate moment and corresponding curvature, are obtained. 

A general form for above formulas can be written as follows. 
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As mentioned, the confinement effect is only considered for the fourth point. Also, the 

computation procedure for the coordinates of the fourth point for confined concrete is 

the same as for unconfined concrete; however, instead of using parameters of 

unconfined concrete, we use the parameters and properties of confined concrete. 

 

Coordinates of the fourth point for confined concrete: 

At this point, the strain at the most compressed fiber of the cross section is equal to the 

ultimate compressive strain of the confined concrete, cu . Also, for this point, no 

concrete cover is considered [6]: 
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If the steel in top and bottom has yielded, instead of ccu
n
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dc
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yf is used. In the above equations, ccf  and cu are obtained from equations 2.15 and 

2.16, α and β are shown in figure 2.4, danddbh n ,,,   are shown in Figure 2. 12. 

Solving Eq.2.70 through Eq.2.72 gives us the coordinates of fourth point for the 

confined concrete cross section. 

So far in this section has explained the procedure for constructing the simplified M-C 

diagram. The next section presents the process for obtaining the M-F diagram from M-C 

diagrams.  
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2.4.3.2- Obtaining the F-M diagram from M-C diagrams: 

 

Here, the intention is to obtain the axial force-moment (F-M) diagram for RC columns 

based on its moment-curvature diagrams. In general, for each axial force, a maximum 

moment is obtainable from M-C diagram. The plot of the axial forces versus these 

moments is said to be the axial force-moment ( F-M ) diagram based on M-C diagrams. 

Here, a simplified F-M is obtained using M-C diagrams considering at least four 

different axial load levels. 

Since for high level of axial loads the moment-curvature of the section is small, we 

assume that for pure compression and tension forces, the moment and curvature is zero. 

Thus, the axial load corresponding to the second point, third point, fourth point, and the 

fifth point of interaction diagram is first obtained. Then, for each of these axial forces, a 

moment-curvature (M-C) diagram is drawn; each of these M-C diagrams has a 

maximum moment, which is comes from the fifth point of the M-C diagram. This is 

illustrated in figure 2.17. 

 

Figure 2. 17. Axial force-Moment diagram based on M-C diagrams. 

 

Finally, the graph of the axial force versus maximum moment is plotted; this graph is 

called the curvature-based F-M diagram within this study. 
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2.4.4- Detailed method: 

 

So far, section 2.4 has presented the simplified methods for obtaining the axial force-

bending moment diagrams and moment-curvature diagrams for a RC column; these 

methods were called simplified methods since the exact distribution of compression 

stress was simplified to an equivalent rectangular stress block. Next, this section 

discusses the detailed method. The only difference between the detailed and the 

simplified method is that in the detailed method, the exact distribution of compressive 

stress within the cross section is used; by exact stress distribution, we mean the stress 

distribution that is directly derived from stress-strain curves. Therefore, in the detailed 

method, the role of the material model is evident; this is because the exact distribution of 

stress comes from the material model used in the analysis. 

Several methods, such as the finite element method and the fiber-element model, can be 

used to find the exact stress distribution over the cross section[35]. The fiber-element 

method is one of those methods that are used to construct this exact stress distribution. 

In the fiber-element model, the cross section is divided into thin strips; these strips can 

be either in one or two directions, depending on the whether the bending moment is 

uniaxial or biaxial. Figure 2.18  illustrates a concrete column cross section divided into 

strips; figure 2.18a, which shows the strips are in two directions, is used for a column 

under biaxial bending moment; figure 2.18b that indicates the strips in one direction can 

be used for a column cross section under uniaxial bending. 

 

Figure 2. 18. The cross section discretization in fiber-element model. 

 

Once the cross section is divided into thin fibers, the compressive strain for the extreme 

fiber is selected (as in the simplified method). With the number of strips within the cross 
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section and strain at the most compressed strip, the strain in each strip is obtained using 

the flexure theory. Next, having the strain distribution over the cross section, a 

computational algorithm, such as Monte Carlo stimulation[36], along with a material 

model, such as Mander model[26], is used to obtain the stress distribution over the cross 

section. Then, numerical integration is used to calculate the compression force under the 

compression stress distribution; the internal forces for steel reinforcement are simply 

determined by multiplying the stress in each reinforcement layer by the corresponding 

steel area. Once the internal forces are derived, axial load and bending moment of the 

cross section are computed using the equilibrium concept. 

In this report, the fiber-element method is implemented by KSU-RC software[37] 

developed by Dr. Asad Esmaeily, associated professor in the Civil Engineering 

Department at Kansas State University. The KSU-RC software uses the fiber-element 

model for constructing the confined and unconfined F-M and M-C diagrams for both 

circular and rectangular cross sections under uniaxial bending; the software has other 

capabilities, though. In the current version of the software, the Mander model is used for 

both unconfined and confined concrete and also the user is able to use the custom model. 

Therefore, this software uses three different strain-stress models for analyzing concrete 

cross sections; steel, unconfined and confined concrete. 

To find the axial force-bending moment diagrams for a RC column using  this software, 

some inputs should be assigned to the software: the properties of the cross section is 

assigned, the number of the strips of the cross section is selected, and also the 

compressive strain at the extreme fiber is given. Then, using these input data, the 

software plots the F-M diagram. These outputs should also be given to derive the M-C 

diagram; however, since M-C diagrams are not constructed for a constant compressive 

strain, a limiting value for strain is given instead. 

Figure 2. 19 shows the interface of the KSU-RC software. 
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Figure 2. 19. KSU-RC interface [37]. 

 

In this research, the detailed F-M diagrams and the detailed M-C diagrams for both 

confined and unconfined RC columns are obtained directly with the KSU-RC software. 

Finally, the detailed curvature-based F-M diagrams are derived by using the detailed M-

C diagrams. 
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Chapter Three- Exploring Analytical Methods 

 

3.1- Chapter opening: 

 

In chapter two, different analytical methods for obtaining the F-M diagrams were 

discussed. In this chapter, these methods are used to construct F-M diagrams for two RC 

columns, one with circular and the other with square cross section. 

In section 3.2, the aforementioned analytical methods are used to obtain the F-M 

diagrams for unconfined cross sections. Next, in section 3.3, these methods are 

employed to construct the F-M diagrams for confined cross sections. These analytical 

methods will be compared in the next chapter. The methods will, then, be validated 

against the existing experimental results to spot the best method that can provide a 

realistic, yet conservative prediction of the strength and behavior of a reinforced 

concrete column. 

 

 

3.2- Computation of F-M diagrams for unconfined RC columns: 

 

As it was pointed out, two concrete columns are chosen to be analyzed. Here, in this 

section, confinement is not considered; both simplified and detailed methods are used to 

obtain the unconfined F-M diagrams. Following is the detail for column cross sections. 

 

 cf = 4000     psi. 
 yf  = 60000    psi. 
 clear cover = 2   in. 
 Es = 29000 Ksi. 
 12 # 9 longitudinal bars 
 # 3 @ 4 in. stirrups  

 
 
Figure 3. 1. Columns’ cross sections. 
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3.2.1- Computation of F-M diagram based on the simplified method: 

 

To find the simplified-unconfined F-M diagram, the procedure of section 2.4.1 is used. 

Following is the procedure for a square cross section. 

 

Coordinates for the first point: 

Gross cross section area = gA  = 18*18 = 324  in2. 

Area of steel reinforcement = sA  = 12*( 3.14/4)*(9/8)2 ≈ 12  in
2. 

.17811260)12324(485.0)(85.0 ' kipsAfAAfPo sysgcn   

So, the coordinates of this point are ( 0, 1781 ). 

 

Coordinates for the second point: 

At this point, the tensile strain at the bottom layer of reinforcement is zero; therefore, the 

depth of the neutral axis is equal to d4; the depth of all the layers of reinforcement is 

shown below. 

 
Depth of the neutral axis = c = d4 = 18-2-(3/8)-(9/16) = 15.1  in. 

Depth of the ACI stress block = a = β*c = 0.85*15.1 = 12.83  in. 

Strain in the first layer = 00242.0)94.21.15(
1.15

003.0
)(

003.0
11  dc

c
  

Strain in the second layer = 00161.0)98.61.15(
1.15

003.0
)(

003.0
22  dc

c
  
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Strain in the third layer = 00082.0)111.15(
1.15

003.0
)(

003.0
33  dc

c
  

Strain in the fourth layer = 00.0)1.151.15(
1.15

003.0
)(

003.0
44  dc

c
  

Stress in the first layer = .18.7029000*00242.011 ksiEf    

Since this value is greater than fy=60 kis, use f1=60 ksi. 

Stress in the second layer = .7.4629000*00161.022 ksiEf    

Stress in the third layer = .8.2329000*00082.033 ksiEf    

Stress in the fourth layer = .00.029000*00.044 ksiEf    

 

Force in the first layer = .2404*60111 kipsAfF   

Force in the second layer = .4.932*7.46222 kipsAfF   

Force in the third layer = .6.472*8.23333 kipsAfF   

Force in the fourth layer = .00.04*0444 kipsAfF   

Force in the concrete = .2.78583.1218485.0'85.0 kipsabfC cc   

Total nominal Axial force = .2.11664321 kipsFFFFCP cn   

Nominal bending moment =    












n

i

sicn dixF
a

xCM
1

)(
2

  

inkipM n .6.3577)119(6.47)98.69(4.93)94.29(240
2

83.12

2

18
2.785 








  

Thus, the nominal coordinates of the second point are ( 3577.6 , 1166.2). 

 

Coordinates for the third point: 

At this point, the strain at the lower layer of reinforcement is equal to the yield strain of 

steel reinforcement. 
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Strain in the fourth layer = 

00207.029000/60)1.15(
003.0

)(
003.0

44  c
c

dc
c


 

Depth of neutral axis = 
.94.8 inc 
 

Depth of compression block = ..6.794.885.0 inca    

 

Strain in the first layer = 0020.0)94.294.8(
94.8

003.0
)(

003.0
11  dc

c
  

Strain in the second layer = 00066.0)98.694.8(
94.8

003.0
)(

003.0
22  dc

c
  

Strain in the third layer = 0007.0)1194.8(
94.8

003.0
)(

003.0
33  dc

c
  

Stress in the first layer = .58290000020.011 ksiEf    

Stress in the second layer = .14.192900000066.022 ksiEf    

Stress in the third layer = .3.20290000007.033 ksiEf    

Stress in the fourth layer = .602900000207.044 ksiEf    

 

Force in the first layer = .232458111 kipsAfF   

Force in the second layer = .3.38214.19222 kipsAfF   

Force in the third layer = .6.4023.20333 kipsAfF   

Force in the fourth layer = .240460444 kipsAfF   

Force in the concrete = .4656.718485.0'85.0 kipsbafCc c   

Total nominal Axial force = .4554321 kipsFFFFCcPn   

Nominal bending moment =    












n

i

sicn dixF
a

xCM
1

)(
2
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)1.159(240)119(6.40)98.69(3.38)94.29(232
2

6.7

2

18
465 








nM

..5.5446 inKipM n   

Thus, the coordinates of the third point is ( 5446.5 , 455). 

This process can be employed to get the coordinates of the other points. 

Coordinates of Fourth point = ( 4578 , 61 ) 

Coordinates of Fifth Point = ( 4325 , 0.00 ) 

Coordinates of Sixth point = ( 0.00 , - 720 ) 

Finallly, the simplified-unconfined F-M diagram for this cross section is plotted as in 

figure 3.2(a) . 

 
Figure 3. 2 (a). Simplified-unconfined F-M diagram for square cross section. 

 

As the graph shows, the maximum moment occurs approximately at the third point, 

where the strain in the steel is just equal to the yielding steel strain (-0.00207). At this 

point the moment is 5446.5  kip-in. For a more accurate diagram, increase the number of 

data points; figure 3.2(b) presents the simplified-unconfined F-M diagram for this cross 

section with more data points. 
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)(kipsPn

)( inkipM n 
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Figure 3.2( b). Simplified-unconfined F-M diagram for square cross section with more 

data points. 

 

A similar procedure can be used to obtain the simplified F-M diagram for an unconfined 

circular cross section. Figure 3. 3 shows the simplified-unconfined F-M diagram for the 

proposed circular cross section. 

 

 

 

 

 

 

 

 

 

 

Figure 3. 3. Simplified-unconfined F-M for circular concrete column 

 

 

 

 

-1000

-500

0

500

1000

1500

2000

0 2000 4000 6000

)(kipsPn

.)( inkipM n 

-1000

-500

0

500

1000

1500

2000

0 1000 2000 3000 4000 5000

)(kipsPn

.)( inkipM n 



51 
 

3.2.2- Obtaining F-M diagram based on simplified-curvature-based method: 

 

Moment-curvature diagrams for concrete columns are computed based on a given axial 

load; for each axial load level, there is a specific M-C diagram for a column. For the 

columns given in section 3.2, to find the F-M diagram from M-C diagrams’ data, we 

should have one M-C diagram for each axial load; these axial loads can be those that are 

calculated for each point of the F-M diagram. For illustration, the axial force in the third 

point of the simplified-unconfined F-M diagram, which is shown in figure 3.2a, is 

considered; meanwhile, the simplified moment-curvature diagram for the square cross 

section is obtained using the procedure in section 2.4.3. Below is the procedure for 

obtaining the simplified M-C diagram for square cross section. 

 

Concrete modulus of elasticity = cE = 57000 ( cf   )1/2 = 3605 ksi. 

Steel modulus of elasticity = sE  = 29000 ksi. 

Concrete modulus of fracture = cr ff  5.7 = 0.4743 ksi. 

       n = sE / cE  = 8.044 

       nP  = 455 Kips. 

Coordinates for the starting point : 

The coordinates of this point is ( 0.00 , 0.00 ) 

 

Coordinates for the first point: 

4743.0
)1(

1 






st

n

g

t
r

Anhb

P

I

yM
f  

Where ty = 9 in. is the distance from the centroid of the cross section to the tensile fiber,          

2183
12

184

gI  ( gI is the transformed moment of inertia); stA is the total reinforcement 

area within the cross section. 

..5.19281 inkipM   
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.000049.0
109313605

5.1928 11
1







 in
IE

M

gc

  

So, the coordinates of the first point are ( 0.000049 ; 1928.5  ). 

 

Coordinates for the second point: 

We will plot the displacement-controlled M-C diagram; therefore, the curvature at this 

point is the same as the curvature at the first point. 

From the equilibrium of forces within the cross section we have: 

441331

221111

2

1

))(())((

))(1())(1()2/1(

ssc

scsccn

AdcnEcAdcnE

AdcnEAdcnEbcEP









 

In the above equation the only unknown term is the depth of the neutral axis, c . So: 

c =15.12 in. 

Having c, we can get the bending moment at this point as: 

)2/())(())((

))(1())(1()3/1(

4

2

413

2

31

2

2

211

2

11

3

12

hcPAdcnEAdcnE

AdcnEAdcnEbcEM

nscsc

scscc









.18242 inkipM 

 
Therefore, the coordinates of the second point are  ( 0.000049 ; 1824 ) . 

Note that the points are shown in figure below. 

 

 

 

 

 

Figure 3. 4. M-C diagram Point labeling.
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Coordinates for the third point: 

This is the point at which the bottom reinforcement layer yields. The curvature and 

moment at this point are computed as follows: 

ccd

Ef

cd

syy










1.15

00207.0/

44

3




 

45560))((

))(1())(1()2/1(

4333

223113

2

3





ssc

scsccn

AAdcnE

AdcnEAdcnEbcEP




.92.7 inc 

 

.000288.0
92.71.15

00207.0 1

3




 in

 
Compressive strain in the top fiber of concrete = 

Since at this strain the concrete is not linear, the concept of equivalent stress block 

should be employed. So; 

Compression force in the concrete =  bcfC cc  85.0'85.0  

.45560))((

))(1())(1(85.0'85.0

4333

223113

kipsAAdcnE

AdcnEAdcnEbcfP

ssc

scsccn









 

Thus, the depth of the neutral axis is  c = 8.93 in. 

.000335.0
91.15

00207.0 1

3




 in
 

003.000299.03   cc

 
So, the compressive strain at the top edge of the concrete is equal to the ultimate strain 

0.003. 

Strain in the first layer = 00201.0)94.293.8(000335.0)(000335.0 11  dc  

Strain in the second layer = 000653.0)98.693.8(000335.0)(000335.0 22  dc  

Strain in the third layer = 000693.0)1193.8(000335.0)(000335.0 33  dc  

Strain the fourth layer = 
s

y

E

f
 = -0.00207 

 

00228.03   cc
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Stress in the first layer = .3.582900000201.011 ksiEf    

Stress in the second layer = .94.1829000000653.022 ksiEf    

Stress in the third layer = .1.2029000000693.033 ksiEf    

Stress in the fourth layer = .602900000207.044 ksiEf  
 

Force in the first layer = .2.23343.58111 kipsAfF   

Force in the second layer = .9.37294.18222 kipsAfF   

Force in the third layer = .2.4021.20333 kipsAfF   

Force in the fourth layer = .240460444 kipsAfF 
 

Force in the concrete = .5.46493.885.018485.0'85.0 kipsbafC cc   

)1.159(240)119(2.40)98.69(9.37)94.29(2.233
2

93.885.0

2

18
5.4643 







 
M

.7.54473 inkipM 

 
Thus, the coordinates of the third point are ( 0.000339 ; 5451.7 ) . 

 

Coordinates for the fourth point: 

This is the point where the compressive strain at the top concrete fiber reaches the 

ultimate value, 0.003. For this particular axial load level, the coordinates are equal to the 

coordinates of the third point. This is so because the given axial load corresponds to the 

balance point of the simplified F-M diagram; at the balance point, the compressive strain 

at the top edge of the cross section is equal to the ultimate value (0.003), and the tensile 

strain at the bottom layer of reinforcement is equal to the yielding strain. So, in a 

simplified M-C diagram for this axial load both yielding of the steel and ultimate strain 

of the concrete occur simultaneously. 

Therefore, the coordinates of the fourth point are  ( 0.000339 ; 5451.7 ) . 

Figure 3. 5 shows the simplified-unconfined M-C diagram for this cross section under 

455 kips axial load. 
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Figure 3. 5- Simplified-unconfined Moment-Curvature diagram for axial load of 455 

kips. 

 

The same procedure applies to compute the M-C for all other axial load levels.  

As the figure shows, the maximum bending moment based on the simplified-unconfined 

M-C diagram for an axial load of 455 kip is 5447.7 kip-in. Also, based on the 

simplified-unconfined F-M diagram for this column, the bending moment corresponding 

to this axial load is 5446.5 kip-in; this little change (5447.7-5446.5) in bending moment 

value is negligible. So, these two moments are approximately equal to each other. If the 

computations are done for the other points, the same result will be obtained. This is 

because at the ultimate point (fourth point in simplified M-C diagram) it is assumed that 

the maximum bending moment occurs at the ultimate strain (0.003 for unconfined 

concrete); in F-M diagrams it is also assumed that at the ultimate strain the bending 

capacity of the cross section is maximum for any axial load level. Therefore, in both 

simplified F-M and simplified M-C diagrams the same assumptions are employed, and, 

consequently, the results of these two diagrams are the same. 

Thus, we can say that the simplified-unconfined moment-force diagrams are exactly the 

same as the simplified- unconfined curvature-based F-M diagrams. 
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3.2.3- Constructing the F-M diagrams based on detailed methods: 

 

In this section, we will derive the unconfined F-M and unconfined M-C diagrams by 

detailed methods. Computations of these diagrams are done using the KSU-RC 

software. 

Figure 3.6 shows F-M diagrams for circular and square columns that were already 

detailed. For obtaining these F-M diagrams, a constant compressive strain of 0.003 was 

considered at the most compressed fiber of the cross section. 

 

 
 

Figure 3. 6 (a).  Detailed-unconfined F-M diagram for square cross section. 

 

 

 

 

 

 

 

 

Figure 3.6b- Detailed-unconfined F-M diagram for circular cross section. 
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Based on Figure 3. 6(a) , the maximum moment is 5828 kip-in., and the corresponding 

axial force is 407.2 kips. At the point of maximum moment, the depth of the neutral axis 

is 8.08 in. and corresponding curvature is 0.00037 1in . 

Figure 3. 6 shows unconfined-detailed F-M diagrams for concrete columns. To draw the 

unconfined F-M diagrams based on the detailed-curvature-based method, it is needed to 

obtain the M-C diagram for these cross sections for a limiting compressive strain of 

0.003 (unconfined concrete). To draw the F-M diagram by using M-C diagrams, we 

need to have the M-C diagram for the axial load of each point on figure 3.6; then, for 

each axial load, we will choose the maximum moment from the corresponding M-C 

diagram. Finally, the plot of these axial loads versus the corresponding maximum 

bending moments gives us the detailed-unconfined curvature-based F-M diagram. 

Figure 3.7 shows the detailed moment-curvature diagram for an unconfined square cross 

section for an axial load of 407.2 kips. This graph is produced by the software using a 

limiting compressive strain of 0.003. 

 

 

 

 

 

 

 

 

Figure 3.7. Detailed-unconfined M-C diagram for axial load of 407.2 kips. 

 

Figure 3.7 shows that the maximum bending moment is exactly 5828 kip-in; the 

corresponding compression strain is exactly 0.003. 

Therefore, this bending moment is equal to the one that was determined from the 

detailed-unconfined F-M diagram; this result can be shown also for other axial load 

Point of Maximum 

moment 
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levels. So, if the detailed-unconfined curvature-based F-M diagram were to be plotted, it 

would be the same as the detailed-unconfined F-M diagram. 

Thus, we can say that the detailed-unconfined F-M diagram is exactly the same as the 

detailed-unconfined curvature-based F-M diagram. 

 

 

3.3- Computation of F-M diagrams for confined cross sections: 

 

In section 3.2, simplified and detailed methods were used to obtain the F-M diagrams for 

unconfined concrete. In this section we intend to do the same but for confined concrete 

columns; for simplicity, the aforementioned column’s cross sections will be used. 

Following are the details of the square cross section repeated. 

Height of the section h = 18 in  

Width of the section  b = 18 in.  

Concrete cover   = 2 in. 

Compressive strength of the concrete coc ff  = 4 ksi. 

Steel yield strength   yf  = 60 ksi. 

Elastic modulus of elasticity of steel  sE  = 29000 ksi. 

Modulus of elasticity of concrete cE  = 3605 Ksi. 

Transverse reinforcement   =  #3 @ 4 in. 

Longitudinal reinforcement  = 12 # 9 bars evenly distributed. 

Confined core concrete dimensions: 

.25.13)8/3(2)8/3(218 inh   hb   

.75.0)16/9()16/3(1 ind    .79.404.412 indd   

.83.804.423 indd     .87.1204.434 indd   
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Before starting the computations of confined F-M and M-C diagrams, it is needed to 

find the properties and parameters of confined concrete; this is done using the Mander 

model for confined concrete. Following is the procedure. 
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(The value of εsm is 0.1 for steel grade 60 and 0.15 for steel grade 40 ksi.) 

75.2
006.0

0165.0


cc

cu



  

From figure 2.4 we can find 95.0  and 9.0  and, thus, 95.0 . 

 

 

3.3.1- Confined F-M diagrams based on simplified method: 

 

Now that we have the compressive strength of confined concrete ccf  , the maximum 

strain for confined concrete cc , and the ultimate strain for confined concrete cu , we can 

draw the F-M diagram for confined cross section. To do so, we consider a strain equal to 

the ultimate strain cu  at the extreme compressed edge of the cross section and select 

different values for tensile strain at the bottom layer of reinforcement; this process is 

continued until a reasonable value of tensile strain at the bottom layer is reached, say 

(0.008). Then we assume the tensile strain at the bottom layer of reinforcement to be 

constant; next, the compressive strain is decreased from cu  to a tensile strain equal to, 

at least, the yielding strain of the reinforcement. Following is the procedure for a few 

points for the square cross section. 

 

Coordinates for the first point (pure compression): 

.1547720)1225.13(*6.5*95.0*95.012*60)12( 2 KipshbfP ccn  

 

The bending moment at this point is zero. So, the coordinates of this point on F-M 

diagram is ( 0.0 ; 1547 ). 
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Coordinates for the second point (where the strain at the bottom layer of reinforcement 

is zero): 

At this point the depth of the neutral axis is equal to d4; that is .87.124 indc   

having the depth of the neutral axis and the compressive strain at the top, the strain in 

other reinforcement layers can be calculated. 

75.087.1287.12

0165.0 1

1

1

4 



 sscucu

dccd

  

016.0)(
0165.0

11  dc
c

s  

0104.0)(
0165.0

22  dc
c

s  

0052.0)(
0165.0

33  dc
c

s  

00.0)4(
007.0

4  dc
c

s  

Stresses in the reinforcement: 

.4642900011 ksif ss    since this is more than the yielding stress 60, we take it as 

60 ksi. 

.60;60.30229000 222 ksifcuseksif sss    

.60;60.15129000 333 ksifuseksif sss    

.00.02900044 Ksif ss    

Forces in concrete and in the steel: 

Concrete force: 86125.1387.1295.06.595.0  bcfC ccc     kips. 

Force in first layer: 4.21846.54)( 111  sccs AffF   kips. 

Force in second layer: 2.10926.54)( 222  sccs AffF   kips. 

Force in third layer: 2.10926.54)( 333  sccs AffF   kips. 

Force in forth layer: 00.040444  ss AfF  kips. 

Note that the compressive strains and compressive forces are assumed to be positive. 
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Nominal axial load ( nP ): 

12974321  FFFFCP cn  kips. 

Nominal moment: 

The bending moment shall be computed with 

respect to the center of rigidity of the cross 

section since the axial force at the cross section 

is not zero. Because the cross section and its 

reinforcement is symmetric, the center of 

rigidity of the cross section is located at its 

geometric centroid; therefore, the bending 

moment should be taken about the point ( O ) as 

indicated in the figure. 
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7.1417nM  Kip-in. 

So, the coordinates of the second point are ( 1417.7 ; 1297 ). 

 

 Coordinates for the third point: 

For this point, the strain at the bottom steel layer is     

-0.00207= -
s

y

E

f
 (yielding strain). Having employed 

the process for the second point, we can find the 

coordinates of this point: 

820nP kips. and 4085nM  kip-in. 

Therefore, the coordinates of the third point are (4085 

; 820 ); note that the units are kip-in. and kips for moment and axial force, respectively. 
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Coordinates for the fourth point (strain equal to the -0.0065): 

At this point, we select the strain in the bottom layer of reinforcement to be -0.0065 

(tensile). Following the procedure above, we can get the coordinates of the this point 

(4807;439.7 ). 

 

Coordinates for the fifth point: 

For this point the tensile strain at the bottom layer of steel remains constant (-0.0065), 

but the compressive strain decreases; supposing the compressive strain is selected to be 

equal to 0.004, we can determine the coordinates of this point as (4500 ; 203.7) using the 

above procedure. 

 

Coordinates for the sixth point: 

At this point also, the tensile strain remains as -0.0065(strain at the bottom), but the 

strain at the top decreases to 0.001; the coordinates for this point are ( 2537.6; -297.4). 

 

Coordinates for the seventh point( pure tension): 

For this point, the strain at the top steel layer is -0.00207 (tensile yielding), and the strain 

at the bottom steel layer is -0.0065 ( as before). Thus, all the cross section is in tension. 

7201260 nP  kips  (tension). 

Having the coordinates of points above, the simplified-confined F-M diagram can be 

plotted; this is shown in Figure 3. 8. 

 

 

 

 

 

 

 

Figure 3. 8. Simplified-Confined F-M diagram for square cross section. 
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3.3.2- Confined F-M diagram based on simplified curvature-based method: 

 

The procedure for constructing the M-C diagram for a confined concrete cross section is, 

generally, the same as for unconfined concrete; neither the coordinates of cracking 

points nor the yielding point changes at all since the confinement is considered just after 

ultimate status. However, for the ultimate point, the confinement effects should be taken 

into account. 

Here, the coordinates of the ultimate point (shown as point four in Figure 3. 3) are 

computed, and the other points are directly taken from section 3.2.2. 

 

Coordinates of ultimate point considering confinement: 

For this point, the strain at the top fiber of concrete is equal to 007.0cc  and the 

curvature is 
cc

cc 0165.0



 . We assume that the first, the third and the fourth layer of 

reinforcement have yielded. The axial load is considered to be the axial load of the 

fourth point of the F-M diagram in figure 3.8; so, the axial load is equal to Pn = 439.7 

kips. 

To find the coordinates of this point on M-C diagram, the first step is to calculate the 

depth of the neutral axis. 

4433

2211

)()1()()1(

)()1()()1(
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scscccn
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7.439460

2602)79.4)(
007.0

)(104.8(36054)69.060(25.1395.06.595.0



 c
c

cPn  

Solving this equation, we get 73.6c  in. 

Having the depth of the neutral axis, the nominal moment ( nM  ) for this point is 

computed as follows: 

Strains: 

0146.0)(
0165.0

11  dc
c

s  

00475.0)(
0165.0

22  dc
c

s  
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0051.0)(
0165.0

33  dc
c

s  

014.0)(
0165.0

44  dc
c

s  

Stresses: 

.60;60.42329000 111 ksifuseksif sss    

.60,60.13829000 222 ksifuseksif sss    

.60;60.,14529000 333 ksifuseksif sss      

ksifuseksif sss 60;60.40629000 444    

Forces: 

Concrete force: 45125.1373.695.06.595.0  bcfC ccc     kips. 

Force in first layer: 4.21846.54)( 111  sccs AffF   kips. 

Force in second layer: 2.10926.54)( 222  sccs AffF    kips. 

Force in third layer: 120260)( 333  ss AfF  kips. 

Force in forth layer: 240460444  ss AfF  kips. 

Nominal moment: 
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4807nM  kip-in. 

Next, another axial load is considered to find the coordinates of the ultimate point. This 

time, the axial load is nP =1297 kips; this axial load corresponds to the second point of 

figure 3.8. Having employed the above procedure, the bending moment corresponding to 

this axial load is 1419 kip-in. 
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Therefore, for an axial load of 439.7 kips, the maximum bending moment based on the 

simplified-confined M-C diagram is 4807 kip-in; the same bending moment was 

obtained from the simplified-confined F-M diagram. Also, for an axial load of 1297 

kips, the maximum moment that was obtained from the simplified-confined M-C 

diagram was 1419 kip-in. while for this axial load (1297 kips) the bending moment 

based on  the simplified-confined F-M diagram was 1417.7 kip-in; these two bending 

moments are also very close to each other. 

Thus, we can conclude that the result from the simplified-confined F-M diagram is the 

same as the result from the simplified-confined curvature-based F-M diagram. 

 

 

3.3.3- Computation of F-M diagram based on detailed method: 

  

As determined, the axial load-bending moment (F-M) diagram for the confined cross 

section developed by the simplified-confined method was the same as the F-M diagram 

that was obtained using the simplified-confined curvature-based method. Now, we will 

derive the F-M diagrams by the detailed method; as already mentioned, the detailed 

method is implemented by KSU-RC software. First, detailed-confined F-M diagrams are 

constructed; the RC columns which are detailed in section 3.3 are used in the analysis. 

Table 3. 1 shows some data points for the confined square cross section. 

 

       Table 3. 1- Coordinates of points for confined- detailed F-M diagram 

Point # 
Axial 
force 
(kips) 

Moment 
(kips-in) 

Pure Comp. 1813 0.00 
First point 1540 1624 
Second point 1200 3282 
Third point  914 4387 
Fourth point 669 5091 
Fifth point  523.8 5107 
Sixth point 394.5 5070 
Seventh point 124 4665 
Eight point -92 3881 
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Ninth point -325 2531 
Tenth point -550.7 1170 
Pure tension -720 0.00 

 

Figure 3.9a is the plot for Table 3. 1. Also, the circular cross section was analyzed by 

KSU-RC, and its detailed-confined F-M diagram is shown in figure 3.9b. 

 
 

Figure 3. 9(a).  Detailed-confined F-M diagram for square cross section. 

  

 

 

 

 

 

 

 

 

 

Figure 3.9b- Detailed-confined F-M diagram for circular cross section. 
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3.3.4- Obtaining the F-M diagrams based on detailed curvature-based method: 

 

In section 3.3.3, the F-M diagram was derived by the detailed method, but now we 

intend to obtain the F-M diagrams for these confined concrete cross sections using the 

detailed curvature-based method. To do so, requires the axial load of each point which is 

indicated in figure 3.9; then, for each of these axial forces, the software generates one 

M-C diagram. Having the maximum moment from these M-C diagrams, we can plot the 

F-M diagram for each cross section. These F-M diagram are called the detailed-confined 

curvature-based F-M diagrams. 

Following is the procedure. 

We will start from the pure compressive point; based on table 3.1, the value of the axial 

load at this point is 1813. Having this axial load level, the detailed M-C diagram is 

constructed by KSU-RC, which is shown below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 10. detailed-confined M-C diagram for axial load 1813 kips. 

 

Based on Figure 3. 10, the maximum moment is 1760 kip-in. 

Now, we will consider some other points and construct their M-C diagrams. The next 

point is the first point indicated in figure 3.9a. At this point, the axial load is 1540 kips. 

Figure 3. 11 shows the M-C diagram for this axial load (note that all the axial loads are 

considered to be monotonic). 
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Figure 3. 11. Detailed-confined M-C diagram for axial load of 1540 kips. 

 

The software renders the diagram above showing that the maximum moment is 3229 

kip-in, and corresponding curvature is 0.000225 1in . This moment and curvature occur 

at a compressive strain of 0.00384 and a tensile strain of 0.000238. 

Figure 3. 12 presents the detailed M-C diagram for the confined square cross section 

under an axial load of 1200 kips. Based on this diagram, the maximum moment is 4552 

kip-in, and the corresponding curvature is 0.000395 1in . This moment and curvature 

occur at a tensile strain of 0.00067 at the lowest steel layer and the compressive strain at 

the top section of 0.00404. 

 

 

 

 

 

 

 

 

 

Figure 3. 12. Detailed-confined M-C diagram for axial load of 1200 kips. 
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Let’s consider an axial load of 523.8 Kips (this corresponds to the fifth point on figure 

3.9a). Figure 3. 13 shows the M-C diagram that is obtained using the KSU-RC program. 

 

 

 

 

 

 

 

 

 

Figure 3. 13. detailed-confined M-C diagram for axial load of 523.8 kips 

 

According to Figure 3. 13, the maximum moment is 5884 kip-in, and the corresponding 

curvature is 0.000455 1in . At this moment and curvature, the compressive strain is 

0.00402 and the tensile strain at the bottom layer of reinforcement is 0.00326. 

Similarly, the maximum moments for the other axial loads are computed. Once all the 

maximum moments are defined, the curvature-based F-M diagram can be derived by 

plotting the axial forces versus the corresponding maximum moments obtained from 

detailed-confined M-C diagrams. Table 3. 2 shows axial loads and corresponding 

maximum moment, compressive strain, and tensile strain; these data are obtained from 

the detailed-confined M-C diagrams. 

As mentioned, Table 3. 2 shows the data obtained from detailed-confined M-C 

diagrams. With the axial load level and the corresponding maximum bending moment 

from table 3.2, we can plot them in a graph to obtain the detailed-confined curvature-

based F-M diagram for this cross section. 
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        Table 3. 2: confined-detailed M-C data. 

Point # 
Axial 
force 
(kips) 

Maximum 
Moment 
(kip-in) 

Depth of 
the N.A 

(in) 

Compressive 
strain at top 

strain at 
bottom 
layer  

Pure Comp. 2100 0    
Point 1 1813 1760 19.94 0.00402 0.0008 
Point 2 1540 3229 17 0.00384 0.000238 
point 3 1200 4552 13.7 0.004 -0.00068 
point 4 914 5335 11.6 0.00403 -0.00154 
point 5 669 5905 10.1 0.00406 -0.00239 
point 6 523.8 5883 8.83 0.00402 -0.00326 
point 7 394.5 5769 7.8 0.00403 -0.00424 
point 8 124 5033 5.54 0.00405 -0.00765 
point 9 -92 4060 4.23 0.00403 -0.011 
point 10 -325 2664 2.9 0.00285 -0.0129 
point 11 -550.7 1249 2 0.00343 -0.024 
Pure tension -720 0    

 

Figure 3.14a shows the detailed-confined curvature-based F-M diagram for the square 

cross section. Also, the same procedure as for the square cross section is employed for 

the circular cross section; figure 3.14b shows the resulting detailed-confined curvature-

based F-M diagram. 

 
Figure 3.14a- detailed-confined curvature-based F-M diagram for the square section. 
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Figure 3. 14(b). detailed-confined curvature-based F-M diagram for the circular section. 

 

 

3.4- Chapter summary: 

 

In this chapter, we constructed F-M diagrams for two concrete columns. Specifically, in 

section 3.2, the unconfined F-M diagrams were derived using both simplified and 

detailed methods. Then, in section 3.3, these methods were used to obtain confined F-M 

diagrams for concrete columns. 

Next, in chapter four the results of each method will be compared to each other and also 

will be validated against the existing experimental data. 
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Chapter four- Validation of Analytical Methods Against the  

Experimental Data  

 

4.1- Chapter Opening: 

 

In chapter 3, two RC columns, one with a square cross section and the other with a 

circular cross section, were analyzed. The confined and unconfined F-M diagrams for 

these columns were obtained using different analytical methods. In this chapter, the 

results of these analytical methods are compared to each other. First, in section 4.2, the 

simplified and detailed methods for unconfined cross sections are compared with each 

other while in section 4.3, the unconfined detailed F-M diagrams are compared to the 

confined detailed F-M diagrams. Next, section 4.4 of this chapter compares the detailed 

and detailed-curvature-based axial force-bending moment (F-M) diagrams. Finally, 

section 4.5 validates the detailed and detailed-curvature-based methods against the 

existing experimental data[11]. 

 

 

4.2- Comparison of unconfined simplified and unconfined detailed F-M 

diagrams: 

 

In section 3.2.1 of chapter three, the unconfined F-M diagrams for square and circular 

cross sections were derived by using the simplified method as the diagrams are shown in 

figures 3.2 and 3.3. Also, in section 3.2.3, the unconfined F-M diagrams for these 

columns were obtained using the detailed method; these diagrams are shown in figure 

3.6. Now, in this section, the F-M diagrams based on these methods are compared to 

each other. For instance, Figure 4. 1 shows the simplified-unconfined F-M and detailed-

unconfined F-M diagram for the square cross section. 
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Figure 4. 1. Unconfined F-M diagrams based on Simplified and Detailed methods 
 

As it can be seen form figure above, the difference between these two F-M diagrams 

occurs within the compression controlled zone. So, what will be the reason for this 

divergence at this region? Following is the description for this question. 

Recall from chapter two that the stress-strain model was described for unconfined 

(plain) concrete; this model is shown in figure 2.1. Based on this figure, the maximum 

compressive stress ( coc ff  ) occurs at a strain equal to co , which is taken usually to be 

equal to 0.002 for plain concrete. However, the concrete crashes at strain equal to ult , 

which is equal to 0.003 for unconfined concrete; for this strain, the concrete compressive 

stress decreases to a lower value than cf  . Therefore, when the strain in the plain 

concrete is equal to 0.002, it experiences maximum stress; for strain values less than or 

more than 0.002, the compressive stress in the concrete cross section deceases.  

ACI code recommends a strain equal to ultimate strain ( ult ) for analyzing the plain 

concrete sections. So, no matter what method is employed, the strain at the extreme 

compressed fiber of a concrete section should be taken equal to 003.0ult . This is 

applied in our case as well; for both simplified and detailed methods, we assumed a 

constant compressive strain of 0.003 at the top of the column section. Figure 4. 2 shows 

the exact strain stress distribution for an unconfined concrete cross section. As it can be 

seen from the figure, at the top edge of the section the compressive strain is 0.003, and 
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this strain is assumed to decrease linearly from the top edge to the bottom; at the neutral 

axis, the compressive and tensile strains are zero while in the regions below the neutral 

axis (N.A) the strain distribution is negative. Since the tensile strain in the concrete is 

negligible, the tensile forces are provided only by steel reinforcement layers. 

 

Figure 4. 2. Exact strain-stress distribution for unconfined concrete column section. 
 

Figure 4. 2(a) shows the strain distribution, and Figure 4. 2(b) indicates the 

corresponding compressive stress block. As Figure 4. 2 (a) shows that the maximum 

stress ( cf  ) does not occur at the top edge (where the strain is 0.003); rather, it happens 

between the neutral axis (N.A) and the top edge; the stress block shown in the figure 

has, exactly, the shape of the strain-stress model for plain concrete. 

Although in the simplified method the ultimate compressive strain of plain concrete at 

the extreme compressed fiber is taken as 0.003, and it varies linearly from the top of the 

section to its bottom, the exact stress distribution is not used in this method. ACI code 

recommends using an equivalent rectangular stress block for concrete cross sections. 

The depth of this rectangular stress block is equal to ca  1 (see chapter two); the 

width of this stress block is equal to ( cf 85.0 ). Figure 4. 3(b) presents more details. 
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Figure 4. 3. ACI stress block. 
 

Considering Figure 4. 2 and Figure 4. 3, several observations can be made; if the depth 

of the neutral axis is the same in these two figures, the strain and stress in reinforcement 

layers are the same as well in these two cases; this is so because the strain is assumed to 

vary linearly in both cases. Consequently, the forces in steel layers in figure 4.2 are 

equal to those in figure 4.3. However, the compressive force Cc and its line of action 

don’t have to be the same in these two figures; depending on the value of the N.A depth 

they can be either different or equal. 

Thus, if the depth of the neutral axis (c) is equal in both cases, there are two possibilities 

for concrete compressive forces Cc; the first possibility is that the compressive forces 

may be either equal in each case or different from each other. The second possibility is 

that the line of action of compressive forces may be either equal (that is x=(a/2) ) or 

unequal ( )2/(ax  ); where, x and (a/2) are shown in Figure 4. 2 and Figure 4. 3. 

For instance, in pure axial load, the whole cross section undergoes a compressive strain 

of 0.003 in both methods. However, based on the simplified method at this strain, which 

is the ultimate strain, the compressive stress in concrete is cf 85.0 . On the contrary, 

based on the detailed method, for a strain of 0.003 the compressive force is not cf 85.0 ; 

it is computed directly from the strain-stress model for unconfined concrete. For this 

column the compressive stress for a strain of 0.003 is 3.75 ksi, which is cf 94.0 . So, for 

this cross section, the compressive stress, which is obtained using the detailed method, is 

9 percent (0.94-0.85=0.09) more than the compressive stress assigned by ACI code. 

Therefore, this increase in compressive stress increases the pure axial load of the cross 
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section; this is clear in Figure 4. 1. Note that the compressive stress in reinforcement 

layers is the same for both of these methods since there in no approximation in steel 

stress-strain distribution. 

Next, assume that the compressive forces in the concrete and the depth of the N.A  in 

these two cases (Figure 4. 2 and Figure 4. 3) are equal to each other, but the line of 

action of concrete compressive forces may be different. This means that for a given axial 

load, the moment capacity obtained by the simplified method will differ from the 

moment capacity computed by the detailed method; this is so because the lever arm of 

the concrete compressive force is different in these two cases. The following figure 

offers more explanation.  

 

Figure 4. 4. Line of action of compressive forces. 
 

Figure 4. 4 (b) shows the cross section internal forces obtained using the detailed 

method, and Figure 4. 4 (c) indicates the cross section internal forces derived employing 

the simplified method. In figure 4.4, it is assumed that for a given depth of the neutral 

axis ( c ), the compressive forces obtained by both methods ( simplified and detailed ) 

are equal to each other; that is 
21 CC CC  . Notably, this assumption does not guarantee 

that the lever arms of these concrete compressive forces and the depth of N.A are equal; 

that is the value of x is not necessarily equal to (a/2). 

For further illustration, let’s consider point (1) in figure 4.1 where the axial force is 

equal for both F-M diagrams and its value is 1321 kips; from the simplified F-M 

diagram the corresponding bending moment and depth of the neutral axis are 2629 kip-

in and 17.42 in, respectively. From the detailed F-M diagram, the moment and the 
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neutral axis depth are 3539 kip-in and 16.2 in, respectively. As it can be seen, a big 

difference (17.42-16.2 =1.22) exists between the depths of N.A of both diagrams and a 

big difference (3539-2695=844 kip-in.) between bending moments. Following is the 

calculation of CC1, CC2, x, and (a/2).  

1321105.48924.226 1  CC   9441 CC  kips. 

3539

)1.159(10)119(5.48)98.69(92)937.29(4.226)9(1



 xCC  

Solving the above equation, we can have: x = 6.72 in. 

Likewise, using Figure 4. 5. Internal forces for point (1)., we will have: CC2 = 906.5 

kips. and (a/2) = 8.71 in. 

So, for this point, the concept of ACI rectangular stress block underestimates the 

compressive force in concrete as well as the lever arm of this force. This, in turn, is the 

cause of the reduction in bending moment based on the simplified method. 

 

Figure 4. 5. Internal forces for point (1). 
 

Now, let’s consider point (2) of Figure 4. 1; at this point, the axial load is 615.5 kips for 

both diagrams; however, the bending moments and depth of N.A are different for each 

diagram. For the simplified F-M diagram, the bending moment and the depth of N.A are 

5001 kip-in and 10.13 in, respectively; but for the detailed F-M diagram, the moment 

and the depth of the N.A are 5482 kip-in and 9.7 in. respectively. Again, we see a 

difference between the depth of N.A (i.e. 10.13-9.7=0.43 in.) and between bending 

moments (5001-5482=481). Having the depth of the neutral axis, the strain at the top 
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edge of the cross section (0.003), and the axial force (615.5), we can find the value of ( 

a/2 ) and (x) as follows. 

 

Figure 4.6. Internal forces for point (2). 

 

5.6157.234.192424.226 1  CC    2.5631 CC  kips. 

5482)1.159(4.192)119(7.23)98.69(42)937.29(4.226)9(1  xCC  

So, 74.3x in. 

Likewise, for Figure 4.6(b) we have: 2CC = 526.8 Kips. and (a/2) = 5.06 in. 

Although the difference between the depths of neutral axis is small, the concrete 

compressive forces ( 1CC  and 2CC ) and their lines of action (x and (a/2)) are not the 

same. On one hand, the concrete compressive force ( 1CC ) in the detailed F-M diagram is 

larger than the concrete compressive force ( 2CC ) that occurs in the simplified F-M 

diagram ( 1CC =563.2 > 2CC =526.8 ). On the other hand, the lever arm of 1CC  is larger 

than that of 2CC  ( x < (a/2) ). These two factors have caused the big difference (481 

kips-in.) between the moment values. Thus, we can conclude that the ACI equivalent 

stress block concept underestimates both the concrete compressive force in the section 

and its lever arm. 

Now let’s consider point (3) on the F-M diagrams; this point is shown in Figure 4. 1. At 

this point the axial force is -328 kips. for both diagrams. For the simplified F-M diagram 

the bending moment and depth of the neutral axis corresponding to this axial load are 

2634 kip-in. and 3.0 in. respectively. Likewise, for the detailed F-M diagram, the 
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moment and depth of the neutral axis at this point are 2635 kip-in and 2.85 in, 

respectively.  

Figure 4.7 presents the internal cross section forces of the cross section for this point. 

Since the depth of neutral axis is a little bit different in these two cases, the internal 

forces are also different. Note that for both F-M diagrams, the axial force is the same 

and equal to -328 kips. 

 

Figure 4.7. Internal cross section forces for axial force of -328 kips. 

 

For this point, the difference between bending moments is (2635-2634 = 1 kip-in); as we 

can see the difference has reduced much compared to the other two points; these two 

moments are approximately equal. Based on the information given above, we can find 

the values for CC1, 2CC , x , and (a/2). 

328102401201201 CC   1621 CC  kips. 

2635))1.159(240(

))119(120())98.69(120())94.29(10()9(1



 xCC

  

Solving the above equation, we find  x = 1.32 in. 

Similarly, considering figure 4.7b we will have: CC2= 157 kips and  (a/2) = 1.5 in. 

So, the value of x is slightly smaller than (a/2), and compressive force CC1 is slightly 

greater than CC2. Although the moment due to forces in steel layers only, in figure 4.7b, 

is greater than the moment due to forces in steel layers in figure 4.6a, the difference of 

compressive force and its lever arm offset this effect. Therefore, at this point the 

simplified method underestimates the compressive force of concrete and its lever arm; 
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however, it also underestimates the tensile force in the top reinforcement layer. This 

caused the bending moment at this point to be equal to each other, for both the 

simplified method and the detailed method. 

Ultimately, for this cross section, we can conclude that the ACI equivalent stress block 

model underestimates, for any depth of the neutral axis, the concrete compressive force 

and overestimates the depth of the neutral axis under any axial loading compared to the 

detailed method. Consequently, overall, the simplified method underestimates the 

strength of this unconfined concrete column cross section compared to the detailed 

method by the maximum difference of about 14 percent. 

To check the validity of this conclusion for other unconfined cross sections, another 

unconfined column cross section is considered to be analyzed; this cross section is a 

square cross section with dimensions of 25x25in, and it has the same reinforcement and 

cover as the previous cross section. Both simplified and detailed F-M diagrams are 

plotted for this cross section and are presented in figure 4.8. 

 

 

Figure 4.8. F-M diagrams for 25x25 in. unconfined square cross section. 

As it can be seen form figure 4.8, the unconfined detailed F-M diagram is larger, mostly, 

in the compressive controlled zone than the simplified one; the maximum percent 

increase in bending moment in the detailed F-M diagram is about 40 percent when the 

axial load is 1800 kips. 

Thus, for any rectangular unconfined cross section, the simplified method 

underestimates the moment capacity of the section compared to the detailed method; 
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again, this occurs mostly in the compression controlled zone. Also, this conclusion can 

be shown for unconfined circular cross sections; figure 4.9 shows the diagrams for a 

circular cross section with 20 in diameter, 2in. cover, and 12 #9 longitudinal bars. 

 

 

Figure 4.9. Simplified and Detailed F-M diagrams for unconfined circular cross section. 

 

 

4.3-1. Comparison of unconfined and confined F-M diagrams based on 

detailed method: 

 

In section 3.2.3 of chapter three, the unconfined axial force-bending moment (F-M) 

diagrams for square and circular cross sections were constructed using the detailed 

method; these diagrams are shown in figure 3.6. Also, in section 3.3.3 the detailed 

method was used to obtain the confined F-M diagrams for these columns; these 

diagrams are shown in figure 3.9. For obtaining the unconfined F-M diagrams (figure 

3.6) the compressive strain at the extreme fiber of the cross section was taken to be 

0.003 while this compressive strain is equal to cc for confined F-M diagrams (figure 

3.9). 
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Now, this section compares these confined and unconfined F-M diagrams for a square 

cross section, which are derived using the detailed method, as Figure 4.10 demonstrates. 

As the figure shows, the unconfined F-M diagram is larger, in some regions, than the 

confined one. This section explores the reason for this difference. 

 

 

Figure 4.10. Confined and Unconfined detailed F-M diagrams for square cross section. 

Various parameters of the concrete cross section can affect the strength and capacity of 

confined core concrete; the size and the spacing of the stirrups, the size and the numbers 

of longitudinal steel bars within the cross section, and the concrete cover of the cross 

section are some of these factors, the most prominent of which is the concrete cover of 

the cross section; decreasing the cover concrete, the effective depth of the section is 

increased and also the area of the core concrete get enlarged. 

To show the effects of concrete cover on the confined F-M diagram, we will decrease 

the cover of this square cross section by one inch and redraw its confined F-M diagram; 

then, we will compare this F-M diagram with its unconfined F-M diagram. This is 

presented in figure 4.11. As it is seen from the figure, the confined F-M diagram is now 

larger than the unconfined F-M diagram; this is because the concrete cover was 

decreased from two inches to one inch. Consequently, the depth of the core concrete was 

increased by two inches, and also the area of the unconfined concrete was decreased.  
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The confined F-M diagram is larger than the unconfined one mostly within the 

compression controlled zone since within this region, the concrete compressive force 

dominates the bending capacity of the cross section.  

 

 

Figure 4.11. Confined and unconfined F-M diagram for one inch cover. 

As stated, the compressive strain for unconfined concrete was taken to be 0.003 at the 

top edge of the section, and for confined concrete, the compressive strain was equal to 

εcc at the top edge. Now, we will plot both confined and unconfined F-M diagrams for 

the same compressive strain; this strain should be taken at most equal to 0.003 to 

construct the unconfined F-M diagram. Figure 4.12 shows the unconfined and confined 

detailed F-M diagrams for a compressive strain of 0.003. Note that the square cross 

section with 2 in. cover was used and also the detailed method is employed. 
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Figure 4.12. Detailed F-M diagrams for compressive strain of 0.003. 

In figure 4.12, three detailed F-M diagrams are plotted; one of these diagrams is for 

unconfined concrete, and another is for confined concrete with #3 stirrups at 4 in; the 

third one is also for a confined section but with # 3 stirrups at 8 in. In all of these 

diagrams, the compressive strain at extreme compressed fiber is 0.003, and the same 

cross section (the cross section details are shown in figure 3.1) is used for all three. 

From figure 4.12, we can see that below the second point the difference between these 

three diagrams is very small; in this range the maximum increase in moment is about 0.9 

percent, which is negligible. However, at the pure axial load, the difference is large; the 

pure axial load is 1934 kips for the unconfined section while this force is 2123 kips for 

confined section with # 3 @4 in. stirrups. As we move from the pure axial load toward 

the second point, this difference decreases for two reasons. First, as the depth of the 

neutral axis decreases, the effect of core concrete on the concrete compressive force (Cc) 

deceases. The other reason is the strain and strain distribution within the cross section. 
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Figure 4.13. Stress-strain curve for cover and core concrete for #3@4 in. stirrups. 

 

Figure 4.4a shows the strain variation within the depth of the neutral axis; the strain 

starts from a maximum of 0.003 at the top edge and decreases to zero at the N.A. In 

figure 4.13 the strain-stress model for this cross section is plotted both for cover 

(unconfined) concrete and for core (confined) concrete; the lateral reinforcement is 

#3@4in. for this graph. As it can be seen from the figure, as the strain decreases below 

0.003, the difference between the confined concrete stress (f’cc) and unconfined concrete 

stress (f’c) decreases too; at the strain of 0.0016 these two stress are the same (as shown 

in figure 4.13). Consequently, based on the fact that the compressive strain decreases 

from top edge to bottom of the cross section, and the fact that for strain smaller than 

0.0016 the confined and unconfined stresses are the same, the confined F-M diagram 

and unconfined F-M diagram are approximately the same; this is true when the depth of 

the neutral axis is within the cross section. However, for when the depth of the neutral 

axis, c, is greater than the height of the cross section, the confined F-M diagram is larger 

than the unconfined F-M diagram. 

Now let’s consider the circular cross section to find out the difference between its 

confined and unconfined detailed F-M diagrams for a compressive strain of 0.003 (the 

ultimate strain of unconfined concrete). Figure 4.14 illustrates three detailed F-M 

diagrams for a circular cross section of 20 in. diameter, 12 # 9 longitudinal bars, and 2 

in. clear cover. One of these diagrams is obtained for the unconfined cross section; the 

second one is developed considering the confinement effects of #3 stirrups at 2in. 

Plain concrete 

Confined Concrete 
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spacing, and the third F-M diagram is derived for confined section with #3 stirrups at 4 

in. spacing. 

 

 

Figure 4.14. F-M diagrams of circular column for compressive strain of 0.003. 

 

As figure 4.14 shows, the difference between these diagrams is large at the point where 

the bending moment is zero (pure axial load); at this point the percentage increase of the 

axial load in confined (#3@2) and unconfined diagrams is about 20%. However, this 

difference decreases to 8% at point (2) and 1.5% at point (4). Therefore, as the depth of 

the neutral axis decreases, the difference between confined and unconfined F-M 

diagrams decreases as well. 

Thus, for both square and circular concrete column cross sections the difference between 

the unconfined-detailed F-M diagram and the confined-detailed F-M diagram is big at 

the zero moment point while this difference decreases as the depth of the neutral axis 

decreases; this is true only when the compressive strain at the top edge is less than or 

equal to 0.003. Ultimately, although the difference between these two diagrams is small, 

it is advisable to use the confined F-M diagram when the cross section is subjected to 

axial load only. 
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4.4- Comparison of detailed method and detailed-curvature-based 

method for confined cross sections: 

 

In section 3.3.3 of chapter three, the confined F-M diagrams were obtained using the 

detailed method (see figure 3.9). Next, in section 3.3.4, the confined F-M diagrams were 

derived by employing the detailed-curvature-based method; these diagrams are 

presented in Figure 3. 14. Now, this section intends to compare these F-M diagrams. 

Figure 4.15 shows the comparison of these two diagrams (detailed and detailed-

curvature-based) for the confined square cross section. As can be seen from the figure, 

the detailed-curvature-based F-M diagram is larger than the detailed F-M diagram. In 

this section, the reason for this difference will be explored. 

 

 

Figure 4.15. detailed and “detailed curvature-based” F-M diagrams 

 

In the figure above, the value of the pure axial load is different for each of the two 

diagrams; the pure axial load from the curvature-based F-M diagram is 2100 kips while 

the pure axial load is 1813 for the detailed F-M diagram. Based on the M-C diagrams for 
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this cross section under 2100 kips axial load, this pure axial load occurs when the 

maximum compressive strain is 0.0042; this strain is smaller than 00541.0cc . 

Also, based on the Figure 4.15, point (a) and point (b) have the same axial load but 

different bending moments; point (a) is located on the detailed-curvature-based F-M 

diagram while point (b) is located on the detailed F-M diagram. 

The axial load at point (a) is 1540 kips and the bending moment is 3230 kip-in; this 

moment is the maximum moment obtained from confined-detailed M-C diagram of the 

confined cross section under an axial load of 1540 kips. The corresponding compressive 

strain at the extreme fiber and the neutral axis depth are 0.00385 and 17.05 in. 

respectively; these data are also found from detailed M-C diagram. 

The axial load for point (b) is also 1540 kips but the moment is 1624 kip-in; based on 

the confined detailed F-M diagram, the depth of the neutral axis is 17.02 in. Since in the 

detailed F-M diagram the strain at extreme compressed fiber is taken to be constant, the 

compressive strain for all of the points in this F-M diagram is equal to the cc ; that is 

0.00541. However, it is seen from M-C diagram data that the maximum moment for this 

section under the axial load of 1540 Kips happens at a compressive strain of 0.003846. 

Likewise, the compressive axial load level for points (c) and (d) is the same and is equal 

to 914 kips; however, the moments and corresponding strains are not equal for these two 

points. The moment in point (c) is 5335 kip-in. and corresponding compressive strain is 

0.00402. Also, point (d) has a moment of 4378 kip-in. and corresponding strain of 

0.00541. This tells us that based on the confined-detailed M-C diagram for an axial load 

of 914 kips, the maximum moment occurs at a strain of 0.00402, which is still different 

from 0.00541. In other words, the detailed-curvature-based F-M diagram uses a 

compressive strain of 0.00402 to compute the coordinates of this point. 

At point (e), the axial force is the same for both diagrams and it is -92 kips; however, the 

moments are, still, a little bit different. At this point, the moment corresponding to the 

detailed-curvature-based F-M diagram is 4063 kip-in, and the corresponding 

compressive strain at the extreme compressed fiber is 0.00359. Also, the moment 

corresponding to the detailed F-M diagram is 3881 kip-in. Therefore, for this point, the 

strain at which the moment is maximum is 0.00359. 
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Thus, according to the detailed-curvature-based F-M diagram, all the moments on this 

diagram, regardless of the axial load level, occur at a compressive strain of 0.0036 to 

0.00402; this range is less than the pick compressive strain of confined concrete (

00541.0cc ) for this cross section(the cross section is shown in figure 3.1). 

Recall from second chapter that in obtaining the M-C diagram the compressive strain at 

the extreme compressed fiber is not taken constant. For obtaining the M-C diagram, the 

first step is to select a compressive strain at the top edge of the section; then, the depth 

of the neutral axis is assumed. Having the depth of the neutral axis, c, and the 

compressive strain, the strains and stresses on the steel reinforcement layers are 

computed; after this, the axial force for the cross section can be calculated. This axial 

force which is the summation of internal cross section forces is compared to the given 

axial load. If these two forces are the same, the bending moment with respect to the 

center of the section is computed; if these forces are different, then another depth of the 

neutral axis is assumed, and previous steps are taken again. Then, another value of 

compressive strain is selected and the same steps are taken to find the bending moment 

and the depth of the neutral axis corresponding to the equilibrium of forces at the cross 

section. This procedure is repeated until the compressive strain at the top edge reaches 

its intended value (such as cu ).  

Therefore, for a given axial load and for a selected value of compressive strain, a 

bending moment is calculated. Since several values of compressive strain are chosen, 

different values of moments can be obtained for the same axial load; the maximum value 

of these bending moments is the maximum moment that the section can carry under the 

assigned axial force level. Notably, this bending moment does not have to occur at either 

( cc ) or ( cu ); this is explained further in Figure 4.16. 
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Figure 4.16. Moment versus compressive strain for different axial loads. 

 

Figure 4.16 shows the graphs of moment versus compressive strain for the confined 

concrete square cross section; each of these diagrams is for a specific axial load. The 

data used in these diagrams are taken from confined-detailed M-C diagram of the cross 

section under the given axial loads. As it can be seen from the figure, for all the given 

axial load levels, for this cross section, the maximum moment occurs at a compressive 

strain approximately around 0.004 (the exact values of this strain are 0.0036 to 0.00402). 

This means that when the compressive strain is equal to 0.004, under any axial load, the 

bending moment is the maximum for this cross section. 

Since under all the axial load levels the maximum bending moment occurs at a 

compressive strain of, roughly, 0.004, we can obtain a confined F-M diagram based on 

this strain; this F-M diagram will be exactly the same as the detailed-curvature-based F-

M diagram. 
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Figure 4.17. Confined F-M diagrams 

 

Two confined F-M diagrams are shown in Figure 4.17; one of them is the detailed-

curvature-based diagram, and the other is the detailed F-M diagram which is obtained 

using a compressive strain of 0.004. As it can be seen from the figure, both of these 

diagrams are exactly the same. Figure 4.16 along with Figure 4.17 tell us that the F-M 

diagram that is derived based on a compressive strain of 0.004 is larger than the F-M 

diagram that is obtained using any other compressive strain; remember this conclusion is 

valid for this cross section with 2in. concrete cover, and may or may not be true for 

other cross section’s properties. 

The preceding discussion was for the square confined concrete cross section (figure 3.1); 

now, the circular confined concrete cross section is considered to be analyzed. The 

properties of the section are as followings: 

 

Column cross section type: Circular 
Cross section’s diameter : 20 in. 
Longitudinal steel bars : 12 # 9  
Transverse reinforcement : #3 @ 4 in. 
Concrete cover : 2 in. 
Plain concrete strength : 4 ksi. 
Steel grade : 60 ksi. 
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For this cross section, the strain at pick stress is 00501.0cc , and the confined 

ultimate strain is 0154.0cu . 

As for the square cross section, we will obtain two confined F-M diagrams for this 

circular cross section. One of these F-M diagrams is the detailed diagram; for this 

diagram the compressive strain is taken to be equal to 00501.0cc . The other diagram 

is the detailed-curvature-based F-M diagram. 

 

 

Figure 4.18. Confined F-M diagrams for circular cross section. 

 

Figure 4.18 presents two F-M diagrams for the confined circular cross section. The one 

which is drawn in dashed line is the detailed diagram, and the solid line shows the 

detailed-curvature-based F-M diagram. These diagrams are different in some regions, 

mostly in the compression controlled zone; the detailed-curvature-based F-M diagram is 

larger than the other one.  

Based on the Figure 4.18, the pure axial load level is not the same for these two 

diagrams; this load is 2050 kips for the detailed-curvature based diagram, and it is 1865 

kips for the other one. From M-C diagram for the axial load of 2050 kips, the 

compressive strain at the extreme compressed fiber is 0.0035, and the corresponding 

moment is about zero.  
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Also, at point (1), the axial load is 1217.2 kips; the moment at this point is 4094 kip-in. 

and corresponding compressive strain is 0.00406. Point (2) also has an axial force of 

1217.2 kips, but the moment and corresponding compressive strain are 3430 kip-in and 

0.00501, respectively. 

Using the detailed M-C diagrams, we can find the moment and corresponding 

compressive strain for each axial load level by plotting the moment versus compressive 

strain for each axial load of each point. Below are the graphs for a few data points. 

 

Figure 4.19. Moment versus compressive strain for circular cross section. 

 

As it can be seen from above figure, the maximum moments for the circular confined 

concrete section under indicated axial loads occur at a compressive strain of 

approximately 0.004 ( from 0.0039 to 0.0042). It is also obvious that there is an abrupt 

change in moment capacity at a strain of more than 0.004; this is because at this strain 

the concrete cover spalls off. Therefore, for this circular cross section, the maximum 

bending moment under any allowable axial load occurs at a compressive strain of 

around 0.004. 

Based on Figure 4.16 and Figure 4.19, the moments corresponding to the compressive 

strain of 0.00541 are equal to the moments in the detailed F-M diagrams (see Figure 

4.15 and Figure 4.18). This means that if the same compressive strain is used for both 

detailed and detailed-curvature-based F-M diagrams, both of these diagrams will be 

exactly the same. 
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Thus, from Figure 4.16 and Figure 4.19 it can be concluded that for the aforementioned 

square and circular cross sections, the confined F-M diagram has the maximum size for 

a compressive strain of about 0.004, meaning that for these cross sections, the maximum 

bending moment under any axial load occurs at a compressive strain of 0.004. 

Now, we will discuss why the detailed F-M diagram is large at a compressive strain of 

around 0.004 for these cross sections. Several factors are involved; the concrete cover, 

the depth of the neutral axis, the confinement level, and, consequently, the forces in 

concrete and steel reinforcements are among those factors. For our case, the concrete 

cover and the confinement level play the dominant role in causing the F-M to be large at 

the mentioned strain. It should be noted that this strain is at the extreme compressed 

fiber of the cross section. According to the Mander model for unconfined concrete, the 

concrete cover spalls at a compressive strain of 0.004 ( 2εco); see figure 2.1. The 

confined and unconfined concrete models for the square cross section are shown in 

figure below; this figure is plotted using KSU-RC software. 

 

 

Figure 4.20. Confined and unconfined stress-strain curve for square cross section 

 

These models represent the Mander model for this cross section. In Figure 4.20, the 

smaller diagram is the unconfined concrete model and the larger diagram is the model 

for the confined concrete. As it is seen from the figure, for the unconfined concrete the 

maximum strain is 0.004 and the maximum compressive stress is 4 ksi, and for confined 

concrete the maximum stress is about 5.26 ksi and corresponding strain is 0.0054. In 

Figure 4.19, point (1) is the point where stress is 5.26 ksi while at point (2) the stress is 

Point 1 

Point 2 
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5.16 ksi. Since the difference between these two stresses is very little (5.26-5.16=0.1), if 

the compressive strain of 0.004 is used, the compressive force at the confined concrete 

(core concrete) will show a very slight decrease. However, since based on the Mander 

model, the ultimate strain for unconfined concrete is 0.004, at this strain the cover 

concrete exists and contributes to the compressive force of the cross section. 

Consequently, the bending moment in the cross section is increased; this increase of 

bending moment is mostly dependent on the area of the cover concrete; the larger the 

cover concrete, the larger the compressive force due to cover. 

The same result can be shown for circular section. As determined, for any allowable 

axial force the bending moment is maximum at the compressive strain ranging from 

0.0039 to 0.0042; let’s say it is 0.004. Therefore, if we look at the strain-stress models 

for unconfined and confined concrete for this circular cross section, we can see that 

005014.0cc  and 0154.0cu . Figure 4.21 shows the confined and unconfined 

concrete strain-stress curves. Again, for this cross section, the difference between the 

confined stress at 0.004 strain and the confined stress at 0.005014 strain is very small. 

So, in order to increase the compressive force of the concrete, the compressive strain 

needs to be around 0.004 so that the cover concrete can be included in the calculations. 

 

 

Figure 4.21. Confined and unconfined concrete models for circular cross section 

Although the maximum compressive strain for cover concrete is 0.004, for some axial 

load levels, the strain is more than 0.004; this can be figured out from Figure 4.16 and 

Figure 4.19. Note that this strain is considered at the extreme compressed fiber of the 
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cross section. So, for strain more than 0.004, some concrete covers will collapse and 

some may not. It will not be confusing if the maximum bending moment for a given 

axial load occurs at a strain of more than 0.004; this is because to construct the M-C 

diagrams, different values of compressive strains are selected to find the maximum 

bending moment. In this optimization process, not only the concrete compressive force 

plays an important role, but the forces in steel reinforcements and the depth of the 

neutral axis have a significant effect on determining this maximum moment. 

Thus, for these two cross sections, since the difference between the pick confined stress 

( ccf ' ) and the stress at the 0.004 strain is very little, and also because the cover concrete 

is large, the maximum bending moment under any axial load happens at the compressive 

strain of 0.004. 

In previous cross sections, the cover concrete was two inches and the transverse 

reinforcement was #3 @4 inches. Now, the analysis will be done for cross sections with 

different properties; the cross sections with different transverse reinforcement will be 

used to magnify the confined concrete model. We will increase the amount of transverse 

reinforcement to #3 @ 2 in. while the other section properties remain unchanged. Below 

are the properties for the new columns cross sections. 

 

 
Square cross section: 
Height = 18 in. 
Longitudinal bars = 12 #9 bars 
Transverse reinforcement = #3 at 2 in. 
Cover concrete = 2 in. 
Steel yield stress = 60 ksi. 
Concrete compressive stress = 4 ksi 
 
Circular cross section: 
Diameter = 20 in. 
Longitudinal bars = 12 #9 bars 
Transverse reinforcement = #3 at 2in. 
Cover concrete = 2 in. 
Steel yield stress = 60 ksi. 
Concrete compressive stress = 4 ksi 
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First the square cross section is considered, and as before, the detailed and detailed-

curvature-based confined F-M diagrams are constructed for this column cross section; 

then, based on confined-detailed M-C diagram data, the compressive strains at which the 

moments are maximum are obtained. Figure 4. 22 illustrates the detailed and detailed-

curvature-based confined F-M diagrams for the confined square cross section which is 

detailed above. As it can be seen from Figure 4. 22, still the detailed-curvature-based F-

M diagram is larger than the detailed F-M diagram. Remember that Figure 4. 22 is 

constructed for the same square cross section as in Figure 4.15 but with different 

transverse reinforcement; in Figure 4. 22, the lateral reinforcement is # 3 @ 2in while in 

Figure 4.15 it is # 3 @ 4 in. The percent of moment increase varies from 34 to 8. Now, 

from M-C diagram data, under a given axial load, the moment-strain (M-S) diagram can 

be constructed; from moment-strain (M-S) diagrams, at any compressive strain the 

corresponding bending moment can be obtained. 

 

  

Figure 4. 22. Confined F-M diagrams for square cross section with #3@2 in. stirrups. 

 

Therefore, we can find the maximum moment and corresponding compressive strain for 

a given axial load. Following are M-S diagrams for some axial loads for the 

aforementioned confined square cross section. It should be stated that the confined 

compressive strain ( cc ) at the pick stress is 0.00875, and the ultimate confined strain (

cu ) is 0.0248. 
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Figure 4. 23. M-S diagrams for confined square section with 2 in. cover. 

 

The M-S diagrams are constructed using the data of moment-curvature diagrams; based 

on these data, the maximum moments under allowable axial forces occur in a 

compressive strain range of 0.0032 to 0.0041. However, for positive axial loads, this 

strain can be approximated to 0.004; this is shown in Figure 4. 23. Also, this figure 

clarifies that at a strain of 0.00875 ( cc ) the moments are less than the moments that 

correspond to a strain of 0.004. This is because of the cover concrete cover; the cover 

concrete still provides a large concrete area. 

Although the compressive stress at a compressive strain of 0.004 is less than the 

compressive stress at cc  = 0.00875, the concrete compressive force is larger at 0.004 

strain than at cc  = 0.00875 strain; this is because the area of cover concrete is still 

dominant. 

 

Figure 4. 24. Stress-strain model for square cross section with #3@2 in. stirrups. 
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As it is shown in Figure 4. 24 , the compressive stress at 0.004 strain is equal to 

approximately 6 ksi while the pick (at 0.00875 strain) compressive stress is 6.53 ksi. 

Accordingly, this increase in stress (6.53-6=0.53) seems not to be enough to overcome 

the effects of the area of the cover concrete. So, using cover concrete along with 6 ksi 

gives a larger compressive force ( CC ) at the concrete stress block than the compressive 

force that comes from only the core concrete whose stress is 6.53 ksi. Thus, having 

larger values of concrete compressive force ( CC ), the values of bending moments will 

increase as well. 

Next, the new circular cross section (transverse reinforcement at 2 in. spacing) will be 

considered. For this cross section, we will again construct the detailed F-M and detailed-

curvature-based F-M diagrams, taking into account the confinement effect due to 

transverse reinforcement. Figure 4. 25 shows the confined F-M diagrams for the circular 

cross section; in this column cross section, the spacing of stirrups has been decreased to 

2 in. From this figure, it can be seen that the detailed-curvature-based F-M diagram is 

larger than detailed F-M diagram. The reason for this difference can be the fact that has 

been discussed in preceding paragraphs. 

For this cross section, the confined strain at pick stress is cc  = 0.0081, and the ultimate 

confined strain is cu = 0.025. 

 

Figure 4. 25. Confined F-M diagrams for circular cross section with #3@2 in. stirrups 
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Also, Figure 4.26 presents the moment-strain (M-S) diagrams for different axial load 

levels. Again, the maximum bending moment occurs at the compressive strain of around 

0.004. At this strain, the confined concrete compressive stress is 5.25 ksi while the 

maximum confined compressive stress is 6.3 ksi. However, for cover concrete the 

compressive stress is not 5.25; it less than this as obtained from the unconfined strain-

stress model. Therefore, a larger concrete compressive force will be achieved if the 

cover concrete along with the confined compressive stress of 5.25 are used rather than 

only confined core concrete. Consequently, at a strain of 0.004, the F-M diagram is 

larger than any F-M diagram that is obtained for any other values of compressive strain. 

 

 

Figure 4.26. M-S diagrams for circular cross section with #3@2 in. stirrups 

 

As a result, for both of these circular and square column cross sections, the maximum 

moment for any allowable axial load value occurs at a strain of 0.004; this is the 

compressive strain at the most compressed edge of the cross section. The same result has 

been already obtained for these two column cross sections with different lateral 

reinforcement (#3 @ 4 in.). Although in Figure 4. 23 and Figure 4.26 the stirrups 

spacing was decreased to 2 in. (#3 @ 2in), it was not decreased sufficiently to overcome 

the effect of cover concrete; consequently, the confined F-M diagrams are still larger at 

compressive strain of 0.004 than at any other compressive strain value. 
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The preceding discussion concluded that cover concrete plays an important role in 

confined F-M diagrams. Next, we need to disregard the effect of the cover concrete in 

analysis. To do so, we will use the same cross sections, but this time the concrete cover 

will be taken as zero to eliminate the effects of cover concrete on the confined F-M 

diagrams; meanwhile, the spacing of transverse reinforcement is 4 inches (#3@4).  

Figure 4. 27 illustrates confined F-M diagrams for the square cross section with zero 

concrete cover and #3 @4 in. stirrups; as indicated, one of diagrams is the detailed F-M 

diagram and the other is the detailed-curvature-based F-M diagram (obtained using the 

detailed- confined M-C diagrams data). In this figure, the difference between these two 

diagrams has been decreased drastically compared to those in Figure 4.15 (which were 

obtained for the same cross section, but with 2 in. cover); however, these two diagrams 

are not exactly equal to each other. The maximum percent increase in the curvature-

based diagram is 12 %. 

 

 

Figure 4. 27. Confined F-M diagrams for square cross section with zero cover. 

 

Since the concrete cover was taken as zero, the difference between these two diagrams 

has been reduced. Now, let’s see at what values of compressive strain these maximum 

bending moments occur. As it has been already stated, the detailed F-M diagram is 

obtained by considering a constant value of compressive strain ( cc ) at the most 

compressed edge of the cross section; for this cross section, cc = 0.00468. However, the 
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detailed-curvature-based F-M diagram is not constructed based on a constant value of 

strain because the detailed M-C diagram is derived by selecting different values of 

compressive strain. For each axial load, the strain versus bending moment is plotted in 

Figure 4. 28. As it is seen, for each value of strain there is a corresponding value of 

bending moment. And so, to construct the curvature-based F-M diagram, we should find 

the maximum moment for each axial load level; these diagrams are shown in Figure 4. 

28. Here, we are looking for strain at which the maximum moments occur. 

 

 

Figure 4. 28. M-S diagrams for square cross section with zero cover 

 

Unlike for the other two square cross sections (see figures 4.18 and 4.25), for this square 

cross section the maximum moments do not occur at a strain of 0.004 (see figure 4.30). 

As it can be seen from figure 4.30, all the maximum moments happen at a compressive 

strain of more than 0.004; this is because the cover concrete does not exist in the cross 

section. Also, all of the maximum moments under different axial loads don’t occur at the 

same strain; this means that for different axial loads, there are different strains at which 

the bending moment is maximum. For this cross section, the maximum moments occur 

at compressive strain of 0.0075 to 0.0095; this range is more than the cc  = 0.00468 and 

less than cu  = 0.015. Therefore, to find the largest possible confined F-M diagram for 

this section, the confined M-S diagrams which are obtained based on M-C diagrams 

should be used. This is so because these diagrams give the plot of bending moment 
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versus compressive strain; consequently, it is possible to find the maximum moment 

under each axial load level and also the compressive strain at which this moment occurs. 

Next, the circular cross section will be considered; this time, the cover is zero and the 

spacing of transverse reinforcement is 4 inches (#3@4 in.). Figure 4. 29 shows the 

confined F-M diagrams for this cross section. 

 

 

Figure 4. 29. Confined F-M diagrams for circular cross section with zero cover. 

 

From this figure, it is obvious that the difference between the two F-M diagrams has 

been reduced compared to the Figure 4.20. However, the difference between these 

diagrams has not become zero; the maximum percent increase in bending moment in the 

curvature-based diagram is about 15 %. This decrease of difference between the 

diagrams happens because of the zero cover concrete. We can also find the compressive 

strains at which the maximum moments occur; this can be achieved by looking at 

moment-strain (M-S) diagrams. 

According to Figure 4. 30, the maximum moments do not occur at the compressive 

strain of 0.004; rather these moments occur at different compressive strains, depending 

on the axial load level. So, this result contradicts the results obtained from Figure 4.19 

and 4.26. This is because the cover concrete is considered to be zero in Figure 4. 30. 

Also, it is vivid that the bending moments that happen at compressive strain of cu  = 
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0.0156 and cc =0.00453 are not the maximum moments; rather the maximum moments, 

under any axial load level, occur at a compressive strain between cc  and cu . 

 

 

Figure 4. 30. M-S diagrams for circular cross section with zero cover. 

 

As a conclusion for this section, it can be said that the concrete cover of the section has a 

considerable effects on the capacity of the confined cross sections. Also, the 

compressive strain has a major effect on strength of confined columns; there is a specific 

value of compressive strain for which that the strength of the confined column is the 

maximum. Also, for confined cross sections, the detailed-curvature-based method gives 

larger F-M diagrams than does the detailed method; this is because in the detailed-

curvature-based method, the compressive strain at the most compressed fiber of the 

cross section is not taken as constant. 

 

 

4.5- Validation of detailed and detailed-curvature-based methods 

against the experimental results: 

 

In section 4.2 of this chapter the unconfined-simplified method was compared to the 

unconfined-detailed method; it was seen that the unconfined-detailed F-M diagrams 
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were larger than the unconfined-simplified ones. In section 4.4, the confined-detailed 

and confined detailed-curvature-based methods were compared with each other; it was 

concluded that the confined F-M diagrams that were derived using detailed-curvature-

based method were larger than those that were obtained using the detailed method. Thus, 

for unconfined concrete cross sections, the detailed method provides large F-M diagrams 

while for confined cross sections, the detailed-curvature-based method gives larger F-M 

diagrams than any other method.  

Now in this section, the intention is to validate these two methods against the existing 

experimental data[11]. This will guide us to determine the method that offers the optimal 

result. 

 

The existing experimental results for two RC columns, circular and square, are used. 

Below are the details for the column with a square cross section. 

 

Square cross section (40x40 cm): 

yf =367 MPa.    cf = 20.6 MPa. 

ysf = 376 MPa.      Cover = 3 cm 

Stirrups = D6 @5 cm.  

Longitudinal bars = 12  D13 

Given axial load = 170 kN.  

εcc = 0.0054 , εcu = 0.028  

 

For this column, for the given axial load the maximum bending moment is 156 kN.m. 

Analyzing this cross section with the direct-detailed method, the maximum bending 

moment for this axial load is found to be 115 kN.m; this moment is the same for both εcc 

and εcu. However, based on detailed-curvature-based method, the maximum bending 

moment for the given axial load is around 121 kN.m; this moment occurs at a 

compressive strain of about 0.0035.  Therefore, 121 is less than 156 and more than 115; 

it means that both detailed and detailed-curvature-based methods are is safe side, but the 

detailed-curvature-based method is economically safe. As it is obvious, the difference 

between 121 and 115 is very less; this is because the level of axial load is very low. If a 
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higher value of axial load was used, the difference between the detailed and detailed-

curvature-based results would have been large.  

Following, the circular concrete column is detailed. 

 

 Circular cross section: 

 Column diameter = 40 cm. 

 yf =377 MPa.  cf = 23.3 MPa. 

ysf = 374 MPa.      Cover = 2.7 cm 

Stirrups= D6 @7 cm.  

Longitudinal bars = 20   D13 

Given axial load = 185 kN.  

εcc = 0.0042 , εcu = 0.016  

 

For this column, the maximum moment achieved form experimental data is 160 kN.m. 

The maximum moment that is obtained from using the detailed method is as follows: 

 For εcc = 0.0042 :    nM = 145 kN.m 

 For εcu = 0.016  :     nM = 155 kN.m 

Also, based on the detailed-curvature-based method, the maximum bending moment, for 

this axial load, is 155 kN.m; this bending moment happens at the compressive strain of 

0.0039. Therefore, for this cross section, the results from detailed and curvature-based 

methods are exactly the same (155 = 155); however, the compressive strain at which 

these maximum bending moments occur is different for each method. The compressive 

strain in the detailed method is 0.016 while this strain is equal to 0.0039 for the 

curvature-based method. Again, since the level of axial load is very low, there is no 

difference between these two methods; if the axial load level was higher, there would 

have been an increase in the moment based on the curvature-based method.  

From analysis of these two concrete columns, we can be conclude that for a given axial 

load, the maximum bending moment need not necessarily happen at the ultimate 

compressive strain, εcu or at  εcc. For these two cross sections, the maximum bending 
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moments, for given axial loads, occur at a compressive strain lower than the crashing 

strain; this is because the cover concrete for these two cross sections is large. 

Thus, based on this comparison, the detailed-curvature-based method gives the optimal 

F-M diagrams for confined RC columns. 
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Chapter five- Summary and Conclusion 

 

The performance-based design method is the emerging design procedure especially for 

reinforced concrete structures. Some of the important structures, especially those located 

in areas of high seismic activity are currently designed considering various performance 

levels in the design process. It goes without saying that a realistic assessment of the 

performance of reinforced concrete structures is a basic need in this design method and 

procedure. The existing codes such as ACI and AASHTO [38], currently practiced by 

design firms, are strength-based, addressing just one stage of the performance at the 

ultimate state. Factor of safety in the old Allowable Stress Design (ASD) method is 

replaced by the Load Factors and Resistance Factors to address the probabilistic nature 

of the demanded forces, the available strength at the ultimate stage. However, in a 

performance based design process, every stage of the performance, such as spalling of 

the cover concrete, relative deflections and cracking, even failure of a structural 

member, can be a performance limit state that demands a reasonably accurate realistic 

prediction of the performance in the design stage. 

The realistic performance and strength assessment of structures and structural members 

is also a need for existing structures, namely a deficient bridge column, when deciding 

whether retrofit or replace it. 

However, accuracy of the performance assessment involves many factors. Some major 

factors for a reinforced concrete column, for instance, are the rules for monotonic and 

cyclic stress-strain response of the constituent material including the confined core of 

the column, the assumption used for the curvature distribution on the column when the 

column deforms beyond its peak strength, the effect of loading history and pattern, and 

finally the analytical procedure used in the performance assessment. 

In this study, various commonly used analytical procedures to extract the Axial Force-

Bending Moment Interaction response curve, as a strength indicator for reinforced 

concrete column sections, called F-M throughout this report, are examined, while other 

factors such as material models and load pattern are kept constant.  
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Furthermore, the loading pattern has been considered to be monotonic, and the material 

models and cyclic rules are the same for all of the procedures explored. 

Throughout the text, four different analytical methods, namely simplified method, 

simplified-curvature-based method, detailed method, and detailed-curvature-based 

method, were used to construct the unconfined and confined Axial Force-Bending 

Moment (F-M) interaction diagrams for RC columns with both circular and square cross 

sections. The columns were under combined axial load and uniaxial bending moment. 

The KSU_RC software was used to implement the calculations for the detailed methods. 

The F-M diagrams derived using the simplified method were exactly the same as those 

that were obtained using the simplified-curvature-based method. This is because both 

methods are using a pre-assumed compressive strain at extreme fiber of the cross 

sections to compute the maximum (ultimate) bending moment. The pre-assumed 

compressive strain, which is used for both confined and unconfined cross , is equal to 

the ultimate compressive strain of the cross sections. Since both of the methods use the 

concept of equivalent rectangular stress block and the same compressive strain, the 

output of these methods, simplified and simplified-curvature-based, are the same. 

The detailed method was compared then with the simplified method. The F-M diagrams 

which were derived using the detailed method showed greater strength, mostly in the 

compression controlled zone, than did the simplified F-M diagrams. This can be 

attributed to the fact that the detailed method uses the exact stress distribution over the 

cross section while the simplified method uses the equivalent rectangular stress block 

concept. Consequently, the simplified method underestimates the concrete compressive 

force and also overestimates the line of action (from the top fiber) of this compressive 

force leading to a smaller internal moment arm, which results in a lower strength based 

on the simplified method. 

The detailed method was used to obtain the F-M diagrams for a compressive strain of 

0.003 at the most compressed fiber of the cross section. Both confined and unconfined 

F-M diagrams were derived for circular and square cross sections. At this compressive 

strain and for values of depth of the neutral axis less than the height of the cross section, 

the confined F-M diagrams showed a higher strength than did the unconfined ones; 

however, for values of depth of the neutral axis less than the height of the cross section, 
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the unconfined and confined F-M diagrams are approximately the same. Obviously, at 

compressive strains close to 0.003, the compressive force of the confined cross section is 

greater than the compressive force of the unconfined concrete, when the same area of the 

cross section is in the compression zone. 

Considering confinement, the results of the detailed method and the detailed-curvature-

based method were compared. The F-M diagrams derived based on detailed-curvature-

based method showed greater strength than those constructed using the detailed method. 

The reason for this is that the computations of F-M diagrams based on the detailed 

method are done using a pre-assumed compressive strain; however, there is no pre-

assumed compressive strain used in detailed-curvature-based method. Using the 

detailed-curvature-based method and the computed strains at different stages by the 

program, the Moment-Strain (M-S) diagrams were constructed. These diagrams show 

the relationship between the bending moment and compressive strain for a given axial 

load. It is evident from the M-S diagrams that the maximum bending moment for a 

confined cross section does not necessarily occur at either cc , the strain corresponding 

to the peak confined stress or cu , the ultimate confined strain capacity. It was also 

shown that the maximum bending moment, for a given axial load, does not occur at a 

specific compressive strain and the compressive strain at which the maximum moment 

occurs depends on the concrete cover of the cross section. 

Finally, the detailed and detailed-curvature-based methods were validated against the 

existing experimental data, which included two RC columns with circular and square 

cross sections. Based on this validation, both detailed and detailed-curvature-based 

methods were in safe side or conservative; however, the detailed-curvature-based 

method was economically conservative. In other words, while the experimental point 

was outside of the region enclosed by the interaction curve, the curvature-based curve 

was closer to the test points. 

In general, the detailed-curvature-based method had better performance in providing a 

realistic assessment of the axial force-bending moment interaction for RC column 

sections. This method has also the capacity to capture the effects of the load pattern on 

the performance and capacity of a reinforced concrete cross section.  



112 
 

References: 
 

1. Esmaeily, A., and Xiao, Y. “Behavior of Reinforced Concrete Columns Under 
Variable Axial Loads.” ACI Structural Journal, V. 101, No. 1, Jan.-Feb. 2004, 
pp. 124-132, January-February 2004. 

2. Esmaeily, A., and Xiao, Y. “Behavior of Reinforced Concrete Columns under 

Variable Axial Loads: Analysis.” ACI Structural Journal, Vol. 102, No. 5, pp. 
736-744, September-October 2005. 

3. Esmaeily, A., Xiao, Y. "Seismic Behavior of Bridge Columns Subjected to 
Various Loading Patterns." Pacific Earthquake Engineering Research Center, 
PEER 2002/15, pp. 321, December 2002. 

4. Esmaeily, A., Lucio, K. “Analytical Performance of Reinforced Concrete 

Columns using Various Confinement Models.” ACI SP-238-6, pp-95-110, 2006 
5. “Building Code Requirements for Structural Concrete (ACI 318-08) and 

Commentary”, American Concrete Institute, 2008. 
6. Esmaeily, Asad. “Advanced theory of reinforced concrete.” Class Notes, Civil 

Engg. Dept. KSU, 2009. 
7. MacGregor, James G., and James K. Wight. Reinforced Concrete-Mechanics 

and design. New Jersey: Pearson, 2009. 
8. Beer, Ferdinand P., et al. Mechanics of Materials. New York: McGraw Hill, 

2002. 
9. Harries, Kent A., and Gayatri Kharel. “Behavior and Modeling of Concrete 

Subjected to Variable Confining Pressure.” ACI Material Journal, Vol. 99, No. 
2, pp. 180-189, March-April 2002. 

10. Richart, Frank A.” A study of the failure of concrete under combined 

compressive stresses.” University of Illinois Bulletin, Vol. XXVI, No.12, 

November-1928. 
11. “Cyclic Loading Test Data of Reinforced Concrete Bridge Piers.” Dep. Of Civil 

Engineering, Tokyo Institute of Technology, Tokyo, Japan. 
12. Mander J.B, Priestly, M.J.N., and Park R. “Seismic design of bridge piers.” 

Research Rep. No. 84-2, Dep. of Civil Engineering, Univ. of Canterbury, New 
Zealand, 1984. 

13.   Dhakal R. P., and Koichi, Maekawa. “Reinforcement Stability and Fracture of 
Cover Concrete in Reinforced Concrete Members.” J. Struct. Eng., pp 1253-
1262, October 2002. 

14.  Raynor, Dan J., Dawn E., Lehmna, and John F. Stanton. “Bond-slip response of 
reinforcing bars grouted in ducts.” ACI structural journal. pp 568-576, Oct.2002 

15. Chang, G., and Mander, J. “Seismic energy based fatigue damage analysis of 

bridge columns: Part I- Evaluation of seismic capacity.” NCEER Technical 

Rep. No. 94-0006, Buffalo, N.Y. 1994. 



113 
 

16. Hoehler, M. S., and Stanton, J. F. “Simple phenomenological model for 

reinforcing steel under arbitrary load.” J. Struct. Eng., pp 1061-1069, 2006. 
17. Mirmiran, A., Zagers, K., and Wenqing, Y. “Nonlinear Finite Element 

Modeling of Concrete Confined by Fiber Composites.” Finite Elements 
Analysis and Design, Elsevier, 35(1), pp. 79-96, 2002. 

18. Samaan, Michel, Amir Mirmiran, and Mohsen Shahawy. “Model of Concrete 
Confined by Fiber Composites.” J. Struct. Eng., pp. 1025-1031, 1998. 

19. Lam, L., and J., G., Teng. “Design-oriented stress-strain model for FRP-
confined concrete.” Construction and Building Materials, Elsevier. 17. pp. 471-
489, 2003. 

20. Teng, J., G., and Lam, L. “Behavior and Modeling of Fiber Reinforced 
Polymer-Confined concrete.” J. Struct. Eng., Vol. 130, No. 11,.pp. 1713-1723, 
November, 2004. 

21. Teng, J. G., Y. L. Huang, L. Lam, and L. P. Ye. “Theoretical Model for Fiber-
Reinforced Polymer-Confined concrete.” J. Struct. Eng., Vol. 11, No. 2, pp. 
201-210, April, 2007. 

22. Wu, Y. F., and Wang, W. L. “Unified strength model for square and circular 

concrete columns confined by external jackets.” J. Struct. Eng., Vol. 135, No. 3, 

pp. 253-261, March 2009. 
23. Shao, Yutian, Seyed Aval, and Amir Mirmiran. “Fiber-Element Model for Cyclic 

Analysis of Concrete-Filled Fiber Reinforced Polymer Tubes.” J. Struct. Eng., 

Vol. 131, No. 2, pp. 292-303, Feb. 2005. 
24. Teng, J. G., T. Jiang, L. Lam, and Y. Z. Luo. “Refinement of a Design-Oriented 

Stress–Strain Model for FRP-Confined Concrete.” J. Struct. Eng., Vol. 13, No. 

4, pp. 269-278, August 2009. 
25. Sheikh, S. A., and Uzumeri, S. M. “ Analytical model for concrete confinement 

in tied columns.” J. Struct. Div., Vol. 108, No. ST12, pp.2703-2722, December 
1982. 

26. Mander, J. B.,  M. J. N. Priestley, and R. Park. “Theoretical stress-strain  model 
for confined concrete.” J. Struct. Eng., Vol. 114, No. 8, pp. 1804-1826, August 
1988. 

27. Legeron, Frederic, and Paultre, Patrick. “Uniaxial confinement model for 
normal-and high-strength concrete column.” J. Struct. Eng., Vol. 129, No. 2, pp. 
241-252, Feb. 2003. 

28. Martinez, J. E., and Elnashai, A. S. “Confined concrete model under cyclic 

load.” Materials and Structures, Vol. 30, pp. 139-147, April 1997. 
29. Sakai, J., and Kawashima, K. “Unloading and Reloading Stress–Strain Model 

for Confined Concrete.” J. Struct. Eng., Vol. 132, No. 1, pp. 112-122, January 
2006. 

http://web.eng.fiu.edu/~mirmiran/Papers/Nonlinear%20finite%20element%20modeling%20of%20concrete%20confined%20by%20fiber%20composites.pdf
http://web.eng.fiu.edu/~mirmiran/Papers/Nonlinear%20finite%20element%20modeling%20of%20concrete%20confined%20by%20fiber%20composites.pdf
http://www.elsevier.com/inca/publications/store/5/0/5/6/4/9/505649.pub.htt
http://www.elsevier.com/inca/publications/store/5/0/5/6/4/9/505649.pub.htt
http://ascelibrary.aip.org.er.lib.k-state.edu/vsearch/servlet/VerityServlet?KEY=JSENDH&smode=strresults&sort=rel&maxdisp=25&threshold=0&pjournalspossible1=samaan&possible1zone=article&OUTLOG=NO&viewabs=JSENDH&key=DISPLAY&docID=7&page=0&chapter=0
http://ascelibrary.aip.org.er.lib.k-state.edu/vsearch/servlet/VerityServlet?KEY=JSENDH&smode=strresults&sort=rel&maxdisp=25&threshold=0&pjournalspossible1=samaan&possible1zone=article&OUTLOG=NO&viewabs=JSENDH&key=DISPLAY&docID=7&page=0&chapter=0


114 
 

30. Richart, F. E., Anton Brandtzaeg, and Rex L. Brown. “The failure of plain and 

spirally confined concrete in compression.” University of Illinois Bulletin, Vol. 

XXVI, No. 31, April 1992. 
31. Kent, D. C., and Park, R. “Flexural members with confined concrete.” J. Struct, 

Div., ASCE, Vol. 97, No. 7, 1971. 
32. Sheikh, S. A., and Yeh, C. C. “Flexural behavior of confined concrete 

columns.” ACI Journal, Title no. 89-39, pp. 389-404, May 1986. 
33. “Structural Engineering Design Provisions.” Uniform Building Code (UBC-97), 

1997. 
34. Nelson, A. H.; David Darwin; and Charles W. Dolan. “Design of concrete 

structures.” New York, McGraw Hill, 2004. 
35. Esmaeily, A. “Advance theory of reinforced concrete- Analytical methods.” 

Civil Eng. Dep., KSU, 2007. 
36. Binici, B. and Khalid M. Mosalam. “Analysis of reinforced concrete columns 

retrofitted with fiber reinforced polymer lamina.” Composites: Part B 38, 

Elsevier, pp. 265-276, 2007. 
37. Esmaeily, A. “KSU_RC, Moment-Curvature, Axial Force-Bending Moment 

Interaction, and force deflection analysis of RC cross section.” 

http://www.ce.ksu.edu/faculty/esmaeily/KSU_RC.htm, 2010. 
38. “LRFD Bridge Design Specifications.” American Association of State Highway 

and officials (AASHTO), 2007. 
39. Bea, Sungjin and Oguzhan Byrak. “Early Cover Spalling in High-Strength 

Concrete Columns.” J. Struct, Div. ASCE, Vol. 129, No. 3,pp. 314-323, 2002. 

 

 

 

 

 

 

 

 

 

 

 

http://www.ce.ksu.edu/faculty/esmaeily/KSU_RC.htm


115 
 

Appendix – Notations 
 

P  Axial force 
A The cross section area 
M Bending moment 
y Distance from top fiber to the centroid of the cross section 
I Moment of inertia of the cross section  

maxf  Maximum compressive stress 

maxP Maximum axial load 

maxM Maximum bending moment 
E  Modulus of elasticity 
 Curvature 
x Strain in x axis direction 

y Strain in y axis direction 

z  Strain in z axis direction  
 Poisson ratio 
x Stress in x axis direction 

y Stress in y direction 

z Stress in z direction 
t Transverse strain 

c Axial compressive strain  

 Dilatation ratio for concrete 
1 Compressive stress in axial direction 
cf Axial compressive strength of plain concrete 

cf Compressive strength of confined concrete 

ccf Maximum compressive strength of confined concrete 

cc Ultimate compressive strain of plain concrete 

co Compressive strain corresponding to maximum compressive strength of plain 
concrete 

cof Maximum compressive strength of plain concrete 

cE Modulus elasticity of concrete  

sE  Modulus elasticity for steel reinforcement 

secE Secant modulus of elasticity of concrete  

lf Lateral pressure provided by lateral reinforcement. 
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lf Effective lateral confining pressure 

ek Effectiveness ratio 

cA Are of concrete enclosed by stirrups 

eA Effective area of confined core concrete 

cc The area of lateral reinforcement to the area of core concrete 

ytf Yielding strength of transverse reinforcement 

stA Area of the transverse reinforcement 
s Center to center distance between stirrups 
sd Diameter of stirrups (hoops) 

s The ratio of volume of transverse reinforcement to the volume of confined core 
concrete 

cu Ultimate strain for confined concrete 

st Tension strain in bottom layer of longitudinal reinforcement  

yf Yielding strength of longitudinal reinforcement 

bV Seismic base shear force 

nP Nominal axial force capacity 

gA Gross area of cross section 

sA Area of compressed longitudinal reinforcement  

cC Compressive force of concrete compressive block 

nM Nominal bending moment capacity 
a Depth of ACI compressive bock 
c Depth of the neutral axis 
d Effective depth of cross section 
h Height of the cross section 
gI Moment of inertia of gross section 

rf  Modulus of rapture of concrete 

 


