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Abstract 

 In recent years the stock markets have shown tremendous volatility with significant 

spikes and drops in the stock prices.  Within the past decade, there have been numerous jumps in 

the market; one key example was on September 17, 2001 when the Dow industrial average 

dropped 684 points following the 9-11 attacks on the United States.  These evident jumps in the 

markets show the inaccuracy of the Black-Scholes model for pricing options.  Merton provided 

the first research to appease this problem in 1976 when he extended the Black-Scholes model to 

include jumps in the market.  In recent years, Kou has shown that the distribution of the jump 

sizes used in Merton’s model does not efficiently model the actual movements of the markets.  

Consequently, Kou modified Merton’s model changing the jump size distribution from a normal 

distribution to the double exponential distribution.    

Kou’s research utilizes mathematical equations to estimate the value of an American put 

option where the underlying stocks follow a jump-diffusion process.  The research contained 

within this thesis extends on Kou’s research using Monte Carlo simulation (MCS) coupled with 

least-squares regression to price this type of American option.  Utilizing MCS provides a 

continuous exercise and pricing region which is a distinct difference, and advantage, between 

MCS and other analytical techniques.  The aim of this research is to investigate whether or not 

MCS is an efficient means to pricing American put options where the underlying stock 

undergoes a jump-diffusion process.  This thesis also extends the simulation to utilize copulas in 

the pricing of baskets, which contains several of the aforementioned type of American options.  

The use of copulas creates a joint distribution from two independent distributions and provides 

an efficient means of modeling multiple options and the correlation between them.   

The research contained within this thesis shows that MCS provides a means of accurately 

pricing American put options where the underlying stock follows a jump-diffusion.  It also 

shows that it can be extended to use copulas to price baskets of options with jump-diffusion.  

Numerical examples are presented for both portions to exemplify the excellent results obtained 

by using MCS for pricing options in both single dimension problems as well as multidimensional 

problems.  
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CHAPTER 1 - INTRODUCTION 

1.1  Introduction 

As the financial markets have evolved during the recent years, so has the desire to be able 

to accurately calculate the expected future worth of the various financial assets and derivatives 

on the market.  To satisfy this desire a new technical field, known as Financial Engineering or 

Quant Mathematics, has emerged that integrates the methods and tools utilized by financial 

analysts, mathematicians, and engineers to calculate the expected worth of financial assets and 

derivatives. 

Financial Engineering 

Financial Engineering focuses on a multitude of different financial instruments (e.g. 

assets and/or their derivatives).  Originally these included asset management, portfolio 

optimization, risk assessment, and hedging, but have more recently focused on Collateralized 

Debt Obligations (CDOs) and the various types of stock options.  Many of the CDOs only work 

well under certain market settings, however many of them can cause catastrophic impacts when 

the markets deviate from such settings.  Options and futures on the other hand are still one of the 

most viable financial instruments regardless of the general market trends. 

Options 

The research contained within this thesis focuses on the stock options portion of 

Financial Engineering.  An option is a contract, purchased for a premium, between the buyer and 

the seller that gives the purchaser the right – but not the obligation – to buy or sell the underlying 

asset at a future date.  There is a vast variety of options available in the financial markets today 

with the two most common types being the European and American options.  Before explaining 

the difference between the two types, it is important to note the key factors involved with stock 

options.  The basic elements of an option are (1) the expiration date, which is the point at which 

the option can no longer be exercised, (2) the strike price, which is the amount for which the 

underlying stock will be purchased or sold, and (3) whether the option type is a call or put.  A 

call option gives the purchaser the right to buy the underlying stock at the strike price and a put 
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option gives the purchaser the right to sell the underlying stock.  Every style of option requires 

these three factors. 

The most distinct difference between the two aforementioned types of options, the 

European and American option, is when the option can be exercised.  A European option gives 

the buyer the right to exercise the option on the expiration date whereas an American option 

gives the buyer the right to exercise at any point up to, and including, the expiration date.  

Besides the ability to exercise at any point, the two options are identical in that each can be 

purchased as a call or a put and the gains for each are calculated by one of the following 

equations depending on the type: 

• Put Option:  Max{ Strike Price – Market Price, 0 } 

• Call Option:  Max{ Market Price – Strike Price, 0 } 

American Options 

In general, American options are more flexible (in terms of when an option can be 

exercised) than the European option, and therefore, the price of an American option is usually 

higher than that of a European option with the same key elements described above.  The added 

flexibility of American options, however, makes the analysis of such options much more 

complicated.  Since American options have a continuous or quasi-continuous exercise region, 

determining the optimal exercise point and the expected worth of the option is computationally 

challenging.  As a result, this type of option has been extensively studied by financial market 

practitioners and within the academic communities.  Through these studies, a variety of different 

approaches have been developed to estimate, or approximate, the expected value of the 

American option:  (a) Dual based and approximate dynamic programming methods to find upper 

and lower bounds, as seen in Haugh (2004); (b) least-squares approach as seen in Longstaff and 

Schwartz (2001); (c) stochastic meshes as seen in Broadie and Glasserman (2004), Achdou and 

Pironneau (2005), and Zhang (2005).  Each of these methods is effective in pricing American 

options, however, one common problem with several of the methods is when modifying the 

pricing technique to incorporate options where the underlying stock follows a jump-diffusion 

process. 
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Jump-Diffusion 

In 1976, R. C. Merton began addressing the phenomena of “price jumps” in the stock 

markets, which has been termed the jump-diffusion process.  When a stock price follows a jump-

diffusion process, it means that the randomness can be split into two separate types of processes; 

these processes include the jump process and the diffusion process.  Prior to Merton’s findings, it 

was assumed that the stock markets only followed the geometric Brownian motion process (a 

type of diffusion process) in that over a short enough period of time the stock price can only 

change by a small amount.  This is one of the key assumptions of the Black-Scholes formula, the 

very first mathematical model of the stock market developed by Fischer Black and Myron 

Scholes in 1973, and is the basis for which each of the methods listed above approximate the 

expected worth of the American option.   

Merton, however, observed that the changes in the stock prices were not always in small 

and continuous steps.  In many instances, either when there is an announcement of market events 

or some type of human intervention, the stock prices have shown immediate and substantial 

spikes or dips in the prices.  Stated in a more scientific sense, it is quite evident that there are 

short term instances in the market that the Black-Scholes model cannot explain (e.g. outliers).  In 

recent years these dips are evident after events like the 9-11 attacks on the United States when 

the DOW industrial average dropped 684 points on the first day trading resumed (September 17, 

2001) and the wars on terrorism that followed (Kauffman 2001).  A second obvious instance is 

the multiple bailout plans that were established during President Bush’s tenure for the 

automakers and financial industries when the DOW decreased 14.1% in October 2008 

(Steverman 2008).  Each of these events caused an immediate, and significant, “price jump” in 

the stock market that would not normally have been possible if the markets wholly followed a 

diffusion process.   

Since Merton (1976) introduced the idea of the jump-diffusion process, additional 

research activity has focused on the possible “jumps” in the market in order to find methods that 

incorporate these jumps into the pricing of options.   Kou (2002, 2004, and 2008) have some 

significant contributions to this area.  Throughout Kou’s research he presented a model very 

similar to the model proposed by Merton (1976), with the major difference between the two 

models being how the jump sizes are modeled.  Merton believed that the size of the jumps follow 

a normal distribution and Kou on the other hand, after noticing a few distinct key problems with 



4 

 

the normal distribution, believed that the jump process can be better explained using a double 

exponential distribution.  Kou 2008 (Figure 2) showed how the normal distribution does not 

accurately model the market behaviors by presenting the leptokurtic nature of the market jumps 

and the dissimilarity between the historical data and the normal distribution.  The historical data 

shows the inaccuracy of the normal distribution by comparing it to the jump size distribution and 

presenting the fact that the jump size distribution has a much higher peak and fatter tails than that 

of a normal distribution. 

 Kou (2008) provided two analytical approximations for pricing American options 

without dividends.  Namely, he extends the Barone-Adesi and Whaley (1987) quadratic 

approximation and the piecewise exponential approximation presented by Ju (1998).  Kou found 

that the piecewise exponential approximation provided better results at the cost of 

programmability and the time required to solve the problem.  The quadratic approximation itself 

has three major deficiencies:  (1) it is an approximation algorithm that bases the worth of an 

American option off of the worth of an equivalent European option; (2) the approximation 

algorithm contains a discrete pricing region so that the entire range of prices is not possible, and 

(3) the approximation algorithm does not indicate an optimal exercise point.  Kou’s 

approximation algorithm can only approximate the price of the option based on discrete pricing 

values determined by the value of a European option, but cannot indicate when the option should 

be optimally exercised.   

These deficiencies, however, are common in several other numerical methods.  Many of 

the methods used to evaluate American options are deficient in that they evaluate the option 

based on discrete pricing regions (e.g. m-nomial trees) or are extremely complicated due to the 

use of complex integral equations (e.g. the use of piecewise exponential approximation or 

Laplace Transformations).  These issues can be addressed, and significantly streamlined, using 

Monte Carlo simulation techniques.  By coupling Longstaff and Schwartz’s (2001) least-squares 

regression with Monte Carlo simulation, researchers and market practitioners can accurately 

calculate the fair value (also referred to as the expected worth or the price) of an American 

option with jump-diffusion with a simple algorithm that provides a continuous pricing region and 

the optimal exercise point.  Least-squares regression with Monte Carlo simulation provides a 

means to accurately approximate the two pieces of information that are required to analyze an 

American option: the fair value and the exercise point. 
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The research effort within this thesis extends on Kou’s jump-diffusion model and utilizes 

Monte Carlo simulation to calculate the price and the optimal exercise time of an American 

option where the underlying asset follows a jump-diffusion process.  Additionally, the research is 

extended to incorporate copulas into the pricing of baskets, which are small portfolios (usually 

less than five options) of any type of option. 

1.2  Research Motivations 

Generally, American options cannot be solved using closed-form mathematical formulas, 

even when all of the required distributions (e.g. distributions for the jump size and the frequency 

of jumps) are known.  As a result, it is commonly recognized that American options can only be 

evaluated using numerical procedures and not analytical procedures.  The addition of jump-

diffusion processes further complicates this matter.  In most cases when jumps are involved the 

exact distributions are unknown making it even more difficult to create a pricing formula.  Also, 

in cases where the closed form approximated solution includes renewal integral equations and 

there is a presence of two-directional jumps – either up or down – unique solutions may not exist 

because of the difficulty of determining enough boundary conditions based on the renewal 

arguments alone.  This fact motivates our research for using stochastic sampling to estimate the 

worth of American options.  Since both stochastic sampling and complex integral equations are 

approximations, this leads to a very important question comparing the two types of numerical 

approximation methods (stochastic sampling via Monte Carlo simulation vs. complex integral 

equations like Laplace transformations): Which method is better in regards to computational 

effort and modeling flexibility?   

Monte Carlo simulation is a versatile method for pricing options.  As this research will 

demonstrate, modeling the addition of the jump-diffusion process only requires a few minor 

extensions to the simulation models proposed by DeHaven (2007).  DeHaven (2007) presented a 

Monte Carlo simulation approach using the discrete event simulation program, Rockwell 

Software’s Arena 10.0.  However, her research did not extend the pricing to include either jumps 

in the markets or correlated multi-option baskets.  The research performed within this thesis is 

based on the simulation model of DeHaven (2007) and extends it to include the jump-diffusion 

processes.  One of the main reasons that the modifications are relatively straight forward is 

because the exact distributions of the jumps are not required to model American options with 
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jump-diffusion.  In this thesis, we have shown that with the adequate use of stochastic sampling 

and simulation procedures the proposed method can provide very accurate results for pricing 

complex American options under various settings.   

Another significant benefit of using Monte Carlo simulation is that it allows for a 

continuous pricing region, which in turn, can price American options with extreme accuracy.  As 

previously mentioned this lack of continuous pricing region is a deficiency of many numerical 

approximation algorithms and is a problem that can be addressed using Monte Carlo simulation.  

DeHaven (2007) has proven the extreme accuracy of pricing options with Monte Carlo 

simulation through her comparisons of stochastic mesh pricing methods and least-squares pricing 

using Monte Carlo simulation.  Her comparisons detail how the continuous pricing region is 

beneficial in improving the accuracy of pricing American options. 

Kou (2004) presents two approximation algorithms for pricing American options with 

jump-diffusion, both of which are numerical approximations using either complex integral 

equations or approximation equations based on the value of a European option.  Of the two 

heuristics presented, the quadratic approximation is the easiest to implement but provides less 

accurate pricing of American options.  The piecewise exponential approximation, however, is 

much harder to implement due to the integrals associated with the process, but provides more 

accurate estimations.  Motivated by the results presented by Kou (2004), this thesis will 

investigate the applicability of using Monte Carlo simulation to price American options with 

jump-diffusion.  The research within this thesis builds on the findings of Kou and DeHaven to 

create a simulation model to evaluate American options where the underlying stock undergoes a 

jump-diffusion process and further extends the simulation model to a multidimensional domain. 

1.3  Research Objectives and Contributions 

The purpose of this study is to explore the effectiveness of pricing American options with 

jump-diffusion through the Monte Carlo simulation approach.  This study shows the flexibility 

Monte Carlo simulation provides and relates the option price to the following input parameters: 

(1) initial stock price, (2) strike price, (3) option life span or expiration date, (4) risk-free interest 

rate, (5) stock volatility, (6) mean jump size, and (7) average number of jumps per year.  The 

independent variables are the input parameters and the dependent variable is the price (i.e., the 

fair value) of the option.   
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Namely, this thesis seeks to explore if there is a significant difference between using 

Monte Carlo simulation and other numerical techniques to price American options with jump-

diffusion.  To answer this question, this thesis will compare the accuracy and effectiveness of a 

Monte Carlo simulation to that of the approximation algorithm Kou (2004) presents for finite-

horizon American options.  The Monte Carlo simulation will combine Kou’s jump-diffusion 

model with the least-squares regression model presented by Longstaff and Schwartz (2001) and 

is programmed using the C++ programming language.  

Additionally, the simulation model is extended to incorporate copulas in the pricing of 

baskets containing American options with jump-diffusion.  A copula is a mathematical tool that 

combines several univariate distributions to create a joint distribution.  The use of copulas allows 

for the correlation between options to be modeled so that industry-wide jumps can be accounted 

for. 

From the research described above, the main contributions of this thesis are listed as 

follows: 

• Explore the use of stochastic sampling techniques via a Monte Carlo simulation 

model to ascertain whether it provides a quick and accurate way of pricing 

American options where the underlying stock undergoes a jump-diffusion 

process. 

• Extend the simulation model to incorporate copulas so that baskets, where their 

underlying stocks undergo a jump-diffusion process, can also be analyzed. 

1.4  Outline 

The remainder of the thesis is organized as follows.  Chapter 2 presents a literature 

review of the current research efforts to price American options with and without jump-diffusion 

and Chapter 3 details one of the two main methods and research tasks performed within this 

thesis which includes the simulation of American options with jump diffusion.  This chapter 

provides detailed information regarding the methods followed, algorithms proposed, and the 

general characteristics of the jump-diffusion process.  Chapter 4 summarizes the validation of the 

various random variates used in the computational experiments.  Chapter 5 presents the results of 

the research and Chapter 6 extends the methods explained in Chapter 3 to incorporate copulas to 

price baskets of American options.  Chapter 7 presents the results of this extension, Chapter 8 
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discusses memory requirements of the least-squares algorithms and Chapter 9 summarizes this 

thesis and provides directives for future research. 
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CHAPTER 2 - LITERATURE REVIEW 

This chapter reviews the existing literature that is related to the area of study for this 

thesis.  Namely, this chapter looks at the state-of-the-art methods for pricing American options 

with and without jump-diffusion.  Section 2.1 introduces several of the most commonly used 

methods for American options without jump-diffusion and Section 2.2 discusses the methods 

presented by S.G Kou and R.C. Merton for calculating American options where the underlying 

stock price follows a jump-diffusion process.  In Section 2.3 the existing works for modeling 

correlated behaviors on equities or assets using the concept of copulas are presented.  This 

modeling technique is applied to price a basket of correlated American options in Chapter 6. 

2.1  Evaluating American Options 

Of the two common types of options on the markets today, American and European, the 

American option is much more complex to evaluate.  Not only does the purchaser need to 

determine the optimal exercise policy (i.e. when the option should be exercised), but the option 

price must also be determined.  The Black and Scholes model is an explicit closed-form pricing 

formula for European options without dividends.  Unfortunately, unlike in the European case, 

explicit closed-form solutions for American option pricing problems are not generally attainable.  

As a result when exact formulations cannot be obtained or are too difficult to implement, 

numerical evaluation methods are frequently the preferred choice to price such options.  The 

existing numerical evaluation methods can be divided into four main categories including the 

Partial-Differential Equation (PDE) based methods, lattice methods, stochastic mesh methods, 

and simulation-based methods.  Each of the subsequent subsections review the four methods and 

discuss the advantages and disadvantages of each method. 

2.1.1  Partial-Differential Equations 

The most significant advancements for the PDE based methods in recent literature have 

been in the applications of domain transformation and asymptotic expansion techniques.  In 

particular, Fourier, Laplace, and generalized transformation methods have been applied to 

stochastic volatility models and many other pricing models (Broadie and Detemple, 2004).  
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These techniques can also be applied for stock pricing models involving jump-diffusion 

processes as evident in Kou (2005).  Due to the fact that PDE based methods use various 

approximation techniques, they are usually considered as less precise and in many instances 

more complicated in the implementation and calculation of the stock prices, and are therefore not 

nearly as popular as other pricing methods.  The PDE approaches are only briefly mentioned in 

this section.  A more extensive review of PDE approaches involved in the jump-diffusion 

domain will be presented and explained in Section 2.2. 

2.1.2  Lattice Methods 

Lattice methods use discrete-time and discrete-state approximations of differential 

equations to price American options.  These methods are more commonly referred to as m-

nomial trees; e.g. m=2 for the binomial tree method, m=3 for the trinomial tree method, etc.  In 

general, lattice methods are easy to implement for simple models but become much less accurate 

as the complexity of the model increases and are therefore not commonly used.   

Figure 2-3, below shows the structure of the lattice method with m=2, a binomial tree.  

Each point represents a possible stock price level.  The tree starts at period 0 with a single point 

(the initial stock price).  There is then a probability p1 that the stock price increases and a 

probability p2 that the stock price decreases in the next period.  This procedure continues for 

each subsequent period, creating a binomial tree that continuously spreads out at a rate of 2t 

where t is the number of periods within the time horizon.  In the case of a binomial tree, there are 

a total of two possible outcomes for each consecutive step, a trinomial tree has three possible 

outcomes, and an m-nomial tree has m possible outcomes.  As the number of m increases, so do 

the computational requirements at each period.  As Broadie and Detemple (2004) indicated, the 

improvement in pricing accuracy using m>2 does not outweigh the increased computational costs 

via increasing the number of pricing periods.  Broadie and Detemple (2004) also mentioned that 

values of m>2 have not resulted in better overall convergence when the additional computational 

efforts are considered.   

Lattice methods were first proposed for financial engineering applications by Cox et al. 

(1979).  There have been numerous research proposals for lattice methods, however the four 

most widely used lattice approximations are those described in Cox et al. (1979), Jarrow and 

Rudd (1982), Boyle (1986), and Amin (1991).  Each article focuses on a binomial tree and each 
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provides a different means for calculating the probability of the stock price increasing and 

decreasing.  For example, Cox et al (1979) used 12

)(
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 and Amin 

(1991) used that p1=0.5, p2=0.5 at each period.   

 

Figure 2-1:  Binomial Tree 

The popularity of lattice methods is due to its conceptual simplicity and ease of 

implementation.  However, a major problem with this method is that the number of possible 

stock prices is very limited in the initial time periods.  When looking at the first two periods, 

with m=2, there are a total of six possible stock prices – this number increases to 11 possible 

prices with m=3.  Comparing this to stochastic meshes (which is covered in the subsequent 

section), it is quite evident that there is a significant difference in the number of possible stock 

prices in the initial stages which can lead to inaccurate results when using lattice methods.  

Additionally, when comparing lattice methods to Monte Carlo simulation techniques, there is a 

distinct advantage of using Monte Carlo simulation when computational effort versus accuracy is 

considered.  For example, if a simulation of 200 paths is generated and is compared to a binomial 

tree, the simulation has a significant advantage since there are, in essence, 200 possible pricing 

nodes in the first period (compared to two nodes in the first period of the binomial tree).  To 

obtain 200 possible price nodes within the first period using the binomial tree method, the first 

period (∆t) must be split into 100 separate segments.  In other words, it requires a tree in which 

the first period is split up to contain t=100 periods (t=2 is shown in Figure 2-3 above) in order to 

obtain the same number of possible prices as a Monte Carlo simulation with 200 generated paths.  
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It is obvious that Monte Carlo simulation has a distinct advantage when looking at the 

computational effort versus accuracy comparison.   

2.1.3  Stochastic Meshes 

Stochastic meshes are used to price American options by using discrete-time and 

discrete-state approximations and are utilized when closed-form solutions are not obtainable.  

Stochastic meshes can be split up into two distinct methods:  finite difference method and finite 

element method.  In both approaches, a mesh must be created to represent the descretization of 

the time vs. stock price space, as shown in Figure 2.1.  A stochastic mesh is a grid in which each 

point represents a stock price in a discrete time period.  In general, the points within the mesh are 

equally spaced so that the change in time is ∆t = T/N and the change in stock price is ∆S = 

Smax/Q.  As evident in Figure 2.1, below, there is a total of (N+1)(Q+1) points because there are a 

total of N+1 time periods and Q+1 stock prices (DeHaven 2007). 

 

Figure 2-2:  Stochastic Mesh Grid 

As previously mentioned, there are two methods for solving American options using a 

stochastic mesh.  Each of these methods is explained next. 

Finite Differences Method 

 The finite differences method was first presented by Brennan and Schwartz (1977) and 

was later presented in the area of financial engineering by Hull and White (1990), Wilmott 
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(1998), Achdou and Pironneau (2005), and Hull (2006).  Each of these authors use either explicit 

or implicit finite differences methods to provide numerical solutions to PDEs and show that in 

general, the finite differences method is one of the simplest ways to approximate a differential 

equation.  For this reason, the finite differences method is widely used for models and securities 

that are more complex.  This method is based on the expression f(x+b) – f(x+a) which implies 

that the next point is derived from its predecessor using either backward or forward recursion – 

which are two possible ways to solve American options using finite differences methods.  Figure 

2-2 shows the difference in the way these two procedures are followed.  The explicit method (or 

backward recursion) relates the value at time t to the three alternative values at time t+∆t, or as 

shown in the graph time i to time i+1.  The implicit method (or forward recursion) relates the 

value at time t+∆t to three alternative values at time t.  The explicit method is equal to a trinomial 

lattice approach and the implicit method is equivalent to a multinomial lattice (Hull and White 

1990).   

 

Figure 2-3:  Implicit (left) and Explicit (right) Methods 

As DeHaven (2007) and Hull and White (1990) explain, for the finite difference method 

the American put option must satisfy the equation 

 rf
S

f
S

S

f
rS

t

f =
∂
∂+

∂
∂+

∂
∂

2

2
225.0 σ  (2.1) 

where the standard notation for the Black and Scholes model is followed; e.g. r is the risk-free 

interest rate, S is the stock price, and σ is the stock volatility.  Equation (2.2) is the partial 

derivative with respect to the stock price, equation (2.3) is the second derivative with respect to 

the stock price, and equation (2.4) is the partial derivative with respect to time. 
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By substituting each of these 3 equations back into equation (2.1), an equation can be created 

that defines all the interior points for the stochastic mesh using the implicit method.  This 

equation is presented as follows: 

 jijijjijjij ffcfbfa ,11,,1, ++− =++  (2.5) 

where 

 tjtrja j ∆σ∆ 225.05.0 −=  

 trtjb j ∆∆σ ++= 221  

 tjtrjc j ∆σ∆ 225.05.0  −−= . 

The values for the explicit method are obtained in a similar way where the following equation is 

substituted for equation (2.4): 

t

ff

t

f jiji

∆
−

=
∂
∂ − ,1, . 

From this, equation (2.5) is modified so that  

 jijijjijjij ffcfbfa ,1,1,11,1 =++ ++
∗

+
∗

−+
∗  (2.6) 

where 

 2 21
1 0.5 0.5 ,j r ta rj t j tσ∗
+ ∆  = − ∆ + ∆   

 2 21
1 1 ,j r tb j tσ∗
+ ∆  = − ∆    and 

 2 21
1  0.5 0.5 .j r tc rj t j tσ∗
+ ∆  = ∆ + ∆   

 

The stochastic mesh created by (2.5) and (2.6) is bounded by the following boundary conditions 

that are required to retain feasibility: 

1. The value at expiration T is equal to f N,j = max(K – j∆S , 0) 
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2. The value when S=0 is equal to f i,0 = K 

3. The put value is equal to zero when S=Smax 

Comparing the explicit to the implicit method, the explicit method is conceptually 

simpler and is easier to implement.  Additionally, Hull and White (1990) indicate that the 

explicit finite difference method uses 40 to 70 percent as much CPU computation time as the 

implicit method to obtain the same level of accuracy. 

As DeHaven (2007) showed in her research results, the Monte Carlo simulation provides 

a better means of pricing options in regards to price and both computational time requirements 

and memory requirements compared to the finite differences method.  She found that the least-

squares regression method (which will be discussed in detail in Chapter 3 and is a large portion 

of this research) consistently resulted in higher returns than that of the finite differences method.  

DeHaven’s research also shows that the finite differences method has a running time of 

)( 23

MNQO N + , where N is the number of time periods, M is the number of paths simulated, and 

Q represents the number of stock price intervals.  The running time for Monte Carlo simulation 

coupled with least-squares regression is O(NM) where N and M are the same parameters as 

previously stated.  It is obvious that the running time of the finite differences method grows 

much quicker than that of the least-squares regression, indicating a major advantage of Monte 

Carlo simulation coupled with least-squares regression.   

Additionally, DeHaven’s research shows a significant difference between the two 

methods in terms of memory requirements.  She shows that the memory required for least-

squares regression grows in the order of O(M), where M is the number of paths generated, 

whereas the finite differences method grows in the order of O((N+1)(Q+1)), where N is the 

number of time periods and Q is the number of stock price intervals.  Within her discussion, 

DeHaven provides an example of a simulation with 200 paths and 400 time periods in which she 

shows that using least-squares regression requires about 0.74% of the memory required for the 

finite differences method. 

Finite Element Method 

 As previously stated, both of these methods are used to approximate a PDE model when a 

closed form solution is not available.  The difference between these two methods lies in what the 

procedure approximates.  As opposed to the finite differences method, which approximates the 
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actual differential equation, the finite elements method approximates the solution of the 

differential equation.  This method will attempt to either eliminate the PDE or convert it to a 

standard differential equation that can be solved using standard techniques.  This thesis will not 

go into great detail to explain this method due to its unpopularity within the field of financial 

engineering.  This method is not widely used since it is more complicated mathematically, 

requires substantially more memory than other methods and the results obtained do not warrant 

the extra work that is required. 

2.1.4  Monte Carlo Simulation 

The last category of methods for evaluating American options to be presented is using 

Monte Carlo simulation to price American options.  This method replaces the continuous 

exercises region of an American option with discrete time periods, usually denoted by N, which 

is very similar to the previously discussed methods.  Though discrete time periods are created, a 

major difference between Monte Carlo simulation and the other methods presented thus far is 

that the pricing region remains continuous.  This is an enormous advantage over other pricing 

methods and in turn produces very accurate results.  Additionally, Monte Carlo simulation is 

useful in that a closed-form evaluation of the stock prices is not required.  Therefore, Monte 

Carlo methods tend to be used when it is infeasible, if not computationally impossible, to 

compute an exact result with a mathematical formula.  The ability to model systems – which in 

the scope of this research, the systems are the underlying stock prices – stemmed from the use of 

random variates to simulate the stochastic nature of the stock prices.  This method is typically 

used when a model is extremely complex, nonlinear, or involves more than just a few controlling 

parameters.   

As Charnes (2000) explains, these complex models tend to contain high-dimensional 

integrals.  Monte Carlo simulation becomes attractive in these cases due to its flexibility, which 

will be shown within this thesis with the addition of modeling a jump-diffusion process and 

multi-option baskets.  Its ease of implementation and modification and the fact that the error 

convergence rate is independent of the dimension of the problem make the Monte Carlo 

simulation approach a well suited tool for the complex option pricing problems.  Namely, the 

error rate is of the magnitude C/1 , where C is the number of paths generated.  However, the 



17 

 

error rate can also be viewed as a detriment to Monte Carlo simulation because of the fact that 

more replications (paths) must be performed in order to reduce the amount of error in the results. 

Monte Carlo simulation was first applied to the financial markets by Boyle (1977).  

Recently this area of study has exploded within the research community, especially in applying 

Monte Carlo simulation to the pricing of American options.  Due to the complexity of 

determining both the exercise point and the option price, only a handful of closed-form equations 

have been created.  Most of these, however, only work in limited circumstances or under certain 

unrealistic assumptions.  The first to price American options using Monte Carlo simulation was 

credited to Tilley (1993).  However, his methodology was memory intensive and grows in the 

order of O(MN) where M is the number of paths and N is the number of periods.  Chan et al. 

(2003) provide a backward-path generation method to reduce the large amount of storage 

required in Tilley’s model.  Their solution is able to reduce the memory storage to O(M) by 

generating the paths backwards and not storing all of the intermediate stock prices as is the case 

with Tilley’s simulation model.  The research contained within this thesis uses Chan et al.’s 

(2003) algorithm as a framework to price American options.  Please refer to Chapter 3 for 

detailed information regarding Chan et al.’s algorithm.   

In summary, Monte Carlo simulation works by generating M pricing paths of an 

underlying stock, calculates the gains of that path using the traditional valuing system as 

presented in the introduction (dependent on whether the option is a call or a put option), and then 

finds the expected option value discounted to the initial time period.  This discounted present 

value is therefore the estimated price (i.e. the premium) associated with the option.  Generally, 

numerical methods contain an expected value term within the equations.  By generating M paths 

and finding the average option worth of these paths, Monte Carlo simulation is essentially 

creating this expected value through a stochastic sampling technique.  Overall, Monte Carlo 

simulation has grown drastically in popularity due to its ease of implementation and modification 

as well as its accuracy.   

2.2  Modeling of the Jump Diffusion Processes 

As previously mentioned in Chapter 1, the idea of a market where the underlying stocks’ 

prices have the possibility of jumps was introduced by Merton in 1976.  Some researchers have 

proposed jump-diffusion models (Merton, 1976 and Kou, 2002) whereas other researchers have 
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used stochastic volatility models that are beyond the scope of this research.  The stochastic 

volatility models are either too complicated to obtain practical algorithms that are easy to 

implement and provide comparable results or are too simplistic and cannot capture the important 

leptokurtic features of the markets (leptokurtic features will be explained further in a subsequent 

section).  Jump-diffusion models on the other hand are easier to implement, better in capturing 

the market’s phenomena, and are comparative to stochastic volatility models in terms of pricing 

accuracy (Zhu 2005).   

In recent years a multitude of research has been conducted within jump-diffusion models.  

The use of the Poisson distribution for modeling the timing of the jumps is fairly consistent 

among the researchers due to the unique features of the market jumps and because the jumps are 

frequently memoryless and rare (rare is used loosely and means that a jump will not occur 

frequently within a small enough time horizon).  However, the issue of modeling the size of the 

jumps has been continuously debated over the past three decades.  Merton (1976) chose to use a 

log-normally distributed process, Kou (2004, 2008) chose a log-double exponentially distributed 

process, Hanson and Westman (2002) propose a log-uniform process, and yet another research 

group in Zhu and Hanson (2005) propose a log-double-uniformly distributed model.  In each 

case, there are advantages and disadvantages of the underlying distribution used for modeling 

jump-diffusion processes under different circumstances.     

Every jump-diffusion model, despite which underlying distribution is chosen, has two 

distinct disadvantages:  the amount of time that can be modeled (the planning horizon) and 

increased calculation times due to the additional processes being added to the Black-Scholes 

model.  Jump-diffusion models are not good at modeling long term behaviors of the financial 

markets due to the unpredictable nature of the markets in the long run.  Over a short amount of 

time, a researcher/practitioner can predict the likelihood of a jump.  However, this ability to 

predict jumps decreases as the planning horizon increases.  Therefore, jump-diffusion models 

have a short-term domain and are much more accurate, and valid, within this domain.  The 

second disadvantage is the amount of time required to model the jump-diffusion process.  As the 

next two subsections will explain, jump-diffusion models require additional mathematical terms 

be added to the Black and Scholes model.  The result of these additional terms is increased 

computational time and effort. 
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The research contained within this thesis focuses on Merton’s and Kou’s models due to 

their popular acceptances among researchers and their relatively close modeling to the practical 

jump-diffusion behaviors visible within the markets.  The following two sections will explain the 

jump-diffusion models presented by these two researchers. 

2.2.1  Merton’s Model 

As Merton (1976) presented, the change in the stock price can be attributed to two key 

factors:  the “normal” variations in the price caused by supply and demand and the “abnormal” 

variations in the price caused by the arrival of important new information or events that directly 

affect the markets.  The “normal” variations explain the day-to-day changes in the underlying 

stock price and the “abnormal” variations explain the large jumps visible in the markets.  In 

order to model these “abnormal” jumps in the stock prices, he modified the Black and Scholes 

model to include a term that would account for the jumps, as shown in the equations below.  

Equation (2.7) is the original Black and Scholes model and equation (2.8) is the model Merton 

formulated where J(t) is a Poisson process with mean λ and Yi is a sequence of independent 

identically distributed random numbers that follows a standard normal distribution.   

The added term constitutes the jump-diffusion of the market.  The Poisson process, J(t), 

is a counting process for the number of jumps in a year and Yi is the size of the price jump.  As in 

the original Black and Scholes model, µ is the drift parameter, σ is the stock volatility, and W(t) 

follows a standard Brownian motion. 
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In Merton’s model, Yi follows a normal distribution and has a normal density of  
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where µ’ and σ’ is the mean and standard deviation of Y (Kou 2008). 

The stochastic differential equations (SDE) in equation (2.7) and equation (2.8) can be 

solved to formulate an equation to calculate the stock price at a given time t.  Equations (2.10) 
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and (2.11) show the solutions to these two SDEs where So is the initial stock price and S(t) is the 

price of the stock in time period t. 
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Merton’s model is beneficial in that it provides a means for explaining a portion of the 

extreme jumps visible in the stock market that the Black and Scholes model does not explain.  

However, one of the key disadvantages of this model can be seen when analyzing the jump size 

term, Yi.  According to Merton (1976) the jump size, Yi, follows a standard normal distribution 

which is symmetric and bell-shaped; however, Kou (2008) showed that this distribution does not 

always realistically represent the jump sizes seen in the stock markets.  As explained in the 

subsequent section, Kou shows that Yi is better explained by the double exponential distribution. 

Since Merton proposed the idea of jumps within the markets, various researchers have 

studied different methods of pricing options with a jump-diffusion process.  Some of these 

researchers include Amin (1993) who extended the binomial method to handle jumps, Zhang 

(1997) who developed extensions for the PDE finite difference method using variational 

inequalities to handle jump-diffusion models, Laprise et al (2006) provides an approximation 

that prices an American option based on the price of a European call option, and Feng and 

Linetsky (2008) who proposed a new high-order time discretization scheme for the partial 

integrodifferential equation (PIDE) based on the extrapolation approach to the solution of 

ordinary differential equations (ODEs).  These are just a few examples of research that extends 

on Merton’s model to price various types of options.   

2.2.2  Kou’s Model 

The underlying model proposed by Kou (2002) is identical in notation to Merton’s 

model.  However, Kou (2002) makes one major modification to the pricing formula:  instead of 

Yi following a standard normal distribution, Kou believes that Yi actually follows a double 

exponential distribution.  Under this model, the asset price S(t) is given by   
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where {Vi} is a sequence of independently identically distributed nonnegative random variables 

such that Y=log(V) has an asymmetric double exponential distribution with density of   

 }0{22}0{11 1)exp(1)exp(~)( <≥ +− yyY yqypyf ηηηη  and  (2.13) 
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Here, p and q represent the probability of positive and negative jumps, respectively, p≥0, q≥0, 

and p + q = 1.  The parameters 1/η1 and 1/η2 are the means of the two exponential distributions 

and as in Merton’s model, all random numbers, J(t), W(t), and Yi, are assumed to be independent.  

Additionally, it is assumed that η1 > 1 to ensure that E[V] > ∞ and  η2 > 0. 

Kou (2008) explained his rationale behind the distribution change in his paper published 

in 2008.  By looking at a histogram of the normalized daily returns of the S&P 500 index from 

January 2, 1980 to December 31, 2005, it is evident that the histogram contains a high peak near 

the mean value and two heavy tails when compared to the normal distribution.  These two 

features combined are known as the leptokurtic feature, which means that the kurtosis of the 

distribution is very large (Kou 2008).   The double exponential distribution (and others such as 

the Laplace distribution and Logistic distribution) is a member of the leptokurtic distribution 

family and produces the leptokurtic features.  In a financial sense, the kurtosis is reviewed when 

looking at the historical returns of a stock and the variance of the dataset.  Leptokurtic 

distributions usually have low variance because the returns are usually close to the mean.  Many 

investors will structure their portfolios to produce the leptokurtic feature in order to reduce the 

possibility of having large, irregular swings in stock prices.   

Kou (2008) calculated the estimated kurtosis and skewness of the sample data from the 

S&P 500 and found that the kurtosis (K) is approximately 42.23 and the skewness (S) of the 

distribution is −1.73.  Any value for K larger than 3 (a value of 3 indicates a normal distribution) 

is considered a leptokurtic distribution.  This dataset, and many other index price histories, is 

obviously a leptokurtic distribution with K = 42.23.  The skewness indicates that the dataset has 

asymmetric tails since it is not equal to zero.  A normal distribution has a skewness equal to zero.  

The negative skewness signifies that the S&P 500 dataset has a heavier left tail than right. 

The fact that the skewness is not zero and the kurtosis is larger than 3 shows two things: 

(a) the returns do not follow a normal distribution as Merton suggested, and (b) the benefit of 
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using the double exponential distribution since this distribution can model the asymmetric 

attributes of the data.  Because of these facts, Kou believes the double exponential distribution is 

suitable for modeling the returns, and therefore the prices, of options.  This is due to the double 

exponential distribution being a leptokurtic distribution that can be configured to contain 

skewness since it is made of two different exponential distributions with the ability to have 

different means.   

The ability to have different means allows the positive and negative jump sizes to be 

asymmetric.  Thinking about this in a non-mathematical sense when an announcement is made 

on Wall Street, investors’ perspectives can be split into two groups: (a) those who feel that the 

announcement is good, causing the stock prices to jump upward, and (b) those who feel that the 

announcement is bad, causing the stock prices to jump downward.  However, the number of 

investors in each group will not always be equally divided and therefore a symmetrical 

distribution may not be an ideal description of the resulting market jumps.  Under such 

circumstances, the use of the double exponential distribution may be a better choice to model the 

jump sizes.  If more investors feel that the announcement of new market information is good, the 

double exponential distribution can model this (with the parameters of η1=25 and η2=50 for 

example) by making the size of the upward jumps larger than that of the downward jumps.  If the 

majority thinks the announcement is bad, then the parameters can be switched, making the 

downward jump sizes larger.  Using a normal distribution, as in the case of Merton’s model, 

assumes that the two aforementioned groups are equal in size and that the announcement has the 

same effect on those feeling the market information was good and those that feel the 

announcement was bad.  If this fact is true, the double exponential distribution can model the 

symmetry; however, if it is not true the double exponential distribution can also model the 

asymmetrical features. 

However, the main problems associated with the double exponential distribution lie in the 

amount of time required and the number of mathematical functions that must be evaluated to 

obtain a solution as well as the fact that the double exponential distribution contains 

exponentially small tails and does not have bounded jump amplitudes, which according to Zhu, 

does not accurately model real market data (Zhu 2005).  Contrary to this thought, the fit of the 

tails is extremely dependent on the data that is being fitted.  So in one instance, the double 

exponential distribution will not be the best fit distribution and in other cases it will.   
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Within Kou’s (2004, 2008) research, he provides methods for pricing four different types 

of options with the double exponential jump-diffusion model.  In this paper, he provides 

formulae and approximation algorithms to price finite-time horizon American options, loopback 

options, barrier options, and finally perpetual American options.  For the finite-time horizon 

American options, Kou (2004, 2008) formulated two different approximation algorithms to price 

these options.  The following subsections present his approximation algorithms.  

2.2.2.1  Quadratic Approximation Algorithm 

The first of Kou’s (2004, 2008) approximation algorithms is the quadratic approximation 

algorithm.  This approximation algorithm uses the price of a European option with two 

additional terms to approximate the price of an American option.  In particular, the algorithm is 

as follows: 

Quadratic Approximation: 

The price of an American put option with maturity t and strike price K can be approximated by 

the following function: 
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Please refer to Appendix A for the mathematical derivation of β1, β2, β3, β4.  These betas are the 

four roots of the equation G(x) = α where G(x) is part of the moment generating function.  

Namely,  
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where ζ is equal to equation (2.14) and δ is equal to the dividend rate. 

2.2.2.2  Piecewise Exponential Approximation 

 The second of his approximation algorithms is the called the piecewise exponential 

approximation algorithm, extending the research performed by Ju (1998), Carr et al. (1992), 

Gukhal (2001) and Pham (1997).  This approximation algorithm also uses the price of a 

European put option and a few additional terms to approximate the price of an American put 

option.  This approximation algorithm is given by: 
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where ),,( TtSP tE is the price of the European put option, *
SS  is the early exercise boundary at 

time s.  If the stock price falls below *SS  at time s, then it is optimal to exercise immediately.  

The integrals represent the present value of the interest accrued on the strike price in the exercise 

region, the present value of the dividends lost in the exercise region, and finally the rebalancing 

costs due to the jumps from the early exercise region to the continuation region.  Kou (2008) 

goes into further detail regarding the effects this term has on the overall option price.  Since the 

research contained within this thesis focuses more on the first approximation algorithm 

presented, this additional detail is not presented.   

Other researchers have utilized or extended on Kou’s double exponential model for 

pricing options.  A few examples include Quittard-Pinon and Randrianarivony (2007) and Feng 

and Linetsky (2008). 
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2.3  Copulas 

One of the key aspects of analyzing a small group of stocks, known as a basket, is the 

correlation between the stocks in question.  The use of copulas to model this correlation has 

grown in recent years.  Mathematically, a copula is a function that allows the combination of 

several univariate distributions to obtain a joint distribution with a certain dependence structure 

from the correlation (Dorey et al.).  Sklar’s theorem, which is based on a two-dimensional copula 

but can be extended to an n-dimensional copula, is the foundation for copulas.  Sklar’s theorem 

is as follows (Dorey et al.): 

Sklar’s Theorem 

Let FXY be a joint distribution with marginals FX and FY.  Then there exists a function 

C:[0,1]2
�[0,1] such that 

 FXY(x,y) = C(FX(x),FY(y)) (2.20) 

If X and Y are continuous, then C is unique; otherwise, C is uniquely determined on the (range of 

X)*(range of Y).  Conversely, if C is a copula and FX and FY are distribution functions, then the 

function FXY is a joint distribution with marginals FX and FY. 

Sklar’s Theorem can be extended to show that the n marginal distributions and the 

dependence structure can be separated and the copula function will completely describe the 

dependence between each of the n variables.  Copulas are used as a way to link n univariate 

distributions to form a multivariate distribution.   

In layman’s terms, a copula works in the same manner as creating a random variate using 

the CDF to obtain a sample from the PDF of a distribution.  For example, starting with a random 

value obtained from a uniform U(0,1) distribution one can obtain a random normal variate by 

inverting the CDF of the normal distribution at that U(0,1) value.  The value of the CDF will 

then be the randomly generated number.  This process will work for any distribution and is 

exemplified using a normal distribution for this example.  Figure 2-4 shows how the process 

works.  The horizontal line is the U(0,1) number that is used to evaluate the CDF of the normal 

distribution.  The random variate is then the number that corresponds to this point on the x-axis; 

in this case, the U(0,1) is approximately 0.7 and the random variate that is generated is 

approximately 0.5.  Please note that this is the theoretical process of generating a random variate.  

The computer implementation of this process can vary depending on the approximation 

algorithm that is chosen. 



26 

 

 

 

Figure 2-4:  Random Variate Generation 

Copulas operate in a similar manner, extending the procedure to include more than one 

distribution.  However, they differ in that the CDF and PDF are probabilistically linked and are 

not necessarily linked in a straight-line manner.  In the previous example the U(0,1) and the 

random variate are linked in a linear manner.  However, in the case of a copula – a multivariate 

normal distribution, for example – the two values are not linearly related due to the 

multidimensional aspect of the copula (Dorey et al.). 

As a formal definition: 

Definition 

A copula is a function C:[0,1]2�[0,1] which satisfies: 

(a) For every u,v in [0,1], C(u,0) = C(0,v) = 0 and C(u,1) = u and C(1,v) = v; 

(b) For every u1, u2, v1, v2 in [0,1] such that u1 ≤ u2 and v1 ≤ v2,  

C(u2,v2) - C(u2,v1) - C(u1,v2) + C(u1,v1) ≥ 0. 

Some of the most important copulas being utilized within financial modeling are as follows 

(Bluhm 2007): 

Gaussian Copula 

The n-variate Gaussian copula with linear correlation matrix Γ is 

C(u1,u2, …, um) = Nm[N-1[u1], …, N-1[um]; Γ] 

Random Normal Variate 

R
a

n
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Figure 2-5: Gaussian Copulas 

where N[•] is the standard normal function, N-1[•] is its inverse, and N[…;Γ] is the multivariate 

Gaussian distribution function with correlation matrix mjiij ≤≤=Γ ,1)(ρ .  Positive definite matrices 

of Γ can be decomposed using Cholesky decomposition (explained further in section 6.1.1 to 

obtain an n x n matrix A where Γ = AAT.  Clearly A is a lower triangular matrix where the values 

represent the covariance matrix between the n variates.  With this, define Z = [Z1, …, Zn] where 

each Zi ≅ N(0,1) and are independent, the Gaussian copula will be of the form 

µ + AZ ~ N(µ, Γ). 

Figure 2-5 below provides two examples of a Gaussian copula created from code written 

in C++.  In each case n = 2, meaning there are two univariate distributions in each chart.  The 

chart on the left is a Gaussian copula with Gaussian marginals, and the plot on the right is a 

Gaussian copula with Student-T marginals.  In each case, the correlation between the two 

distributions is equal to 0.5 (which is why the data points are rotated approximately 45 degrees). 

When looking at the plots above, imagine the distributions on both the x- and y-axis.  

Due to the shape of the Gaussian (normal) and Student-T distributions, the resulting copula is 

extremely dense near the origin and then fades out.  In the case of the Student-T marginals, it is 

evident that the tails spread out to form a bowtie shaped copula.  This spread is due to the fatter 

tails that are evident in the Student-T distribution as compared to the Gaussian distribution.  

These two examples show how the copula inherits the properties of the marginal distributions 

and combines them to produce a joint-distribution.   

Student-T Copula 

Another very popular type of copula is the Student-T copula.  The n-variate Student-T copula 

with linear correlation matrix Γ is 
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Figure 2-6:  Student-T copula 

C(u1,u2, …, um) = )];[],...,[( 1
1

1 ΓΘΘΘ −−
mdd uu  

where Θ  is the multi-variate Student –T distribution function with d degrees of freedom and   

Θ -1 is the inverse of the function and Γ is the correlation matrix as before.  Again, the 

correlation matrix can be decomposed using Cholesky decomposition to obtain a lower triangular 

covariance matrix, A.  A Student-T variate with mean µ can be represented as 

ZX A
S

v
   += µ  

where S ~ χ2 and Z  = [Z1, …, Zn] where each Zi ≅ N(0,1) and are independent (independence is 

also assumed between S and Z).  Student-T copulas are beneficial in that they are very similar to 

the Gaussian copula but provide thicker tails than that of the Gaussian. 

 The following figure provides two examples of the Student-T copula.  Again, each chart 

contains two univariate distributions in each chart.  The chart on the left contains Gaussian 

marginals and the chart on the right contains Student-T marginals.  Again, the marginals have a 

correlation of 0.5.   

Each of these copulas can be used with different marginals.  For example, the most 

common copulas are the following:  Gaussian copula with Gaussian marginals, Gaussian copula 

with Student-T marginals, Student-T copula with Student-T marginals, and finally the Student-T 

copula with Gaussian marginals, all of which were shown in Figures 2.5 and 2.6.  Copula 

functions have some explicit advantages that make them a preferable choice for multivariate 

simulation.  Namely, as Srinivas et. al (2006) explains, copulas are beneficial in the following 

ways:  
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1. Copulas provide a means to simulate multivariate distributions from dependent random 

univariates. 

2. Copulas provide a means of separating marginals from the dependence structure.  This 

reduces the study of multivariate distributions to a study of multivariate dependence 

structure. 

3. Copulas remove the problems associated with linear correlation coefficients in 

conventional simulations. 

The research contained within this thesis will utilize copulas to price baskets where the options’ 

underlying assets undergo a jump-diffusion process. 
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CHAPTER 3 - SIMULATING AMERICAN OPTIONS WITH 

JUMP DIFFUSION 

This chapter introduces the main objective of this thesis: pricing American options with 

Monte Carlo simulation.  This chapter begins by presenting background information regarding 

the use of least-squares regression to price American options.  The subsequent sections extend on 

this background knowledge to include the modeling of the jump-diffusion process and explain 

the relationship each input parameter (independent variable) has with the simulated stock prices.   

3.1  Background on Least-Squares Regression 

The use of the least-squares regression to estimate the expected value of continuation for 

an American option was first introduced by Longstaff and Schwartz (2001).  Their proposed 

method uses backward analysis to determine whether or not the option would be exercised in the 

given period by comparing the immediate profit upon exercising and the expected profit of 

continuing to hold the option.  The method begins by simulating numerous sample paths from 

the initial time period until the final period.  At this point, each of the sample paths are analyzed 

to determine if the option should be exercised, noting the expected value of each path if it is 

continued to be held, and proceeding on to analyze the previous time period to determine if the 

path is in-the-money.  In each instance that a path could be exercised – or in other words, for 

each path that is in-the-money – a quadratic regression, shown in equation (3.1), is performed 

that relates the continuation value with the current value of the option if exercised immediately.  

The method  

 2
210 ** exerciseexerciseContinuing βββ ++= . (3.1) 

continues by noting the maximum value for each path, determining whether that value is from 

exercising immediately or continuing and proceeds to the next time period, repeating the process 

until the initial time period is reached.  Once all periods are analyzed, the maximum value for 

each path is analyzed to determine the average value of the option, indicating the expected worth 

(or fair market price) of that option.  The method proposed by Longstaff and Schwartz (2001) is 
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a very efficient algorithm in that the regression is only performed when the options are in-the-

money.  This prevents any unnecessary calculations and ultimately improves the running times.   

 Chan, et al. (2003) proposed a Monte Carlo simulation method for pricing American 

options.  The algorithm they proposed is very similar to that of Longstaff and Schwartz (2001); 

however, instead of forwardly generating each of the paths and then working backwards, Chan et 

al generates the paths backwards.  Namely, equation (2.10) is modified and is defined as: 
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where ε ~ N(0, 1). 

 A major benefit of this algorithm is that each of the random numbers required during the 

simulation can be obtained from the initial starting seed value.  This allows the random number 

set to be regenerated from the initial seed value as the algorithm progresses backwards.  In this 

case each random number is generated twice, but significantly reduces the amount of storage 

required to perform the simulation since each random number (and resulting stock prices) need 

not be stored.  The simulations used within this thesis utilize Chan, et al’s algorithm.  The 

following section provides the notation of the algorithm and the algorithm itself. 

3.1.1  Notation & Algorithm 

The following notation, in addition to a few variables to be introduced in a subsequent 

section, will be used for the remaining portions of the thesis: 

 S0 ≡ Initial stock price 

 r  ≡ Risk-free interest rate 

 K ≡ Strike price 

 σ ≡ Stock volatility 

 N ≡ Number of time periods  

 ∆t ≡ Length of each time period (in years) 

 M ≡ Number of paths 
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 T ≡ Expiration time 

  Zi ≅ Independently identically distributed from N(0, 1) for i = 1, 2, …, N 

 11 +−− +++= iNNNi ZZZ Kω  

The algorithm given in Chan et al. (2003) is now explained in a step-by-step procedure as 

explained by DeHaven (2007).  The research contained within this thesis utilizes the least-

squares approach of Longstaff and Schwartz (2001) with the addition of backwardly generating 

paths of Chan et al (2003).  DeHaven (2007) presents an algorithm as follows: 

Step 0. System Inputs: 

(a) Initial stock price (S0) 

(b) Risk-free interest rate (r) 

(c) Strike price (K) 

(d) Stock volatility (σ) 

(e) Number of time periods (N) 

(f) Number of paths (M) 

(g) Length of time horizon in years (T) 

(h) Call or put option 

 

Step 1. Initialization: 

(a) Set N
Tt =∆  

(b) Set the seed for the initial path to any positive integer. 

(c) Generate the random variate Zj ~ N(0,1) for each path j = 1, 2, …, M 

and compute their sum ωN. 

 

Step 2. Compute SN for the expiration date T using: 

)][exp( 2
2

1
0 ii ttriSS ωσσ ∆+∆−= . (3.3) 

 

Step 3. Compute the cash flows for each path using one of the following: 







−

−
=

option call   0} ,)(max{

optionput    0} ,)(max{
)(

KtS

tSK
jP

j

j
 (3.4) 
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Step 4. Backup one time period; set 1−= ii . 

(a) Using the same seed sequence, extract ZN-i+1 and compute 

11 +−− −= iNii Zωω . 

(b) Compute Si-1 by using equation (3.3). 

(c) Extract the next seed value. 

 

Step 5. Compute if the option is in the money for each path j.  For each path: 

(a) Let X be the vector containing asset prices Si and Y be the vector 

containing the corresponding cash flows received at i+1 time period, 

which have been discounted backward to the ith time period. 

(b) Regress using least-squares approach to estimate the value of 

continuing using equation (3.1).  This will result in the conditional 

expectation function [ ]XYE . 

(c) Compute the value of continuing using [ ]XYE  and the value of 

immediately exercising using equation (3.4). 

(d) Determine whether to exercise the option immediately or hold the 

option until the next time period, based on which gives the higher 

value.  Establish the current cash flows conditional on not exercising  

prior to time period i using: 

[ ]


 ≥

=
otherwise                 0

E flowcash   if    flowcash 
)(

XY
jCi  (3.5) 

(e) Compute the present value of the cash flows Pi(j) given by: 

)()()( jPejCjP i
tr

ii
∆−+= . (3.6) 

 

Step 6. If at time period zero stop, else go back to Step 4. 

 

DeHaven (2007) provides four examples illustrating the correctness of the algorithm.  In 

each instance the spread in the graphs expand as time progresses, confirming the fact that it 
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accurately approximates Brownian motion and the Black and Scholes model.  Please refer to her 

thesis for the details of the examples and the graphs that correspond to her examples. 

3.2  A Jump-Diffusion Simulation Model 

Building on the least-squares Monte Carlo simulation, the next step is to include the 

jump-diffusion process into the algorithm.  As previously mentioned in Chapter 2, when a stock 

follows a jump-diffusion process, the stock price has the potential to increase or decrease by an 

unusually large amount.  Figure 3-1 shows a simulated stock price that contains two major jumps 

within the simulated time horizon.   
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Figure 3-1:  Simulated Path with Jumps 

The jump frequency of a simulated path follows a Poisson distribution with a mean of λ.  

As one might expect, not all simulated paths contain jumps within the time horizon and each 

jump varies in magnitude.  Figure 3-2 illustrates an example setting of 10 simulated paths in 

which only a few paths contain major or minor jumps in the stock price; the two major jumps 

within the paths (one upward and one downward) are labeled.  As proposed in Kou (2002), the 

jump sizes follow a double exponential distribution with means of 1/η1 and 1/η2.  Therefore, the 

likelihood and jump sizes are dependent on the parameters λ and η1,η2, respectively.  Larger 

values of λ result in more frequent jumps and larger values of η1 or η2 result in jumps of smaller 

magnitude. 

The C++ code that is created to perform the Monte Carlo simulations is explained in the 

subsequent sections.  The following sections detail the addition of jump-diffusion to the 
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algorithm presented in Chapter 3.1, as well as provide the results of the Monte Carlo simulation.  

This section begins by providing an overview of the additional parameters and variables used 

within the new C++ code.   

 

 

Figure 3-2:  Simulated Paths 2 

3.2.1  Notation 

The notation used within the jump-diffusion model is identical to that of the least-squares 

regression algorithm presented in section 3.1.  However, a few additional variables are added to 

this algorithm to incorporate the jump-diffusion into the pricing algorithm.  The following 

variables are required for this algorithm: 

 Jj(t)  ≅ independent Poisson process with rate λ 

   η1 ≡ parameter of the double exponential distribution for the size of an upward 

jump 

   η2 ≡ parameter of the double exponential distribution for size of a downward 

jump 

   Vi ≅ Independently identically distributed from double exponential distribution 

with means of 1/η1 and 1/η2 

   p ≡ The probability of an upward jump 

  1- p ≡ The probability of an downward jump 
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3.2.2  Updated Algorithm 

The updated algorithm is also very similar to that explained in the previous section.  The 

following is a step-by-step process to price American options where the underlying stock 

undergoes a jump-diffusion process. 

Step 0. System Inputs: 

(a) Initial stock price (S0) 

(b) Risk-free interest rate (r) 

(c) Strike price (K) 

(d) Stock volatility (σ) 

(e) Number of time periods (N) 

(f) Number of paths (M) 

(g) Length of time horizon in years (T) 

(h) Call or put option 

(i) Exponential Distribution parameters (η1 and η2) 

(j) Probability of Upward Jump (p) 

(k) Rate of Poisson Process (λ) 

 

Step 1. Initialization: 

(a) Set N
Tt =∆  

(b) Set the seed for the initial path to any positive integer. 

(c) Generate the random numbers Zj for each path j = 1, 2, …, M  

(d) Generate the random numbers Jj(t) for each path j = 1, 2, …, M and 

calculate the Jump Size for each period i using the equation: 

∏
=

=
)(

1

tJ

n
ni VV , where V follows the double exponential distribution 

Step 2. Compute SN for the expiration date T using: 

iiii VZttrSS *)]exp([ 2
2

1
1 ∆+∆−= − σσ . (3.7) 

*Note:  If a jump is not present in period i, Vi = 1. 

 

Step 3. Compute the cash flows for each path using one of the following: 
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



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=

option call   0} ,)(max{
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Step 4. Backup one time period; set 1−= ii . 

(a) Using the same seed sequence, extract ZN-i+1. 

(b) Using the same seed sequence, extract J(t)N-i+1 and compute its 

corresponding jump size Vi-1. 

(c) Compute Si-1 using: 

11
2

2
1

1 /)]exp([/ −−− ∆+∆−= iiii VZttrSS σσ . 

(d) Extract the next seed value. 

 

Step 5. For each path j, if the option is in-the-money, compute: 

(a) Let X be the vector containing asset prices Si and Y be the vector 

containing the corresponding cash flows received at i+1 time period, 

which have been discounted backward to the ith time period. 

(b) Regress using the least-squares method to estimate the value of 

continuing using equation (3.1).  This results in the conditional 

expectation function [ ]XYE . 

(c) Compute the value of continuing using [ ]XYE  and the value of 

immediately exercising using equation (3.8). 

(d) Determine whether to exercise the option immediately or hold the 

option until the next time period, based on which gives the higher 

value.  Establish the current cash flows conditional on not exercising  

prior to time period i using: 

[ ]


 ≥

=
otherwise                 0

E flowcash   if    flowcash 
)(

XY
jCi  (3.9) 

(e) Compute the present value of the cash flows Pi(j) given by: 

)()()( jPejCjP i
tr

ii
∆−+= . (3.10) 
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Step 6. If at time period zero stop, else go back to Step 4. 

 

This algorithm uses Chan’s (2003) memory reduction technique of not storing the 

intermediate prices.  This method is extremely beneficial in that it requires far less memory than 

other algorithms that store each of the intermediate stock prices for each of the paths in the 

simulation.  The only disadvantage of this process is the increase in computational requirements 

since each seed value must be calculated twice.  However, as the number of paths or the number 

of periods being analyzed grow, the savings in memory outweigh the costs in computational 

power, especially since computers are continually advancing in their computational capabilities. 

3.2.3 Characteristics of Simulation Parameters 

Each of the input parameters associated with the least-squares model has its own effect 

on the pricing of options.  This section gives a brief description of each of the parameters and 

shows how each parameter affects, if at all, the movements of the simulated stock prices. 

Table 1:  Parameter Descriptions 

Parameter Symbol Description 

Number of Periods N Number of segments the planning horizon is 
split into  

Period Length ∆t Amount of time (in years) for each of the N 
periods 

Strike Price K Price in which the underlying stock is 
bought/sold at the time of exercise 

Stock Volatility σ Natural variation of the underlying stock 

Jump Frequency λ The average number of jumps in a given year 

Jump Size  ηηηη 1/η is the average jump size when a jump 
occurs 

 

The following eight graphs demonstrate the effects of the input parameters.  Each of the 

parameters is graphed two times, once with a high value and once with a low value.  In each 

graph, paths are simulated for a planning horizon of either one half of a year (Figures 3-3 and 3-

4) or one quarter of a year (remaining four graphs).  The difference between the first two 

parameters, N and ∆t, can be seen by comparing Figures 3-3 and 3-5.  As the number of periods 

N increases, the number of possible exercise points evaluated increases.  As a result, the exercise 
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boundary that is required for evaluating American options becomes increasingly more complete 

resulting in better accuracy of the estimated option value.  Just like m-nomial trees (which was 

previously discussed in Chapter 2), Monte Carlo simulation uses discrete time periods to 

evaluate the worth of the option.  The value N is the number of discrete time periods that the 

planning horizon is split into in which the option is evaluated.  Therefore, the more times the 

option is evaluated the more accurate the pricing simulation should be.  The second parameter, 

∆t, is directly related to the value of N.  Namely, if T is the planning horizon (in years) then 

N
Tt =∆ .  Intuitively, this means that the more periods in which the planning horizon is split 

into, the less amount of time within each period.   

The third parameter (the option strike price) is important for the pricing of options; 

however, the value of K does not influence the stock price movements.  The strike price merely 

determines how much profit is made given a certain stock price.  Figures 3-3 and 3-4 show the 

effect σ has on the movements of the stock price.  Naturally as time passes the volatility of the 

stock prices increase, which is why the spread of the prices increases as the periods, or time in 

other words, progress.  However, the amount of spread is dependent on the magnitude of σ since 

the stock prices spread in the order of t∆σ .  Namely, stocks with larger volatilities create 

wider spreads than stocks with smaller volatilities, which is quite evident by comparing Figures 

3-3 and 3-4.   

The next set of graphs exemplifies the result of having larger values of λ, the average 

number of jumps in a year.  As λ increases, the number of jumps becomes more frequent 

resulting in slightly more variation in the stock prices.  Notice the difference between periods 1 

and 3 in Figures 3-5 and 3-6.  The increase in λ caused more jumps which in turn increased the 

volatility between these two periods.  In other words, the increased volatility is caused by the 

additional number of outliers in the graphs.  The increased number of jumps causes more outliers 

which in turn causes higher levels of volatility.   

The last set of graphs, Figures 3-7 and 3-8, demonstrate how the average jump size 

affects the stock prices.  Notice that since common random numbers were used to produce these 

graphs, jumps occur for the same paths at the same period for each of the two graphs.  The 

difference between the two graphs is that Figure 3-8 contains much larger jump sizes (on average 

250% larger) than that of Figure 3-7.  The larger jumps cause the outliers to spread out by larger 
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amounts.  This fact can be seen by looking at the amount of paths that are outside the dense, 

inner section of Figures 3-7 and 3-8.  Since the jump sizes are larger in Figure 3-8, this 

corresponds to a wider spread of the paths and therefore a few outlying paths.   
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Figure 3-3:  Input 1  
(So = 100, σ = 0.2, λ = 0, ηηηη1 = 50, ηηηη2 = 50) 
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Figure 3-4:  Input 2  
(So = 100, σ = 0.3, λ = 0, ηηηη1 = 50, ηηηη2 = 50) 
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Figure 3-5:  Input 3  
(So = 100, σ = 0.2, λ = 3, ηηηη1 = 50, ηηηη2 = 50) 
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Figure 3-6:  Input 4  
(So = 100, σ = 0.2, λ = 10, ηηηη1 = 50, ηηηη2 = 50) 
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Figure 3-7:  Input 5  
(So = 100, σ = 0.2, λ = 3, ηηηη1 = 25, ηηηη2 = 25) 
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Figure 3-8:  Input 6  
(So = 100, σ = 0.2, λ = 3, ηηηη1 = 10, ηηηη2 = 10) 
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3.3  Chapter Conclusions 

This chapter presented the least-squares algorithm that was used to simulate American 

options with jump-diffusion as well as the general characteristics of the simulation parameters.  

As previously highlighted, the Monte Carlo simulation for this portion of the thesis utilizes 

Chan’s (2003) memory reduction technique.  This chapter detailed the least-squares Monte Carlo 

simulation model proposed by DeHaven (2007), which included the memory reduction 

techniques presented by Chan (2003), and how this simulation model can be modified to 

incorporate the jump process into the pricing of American options.  This chapter also presented 

how each of the input parameters has an impact on the general dynamics of the stock price 

movements.  Figures 3-3 through 3-8 presented example stock paths that show the effects of the 

standard deviation (σ), the jump frequency (λ), and the average jump sizes (η1 and η2). 
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CHAPTER 4 - GENERATING SIMULATION DATA 

The following sections tests the correctness of the random variate generators used within 

the simulation.  In particular, this section presents the tests performed on each part of the 

simulation including the random variate generators for the uniform and normal distributions, as 

well as the copulas for the multi-option basket simulation.  Chapter 6 extends the simulations 

presented in the previous chapters, however, the validation of the simulation inputs are 

summarized within this chapter.  The rest of this chapter is divided into three sections; one 

section for each of the distributions and one section for copulas. 

4.1  Uniform Random Number Generator 

The uniform random number generator used within this thesis is called a linear 

congruential generator (LCG) that was first introduced by Lehmer (1951) and was programmed 

using the C++ coding language.  The random numbers (Zi) are defined by the recursive formula 

 ) mod)(( 1 mcaZZ ii += −  (4.1) 

where every variable except Zi is a nonnegative integer (Law 2000).  When selecting values for 

each of these variables, a few considerations must be made.  In particular, the selection of values 

is very important to maximize the number of random numbers that can be generated before it 

cycles.  This is a major problem with the linear congruential generators.  The size of the period, 

which is the number of random variates created before cycling, is directly related by the value of 

m.  Therefore, the value of m should be very large.  According to Law (2000) the LCG reaches 

full period if the following are true: 

1. The only positive integer that exactly divides both m and c is 1. 

2. If q is a prime number (divisible by only itself and 1) that divides m, then q divides 

a−1. 

3. If 4 divides m, then 4 divides a−1. 

The values that are used throughout this research are a = 100801, c = 103319, and m = 

4294967295.  The three statements above are true for these values, indicating that the LCG 

reaches a full period before cycling. 
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 To test the randomness of this generator (and to see if the values for a, c, and m were 

wisely chosen), ten thousand random variates were generated and tested using a variety of 

different tests.  Namely, the random variates were tested using the chi-square test and four 

different tests that inspect the runs created (a run is merely another name for a subset of the 

random variates produced) by the LCG.  The remaining parts of this section will explain each of 

these tests and provide the results of each. 

Chi-Square Test 

 The chi-square test is used to check the uniformity of the random variates to see if they 

are uniformly distributed between 0 and 1.  This process works by splitting the interval of [0,1] 

into k subintervals where the size of k is determined by the number of samples (N) being tested; 

in these tests, N = 10,000.  Once the value of k is determined, the next step is to create a 

histogram of the data to determine the number of random variates within each of the k intervals, 

which is assigned to fj. 

In order to calculate the chi-square statistic, the following equation is used: 
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kχ . (4.2) 

This will have an approximate chi-square distribution with k-1 degrees of freedom (d) under the 

null hypothesis that the random numbers are identically independently distributed.  If the 

calculated value is greater than the value given in the chi-square table for the given degrees of 

freedom, then the null hypothesis is rejected.  In a mathematical sense, if 2
1,1

2
αχχ −−> k then the 

null hypothesis is rejected and the random variates are not identically independently distributed 

which indicates that the random number generator is not a sufficient generator.  Otherwise, we 

fail to reject the null hypothesis that the random number generator produces identically 

independently distributed variates. 

Runs Up and Down Test 

The runs up and down test checks to see how many of the variates consecutively run up 

and down.  In many cases, especially with ineffective generators, one sees major runs in the 

numbers where a large amount of consecutive values are increasing and then consecutively 
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decreasing.  The number of runs up and down of a good random number generator should be 

normally distributed with a mean and variance of  

3

12 −= N
aµ  and 

90

29162 −= N
aσ ,  

where a is the total number of runs (number of runs up and number of runs down).  Since a 

should follow a normal distribution, the standard normal table and test statistics can be used to 

verify that a truly follows a normal distribution.  The test statistic is calculated using the standard 

test statistic equation with the values of µa and σ a above.  Namely, the test statistic is calculated 

using the equation 

 
a

aa
Z

σ
µ−

=0 . (4.3) 

Once Z0 is calculated, the null hypothesis can be examined.  In this case, the null 

hypothesis is that a is statistically normal.  Failure to reject this hypothesis occurs 

when 2/02/ αα zZz ≤≤− , where α is the level of significance.  In effect, this test uses a two-sided 

test with an α/2 level of significance in each tail.  The critical values used in this research are 

−1.96 and 1.96.  If the test statistic is between these values, then it fails to reject the null 

hypothesis that the numbers are normally distributed.   

Runs Above and Below the Mean Test 

This test is also known as the sign test because it checks the sequence of numbers above 

(+) and below (−) the mean.  This test is essential because the runs up and down test may not 

adequately assess the independence of the random numbers.  The runs above and below the mean 

test utilizes the normal distribution test statistics to determine if the numbers are independent.  In 

the equations below n1 and n2 are the number of runs either above or below the mean and b is the 

total number of runs in the sample size.  Given these values, the mean and variance of b for a 

truly independent sequence is given by 
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If either n1 or n2 is greater than 20, b is approximately normally distributed.  The test statistic can 

be calculated using the equation 
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Again the test statistic must be between 2/02/ αα zZz ≤≤− , which again corresponds to −1.96 

and 1.96, in order to fail to reject the null hypothesis.  Therefore, if Z0 is within this range, then 

we fail to reject the null hypothesis that the LCG produces random variates that are statistically 

independent.   

Run Length Test 

The last type of test that is required is the run length test.  This test is broken down into 

two separate types of tests.  These tests look at the number of continuous sequences above and 

below the mean.  For example, the test would fail if there are continuously two numbers above 

the mean and then two numbers below the mean because the numbers generated are obviously 

not independent.  The test statistics for these tests follow the chi-squared distribution. 

The first portion of this test searches for runs up and down and inspects the number of 

runs of a certain size, i, to see if it is truly random.  Therefore, in the following equations, let Yi 

be the number of runs of length i in the set of random numbers.  The expected number of runs for 

a sample size of N is found using the equations: 
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Using the equations above, the next step is to calculate the chi-squared statistic using the 

equation 
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where L = N−1 and Oi is the observed number of runs of length i.  In order to be statistically 

significant the calculated χ2 must be less than the chi-squared critical value determined with L−1 
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degrees of freedom.  If the calculated value is less than the critical value, then it fails to reject the 

null hypothesis that the LCG produces statistically significant independent variates. 

The second portion of this test searches for runs above and below the mean.  The same 

procedure is followed for this portion as in the first.  A test statistic is calculated and compared to 

the chi-squared test statistic.  The main differences between the portions lie in how the expected 

value is calculated and what the value of L is equal to.  In this portion of the test, the expected 

value is determined by the equation 

 
)(

)(
IE

Nw
YE i

i =  for N > 20, (4.7) 

where wi, the approximate probability that a run has a length of i, and E(I), the approximated 

expected run length, is found by  
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In the previous equation, n1 and n2 are the number of runs above and below the mean, as was the 

case in the runs above and below the mean test.   

The next step to this portion is to determine the approximate expected total number of 

runs in the sequence of all lengths.  This is determined by 

)(
)(

IE

N
AE = . 

As in the previous portion of the test, the final step is to calculate the chi-squared test statistic 

using equation (4.6) and compare it to the critical value with L-1 degrees of freedom.  However, 

in this case, L = N instead of L = N-1 as used in the previous portion.   

 To summarize this section, Table 2 provides the results for each of the aforementioned 

tests.  Since the LCG used within this research passes all of the required tests, it is safe to assume 

that the values chosen for a, c, and m produce an efficient uniform random number generator that 

creates random independently identically distributed variates. 
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Table 2:  U(0,1) Test Results 

Test Name Test 
Statistic Critical Value Required Parameters Result 

Chi-Squared 27.26 30.144 k=20, d=19, α=0.05 Pass 

Up and Down 0.372 -1.96 ≤  Z ≤  1.96   Pass 

Above and Below 
the Mean 

0.733 -1.96 ≤  Z ≤  1.96   Pass 

Run Length  
Portion 1 

2.602 9.488 L-1=5, α=0.05 Pass 

Run Length  
Portion 2 3.801 16.91 L=N=9, α=0.05 Pass 

4.2  Normal Random Number Generator 

Two different tests were performed to determine the correctness of the normal random 

variate generator being used within this research.  For these tests, ten thousand random numbers 

were created using the random number generator created in C++.  These numbers were then 

tested using the chi-square test that was explained in the previous section.  The parameters used 

within this test were as follows:  k = 30, d = 29, and α = 0.05.  With these parameters the 

calculated test statistic is 25.3 and the critical value is 42.557 with a p-value of 0.662.  Since the 

p-value is larger than the value of α, this indicates that the chi-square test fails to reject the null 

hypothesis that the random numbers generated are identically independently distributed.  To 

confirm these results, Rockwell Software’s Input Analyzer was used to fit the data to the normal 

distribution.  This software fit the data with a N(0.00447,0.996) distribution – a output 

histogram is provided in Figure 4-1 below – and performed the chi-square test on the data.  

Rockwell’s output indicated a test statistic of 25.3 which again corresponds to a p-value of 0.662 

indicating that it fails to reject the null hypothesis that the random numbers generated are 

identically independently distributed.     
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Figure 4-1: Fitted Histogram of NNNN(0,1) 

The second test on the normal random number generator was performed with the 

statistical software, Minitab 15.1.  Using the Normality Test function within Minitab, a 

probability plot was created which is shown in the figure below.  This test also indicates that the 

data follows a normal distribution since the data closely resembles a straight line on the 

lognormal scale.  This test also produces a p-value of 0.478, which again is larger than the 

associated α value of 0.05 indicating that it fails to reject the null hypothesis that the data follows 

a normal distribution.   
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Figure 4-2: Normality Test 
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4.3  Copula Generator 

The last main step that needs to be verified is our copula generator.  To test this portion 

of the C++ program, 10,000 variates were simulated and plotted for each of the major copulas 

used within this research.  Namely, the Gaussian and Student-T copulas were created using both 

Gaussian and Student-T marginals.  The results of the copulas have been previously presented in 

Figures 2-5 and 2-6.  In order to test the validity of the copula generator, the plots were 

compared to the published results presented in Bluhm (2007).  Please refer to Bluhm’s 

publication to observe the similarities between the plots he presents and the plots created through 

the copula generator used within this research.     
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CHAPTER 5 - COMPUTATIONAL RESULTS 

The results of computational experiments for the proposed least-squares Monte Carlo 

simulation with the addition of jump-diffusion will be presented in this chapter.  This chapter  

begins with a description of the experimental design that is used to test the effectiveness of using 

simulation to price American options.  The subsequent section presents a comparison between 

the simulation model created for this thesis, the quadratic approximation algorithm presented in 

Kou (2004), as well as the binomial tree algorithm that was presented in Amin (1991) with 1,600 

steps. 

5.1  Design of Experiment 

The purpose of this section is to explain how the experiments were conducted within this 

thesis.  Section 5.1 will outlines the design of experiment as well as explains the simulation 

parameters that were used within the experiments. 

To test the accuracy and effectiveness of using Monte Carlo simulation, the least-squares 

algorithm presented in Chapter 3 was tested using various sets of input parameters.  These 

simulations were then compared to the results of the quadratic approximation algorithm and 

Amin’s (1991) binomial tree method presented in Kou (2004).  To determine the relationship 

between the input parameters and the option price, a factorial design was created.  Seven 

parameters were tested where σ, λ, η1, η2, and ∆t have two levels, N has one level, and K has 

three levels.  These levels are summarized in Table 3, below.  A total of 96 different simulations 

were run with different combinations of the parameters.  The two time horizons chosen for these 

experiments consisted of one quarter of a year and a full year.  These two time horizons were 

chosen since they are the most commonly found life cycles in the financial markets for American 

options. 

Each of the parameter combinations is tested using 30 replications of the least-squares 

Monte Carlo simulation model with 200 paths and a risk-free interest rate of 5%.  The 

simulations were performed using common random numbers so that each can be compared in 

similar terms.  This allows the simulation runs to be compared so that the relationship between 

each parameter and the resulting stock prices (and therefore option prices) can be investigated.   
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Table 3:  Design of Experiment Levels 

Parameter Symbol Levels 

Period Length (yrs) ∆t 0.0625, 0.25 

Number of Periods N 4 

Strike Price K 90, 100, 110 

Stock Volatility σ 0.2, 0.3 

Jump Frequency λ 3, 7 

Jump Size (upward) η1 25, 50 

Jump Size (downward) η2 25, 50 
 

As with any statistical test, more than one replication should be performed to prevent the 

possibility of outliers.  To prevent this possibility, each simulation was run for 30 replications so  

that the possibility of the simulation having a bad starting seed did not affect the results.  

Additionally, since simulation uses the mean of the option values from each replication as the 

final output, more accurate results can be obtained by performing more replications.  There is, 

however, a tradeoff associated with the number of replications performed – accuracy vs. 

computational time.  As one may expect, more replications creates better accuracy at the expense 

of longer running times.  The following section presents the results of the 96 experiments (with 

30 replications each) performed with the simulation model presented in Chapter 3.  Each 

simulation is modeling a put option, so the return of a path is the present value of the value of  

Max{Strike Price – Market Price, 0}. 

5.2  Results 

The first set of tests conducted was for a planning horizon of 0.25 years.  This 

corresponds to N = 4 and ∆t = 0.0625.  The results of each of the 48 simulations are summarized 

in Table 4.  This table also presents the value of the options calculated by Kou’s (2004) quadratic 

approximation equation and Amin’s (1991) binomial tree method; Amin’s binomial tree method 

was performed using a total of 1,600 steps. 

 Looking at Table 4 one fact is evident.  Pricing American options with jump-diffusion 

using Monte Carlo simulation provides consistently higher values than that of the quadratic 

approximation and the binomial tree methods.  Of the 48 experiments, only three configurations 

(or 6.25%) resulted in values lower than the values calculated by both Kou and Amin.  However 
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these values are insignificantly lower, since the maximum difference was $0.23.  This outcome 

parallels the results presented by DeHaven (2007) when she compared least-squares Monte Carlo 

simulation with the finite-differences method.  Monte Carlo simulation consistently provides 

higher values for American options due to the continuous nature of the pricing region and the 

fact that simulation creates multiple test trials of the stock paths instead of using mathematical 

equations to estimate the prices.  Monte Carlo simulation provides the average expected value of 

each of the simulated stock price paths which provides a much more robust methodology than 

other pricing schemes used by practitioners.   

A second noticeable result is when the stock is deep in-the-money.  When the strike price 

is at $110, the option begins $10 in-the-money.  This leads to a very interesting question as to 

why the values presented by Amin (1991) and Kou (2004) are only $0.26 to $2.23 more than the 

initial $10 profit.  By looking at standard Brownian motion alone (without any possibilities of 

jump), the probability that the stock price increases by more than $10 (to reach the $110 strike 

price) within ¼ of a year is small.  Refer to Figures 3-3 and 3-4 from periods zero to four (which 

would be ¼ of a year).  In these graphs, the number of jumps is set to zero (λ = 0) which means 

that the standard Black and Scholes model is being used to create the simulated paths.  These 

figures show the likelihood that the stock prices increase by more than $10 in ¼ of a year.  Even 

with a variation of 30%, the likelihood is small.  It is more evident that the majority of the paths 

are below the $110 strike price, indicating higher expected returns than presented by Kou and 

Amin.   

This means that the profit for the deep in-the-money options should be higher, if not 

significantly higher when jumps are included, than $10 which is the case when the options are 

priced using Monte Carlo simulation.  Monte Carlo simulation evaluates the option ranging from 

$4.30 to $7.56, meaning that the average ending stock price ranged from $105.70 to $102.44, 

respectively.  As previously stated, Monte Carlo simulation takes the mean of 6,000 simulated 

stock paths (200 paths X 30 replications), whereas the other two methods calculate the expected 

value of mathematical approximation equations that may not accurately represent that actual 

stock price behavior.  Due to this fact, Kou’s quadratic approximation equation provides very 

conservative option values when the option is deep in-the-money.  When the option is out-of-the-

money Kou’s quadratic approximation equation and Amin’s binomial tree method are not as 

conservative and provide comparable results as Monte Carlo simulation.   
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Table 4:  Monte Carlo simulation comparison for American put option with t = 0.25 Year 

K σ λ ηηηη1111    ηηηη2222    Binomial Tree  Kou (2004) MCS 
90 0.2 3 25 25 0.75 0.76 0.82 
90 0.2 3 25 50 0.65 0.66 0.65 
90 0.2 3 50 25 0.68 0.69 0.85 
90 0.2 3 50 50 0.59 0.60 0.68 
90 0.2 7 25 25 1.03 1.04 0.97 
90 0.2 7 25 50 0.82 0.83 0.60 
90 0.2 7 50 25 0.87 0.88 1.07 
90 0.2 7 50 50 0.66 0.67 0.68 
90 0.3 3 25 25 1.92 1.93 2.24 
90 0.3 3 25 50 1.85 1.86 2.06 
90 0.3 3 50 25 1.84 1.85 2.33 
90 0.3 3 50 50 1.77 1.78 2.15 
90 0.3 7 25 25 2.19 2.20 2.34 
90 0.3 7 25 50 2.03 2.03 1.92 
90 0.3 7 50 25 2.01 2.02 2.18 
90 0.3 7 50 50 1.84 1.85 2.11 

                

100 0.2 3 25 25 3.78 3.78 4.83 
100 0.2 3 25 50 3.66 3.66 4.55 
100 0.2 3 50 25 3.62 3.62 4.90 
100 0.2 3 50 50 3.50 3.50 4.65 
100 0.2 7 25 25 4.26 4.27 5.10 
100 0.2 7 25 50 4.01 4.02 4.35 
100 0.2 7 50 25 3.91 3.91 5.35 
100 0.2 7 50 50 3.64 3.64 4.65 
100 0.3 3 25 25 5.63 5.62 7.16 
100 0.3 3 25 50 5.55 5.54 6.95 
100 0.3 3 50 25 5.50 5.50 7.29 
100 0.3 3 50 50 5.42 5.41 7.04 
100 0.3 7 25 25 5.99 5.99 7.31 
100 0.3 7 25 50 5.81 5.81 6.67 
100 0.3 7 50 25 5.71 5.71 7.59 
100 0.3 7 50 50 5.52 5.51 7.03 

                

110 0.2 3 25 25 10.48 10.43 14.79 
110 0.2 3 25 50 10.42 10.38 14.50 
110 0.2 3 50 25 10.36 10.31 14.87 
110 0.2 3 50 50 10.31 10.26 14.61 
110 0.2 7 25 25 10.81 10.79 15.05 
110 0.2 7 25 50 10.68 10.64 14.30 
110 0.2 7 50 25 10.51 10.47 15.31 
110 0.2 7 50 50 10.39 10.34 14.61 
110 0.3 3 25 25 11.90 11.86 17.12 
110 0.3 3 25 50 11.84 11.79 16.91 
110 0.3 3 50 25 11.78 11.73 17.25 
110 0.3 3 50 50 11.72 11.67 17.01 
110 0.3 7 25 25 12.23 12.19 17.26 
110 0.3 7 25 50 12.09 12.05 16.62 
110 0.3 7 50 25 11.94 11.90 17.56 
110 0.3 7 50 50 11.80 11.75 16.98 

 

The last, yet very important, concept that can be observed through the results is the 

enormous effect the standard deviation has on the value of the option.  Looking at each of the 

strike prices independently, there is only a significant value increase when the standard deviation 

(σ) increases from 0.2 to 0.3.  In fact, there is approximately a 43% difference between the 
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maximum and minimum values (for K = 90) for the group with σ = 0.2 and an 18% difference 

between the maximum and minimum values of the group with σ = 0.3.  However there is a 64% 

increase, which is significantly higher, between the two groups.  This trend is consistent with the 

other two valuation methods and is also applicable for each of the other strike prices. 

This indicates that for relatively small jump sizes (ηi ≥ 20), the standard deviation – or in 

other words the diffusion process modeled by the Black and Scholes model – has a larger impact 

than the jump processes on the value of the option.  This is under the basic assumption that there 

is not an abnormally large amount of jumps within the planning horizon.  Common sense says 

that a large number of jumps in the planning horizon will affect the value of the option.  

Logically thinking, the number of jumps and the standard deviation of a stock should be related.  

A large amount of jumps within a small amount of time would indicate the company is extremely 

risky, which would in turn increase the standard deviation of the stock since the amount of risk is 

the fundamental basis of the stock’s standard deviation.  If jumps in a stock are frequent and of a 

small magnitude then these jumps should not be considered jumps, but instead considered as 

increased variability that is accounted for in larger standard deviation values.  As a result, the 

purpose of modeling the jump-diffusion process is to capture the infrequent and significant 

jumps in the stock price after market announcements have been made or major events occur that 

directly affect the markets. 

Tables 5 and 6 below show the effects of a high frequency of jumps (each simulation has 

a simulated time horizon of one quarter of a year and an initial stock price of $100 and included 

30 replications).  Namely, significantly higher values of λ create a larger spread in the stock 

prices (which was shown in Chapter 3 and can even be seen with small jumps sizes) making the 

value of the option increase by considerable amounts.  The larger spreads, in essence, reflect 

larger amounts of stock variation.  This fact is evident when inspecting the 95% confidence 

intervals for the option price.  The half width of the confidence interval (which is shown in 

Tables 5 & 6) is larger for bigger values of λ.  Namely, with all other parameters held constant 

the half width of λ = 15 is much larger than the half width of λ = 1.  Since every other factor is 

held constant, the standard deviation must increase in order for the half width to increase.   
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Table 5:  λ Significance Testing 1 

K σ λ ηηηη1111    ηηηη2222    Price Half Width 
90 0.2 15 10 10 4.34 0.1835 
90 0.3 15 10 10 5.32 0.2057 
100 0.2 15 10 10 9.17 0.2379 
100 0.3 15 10 10 10.59 0.2677 
110 0.2 15 10 10 19.12 0.2376 
110 0.3 15 10 10 20.54 0.2680 

 

Table 6:  λ Significance Testing 2 

K σ λ ηηηη1111    ηηηη2222    Price Half Width 
90 0.2 1 10 10 0.95 0.0884 
90 0.3 1 10 10 2.36 0.1396 
100 0.2 1 10 10 5.00 0.1594 
100 0.3 1 10 10 7.31 0.2124 
110 0.2 1 10 10 14.96 0.1631 
110 0.3 1 10 10 17.29 0.2141 

 

 

 

 

 

The second set of tests conducted was for a planning horizon of one year.  This corresponds to N 

= 4 and ∆t = 0.25 and as one can notice, the same general trends are present in this test group.  

As in the previous test set, Monte Carlo simulation consistently values American options higher 

than that of Kou (2004) and Amin (1991).  However, in this test group, there were more 

instances (five total) where the simulation provided lower values than the other two methods.  

Looking at these five instances, three of the five are the exact parameter combinations from the 

previous test group in which the simulation valued the option lower than the quadratic 

approximation or binomial tree methods.  This fact shows that the least-squares method is 

consistent over small and large time horizons and consistently provides excellent results. 
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Table 7:  Monte Carlo simulation comparison for American put option with t = 1.0 Year 

K σ λ ηηηη1111    ηηηη2222    Binomial Tree Kou (2004) MCS 
90 0.2 3 25 25 2.91 2.96 3.38 
90 0.2 3 25 50 2.70 2.75 2.72 
90 0.2 3 50 25 2.66 2.72 3.80 
90 0.2 3 50 50 2.46 2.51 3.12 
90 0.2 7 25 25 3.68 3.75 3.67 
90 0.2 7 25 50 3.24 3.29 2.27 
90 0.2 7 50 25 3.12 3.20 4.66 
90 0.2 7 50 50 2.66 2.72 3.08 
90 0.3 3 25 25 5.79 5.85 7.05 
90 0.3 3 25 50 5.65 5.70 6.37 
90 0.3 3 50 25 5.58 5.64 7.61 
90 0.3 3 50 50 5.43 5.49 6.93 
90 0.3 7 25 25 6.42 6.49 7.03 
90 0.3 7 25 50 6.09 6.15 5.48 
90 0.3 7 50 25 5.92 6.00 8.28 
90 0.3 7 50 50 5.59 5.65 6.74 

             

100 0.2 3 25 25 6.60 6.62 8.36 
100 0.2 3 25 50 6.36 6.37 7.35 
100 0.2 3 50 25 6.26 6.29 9.11 
100 0.2 3 50 50 6.01 6.03 8.12 
100 0.2 7 25 25 7.75 7.62 8.44 
100 0.2 7 25 50 7.07 7.09 6.26 
100 0.2 7 50 25 6.83 6.88 10.09 
100 0.2 7 50 50 6.28 6.31 7.91 
100 0.3 3 25 25 10.10 10.13 12.85 
100 0.3 3 25 50 9.94 9.96 11.97 
100 0.3 3 50 25 9.83 9.87 13.61 
100 0.3 3 50 50 9.67 9.70 12.73 
100 0.3 7 25 25 10.81 10.86 12.63 
100 0.3 7 25 50 10.46 10.49 10.54 
100 0.3 7 50 25 10.22 10.29 14.32 
100 0.3 7 50 50 9.85 9.89 12.44 

             

110 0.2 3 25 25 12.37 12.32 18.15 
110 0.2 3 25 50 12.17 12.11 17.16 
110 0.2 3 50 25 12.04 12.00 18.91 
110 0.2 3 50 50 11.84 11.79 17.92 
110 0.2 7 25 25 13.29 13.27 18.26 
110 0.2 7 25 50 12.85 12.79 16.1 
110 0.2 7 50 25 12.54 12.54 19.95 
110 0.2 7 50 50 12.08 12.03 17.72 
110 0.3 3 25 25 15.79 15.76 22.64 
110 0.3 3 25 50 15.63 15.59 21.77 
110 0.3 3 50 25 15.51 15.49 23.41 
110 0.3 3 50 50 15.36 15.32 22.56 
110 0.3 7 25 25 16.51 16.51 22.42 
110 0.3 7 25 50 16.17 16.14 20.36 
110 0.3 7 50 25 15.89 15.91 24.19 
110 0.3 7 50 50 15.53 15.52 22.26 
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CHAPTER 6 - EXTENSION TO BASKETS 

The process of analyzing a single American option can be computationally challenging.  

Extending this to analyze multiple options that are correlated complicates matters even further.  

This chapter presents how copulas can be combined with least-squares Monte Carlo simulation 

to accurately evaluate American options where the underlying stocks follow a jump-diffusion 

process.  The rest of this chapter begins by presenting how to incorporate the correlation between 

multiple options using the Cholesky Decomposition and concludes with the notation and 

algorithm used within the Monte Carlo simulation.  The computational experiments are then 

presented in the next chapter to demonstrate the effectiveness of different independent 

parameters. 

6.1  A Jump-Diffusion Simulation Model with Copulas 

Utilizing copulas within the pricing formula is an effective way of modeling the 

correlation between options.  In closed-form numerical approximations, it can be difficult to 

incorporate copulas into the formulas.  However, by using Monte Carlo simulation this inclusion 

can be a fairly straightforward process.  The simulation need only incorporate a subroutine to 

perform the Cholesky decomposition on the correlation matrix, which is explained in the 

following subsection, as well as another subroutine to generate the correlated random variates 

among the options within the same basket.  The following sections explain the Cholesky 

decomposition in greater detail, present the additional notation required, and then propose the 

algorithm. 

6.1.1  Cholesky Decomposition 

The Cholesky decomposition is used in this research to generate multiple, correlated 

variates (in the Brownian motion and the correlated jump sizes).  The purpose of the process is to 

decompose the correlation matrix between the random input variables in order to produce the 

correlated variates.  

Formally, Cholesky decomposition is of the form TAA=Γ , where Γ is the correlation 

matrix between the options (Γ must be a symmetric positive definite matrix) and A is the 
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covariance matrix that is lower triangular.  The goal is to calculate A.  The Cholesky 

decomposition follows that 
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From this, we obtain the following formula for each of the values of A: 
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A is then multiplied by each of the random variates to incorporate the correlation between them.  

For example, given that x1, x2, and x3 are three independent random variates and y1, y2, and y3 are 

the random correlated variates, y1, y2, and y3 have the properties of the correlation matrix Γ and 

are calculated by  

[y1, y2, y3]
T = A[x1, x2, x3]

T 

where  A is calculated through the Cholesky decomposition. 

6.1.2  Notation 

 The majority of the notation is exactly the same as in Chapter 3.  The only additional 

variables that must be added to utilize copulas are the following: 

O ≡ Number of options in the basket 

Γ ≡ O × O correlation matrix 

A ≡ Γ decomposed using Cholesky Decomposition 

6.1.3  Updated Algorithm 

Step 0. System Inputs: 

(a) Initial stock price (S0) 

(b) Risk-free interest rate (r) 

(c) Strike price (K) 

(d) Stock volatility (σ) 
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(e) Number of time periods (N) 

(f) Number of paths (M) 

(g) Length of time horizon in years (T) 

(h) Call or put option 

(i) Exponential Distribution parameters (η1 and η2) 

(j) Probability of Upward Jump (p) 

(k) Rate of Poisson Process (λ) 

(l) Number of options (O) 

(m) O x O Correlation Matrix (Γ) 

 

Step 1. Initialization: 

(a) Set N
Tt =∆  

(b) Perform Cholesky decomposition on correlation matrix Γ to obtain 

matrix A. 

(c) Set the seed for the initial path to any positive integer. 

(d) Generate the random numbers Zijk for each path j = 1, 2, …, M,  period 

i = 1, 2, …, N, and option k = 1, 2, …, O. 

(e) Generate the random number Jijk(t) for each path j = 1, 2, …, M,  

period i = 1, 2, …, N, and option k = 1, 2, …, O and calculate the jump 

size for each period i, path j, and option k using the equation: 

∏
=

=
)(

1

tJ

n
nijk VV , where V follows the double exponential distribution. 

*Note:  If a jump is not present, Vijk = 1. 

(f) Calculate the correlated random variates Zijk and Vijk using: 

AZZ ijkijk ∗=  for each k = 1, 2, …, O. 

AVV ijkijk ∗−= )1( for each k = 1, 2, …, O. 

*Note:  The value of (Vijk – 1) is used to get the actual jump size.  An 

upward jump will result in a positive value and a downward jump will 

result in a negative value.  
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(g) Set Vijk = Vijk + 1, which is merely adding 1 back into the correlated 

values to make the jump values positive. 

 

Step 2. Compute SNjk for the expiration date T for each path of option O using: 

ijkijkjkiijk VZttrSS *)]exp([ 2
2

1
1 ∆+∆−= − σσ . (6.1) 

 

Step 3. Compute the cash flows for each path and option using one of the 

following: 




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−

−
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option call   0} ,)(max{
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tSK
jP

ijk

ijk
 (6.2) 

 

Step 4. Backup one time period; set 1−= ii . 

(a) Compute Si-1 using: 

ijkijkjkiijk VZttrSS /)]exp([/ 2
2

1
1 ∆+∆−= + σσ . (6.1) 

 

Step 5. Compute if the option is in the money for each path j.  For each path: 

(a) Let X be the vector containing asset prices Sijk and Y be the vector 

containing the corresponding cash flows received at i+1 time period, 

which have been discounted backward to the ith time period. 

(b) Regress using least-squares approach to estimate the value of 

continuing using the equation. (3.5).  This will result in the conditional 

expectation function [ ]XYE . 

(c) Compute the value of continuing using [ ]XYE  and the value of 

immediately exercising using equation (6.2). 

(d) Determine whether to exercise the option immediately or hold the 

option until the next time period, based on which gives the higher 

value.  Establish the current cash flows conditional on not exercising  

prior to time period i using: 
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[ ]


 ≥

=
otherwise                 0

E flowcash   if    flowcash 
)(

XY
jCi  (6.3) 

(e) Compute the present value of the cash flows Pik(j) given by: 

)()()( jPejCjP ik
tr

ikik
∆−+= . (6.4) 

 

Step 6. If at time period zero proceed to Step 7, else go back to Step 4. 

 

Step 7. Proceed to next option; set k = k + 1.  

 

Step 8. If k = O + 1 stop, else go back to Step 2. 
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CHAPTER 7 - COMPUTATIONAL RESULTS FOR 

CORRELATED BASKETS 

The results of the computational experiments for the algorithm proposed in the previous 

chapter are presented within this chapter.  This chapter begins with a description of the 

experimental design that was used to test the effectiveness of extending least-squares Monte 

Carlo simulation to the pricing of baskets of American options, followed by a description of the 

basic dynamics of correlated stocks.  The final section of the chapter discusses the results of the 

experiments performed. 

7.1  Copula Design of Experiment 

To determine the applicability of evaluating baskets of American options using Monte 

Carlo simulation, the algorithm in Chapter 6 was used to evaluate the baskets.  Namely, each of 

the parameters was systematically changed to determine the effects of each parameter on the 

value of the option.  The parameters and the number of factors tested within these experiments 

are identical to those used in Chapter 5 with one additional parameter.  The additional parameter 

tested within this chapter is the correlation matrix, which contains two levels (highly correlated 

and moderately correlated).  These two levels are shown in the matrices below. 

















=Γ
















=Γ
195.085.0

95.019.0

85.09.01

             , 

12.025.0

2.012.0

25.02.01

highlow  

A quarter fractional factorial design of experiment was used to test the effectiveness of different 

treatments for each of the three strike prices (90, 100, and 110).  A total of 24 experiments 

(treatments) were tested between the three strike prices using the parameter values given in the 

following table for each of the strike prices.  As in the experiments performed in Chapter 3, each 

of the simulations contained 200 paths and was run for 30 replications to reduce the possibility of 

outliers affecting the results of the experiments.  The subsequent section presents the simulated 

movement dynamics of the correlated stocks. 
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Table 8:  Copula Design of Experiment 

ΓΓΓΓ σσσσ λ ηηηη1 η2 
High 0.2 3 25 25 
High 0.2 7 25 50 
High 0.3 3 50 25 
High 0.3 7 50 50 
Low 0.2 3 50 50 
Low 0.2 7 50 25 
Low 0.3 3 25 50 
Low 0.3 7 25 25 

7.2  Copula Dynamics 

The purpose of this section is to detail how correlation affects the movements of 

correlated stock prices.  The first step of the algorithm performs the Cholesky decomposition of 

the correlation matrix.  The resulting decomposed matrix is given below: 

















=Γ
















=Γ
312039.0424419.085.0

043589.09.0

001

             , 

956066.0153093.025.0

0979796.2.0

001

highlow  

These are the matrices that the uncorrelated Z and V matrices are multiplied by to obtain 

correlated values.  These correlated values are then used within the calculations of the stock 

prices.  For simplicity and comparison reasons, the initial stock prices are set to the same value 

of $100 for all of the treatments; however, the simulation allows differing initial stock prices for 

the underlying stocks. 

 Figures 7-1 through 7-3 show the simulated paths of three separate stocks that are highly 

correlated (e.g. are calculated using Γhigh) with the following input parameters:  σ = 0.2, λ = 3,  

η1 = 25, and η2 = 25.  Notice how the general movements of the three figures are very similar.  

When the standard diffusion process increases in stock 1, the standard diffusion process in stocks 

2 and 3 consequently increase.  When the standard diffusion process decreases in stock 1, the 

same can be said for stocks 2 and 3.  This is due to the high correlation between the three stocks.  

Each has it respective natural variation, however, stocks 2 and 3 are also dependent on the 

natural variation of the other stocks.  The same principle can be applied to generate the 

correlated jump sizes, if present.  If a jump is present in stock 1, this jump will in turn cause 



64 

 

stocks 2 and 3 to jump, even if there was not an actual simulated jump in stocks 2 or 3.  Again, 

this is because of the correlation between the stocks. 

 Comparing Figures 7-1 through 7-3 to Figures 7-4 through 7-6, the effects of correlation 

are evident.  Notice how in the moderately correlated stocks the general diffusion processes are 

quite different.  Stocks 2 and 3 do not follow the same general trends as stock 1 as they did with 

highly correlated stocks.  This extreme difference can be easily seen when looking at stock 2.  

Notice in Figure 7-5 the uppermost stock price decreases between periods 4 and 5.  However, 

looking at this same path in Figure 7-2, the stock price actually increases significantly between 

periods 4 and 5.  This is the effect of the correlation between the stocks and the difference 

between moderate and high correlation.   

Overall, high correlation causes very balanced option prices since each of the simulated 

stock paths follow the same general trends.  Therefore, if the initial stock prices for the O 

different options are the same and each are highly correlated, then the value of the basket will be 

approximately O*W1, where W1 is the average value of the first option.  However, if the O 

options are not strongly correlated, then the values of the options may not be as similar and 

therefore the value of each option in the basket can vary by significant amounts, especially if the 

average jump size is large. 

 Now that the general effects of correlation have been presented, the subsequent section 

provides the results of the experiments conducted within this portion of the thesis. 

7.3  Copula Results 

The parameter combinations described in the first section of Chapter 7 were performed 

for each of the three strike prices ($90, $100, and $110) with an initial stock price of $100.  The 

design of experiment resulted in 24 total treatments being tested to determine the relationship 

between the option value and the input parameters, including the correlation.   

Table 9, below, summarizes the results of the experiments for a planning horizon of 0.25 

years, which corresponds to N = 4 and ∆t = 0.0625.  The tests performed and the results obtained 

from the use of copulas are very similar to the experiments and results found in Chapter 5.  

Namely, the standard deviation of the stock still has the largest affect on the value of the basket.  

For each of the three strike prices the largest valued baskets contain a higher standard deviation.   
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Figure 7-1:  Stock 1 High Correlation 
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Figure 7-2: Stock 1 Low Correlation 
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Figure 7-3:  Stock 2 High Correlation 

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5
 

Figure 7-4:  Stock 2 Low Correlation 
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Figure 7-5:  Stock 3 High Correlation 
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Figure 7-6:  Stock 3 Low Correlation 

 

Additionally, Table 9 shows that Monte Carlo simulation accurately prices baskets of 

American options in the same manner as individual options.  This can be seen by the fact that the 

basket value is approximately 3 (since 3 options were modeled in this basket example) times the 

value of the first option – since the starting seeds are the same for both simulations, the first 
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option value is given in Table 4 in Chapter 5.  This indicates that the pricing of correlated 

options using Monte Carlo simulation in a multi-dimensional domain provides accurate results 

that are similar to those in the single-dimensional domain.  The fact that the multidimensional 

correlated values are closely related to the one-dimensional values indicates that Monte Carlo 

simulation using least-squares regression provides a very quick and accurate means of valuing 

baskets of American options with jump-diffusion. 

Table 9:  Copula Results 

K ΓΓΓΓ σ λ ηηηη1111    ηηηη2222    Price 
90 High 0.2 3 25 25 2.36 
90 High 0.2 7 25 50 1.61 
90 High 0.3 3 50 25 7.00 
90 High 0.3 7 50 50 6.22 
90 Low 0.2 3 50 50 1.99 
90 Low 0.2 7 50 25 3.26 
90 Low 0.3 3 25 50 6.00 
90 Low 0.3 7 25 25 6.87 

  

 

     

100 High 0.2 3 25 25 14.35 
100 High 0.2 7 25 50 12.23 
100 High 0.3 3 50 25 21.98 
100 High 0.3 7 50 50 20.95 
100 Low 0.2 3 50 50 13.89 
100 Low 0.2 7 50 25 16.13 
100 Low 0.3 3 25 50 20.63 
100 Low 0.3 7 25 25 21.72 

  

 

     

110 High 0.2 3 25 25 44.23 
110 High 0.2 7 25 50 42.09 
110 High 0.3 3 50 25 51.86 
110 High 0.3 7 50 50 50.81 
110 Low 0.2 3 50 50 43.77 
110 Low 0.2 7 50 25 46.03 
110 Low 0.3 3 25 50 50.49 
110 Low 0.3 7 25 25 51.59 
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CHAPTER 8 - MEMORY REQUIREMENTS 

The memory requirements for each of the simulation algorithms are presented in Chapter 

8.  The purpose of this chapter is to overview and compare the memory requirements for each of 

the algorithms proposed within this thesis. 

8.1  Memory Requirements for Simulation Models 

Two of the three least-squares algorithms presented in this thesis utilize a memory 

reduction technique that was first presented by Chan (2003).  As explained in Chapter 2, Chan 

presented a method that does not store the intermediate stock prices; instead the seed values are 

calculated two times, once to generate the forward paths and once to generate the backward 

paths.  As a result computational requirements increase, but the memory requirements decrease 

significantly.  This is an acceptable tradeoff since the speed and computational power of 

computers is continuously increasing, making the importance of decreased computational 

requirements decline.  However, the size of the problems being solved by computers is 

continuously increasing making the storage requirements grow drastically.  This drastic growth 

forces researchers/practitioners to have expensive computers that contain tremendous amounts of 

memory. 

Chapter 3 describes two pricing algorithms that utilize Chan’s (2003) memory reduction 

technique.  Utilizing this technique allows each of these algorithms to have a memory 

requirement in the magnitude of O(M), where M is the number of paths being simulated.  

Without this reduction, the memory requirement would be in the magnitude of O(MN) where N 

is the number of periods simulated.  Since the pricing accuracy is directly related to the number 

of periods being simulated (since the discretized time periods approach a continuous region as N 

approaches infinity), a higher number of periods must be simulated to obtain highly accurate 

prices.  As a result, without Chan’s memory reduction technique the memory requirements 

would be substantial.  The algorithm presented in Chapter 6 does not utilize Chan’s memory 

reduction techniques.  As a result, the memory requirements for this algorithm is in the order of 

O(MNO), where M is the number of paths, N is the number of periods, and O is the number of 

options in the basket.  
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CHAPTER 9 - CONCLUSIONS 

The market activities over the last decade have shown that the Black and Scholes (1971) 

model does not entirely reflect all of the market behaviors.  As a result, the Black and Scholes 

model should be enhanced to include both the jump and diffusion processes so that “jumps” in 

the market are captured.  One of the most obvious jumps was the 684 point drop in the Dow 

industrial average on September 17, 2001, the next trading day after the 9-11 attacks on the 

United States (Kauffman 2001).  The standard Brownian motion that is modeled within the 

Black and Scholes model does not have the capability of modeling such a significant and 

immediate change in stock price.  There have been many instances just like this where the 

market has risen/fallen by tremendous amounts over a short period of time.  This fact illustrates 

the need for an enhancement of the Black and Scholes model.   

Merton (1973) was the first to present the idea of jumps in the markets.  In recent years 

Kou (2004), among others, has continued the research started by Merton.  Kou (2004) has shown 

that Merton’s use of the normal distribution to model the jump sizes is not as accurate as using 

the double exponential distribution.  The purpose of this thesis was to explore the use of Kou’s 

(2004) jump-diffusion model to price American options using Monte Carlo simulation.  

Additionally, this thesis investigates the extension of this Monte Carlo simulation model to a 

multidimensional domain to explore the effectiveness of pricing baskets of American options.   

The remaining sections of Chapter 9 are as follows.  Section 9.1 begins with the 

conclusions obtained through the research presented within this thesis and Section 9.2 presents 

future work that could be investigated further. 

9.1  Conclusion on Monte Carlo Simulation 

This thesis has shown that Monte Carlo simulation provides an effective means for 

analyzing and pricing American options where the underlying stock follows a jump-diffusion 

process.  It also demonstrated the flexibility of Monte Carlo simulation with the ability to make 

simple modifications to an existing simulation model to incorporate an additional, yet drastically 

different, stochastic process.  The simulation presented within this thesis extended on the model 

presented by DeHaven (2007) to include the jump-diffusion process explained by Kou (2004). 
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The experiments conducted within this thesis have shown that, in general, Monte Carlo 

simulation values American options higher than that of other numerical techniques, including the 

techniques presented by Kou (2004) and Amin (1991).  Monte Carlo simulation provides a 

means of accurately modeling the behaviors of the stock market in all aspects, including the 

natural stock variation (diffusion process) as well as the possible jumps that occur (jump 

process).   

The experiments performed within this thesis have exemplified the ability to accurately 

model the natural stock price behavior as well as the jump processes.  From these experiments, it 

was determined that when the jump sizes and the jump frequencies are small, the factor that has 

the largest effect on the option value is the standard deviation of the stock.  The simulations 

performed show that values of ηi larger than 25 (which indicate average jump sizes of 4% or 

smaller) seem to have little effect on the option price.  The major contributor to the options price, 

when the jump sizes and frequency is small, is the standard deviation.  The results presented in 

Chapter 5 show how drastically the options price changes as the standard deviation increases 

from 0.2 to 0.3.  Though the option’s value is only moderately affected by the size and frequency 

of the jumps if these values are small, these factors begin to have a large affect on the option 

value as they increase.  This is due to the added deviation that is created by the frequent, and 

possibly extreme, jumps in the stock’s price.  The added deviation increases the spread of the 

simulated paths and, in turn, increases the price of the option.  The wider spreads are caused by 

an increased number of outlying stock paths that are present after large jumps occur. 

The aforementioned experiments provided evidence of another fact when comparing the 

results of the Monte Carlo simulation to the results of Kou’s (2004) approximation algorithm and 

Amin’s (1991) binomial tree method.  Namely the results indicate that when the option is out-of-

the-money, all three methods accurately calculate the value of the option.  However, as the 

option becomes at-the-money or in-the-money, Kou’s approximation algorithm and Amin’s 

binomial tree method become extremely conservative in the valuation process.  Monte Carlo 

simulation, however, is less conservative and calculates a much higher price for the American 

option (e.g. $14.79 versus $10.43).  Thinking about the prices logically, the value produced by 

the Monte Carlo simulation is more accurate since the option begins $10 in-the-money.  It only 

makes sense that the option should be valued higher than $0.43 more than the initial profit, 

especially with the possibility of jumps.  Overall, this shows the accuracy of Monte Carlo 
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simulation over the wide range of option values, from deep out-of-the-money to deep-in-the-

money.   

The second portion of this thesis shows that Monte Carlo simulation provides an accurate 

and effective means for calculating baskets of American options when the underlying stocks are 

correlated.  Utilizing the benefits of copulas, a simulation model was presented that accurately 

models the correlation between the stocks.  This was shown through multiple examples of highly 

and moderately correlated stocks with a variety of different input parameter combinations.  

When the underlying stocks are highly correlated, the general movements of the three stocks are 

remarkably similar.  These similarities are expected (since the stocks are highly correlated) and 

show that the simulation accurately models the stocks, even when correlation is involved.  When 

the stocks are moderately correlated, the general movements of the three stocks are fairly 

independent and are only moderately effected by the movements of the other two stock prices.  

Again, these movements are expected since the stocks are only moderately correlated, which also 

shows the correctness of the Monte Carlo simulation in pricing baskets of American options.   

As with the pricing of single dimensional options, the major determining factor of the 

basket price when the average jump sizes are small is the volatility of the underlying stocks.  

Increasing the standard deviation from 0.2 to 0.3 has the same effects for the baskets as it did for 

the single option, drastically increased prices.  Baskets also resemble the results of single options 

when the average jump size is large.  When jump sizes are large, the price of the basket increases 

due to the added variability in the underlying stocks. 

An additional concluding comment that must be made is in regards to the flexibility of 

Monte Carlo simulation.  In order to extend the previous simulation model the only modification 

required is a few additional subroutines to incorporate the copulas (via the Cholesky 

decomposition) and the jump-diffusion process.  Comparing this to other numerical methods that 

use complex integral equations, it is much more difficult to include the required factors.  Instead 

of a few additional subroutines, the complex integral equations would require exact distributions 

(if they are available) and complex mathematical formulas to create the correlation between the 

jumps and stock prices.  This is a significant advantage of Monte Carlo simulation which makes 

it an attractive method for pricing both single dimensional options and multidimensional baskets. 
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9.2  Future Work 

This research uncovered some interesting questions that could be researched further.  

Three aspects of the Monte Carlo simulation involving copulas should be investigated further.  

These include utilizing Chan’s (2004) memory reduction technique, investigating the process of 

calculating the correlation between the jumps, and modifying the input parameters so that each 

of the underlying stocks have separate input parameters (e.g. average jump size, average number 

of jumps, and standard deviation).  This thesis held the input parameters constant among options 

to simplify the analysis of the Monte Carlo simulation.   

Chapter 3, which implemented Chan’s (2003) reduced memory algorithm, presented an 

algorithm for pricing American options with jump-diffusion that does not store all of the 

intermediate prices (and corresponding values to calculate the prices; e.g. Zi and Vi).  As a result, 

the memory requirements are far less expensive as other methods that store each of the prices.  

The only cost of this method is the computational requirements since each of the seed values 

must be calculated twice, once for the forward pricing and once for the backward pricing.  This 

memory reduction technique has the potential to work when pricing multiple options in a 

multidimensional domain.  The research contained within this thesis does not utilize Chan’s 

(2003) reduced memory method and as a result requires a large amount of memory to perform 

the simulation.  The required memory has the potential to be reduced significantly by 

implementing Chan’s (2003) algorithm so that the memory requirements would grown in the 

order of O(MO) instead of O(MNO), where M is the number of paths simulated, O is the number 

of options, and N is the number of periods.  Reducing the amount of memory required to run the 

simulation would be a significant enhancement, especially if the researcher/practitioner is 

evaluating a large number of options or periods.   

The second factor that should be researched further is how the jump correlation is 

calculated.  The process used within this research correlates the grouped jump size for a given 

period instead of correlating the individual jumps.  In other words, within the algorithm the 

Poisson process determines the number of jumps within a given period (J(t)) and the double 

exponential is calculated and multiplied by itself J(t) times.  This process is grouping the J(t) 

jumps during that period into a single, comprehensive jump size.  In the real markets when a 

jump occurs for a stock, the correlation between the other stocks can be seen within a short 

amount of time.  As a result, calculating the correlation between the individual jumps instead of 
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the grouped jumps may provide a more accurate representation of the correlation between the 

stocks and therefore accurately model the true nature of the markets. 

The last enhancement regarding the simulation model presented within this thesis is to 

allow each of the stocks to have different jump and standard deviation parameters.  Though 

companies may be in similar industries, their jump frequencies, jump amplitudes, and standard 

deviations may still be quite different.  The model presented within this thesis assumes that these 

parameters are the same for each of the stocks being analyzed.  Therefore, a possible area of 

future research is to add stock-specific input parameters. 
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Appendix A - Derivation of the Roots of G(x) 

Further information regarding the following equations can be found in Kou (2005).  The moment 

generating function X(t) for a jump-diffusion process can be obtained as 
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The equation G(x) = α can be rewritten into the form of ax4+bx3+cx2+dx+e=0, where 

a = σ2,  b = 2µ - σ2*(η1 - η2),  c = -σ2
η1η2 - 2µ*(η1 - η2) - 2λ - 2α, 

d = -2µη1η2 - 2λp(η1 + η2) + 2λη1 + 2α(η1 - η2),  e = 2αη1η2  , and  

µ = λζσδ −−− 2

2
1r .  It can be shown that the four roots, β1, β2, β3, and β4, can be obtained by 

the following method which uses a combination of the Ferrari-Cardano derivation of the quartic 

equation and the Euler method of solving the cubic equation.  This method first divides the 

equation by the leading coefficient to obtain a coefficient of 1 for the quartic term.  Next, the 

quartic equation is reduced by removing the cubic term by applying the Tchirnhaus 

transformation and then reduces the equation once more to obtain a quadratic equation.  From 

this point, the roots are solved and then substituted back to obtain the four roots of the original 

quartic equation.  In a more formal manner, the process is as follows: 

Solving Quartic Equations 

Given 001
2

2
3

3
4 =++++ axaxaxax  (after the leading coefficient has been divided), if 

a0=0, then the quartic can be factored into  

 x(x3+a3x
2+a2x+a1)  (A1) 

and the roots are then 0 and the roots of the cubic function.  However, a0 is not equal to zero, the 

first step is to apply the Tchirnhaus transformation 4
3ayx −a   which yields 

  024 =+++ rqypyy   (A2) 

where  
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At this point, there is a special case that greatly simplifies the process.  If r = 0, then there 

is no absolute term and the equation can be factored into  

 y(y3+py+q).   (A3) 

The roots of the quartic are then x = a3/4 and the roots of the cubic equation y3+py+q with a3/4 

subtracted from each. 

However, if r is not equal to zero, equation (A2) can be solved using a method discovered 

by Leonhard Euler.  Euler determined that by finding the three roots of the related cubic equation 

 0
6416

4

2

22
23 =−







 −++ q
z

rp
z

p
z  

and setting p and q equal the square roots of two of the roots (it does not matter which two roots 

are chosen and the sign of the roots does not matter either) and setting 
pq

f
r

8
−= , then the three 

roots of the cubic equation is p2, q2, and r2.  However, the main fact that Euler discovered was 

that the four roots of the original quartic equation (stated before equation A1) can be calculated 

by the following equations: 
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Each xi for i = 1, 2, 3, and 4 are equal to the roots β1, β2, β3, and β4. 


