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Abstract

In recent years the stock markets have shown trémes volatility with significant
spikes and drops in the stock prices. Within thst plecade, there have been numerous jumps in
the market; one key example was on September 101 #hen the Dow industrial average
dropped 684 points following the 9-11 attacks om tmited States. These evident jumps in the
markets show the inaccuracy of the Black-Scholedehfor pricing options. Merton provided
the first research to appease this problem in 1@#7&n he extended the Black-Scholes model to
include jumps in the market. In recent years, Kas shown that the distribution of the jump
sizes used in Merton’s model does not efficientlydel the actual movements of the markets.
Consequently, Kou modified Merton’s model chandiing jump size distribution from a normal
distribution to the double exponential distribution

Kou’s research utilizes mathematical equationsstorate the value of an American put
option where the underlying stocks follow a jumffdiion process. The research contained
within this thesis extends on Kou's research usitoyte Carlo simulation (MCS) coupled with
least-squares regression to price this type of Agaeroption. Utilizing MCS provides a
continuous exercise and pricing region which isidirttt difference, and advantage, between
MCS and other analytical techniques. The aim of thsearch is to investigate whether or not
MCS is an efficient means to pricing American pyitians where the underlying stock
undergoes a jump-diffusion process. This thesis aktends the simulation to utilize copulas in
the pricing of baskets, which contains severalhef aforementioned type of American options.
The use of copulas creates a joint distributiomfitvo independent distributions and provides
an efficient means of modeling multiple options #mel correlation between them.

The research contained within this thesis showsMi@S provides a means of accurately
pricing American put options where the underlyirigck follows a jump-diffusion. It also
shows that it can be extended to use copulas te fraskets of options with jump-diffusion.
Numerical examples are presented for both portiorexemplify the excellent results obtained
by using MCS for pricing options in both single @insion problems as well as multidimensional

problems.
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CHAPTER 1-INTRODUCTION

1.1 Introduction
As the financial markets have evolved during tleeng years, so has the desire to be able
to accurately calculate the expected future woftthe various financial assets and derivatives
on the market. To satisfy this desire a new tesdirfield, known as Financial Engineering or
Quant Mathematics, has emerged that integratesnétbods and tools utilized by financial
analysts, mathematicians, and engineers to cadcthat expected worth of financial assets and

derivatives.
Financial Engineering

Financial Engineering focuses on a multitude ofedé#nt financial instruments (e.qg.
assets and/or their derivatives). Originally theseluded asset management, portfolio
optimization, risk assessment, and hedging, bue hmwore recently focused on Collateralized
Debt Obligations (CDOs) and the various types olstoptions. Many of the CDOs only work
well under certain market settings, however manthefn can cause catastrophic impacts when
the markets deviate from such settings. Optionksfatures on the other hand are still one of the

most viable financial instruments regardless ofgleeral market trends.
Options

The research contained within this thesis focusesth® stock options portion of
Financial Engineering. An option is a contract,ghased for a premium, between the buyer and
the seller that gives the purchaserttight — but not thebligation — to buy or sell the underlying
asset at a future date. There is a vast variepptbns available in the financial markets today
with the two most common types being the EuropeahAsmerican options. Before explaining
the difference between the two types, it is impurta note the key factors involved with stock
options. The basic elements of an option areh@)eixpiration date, which is the point at which
the option can no longer be exercised, (2) thd&estprice, which is the amount for which the
underlying stock will be purchased or sold, andwBgther the option type is a call or put. A

call option gives the purchaser the right to buy timderlying stock at the strike price and a put
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option gives the purchaser the right to sell thdeulying stock. Every style of option requires
these three factors.

The most distinct difference between the two afaetioned types of options, the
European and American option, is when the optionlmaexercised. A European option gives
the buyer the right to exercise the optiamthe expiration date whereas an American option
gives the buyer the right to exerciseaaly point up to, and including, the expiration date.
Besides the ability to exercise at any point, tlve bptions are identical in that each can be
purchased as a call or a put and the gains for eaehcalculated by one of the following
eguations depending on the type:

* Put Option: Max{ Strike Price — Market Price, 0}
» Call Option: Max{ Market Price — Strike Price, 0 }

American Options

In general, American options are more flexible {gnms of when an option can be
exercised) than the European option, and theretbhesprice of an American option is usually
higher than that of a European option with the sameelements described above. The added
flexibility of American options, however, makes tlmalysis of such options much more
complicated. Since American options have a cootisuor quasi-continuous exercise region,
determining the optimal exercise point and the etggeworth of the option is computationally
challenging. As a result, this type of option lheen extensively studied by financial market
practitioners and within the academic communiti€arough these studies, a variety of different
approaches have been developed to estimate, ooxap@ate, the expected value of the
American option: (a) Dual based and approximateadyic programming methods to find upper
and lower bounds, as seen in Haugh (2004); (b}-sspsares approach as seen in Longstaff and
Schwartz (2001); (c) stochastic meshes as seemoadi2 and Glasserman (2004), Achdou and
Pironneau (2005), and Zhang (2005). Each of thes#hods is effective in pricing American
options, however, one common problem with sevefahe methods is when modifying the
pricing technique to incorporate options where tinelerlying stock follows a jump-diffusion

process.



Jump-Diffusion

In 1976, R. C. Merton began addressing the phenaroériprice jumps” in the stock
markets, which has been termed the jump-diffusimegss. When a stock price follows a jump-
diffusion process, it means that the randomnesdeasplit into two separate types of processes;
these processes include the jump process andftbsioln process. Prior to Merton’s findings, it
was assumed that the stock markets only followedg#gometric Brownian motion process (a
type of diffusion process) in that over a shortegto period of time the stock price can only
change by a small amount. This is one of the lesymptions of the Black-Scholes formula, the
very first mathematical model of the stock markeveloped by Fischer Black and Myron
Scholes in 1973, and is the basis for which eacth®fmethods listed above approximate the
expected worth of the American option.

Merton, however, observed that the changes intthek grices were not always in small
and continuous steps. In many instances, eithenwiere is an announcement of market events
or some type of human intervention, the stock gribave shown immediate and substantial
spikes or dips in the prices. Stated in a morengific sense, it is quite evident that there are
short term instances in the market that the Bladkefs model cannot explain (e.g. outliers). In
recent years these dips are evident after evekdsgHie 9-11 attacks on the United States when
the DOW industrial average dropped 684 points erfitist day trading resumed (September 17,
2001) and the wars on terrorism that followed (Kiauain 2001). A second obvious instance is
the multiple bailout plans that were establishedindu President Bush’s tenure for the
automakers and financial industries when the DOWretsed 14.1% in October 2008
(Steverman 2008). Each of these events causedhraediate, and significant, “price jump” in
the stock market that would not normally have bpessible if the markets wholly followed a
diffusion process.

Since Merton (1976) introduced the idea of the jdiffusion process, additional
research activity has focused on the possible “gimpthe market in order to find methods that
incorporate these jumps into the pricing of option&ou (2002, 2004, and 2008) have some
significant contributions to this area. Through#&ldu’'s research he presented a model very
similar to the model proposed by Merton (1976),hwiihe major difference between the two
models being how the jump sizes are modeled. Mdyedieved that the size of the jumps follow

a normal distribution and Kou on the other hantgrafioticing a few distinct key problems with
3



the normal distribution, believed that the jumpga®s can be better explained using a double
exponential distribution. Kou 2008 (Figure 2) slealwhow the normal distribution does not
accurately model the market behaviors by preserttiadeptokurtic nature of the market jumps
and the dissimilarity between the historical datd the normal distribution. The historical data
shows the inaccuracy of the normal distributiorcbgnparing it to the jump size distribution and
presenting the fact that the jump size distributias a much higher peak and fatter tails than that
of a normal distribution.

Kou (2008) provided two analytical approximatiofar pricing American options
without dividends. Namely, he extends the Barowesh and Whaley (1987) quadratic
approximation and the piecewise exponential appmakon presented by Ju (1998). Kou found
that the piecewise exponential approximation predidbetter results at the cost of
programmability and the time required to solve phgblem. The quadratic approximation itself
has three major deficiencies: (1) it is an appr@tion algorithm that bases the worth of an
American option off of the worth of an equivalentirgpean option; (2) the approximation
algorithm contains a discrete pricing region sd tha entire range of prices is not possible, and
(3) the approximation algorithm does not indicate aptimal exercise point. Kou’'s
approximation algorithm can only approximate thiegof the option based on discrete pricing
values determined by the value of a European opltionhcannot indicate when the option should
be optimally exercised.

These deficiencies, however, are common in sewthar numerical methods. Many of
the methods used to evaluate American options efieieht in that they evaluate the option
based on discrete pricing regions (ergnomial trees) or are extremely complicated duth&o
use of complex integral equations (e.g. the useietewise exponential approximation or
Laplace Transformations). These issues can beessiehl, and significantly streamlined, using
Monte Carlo simulation techniques. By coupling gstaff and Schwartz’s (2001) least-squares
regression with Monte Carlo simulation, researchard market practitioners can accurately
calculate the fair value (also referred to as tkpeeted worth or the price) of an American
option with jump-diffusion with a simple algoriththat provides a continuous pricing region and
the optimal exercise point. Least-squares regyessith Monte Carlo simulation provides a
means to accurately approximate the two piecesfofmation that are required to analyze an
American option: the fair value and the exercis@po
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The research effort within this thesis extends o’k jump-diffusion model and utilizes
Monte Carlo simulation to calculate the price ahd bptimal exercise time of an American
option where the underlying asset follows a jumifudion process. Additionally, the research is
extended to incorporate copulas into the pricindgpaskets, which are small portfolios (usually

less than five options) of any type of option.

1.2 Research Motivations

Generally, American options cannot be solved usloged-form mathematical formulas,
even when all of the required distributions (eigtributions for the jump size and the frequency
of jumps) are known. As a result, it is commordgagnized that American options can only be
evaluated using numerical procedures and not acallyprocedures. The addition of jump-
diffusion processes further complicates this matiermost cases when jumps are involved the
exact distributions are unknown making it even naiffecult to create a pricing formula. Also,
in cases where the closed form approximated solutioludes renewal integral equations and
there is a presence of two-directional jumps —eegitlp or down — unique solutions may not exist
because of the difficulty of determining enough taary conditions based on the renewal
arguments alone. This fact motivates our resefanchsing stochastic sampling to estimate the
worth of American options. Since both stochastimgling and complex integral equations are
approximations, this leads to a very important aescomparing the two types of numerical
approximation methods (stochastic sampling via Mao@arlo simulation vs. complex integral
equations like Laplace transformationg)hich method is better in regards to computational
effort and modeling flexibility?

Monte Carlo simulation is a versatile method focipg options. As this research will
demonstrate, modeling the addition of the jumpudifbn process only requires a few minor
extensions to the simulation models proposed bydyeH (2007). DeHaven (2007) presented a
Monte Carlo simulation approach using the discretent simulation program, Rockwell
Software’s Arena 10.0. However, her research didemtend the pricing to include either jumps
in the markets or correlated multi-option baskethie research performed within this thesis is
based on the simulation model of DeHaven (2007)extdnds it to include the jump-diffusion
processes. One of the main reasons that the matliins are relatively straight forward is

because the exact distributions of the jumps atereguired to model American options with
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jump-diffusion. In this thesis, we have shown thith the adequate use of stochastic sampling
and simulation procedures the proposed method oavide very accurate results for pricing
complex American options under various settings.

Another significant benefit of using Monte Carlansilation is that it allows for a
continuous pricing region, which in turn, can primerican options with extreme accuracy. As
previously mentioned this lack of continuous priciregion is a deficiency of many numerical
approximation algorithms and is a problem that lbaraddressed using Monte Carlo simulation.
DeHaven (2007) has proven the extreme accuracyricfng options with Monte Carlo
simulation through her comparisons of stochastismpicing methods and least-squares pricing
using Monte Carlo simulation. Her comparisons itlétaw the continuous pricing region is
beneficial in improving the accuracy of pricing Angan options.

Kou (2004) presents two approximation algorithms gacing American options with
jump-diffusion, both of which are numerical approgtions using either complex integral
eguations or approximation equations based on #heevof a European option. Of the two
heuristics presented, the quadratic approximasothe easiest to implement but provides less
accurate pricing of American options. The piecewexponential approximation, however, is
much harder to implement due to the integrals astamt with the process, but provides more
accurate estimations. Motivated by the resultssered by Kou (2004), this thesis will
investigate the applicability of using Monte Cadimulation to price American options with
jump-diffusion. The research within this thesisldai on the findings of Kou and DeHaven to
create a simulation model to evaluate Americanomgtiwhere the underlying stock undergoes a

jump-diffusion process and further extends the &atmn model to a multidimensional domain.

1.3 Research Objectives and Contributions

The purpose of this study is to explore the effectess of pricing American options with
jump-diffusion through the Monte Carlo simulatioppaoach. This study shows the flexibility
Monte Carlo simulation provides and relates theoopprice to the following input parameters:
(1) initial stock price, (2) strike price, (3) opti life span or expiration date, (4) risk-free et
rate, (5) stock volatility, (6) mean jump size, g9 average number of jumps per year. The
independent variables are the input parametergrendependent variable is the price (i.e., the
fair value) of the option.



Namely, this thesis seeks to explore if there sigmificant difference between using
Monte Carlo simulation and other numerical techagjto price American options with jump-
diffusion. To answer this question, this thesi sompare the accuracy and effectiveness of a
Monte Carlo simulation to that of the approximat@igorithm Kou (2004) presents for finite-
horizon American options. The Monte Carlo simwatiwill combine Kou’s jump-diffusion
model with the least-squares regression model ptedédy Longstaff and Schwartz (2001) and
is programmed using the C++ programming language.

Additionally, the simulation model is extended taarporate copulas in the pricing of
baskets containing American options with jump-difan. A copula is a mathematical tool that
combines several univariate distributions to cregi@nt distribution. The use of copulas allows
for the correlation between options to be modetethat industry-wide jumps can be accounted
for.

From the research described above, the main catitits of this thesis are listed as
follows:

» Explore the use of stochastic sampling techniqu@sawWonte Carlo simulation
model to ascertain whether it provides a quick aedurate way of pricing
American options where the underlying stock undesg@ jump-diffusion
process.

* Extend the simulation model to incorporate copwlaghat baskets, where their

underlying stocks undergo a jump-diffusion process, also be analyzed.

1.4 Outline

The remainder of the thesis is organized as follov@@hapter 2 presents a literature
review of the current research efforts to price Aican options with and without jump-diffusion
and Chapter 3 details one of the two main metheodsrasearch tasks performed within this
thesis which includes the simulation of Americartiaps with jump diffusion. This chapter
provides detailed information regarding the methémkwed, algorithms proposed, and the
general characteristics of the jump-diffusion pesceChapter 4 summarizes the validation of the
various random variates used in the computatioxqaeements. Chapter 5 presents the results of
the research and Chapter 6 extends the methodsimegblin Chapter 3 to incorporate copulas to

price baskets of American options. Chapter 7 pitssthe results of this extension, Chapter 8
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discusses memory requirements of the least-sqadgesthms and Chapter 9 summarizes this

thesis and provides directives for future research.



CHAPTER 2 - LITERATURE REVIEW

This chapter reviews the existing literature thlatrelated to the area of study for this
thesis. Namely, this chapter looks at the stattefart methods for pricing American options
with and without jump-diffusion. Section 2.1 intieces several of the most commonly used
methods for American options without jump-diffusiand Section 2.2 discusses the methods
presented by S.G Kou and R.C. Merton for calcujpimerican options where the underlying
stock price follows a jump-diffusion process. lac8on 2.3 the existing works for modeling
correlated behaviors on equities or assets usiagctimcept of copulas are presented. This

modeling technique is applied to price a baskeofelated American options in Chapter 6.

2.1 Evaluating American Options

Of the two common types of options on the markety, American and European, the
American option is much more complex to evaluatdot only does the purchaser need to
determine the optimal exercise policy (i.e. whea ¢iption should be exercised), but the option
price must also be determined. The Black and $shwlodel is an explicit closed-form pricing
formula for European options without dividends. féftunately, unlike in the European case,
explicit closed-form solutions for American optipricing problems are not generally attainable.
As a result when exact formulations cannot be abthior are too difficult to implement,
numerical evaluation methods are frequently thdepred choice to price such options. The
existing numerical evaluation methods can be diviggo four main categories including the
Partial-Differential Equation (PDE) based methdd#tice methods, stochastic mesh methods,
and simulation-based methods. Each of the subséqubsections review the four methods and
discuss the advantages and disadvantages of edlsbdne

2.1.1 Partial-Differential Equations
The most significant advancements for the PDE baseithods in recent literature have
been in the applications of domain transformatiod asymptotic expansion techniques. In
particular, Fourier, Laplace, and generalized f@nsation methods have been applied to

stochastic volatility models and many other pricimpdels (Broadie and Detemple, 2004).
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These techniques can also be applied for stockingrimnodels involving jump-diffusion
processes as evident in Kou (2005). Due to the tfeet PDE based methods use various
approximation techniques, they are usually constlleas less precise and in many instances
more complicated in the implementation and caloaadf the stock prices, and are therefore not
nearly as popular as other pricing methods. ThE& Bpproaches are only briefly mentioned in
this section. A more extensive review of PDE apphes involved in the jump-diffusion

domain will be presented and explained in Secti@n 2

2.1.2 Lattice Methods

Lattice methods use discrete-time and discrete-sggiproximations of differential
equations to price American options. These metlavdsmore commonly referred to as
nomial trees; e.gn=2 for the binomial tree method=3 for the trinomial tree method, etc. In
general, lattice methods are easy to implemengifople models but become much less accurate
as the complexity of the model increases and ametbre not commonly used.

Figure 2-3, below shows the structure of the latticethod withm=2, a binomial tree.
Each point represents a possible stock price leVak tree starts at period 0 with a single point
(the initial stock price). There is then a proligbip; that the stock price increases and a
probability p, that the stock price decreases in the next peribdis procedure continues for
each subsequent period, creating a binomial trat dbntinuously spreads out at a rate of 2
wheret is the number of periods within the time horizdn.the case of a binomial tree, there are
a total of two possible outcomes for each conseeuttep, a trinomial tree has three possible
outcomes, and am-nomial tree hasn possible outcomes. As the numbemnvoincreases, so do
the computational requirements at each period.Biasdie and Detemple (2004) indicated, the
improvement in pricing accuracy using-2 does not outweigh the increased computatiorsisco
via increasing the number of pricing periods. Blieaand Detemple (2004) also mentioned that
values ofm>2 have not resulted in better overall convergemicen the additional computational
efforts are considered.

Lattice methods were first proposed for financiadjieeering applications by Cox et al.
(1979). There have been numerous research praepfisalattice methods, however the four
most widely used lattice approximations are thosscdbed in Cox et al. (1979), Jarrow and
Rudd (1982), Boyle (1986), and Amin (1991). Eaditke focuses on a binomial tree and each
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provides a different means for calculating the piolity of the stock price increasing and

. glr-oh _g-ovh .
decreasing. For example, Cox et al (1979) used PR ,p, =1-p, and Amin
(1991) used that;=0.5,p,=0.5 at each period.
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Figure2-1: Binomial Tree

The popularity of lattice methods is due to its aaptual simplicity and ease of
implementation. However, a major problem with thigthod is that the number of possible
stock prices is very limited in the initial timerpels. When looking at the first two periods,
with m=2, there are a total of six possible stock priegbis number increases to 11 possible
prices withm=3. Comparing this to stochastic meshes (whickorgered in the subsequent
section), it is quite evident that there is a digant difference in the number of possible stock
prices in the initial stages which can lead to maate results when using lattice methods.
Additionally, when comparing lattice methods to NM®i€Carlo simulation techniques, there is a
distinct advantage of using Monte Carlo simulatidren computational effort versus accuracy is
considered. For example, if a simulation of 20thgas generated and is compared to a binomial
tree, the simulation has a significant advantageesthere are, in essence, 200 possible pricing
nodes in the first period (compared to two nodethenfirst period of the binomial tree). To
obtain 200 possible price nodes within the firstiguebk using the binomial tree method, the first
period At) must be split into 100 separate segments. larotlords, it requires a tree in which
the first period is split up to contain100 periods (=2 is shown in Figure 2-3 above) in order to

obtain the same number of possible prices as aéM@atlo simulation with 200 generated paths.
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It is obvious that Monte Carlo simulation has atidid advantage when looking at the

computational effort versus accuracy comparison.

2.1.3 Stochastic Meshes

Stochastic meshes are used to price American @ptipn using discrete-time and
discrete-state approximations and are utilized wtlesed-form solutions are not obtainable.
Stochastic meshes can be split up into two distimethods: finite difference method and finite
element method. In both approaches, a mesh mustebéed to represent the descretization of
the time vs. stock price space, as shown in Figure A stochastic mesh is a grid in which each
point represents a stock price in a discrete tieréod. In general, the points within the mesh are
equally spaced so that the change in timatis T/N and the change in stock priceAS =
Sex/Q. As evident in Figure 2.1, below, there is a tofaN+1)(Q+1) points because there are a
total of N+1 time periods an@+1 stock prices (DeHaven 2007).
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Figure 2-2: Stochastic Mesh Grid
As previously mentioned, there are two methodssfilving American options using a

stochastic mesh. Each of these methods is explaievet.
Finite Differences Method

The finite differences method was first preseritgdBrennan and Schwartz (1977) and

was later presented in the area of financial emging by Hull and White (1990), Wilmott
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(1998), Achdou and Pironneau (2005), and Hull (30@ach of these authors use either explicit
or implicit finite differences methods to providemerical solutions to PDEs and show that in
general, the finite differences method is one ef simplest ways to approximate a differential
equation. For this reason, the finite differenceshod is widely used for models and securities
that are more complex. This method is based orexipeessiorf(x+b) — f(x+a) which implies
that the next point is derived from its predecessing either backward or forward recursion —
which are two possible ways to solve American aygtiasing finite differences methods. Figure
2-2 shows the difference in the way these two o are followed. The explicit method (or
backward recursion) relates the value at tinh@ the three alternative values at titnét, or as
shown in the graph timeto timei+1. The implicit method (or forward recursion)ates the
value at timeg+At to three alternative values at timeThe explicit method is equal to a trinomial
lattice approach and the implicit method is equaalto a multinomial lattice (Hull and White
1990).

fip Fivr it
Figure2-3: Implicit (left) and Explicit (right) Methods
As DeHaven (2007) and Hull and White (1990) expléon the finite difference method
the American put option must satisfy the equation

2
ﬂ+r8ﬂ+ 050°S? ot _
ot 0S 0s?

where the standard notation for the Black and Sshotodel is followed; e.g.is the risk-free

rf (2.1)

interest rateS is the stock price, and is the stock volatility. Equation (2.2) is theripa
derivative with respect to the stock price, equa(®.3) is the second derivative with respect to
the stock price, and equation (2.4) is the padiaivative with respect to time.
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E:—“At L (2.4)

By substituting each of these 3 equations back @gpeation (2.1), an equation can be created
that defines all the interior points for the staogtia mesh using the implicit method. This
equation is presented as follows:

af ., +bf,+cf

i I jlihjH

f|+1,j (25)

where
a, = 05rj4t - 0507 j* At
b, =1+0%j? At +rt
c, =-05rjdt-050%j4t.
The values for the explicit method are obtained similar way where the following equation is

substituted for equation (2.4):

of fi,j B fl—l.l
6t At
From this, equation (2.5) is modified so that
ajD.I:i+1,j—l bJDf|+1,] I]].I:i+1,j+l = fi,j (26)
where
aj' = pi;[ ~0.5rjAt+ 0.50° | °At |
by =4[ 1-0%j*At ], and

J 1+ rAt

¢ =iz [ 0.5jAt+ 0.9 °At |

The stochastic mesh created by (2.5) and (2.6pusidbed by the following boundary conditions
that are required to retain feasibility:

1. The value at expiration is equal tdf nj = maxK —jAS, 0)
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2. The value wheis=0 is equal td o =K
3. The put value is equal to zero whet5,ax
Comparing the explicit to the implicit method, tleplicit method is conceptually
simpler and is easier to implement. Additionaljll and White (1990) indicate that the
explicit finite difference method uses 40 to 70geett as much CPU computation time as the
implicit method to obtain the same level of accyrac
As DeHaven (2007) showed in her research resuksiMonte Carlo simulation provides
a better means of pricing options in regards togpand both computational time requirements
and memory requirements compared to the finiteetBfices method. She found that the least-
squares regression method (which will be discussetdtail in Chapter 3 and is a large portion
of this research) consistently resulted in higle¢unns than that of the finite differences method.
DeHaven’s research also shows that the finite miffees method has a running time of

O(QN3 +N*M), whereN is the number of time periodsl is the number of paths simulated, and

Q represents the number of stock price intervalee minning time for Monte Carlo simulation
coupled with least-squares regressiorO{®&IM) whereN and M are the same parameters as
previously stated. It is obvious that the runntimge of the finite differences method grows
much quicker than that of the least-squares reigresmdicating a major advantage of Monte
Carlo simulation coupled with least-squares regoess

Additionally, DeHaven’s research shows a significalifference between the two
methods in terms of memory requirements. She shbatsthe memory required for least-
squares regression grows in the orderOgM), whereM is the number of paths generated,
whereas the finite differences method grows in dhder of O((N+1)(Q+1)), whereN is the
number of time periods an@ is the number of stock price intervals. Withirr liéscussion,
DeHaven provides an example of a simulation with gaths and 400 time periods in which she
shows that using least-squares regression recal@st 0.74% of the memory required for the

finite differences method.
Finite Element Method

As previously stated, both of these methods agd ts approximate a PDE model when a
closed form solution is not available. The diffeze between these two methods lies in what the

procedure approximates. As opposed to the finfferdnces method, which approximates the
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actual differential equation, the finite elements methapproximates thesolution of the
differential equation. This method will attempt édher eliminate the PDE or convert it to a
standard differential equation that can be solv&dgistandard techniques. This thesis will not
go into great detail to explain this method duetsounpopularity within the field of financial
engineering. This method is not widely used siiicess more complicated mathematically,
requires substantially more memory than other nuttemd the results obtained do not warrant

the extra work that is required.

2.1.4 Monte Carlo Simulation

The last category of methods for evaluating Amerioations to be presented is using
Monte Carlo simulation to price American optionsThis method replaces the continuous
exercises region of an American option with disitene periods, usually denoted Ry which
is very similar to the previously discussed metho@kough discrete time periods are created, a
major difference between Monte Carlo simulation #mgl other methods presented thus far is
that the pricing region remains continuous. Tkigm enormous advantage over other pricing
methods and in turn produces very accurate resudditionally, Monte Carlo simulation is
useful in that a closed-form evaluation of the ktpcices is not required. Therefore, Monte
Carlo methods tend to be used when it is infeasitbl@ot computationally impossible, to
compute an exact result with a mathematical formdiae ability to model systems — which in
the scope of this research, the systems are therlyimdy stock prices — stemmed from the use of
random variates to simulate the stochastic nattitbeostock prices. This method is typically
used when a model is extremely complex, nonlingainvolves more than just a few controlling
parameters.

As Charnes (2000) explains, these complex modeld te contain high-dimensional
integrals. Monte Carlo simulation becomes attvacin these cases due to its flexibility, which
will be shown within this thesis with the additiai modeling a jump-diffusion process and
multi-option baskets. Its ease of implementatiod anodification and the fact that the error
convergence rate is independent of the dimensiothefproblem make the Monte Carlo

simulation approach a well suited tool for the ctempoption pricing problems. Namely, the

error rate is of the magnitudlﬂ!\/a, whereC is the number of paths generated. However, the
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error rate can also be viewed as a detriment tot&@arlo simulation because of the fact that
more replications (paths) must be performed in or@eeduce the amount of error in the results.

Monte Carlo simulation was first applied to theaftial markets by Boyle (1977).
Recently this area of study has exploded withinrdszarch community, especially in applying
Monte Carlo simulation to the pricing of Americamptions. Due to the complexity of
determining both the exercise point and the opgpigce, only a handful of closed-form equations
have been created. Most of these, however, ontik wmadimited circumstances or under certain
unrealistic assumptions. The first to price Amani©ptions using Monte Carlo simulation was
credited to Tilley (1993). However, his methodglogas memory intensive and grows in the
order of O(MN) whereM is the number of paths amdlis the number of periods. Chan et al.
(2003) provide a backward-path generation methodettuce the large amount of storage
required in Tilley’'s model. Their solution is abie reduce the memory storage @M) by
generating the paths backwards and not storingf dlie intermediate stock prices as is the case
with Tilley’'s simulation model. The research con& within this thesis uses Chan et al.’s
(2003) algorithm as a framework to price Americgstians. Please refer to Chapter 3 for
detailed information regarding Chan et al.’s altion.

In summary, Monte Carlo simulation works by geniemtM pricing paths of an
underlying stock, calculates the gains of that pasing the traditional valuing system as
presented in the introduction (dependent on whettesoption is a call or a put option), and then
finds the expected option value discounted to tigal time period. This discounted present
value is therefore the estimated price (i.e. tharpum) associated with the option. Generally,
numerical methods contain an expected value tetimmihe equations. By generativypaths
and finding the average option worth of these palsente Carlo simulation is essentially
creating this expected value through a stochasinoping technique. Overall, Monte Carlo
simulation has grown drastically in popularity doets ease of implementation and modification

as well as its accuracy.

2.2 Modeling of the Jump Diffusion Processes
As previously mentioned in Chapter 1, the idea ofaaket where the underlying stocks’
prices have the possibility of jumps was introdubgdVierton in 1976. Some researchers have
proposed jump-diffusion models (Merton, 1976 andiK2002) whereas other researchers have
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used stochastic volatility models that are beydmel $cope of this research. The stochastic
volatility models are either too complicated to abt practical algorithms that are easy to
implement and provide comparable results or arestoplistic and cannot capture the important
leptokurtic features of the markets (leptokurtiattees will be explained further in a subsequent
section). Jump-diffusion models on the other haredeasier to implement, better in capturing
the market’'s phenomena, and are comparative tdiastic volatility models in terms of pricing
accuracy (Zhu 2005).

In recent years a multitude of research has beedumbed within jump-diffusion models.
The use of the Poisson distribution for modeling thming of the jumps is fairly consistent
among the researchers due to the unique featutbe oharket jumps and because the jumps are
frequently memoryless andire (rare is used loosely and means that a jump will notuocc
frequently within a small enough time horizon). wéver, the issue of modeling the size of the
jumps has been continuously debated over the paest tlecades. Merton (1976) chose to use a
log-normally distributed process, Kou (2004, 2008)se a log-double exponentially distributed
process, Hanson and Westman (2002) propose a ltm+anprocess, and yet another research
group in Zhu and Hanson (2005) propose a log-deubi®mrmly distributed model. In each
case, there are advantages and disadvantages ohdleelying distribution used for modeling
jump-diffusion processes under different circumeséan

Every jump-diffusion model, despite which undertyidistribution is chosen, has two
distinct disadvantages: the amount of time that lbe modeled (the planning horizon) and
increased calculation times due to the additiomatgsses being added to the Black-Scholes
model. Jump-diffusion models are not good at madedbng term behaviors of the financial
markets due to the unpredictable nature of the etaik the long run. Over a short amount of
time, a researcher/practitioner can predict thelilood of a jump. However, this ability to
predict jumps decreases as the planning horizoreases. Therefore, jump-diffusion models
have a short-term domain and are much more accuaate valid, within this domain. The
second disadvantage is the amount of time requr@dodel the jump-diffusion process. As the
next two subsections will explain, jump-diffusiorodels require additional mathematical terms
be added to the Black and Scholes model. Thetre$suhese additional terms is increased

computational time and effort.
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The research contained within this thesis focuseMerton’s and Kou’'s models due to
their popular acceptances among researchers amddlaively close modeling to the practical
jump-diffusion behaviors visible within the market§he following two sections will explain the
jump-diffusion models presented by these two retesas.

2.2.1 Merton’s Model

As Merton (1976) presented, the change in the spoide can be attributed to two key
factors: the “normal” variations in the price cadsy supply and demand and the “abnormal”
variations in the price caused by the arrival opamant new information or events that directly
affect the markets. The “normal” variations expl#ne day-to-day changes in the underlying
stock price and the “abnormal” variations expldue targe jumps visible in the markets. In
order to model these “abnormal” jumps in the stpdkes, he modified the Black and Scholes
model to include a term that would account for jimaps, as shown in the equations below.
Equation (2.7) is the original Black and Scholesdeiand equation (2.8) is the model Merton
formulated wherel(t) is a Poisson process with mearandY; is a sequence of independent
identically distributed random numbers that follcavstandard normal distribution.

The added term constitutes the jump-diffusion ef mmarket. The Poisson proced),
is a counting process for the number of jumpsyear andy;is the size of the price jump. As in
the original Black and Scholes model, p is thet ¢idframeterg is the stock volatility, ant(t)

follows a standard Brownian motion.

ds(t)
—> =t + o dW(t 2.7
s d (t) (2.7)
ds(t) _ QL
— =t +odw(t)+d| DY, -1 (2.8)
S(t) =
In Merton’s modely; follows a normal distribution and has a normalsitignof
1 (y-#)°
f ~———exp—————+, 2.9
Y(y) 0_[\/?7_ 20_. ( )

where 1’ andy’ is the mean and standard deviatiorydiKou 2008).
The stochastic differential equations (SDE) in ¢iqua(2.7) and equation (2.8) can be

solved to formulate an equation to calculate tloeksprice at a given time Equations (2.10)
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and (2.11) show the solutions to these two SDEgevids the initial stock price anf{t) is the
price of the stock in time periad
S(t) = S, exp([u - %ot + oW (1)) (2.10)
)
S(t) = S, exp([u - % 0° ]t + W (1)) * ” exp(Y;) (2.11)
Merton’s model is beneficial in that it providesreans for explaining a portion of the
extreme jumps visible in the stock market that Beck and Scholes model does not explain.
However, one of the key disadvantages of this modelbe seen when analyzing the jump size
term,Y;. According to Merton (1976) the jump si2&, follows a standard normal distribution
which is symmetric and bell-shaped; however, KQR0O@) showed that this distribution does not
always realistically represent the jump sizes seethe stock markets. As explained in the
subsequent section, Kou shows thas better explained by the double exponential ithgtron.
Since Merton proposed the idea of jumps within ierkets, various researchers have
studied different methods of pricing options withjuenp-diffusion process. Some of these
researchers include Amin (1993) who extended therbial method to handle jumps, Zhang
(1997) who developed extensions for the PDE firdi#ference method using variational
inequalities to handle jump-diffusion models, Lapriet al (2006) provides an approximation
that prices an American option based on the prica &uropean call option, and Feng and
Linetsky (2008) who proposed a new high-order tidigcretization scheme for the partial
integrodifferential equation (PIDE) based on therapolation approach to the solution of
ordinary differential equations (ODEs). These jagt a few examples of research that extends

on Merton’s model to price various types of options

2.2.2 Kou’s Model
The underlying model proposed by Kou (2002) is imah in notation to Merton’s
model. However, Kou (2002) makes one major madlion to the pricing formula: instead of
Y; following a standard normal distribution, Kou leskes thatY; actually follows a double
exponential distribution. Under this model, theedgrice S is given by

ES0)

J(t)
S0 = 1t + o dW(t) + d(Z\/i —1), (2.12)

i=1
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where {V;} is a sequence of independently identically dmited nonnegative random variables

such thatr=log(V) has an asymmetric double exponential distributwith density of

fy (Y) ~ P17, expE Y ooy + 077, €XP0, Y o, and (2.13)
n n

E[V]=E[e'] = L+ 2, 2.14

[V]=E[e’] |ol_1 q,72+1 (2.14)

Here,p andq represent the probability of positive and negajiwaps, respectivelyp>0, 0,
andp + g= 1. The parametersr/and 1A, are the means of the two exponential distributions
and as in Merton’s model, all random numbég, W(t), andY; are assumed to be independent.
Additionally, it is assumed tha > 1 to ensure that E] > « and n, > 0.

Kou (2008) explained his rationale behind the distion change in his paper published
in 2008. By looking at a histogram of the normadidaily returns of the S&P 500 index from
January 2, 1980 to December 31, 2005, it is evitlattthe histogram contains a high peak near
the mean value and two heavy tails when compareth@éonormal distribution. These two
features combined are known as the leptokurticufeatwhich means that the kurtosis of the
distribution is very large (Kou 2008). The doukbponential distribution (and others such as
the Laplacedistribution and Logistic distribution) is a membar the leptokurtic distribution
family and produces the leptokurtic features. knancial sense, the kurtosis is reviewed when
looking at the historical returns of a stock an@& tariance of the dataset. Leptokurtic
distributions usually have low variance because¢hans are usually close to the mean. Many
investors will structure their portfolios to produthe leptokurtic feature in order to reduce the
possibility of having large, irregular swings iosk prices.

Kou (2008) calculated the estimated kurtosis arelsless of the sample data from the
S&P 500 and found that the kurtosls) (is approximately 42.23 and the skewneSsdf the
distribution is—1.73. Any value foK larger than 3 (a value of 3 indicates a normatitistion)
is considered a leptokurtic distribution. Thisadkst, and many other index price histories, is
obviously a leptokurtic distribution witk = 42.23. The skewness indicates that the dakteset
asymmetric tails since it is not equal to zerondgkmal distribution has a skewness equal to zero.
The negative skewness signifies that the S&P 50ésdahas a heavier left tail than right.

The fact that the skewness is not zero and thesisris larger than 3 shows two things:
(a) the returns do not follow a normal distributias Merton suggested, and (b) the benefit of
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using the double exponential distribution sinces thistribution can model the asymmetric
attributes of the data. Because of these facts, b@bieves the double exponential distribution is
suitable for modeling the returns, and therefoeeghces, of options. This is due to the double
exponential distribution being a leptokurtic distriion that can be configured to contain
skewness since it is made of two different expaaemistributions with the ability to have
different means.

The ability to have different means allows the pwsiand negative jump sizes to be
asymmetric. Thinking about this in a non-matheoatsense when an announcement is made
on Wall Street, investors’ perspectives can be s two groups: (a) those who feel that the
announcement is good, causing the stock pricesnp jupward, and (b) those who feel that the
announcement is bad, causing the stock pricesnp jdownward. However, the number of
investors in each group will not always be equallyided and therefore a symmetrical
distribution may not be an ideal description of ttesulting market jumps. Under such
circumstances, the use of the double exponensdildition may be a better choice to model the
jump sizes. If more investors feel that the aneament of new market information is good, the
double exponential distribution can model this (wihe parameters af;=25 andn,=50 for
example) by making the size of the upward jumpgdathan that of the downward jumps. If the
majority thinks the announcement is bad, then thempeters can be switched, making the
downward jump sizes larger. Using a normal distidn, as in the case of Merton’s model,
assumes that the two aforementioned groups are egsize and that the announcement has the
same effect on those feeling the market informatwas good and those that feel the
announcement was bad. If this fact is true, thebtio exponential distribution can model the
symmetry; however, if it is not true the double emential distribution can also model the
asymmetrical features.

However, the main problems associated with the ldoekponential distribution lie in the
amount of time required and the number of matheralafunctions that must be evaluated to
obtain a solution as well as the fact that the twubxponential distribution contains
exponentially small tails and does not have boundet amplitudes, which according to Zhu,
does not accurately model real market data (ZhibROContrary to this thought, the fit of the
tails is extremely dependent on the data that isgbétted. So in one instance, the double
exponential distribution will not be the best fisaibution and in other cases it will.
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Within Kou’s (2004, 2008) research, he provideshuods for pricing four different types
of options with the double exponential jump-difiusi model. In this paper, he provides
formulae and approximation algorithms to priceterime horizon American options, loopback
options, barrier options, and finally perpetual Aic&n options. For the finite-time horizon
American options, Kou (2004, 2008) formulated twifbetient approximation algorithms to price

these options. The following subsections presenajpproximation algorithms.

2.2.2.1 Quadratic Approximation Algorithm

The first of Kou’s (2004, 2008) approximation algiems is the quadratic approximation
algorithm. This approximation algorithm uses thece of a European option with two
additional terms to approximate the price of an Aoaa option. In particular, the algorithm is
as follows:
Quadratic Approximation
The price of an American put option with maturity t and strike price K can be approximated by

the following function:

Yt = {EuP(v )+ AV S+ By A if vy, (2.15)

K- if vy,
where Vo U (0,K) isthe unique root of equation
C,K =D, [V, +Eur(v,,t)] = (C, - D, JKe™ « P*[S(t) < K]
whereP" [S(t) < K] is the probability that the stock price at t is below the strike price, K, with an
initial stock price of v,
Cs = B:8,(L+17,),
=, A+ B)A+ S,)

and the two constants of equation (2.15) are calculated by

A= 7l E'B { K-+ ,84)[v0 + EuP(vo,t)]+ Ke "PY[S(t) < K]}> 0 (2.16)

B = 7 ﬂ[), {B.K = (1+ B, )V, + EUP(v,,1)]+ Ke "P*[S(t) < K]}> 0. (2.17)
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Please refer to Appendix A for the mathematicalvddion of B1, B2 B3, fs. These betas are the
four roots of the equatio®(x) = a where G(x) is part of the moment generating function.

Namely,

G(X)::X(r_5_10-2_/1()4'3)(20-2"'/1 p,71 +(1_ p),72 _1 (218)
2 2 =X 1;+X

where( is equal to equation (2.14) adds equal to the dividend rate.

2.2.2.2 Piecewise Exponential Approximation

The second of his approximation algorithms is taded the piecewise exponential
approximation algorithm, extending the researchfgpered by Ju (1998), Carr et al. (1992),
Gukhal (2001) and Pham (1997). This approximatbgorithm also uses the price of a
European put option and a few additional termsppreximate the price of an American put
option. This approximation algorithm is given by:

P.(S,t,T) = P.(S,t,T) +]'e"r‘s“)rKE* Mses, |S]ds—

.
[ e IKE* [Ss* Lg.q | S ]dS~
t

T
AJ-e_r(s_t)rKE* [{ PA(VSs‘ ’S'T) - (K _VSS‘ )}1{8 _sS*_}l{VS _>S_} l S(]dS (219)
f S S S S

where P.(S,t,T )is the price of the European put optid8y, is the early exercise boundary at

times. If the stock price falls belov®; at times, then it is optimal to exercise immediately.

The integrals represent the present value of tteeast accrued on the strike price in the exercise
region, the present value of the dividends logh@aexercise region, and finally the rebalancing
costs due to the jumps from the early exerciseore¢p the continuation region. Kou (2008)
goes into further detail regarding the effects thisn has on the overall option price. Since the
research contained within this thesis focuses mmmethe first approximation algorithm
presented, this additional detail is not presented.

Other researchers have utilized or extended on Kawuble exponential model for
pricing options. A few examples include Quittaridddh and Randrianarivony (2007) and Feng
and Linetsky (2008).
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2.3 Copulas

One of the key aspects of analyzing a small grdugtacks, known as a basket, is the
correlation between the stocks in question. The afscopulas to model this correlation has
grown in recent years. Mathematically, a copula iinction that allows the combination of
several univariate distributions to obtain a jadigtribution with a certain dependence structure
from the correlation (Dorey et al.). Sklar’s thexr, which is based on a two-dimensional copula
but can be extended to ardimensional copula, is the foundation for copul&klar's theorem
is as follows (Dorey et al.):

Sklar's Theorem
Let Fxy be a joint distribution with marginals Fx and Fy. Then there exists a function
C:[0,1]*>[0,1] such that

Fxv(xy) = C(Fx(x),Fv(y)) (2.20)
If Xand Y are continuous, then C is unique; otherwise, C is uniquely determined on the (range of
X)* (range of Y). Conversdly, if C is a copula and Fx and Fy are distribution functions, then the
function Fxy isajoint distribution with marginals Fx and Fy.

Sklar's Theorem can be extended to show thatnthmarginal distributions and the
dependence structure can be separated and theachymdtion will completely describe the
dependence between each of theariables. Copulas are used as a way to tinknivariate
distributions to form a multivariate distribution.

In layman’s terms, a copula works in the same maase&reating a random variate using
the CDF to obtain a sample from the PDF of a digtion. For example, starting with a random
value obtained from a uniform U(0,1) distributioneocan obtain a random normal variate by
inverting the CDF of the normal distribution at th#0,1) value. The value of the CDF will
then be the randomly generated number. This psoed$ work for any distribution and is
exemplified using a normal distribution for thisaexple. Figure 2-4 shows how the process
works. The horizontal line is the U(0,1) numbeattls used to evaluate the CDF of the normal
distribution. The random variate is then the nunthat corresponds to this point on the x-axis;
in this case, the U(0,1) is approximately 0.7 ahd tandom variate that is generated is
approximately 0.5. Please note that this is tkeerttical process of generating a random variate.
The computer implementation of this process cary vdepending on the approximation

algorithm that is chosen.
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Figure 2-4: Random Variate Generation
Copulas operate in a similar manner, extendingptioeedure to include more than one
distribution. However, they differ in that the C2Rd PDF are probabilistically linked and are
not necessarily linked in a straight-line mannén. the previous example the U(0,1) and the
random variate are linked in a linear manner. Hargein the case of a copula — a multivariate
normal distribution, for example — the two valuese anot linearly related due to the
multidimensional aspect of the copula (Dorey 6t al.
As a formal definition:
Definition
A copulais a function C:[0,1]°>[0,1] which satisfies:
(a)For everyu,vin[0,1], C(u,0)= C(Ov) = 0and C(u,1)=uand C(1Vv) = v;
(b) For every uy, Uy, Vi, V2 in[0,1] such that u; <u, and v; < Vs,
C(uz,V2) - C(uz,v1) - C(ug,v2) + C(ug,v1) > 0.
Some of the most important copulas being utilizathiw financial modeling are as follows
(Bluhm 2007):

Gaussian Copula

Then-variate Gaussian copula with linear correlationrirdt is
C(Us,U2, ..., Um) = N[N ug], ..., N u]; T
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where N}] is the standard normal function;'[¥] is its inverse, and N[..[] is the multivariate

Gaussian distribution function with correlation matl” = (o). .- Positive definite matrices

of I can be decomposed using Cholesky decompositigolaieed further in section 6.1.1 to
obtain am x n matrix A wherel" = AAT. ClearlyA is a lower triangular matrix where the values
represent the covariance matrix betweennthariates. With this, defing = [Z, ..., Z,] where

each Z[ON(0,1) and are independent, the Gaussian copuldeiif the form

p+AZ ~ N, T).

Figure 2-5 below provides two examples of a Gauss@pula created from code written
in C++. In each case = 2, meaning there are two univariate distribwgiom each chart. The
chart on the left is a Gaussian copula with Gaussiarginals, and the plot on the right is a
Gaussian copula with Student-T marginals. In eeabe, the correlation between the two

distributions is equal to 0.5 (which is why thealpbints are rotated approximately 45 degrees).

Gaussian Copulaw/ Gaussian Marginals Gaussian Copulaw/ Student-T Marginals

*

*

Figure 2-5: Gaussian Copulas
When looking at the plots above, imagine the distions on both the x- and y-axis.

Due to the shape of the Gaussian (hormal) and Btdadeistributions, the resulting copula is
extremely dense near the origin and then fades louthe case of the Student-T marginals, it is
evident that the tails spread out to forrhostie shaped copula. This spread is due to the fatter
tails that are evident in the Student-T distribatias compared to the Gaussian distribution.
These two examples show how the copula inheritptbperties of the marginal distributions

and combines them to produce a joint-distribution.
Sudent-T Copula

Another very popular type of copula is the Studerdepula. Then-variate Student-T copula

with linear correlation matrix is
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C(ug,Up, ..., Un) = O(0;'[u],...,05u,1;T)
where © is the multi-variate Student —T distribution fuoct with d degrees of freedom and
©1 is the inverse of the function arfd is the correlation matrix as before. Again, the
correlation matrix can be decomposed using Choldskpmposition to obtain a lower triangular

covariance matrixA. A Student-T variate with meancan be represented as

Jv

X=pu+—~AZ

Js
whereS~x?andZ = [Z, ..., Z,] where each ZJN0,1) and are independent (independence is

also assumed betwe&wandZ). Student-T copulas are beneficial in that they\eery similar to
the Gaussian copula but provide thicker tails it of the Gaussian.

The following figure provides two examples of theident-T copula. Again, each chart
contains two univariate distributions in each chafthe chart on the left contains Gaussian
marginals and the chart on the right contains Sttsdlenarginals. Again, the marginals have a

correlation of 0.5.
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Figure2-6: Student-T copula
Each of these copulas can be used with differengimas. For example, the most

common copulas are the following: Gaussian copitla Gaussian marginals, Gaussian copula
with Student-T marginals, Student-T copula withd&it-T marginals, and finally the Student-T
copula with Gaussian marginals, all of which weh®wen in Figures 2.5 and 2.6. Copula
functions have some explicit advantages that mhkenta preferable choice for multivariate
simulation. Namely, as Srinivas et. al (2006) ek, copulas are beneficial in the following

ways:
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1. Copulas provide a means to simulate multivariaggridutions from dependent random
univariates.

2. Copulas provide a means of separating marginafa titee dependence structure. This
reduces the study of multivariate distributionsatcstudy of multivariate dependence
structure.

3. Copulas remove the problems associated with linearelation coefficients in
conventional simulations.

The research contained within this thesis willizgilcopulas to price baskets where the options’

underlying assets undergo a jump-diffusion process.
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CHAPTER 3- SIMULATINGAMERICAN OPTIONSWITH
JUMPDIFFUSION

This chapter introduces the main objective of thissis: pricing American options with
Monte Carlo simulation. This chapter begins bysprging background information regarding
the use of least-squares regression to price Aarenptions. The subsequent sections extend on
this background knowledge to include the modelihghe jump-diffusion process and explain

the relationship each input parameter (independaneble) has with the simulated stock prices.

3.1 Background on L east-Squar es Regression

The use of the least-squares regression to estitmatexpected value of continuation for
an American option was first introduced by Longstaid Schwartz (2001). Their proposed
method uses backward analysis to determine whethaot the option would be exercised in the
given period by comparing the immediate profit upotercising and the expected profit of
continuing to hold the option. The method begigssimulating numerous sample paths from
the initial time period until the final period. Atis point, each of the sample paths are analyzed
to determine if the option should be exercisedjngothe expected value of each path if it is
continued to be held, and proceeding on to analyzgrevious time period to determine if the
path is in-the-money. In each instance that a pathd be exercised — or in other words, for
each path that is in-the-money — a quadratic regresshown in equation (3.1), is performed
that relates the continuation value with the curratue of the option if exercised immediately.
The method

Continuing = 3, + B, * exercise+ 3, * exercise’. (3.1)
continues by noting the maximum value for each ,pdétermining whether that value is from
exercising immediately or continuing and proceedthé next time period, repeating the process
until the initial time period is reached. Once @driods are analyzed, the maximum value for
each path is analyzed to determine the average wlthe option, indicating the expected worth
(or fair market price) of that option. The methwdposed by Longstaff and Schwartz (2001) is
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a very efficient algorithm in that the regressisrnonly performed when the options are in-the-
money. This prevents any unnecessary calculatindsultimately improves the running times.
Chan, et al. (2003) proposed a Monte Carlo sinardamethod for pricing American
options. The algorithm they proposed is very saamib that of Longstaff and Schwartz (2001);
however, instead of forwardly generating each efgghths and then working backwards, Chan et

al generates the paths backwards. Namely, equ@id@) is modified and is defined as:

S =S, exp(fr - 0%t +0v/ite,)
S =S, expllr — %O ]Dt+ OVAL(Ey +Eqy +.. + Eyin)) - (3.2)

S, =S, exp(N[r — % 0°]At +U\/E(£N teyat...1E))
wherege ~ N(0, 1).

A major benefit of this algorithm is that eachtloé random numbers required during the
simulation can be obtained from the initial stagtseed value. This allows the random number
set to be regenerated from the initial seed vatutha algorithm progresses backwards. In this
case each random number is generated twice, buifisggntly reduces the amount of storage
required to perform the simulation since each ramaamber (and resulting stock prices) need
not be stored. The simulations used within thissith utilize Chan, et al's algorithm. The
following section provides the notation of the ailgon and the algorithm itself.

3.1.1 Notation & Algorithm
The following notation, in addition to a few variaeb to be introduced in a subsequent
section, will be used for the remaining portionsghaf thesis:
S = Initial stock price
r = Risk-free interest rate
K = Strike price
o = Stock volatility
N = Number of time periods
At = Length of each time period (in years)

M = Number of paths
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T = Expiration time
Z; OIndependently identically distributed frofN(0, 1) fori =1, 2, ...,N
w=~Ly+Zy *+.. v L,

The algorithm given in Chan et al. (2003) is nowlained in a step-by-step procedure as
explained by DeHaven (2007). The research cordaimihin this thesis utilizes the least-
squares approach of Longstaff and Schwartz (200th) tive addition of backwardly generating
paths of Chan et al (2003). DeHaven (2007) presamtalgorithm as follows:

Step 0.System Inputs:
(@) Initial stock price &)
(b) Risk-free interest rate’
(c) Strike price K)
(d) Stock volatility (0)
(e) Number of time periodsN)
() Number of paths\)
(g) Length of time horizon in year3)
(h) Call or put option

Step 1lnitialization:
=T
(a) SetAt %\l
(b) Set the seed for the initial path to any positivieger.
(c) Generate the random variate~ 2N(0,1) for each path=1, 2, .., M

and compute their suy.

Step 2ComputeS, for the expiration dat€ using:
S =S, exp([r - %0°1At +oV/Atw) . (3.3)

Step 3Compute the cash flows for each path using onkeofdllowing:

max{K - S, (t), 0 toption
(i _{ {K =S;(t),0} putopti 3.4)

max{S, (t) - K, 0} calloption
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Step 4Backup one time period; seti —1.
(a) Using the same seed sequence, ex#ach and compute
Wy =W =Ly
(b) ComputeS.; by using equation (3.3).
(c) Extract the next seed value.

Step 5Compute if the option is in the money for each patRor each path:

(a) Let X be the vector containing asset pric@sand Y be the vector
containing the corresponding cash flows received-attime period,
which have been discounted backward toithéme period.

(b) Regress using least-squares approach to estimaevalue of

continuing using equation (3.1). This will resuit the conditional

expectation functiorE[Y|X | .

(c) Compute the value of continuing usirldY|X] and the value of
immediately exercising using equation (3.4).

(d) Determine whether to exercise the option immedratel hold the
option until the next time period, based on whidheg the higher
value. Establish the current cash flows conditi@ranot exercising

prior to time period using:

. [cashflow if cashflow > E[Y|X]
C()= . (3.5)
0 otherwise
(e) Compute the present value of the cash fleyi3 given by:
P(j)=C (i)+e™PR(j). (3.6)

Step 6If at time period zero stop, else go back to Step 4

DeHaven (2007) provides four examples illustrating correctness of the algorithm. In

each instance the spread in the graphs expandnasptiogresses, confirming the fact that it
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accurately approximates Brownian motion and thelBEnd Scholes model. Please refer to her

thesis for the details of the examples and thelgrdipat correspond to her examples.

3.2 A Jump-Diffusion Simulation Model

Building on the least-squares Monte Carlo simufgtithe next step is to include the
jump-diffusion process into the algorithm. As poasly mentioned in Chapter 2, when a stock
follows a jump-diffusion process, the stock pri@slthe potential to increase or decrease by an
unusually large amount. Figure 3-1 shows a siradlatock price that contains two major jumps

within the simulated time horizon.
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Figure3-1: Simulated Path with Jumps

The jump frequency of a simulated path follows &&an distribution with a mean af
As one might expect, not all simulated paths confamps within the time horizon and each
jump varies in magnitude. Figure 3-2 illustratesexample setting of 10 simulated paths in
which only a few paths contain major or minor jumipghe stock price; the two major jumps
within the paths (one upward and one downward)abveled. As proposed in Kou (2002), the
jump sizes follow a double exponential distributisith means of Ij; and 1h,. Therefore, the
likelihood and jump sizes are dependent on thenpatersi andni,n,, respectively. Larger
values of) result in more frequent jumps and larger values,adr n, result in jumps of smaller
magnitude.

The C++ code that is created to perform the MorgddCsimulations is explained in the

subsequent sections. The following sections ddtel addition of jump-diffusion to the
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algorithm presented in Chapter 3.1, as well asigeothe results of the Monte Carlo simulation.
This section begins by providing an overview of #ditional parameters and variables used

within the new C++ code.
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Figure 3-2: Simulated Paths 2

3.2.1 Notation
The notation used within the jump-diffusion modeldentical to that of the least-squares
regression algorithm presented in section 3.1. ¢él@n a few additional variables are added to
this algorithm to incorporate the jump-diffusiontanthe pricing algorithm. The following
variables are required for this algorithm:
Ji(t) Oindependent Poisson process with pate
n1 = parameter of the double exponential distributionthe size of an upward
jump
n2 = parameter of the double exponential distributiondize of a downward
jump
Vi [OIndependently identically distributed from doulebgponential distribution
with means of If; and 11,
p = The probability of an upward jump
1- p = The probability of an downward jump
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3.2.2 Updated Algorithm
The updated algorithm is also very similar to tegplained in the previous section. The
following is a step-by-step process to price Amamicoptions where the underlying stock
undergoes a jump-diffusion process.
Step 0.System Inputs:

(a) Initial stock price &)

(b) Risk-free interest rate’)

(c) Strike price K)

(d) Stock volatility (o)

(e) Number of time periodsN)

() Number of pathsM)

(9) Length of time horizon in year3)

(h) Call or put option

(i) Exponential Distribution parametens; @ndny)

() Probability of Upward Jumppj

(k) Rate of Poisson Procesg (

Step 1lnitialization:
=T
(a) SetAt %\l

(b) Set the seed for the initial path to any positiveger.

(c) Generate the random numbégjdor each path=1, 2, ....M

(d) Generate the random numbg&) for each path = 1, 2, .., M and
calculate the Jump Size for each petioging the equation:

J()
V, = ern , WwhereV follows the double exponential distribution
n:

Step 2ComputeS, for the expiration dat& using:
S =S exp(f - %0°1At +0ALZ) *V, . (3.7)

*Note: If a jump is not present in periodv; = 1.

Step 3Compute the cash flows for each path using onkefdllowing:
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(3.8)

N max{K - S, (t), 0} putoption
U max{S, (t) - K, 0} calloption

Step 4Backup one time period; seti —1.
(a) Using the same seed sequence, ex#qgh.
(b) Using the same seed sequence, extd#bi..1 and compute its
corresponding jump Si2é.;.
(c) ComputeS.; using:
S, =S /exp(r - %02]At+oAtZ, ) IV,

(d) Extract the next seed value.

Step 5For each path if the option is in-the-money, compute:

(a) Let X be the vector containing asset pricgsand Y be the vector
containing the corresponding cash flows received-attime period,
which have been discounted backward toithiéme period.

(b) Regress using the least-squares method to estithatevalue of

continuing using equation (3.1). This results he tconditional

expectation functiorE[Y|X | .

(c) Compute the value of continuing usirldY|X] and the value of

immediately exercising using equation (3.8).

(d) Determine whether to exercise the option immedratal hold the
option until the next time period, based on whidheg the higher
value. Establish the current cash flows conditi@ranot exercising
prior to time period using:

- [castflow if castflow > E[Y|X]
C()= . (3.9)
0 otherwise
(e) Compute the present value of the cash fleyj9 given by:
P(j)=C/(j)+e™PR(j). (3.10)
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Step 6If at time period zero stop, else go back to Step 4

This algorithm uses Chan’s (2003) memory redudimhnique of not storing the
intermediate prices. This method is extremely bela¢in that it requires far less memory than
other algorithms that store each of the intermedsédck prices for each of the paths in the
simulation. The only disadvantage of this prodegke increase in computational requirements
since each seed value must be calculated twicevekder, as the number of paths or the number
of periods being analyzed grow, the savings in nrgraatweigh the costs in computational

power, especially since computers are continualisaacing in their computational capabilities.

3.2.3 Characteristics of Simulation Parameters
Each of the input parameters associated with tastdeguares model has its own effect
on the pricing of options. This section gives efbdescription of each of the parameters and
shows how each parameter affects, if at all, theemeents of the simulated stock prices.

Tablel: Parameter Descriptions

Parameter Symbol Description
Number of Periods N Number of segments.the planning horizon is
split into
Period Length At Amount of time (in ygars) for each of the N
periods

Price in which the underlying stock is

Strike Price K bought/sold at the time of exercise
Stock Volatility o Natural variation of the underlying stock
Jump Frequency A The average number of jumps in a given year
Jump Size n 1/n is the average jump size when a jump

OCCcurs

The following eight graphs demonstrate the effeftéhe input parameters. Each of the
parameters is graphed two times, once with a hajbevand once with a low value. In each
graph, paths are simulated for a planning horiZogitber one half of a year (Figures 3-3 and 3-
4) or one quarter of a year (remaining four graph3he difference between the first two
parametersN andAt, can be seen by comparing Figures 3-3 and 3-5thé&siumber of periods

N increases, the number of possible exercise pevghiated increases. As a result, the exercise
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boundary that is required for evaluating Americatians becomes increasingly more complete
resulting in better accuracy of the estimated optialue. Just liken-nomial trees (which was

previously discussed in Chapter 2), Monte Carlousation uses discrete time periods to
evaluate the worth of the option. The vaNes the number of discrete time periods that the
planning horizon is split into in which the optia evaluated. Therefore, the more times the
option is evaluated the more accurate the pricimylation should be. The second parameter,

At, is directly related to the value b Namely, if T is the planning horizon (in years) then

At :-%\I . Intuitively, this means that the more periodsainich the planning horizon is split

into, the less amount of time within each period.

The third parameter (the option strike price) igpariant for the pricing of options;
however, the value df does not influence the stock price movements. skhike price merely
determines how much profit is made given a cersémek price. Figures 3-3 and 3-4 show the
effecto has on the movements of the stock price. Natueasltime passes the volatility of the
stock prices increase, which is why the spreadefprices increases as the periods, or time in

other words, progress. However, the amount ofaspre dependent on the magnitudes giince

the stock prices spread in the order /At . Namely, stocks with larger volatilities create
wider spreads than stocks with smaller volatilitihich is quite evident by comparing Figures
3-3 and 3-4.

The next set of graphs exemplifies the result ofifgalarger values ok, the average
number of jumps in a year. As increases, the number of jumps becomes more fnéque
resulting in slightly more variation in the stockges. Notice the difference between periods 1
and 3 in Figures 3-5 and 3-6. The increask @aused more jumps which in turn increased the
volatility between these two periods. In other egmrthe increased volatility is caused by the
additional number of outliers in the graphs. Tinaeased number of jumps causes more outliers
which in turn causes higher levels of volatility.

The last set of graphs, Figures 3-7 and 3-8, detraiashow the average jump size
affects the stock prices. Notice that since commaoiom numbers were used to produce these
graphs, jumps occur for the same paths at the smmned for each of the two graphs. The
difference between the two graphs is that FiguBec8ntains much larger jump sizes (on average

250% larger) than that of Figure 3-7. The largenps cause the outliers to spread out by larger
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amounts. This fact can be seen by looking at theumt of paths that are outside the dense,

inner section of Figures 3-7 and 3-8. Since thmpjusizes are larger in Figure 3-8, this

corresponds to a wider spread of the paths andftirera few outlying paths.
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Figure3-3: Input 1
(S =100, 6 =0.2, =0, n1 =50, N, =50)

150

140
130

120

110 -
100
90

80
70

60

Figure3-5: Input 3
(S =100, 6 =0.2, .= 3,n1 =50, N2 =50)
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Figure3-7: Input5
($%=100,6=0.2,A.=3,n1=25,n,=25)
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Figure 3-4: Input 2
(S =100, 6 =0.3, =0, n1 =50, N2 = 50)
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Figure 3-6: Input 4
(S =100, 6 = 0.2, A = 10, n1 = 50, N2 = 50)
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Figure3-8: Input 6
(S =100,6 =0.2, A =3, n1 = 10, n2 = 10)
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3.3 Chapter Conclusions

This chapter presented the least-squares algotitiatnwas used to simulate American
options with jump-diffusion as well as the genesharacteristics of the simulation parameters.
As previously highlighted, the Monte Carlo simubatifor this portion of the thesis utilizes
Chan’s (2003) memory reduction technique. Thigpttradetailed the least-squares Monte Carlo
simulation model proposed by DeHaven (2007), whiohluded the memory reduction
techniques presented by Chan (2003), and how imslaion model can be modified to
incorporate the jump process into the pricing ofekitan options. This chapter also presented
how each of the input parameters has an impachengéneral dynamics of the stock price
movements. Figures 3-3 through 3-8 presented ebeastpck paths that show the effects of the

standard deviatiors§, the jump frequencyAf, and the average jump sizeg &ndny).
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CHAPTER 4 - GENERATING SIMULATION DATA

The following sections tests the correctness ofréimelom variate generators used within
the simulation. In particular, this section prdsethe tests performed on each part of the
simulation including the random variate generaforghe uniform and normal distributions, as
well as the copulas for the multi-option basketdation. Chapter 6 extends the simulations
presented in the previous chapters, however, tHelati@n of the simulation inputs are
summarized within this chapter. The rest of thgpter is divided into three sections; one

section for each of the distributions and one sadr copulas.

4.1 Uniform Random Number Generator
The uniform random number generator used withirs tthiesis is called a linear
congruential generator (LCG) that was first introelt by Lehmer (1951) and was programmed
using the C++ coding language. The random num@erare defined by the recursive formula
Z, =(aZ,_, +c)(modm) (4.1)
where every variable except is a nonnegative integer (Law 2000). When seigctialues for
each of these variables, a few considerations brighade. In particular, the selection of values
is very important to maximize the number of randoumbers that can be generated before it
cycles. This is a major problem with the lineangential generators. The size of the period,
which is the number of random variates createdrbefgcling, is directly related by the value of
m. Therefore, the value @h should be very large. According to Law (2000) &G reaches
full period if the following are true:
1. The only positive integer that exactly divides botlandc is 1.
2. If qis a prime number (divisible by only itself and that dividesm, thenq divides
a-1.
3. If 4 dividesm, then 4 divides—1.
The values that are used throughout this researeta & 100801,c = 103319, andm =
4294967295. The three statements above are truthdse values, indicating that the LCG

reaches a full period before cycling.
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To test the randomness of this generator (ane¢oifsthe values foa, ¢, andm were
wisely chosen), ten thousand random variates werergted and tested using a variety of
different tests. Namely, the random variates wested using the chi-square test and four
different tests that inspect the runs created (aisumerely another name for a subset of the
random variates produced) by the LCG. The remgiperts of this section will explain each of

these tests and provide the results of each.
Chi-Sguare Test

The chi-square test is used to check the unifgriitthe random variates to see if they
are uniformly distributed between 0 and 1. Thigcess works by splitting the interval of [0,1]
into k subintervals where the size lofs determined by the number of samplE}Ifeing tested;
in these testsN = 10,000. Once the value &fis determined, the next step is to create a
histogram of the data to determine the number dae variates within each of thkantervals,
which is assigned th.

In order to calculate the chi-square statistic,fthiewing equation is used:
k & N
X==>(f--) . (4.2)

This will have an approximate chi-square distribntwith k-1 degrees of freedond)(under the
null hypothesis that the random numbers are idalhtiandependently distributed. If the

calculated value is greater than the value givethénchi-square table for the given degrees of
freedom, then the null hypothesis is rejected.a Imathematical sense xif > )(kz_n_a then the
null hypothesis is rejected and the random variatesnot identically independently distributed
which indicates that the random number generatopnisa sufficient generator. Otherwise, we

fail to reject the null hypothesis that the randomamber generator produces identically

independently distributed variates.
Runs Up and Down Test

The runs up and down test checks to see how matheofariates consecutively run up
and down. In many cases, especially with ineflectjenerators, one sees major runs in the

numbers where a large amount of consecutive vahwmesincreasing and then consecutively
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decreasing. The number of runs up and down ofaal gandom number generator should be
normally distributed with a mean and variance of

_2N-1

: 9C

wherea is the total number of runs (number of runs up aachber of runs down). Sinae

a

should follow a normal distribution, the standaatrmal table and test statistics can be used to
verify thata truly follows a normal distribution. The testti$#c is calculated using the standard
test statistic equation with the valuesugfand o , above. Namely, the test statistic is calculated

using the equation

(4.3)

Once % is calculated, the null hypothesis can be examindd this case, the null
hypothesis is thata is statistically normal. Failure to reject this ployhesis occurs

when-z,,<Z7Z,<z,,, wherea is the level of significance. In effect, thistteses a two-sided

test with ana/2 level of significance in each tail. The crilies@lues used in this research are
-1.96 and 1.96. If the test statistic is betweess¢hvalues, then it fails to reject the null

hypothesis that the numbers are normally distridhute
Runs Above and Below the Mean Test

This test is also known as the sign test becaudeeitks the sequence of numbers above
(+) and below £) the mean. This test is essential because the uprand down test may not
adequately assess the independence of the randotrensi The runs above and below the mean
test utilizes the normal distribution test statistio determine if the numbers are independent. In
the equations below andn, are the number of runs either above or below thamand is the
total number of runs in the sample size. Giverseéhealues, the mean and variancd dbr a
truly independent sequence is given by

_2nn, +1 ando? = 2n1r|1\|2§2(r|3n21; N) .

b b

If eithern, or n, is greater than 2@ is approximately normally distributed. The tdsitistic can

be calculated using the equation
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(2n n2)_7

Z, = . (4.4)
° \/annz (2n1n2 - N)

N2(N -1
Again the test statistic must be between),, <Z,<z,,,, which again corresponds td.96

and 1.96, in order to fail to reject the null hypedis. Therefore, iy is within this range, then
we fail to reject the null hypothesis that the L@fdduces random variates that are statistically

independent.
Run Length Test

The last type of test that is required is the emgth test. This test is broken down into
two separate types of tests. These tests lodkeahamber of continuous sequences above and
below the mean. For example, the test would fathére are continuously two numbers above
the mean and then two numbers below the mean bethesnumbers generated are obviously
not independent. The test statistics for theds felow the chi-squared distribution.

The first portion of this test searches for runsamg down and inspects the number of
runs of a certain sizeé, to see if it is truly random. Therefore, in fiodowing equations, leY;
be the number of runs of lengtim the set of random numbers. The expected nuoflreins for
a sample size dfl is found using the equations:

E(Y, )—(—[N(| +3+1)-(2+37 - -4)| fori<N-2

and (4.5)
_ 2 N
E(Yi)—mforl—N 1.

Using the equations above, the next step is toulzke the chi-squared statistic using the

equation

[0, - E(Y)?
Zl EY) (4.6)

whereL = N-1 andGQ; is the observed number of runs of lengthin order to be statistically

significant the calculateg® must be less than the chi-squared critical vakterchined witH_—1
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degrees of freedom. If the calculated value is than the critical value, then it fails to rejdot
null hypothesis that the LCG produces statisticsifynificant independent variates.

The second portion of this test searches for rimve and below the mean. The same
procedure is followed for this portion as in thestfi A test statistic is calculated and compaced t
the chi-squared test statistic. The main diffeesnigetween the portions lie in how the expected
value is calculated and what the value.aé equal to. In this portion of the test, the ested

value is determined by the equation
E(Y) = tor N> 20, 4.7)
E(1)

wherew;, the approximate probability that a run has atleraf i, andE(l), the approximated

expected run length, is found by

) (0] e
N/)UN N /UN n, n

In the previous equation; andn, are the number of runs above and below the mesamnaa the
case in the runs above and below the mean test.

The next step to this portion is to determine thpraximate expected total number of
runs in the sequence of all lengths. This is detezd by
N
E(l)

As in the previous portion of the test, the finepsis to calculate the chi-squared test statistic

E(A) =

using equation (4.6) and compare it to the criticdle withL-1 degrees of freedom. However,
in this casel. = N instead oL = N-1 as used in the previous portion.

To summarize this section, Table 2 provides tlsailte for each of the aforementioned
tests. Since the LCG used within this researcbgsaall of the required tests, it is safe to assume
that the values chosen fayrc, andm produce an efficient uniform random number geroeridiat

creates random independently identically distridwtariates.
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Table2: U(0,1) Test Results

Test Name TL.St. Critical Value Required Parameters Result
————— | Statistic
Chi-Squared 27.26 30.144 k=20, d=19, a=0.05 Pass
Up and Down 0.372 -1.96< Z< 1.96 Pass
Above and Below

the Mean 0.733 -1.96 Z2< 1.96 Pass
Run Length L

Portion 1 2.602 9.488 L-1=5, a=0.05 Pass
Run Length Nl

Portion 2 3.801 16.91 L=N=9, a=0.05 Pass

4.2 Normal Random Number Generator

Two different tests were performed to determine dbeectness of the normal random
variate generator being used within this reseafetr. these tests, ten thousand random numbers
were created using the random number generatotedreéa C++. These numbers were then
tested using the chi-square test that was explam#éuk previous section. The parameters used
within this test were as followsk = 30,d = 29, anda = 0.05. With these parameters the
calculated test statistic is 25.3 and the criticdle is 42.557 with a p-value of 0.662. Since the
p-value is larger than the value @fthis indicates that the chi-square test failseject the null
hypothesis that the random numbers generated ardigdlly independently distributed. To
confirm these results, Rockwell Software’s Inputafizer was used to fit the data to the normal
distribution. This software fit the data with A{0.00447,0.996) distribution — a output
histogram is provided in Figure 4-1 below — andfgened the chi-square test on the data.
Rockwell’s output indicated a test statistic of2&hich again corresponds to a p-value of 0.662
indicating that it fails to reject the null hypothe that the random numbers generated are
identically independently distributed.
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Figure4-1: Fitted Histogram of N(0,1)

The second test on the normal random number gemeveds performed with the
statistical software, Minitab 15.1. Using thidormality Test function within Minitab, a
probability plot was created which is shown in figeire below. This test also indicates that the
data follows a normal distribution since the datasely resembles a straight line on the
lognormal scale. This test also producep-alue of 0.478, which again is larger than the
associated value of 0.05 indicating that it fails to rejebetnull hypothesis that the data follows

a normal distribution.

Probability Plot of C1
Normal

Mean 0.004475
StDev 0.9958
N 10000
AD 0.348
P-Value 0.478

99.991

Percent
vl
o

Figure 4-2: Nor mality Test
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4.3 Copula Generator

The last main step that needs to be verified iscopula generator. To test this portion
of the C++ program, 10,000 variates were simulated plotted for each of the major copulas
used within this research. Namely, the GaussianhSindent-T copulas were created using both
Gaussian and Student-T marginals. The resultseo€opulas have been previously presented in
Figures 2-5 and 2-6. In order to test the validifythe copula generator, the plots were
compared to the published results presented in BI{B007). Please refer to Bluhm’s
publication to observe the similarities betweenpluts he presents and the plots created through

the copula generator used within this research.
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CHAPTER 5- COMPUTATIONAL RESULTS

The results of computational experiments for theppsed least-squares Monte Carlo
simulation with the addition of jump-diffusion wile presented in this chapter. This chapter
begins with a description of the experimental desigt is used to test the effectiveness of using
simulation to price American options. The subset|section presents a comparison between
the simulation model created for this thesis, thadyatic approximation algorithm presented in
Kou (2004), as well as the binomial tree algorittivat was presented in Amin (1991) with 1,600

steps.

5.1 Design of Experiment

The purpose of this section is to explain how thgeeiments were conducted within this
thesis. Section 5.1 will outlines the design opexment as well as explains the simulation
parameters that were used within the experiments.

To test the accuracy and effectiveness of usingt®@arlo simulation, the least-squares
algorithm presented in Chapter 3 was tested usarguws sets of input parameters. These
simulations were then compared to the results efghadratic approximation algorithm and
Amin’s (1991) binomial tree method presented in K8004). To determine the relationship
between the input parameters and the option peacéctorial design was created. Seven
parameters were tested where\, n;, 12, andAt have two levelsN has one level, and has
three levels. These levels are summarized in Tabbelow. A total of 96 different simulations
were run with different combinations of the paraengt The two time horizons chosen for these
experiments consisted of one quarter of a yearaahdl year. These two time horizons were
chosen since they are the most commonly founcatyiédes in the financial markets for American
options.

Each of the parameter combinations is tested udihgeplications of the least-squares
Monte Carlo simulation model with 200 paths andisk-free interest rate of 5%. The
simulations were performed using common random rausbo that each can be compared in
similar terms. This allows the simulation runsb® compared so that the relationship between

each parameter and the resulting stock pricestterdfore option prices) can be investigated.
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Table3: Design of Experiment Levels

Parameter Symbol Levels
Period Length (yrs) At 0.0625, 0.25
Number of Periods N 4

Strike Price K 90, 100, 110
Stock Volatility o 0.2,0.3
Jump Frequency A 3,7
Jump Size (upward) N1 25, 50
Jump Size (downward) n: 25,50

As with any statistical test, more than one repiica should be performed to prevent the
possibility of outliers. To prevent this possityilieach simulation was run for 30 replications so
that the possibility of the simulation having a bsi@drting seed did not affect the results.
Additionally, since simulation uses the mean of dpdion values from each replication as the
final output, more accurate results can be obtamegerforming more replications. There is,
however, a tradeoff associated with the number epflications performed — accuracy vs.
computational time. As one may expect, more rapbos creates better accuracy at the expense
of longer running times. The following section ggats the results of the 96 experiments (with
30 replications each) performed with the simulatibodel presented in Chapter 3. Each
simulation is modeling a put option, so the retofra path is the present value of the value of
Max{Strike Price — Market Price, 0}.

5.2 Results

The first set of tests conducted was for a plannogizon of 0.25 years. This
corresponds tdl = 4 andAt = 0.0625. The results of each of the 48 simutatiare summarized
in Table 4. This table also presents the valub®bptions calculated by Kou’s (2004) quadratic
approximation equation and Amin’s (1991) binomrakt method; Amin’s binomial tree method
was performed using a total of 1,600 steps.

Looking at Table 4 one fact is evident. Pricingnéican options with jump-diffusion
using Monte Carlo simulation provides consisterttigher values than that of the quadratic
approximation and the binomial tree methods. @f4B experiments, only three configurations

(or 6.25%) resulted in values lower than the vakasulated by both Kou and Amin. However
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these values are insignificantly lower, since theximum difference was $0.23. This outcome
parallels the results presented by DeHaven (200i&nvehe compared least-squares Monte Carlo
simulation with the finite-differences method. MenCarlo simulation consistently provides
higher values for American options due to the cardus nature of the pricing region and the
fact that simulation creates multiple test trialste stock paths instead of using mathematical
eguations to estimate the prices. Monte Carlo kitimn provides the average expected value of
each of the simulated stock price paths which plesia much more robust methodology than
other pricing schemes used by practitioners.

A second noticeable result is when the stock ip dee¢he-money. When the strike price
is at $110, the option begins $10 in-the-moneyis Téads to a very interesting question as to
why the values presented by Amin (1991) and Kow42@re only $0.26 to $2.23 more than the
initial $10 profit. By looking at standard Brownianotion alone (without any possibilities of
jump), the probability that the stock price incremdy more than $10 (to reach the $110 strike
price) within % of a year is small. Refer to Figsi3-3 and 3-4 from periods zero to four (which
would be ¥4 of a year). In these graphs, the nurabgmps is set to zerd. & 0) which means
that the standard Black and Scholes model is besagl to create the simulated paths. These
figures show the likelihood that the stock pricesréase by more than $10 in ¥4 of a year. Even
with a variation of 30%, the likelihood is smalk is more evident that the majority of the paths
are below the $110 strike price, indicating higbgpected returns than presented by Kou and
Amin.

This means that the profit for the deep in-the-nyoaptions should be higher, if not
significantly higher when jumps are included, ti#® which is the case when the options are
priced using Monte Carlo simulation. Monte Cailogation evaluates the option ranging from
$4.30 to $7.56, meaning that the average endintk gidce ranged from $105.70 to $102.44,
respectively. As previously stated, Monte Carlmdation takes the mean of 6,000 simulated
stock paths (200 paths X 30 replications), whetbasther two methods calculate the expected
value of mathematical approximation equations thal not accurately represent that actual
stock price behavior. Due to this fact, Kou’'s gquéid approximation equation provides very
conservative option values when the option is dedgpe-money. When the option is out-of-the-
money Kou’'s quadratic approximation equation andirsnbinomial tree method are not as
conservative and provide comparable results as &Gatlo simulation.
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Table4: Monte Carlo simulation comparison for American put option with t = 0.25 Year

K (4 A N. n, Binomial Tree Kou (2004) MCS
90 0.2 3 25 25 0.75 0.76 0.82
90 0.2 3 25 50 0.65 0.66 0.65
90 0.2 3 50 25 0.68 0.69 0.85
90 0.2 3 50 50 0.59 0.60 0.68
90 0.2 7 25 25 1.03 1.04 0.97
90 0.2 7 25 50 0.82 0.83 0.60
90 0.2 7 50 25 0.87 0.88 1.07
90 0.2 7 50 50 0.66 0.67 0.68
90 0.3 3 25 25 1.92 1.93 2.24
90 0.3 3 25 50 1.85 1.86 2.06
90 0.3 3 50 25 1.84 1.85 2.33
90 0.3 3 50 50 1.77 1.78 2.15
90 0.3 7 25 25 2.19 2.20 2.34
90 0.3 7 25 50 2.03 2.03 1.92
90 0.3 7 50 25 2.01 2.02 2.18
90 0.3 7 50 50 1.84 1.85 211
100 0.2 3 25 25 3.78 3.78 4.83
100 0.2 3 25 50 3.66 3.66 4.55
100 0.2 3 50 25 3.62 3.62 4.90
100 0.2 3 50 50 3.50 3.50 4.65
100 0.2 7 25 25 4.26 4.27 5.10
100 0.2 7 25 50 4.01 4.02 4.35
100 0.2 7 50 25 3.91 3.91 5.35
100 0.2 7 50 50 3.64 3.64 4.65
100 0.3 3 25 25 5.63 5.62 7.16
100 0.3 3 25 50 5.55 5.54 6.95
100 0.3 3 50 25 5.50 5.50 7.29
100 0.3 3 50 50 5.42 5.41 7.04
100 0.3 7 25 25 5.99 5.99 7.31
100 0.3 7 25 50 5.81 5.81 6.67
100 0.3 7 50 25 571 571 7.59
100 0.3 7 50 50 5.52 5.51 7.03
110 0.2 3 25 25 10.48 10.43 14.79
110 0.2 3 25 50 10.42 10.38 14.50
110 0.2 3 50 25 10.36 10.31 14.87
110 0.2 3 50 50 10.31 10.26 14.61
110 0.2 7 25 25 10.81 10.79 15.05
110 0.2 7 25 50 10.68 10.64 14.30
110 0.2 7 50 25 10.51 10.47 15.31
110 0.2 7 50 50 10.39 10.34 14.61
110 0.3 3 25 25 11.90 11.86 17.12
110 0.3 3 25 50 11.84 11.79 16.91
110 0.3 3 50 25 11.78 11.73 17.25
110 0.3 3 50 50 11.72 11.67 17.01
110 0.3 7 25 25 12.23 12.19 17.26
110 0.3 7 25 50 12.09 12.05 16.62
110 0.3 7 50 25 11.94 11.90 17.56
110 0.3 7 50 50 11.80 11.75 16.98

The last, yet very important, concept that can bseosed through the results is the
enormous effect the standard deviation has on déhgewof the option. Looking at each of the
strike prices independently, there is only a sigaiit value increase when the standard deviation

(o) increases from 0.2 to 0.3. In fact, there israpinately a 43% difference between the
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maximum and minimum values (f&¢ = 90) for the group witls = 0.2 and an 18% difference
between the maximum and minimum values of the greitipc = 0.3. However there is a 64%
increase, which is significantly higher, betweea tiwo groups. This trend is consistent with the
other two valuation methods and is also applic&ri@ach of the other strike prices.

This indicates that for relatively small jump siZgs> 20), the standard deviation — or in
other words the diffusion process modeled by trecBlnd Scholes model — has a larger impact
than the jump processes on the value of the opfidns is under the basic assumption that there
is not an abnormally large amount of jumps witthe planning horizon. Common sense says
that a large number of jumps in the planning harizeill affect the value of the option.
Logically thinking, the number of jumps and thenstard deviation of a stock should be related.
A large amount of jumps within a small amount afé¢iwould indicate the company is extremely
risky, which would in turn increase the standardiakon of the stock since the amount of risk is
the fundamental basis of the stock’s standard tlewia If jumps in a stock are frequent and of a
small magnitude then these jumps should not beiders jumps, but instead considered as
increased variability that is accounted for in &rgtandard deviation values. As a result, the
purpose of modeling the jump-diffusion processascapture the infrequent and significant
jumps in the stock price after market announcemiean® been made or major events occur that
directly affect the markets.

Tables 5 and 6 below show the effects of a highueacy of jumps (each simulation has
a simulated time horizon of one quarter of a yedat @n initial stock price of $100 and included
30 replications). Namely, significantly higher wat ofA create a larger spread in the stock
prices (which was shown in Chapter 3 and can eeeselen with small jumps sizes) making the
value of the option increase by considerable ansourithe larger spreads, in essence, reflect
larger amounts of stock variation. This fact isdemt when inspecting the 95% confidence
intervals for the option price. The half width thfe confidence interval (which is shown in
Tables 5 & 6) is larger for bigger valuesi’of Namely, with all other parameters held constant
the half width ofA = 15 is much larger than the half widthlof 1. Since every other factor is

held constant, the standard deviation must increaseder for the half width to increase.
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Table5: A Significance Testing 1

Table6: A Significance Testing 2

K 6 A ni np Price HalfWidth K 6 A n; n, Price HalfWidth

9C 0.z 15 10 1C 4.3 0.183¢ 9¢C 0.2 1 1C 1C 0.9t 0.088¢

90 03 15 10 10 5.32 0.2057 90 03 1 10 10 236 0.1396
100 0.2 15 10 10 9.17 0.2379 100 02 1 10 10 5.00 0.1594
100 0.3 15 10 10 1059  0.2677 100 03 1 10 10 7.31 0.2124
110 0.2 15 10 10 19.12 0.2376 110 02 1 10 10 14.96 0.1631
110 0.3 15 10 10 20.54 0.2680 110 03 1 10 10 17.29 0.2141

The second set of tests conducted was for a plgrmnzon of one year. This correspond&to

= 4 andAt = 0.25 and as one can notice, the same genenalstige present in this test group.
As in the previous test set, Monte Carlo simulatonsistently values American options higher
than that of Kou (2004) and Amin (1991). Howevir,this test group, there were more
instances (five total) where the simulation prodidewer values than the other two methods.
Looking at these five instances, three of the five the exact parameter combinations from the
previous test group in which the simulation valuige option lower than the quadratic
approximation or binomial tree methods. This fabhbws that the least-squares method is

consistent over small and large time horizons amdistently provides excellent results.
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Table7: Monte Carlo simulation comparison for American put option witht = 1.0 Year

K c A n. n, Binomial Tree Kou (2004) MCS
90 0.2 3 25 25 2.91 2.96 3.38
90 0.2 3 25 50 2.70 2.75 2.72
90 0.2 3 50 25 2.66 2.72 3.80
90 0.2 3 50 50 2.46 2.51 3.12
90 0.2 7 25 25 3.68 3.75 3.67
90 0.2 7 25 50 3.24 3.29 2.27
90 0.2 7 50 25 3.12 3.20 4.66
90 0.2 7 50 50 2.66 2.72 3.08
90 0.3 3 25 25 5.79 5.85 7.05
90 0.3 3 25 50 5.65 5.70 6.37
90 0.3 3 50 25 5.58 5.64 7.61
90 0.3 3 50 50 5.43 5.49 6.93
90 0.3 7 25 25 6.42 6.49 7.03
90 0.3 7 25 50 6.09 6.15 5.48
90 0.3 7 50 25 5.92 6.00 8.28
90 0.3 7 50 50 5.59 5.65 6.74
100 0.2 3 25 25 6.60 6.62 8.36
100 0.2 3 25 50 6.36 6.37 7.35
100 0.2 3 50 25 6.26 6.29 9.11
100 0.2 3 50 50 6.01 6.03 8.12
100 0.2 7 25 25 7.75 7.62 8.44
100 0.2 7 25 50 7.07 7.09 6.26
100 0.2 7 50 25 6.83 6.88 10.09
100 0.2 7 50 50 6.28 6.31 7.91
100 0.3 3 25 25 10.10 10.13 12.85
100 0.3 3 25 50 9.94 9.96 11.97
100 0.3 3 50 25 9.83 9.87 13.61
100 0.3 3 50 50 9.67 9.70 12.73
100 0.3 7 25 25 10.81 10.86 12.63
100 0.3 7 25 50 10.46 10.49 10.54
100 0.3 7 50 25 10.22 10.29 14.32
100 0.3 7 50 50 9.85 9.89 12.44
110 0.2 3 25 25 12.37 12.32 18.15
110 0.2 3 25 50 12.17 12.11 17.16
110 0.2 3 50 25 12.04 12.00 18.91
110 0.2 3 50 50 11.84 11.79 17.92
110 0.2 7 25 25 13.29 13.27 18.26
110 0.2 7 25 50 12.85 12.79 16.1
110 0.2 7 50 25 12.54 12.54 19.95
110 0.2 7 50 50 12.08 12.03 17.72
110 0.3 3 25 25 15.79 15.76 22.64
110 0.3 3 25 50 15.63 15.59 21.77
110 0.3 3 50 25 15.51 15.49 23.41
110 0.3 3 50 50 15.36 15.32 22.56
110 0.3 7 25 25 16.51 16.51 22.42
110 0.3 7 25 50 16.17 16.14 20.36
110 0.3 7 50 25 15.89 15.91 24.19
110 0.3 7 50 50 15.53 15.52 22.26
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CHAPTER 6 - EXTENSION TO BASKETS

The process of analyzing a single American optiam lse computationally challenging.
Extending this to analyze multiple options that enerelated complicates matters even further.
This chapter presents how copulas can be combinmbdlieast-squares Monte Carlo simulation
to accurately evaluate American options where thaetlying stocks follow a jump-diffusion
process. The rest of this chapter begins by ptegehow to incorporate the correlation between
multiple options using the Cholesky Decompositiamd aconcludes with the notation and
algorithm used within the Monte Carlo simulatiofhe computational experiments are then
presented in the next chapter to demonstrate tlfiectekeness of different independent

parameters.

6.1 A Jump-Diffusion Simulation Mode with Copulas
Utilizing copulas within the pricing formula is aeffective way of modeling the
correlation between options. In closed-form nugarapproximations, it can be difficult to
incorporate copulas into the formulas. Howeverubyg Monte Carlo simulation this inclusion
can be a fairly straightforward process. The satioh need only incorporate a subroutine to
perform the Cholesky decomposition on the cormhatmatrix, which is explained in the
following subsection, as well as another subroutmgenerate the correlated random variates
among the options within the same basket. Theowatlg sections explain the Cholesky
decomposition in greater detail, present the amtufli notation required, and then propose the

algorithm.

6.1.1 Cholesky Decomposition

The Cholesky decomposition is used in this reses&mchenerate multiple, correlated
variates (in the Brownian motion and the correlgteap sizes). The purpose of the process is to
decompose the correlation matrix between the ranshput variables in order to produce the
correlated variates.

Formally, Cholesky decomposition is of the folfr= AAT, wherel is the correlation
matrix between the optiond” (must be a symmetric positive definite matrix) aftds the
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covariance matrix that is lower triangular. Thealgas to calculateA. The Cholesky

decomposition follows that

2
all O O all 021 a31 all aZlall a31a11
— T — 2 2
=AA" = aZl 022 O O 022 032 - aZlall a21 + a22 031a21 + a32022 )
2 2 2
a31 a32 a33 0 0 a33 aSlall a31a21 + a32a22 a31 + a32 + a33

From this, we obtain the following formula for eamhthe values oA:

1 & .
A :A_(r"i _ZA,kAj,k] , fori>]
i =

and

A is then multiplied by each of the random varidtesicorporate the correlation between them.
For example, given that, x;, andx; are three independent random variatesyawp, andy; are
the random correlated variatgs, y», andys; have the properties of the correlation mafriand
are calculated by

[yr Y2, yal ' = Alx, Xo, Xa] T
where A is calculated through the Cholesky decomposition.

6.1.2 Notation
The majority of the notation is exactly the sanseiraChapter 3. The only additional
variables that must be added to utilize copulagrerdollowing:
O = Number of options in the basket
I = O x O correlation matrix

A =T decomposed using Cholesky Decomposition

6.1.3 Updated Algorithm
Step 0.System Inputs:
(@) Initial stock price &)
(b) Risk-free interest rate’)
(c) Strike price K)

(d) Stock volatility ©)
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(e) Number of time periodsN)
() Number of paths\)
(9) Length of time horizon in year3)

(h) Call or put option

(i)
()

Exponential Distribution parametefig @ndmny)

Probability of Upward Jumgpof

(k) Rate of Poisson Procesg (

0

Number of options@)

(m)O x O Correlation Matrix )

Step 1lnitialization:

(a) SetAt = -%\l

(b) Perform Cholesky decomposition on correlation malrito obtain

matrix A.

(c) Set the seed for the initial path to any positiveger.

(d) Generate the random numb&ig for each path =1, 2, .., M, period

i=1,2,.,N,and optiork=1, 2, .., O.

(e) Generate the random numb&ji(t) for each path = 1, 2, .., M,

(f)

periodi =1, 2, .., N, and optiork=1, 2, .., O and calculate the jump

size for each period pathj, and optiork using the equation:

Vik = ij)vn , whereV follows the double exponential distribution.
*Note: If a jump is not presenj= 1.

Calculate the correlated random variggsandVijk using:

Zy =Z; UA foreachk=1, 2, ... 0.

Vik = (Vy —1) DAfor eachk =1, 2, ...,0.

*Note: The value of\(;x — 1) is used to get the actual jump size. An

upward jump will result in a positive value and@whward jump will

result in a negative value.
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(9) SetVij = Vijk + 1, which is merely adding 1 back into the cated

values to make the jump values positive.

Step 2ComputeSyi for the expiration dat& for each path of optio® using:
Sik =S exp(fr - %o?|At+ a\/A_tZijk) * Vi - (6.1)

Step 3Compute the cash flows for each path and optiomgusine of the

following:
_ max{K - S, (t), 0} putoption
P(j) = " . 6.2)
max{S, (t) — K, 0} calloption
Step 4Backup one time period; seti —1.
(a) ComputeS.; using:
Sik =S /exp(lr - %o®|At+ a\/EZijk)/Vijk : (6.1)

Step 5Compute if the option is in the money for each patRor each path:

(a) Let X be the vector containing asset pricgs andY be the vector
containing the corresponding cash flows received-attime period,
which have been discounted backward toithéme period.

(b) Regress using least-squares approach to estimatevalue of

continuing using the equation. (3.5). This wiku# in the conditional

expectation functiorE[Y|X ] .

(c) Compute the value of continuing usiridY|X] and the value of
immediately exercising using equation (6.2).

(d) Determine whether to exercise the option immedratal hold the
option until the next time period, based on whidheg the higher
value. Establish the current cash flows conditi@ranot exercising

prior to time period using:
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. [castflow if castflow > E[Y|X]
Ci()= . (6.3)
0 otherwise
(e) Compute the present value of the cash flewg) given by:
Pe(1) = Ci (i) +&™ PRy (j). (6.4)

Step 6If at time period zero proceed to Step 7, elseapkho Step 4.

Step 7Proceed to next option; det k + 1.

Step 8If k=0 + 1 stop, else go back to Step 2.
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CHAPTER 7- COMPUTATIONAL RESULTSFOR
CORRELATED BASKETS

The results of the computational experiments feralgorithm proposed in the previous
chapter are presented within this chapter. Thigptdr begins with a description of the
experimental design that was used to test the teféeess of extending least-squares Monte
Carlo simulation to the pricing of baskets of Ancan options, followed by a description of the
basic dynamics of correlated stocks. The finatisewf the chapter discusses the results of the

experiments performed.

7.1 Copula Design of Experiment
To determine the applicability of evaluating basket American options using Monte
Carlo simulation, the algorithm in Chapter 6 wasduto evaluate the baskets. Namely, each of
the parameters was systematically changed to deterthe effects of each parameter on the
value of the option. The parameters and the nurb&actors tested within these experiments
are identical to those used in Chapter 5 with altbtmnal parameter. The additional parameter
tested within this chapter is the correlation nxatwhich contains two levels (highly correlated

and moderately correlated). These two levels lang/s in the matrices below.

1 02 025 1 09 085
Moo =| 02 1 02, M =| 09 1 095
025 02 1 085 095 1

A quarter fractional factorial design of experimeras used to test the effectiveness of different
treatments for each of the three strike prices (@@, and 110). A total of 24 experiments
(treatments) were tested between the three strikesgpusing the parameter values given in the
following table for each of the strike prices. ighe experiments performed in Chapter 3, each
of the simulations contained 200 paths and wa$au®0 replications to reduce the possibility of
outliers affecting the results of the experimenthie subsequent section presents the simulated
movement dynamics of the correlated stocks.
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Table8: Copula Design of Experiment

r o A i w
High 0.2 3 25 25
High 0.2 7 25 50
High 0.3 3 50 25
High 03 7 50 50
Low 0.2 3 50 50
Low 0.2 7 50 25
Low 0.3 3 25 50
Low 03 7 25 25

7.2 Copula Dynamics
The purpose of this section is to detail how catieh affects the movements of
correlated stock prices. The first step of theoatgm performs the Cholesky decomposition of

the correlation matrix. The resulting decomposedrixis given below:

1 0 0 1 0 0
Now =| 02 .979796 0 , Mign =| 09 0.43589 0
025 0.153093 0.956066 085 0424419 0.312039

These are the matrices that the uncorrelateand V matrices are multiplied by to obtain
correlated values. These correlated values ame wsed within the calculations of the stock
prices. For simplicity and comparison reasons,ititel stock prices are set to the same value
of $100 for all of the treatments; however, thewdation allows differing initial stock prices for
the underlying stocks.

Figures 7-1 through 7-3 show the simulated pathkree separate stocks that are highly
correlated (e.g. are calculated usng,) with the following input parameterss = 0.2,A = 3,
N1 = 25, andn, = 25. Notice how the general movements of theeHligures are very similar.
When the standard diffusion process increase®uok t, the standard diffusion process in stocks
2 and 3 consequently increase. When the standfiudidn process decreases in stock 1, the
same can be said for stocks 2 and 3. This isaltigethigh correlation between the three stocks.
Each has it respective natural variation, howestrcks 2 and 3 are also dependent on the
natural variation of the other stocks. The samiacjple can be applied to generate the

correlated jump sizes, if present. If a jump isgent in stock 1, this jump will in turn cause

63



stocks 2 and 3 to jump, even if there was not amahsimulated jump in stocks 2 or 3. Again,
this is because of the correlation between thekstoc

Comparing Figures 7-1 through 7-3 to Figures Wréugh 7-6, the effects of correlation
are evident. Notice how in the moderately corezlagtocks the general diffusion processes are
quite different. Stocks 2 and 3 do not follow #ame general trends as stock 1 as they did with
highly correlated stocks. This extreme differeceea be easily seen when looking at stock 2.
Notice in Figure 7-5 the uppermost stock price eases between periods 4 and 5. However,
looking at this same path in Figure 7-2, the stpogke actually increases significantly between
periods 4 and 5. This is the effect of the cotr@tabetween the stocks and the difference
between moderate and high correlation.

Overall, high correlation causes very balancedoopfirices since each of the simulated
stock paths follow the same general trends. Thesefif the initial stock prices for th®
different options are the same and each are higitelated, then the value of the basket will be
approximatelyO*W,;, whereW; is the average value of the first option. Howeveithe O
options are not strongly correlated, then the \alokthe options may not be as similar and
therefore the value of each option in the basketveay by significant amounts, especially if the
average jump size is large.

Now that the general effects of correlation haeerbpresented, the subsequent section

provides the results of the experiments conductéamthis portion of the thesis.

7.3 Copula Results

The parameter combinations described in the festien of Chapter 7 were performed
for each of the three strike prices ($90, $100, $htD) with an initial stock price of $100. The
design of experiment resulted in 24 total treatmdiging tested to determine the relationship
between the option value and the input paramateaisiding the correlation.

Table 9, below, summarizes the results of the exyts for a planning horizon of 0.25
years, which corresponds fb= 4 andAt = 0.0625. The tests performed and the resulisirodd
from the use of copulas are very similar to theeexpents and results found in Chapter 5.
Namely, the standard deviation of the stock st the largest affect on the value of the basket.
For each of the three strike prices the largestecbaskets contain a higher standard deviation.
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Additionally, Table 9 shows that Monte Carlo simida accurately prices baskets of
American options in the same manner as individpéibas. This can be seen by the fact that the
basket value is approximately 3 (since 3 optioneeweodeled in this basket example) times the
value of the first option — since the starting seace the same for both simulations, the first
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option value is given in Table 4 in Chapter 5. sTmdicates that the pricing of correlated

options using Monte Carlo simulation in a multi-énsional domain provides accurate results

that are similar to those in the single-dimensiat@inain. The fact that the multidimensional

correlated values are closely related to the oneedsional values

indicates that Monte Carlo

simulation using least-squares regression provadesry quick and accurate means of valuing

baskets of American options with jump-diffusion.
Table9: Copula Results

K r c A N. n, Price
90 High 0.2 3 25 25 2.36

90 High 0.2 7 25 50 1.61

90 High 0.3 3 50 25 7.00

90 High 0.3 7 50 50 6.22

90 Low 0.2 3 50 50 1.99

90 Low 0.2 7 50 25 3.26

90 Low 0.3 3 25 50 6.00

90 Low 0.3 7 25 25 6.87
100 High 0.2 3 25 25 14.35
100 High 0.2 7 25 50 12.23
100 High 0.3 3 50 25 21.98
100 High 0.3 7 50 50 20.95
100 Low 0.2 3 50 50 13.89
100 Low 0.2 7 50 25 16.13
100 Low 0.3 3 25 50 20.63
100 Low 0.3 7 25 25 21.72
110 High 0.2 3 25 25 44.23
110 High 0.2 7 25 50 42.09
110 High 0.3 3 50 25 51.86
110 High 0.3 7 50 50 50.81
110 Low 0.2 3 50 50 43.77
110 Low 0.2 7 50 25 46.03
110 Low 0.3 3 25 50 50.49
110 Low 0.3 7 25 25 51.59
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CHAPTER 8- MEMORY REQUIREMENTS

The memory requirements for each of the simulagigorithms are presented in Chapter
8. The purpose of this chapter is to overview emhipare the memory requirements for each of

the algorithms proposed within this thesis.

8.1 Memory Requirementsfor Simulation Models

Two of the three least-squares algorithms presemtethis thesis utilize a memory
reduction technique that was first presented bynQBQ03). As explained in Chapter 2, Chan
presented a method that does not store the intésiteestock prices; instead the seed values are
calculated two times, once to generate the forwmatths and once to generate the backward
paths. As a result computational requirementsease, but the memory requirements decrease
significantly. This is an acceptable tradeoff sinihe speed and computational power of
computers is continuously increasing, making theartance of decreased computational
requirements decline. However, the size of thebleros being solved by computers is
continuously increasing making the storage requar@sigrow drastically. This drastic growth
forces researchers/practitioners to have expemsinguters that contain tremendous amounts of
memory.

Chapter 3 describes two pricing algorithms thdtzaetiChan’s (2003) memory reduction
technique. Utilizing this technique allows each tbkese algorithms to have a memory
requirement in the magnitude &@(M), where M is the number of paths being simulated.
Without this reduction, the memory requirement wiobk in the magnitude @(MN) whereN
is the number of periods simulated. Since theimgi@ccuracy is directly related to the number
of periods being simulated (since the discretize tperiods approach a continuous regioiNas
approaches infinity), a higher number of periodsstrhe simulated to obtain highly accurate
prices. As a result, without Chan’s memory reductiechnique the memory requirements
would be substantial. The algorithm presented a@er 6 does not utilize Chan’'s memory
reduction techniques. As a result, the memoryirements for this algorithm is in the order of
O(MNO), whereM is the number of path#| is the number of periods, aflis the number of

options in the basket.
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CHAPTER 9 - CONCLUSIONS

The market activities over the last decade havevshbat the Black and Scholes (1971)
model does not entirely reflect all of the markehéviors. As a result, the Black and Scholes

model should be enhanced to include both the juntbdiffusion processes so that “jumps” in
the market are captured. One of the most obvioogp$ was the 684 point drop in the Dow
industrial average on September 17, 2001, the masing day after the 9-11 attacks on the
United States (Kauffman 2001). The standard Brawnnotion that is modeled within the
Black and Scholes model does not have the capalnfitmodeling such a significant and
immediate change in stock price. There have beanynnstances just like this where the
market has risen/fallen by tremendous amounts aarort period of time. This fact illustrates
the need for an enhancement of the Black and Ssinobelel.

Merton (1973) was the first to present the ideguofps in the markets. In recent years
Kou (2004), among others, has continued the resesiacted by Merton. Kou (2004) has shown
that Merton’s use of the normal distribution to rabthe jump sizes is not as accurate as using
the double exponential distribution. The purpokéhis thesis was to explore the use of Kou's
(2004) jump-diffusion model to price American oo using Monte Carlo simulation.
Additionally, this thesis investigates the extensa@ this Monte Carlo simulation model to a
multidimensional domain to explore the effectivenetpricing baskets of American options.

The remaining sections of Chapter 9 are as followSection 9.1 begins with the
conclusions obtained through the research presemtha this thesis and Section 9.2 presents
future work that could be investigated further.

9.1 Conclusion on Monte Carlo Simulation
This thesis has shown that Monte Carlo simulatioovipdes an effective means for
analyzing and pricing American options where théartying stock follows a jump-diffusion
process. It also demonstrated the flexibility obie Carlo simulation with the ability to make
simple modifications to an existing simulation mteincorporate an additional, yet drastically
different, stochastic process. The simulation gmésd within this thesis extended on the model

presented by DeHaven (2007) to include the jumfusiibn process explained by Kou (2004).
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The experiments conducted within this thesis hdnmve that, in general, Monte Carlo
simulation values American options higher than tifaither numerical techniques, including the
techniques presented by Kou (2004) and Amin (1998)onte Carlo simulation provides a
means of accurately modeling the behaviors of theksmarket in all aspects, including the
natural stock variation (diffusion process) as wadl the possible jumps that occur (jump
process).

The experiments performed within this thesis haxen®lified the ability to accurately
model the natural stock price behavior as welhagump processes. From these experiments, it
was determined that when the jump sizes and the fueguencies are small, the factor that has
the largest effect on the option value is the shashdleviation of the stock. The simulations
performed show that values gf larger than 25 (which indicate average jump sizie4% or
smaller) seem to have little effect on the optidng The major contributor to the options price,
when the jump sizes and frequency is small, issthadard deviation. The results presented in
Chapter 5 show how drastically the options pricanges as the standard deviation increases
from 0.2 to 0.3. Though the option’s value is omlgderately affected by the size and frequency
of the jumps if these values are small, these fadvegin to have a large affect on the option
value as they increase. This is due to the addedtibn that is created by the frequent, and
possibly extreme, jumps in the stock’s price. THadeed deviation increases the spread of the
simulated paths and, in turn, increases the pfriceeooption. The wider spreads are caused by
an increased number of outlying stock paths thepegsent after large jumps occur.

The aforementioned experiments provided evidenamnother fact when comparing the
results of the Monte Carlo simulation to the resoftKou’'s (2004) approximation algorithm and
Amin’s (1991) binomial tree method. Namely theufesindicate that when the option is out-of-
the-money, all three methods accurately calculage vialue of the option. However, as the
option becomes at-the-money or in-the-money, Kapproximation algorithm and Amin’s
binomial tree method become extremely conservativthe valuation process. Monte Carlo
simulation, however, is less conservative and ¢ales a much higher price for the American
option (e.g. $14.79 versus $10.43). Thinking alibatprices logically, the value produced by
the Monte Carlo simulation is more accurate sifgedption begins $10 in-the-money. It only
makes sense that the option should be valued hidpaer $0.43 more than the initial profit,
especially with the possibility of jumps. Overathis shows the accuracy of Monte Carlo
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simulation over the wide range of option valuesnfrdeep out-of-the-money to deep-in-the-
money.

The second portion of this thesis shows that M@#do simulation provides an accurate
and effective means for calculating baskets of Aca@roptions when the underlying stocks are
correlated. Utilizing the benefits of copulas,imdation model was presented that accurately
models the correlation between the stocks. Thsst@wn through multiple examples of highly
and moderately correlated stocks with a varietydifferent input parameter combinations.
When the underlying stocks are highly correlatbd,deneral movements of the three stocks are
remarkably similar. These similarities are expednce the stocks are highly correlated) and
show that the simulation accurately models thekstoeven when correlation is involved. When
the stocks are moderately correlated, the genemlements of the three stocks are fairly
independent and are only moderately effected bymbeements of the other two stock prices.
Again, these movements are expected since thesstwekonly moderately correlated, which also
shows the correctness of the Monte Carlo simulatigericing baskets of American options.

As with the pricing of single dimensional optionse major determining factor of the
basket price when the average jump sizes are ssm#ie volatility of the underlying stocks.
Increasing the standard deviation from 0.2 to @8 the same effects for the baskets as it did for
the single option, drastically increased pricegskts also resemble the results of single options
when the average jump size is large. When jumgssaze large, the price of the basket increases
due to the added variability in the underlying &sc

An additional concluding comment that must be miad@ regards to the flexibility of
Monte Carlo simulation. In order to extend thevwas simulation model the only modification
required is a few additional subroutines to incoap® the copulas (via the Cholesky
decomposition) and the jump-diffusion process. @anmg this to other numerical methods that
use complex integral equations, it is much moréadift to include the required factors. Instead
of a few additional subroutines, the complex indégquations would require exact distributions
(if they are available) and complex mathematicaiigas to create the correlation between the
jumps and stock prices. This is a significant adiage of Monte Carlo simulation which makes

it an attractive method for pricing both single émsional options and multidimensional baskets.
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9.2 FutureWork

This research uncovered some interesting questimaitscould be researched further.
Three aspects of the Monte Carlo simulation invadvcopulas should be investigated further.
These include utilizing Chan’s (2004) memory reductechnique, investigating the process of
calculating the correlation between the jumps, mdlifying the input parameters so that each
of the underlying stocks have separate input paiensiée.g. average jump size, average number
of jumps, and standard deviation). This thesid lie¢ input parameters constant among options
to simplify the analysis of the Monte Carlo simidat

Chapter 3, which implemented Chan’s (2003) redunedhory algorithm, presented an
algorithm for pricing American options with jumpHdision that does not store all of the
intermediate prices (and corresponding values ltulzde the prices; e.g; andV,). As a result,
the memory requirements are far less expensivahes methods that store each of the prices.
The only cost of this method is the computatiomgjuirements since each of the seed values
must be calculated twice, once for the forwardipgand once for the backward pricing. This
memory reduction technique has the potential tokwwhen pricing multiple options in a
multidimensional domain. The research containethiwithis thesis does not utilize Chan’s
(2003) reduced memory method and as a result esgailarge amount of memory to perform
the simulation. The required memory has the pw@eritb be reduced significantly by
implementing Chan’s (2003) algorithm so that themoey requirements would grown in the
order ofO(MO) instead ofO(MNO), whereM is the number of paths simulat€dljs the number
of options, andN is the number of periods. Reducing the amoumbe@fory required to run the
simulation would be a significant enhancement, esfig if the researcher/practitioner is
evaluating a large number of options or periods.

The second factor that should be researched fuithdrow the jump correlation is
calculated. The process used within this reseanctelates the grouped jump size for a given
period instead of correlating the individual jump# other words, within the algorithm the
Poisson process determines the number of jumpamnwathgiven period J(t)) and the double
exponential is calculated and multiplied by itsé#lf) times. This process is grouping tb@)
jumps during that period into a single, comprehemgump size. In the real markets when a
jump occurs for a stock, the correlation betweem dather stocks can be seen within a short

amount of time. As a result, calculating the daitren between the individual jumps instead of
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the grouped jumps may provide a more accurate septation of the correlation between the
stocks and therefore accurately model the truera@atiithe markets.

The last enhancement regarding the simulation mpaedented within this thesis is to
allow each of the stocks to have different jump atahdard deviation parameters. Though
companies may be in similar industries, their julmgguencies, jump amplitudes, and standard
deviations may still be quite different. The mopetsented within this thesis assumes that these
parameters are the same for each of the stockg lagialyzed. Therefore, a possible area of
future research is to add stock-specific input peaters.
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Appendix A - Derivation of the Roots of G(x)

Further information regarding the following equasacan be found in Kou (2005). The moment

generating functioX(t) for a jump-diffusion process can be obtained as
E[eéb< (t)] = eG(H)t Where
G(X)Z:X(r—5—10'2—/]Zj+£)(20-2+/] pl]l + q,72 -1 .
Z 2 NN,—X 1,*+X

The equatior(x) = o can be rewritten into the form ax*+bx*+cx*+dx+e=0, where

a=c° b=2u-0*(N1-n2), €=-0MNm2- 2*(1-12) - 24 - 20,

d=-2ummz- 2p(2+n2) + 2y + 20(n2- 12), €= 2omm2 , and

w=r- 5—%02 - A{ . It can be shown that the four rodis, B2, B3, andP4, can be obtained by
the following method which uses a combination & Herrari-Cardano derivation of the quartic
equation and the Euler method of solving the cwdgjoation. This method first divides the
equation by the leading coefficient to obtain afficent of 1 for the quartic term. Next, the
guartic equation is reduced by removing the culeemt by applying the Tchirnhaus
transformation and then reduces the equation orare o obtain a quadratic equation. From
this point, the roots are solved and then subestitliack to obtain the four roots of the original

guartic equation. In a more formal manner, thegss is as follows:

Solving Quartic Equations

Given x* +a,x* +a,x* +a,x+a, =0 (after the leading coefficient has been dividéfd),

a,=0, then the quartic can be factored into
X(0CragC+apx+ay) (A1)
and the roots are then 0 and the roots of the dubition. Howeverayis not equal to zero, the

first step is to apply the Tchirnhaus transfornmratio— y — a% which yields

y*+py’+aqy+r=0 (A2)

where
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2 3 , \
p:az—si,q:al—@+3 ’andr :ao_a3a1+a3a2_3a3

8 2 8 4 16 25€°

At this point, there is a special case that gresitlyplifies the process. if= 0, then there

is no absolute term and the equation can be fatiote
y(y>+py+0). (A3)
The roots of the quartic are them ag/4 and the roots of the cubic equatigh py+q with ag/4
subtracted from each.
However, ifr is not equal to zero, equation (A2) can be soly&dg a method discovered
by Leonhard Euler. Euler determined that by figdine three roots of the related cubic equation

2 _ 2
AP [ P24, O
2 16 64

and settingp andqg equal the square roots of two of the roots (itsdoeet matter which two roots

are chosen and the sign of the roots does not netiter) and setting = _SL' then the three
pq

roots of the cubic equation 8, g%, andr®. However, the main fact that Euler discovered was
that the four roots of the original quartic equat{stated before equation Al) can be calculated

by the following equations:

_ a 3
=p+q+r-—=,%x,=p-q-r-—,
X =p*+q 2% P-q 4

— a3 — a3
X, =—p+q-r——,andx, =—-p—-g+r——.
3 pt+q 4 4 pP—q )

Eachx; fori =1, 2, 3, and 4 are equal to the rdats3,, B3, andp,.
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