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Abstract 

Piglet birth weight (BtW) is inextricably associated with preweaning survival. The non-

linear antagonistic relationship between BtW and mortality risk is more severe in pigs <1.11 kg 

BtW than in pigs with BtW >1.11 kg. Thus, our research categorized fetal pigs as small (SM), 

median (MD), or large (LG) size depending on relative crown-rump length at d-60 gestation or 

BW within litter at d-95 gestation to evaluate differences in fetal myogenesis and development. 

At both d-60 and d-95, brain weights did not differ but brain weight:liver weight ratio was larger 

(P<0.05) for SM compared MD and LG. Cross-sectional area of the Longissimus muscle 

increased with increasing fetal size so that LG and MD had larger (P<0.05) whole muscle cross-

sectional areas than SM although number of primary and relative secondary muscle fibers and 

their respective cross-sectional areas did not differ. Day-60 mRNA abundance of both IGF-1 and 

IGF-2 in SM was greater (P<0.05) than in MD and LG. Fetal size had a marginally significant 

effect (P=0.103) on gene expression of IGF-2 receptor with expression least in LG. Small 

fetuses had greater (P<0.05) d-60 MyoD gene expression and d-95 serum IGF-1 levels than MD 

and LG. Two experiments were conducted to determine the effects of feeding low or high doses 

of chlortetracycline (CTC) and antibiotic alternatives (pharmacologic Zn, Cu, and essential oil), 

alone or in combination, on nursery pig growth performance. Pharmacologic Cu (125 ppm from 

CuSO4), Zn (2,000-3,000 ppm from ZnO), or increasing CTC level (0-441 ppm) improved 

growth performance additively while Origanum essential oil (0.005%) elicited no benefits and 

decreased G:F. Interactive effects of supplemental Cu (125 ppm), Zn (150 ppm), and 

ractopamine HCl (10 ppm for 28 d) on finishing pig growth performance, carcass characteristics, 

and antimicrobial susceptibility of enteric bacteria was evaluated. Ractopamine increased 

(P<0.001) ADG, G:F, HCW, percentage carcass yield, loin depth, percent fat-free lean, and 

decreased (P=0.014) backfat. Copper and/or Zn did not improve ADG, ADFI, or carcass traits. 

Fecal E. coli and Enterococcus bacterial resistance to most antibiotics decreased (P<0.05) over 

time or was stable for those that had a low baseline percentage of resistance. 
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Chapter 1 - Birth Weight Threshold for Determining At-Risk 

Piglets. 

 Birth Weight is Associated with Piglet Mortality 

The association of piglet birth weight with mortality risk early in life is strongly 

supported by research. The relationship between litter sizes > 12 live born piglets, light birth 

weights, and poor piglet preweaning survival has been known for at least 25 years (Tyler et al., 

1990). At that time, Gardner et al. (1989) also reported that the odds ratio for piglet survival to 7 

d old was 349 for piglets weighing > 2 kg at birth compared to piglets weighing < 0.601 kg at 

birth. Similarly, pigs weighing > 2 kg at birth were 20.1 times more likely to survive compared 

to piglets weighing < 0.801 kg. 

More recently, Milligan et al. (2002a) observed 52 sows during 8 consecutive parities and 

reported larger litters were associated with poorer preweaning survivability, lighter birth weights, 

and negatively skewed birth weight distributions. Panzardi et al. (2013) concluded that piglets 

weighing < 1.257 kg at birth had greater likelihoods for mortality in the first 3 and 7 d of life 

compared to piglets weighing > 1.257 kg at birth. Similarly, Tanghe et al. (2014) reported piglets 

with birth weights of 1.27 kg had poorer survival to weaning compared to piglets weighing 1.55 

kg at birth. Several other studies have reported decreasing preweaning piglet mortality as 

individual piglet birth weight increased and these observations are summarized in Table 1.1.  

Both environmental and genetic components contribute to birth weight’s effects on 

mortality. Based on individual records of 133,004 Danish Landrace and 89,928 Danish 

Yorkshire piglets, the genetic correlations between birth weight and survival to d 5 were 

moderately high for both maternal (r = 0.395 and 0.604 for respective breeds) and direct (r = 

0.532 and 0.554) correlations (Su et al., 2008). Dufrasne et al. (2013) observed birth weight had 
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a high negative genetic correlation (-0.52) with preweaning mortality rate based on 24,376 

crossbred pig records from a single farm. Regardless of housing system and breeding value for 

survival rate to 5 d post-partum, Pedersen et al. (2011) reported that lighter birth weight piglets 

had a greater probability of mortality via crushing or starvation than their heavier birth weight 

counterparts. 

Birth weight is one of many maternal and neonatal physiological factors associated with 

piglet survival rate. The relationships between survival-to-weaning and birth weight, individual 

placental weight, and placental efficiency (ratio of pig weight to placental weight) were 

evaluated for 1,036 piglets from 118 litters. Birth weight proved to be the best predictor of 

survival-to-weaning (van Rens et al., 2005). Other factors associated with survival to weaning at 

28 d of age have been identified as vigor regardless of birth weight, and latency to first suckling 

(Baxter et al., 2008). 

 Multiple Factors Affect Piglet Birth Weight and Mortality 

Piglet birth weight is a multifactorial trait influenced by physiological and environmental 

factors that directly or interactively affect the growth and development of fetuses. Factors such 

as maternal parity and birth litter size affect birth weight interactively (Bergstrom, 2011). 

Considered on a common litter size basis, individual piglet birth weight has been shown to be 

affected by both the genotype of the maternal uterine environment and piglet genotype (Miles et 

al., 2012). 

In the same way, preweaning mortality is the compounded result of physiological and 

environmental factors. For instance, Casellas et al. (2005) reported preweaning mortality varied 

by month, was greater for offspring of primiparous dams, and, according to Bergstrom (2011), is 

affected by the parity of the sow that piglets suckled. Because birth weight accounts for several 
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variables, the measure is a strong indicator of neonatal mortality risk. However, there are some 

instances where individual birth weight may not be the sole reliable predictor of preweaning 

mortality such as when there are large differences in genetic background. For example, offspring 

with a greater percentage of Meishan breeding have better survivability than Large White 

offspring when considered at the same body weight and litter size (Lee and Haley, 1995). 

 Birth Weight is Associated with Poor Lifetime Performance  

Not only does birth weight have a large impact on piglet survival to weaning, but it also 

predicts subsequent growth performance and muscle fiber characteristics. Peterson (2008) 

reported that lighter birth weight pigs had decreased growth rates from birth to market compared 

to heavier birth weight pigs. Likewise, Douglas et al. (2013) used various statistical analyses 

(logistic regression, continuous linear plateau model, categorical analysis) to examine 2 

databases (40,000 and 90,000 pigs) and observed that poor birth to slaughter growth rates were 

associated with low birth weight. Moreover, increasing birth weight was linearly associated with 

increased lifetime growth rate for piglets with birth weights up to 1.8 to 1.9 kg. However, 

increased birth weight was not associated with faster growth for pigs weighing > 1.8 to 1.9 kg. 

These data indicate that there may be a threshold above which further increases in birth weight 

do not predict increased growth rate. 

Reduced growth rates mean that lighter birth weight pigs require more time to reach the 

target market weight. The probability of a pig attaining a full market value weight of at least 98 

kg BW by 180 days of age becomes greater with increasing birth weight (Bergstrom, 2011). 

Among piglets originating from litters  12 born alive, lighter birth weight pigs had decreased 

BW at weaning, at 5 and 7 weeks post-weaning, and at the first marketing pull; thereby having 

increased days to market as compared to heavier littermates (Beaulieu et al., 2010). Specifically, 
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Quiniou et al. (2002) observed poorer growth rate of lighter birth weight pigs with pigs weighing 

1 kg at birth requiring almost 14 more d to reach 105 kg BW than required by pigs weighing 2 

kg. Observing a smaller number of animals, Gondret et al. (2005) similarly reported that pigs 

weighing between 0.8 and 1.1 kg at birth reached 102 kg BW, 12 d later than pigs with birth 

weights between 1.75 and 2.05 kg. The slower growth rates of lighter birth weight pigs is 

consistent with the observation that the genetic correlation between birth weight and HCW on a 

common age basis was observed to be 0.55 based on 13,029 crossbred pig records originating 

from a single farm (Dufrasne et al., 2013). 

Additionally, Gondret et al. (2005) observed that, compared to heavier birth weight pigs, 

lower birth weight pigs exhibited 24% lower plasma IGF-1 levels, 14 to 20% greater cross-

sectional area of muscle fibers, and tended to have a corresponding 13 to 20% reduction in total 

muscle fiber number. However, they did not observe an effect of birth weight on HCW, percent 

carcass yields, final backfat depths, or tissue lipid content. In agreement, Beaulieu et al. (2010) 

observed that birth weight had minimal effects on carcass quality.  

In addition to exhibiting decreased growth performance and muscle growth potential, 

some data suggests birth weight is also associated with decreased reproductive performance and 

poorer growth potential of future offspring. Corson et al. (2009) monitored sow offspring over 2 

generations by identifying the lightest and heaviest BW first generation females and 

subsequently observing their offspring (second generation). The lighter BW mothers had 

decreased litter sizes along with decreased average piglet weights and large litter weight 

variations compared to the heavier BW sows. 
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 Biological Importance of Absolute or Relative Birth Weights 

Based on the association of birth weight with both litter size and preweaning mortality, 

the attribution of decreased piglet survivability to either large birth litter sizes (and 

correspondingly low birth weights due to intrauterine growth restriction) or attribution to 

inherent physiological characteristics of smaller body size (regardless of birth littermate number) 

is somewhat confounded. The effect of uterine crowding associated with large litter sizes 

negatively impacts fetal development and the performance of the fetus later in life (Foxcroft et 

al., 2006). Consequently, a 1 kg birth weight piglet originating from a crowded uterine 

environment could have poorer subsequent performance than a 1 kg birth weight piglet with 

fewer littermates and originating from a litter not subjected to uterine crowding. 

Hence, studies have sought to clarify whether growth potential is different among piglets 

with similar absolute birth weights but having either a relatively heavy or light birth weight 

within the piglet’s birth litter. Berard et al. (2008) observed no interactive effects of litter size 

and birth weight upon growth and carcass traits thus indicating that expected performance 

inferences made on the absolute birth weight of pigs are valid, even when pigs originate from 

litters of different sizes.  

Nonetheless, evaluating effects of individual weights within litters differing in numerical 

size is complicated by differences in prenatal mortality (0 to > 50%) and the timing of prenatal 

losses. Therefore, some litters with small numbers of pigs may have experienced relatively 

greater crowding than apparent at birth so caution must be employed when examining the effect 

of birth weight in relation to the size of the farrowed litter on different offspring performance 

indicators. Pardo et al. (2013) evaluated the performance and characteristics of piglets with 

common average birth weights but compared those having a heavy or intermediate intralitter 
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relative birth weight in litters characterized by light average birth weight to those having 

intermediate or low intralitter relative birth weight in litters characterized by heavy average birth 

weights. Impaired myogenesis and greater brain-sparing was in piglets originating from light 

average birth weight litters and categorized as heavy weight when compared to equivalent birth 

weight  pigs originating from heavy average birth weight litters and categorized as light weight. 

 Physiological Pathways Affecting Light Birth Weight 

Recently, Zhang et al. (2014) screened animals with high or low EBV’s for individual 

birth weight. “Differentially selected regions” were identified, some of which contained genes 

from MDFIC (MyoD family inhibitor domain containing). These genes had functions in protein, 

metal, ion and ATP binding, viral process, and innate immune response. As reviewed by Herpin 

et al. (2002), greater skeletal muscle metabolic development and piglet birth weight are 

associated with improved thermoregulatory ability which corresponds to lower mortality rates 

for neonatal pigs. 

In another attempt to identify physiological differences among piglets with different 

genetic potential for survival, Leenhouwers et al. (2002) explored the development of fetuses 

originating from litters of primiparous sows and having up to a 16.4% difference in piglet 

survival EBVs. Genetic selection for greater piglet survivability to weaning did not appear to be 

associated with litter average d 111 fetal body weight or within-litter fetal body weight variation, 

but actually favored piglets of litters with greater litter average cortisol levels and indicators of 

greater physiological maturity. It is important to note that these observations were based on litter 

averages and did not consider the relationship of individual fetal weight to survivability.  

Other studies have established a negative relationship between piglet plasma cortisol and 

birth weight. Klemcke et al. (1993) reported a negative relationship between piglet plasma 
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cortisol levels and individual birth weight. Additionally, the adrenocortical response of smaller 

pigs when subjected to in vitro ACTH administration was greater than the response exhibited by 

larger piglets. Kranendonk et al. (2006) administered hydrocortisone-acetate to sows from either 

gestational d 21 to 50, 51 to 80, or from 81 to 110. The resulting sow salivary cortisol levels 

were elevated and no difference in total piglet number was observed; however, compared to 

offspring of sows not receiving hydrocortisone-acetate, the pooled offspring of hydrocortisone-

acetate treated sows were characterized by fewer mummies, greater number born alive, smaller 

birth weights, and slower preweaning ADG. Given this negative relationship between plasma 

cortisol levels and birth weight as well as the strong positive relationship between birth weight 

and subsequent neonatal survivability, it therefore seems unlikely that birth weight and survival 

outcomes are mediated directly through elevated adrenocortical activity. 

Leenhouwers et al. (2002) also reported increased litter average placental efficiency, 

measured as the ratio of birth weight to placental weight, tended to be associated with improved 

survival expectancies. Furthermore, Rootwelt et al. (2013) conducted an analysis of several 

piglet characteristics to determine which were associated with survival to weaning at d 35. They 

observed that in addition to decreased body mass index, increased mortality rate was also 

associated with decreased average birth weight, placental area, and placental weight.  

While greater placental efficiency may reflect improved birth weight and thus be 

associated with lessened preweaning mortality, the relationship is not likely a causal one. 

Rootwelt et al. (2013) also observed that birth weight and placental area decreased as litter size 

increased. Mesa et al. (2003) reported that primiparous sows from genetic lines selected for 

larger litter sizes had more piglets with lighter birth weights, lighter placental weights, and 43% 

poorer placental efficiency (even when evaluated on a common litter size, 52% poorer) when 
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compared to randomly selected lines. Consequently, if large litters are characterized by reduced 

placental efficiency, poor placental efficiency is likely to be found associated with lighter birth 

weights and increased piglet mortality.  

 Interventions to Decrease Preweaning Mortality 

Peripartum interventions can be implemented to improve birthweights and provide 

intensive management of neonates who have greater risk for mortality. Preweaning mortality 

occurs at a greater rate closer post-partum than later in the suckling period. Of the 16.8% 

preweaning mortality observed by Rootwelt et al. (2013), 78.5% died within the first 3 d post 

parturition. Consequently, preventive neonatal mortality strategies focused on giving low birth 

weight pigs a survival advantage within the period immediately following birth have great 

potential to improve preweaning mortality.  

Kammersgaard et al. (2011) concluded that birth weight serves as the most critical 

determinant of neonates recuperating from hypothermia, likely via both direct and indirect 

means. Pedersen et al. (2011) observed piglets with lower body temperatures after birth had 

increased risk of mortality due to crushing, starvation, and disease. Moreover, lighter birth 

weight pigs also had a greater risk of mortality due to crushing and starvation. As reviewed by 

Kirkden et al. (2013), the incidence of piglet hypothermia and starvation can be reduced by 

implementing management practices that not only minimize health challenges and maximize sow 

milk production but also decrease farrowing duration and aid weak piglets via farrowing 

monitoring and interventions during the early post-natal period. 

Other light birth weight offspring performance outcomes appear to be modulated by 

management practices. Surek et al. (2014) reported no correlation between birth weight and the 

preweaning ADG of heavy and light birth weight pigs when pigs were cross-fostered to 



9 

standardized litters of 11 piglets each and a birth weight CV of < 5%. It follows then that farm-

specific management practices in the early neonatal period can affect the relationship of birth 

weight to preweaning mortality and subsequent pig performance. 

 Identification of At-Risk Piglets for Preweaning Mortality Based on Birth 

Weight 

To facilitate strategic use of production resources, our goal was to identify “at-risk” 

piglets for preweaning mortality based on birth weight. Observations of 4,068 piglet birthweights 

and their corresponding preweaning survival rates across 4 different farms were compiled for 

meta-analysis (data from Jon. R. Bergstrom [Kansas State University, Manhattan, KS, personal 

communication] and Jourquin et al., 2015). All pigs were weighed individually within 18 h of 

birth. Average pre-wean mortality rates across the farms ranged from 9.6 to 15.2%. Our purpose 

was to identify a birthweight threshold for survival across different animal and farm specific 

influences on mortality.  

A mixed effects logistic regression model was fit to estimate the probability of 

preweaning mortality based on birth weight. A random study effect was included to account for 

overall differences in mortality between the two studies. A piece-wise linear predictor was 

selected to best represent the drastic decrease in pre-wean mortality found as birth weights 

increase in the range of 0.5 to 1.0 kg and then the less extreme change in pre-wean mortality 

observed for changes in weight above 1.0 kg.   The exact change point of the model was found 

by comparing the model fit for birth weights ranging from 0.5 kg to 2.0 kg based on maximizing 

the likelihood (Figure 1.1). 

Results of the analysis indicated a 1.11 kg birth weight change point in the log odds of 

piglet preweaning mortality. Thus, every incremental change in birth weight below 1.11 kg had a 
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greater impact on mortality risk than incremental changes in birth weight above 1.11 kg. These 

differential relationships between mortality odds and birth weight above and below 1.11 kg are 

depicted in Figure 1.2 where the observed and modeled log odds of mortality for birth weight are 

plotted. This figure shows piglets weighing less than 1.11 kg are “at risk piglets” for poor 

preweaning survivability. 

A linear predictor equation was used on the log scale of the preweaning mortality odds to 

estimate the associated preweaning mortality probability associated with every 50 g of piglet 

birth weight (Table 1.2). In addition, the percentage of piglets across the 4 farms which fell 

within each 50 g birth weight interval was calculated and piglets with a birth weight < 0.50 kg or 

> 2.3 kg were truncated into < 0.50 and > 2.30 weight categories, respectively. Across the 4 

farms, 14.9% of the piglets had birth weights < 1.11 kg. Therefore, approximately 1 out of every 

7 piglets born was within the weight range associated with increased risk for preweaning death. 

In summary, individual piglet birth weight is strongly associated with a piglet’s risk of 

preweaning mortality. This relationship is not linear. Reducing the number of pigs with birth 

weights less than 1.11 kg would result in a substantial risk reduction for preweaning mortality 

relative to risk reduction made by improvements in birth weight of pigs weighing more than 1.11 

kg at birth. A large percentage of the neonatal pig population falls below this weight threshold 

and therefore, interventions targeted at piglets below 1.11 kg have tremendous potential to 

improve piglet preweaning survivability. These pigs were determined to be “at risk” pigs using 

logistic regression analysis. Successful interventions may take the form of strategic neonatal 

intensive care or prenatal efforts to improve musculoskeletal development and birth weight. 

However, the latter approach of improving piglet birth weight may not only improve piglet 
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survivability outcomes, but also contribute to greater lifetime growth and productivity of the pig 

and profitability of the swine producer.  
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Table 1.1. Piglet birth weight and associated preweaning mortality. 

Piglet Birth Weight, kg  

Associated preweaning mortality, % 

# of 

Piglets 
Study 

  1.0    > 1.6   14,950 Roehe et al., 1999 

 40%   < 7%     
 

< 1.0  > 1.0 
  

  12,041 Quiniou et al., 2002 

 17%
1
 3%

1
       

 0.49 – 1.27 1.271 – 1.54 1.541 – 1.79  1.791 – 2.75   612 Panzardi et al., 2013 

 9.2% 6.4% 3.2% 2.7%     

 0.90  1.60    745 Cabrera et al., 2012
2 

 32%  11%      

0.60 – 0.90 0.90 – 1.2 1.2 – 1.5 1.5 – 1.8  1.8 – 2.1 > 2.1 2,004 Da Silva Duarte Furtado, 2012 

28.9 % 8.2% 3.8% 1.9%  3.7% 1.6%   

< 0.68,    

0.68 – 0.79 

0.79 – 0.91, 

0.91 – 1.02 

1.02 – 1.13, 

1.13 – 1.25 

1.25 – 1.36, 

1.36 – 1.47 

1.47 – 1.59, 

1.59 – 1.70 

1.70 – 1.81, 

1.81 – 1.93 

1.93 – 2.04, 

> 2.04 25,622 Kohler and Bierman, 2014 

84.2, 67.6%
3 

55.6, 46.9%
3 

33.5, 27.9%
3
 21.6, 21.2%

3
 15.2, 14.0%

3
 10.7, 11.4%

3
 9.7, 8.3%

3
   

0.57 - 0.87 0.88 – 1.04 

1.05 – 1.21, 

1.22 – 1.38, 

1.39 – 1.55, 

1.56 – 1.72 1.73 – 1.89 1.9 – 2.06 2.07 – 2.85 2,893 Smith et al., 2007 

28.8% 2.9% 6.2, 4.4% 20.4, 17.5% 21.6% 12.8% 13.7%   

< 0.61,    

0.61 – 0.8 0.81 – 1.0 1.01 – 1.2 

1.21 – 1.4, 

1.41 – 1.6 
1.61 – 1.8 

1.81 – 2.0, 

2.01 – 2.2 

2.21 – 2.4, 

> 2.4  

12,041
4 

Quiniou et al., 2002
 

85, 52%
5 

29%
5
 15%

5
 11, 8%

5
 5%

5
 5, 2%

5
 4, 3%

5
   

  
1.10 – 1.15, 

1.15 – 1.2 

1.2 – 1.25, 

1.25 – 1.3 

1.3 – 1.35, 

1.35 – 1.4 

1.4 – 1.45, 

1.45 – 1.5 > 1.5 600 Ferrari et al., 2014 

  12.2, 15.9%
6 

8.4, 9.0%
6
 5.0, 1.3%

6
 6.0, 3.4%

6
 0%

6
   

 < 1.25 1.25 – 1.433 1.434 – 1.608 1.609 – 1.787 > 1.787  508 Casellas et al., 2005 

 34.7% 12.6% 9.7% 7.8% 7.8%    
1
 % mortality to 24 h 

2 
Piglets < 0.68 birth weight were excluded. 

3 
% mortality to d 63 

4 
Total born 

5
 Survival calculated as number alive at weaning out  number alive post cross-fostering within 48 h of birth. 
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Figure 1.1. Goodness of fit assessment for change point in linearity. 
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Figure 1.2. Predicted preweaning mortality by birth weight based on odds ratios of birth 

weight and mortality with 95% predicted interval (grey shaded area). 
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Table 1.2. Predicted preweaning mortality by birth weight. 

Birth Weight, kg 
Predicted Preweaning 

Mortality 

0.50 85.4% 

0.55 81.3% 

0.60 76.2% 

0.65 70.3% 

0.70 63.7% 

0.75 56.5% 

0.80 49.0% 

0.85 41.5% 

0.90 34.4% 

0.95 27.9% 

1.00 22.3% 

1.05 17.5% 

1.10 13.6% 

1.15 12.4% 

1.20 11.8% 

1.25 11.3% 

1.30 10.7% 

1.35 10.2% 

1.40 9.7% 

1.45 9.3% 

1.50 8.8% 

1.55 8.4% 

1.60 8.0% 

1.65 7.6% 

1.70 7.2% 

1.75 6.9% 

1.80 6.5% 

1.85 6.2% 

1.90 5.9% 

1.95 5.6% 

2.00 5.3% 

2.05 5.1% 

2.10 4.8% 

2.15 4.6% 

2.20 4.3% 

2.25 4.1% 

2.30 3.9% 

2.35 3.7% 

2.40 3.5% 

2.45 3.3% 

2.50 3.2% 

2.55 3.0% 

2.60 2.9% 

2.65 2.7% 

2.70 2.6% 

2.75 2.4% 

2.80 2.3% 
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Chapter 2 - Myogenic and developmental characteristics of 60-day 

fetal pigs associated with intralitter relative crown-rump size. 

 ABSTRACT 

Twelve gestating gilts (PIC 327  1050; initial BW 168 kg and age 7 mo) were used to 

quantify maternal serum IGF-1 concentrations from d 24 to d 60 of gestation as well as to 

evaluate the effect of d 60 intralitter fetal size on growth suppression, placental transport 

capacity, expression of myogenic growth and regulatory factors, and primary myogenesis. Gilts 

were synchronized and artificially inseminated at approximately 7 mo of age. Maternal serum 

was collected on d 24, 32, 39, 46, 53, and 60 of gestation. On d 60 of gestation, gilts were 

euthanized and fetal weights, measurements, and muscle samples were collected from male 

fetuses closest to the longest (LG), median (MD), and shortest (SM) crown-rump length sizes 

within each litter. Concentrations of IGF-1 in maternal serum decreased (P < 0.05) from d 24 to 

60 of gestation. Fetal BW, liver weight, head width, and the ratio of head circumference to BW 

were smaller (P < 0.05) for SM fetuses compared to LG fetuses. Brain weight to liver weight 

ratio was larger (P < 0.05) in SM fetuses compared to MD and LG fetuses but no difference in 

placental gene expression of Glut-1 was observed. The earlier maturing Longissimus thoracis 

had upregulated (P = 0.046) IGF-2 mRNA, more (P = 0.063) primary myofibers of larger (P = 

0.002) cross-sectional area, and a greater (P = 0.025) number of myonuclei per fiber than in the 

Longissimus lumborum. Despite larger fetuses having a larger (P = 0.001) Longissimus whole 

muscle area, no differences in primary myofiber development were evident among fetal sizes 

although IGF-1, IGF-2, and MyoD mRNA were upregulated (P < 0.05) in smaller fetuses. In 

summary, gestating gilt serum IGF-1 concentration declined in early to mid gestation. Small 

fetuses may have experienced nutrient restriction in utero as evidenced by brain sparing; 
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however, no differences in placental efficiency or primary myogenesis were observed among 

intralitter relative fetal sizes in mid gestation. 

 INTRODUCTION 

Genetic selection for greater number of live pigs born per litter greatly increased present 

day litter sizes, but these larger litters are characterized by lighter average birth weights and 

negatively skewed birth weight distributions (Milligan et al., 2002). These lighter birth weights 

are attributed to limited uterine capacity of the dam. Uterine space is strongly correlated to 

prenatal conceptus survival (Chen and Dziuk, 1993) and by d 30 of gestation, intrauterine 

crowding has begun to retard fetal survival, growth, and development (Foxcroft et al., 2006). Yet 

not all organ growth is inhibited by prenatal undernutrition and placental insufficiency as 

evidenced by allometric brain growth, likely due to the prioritization of limited nutrients to 

sustained brain development (Ashworth et al, 2001; Vallet and Freking, 2006). Therefore, a large 

ratio of brain weight to other body organs and structures can be used as an indicator of piglets 

having experienced intrauterine growth restriction. 

Birth weight is positively associated with myofiber number (Gondret et al., 2006; 

Oksbjerg et al, 2013). Compared to heavier birth weight pigs, light birth weight pigs take more 

days to reach market weight, have fatter carcasses, and fewer muscle fibers of larger cross-

sectional area (Rehfeldt and Kuhn, 2006). 

Fetal myogenesis is an intricate process with numerous regulatory factors controlling 

myoblast proliferation and differentiation. Repressed embryonic myoblast proliferation and 

accelerated differentiation will result in a decreased number of myofibers formed (Rehfeldt et al., 

2011). Primary muscle fiber myogenesis in fetal pigs occurs between d 25 and 50 of gestation, 

while secondary muscle fiber myogenesis begins to occur around d 50 (Wigmore & Stickland, 
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1983). By d 90 of gestation, hyperplasia of both primary and secondary muscle fibers is 

complete (Oksbjerg et al., 2004), with subsequent muscle growth occurring via hypertrophy. 

Therefore, the potential for ultimate muscle mass is established prenatally in the pig and has 

numerous production implications. 

Myogenic progenitor cells coexpress Pax3 and Pax7 transcription factors and give rise to 

embryonic and fetal myoblasts, or satellite cells (Biressi et al., 2007). Satellite cells are 

identifiable by expression of Pax7 transcription factor (Otto et al., 2009) and serve as a source of 

myonuclei for myofiber growth. The potential for postnatal muscle hypertrophy is partially 

dependent on number and proliferative rate of satellite cells per myofiber (Oksbjerg et al., 2013). 

Greater density of satellite cells has been observed in heavier birth weight mice as compared to 

the density in lighter birth weight littermates (Brown and Stickland, 1993).  

The manipulation of the maternal growth hormone/somatotropic axis has been shown to 

mitigate some of the negative effects of intrauterine crowding on fetal myofiber number and 

birth weight (Rehfeldt and Kuhn, 2006). However, maternal insulin-like growth factors (IGF) do 

not cross the diffuse placenta in pigs so it has been proposed that maternal IGF might enhance 

nutrient transfer across the placenta thereby increasing fetal growth factors (Sterle et al., 1995). 

Quantification of unmodified endogenous concentrations of IGF-1 therefore can serve as a 

valuable reference for future research with the objective of modulating maternal levels. 

The objectives of this experiment were to quantify maternal serum IGF-1 concentration 

in mid gestation, and to test the hypothesis that relatively small d 60 fetuses within each litter 

will 1) be characterized by suppressed growth, 2) have poorer placental transport capacity, 3) 

exhibit evidence of nutrient shunting to prioritized organs, 4) have decreased genetic expression 
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of myogenic growth and regulatory factors, and 5) possess fewer muscle fiber numbers with 

fewer nuclei per fiber. 

 MATERIALS AND METHODS 

The protocol for this experiment was approved by the Kansas State University 

Institutional Animal Care and Use Committee. The study was conducted at the Kansas State 

University Swine Teaching and Research Center in Manhattan, KS.  

 Animal Management and Housing 

Sexually mature gilts (n=12; PIC 327  1050; 168 kg initial BW and age 7 mo) across 2 

breeding groups were used in this study. At approximately 185 d of age, group-penned gilts 

received daily exposure to mature boars and were observed for visual signs of estrous. After first 

recorded exhibition of estrus, gilts were moved to individual gestation stalls (2.88 m
2
). On d 19 

of their first recorded estrous cycle, gilts received 6.8 mL Matrix
 

(15 mg altrenogest; 

Intervet/Schering-Plough Animal Health, Millsboro, DE) top-dressed on their daily feed 

allowance. This continued for 14 consecutive d to synchronize estrus. Gilts were heat checked 

with mature boars twice daily starting approximately 3 d after cessation of Matrix


 therapy. Gilts 

found to be in standing estrus were artificially inseminated (PIC 337 semen) up to 3 times at 

evening/morning intervals beginning 12 h after onset of estrus was first detected (onset of estrus 

= d 0). Pregnancy was confirmed via transcutaneous ultrasound on d 24 after first insemination.  

Gilts gestated throughout the months of May, June and July (group 1), and July, August, 

and September (group 2). Gestating gilts were limit fed (2.2 kg d
-1

) a standard non-medicated 

diet once daily that met or exceeded nutrient requirements for animals this size and stage of 

production (NRC, 2012).  
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 Serum Collection 

Gilts were restrained via snare approximately 4 h after feeding on d 24, 32, 39, 46, 53, 

and day 60  4. Blood from the anterior vena cava/caudal jugular vein was collected into 10 mL 

glass vacuum tubes containing no additives (Covidien LP, Mansfield, MA). Whole blood was 

transported on ice to the K-State Muscle Biology Laboratory for further processing according to 

the methods of Tuck et al. (2009). Whole blood samples were incubated at room temperature for 

30 to 45 min to allow for clot formation and centrifuged at 1,800  g for 25 min at 4C. Serum 

supernatant was transferred to sterile 1.7 mL microcentrifuge tubes and stored at -80C until time 

of IGF-1 analysis.  

 Serum Processing and ELISA 

A commercial IGF-1 (human) ELISA kit was used for the analysis of the serum IGF-1 

(ADI-900-150; ENZO Life Sciences, Farmingdale, NY). Prior to analyzing study samples, the 

kit was validated for specificity and recovery. Percent recovery of human serum IGF-1 was 

specified as 95.9% at  1: 70 dilution, assay sensitivity was 34.2 pg mL
-1

, and intra-assay 

coefficient of variation was 3.6-8.9%. Sow serum IGF-1 was extracted from binding proteins 

using a 1:5 ratio of sample to acidified ethanol (7:1 N HCl: 100% ethanol), centrifugation, and 

neutralization of the supernatant with a commercial neutralizing reagent (ADI-900-150; ENZO 

Life Sciences). The assay was performed according to manufacturer’s protocol and samples were 

run in triplicate. A spectrophotometer (Eon, BioTek Instruments, Winooski, VT) was used to 

detect the optical density of the colormetric signal at 450 nm. A pooled control sample was 

included on each plate as a plate to plate control. All samples’ concentrations fell within the 

standard curve range for parallelism (187 pg mL
-1

 to 6,000 pg mL
-1

). The net optical density of 
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each of the standards was calculated and plotted against known concentrations. Sample 

concentrations of IGF-1 were calculated using the linear function. 

 Fetal Measurements and Sample Collection 

On gestation d 59  2, gilts were transported to the K-State Abattoir. On gestation d 60  

2, gilts were euthanized via exsanguination after electrical stunning. Reproductive tracts (ovaries, 

oviducts, uterine horns, uterine body, and cervix) were removed from the body. Each uterine 

horn was freed from surrounding connective tissue and dissected from the surrounding 

mesometrium. Within each horn, the fetal placental membranes were carefully separated from 

the uterine wall and the uterine wall was opened longitudinally from the ovarian end. The crown-

rump length (poll to tail head) of each fetus was measured through the placental membranes. Due 

to the strong correlation between fetal crown-rump length and fetal BW (Knight et al., 1977), 

crown-rump length was employed to determine relative fetal sizes within each litter. Male 

fetuses having a crown-rump length closest to that of the longest, median, and shortest crown-

rump lengths, within their respective litter, were identified as large (LG), median (MD), and 

small (SM) fetuses.  

Tissue samples were taken from the middle of the allantochorion of each of the 3 fetuses 

after separating from the allantois. Care was taken to avoid collecting tissue containing large 

blood vessels. Tissue samples were snap-frozen in liquid nitrogen and stored at -80C until 

further analysis for gene expression.    

Fetal umbilical cords were severed approximately 1 cm from the fetus’s abdomen and 

each fetus was individually weighed. The placental attachment length for each fetus was 

measured as the distance between each of the allantochorion’s necrotic tips. The BW to 

attachment length ratio was calculated for each fetus. 
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Electronic digital calipers (Model 14-648-17; Fisher Scientific, Pittsburgh, PA) were used 

to measure the head length and width of each fetus. Head length was measured as the linear 

distance from the snout to the posterior point of the poll. Head width was measured as the linear 

distance immediately posterior to the eye socket and anterior to the base of the ear. The fetal 

head circumference was assessed by wrapping a string around the maximum circumference (poll 

to ventral surface of mandible). In a similar manner, the thoracic circumference just posterior to 

the shoulders of each fetus was determined. Ratios of head circumference:crown-rump length 

and of head circumference:BW were calculated for each fetus. 

The whole left Longissimus dorsi was dissected from the fetus and weighed. The right 

Longissimus dorsi was segmented into the Longissimus thoracis and Longissimus lumborum and 

samples were collected for mRNA and immunohistochemical analysis. Longissimus thoraci s 

immunohistochemistry samples were taken immediately posterior to the point of the trapezius 

muscle, while mRNA samples were dissected from under the trapezius and anterior to the other 

sample. Longissimus lumborum immunohistochemistry samples were harvested at approximately 

the last rib and mRNA samples were collected posterior to this sample. 

Muscle cross-sections which were to be used for immunohistochemistry were blotted on 

paper, the perimeter traced, blots scanned using a digital scanner (HP DeskJet 3050; Hewlett 

Packard, Palo Alto, CA), and whole muscle cross-sectional area was measured using Nikon NIS-

Elements Basic (Nikon Instruments Inc, Melville, NY). The cross-section was then embedded in 

tissue embedding media (Fisher Scientific), frozen in liquid nitrogen cooled isopentane, and 

stored at -80C. Portions of the muscle cross-sections to be used in mRNA analysis were 

deposited in individual tubes, snap-frozen, and stored at -80C until further analysis.  
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The fetal skull was dissected and the complete brain removed and weighed. Similarly, the 

abdominal cavity of the fetus was opened and the liver was removed and weighed. The ratio of 

brain weight: liver weight was calculated for each fetus. 

 Immunohistochemistry 

From each fetal tissue sample, a 10-m cryosection was affixed to a frost resistant slide 

to allow for immunodetection. The methods of Paulk et al. (2014) were used with few 

modifications. Sectioned muscle samples were incubated in 5% horse serum and 0.2% TritonX-

100 in phosphate buffered saline (PBS; Fisher Scientific) for 30 min to bind non-specific antigen 

binding sites, washed 3 times with PBS for 5 min each, and subsequently incubated with primary 

antibodies diluted in blocking solution for 60 min.  

Primary antibodies used were supernatant myosin heavy chain type 2A, IgG1 (SC-71; 

Developmental Studies Hybridoma Bank, University of Iowa, Iowa City, IA), supernatant 

myosin heavy chain, slow, IgG2b (BA-D5; Developmental Studies Hybridoma Bank), Pax-7 

(Developmental Studies Hybridoma Bank), and α-dystrophin (Thermo Scientific, Waltham, MA) 

diluted 1:10, 1:10, 1:10, and 1:500, respectively. After washing with PBS, cryosections were 

then incubated for 30 min with a secondary antibody solution simultaneously with 1:1000 

Hoechst 33342 dye (Invitrogen; Carlsbad, CA) in blocking solution. The secondary antibodies 

were 1:1000 Alexa-Fluor 488 goat anti-mouse IgG1for SC-71 and Pax-7 (Invitrogen), Alexa-

Fluor 633 goat anti-mouse IgG2b for BA-D5 (Invitrogen), and Alexa-Fluor 594 goat anti-rabbit 

heavy and light chains for α-dystrophin (Invitrogen). After incubation in secondary antibody 

solution for 30 min, cryosections were washed, covered with 9:1 glycerol/PBS solution, and 

cover-slipped. 
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 A Nikon Eclipse TI-U inverted microscope equipped with a DS-QiMc digital camera 

(Nikon Instruments Inc.) was used to collect photomicrographs at 200 magnification. Two 

representative photomicrographs (> 100 primary fibers per sample) were captured, and were 

analyzed with NIS-Elements Imaging Software (Basic Research, 3.3; Nikon Instruments Inc.). 

Fibers that were positively stained for the BA-D5 antibody were categorized as primary muscle 

fibers and the fibers that positively stained for SC-71 were labelled as secondary fibers.  Nuclei 

count was determined by all fiber associated nuclei that were Hoechst 33342 positive. Total 

primary fiber number of the whole muscle cross-sectional area was computed as the whole 

muscle area divided by average primary fiber cross-sectional area. 

 Real-time Quantitative PCR 

The methods of Burnett et al. (2016) were utilized for the extraction of total RNA, cDNA 

synthesis, and quantitative PCR (qPCR) analysis. Briefly, nucleic acids were extracted from 

tissues by subjecting them to TRIzol


 (Thermo Fisher Scientific, Waltham, MA) chloroform 

extraction. Nucleic acid pellets were purified by subjecting them to the PureLink


 RNA Mini 

Kit (Thermo Fisher Scientific, Waltham, MA). Following elution, total RNA concentration and 

purity was assessed using a NanoDrop


 1000 spectrophotometer (Thermo Fisher Scientific, 

Waltham, MA). All muscle tissue RNA extractions produced 260:280 nm absorbance ratios 

(A260/A280) greater than 1.9 and were deemed suitable for qPCR analysis. All extracted samples 

were stored at - 80C until the time of qPCR analysis. 

 Complementary DNA was synthesized from 50 ng of total RNA using the High Capacity 

cDNA Archive kit (Life Technologies, Carlsbad, CA) according to the manufacturer’s protocol. 

Complementary DNA reactions were conducted twice for each sample. Real-time qPCR was 

conducted using a Realplex
2
 S PCR System (Eppendorf North America, Hauppauge, NY). Gene 
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specific primers (Table 2.1), cDNA representing 1 ng of total RNA, and PerfeCTa Sybr FastMix 

SYBRGreen (Quanta Biosciences, Gaithersburg, MD) were used for the real-time reaction. For 

the muscle genes of interest, duplicate reactions were conducted under thermal cycling 

parameters consisting of an initial heating step of 50C for 2 minutes, initial denaturing at 95C 

for 10 minutes, and 50 cycles of denaturing at 95C for 15 sec, annealing at the appropriate 

temperature for 30 seconds, and extension at 68C for 20 sec. A final dissociation step was 

conducted and consisted of heating at 95C for 15 sec and a 60 - 90C temperature ramp 

conducted over 20 minutes. An internal control of pooled sample was included on each plate to 

ensure consistency across plates. Primers for each muscle gene of interest were validated by 

generating efficiency curves. Primers with efficiencies between 0.9 and 1.1 were considered 

acceptable for qPCR analysis. 

For the muscle genes, the threshold cycle (Ct) was determined for each gene of interest 

and this value was then normalized to Ribosomal protein L4 (RPL4) expression in the same 

sample to calculate the normalized expression (ΔCt) of the target gene. A pooled control sample 

representing samples from all fetal sizes and both muscles was used as the calibrator sample and 

the normalized expression (ΔCt) of each target gene in the calibrator sample was used to 

determine fold differences in relative gene expression using the 2
-ΔΔCt 

method (Livak and 

Schmittgen, 2001). Placental gene expression was calculated similarly using 18S rRNA gene 

expression to normalize expression of the target gene; RNA obtained from swine testis tissue 

was used as the calibrator sample for calculation of fold differences. 

 Statistical Analysis 

Maternal serum IGF-1 was analyzed as a completely randomized design with each gilt 

serving as an experimental unit to assess the effect of day of gestation on serum IGF-1 
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concentration. The MIXED procedure in SAS (v9.3, SAS Institute Inc., Cary, NC) was used to 

model day of gestation as a fixed effect with a random effect of gilt to account for repeated 

sampling of the gilts across days of gestation. 

Fetal morphometrics and weights were analyzed as a randomized complete block design 

with a one way treatment structure and replicated over 3 sample collection days. Each fetus was 

considered an experimental unit and dam was considered a random block factor. The MIXED 

procedure in SAS was used to model fetal size as a fixed effect with random effects of sample 

collection day and dam nested within sample collection day. The random effects of fetal size  

sample collection day and fetal size  dam within sample collection day were pooled into the 

residual.  

Fetal muscle histology and gene expression was analyzed as a randomized complete 

block design with a split-plot, 3  2 treatment structure, and replication over 3 sample collection 

days. Hence, responses were modeled with fixed effects of fetal size on the fetus whole-plot 

experimental unit and muscle location on the longissimus split-plot experimental unit and with 

random effects of sample collection day, dam within sample collection day, and the interaction 

between fetal size  dam within sample collection day. The random interactions between fetal 

size  sample collection day and fetal size  dam within sample collection day were pooled into 

the whole-plot residual used to test the effect of fetal size. The random interactions between 

muscle location  sample collection day and muscle location  dam within sample collection 

day, as well as muscle location  fetal size  sample collection day and muscle location  fetal 

size  dam within sample collection day were pooled into the split-plot error term used to test the 

effect of muscle location and the interactions between fetal size and muscle location. 
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For all variables, differences between least squares means were computed using the 

PDIFF option in SAS. All results were considered statistically significant at P ≤ 0.05; results 

with P-values > 0.05 and ≤ 0.10 were considered marginally significant. 

 RESULTS 

 Maternal Serum IGF-1 Concentration 

Maternal serum IGF-1 concentrations decreased during the observed period of d 24 to d 

60 of gestation. Serum IGF-1 decreased (P < 0.05) from d 24 gestation to d 32, from d 32 to 39, 

and from d 39 to 60 (Figure 2.1).  

 Fetal Morphometrics and Organ Weights 

Fetal pigs were categorized as small (SM), medium (MD), or large (LG) size depending 

on their relative crown-rump length within litter. Consequently, the crown-rump length of SM 

fetuses was shorter (P < 0.05) than the crown-rump length of MD fetuses, which was shorter (P 

< 0.05) than the crown-rump length of LG fetuses (Table 2.2).  Fetal BW followed a similar 

pattern as the BW of SM fetuses was less (P < 0.05) than the BW of LG fetuses, while the BW 

of MD fetuses was not different from either SM or LG. Individual placental attachment lengths 

did not differ (P = 0.486) across fetal sizes, nor were differences (P = 0.403) in the ratio of BW: 

attachment length observed across fetal sizes. Also, no difference (P = 0.577) in placental Glut-1 

mRNA expression was observed across fetal sizes. 

No difference was observed between the thoracic circumferences of SM and MD fetuses 

although the thoracic circumference of LG fetuses was larger (P < 0.05) than either SM or MD 

fetuses. Fetal head dimensions of longer fetuses tended to be greater with marginally significant 

differences in head circumference (P = 0.058) and in head length (P = 0.063; Table 2.2). Head 
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width was wider (P < 0.05) for LG fetuses compared to SM fetuses, but the head width of MD 

fetuses was not different from either SM or LG. However, SM fetuses had a larger (P < 0.05) 

ratio of head circumference:crown-rump length than MD fetuses which in turn had a larger (P < 

0.05) ratio than LG fetuses. Similarly, the ratio of head circumference:BW of SM fetuses was 

larger (P < 0.05) than the ratio of LG fetuses, and that of MD fetuses did not differ from that of 

either SM or LG fetuses.  

 Although head dimensions were marginally significantly greater for larger sized fetuses, 

no differences (P = 0.380) in brain weight were observed among the fetal sizes. In contrast, liver 

weights of LG fetuses were heavier (P < 0.05) than liver weights of SM fetuses and the liver 

weights of MD fetuses were not different from the liver weights of either LG or SM fetuses. 

Therefore, the ratio of brain weight:liver weight was greater (P < 0.05) for SM fetuses compared 

to that of MD and LG fetuses, whose brain weight:liver weight ratios were not different. No 

differences (P = 0.119) among the weights of the left Longissimus dorsi muscle due to fetal size 

were observed. 

 Fetal Muscle Histology  

No fetal size  muscle location interactions were observed for the fetal histological 

properties aside from a marginally significant interaction (P = 0.071) for the number of fiber 

associated nuclei per primary muscle fiber (Table 2.3). The whole muscle cross-sectional area of 

the Longissimus thoracis was larger (P = 0.001) than the whole muscle cross-sectional area of 

the Longissimus lumborum. In addition, the whole muscle cross-sectional area of SM fetuses was 

less (P < 0.05) than that of MD and LG fetuses regardless of muscle location. No differences in 

the number (P = 0.181) or cross sectional area (P = 0.114) of primary muscle fibers due to fetal 

size were observed; however, independent of fetal size, there was a marginally significant greater 
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(P = 0.063) number of primary muscle fibers and greater (P = 0.002) primary fiber average 

cross-sectional area in the Longissimus thoracis than in the Longissimus lumborum. No 

differences in the number of secondary muscle fibers per primary muscle fiber were observed 

due to either fetal size (P = 0.359) or muscle location (P = 0.781). 

 More (P = 0.023) fiber associated nuclei per primary muscle fiber were present in the 

Longissimus thoracis than were observed in the Longissimus lumborum. Fetal size did not affect 

(P = 0.756) the number of fiber associated nuclei per primary muscle fiber, but the marginally 

significant interaction (P = 0.071) between muscle location and fetal size observed for the 

number of fiber associated nuclei per primary muscle fiber was the result of numerical increases 

in fiber associated nuclei in the Longissimus thoracis between SM, LG, and MD fetuses, 

respectively, but numerical increases in the Longissimus lumborum between the MD, LG, and 

SM fetuses, respectively. No differences (Size, P = 0.933; Muscle, P = 0.141)  in the number of 

Pax7 positive nuclei per primary muscle fiber were observed due to either fetal size or muscle 

location. 

 Myogenic Gene Expression 

No interactions (P > 0.10) between fetal size and muscle location were observed in 

myogenic gene expression (Table 2.4). Irrespective of fetal size, IGF-2 gene expression was 

greater (P = 0.046) in the Longissimus lumborum than in the Longissimus thoracis but there was 

no observed difference (P = 0.544) in IGF-2 receptor gene expression between the two muscle 

locations. Across both muscle locations, SM fetus gene expression of IGF-2 was greater (P < 

0.05) than the expression in MD or LG fetuses which did not differ. Fetal size had a marginally 

significant effect (P = 0.103) on gene expression of IGF-2 receptor with expression least in LG 

fetuses.  
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Gene expression of IGF-1 was greater (P = 0.046) in the Longissimus lumborum than in 

the Longissimus thoracis (Table 2.4). The IGF-1 gene expression decreased with increasing fetal 

size with SM fetuses having greater (P < 0.05) expression than either MD or LG fetuses which 

did not differ. Gene expression of IGF-1 receptor did not appear to be affected (Size, P = 0.326; 

Muscle, P = 0.466) by either fetal size or muscle location.  

Regardless of muscle location, MyoD gene expression decreased with increasing fetal 

size such that SM fetuses had greater (P < 0.05) expression than either MD or LG fetuses which 

did not differ. No differences in the gene expression of MyoD (P = 0.487), Pref-1 (P = 0.519), 

Myf5 (P = 0.397), MyoG (P = 0.303), Pax7 (P = 0.618), -catenin (P = 0.219), or Myostatin (P = 

0.515) between the two muscle locations were observed. In addition, gene expression of Pref-1, 

Myf5, MyoG, Pax7, -catenin, and Myostatin did not differ (P = 0.145, 0.201, 0.286, 0.337, 

0.237, and 0.526, respectively) among fetal sizes.   

 DISCUSSION 

Maternal IGF-I is unable to cross diffuse placental membranes and therefore cannot 

directly affect the pig fetus. However, increased maternal IGF-1 concentration promotes fetal 

growth, possibly increasing fetal IGF-1 production through enhanced nutrient transfer across the 

diffuse placenta (Hall et al., 1986; Sterle et al., 1995). Similar to our observations, Farmer et al. 

(2000) reported decreases of maternal IGF-1 from around 170 ng mL
-1

 at breeding to around 80 

ng mL
-1

 by d 70 of gestation. These observations were obtained in similar aged but lighter 

weight gilts than those used in the present study which might explain the difference in values.  

For the current study, relative fetal size classification was based on fetal crown-rump 

length. Knight et al. (1977) reported that the crown-rump length of fetuses was strongly 

correlated to their body weight (r = 0.92) from d 20 to d 100 gestation. Within the fetal subset 
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evaluated in this study, the BW of fetuses characterized as SM, MD, and LG increased with 

increasing crown-rump lengths at d 60 of gestation. Larger thoracic circumferences were 

observed in the largest fetuses compared to their smaller littermates, thus indicating that heart 

girth is reflective of fetal length in 60 d fetuses. 

As seen in the present study, d 60 fetal liver weights increased with increasing fetal size. 

In contrast, Vallet and Freking (2006) observed that the relative weight of liver to fetal BW on d 

45 was greater for larger fetuses so that the livers of small fetuses were a lesser proportion of 

BW than the proportion was for large fetuses. By d 65 however, the liver weight to BW 

percentage was almost proportional across all fetal sizes, implicating either the livers of the 

smaller fetuses had high impetus growth from d 45 or 65 or livers of larger fetuses experienced 

low impetus growth during this period. Yet Amdi et al. (2013) reported lighter liver weight 

relative to BW could still be observed in severely growth restricted neonates when compared to 

the ratio in normal birth weight pigs (Amdi et al., 2013). 

The precocial nature of neonatal pigs presupposes substantial development of the 

neuroendocrine system and associated organs (Matthews, 2002), which are critical for regulation 

of fetal growth and development. Thus, fetal pigs may prioritize partitioning of limited nutrients 

to fetal brain development. In the present study, brain weight and the circumference and length 

of the head did not differ among the extremes of intralitter fetal sizes, but differences 

corresponding to fetal size were observed in head width. Yet as assessed by head circumference, 

the relative size of the head compared to BW or compared to crown-rump length decreased with 

increasing fetal size. Comparing the brain weight to liver weight ratios of different sized fetuses 

indicated that small fetuses within each litter had the greatest proportion of brain to liver organ 
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weight, thus suggesting that brain growth was prioritized over liver growth in nutrient-limited 

fetuses.  

Vallet and Freking (2006) reported that the brain-sparing phenomenon was evident by d 

45 of gestation and the weight of the brain relative to fetal BW increased with increasing fetal 

weight. As fetuses grew throughout gestation from d 45 to 85, the differences in the ratio of brain 

weight to BW for different sized fetuses increased in magnitude so that the differential 

relationship between brain weight and BW across fetal sizes was most pronounced by d 85 of 

gestation. At birth, Amdi et al. (2013) observed that the percentage of heart weight and brain 

weight relative to BW was still greater in severely growth restricted neonates than in normal 

birth weight pigs. Altogether, these observations indicate small fetuses prioritize brain growth 

over other body growth. 

In the pig, maternal-fetal exchange occurs over the entire placental area in pigs (Fowden 

et al., 2006). Elongation of the spherical blastocyst occurs at d 11 - 12 of gestation (Geisert et al., 

1982), while attachment begins by d 12 -13 and is completed by d 25 - 26 (Lawrence et al., 

2012). This sequence of events has important ramifications as earlier elongating conceptuses 

establish claim to uterine space and placental area first and thus may experience less restricted 

placental growth and crowded growth conditions (Blomberg et al., 2005). In the present study, 

no appreciable differences were observed in the placental attachment lengths nor were any 

differences evident in the d 60 fetal body weight to attachment length ratios of different sized 

fetuses. It is possible that placental attachment length is not a consistently representative 

measurement of placental nutrient supply or function.  

Placental function could be enhanced via several means such as morphological folding or 

degree of vascularization, but improved nutrient transport is widely proposed as a means of 
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compensational growth of crowded fetuses. Glucose is not synthesized in the fetal pig (Fowden 

et al., 1997). Therefore, glucose transporters of the SLC2A gene family located within the 

placental are critical for supplying glucose to the fetal pig. In the present study, no difference 

could be detected in the mRNA expression for Glucose transporter-1 (GLUT-1) in the placental 

tissues of the SM, MD, and LG fetuses of each litter. Little research has examined relative 

expression of glucose transporters in pigs, but maternal growth hormone treatment increased 

GLUT-1 expression across all fetuses while concurrently increasing fetal weight on d 50 (Tung et 

al., 2012). Expression of GLUT-1 increases throughout gestation in the discoidal hemochorial 

placentas of rodents and in certain locations of that of humans (Yamaguchi et al., 1996; 

Baumann et al., 2002; Korgun et al., 2011) and in rats, GLUT-1 gene expression is upregulated 

in the smallest placentas at the end of gestation when the nutrient demand for fetal growth is 

especially large (Coan et al., 2008). Although GLUT-1 expression appears to be associated with 

greater fetal growth, there is not yet strong evidence that GLUT-1 is upregulated in the placenta 

of growth-compromised pigs. 

Despite no differences in the Longissimus muscle weight among the fetal sizes in the 

present study, the cross-sectional area of the Longissimus muscle increased with increasing fetal 

BW and intralitter size classification, thus implying observable differences in primary 

myogenesis by d 60 of gestation. In addition, significant myogenic differences attributable to 

anatomical location within the Longissimus muscle were observed in the d 60 fetus and these 

differences were consistent across fetal sizes. Parallel consideration of the effects of both fetal 

size and muscle location factors can be helpful for understanding the complex temporospatial 

growth and development of muscle.  
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Muscle location is an important consideration because the myogenic progenitor cells 

responsible for formation of the Longissimus muscle are derived from the epaxial 

dermomyotome (Ordahl and Le Douarin, 1992). Somites are formed from the embryonic 

mesoderm in a rostral to caudal direction (Sassoon et al., 1989) and within the somite, waves of 

precursor cells originating from the dermomyotome translocate to form the myotome and there 

elongate with succeeding cells displacing the earlier cells (Hollway and Currie, 2005).  Myotome 

development continues sequentially with the proliferation of additional cells along all the edges 

of the dermomyotome, translocation of these cells to the myotome, intercalation among the 

existing myotomal cells, and elongation. Myocytes on the rostral and caudal edges of the somite 

elongate in one direction (Gros et al., 2004) so that the formation of the myotome structure 

occurs progressively in a rostral to caudal manner. As such, the myogenesis of the Longissimus 

muscle progresses so that the thoracis portion develops earlier than the lumborum portion.  

In the current study, compared to the Longissimus lumborum, the Longissimus thoracis 

had greater whole muscle area, fiber number, fiber size, and fiber associated nuclei per fiber but 

less relative abundance of IGF-1 mRNA and IGF-2 mRNA. In addition, the mRNA abundance 

of both IGF-1 and IGF-2 decreased with increasing fetal size. Considered together, the observed 

effects of muscle location and fetal size on these various responses are consistent with each other 

and would imply that less developed muscle and less developed fetuses express a greater 

abundance of growth factor mRNA as a compensative mechanism for sustained growth and 

development.  

Growth factors have important functions in myogenesis. Insulin-like growth factor 1 and 

IGF-2 stimulate myoblast differentiation in vitro (Ewton and Florini, 1981) and regulate both 

proliferation and differentiation of muscle cells in a very developmentally critical, time specific 
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manner (Oksbjerg et al., 2004). The prevailing theory submits that fetal pigs experience tissue-

specific regulation of IGF-1 production during development and hepatically produced IGF’s are 

not a primary source prenatally (Lee et al., 1993; Ramsay et al., 1994; Gerrard et al., 1998). As 

such, local production of growth factors in skeletal muscle is important for growth. Insulin-like 

growth factor 2 mRNA abundance is highly expressed prenatally, peaks around d 59 of 

gestation, decreases to low expression postnatally, yet remains higher than that of IGF-1 from 

mid to late gestation (Lee et al. 1993; Peng et al., 1996; Gerrard et al., 1998; Fowden, 2003). 

Conversely, IGF-1 gene expression increases during gestation and has maximum expression 

around birth (Gerrard et al., 1998) at which time type 1 IGF receptor mRNA also begins to 

decrease (Lee et al., 1993).  

Growth factor gene expression in muscle tissue at the time of primary myogenesis in the 

fetal pig is largely uncharacterized but Tilley et al. (2007) investigated expression at the time of 

secondary myogenesis. Interestingly, when comparing small fetuses afflicted with compromised 

secondary myogenesis to average sized littermates, they did not observe differences in 

abundance of IGF-1 and IGF-2 mRNA, but did report greater mRNA abundances of type 1 IGF 

receptor on d 65 and d 100 and type 2 IGF receptor on d 100. Thus, growth-compromised 

fetuses mainly upregulated growth factor receptor genes while the small fetuses of the present 

study mostly upregulated growth factor gene expression earlier in development. This leads to 

speculation that throughout gestation, growth compromised fetuses may employ strategies to 

facilitate greater uptake of hepatically produced IGF’s through increased receptor activity rather 

than attempting to increase local production.  

The number of fiber-associated nuclei per primary fiber was greater in the earlier 

developing thoracis location as compared to the lumborum location yet did not differ across fetal 
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sizes. Combined with the fact that the thoracis location also had a marginally significant increase 

in primary fiber numbers, these observations are consistent with the theory that earlier 

development of the thoracis enables greater primary myogenesis. Possible mechanisms for this 

greater primary myogenesis include either a greater number of myocytes were present in the 

myotome of the thoracis location or this location experienced a greater degree of progenitor cell 

and/or myoblast proliferation along with increased myoblast differentiation.  

The four myogenic regulatory (MRF) transcription factors responsible for orchestrating 

the commitment and differentiation of muscle precursor cells have distinct roles at specific 

developmental time points and locations. Myogenic factor 5 (Myf5) and Myogenic 

differentiation 1 (MyoD) facilitate dermomyotomal cell commitment to muscle cell type with 

Myf5 activation preceding that of MyoD in the epaxial cells (Sassoon et al., 1989; Borycki et al., 

1999). Myogenin (MyoG) acts downstream of Myf5 and MyoD (Sassoon et al., 1989; Rawls et 

al., 1995) and is responsible for the exit of the cell cycle and terminal differentiation of 

committed cells to form myoblasts (Zhang et al., 1995) as is MRF4 (Hawke and Garry, 2001). 

Myogenin is also essential for myotube formation and fusion (Barnoy and Kosower, 2007).  

Similar to the findings of the current study, Tilley et al. (2007) reported Myogenin gene 

expression did not differ between small and average sized fetuses at either d 65 or d 100 of 

gestation. Yet in the present study, MyoD mRNA was significantly downregulated across both 

anatomical locations as fetal size increased. Conversely, Myf5 gene expression was relatively 

unaffected. By d 60, primary muscle fiber formation should be completed and the formation of 

the secondary fibers commencing. Presuming the primary myogenesis of the small fetuses was 

not prolonged, it would appear the smaller fetuses may be accelerating the commitment of 

progenitor cells to the myogenic lineage under the regulation of MyoD. Alternatively, if the 
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primary myogenesis of the small fetuses was prolonged as a consequence of nutritional 

deficiency and growth retardation, it would appear a sustained upregulation of MyoD may be a 

compensatory strategy for increasing the embryonic myoblast pool in small fetuses. However, a 

lack of concurrent upregulation in Myogenin for terminal differentiation of the myoblasts to 

myofiber formation seems inconsistent with this latter theory. Moreover, it appears that 

differential MyoD expression at d 60 is not associated with delayed or prolonged primary 

myogenesis considering that the Longissimus lumborum experienced later myogenic 

development as compared to the Longissimus thoracis, but elevated MyoD gene expression was 

not sustained in the Longissimus lumborum. Little research has examined the expression of Myf5 

across fetal pig sizes and the observations of the present analysis indicate Myf5 and Myogenin 

genes are consistently expressed among fetal sizes at d 60, while MyoD is upregulated in smaller 

fetuses. 

Despite the increase in MyoD gene expression in small fetuses, no differences in 

Myostatin mRNA abundance were observed. Myostatin functions as a negative regulator of 

muscle growth during myogenesis. Myostatin gene expression is upregulated during the 

formation of myofibers in the pig (Ji et al., 1998), possibly induced by MyoD (Deng et al., 2011) 

and may inhibit muscle development through the inhibition of myogenin (Theil et al., 2006). 

Based on the current findings, Myostatin does not appear to be upregulated in slower growing 

fetal pigs at d 60.   

All progenitor cells originating from the dermomyotome co-express Pax 3 and Pax7 

(Biressi et al., 2007). Pax3/7 positive cells are precursors to either embryonic and fetal myoblasts 

or to mononucleated satellite cells that express Pax7 and are morphologically identifiable after 

secondary myogenesis is complete (Seale et al., 2000; Biressi et al., 2007). The expression of 
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Pax7 inhibits the differentiating activity of MyoD while downregulation of Pax7 allows MyoD 

expression and the subsequent terminal differentiation of the myoblast via myogenin (Hawke and 

Garry, 2001; Olguín, 2011). In the present study, no differences in Pax7 mRNA abundance or in 

the number of nuclei expressing Pax7 in d 60 fetuses of different size or in Longissimus locations 

were observed. These results indicate that after formation of embryonic myoblasts on d 60, the 

pool of Pax7 positive progenitor cells available for secondary myogenesis and future satellite 

cells did not differ in number across fetal size or later developing muscle location.  

Wnt signaling functions in numerous diverse developmental and metabolic pathways and 

has two types of signaling pathways: the “canonical Wnt” pathway which is a complex process 

requiring the cooperative action of -catenin, or “noncanonical Wnt” pathways which occur 

independently of -catenin (Song et al., 2014). Wnt /-catenin mediated signaling has been 

shown to induce somite formation of the medial dermomyotome (Ikeya and Takada, 1998), 

induce commitment of somitic progenitor cells via activation of Myf5 expression (Borello et al., 

2006) and indirect activation of MyoD expression although -catenin independent activation of 

MyoD is possible (Brunelli et al., 2007), and has also been implicated in several additional 

myogenic regulatory mechanisms (Suzuki et al., 2015). The lack of differences in the expression 

of -catenin mRNA in longissimus samples amongst fetal sizes is not altogether unsurprising 

considering no evidence for differences in Myf5 expression were observed. 

Both myocytes and adipocytes originate from the multipotent mesenchymal stem cells 

(Du et al., 2013). This common origin has led to speculation that myogenic activity can affect 

adipogenic outcomes. Preadipocytes are characterized by expression of preadipocyte factor-1 

(Pref-1) which functions to prevent differentiation into adipocytes (Smas and Sul, 1996; Wang et 

al., 2006; O’Connell et al., 2011). Preadipocyte factor-1 reportedly is expressed in fetal skeletal 
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muscle (Friedrichsen et al., 2003) and elevated serum levels of Pref-1 have been observed in 

growth restricted human neonates (de Zegher et al., 2012). However, the Pref-1 mRNA 

abundance did not differ among fetal sizes or muscle locations in the present study thus 

suggesting the Pref-1 gene expression may not be affected by temporal developmental 

differences in Longissimus muscle or be differentially expressed among fetuses with or without 

upregulated MyoD gene expression. 

 CONCLUSION 

Circulating maternal IGF-1 concentration decreases from early to mid gestation. During 

this time, fetuses within each litter experienced different growth rates but brain growth is 

prioritized. However, no differences in placental attachment lengths or upregulation of placental 

GLUT1 were evident suggesting other measures of placental efficiency may have been employed 

by smaller pigs to counteract poor growth. Both IGF-2 and IGF-1muscle mRNA are upregulated 

in less developed fetuses and muscle locations thus emphasizing the importance of these growth 

factors for fetal development. Myogenesis is more advanced in the anterior portion of the 

Longissimus muscle than in the posterior portion likely as a reflection of temporospatial 

differences in development yet myogenic regulatory factor gene expression did not significantly 

differ among the locations. In addition, differences in the myotocyte or myoblast number of the 

thoracis portion of the Longisssimus may contribute to greater nuclei per primary fiber at d 60 

but the number of progenitor cells available for secondary myogenesis at the different locations 

or across fetal sizes was unchanged. Primary muscle fiber number or area was not significantly 

different among fetal sizes. Myogenic differentiation 1 was the solely upregulated myogenic 

regulatory factor in smaller fetuses and may indicate a growth restricted fetuses have a greater 

reliance on progenitor cell commitment to the myogenic lineage. Myostatin, -catenin, and 
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preadipocyte factor 1 gene expression do not appear to be differentially regulated in different 

sized fetuses or at developmentally different stages of the Longissimus muscle. Together, these 

observations provide valuable insight into early myogenic and developmental differences 

characterizing different sized pig fetuses by mid-gestation.  
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Table 2.1. Primer sequences, annealing temperatures, amplicon lengths, and efficiencies. 

Porcine Genes Forward Primer (5’ to 3’) Reverse Primer (5’ to 3’) Tm, C1 

Amplicon 

Length Efficiency 

Ribosomal protein L4(RPL4) AGGAGGCTGTTCTGCTTCTG TCCAGGGATGTTTCTGAAGG 60.5 184 1.06 

Insulin-like growth factor 2 (IGF-2) ACCTCCCCATGTCAGGCTAGT GGGAGATACAGACCAAGCCAAT 60.5 92 0.91 

Insulin-like growth factor 2 receptor GCCCCCCAGCAGGAATC ACGTGACTTGGGAAATTGCAT 60.5 79 0.93 

Insulin-like growth factor 1 (IGF-1) TCTTCTACTTGGCCCTGTGCTT CCAGCTCAGCCCCACAGA 60.5 80 0.92 

Insulin-like growth factor 1 receptor AACAACATTGCCTCGGAGCTA TGGGAGTGGCGGATCTTC 60.5 80 0.92 

Preadipocyte factor 1 (Pref-1) AGGACGGCTGGGATGGA CGAGGTTCGCGCAGGTT 61.9 87 1.11 

Myogenic factor 5(Myf5) TGGAAATCAGTTATAGGGAGTTTT TTTGTGCTTACATTAAAAAGATGC 60.5 150 1.09 

Myogenic differentiation 1 (MyoD) ACTCAGACGCATCCAGCCC AATCCATCATGCCGTCGG 60.5 50 0.96 

Myogenin AGTGAATGCAGTTCCCACAG GAGGTGAGGGAGTGCAGATT 60.5 130 0.91 

Paired Box 7 (Pax7) CAACCACATCCGCCACAAGATAGT AGAGGATCTTGGAGACACAGCCAT 60.5 106 0.9 

Beta-Catenin TCCTAGCTCGGGATGTTCACA AGAGGACCCCTGCAGCTACTCT 64.6 87 1.11 

Myostatin GATTATCACGCTACGACGGA GAAGCAGCATTTGGGTTTT 57.0 89 0.96 

1 Tm = melting temperature. 
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Figure 2.1. Serum IGF-1 concentration (ng ml
-1

) decrease in nulliparous sows to d 60 of 

gestation.
 
Means without a common superscript differ P < 0.05 (SEM = 8.87).  

 

 

 

 

 

 

 

 

 

 

 

139.3a 

113.6b 

93.2c 
82.9cd 

78.4cd 

64.6d 

0

20

40

60

80

100

120

140

160

Day 24 Day 32±1 Day 39±1 Day 46±1 Day 53±1 Day 60±1

S
er

u
m

 I
G

F
-1

, 
n

g
/m

l 



53 

Table 2.2. Relationship between d 60 fetal crown-rump length and other measures of fetal growth and development. 

60-d Fetal Size
1
: 

 
SM MD LG  

 
  

n=  12 12 12  SEM  Size, P < 

Response         

         
Crown-rump length, mm  117

a 130
b 139

c  4.9  <0.001 
Body weight, g  123.7

a
 135.0

ab
 149.0

b
  10.66  0.007 

Attachment length, mm  144 143 159  13.0  0.486 

Body weight:Attachment length   0.882 0.973 0.973  0.0549  0.403 

Placental Glut-1 mRNA fold difference  2.20 1.81 1.73  0.337  0.577 

         
Thoracic circumference, mm  106

a
 108

a
 113

b
  4.2  0.020 

Head circumference, mm  107 110 110  2.2  0.058 

Head length, mm
 

 45.2 45.9 46.5  1.07  0.063 

Head width, mm  27.5
a
 28.4

ab
 28.9

b
  0.61  0.018 

Head circumference:Crown-rump  0.918
a
 0.847

b
 0.793

c
  0.0174  <0.001 

Head circumference:Body weight  0.909
a
 0.822

ab
 0.746

b
  0.0524  0.013 

         

Brain weight, g  3.19 3.31 3.30  0.202  0.380 

Liver weight, g  6.99
a
 8.26

ab
 8.80

b
  0.825  0.049 

Brain weight:Liver weight  0.490
a
 0.415

b
 0.390

b
  0.0283  0.013 

Left Longissimus dorsi weight, g  1.98 2.24 2.43  0.224  0.119 

         
1
Crown-rump length of fetus within litter: male fetus nearest the small (SM), median (MD), large (LG) fetus. 
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Table 2.3. Characteristics of fetal muscle as affected by d 60 fetal size. 

Muscle
1
: 

 

LT LL 

  

 Probability, P < 

d-60 Fetal Size
2
:  SM MD LG SM MD LG  SEM  Size Muscle Size  Musc 

              

n=  12 12 12 12 12 12  ---     

Item              
 

             

Whole muscle CS area, (mm
2
)
 3  46 58 59 41 49 54  5.2  0.001 0.001 0.506 

Calculated total 1 fiber in CS, count 

(×10
5
)
4  1.0 1.0 1.1 0.8 1.0 1.0  0.11  0.181 0.063 0.622 

Avg CSA of 1 muscle fibers, (m
2
)
 5  490 600 559 457 488 498  29.7  0.114 0.002 0.284 

2 fiber:1 fiber
6  2.4 2.1 2.5 2.1 2.3 2.4  0.32  0.359 0.781 0.302 

Fiber associated nuclei:1 fiber
7  4.5 5.4 5.2 4.7 4.1 4.5  0.32  0.756 0.025 0.071 

Pax7+ nuclei:1 fiber
8  1.8 2.1 2.0 1.8 1.6 1.8  0.22  0.933 0.141 0.418 

 1
Muscle either Longissimus thoracis (LT) or Longissimus lumborum (LL).  

2
Crown-rump length of fetus within litter: male fetus nearest the small (SM), median (MD), large (LG) fetus. 

3 
Cross-sectional (CS) area of the whole muscle (mm

2
).

 

4
Total primary muscle fiber number is calculated as the whole muscle CS area divided by the average muscle fiber cross-sectional area 

of primary muscle fibers. 
 

5
Average cross-sectional area (m

2
)
 
of a representative sample of primary muscle fibers (n > 100). 

6
The average number of secondary muscle fibers per primary muscle fiber. 

7
The average number of nuclei associated with each primary muscle fiber. 

 8
The average number of Pax7+ nuclei associated with each primary muscle fiber. 

 



55 

 

Table 2.4. Effect of intralitter d 60 fetal size on expression of genes in fetal muscle.
1
 

Muscle:
2 

 
Longissimus thoracis Longissimus lumborum 

 
  P < 

4
 

60-d Fetal Size
3
:  SM MD LG SM MD LG  SEM  Size Muscle 

             

n=  12 12 12 12 12 12      

Item             
             

IGF-2  0.428 0.418 0.353 0.598 0.407 0.407  0.0616  0.012 0.046 

IGF-2R  0.424 0.516 0.315 0.524 0.445 0.381  0.0738  0.103 0.544 

IGF-1  0.292 0.212 0.203 0.325 0.288 0.238  0.0339  0.017 0.046 

IGF-1R  0.368 0.453 0.352 0.495 0.392 0.370  0.0704  0.326 0.466 

Myf5  0.436 0.847 0.368 0.521 0.472 0.409  0.1971  0.201 0.397 

MyoD  0.794 0.596 0.465 0.854 0.572 0.533  0.0729  0.001 0.487 

MyoG  0.494 0.448 0.324 0.384 0.370 0.325  0.0758  0.286 0.303 

Pax7  0.465 0.500 0.401 0.527 0.501 0.413  0.0786  0.337 0.618 

Beta Catenin  0.017 0.019 0.015 0.018 0.015 0.014  0.0026  0.237 0.219 

Myostatin  0.019 0.022 0.020 0.025 0.023 0.019  0.0043  0.526 0.515 

Pref-1  0.632 0.586 0.508 0.679 0.613 0.536  0.0805  0.145 0.519 
             

1
mRNA expression normalized to RPL4 reference gene; relative expression (RQ) compared to pool of control fetus samples. 

2
Muscle either Longissimus thoracis (LT) or Longissimus lumborum (LL).  

3
Crown-rump length of fetus within litter: male fetus nearest the small (SM), median (MD), large (LG) fetus.  

4
No fetal Size  Muscle location interactions were observed (P  0.107). 
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Chapter 3 - Effect of 95-day fetal pig intralitter relative body weight 

on myogenic and developmental characteristics. 

 ABSTRACT 

Five gestating gilts (PIC 337  1050; initial BW 168 kg and age 7 mo) were used to 

quantify maternal serum IGF-1 concentrations from d 24 to d 88 of gestation as well as to better 

understand the relationships among d 95 intralitter fetal size (small [SM], median [MD], or large 

[LG]) and measures of placental efficiency, secondary muscle fiber formation, circulating fetal 

IGF-1 concentrations on d 95, and fetal growth partitioning among organs and primal carcass 

sections. Gilts were synchronized and artificially inseminated at approximately 7 mo of age. 

Maternal serum was collected on d 24, 32, 39, 46, 53, 60, 67, 74, 81, and 88 of gestation. On d 

95 of gestation, gilts were euthanized and fetal weights, measurements, and muscle and serum 

samples were collected. Concentrations of IGF-1 in maternal serum were greater (P < 0.05) on d 

24 than on d 88 of gestation but little change was observed between d 53 and 88. Fetal BW, 

crown-rump length, head circumference, thoracic circumference, liver weight, brain weight to 

liver weight ratio, and weights carcass primal sections were less (P < 0.05) in SM fetuses 

compared to those of MD and LG fetuses, which did not differ. Serum IGF-1 concentration was 

greater (P < 0.05) in SM fetuses than in MD and LG fetuses, which did not differ. Weights of 

placental and ham primals were less (P < 0.05) in SM fetuses compared to LG fetuses. The later 

maturing Longissimus lumborum had more (P < 0.05) secondary and total muscle fibers, but 

smaller myofiber cross-sectional areas (P < 0.05), than the Longissimus thoracis. Despite heavier 

fetuses having larger (P = 0.017) whole muscle areas, no differences in myogenesis were evident 

among fetal sizes. In summary, the decline in maternal serum IGF-1 concentration plateaus in 

late gestation and SM fetuses surprisingly had greater circulating IGF-1 on d 95 than MD and 



57 

LG fetuses. Fetal BW differences were consistently reflected in carcass primal weight 

differences but brain growth was prioritized among SM fetuses. This suggests nutrient supply 

may have been limited. However, no evidence for differences in placental efficiency or 

secondary myogenesis was observed among intralitter relative fetal sizes in late gestation. 

 INTRODUCTION 

Primary muscle fibers provide scaffolding for secondary myofiber formation with 16 to 

20 secondary fibers formed around each primary fiber (Wigmore and Stickland, 1983). Hence, 

the number of secondary muscle fibers that are formed may be restricted by the degree of 

proliferation and differentiation of embryonic myoblasts and number of primary myofibers 

formed. Growth compromised piglets exhibit fewer secondary muscle fibers (Tilley et al., 2007; 

Bérard et al., 2010) and consequently fewer total fibers at birth.  

Myogenic progenitor cells expressing Pax7 transcription factor are destined to become 

either embryonic or fetal myoblasts, or satellite cells (Biressi et al., 2007). Total lifetime muscle 

fiber number and hypertrophy potential can be evaluated by d 90 of gestation when muscle 

hyperplasia is completed in fetal pigs (Oksbjerg et al., 2004). By this stage, Pax7 positive nuclei 

that have not incorporated into myofibers will remain as quiescent satellite cells to contribute to 

future muscle hypertrophy and repair (Biressi et al., 2007; Zammit, 2008).   

Compared to pigs with heavier birth weights, light birth weight pigs have slower growth 

rates and at market weight, have poorer lean percentages and less percentage of carcass weight in 

the ham and loin (Gondret et al., 2006). Whether this weight partitioning is reflected prenatally 

has not been determined.  

Placental weights increase from d 30 to 100 of gestation, but the rate of change after d 60 

is minimal and therefore the majority of fetal growth occurs after placental membranes have 
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fully developed (Bazer et al., 2012). As noted by Wise et al. (1997), the placentas of light fetuses 

weigh less than placentas of heavy fetuses throughout gestation. The ratio of placental weight to 

body weight is a simple measure of placental efficiency in pigs. However, the ratio does not have 

the same magnitude for small and large fetuses: the placental weight of lighter fetuses is a 

smaller percentage of fetal BW as compared to heavier fetuses (Vallet and Freking, 2007).  

Fetal IGF-1 and IGF-2 induce myoblast proliferation and differentiation by upregulation 

of myogenin (Rehfeldt et al., 2011). Wise et al. (1997) reported fetal weight was positively 

associated with fetal serum IGF-1 concentrations with 92% of the variation in serum IGF-1 

explained by fetal weight. However, IGF-1 is also produced in myofibers and the local 

concentration increases throughout gestation (Gerrard et al., 1998). There is evidence that 

regulation of IGF-1 mRNA expression is tissue specific (Ramsay et al., 1994).  

Previous research has shown maternal circulating IGF-1 decreases from d 24 to 60 of 

gestation (Chapter 2). Similarly, Farmer et al. (2000) reported IGF-1 concentration decreases to d 

70 of gestation with no further decrease to d 109 although estradiol and prolactin dramatically 

increase from d 70 to 109. Further quantification of maternal IGF-1 concentrations in late 

gestation is of interest because tissue specific suppression of IGF-1 by estradiol has been 

reported (Scheidegger et al., 2000). 

The objectives of this experiment were to quantify maternal serum IGF-1 to d 88 of 

gestation, and to better understand the effect of d 95 fetal size differences on 1) measures of 

placental efficiency, 2) secondary muscle fiber formation and circulating IGF-1 concentration, 

and 3) how smaller fetuses partition growth among organs and primal carcass sections. 
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 MATERIALS AND METHODS 

The protocol for this experiment was approved by the Kansas State University 

Institutional Animal Care and Use Committee. The study was conducted at the Kansas State 

University Swine Teaching and Research Center in Manhattan, KS.  

 Animal Management and Housing 

Gilts (PIC 337  1050) were initially group housed in pens where they had ad libitum 

access to water and a non-medicated diet which met or exceeded NRC (2012) recommendations. 

At approximately 175 d of age, gilts began receiving daily exposure to mature boars and were 

observed for visual signs of estrous. From this group, 5 sexually mature gilts (initially 168 kg 

BW and age 7 mo) were enrolled in the current study and individually housed in gestation stalls 

(2.88 m
2
). Estrus was synchronized by administering 6.8 mL Matrix

 
(15 mg altrenogest) by top-

dressing on each gilt’s daily feed for 14 consecutive d. Beginning 3 d after last Matrix


 

administration, twice daily detections of estrus with mature boars began. Gilts were artificially 

inseminated (PIC 337 semen) up to 3 times at evening and morning intervals beginning 12 h 

after standing estrus was first detected (onset of estrus = d 0). Pregnancy was evaluated by 

transcutaneous ultrasound on d 24 to 26 of gestation. Gilts gestated throughout the months of 

October, November, December, and January. Animals were monitored daily and limit fed (2.3 kg 

day
-1

) once daily a standard non-medicated diet that met or exceeded nutrient requirements 

(NRC, 2012). 

 Maternal Serum Collection, Processing, and ELISA 

Gilts were restrained by a snout snare at approximately 4 h after feeding on d 24, 32, 39, 

46, 53, 60, 67, 74, 81, and 88 of gestation for collection of blood from the anterior vena 
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cava/caudal jugular vein. Blood was collected into 10 ml red topped glass vacuum tubes 

containing no additives (Covidien LP, Mansfield, MA). Whole blood was transported on ice to 

the K-State Muscle Biology Laboratory for further processing according to the procedures 

outlined in Chapter 2. Concentration of the maternal serum IGF-1 was analysed using 

acommercial IGF-1 (human) ELISA kit (ADI-900-150; ENZO Life Sciences, Farmingdale, NY) 

according to the methods descrbed in Chapter 2.  

 Fetal Measurements and Sample Collection 

Gilts were euthanized across 2 consecutive sample collection d. On gestation d 95 or 96, 

gilts were electrically stunned and exsanguinated. Entire reproductive tracts (ovaries, oviducts, 

gravid uterus, and cervix) were removed from the body. The uterine horns were freed from 

surrounding connective tissue and dissected from the mesometrium. The uterine wall was opened 

longitudinally from the ovarian end and gently pulled away from the fetal placental membranes. 

The crown-rump length of each fetus was measured (poll to tail head) without removing the fetal 

membranes. The attachment length of each placenta was measured as the length of the 

allantochorion between and not including the necrotic tips. The placenta of each fetus was 

uniquely identified as fetuses were removed from the placental and amniotic membranes. 

Umbilical cords were severed within 1 cm of the fetus. Individual placentas were then removed, 

blotted dry, and weighed. Fetuses were also individually weighed and 3 male fetuses with BW 

closest to those of the heaviest, median, and lightest BW’s within each litter were identified as 

large (LG), median (MD), and small (SM) fetuses. Further measurements, weights, and 

Longissimus muscle samples were collected from this 3-fetus subset of each litter. Data 

collection was restricted to male fetuses to avoid potentially confounding results with differences 
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due to sex. The BW to attachment length and BW to placental weight ratios for each of the 

fetuses were calculated. 

Electronic digital calipers (Model 14-648-17; Fisher Scientific, Pittsburgh, PA) were used 

to measure the head width of each fetus as the linear distance across the head immediately 

posterior to the eye. Fetal head circumference was assessed at the same anatomical location by 

wrapping a flexible cord around the maximum circumference (poll to mandible). Likewise, the 

thoracic circumference was determined by wrapping the cord around the thorax just posterior to 

the shoulders.  

Fetal blood was collected by cardiac puncture from the 3-fetus subset using a 12 mL 

syringe and 18-gauge needle. Blood was transferred into red topped glass tubes containing no 

additives and kept on ice until processed for serum collection. 

The Longissimus dorsi was segmented into the Longissimus thoracis and Longissimus 

lumborum and samples were collected for mRNA and immunohistochemical analysis. 

Longissimus thoraci s immunohistochemistry samples were taken immediately posterior to the 

point of the trapezius muscle, while mRNA samples were dissected from under the trapezius and 

anterior to the other sample. Longissimus lumborum immunohistochemistry samples were 

harvested at approximately the last rib and mRNA samples were collected posterior to this 

sample. 

Muscle cross-sections which were to be used for immunohistochemistry were blotted on 

paper, the perimeter traced, blots scanned using a digital scanner (HP DeskJet 3050; Hewlett 

Packard, Palo Alto, CA), and whole muscle cross-sectional area was measured using Nikon NIS-

Elements Basic (Nikon Instruments Inc, Melville, NY).  



62 

 The cross-section was then embedded in tissue embedding media (Fisher Scientific), 

frozen in liquid nitrogen cooled isopentane, and stored at -80C. Portions of the muscle cross-

sections to be used in mRNA analysis were deposited in individual tubes, snap-frozen, and stored 

at -80C until further analysis. The fetal skull was dissected and the complete brain removed and 

weighed. Similarly, the abdominal cavity of the fetus was opened and the liver was removed and 

weighed. The ratio of brain weight: liver weight was then calculated for each fetus. 

Primal sections were fabricated from the fetal carcass according to anatomical reference 

points adapted from the IMPS Fresh Pork Series 400 (USDA, 2014). The leg (Item No. 401), 

whole shoulder (Item No. 403), skinned belly (Item No. 409), and loin (Item No. 410) were 

removed from each side of the fetal carcass. Each primal section was individually weighed then 

the weights of the respective primals from each side were summed to represent total shoulder, 

loin, belly, and ham primal weights for each fetus. 

 Fetal Sample Analyses 

 Serum Processing and Radioimmunoassay 

Fetal serum IGF-I was analyzed in duplicate via radioimmunoassay (Echternkamp et al., 

1990; Funston et al., 1995).  Serum IGFBP were extracted from serum using a 1:17 ratio of 

sample to acidified ethanol (12.5% 2 N HCl: 87.5% absolute ethanol) (Daughaday et al., 1980).  

Extracted samples were centrifuged (12,000 x g at 4°C) to separate IGFBP.  A portion of the 

resulting supernatant was removed and neutralized with 0.855 M Tris base, incubated for an 

additional 4 h at 4°C, then centrifuged at 12,000 x g at 4°C to remove any additional IGFBP.  

When samples of this extract, equivalent to the original serum sample, were subjected to Western 

ligand blot analysis and subsequent phosphorimagery, no detected binding of [125I]IGF-I to 

IGFBP was observed. Inhibition curves of the neutralized extracted serum ranging from 25 to 
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100 L were parallel to the standard curve.  Recombinant human IGF-I (GF-050; Austral 

Biological, San Ramon, CA, USA) was used as the standard and radioiodinated antigen.  

Antisera AFP 4892898 (National Hormone and Peptide Program, National Institutes of Diabetes, 

Digestive and Kidney Diseases, Bethesda, MD, USA) was used at a dilution of 1:62,500.  

Sensitivity of the assay was 16.9 pg per tube and intra-assay coefficient of variation was 8.2%. 

 Immunohistochemistry 

A 10-m cryosection from each fetal tissue sample was affixed to a frost resistant slide to 

allow for immunodetection. The immunohistochemistry methods outlined in Chapter 2 were 

used with no modifications. Whole muscle and fiber cross-sectional areas were measured using 

NIS-Elements Imaging Software (Basic Research, 3.3; Nikon Instruments Inc.). Fibers that 

stained positively for the BA-D5 antibody were categorized as primary muscle fibers while the 

fibers that stained positively for SC-71 were labelled as secondary fibers. Total nuceli count was 

determined by all fiber associated nuclei that were Hoechst 33342 positive. Total muscle fiber 

number was calculated as the whole muscle area divided by the average muscle fiber cross-

sectional area of muscle fibers. Primary and secondary fiber numbers were calculated based on 

total fiber number and the relative percentage of each fiber type. 

 Statistical Analysis 

Maternal serum IGF-1 was analyzed as a completely randomized design with each gilt 

serving as an experimental unit to assess the effect of day of gestation on serum IGF-1 

concentration. The MIXED procedure in SAS (v9.3, SAS Institute Inc., Cary, NC) was used to 

model day of gestation as a fixed effect with a random effect of gilt to account for repeated 

sampling of the gilts across days of gestation. 
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Fetal serum IGF-1, morphometrics and weights were analyzed as a randomized complete 

block design with a one way treatment structure and replicated over 2 sample collection days. 

Each fetus was an experimental unit and dam was a random block factor. The MIXED procedure 

in SAS was used to model fetal size as a fixed effect with random effects of sample collection 

day and dam nested within sample collection day. The random effects of fetal size  sample 

collection day and fetal size  dam within sample collection day were pooled into the residual. 

Fetal muscle histology was analyzed as a randomized complete block design with a split-

plot, 3  2 treatment structure, and replication over 2 sample collection days. Hence, responses 

were modeled with fixed effects of fetal size on the fetus whole-plot experimental unit and 

muscle location on the Longissimus split-plot experimental unit and with random effects of 

sample collection day, dam within sample collection day, and the interaction between fetal size  

dam within sample collection day. The random interactions between fetal size  sample 

collection day and fetal size  dam within sample collection day were pooled into the whole plot 

residual used to test the effect of fetal size. The random interactions between muscle location  

sample collection day and muscle location  dam within sample collection day, as well as muscle 

location  fetal size  sample collection day and muscle location  fetal size  dam within 

sample collection day were pooled into the split-plot error term used to test the effect of muscle 

location and the interactions between fetal size and muscle location. 

For all variables, differences between least squares means were computed using the 

PDIFF option in SAS. All results were considered statistically significant at P ≤ 0.05; results 

with P-values > 0.05 and ≤ 0.10 were considered marginally significant. 
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 RESULTS 

 Maternal and Fetal Serum IGF-1 Concentrations 

Maternal serum IGF-1 concentrations decreased from d 24 of gestation to d 88 in a 

stepwise fashion. Concentrations of IGF-1were less (P < 0.05) on d 39  1 than on d 32  1; less 

(P < 0.05) on d 53  1 than on d 24  1, and less (P < 0.05) on d 88  2 than levels on d 24  1, 

32  1, 39  1, and 46  1 (Figure 3.1). On d 95 of gestation, the serum IGF-1 concentration of 

SM fetuses was greater (P < 0.05) than those of MD and LG fetuses (Table 3.1).  

 Fetal and Placental Morphometrics and Weights 

The male fetuses evaluated in this study were classified into size categories based on BW 

proximity to the heaviest, lightest, and median BW fetuses of each litter. The BW and crown-

rump length of SM fetuses were lighter and shorter (P < 0.05) than BW and crown-rump lengths 

of MD and LG fetuses (Table 3.1). The total primal weights of the fetuses corresponded to BW 

as the weights of shoulders, loins, and bellies of SM fetuses were lighter (P < 0.05) than those of 

MD and LG fetuses. The total weight of ham primals of SM fetuses was smaller (P < 0.05) than 

that of LG fetuses but not different from MD fetuses.  

The thoracic and the head circumferences of SM fetuses were smaller (P < 0.05) than 

those of MD and LG fetuses (Table 3.1). Fetal size had a marginally significant effect (P = 

0.074) on head width with S fetuses having the narrowest head widths. Brain weights were not 

different (P = 0.163) among fetal sizes, but liver weights of MD and LG fetuses were larger (P < 

0.05) than that of SM fetuses. Thus, the brain weight:liver weight ratio of SM fetuses was greater 

(P < 0.05) than that of MD and LG fetuses. 

No difference (P = 0.131) in placental attachment length across fetal sizes was observed 

(Table 3.1). Fetal size had a marginally significant effect (P = 0.093) on the ratio of body 
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weight:attachment length with MD, LG, and SM fetuses having decreasing ratios, respectively. 

Although attachment lengths were not different, the placental weights of LG fetuses were heavier 

(P < 0.05) than those of SM fetuses and those of MD fetuses were not different from the 

placental weights of either SM or LG fetuses. Consequently, no difference (P = 0.538) in 

BW:placental weight was observed for fetuses of the different size categories. 

 Fetal Muscle Histology  

No interactions (P  0.206) between fetal size and muscle location were observed in the 

fetal muscle histology results. The Longissimus whole muscle cross-sectional area was not 

different (P = 0.176) between the Longissimus thoracis and Longissimus lumborum (Table 3.2). 

However, the Longissimus lumborum was characterized by a greater number of total muscle 

fibers (P = 0.009) and total secondary muscle fibers (P = 0.008) than in the Longissimus 

thoracis. No difference (P = 0.332) in the number of primary muscle fibers was observed due to 

muscle location and consequently, there was a marginally significant greater (P = 0.087) number 

of secondary muscle fibers per primary muscle fiber in the Longissimus lumborum compared to 

in the Longissimus thoracis. However, the average cross-sectional area of muscle fibers in the 

Longissimus thoracis were larger than the average cross-sectional area of all muscle fibers (P = 

0.012), primary muscle fibers (P = 0.024), and secondary muscle fibers (P = 0.014) in the 

Longissimus lumborum. No differences in the number of Pax7 positive nuclei per muscle fiber (P 

= 0.953) or myonuclei per muscle fiber (P = 0.267) were observed between the two muscle 

locations. 

The cross-sectional area of the Longissimus muscle increased with increasing fetal size so 

that the LG and MD fetuses had larger (P < 0.05) whole muscle cross-sectional areas than the 

SM fetuses (Table 3.2). However, fetal size did not affect (P = 0.105) muscle fiber average 



67 

cross-sectional areas in the small fetal subset of this study, nor were any differences in the total 

number of muscle fibers (P = 0.318), number of primary muscle fibers (P = 0.817), or number of 

secondary muscle fibers (P = 0.273) observed across the fetal sizes. In addition, the number of 

Pax7 positive nuclei per muscle fiber and the number of myonuclei per muscle fiber did not 

differ (P = 0.474 and 0.298, respectively) among fetal sizes.   

 DISCUSSION 

Internal research has previously characterized the decline in endogenous gestating gilt 

IGF-1 concentration until d 60 of gestation (Chapter 2). Further quantification of maternal IGF-1 

concentration later in the gestation period is of interest as estrogens increase in late gestation and 

tissue specific suppression of IGF-1 by estradiol has been reported in rat aortic smooth muscle 

(Scheidegger et al., 2000). In the current study, maternal circulating IGF-1 concentration 

decreased from d 24 to 88 of gestation in a stepwise fashion. This curious pattern is in contrast to 

the smooth decline previously observed among gestating gilts (Chapter 2). However, serum 

levels between consecutive sampling days significantly differed only between d 32 and d 39, so 

the fluctuations could be reflective simply of variation among the small number of gilts sampled 

in this study. 

In the present study, little decline in circulating IGF-1 was observed from d 53 to 88. 

Likewise, Brown et al. (2007) observed a decrease in plasma IGF-1 of gestating gilts from d 0 to 

40 of gestation then relatively constant levels to d 70 of gestation. In addition, Farmer et al. 

(2000) reported a similar pattern of declining IGF-1 from around 170 ng ml
-1

 at breeding to 

around 80 ng ml
-1

 by d 70 of gestation with no further decline evident by d 109. At the same 

time, estradiol levels on d 109 (561 pg ml
-1

) were much greater than on d 70 (20 pg ml
-1

) and 

circulating IGF-1 did not appear to have a concomitant decrease in either study. Notably, 
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circulating concentrations of IGF-1 were on average 35 ng ul
-1

 lower in the current study than 

levels reported by Farmer et al. (2000) and also less than levels observed in our previous study 

(Chapter 2). Between the studies, gilts had similar feed intake and age at breeding. However, the 

lesser amount of circulating IGF-1 in the gilts of the current study could have been due to the 

fact that these gilts were over 30 kg heavier at breeding and genetically a maternal x terminal 

line in contrast to the lighter, hyperprolific breeds studied by Farmer et al. (2000) but variability 

in gilt levels between our studies remains unexplained. 

Fetal IGF-1 concentrations are less than IGF-2 prenatally, but increase postnatally (Lee et 

al., 1993) and low levels of the IGF’s are associated with retarded fetal growth in humans 

(Randhawa and Cohen, 2005). On d 95 of gestation, the circulating IGF-1 concentrations of SM 

fetuses were greater than levels of MD and LG fetuses. In contrast, Wise et al. (1997) reported 

serum IGF-1 concentrations on d 104 of gestation increased with increasing fetal weight (R
2 

= 

0.92), although Gondret et al. (2013) observed no difference between low and medium weight 

pigs on d 112 of gestation. The conflicting observations among the studies is unexplainable at 

this time. Regardless of fetal size however, bioavailability of the IGF’s can be decreased and 

their circulating half-life can simultaneously be extended through the action of the 6 IGF-binding 

proteins (IGFBP) which have important functions in mediating the IGF action (Allan et al., 2001; 

Monzavi, 2002). Fetal growth is thus orchestrated by the complex interactions between IGFBP’s, 

IGF’s, and IGF receptors so that quantification of circulating IGF-1 alone provides only limited 

insight to fetal growth regulation. 

Fetal weight was significantly correlated with crown-rump length (r = 0.92) overall from 

d 20 to 100 of gestation (Knight et al., 1977) and in the present study, both BW and crown-rump 

length followed a similar pattern across fetal sizes where SM fetuses were both lighter and 
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shorter than MD and LG fetuses across litters. In addition, differences in thoracic circumference 

mirrored those of BW and crown-rump length. Interestingly, although fetuses were selected to 

represent the median and extreme fetal sizes within each litter, the LG and MD fetuses were of 

more similar size than MD and SM of each litter. Observations by Milligan et al. (2002) affirm 

this relationship as larger litters are associated with lighter birth weight pigs and a negatively 

skewed birth weight distribution.  

Chen and Dziuk (1993) reported that growth retardation in fetuses was evident by d 40 of 

gestation. In general, the total primal weights of the fetuses from the study herein directly 

corresponded to fetal BW as the weights of shoulders, loins, and bellies of SM fetuses were 

lighter than those of the MD and LG fetuses which did not differ. Although relative carcass 

proportions were not calculated in the present study, the smaller proportions of loin and ham in 

the carcasses of lighter birthweight pigs reported by Gondret et al. (2006) may have developed 

postnatally due to factors established in utero but not phenotypically evident until later in life. 

Regardless, differences in BW appear to be reflected prenatally in retarded skeletal muscle 

growth across all carcass primals by d 95 of gestation. 

The head circumferences of SM fetuses on d 95 were smaller than those of MD and LG 

fetuses and fetal size had a marginally significant effect on head width with SM fetuses having 

the narrowest head widths. In a previous study, no differences were observed in head 

circumference on d 60, but head widths decreased with fetal size (Chapter 2). Notwithstanding 

this difference between d 60 and d 95, the d 95 brain weights, liver weights, and ratios of brain 

weight to liver weight across fetal sizes were consistent with previous observations on d 60 

(Chapter 2), where brain weight was conserved across fetal sizes, but liver weight reflected total 

fetal BW and therefore the ratio of brain weight to liver weight was greater in SM than in MD or 
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LG fetuses. These observations contradict those of Amdi et al. (2013) who reported lighter 

relative liver weights among severely growth restricted neonatal pigs and better align with the 

observations of Vallet and Freking (2006) who reported initial differences in relative liver weight 

due to fetal size, but found these differences had been rectified by mid-gestation. Therefore, it is 

possible that the fetuses of the present study could have experienced stunted liver growth earlier 

in gestation but had high impetus liver growth at some point prior to d 95, or the level of nutrient 

restriction simply was not extreme enough to affect liver weight. Because the liver weight 

mirrored total body weight, the ratio of brain to liver weight was greater in the SM fetuses than 

in the MD or LG fetuses and is suggestive of at least a small degree of nutrient restriction 

whereby small fetuses prioritized nutrients to brain development. Also, the head measurements 

appeared to better follow the pattern of total fetal BW across fetal sizes on d 95 than the d 60 

weights mirrored each other. This phenomenon could be a reflection of the larger magnitude of 

the difference in fetal sizes later in gestation. 

Knight et al. (1977) observed that placental length and width (R
2
 = 0.59) and placental 

weight (R
2 

= 0.55) were strongly associated with fetal weight and necessarily, average placental 

weight is negatively correlated with litter size (Wilson et al., 1999). Despite BW differences 

across the fetal size designations in the current study, placental attachment length did not differ 

nor was the ratio of fetal BW to attachment length different across fetal sizes. However, 

placental weights increased with increasing fetal size so that the ratio of BW to placental weight 

was not different between large versus small fetuses. Wise et al. (1997) similarly observed that 

placental weights of light fetuses were lighter than the placental weights of heavier fetuses (Wise 

et al., 1997). However, Mesa et al. (2003) reported that the relationship between placental weight 

and weight at birth is curvilinear such that birthweight increases with increasing placental weight 
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at a decreasing rate. Furthermore, Vallet et al. (2013) accounted for the fact that fetal weight gain 

is not directly proportional to changes in placental weight. They observed that the dependency of 

fetal weight on placental weight was not constant across fetal weights indicating some “sparing” 

mechanism may exist which enables placentas of smaller fetuses to be more efficient in nutrient 

transfer and facilitate relatively greater fetal growth (Vallet et al., 2013). Differences in placental 

function amongst the small number of fetal sizes in the current study may have been difficult to 

detect by solely comparing BW to placental weight ratios among fetal size designations because 

a change in placental weight is not proportional to a change in BW and the ratio of a given BW 

to a given placental weight changes across placental weights. 

Wigmore and Stickland (1983) reported that the size of primary fibers reached their 

maximum size 18 d earlier in larger fetuses as compared to in small fetuses and this could be 

indicative of delayed primary myocyte and myofiber formation. Primary myofiber formation is 

completed by d 60 of gestation and after d 70, the size of primary myofibers begins to decrease. 

Yet regardless of fetal size and degree of primary myogenesis, the next wave of myoblast 

proliferation and differentiation for secondary myofiber formation begins by d 55 gestation. 

Research indicates that secondary myofiber formation in the epaxial muscle occurs due to fetal 

myoblasts traversing the dermomyotome then orienting themselves so as to attach to the primary 

myofiber scaffolding at which point the fetal myoblasts terminally differentiate and fuse with 

preexisting fibers or with other fetal myoblasts to form new myotubes (Hollway and Currie, 

2005; Biressi et al., 2007). Myogenic cell hyperplasia and formation of secondary myofibers 

appears to be completed prenatally by d 95 of gestation (Wigmore and Stickland, 1983), thus 

requiring subsequent muscle growth to occur via hypertrophy of existing myofibers. The 

establishment of numerous myofibers is important in order to support the growth of lean muscle 
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mass through a greater abundance of moderately sized rather than (a fewer number of) extremely 

large individual muscle fiber areas. Large muscle fiber cross-sectional area is negatively 

correlated with undesirable pork quality characteristics such as drip loss and low pH (Rekiel et 

al., 2015). 

 In mature animals, muscle fiber diameters are reportedly larger in the Longissimus 

lumborum than in the Longissimus thoracis (Migdal et al., 2005) and quality parameters such as 

water holding capacity, color, and shear force are not consistent along the Longissimus muscle 

(van Oeckel and Warnants, 2003; Bertol et al., 2006). Some of these differences may arise due to 

the fact that myogenesis of the Longissimus muscle occurs so that the thoracis portion develops 

earlier than the lumborum portion. Specifically, previous research has indicated that the thoracis 

has a greater degree of primary myogenesis as evidenced by more primary muscle fiber numbers 

and larger cross-sectional areas than in the lumborum by d 60 of gestation (Chapter 2).  

Yet in the current study, the Longissimus lumborum was characterized by a greater 

number of total muscle fibers by d 95 due to more total secondary muscle fibers than were in the 

Longissimus thoracis. Also, because identifiable primary muscle fiber number on d 95 did not 

differ between muscle locations, the Longissimus lumborum contained a marginally significant 

greater number of secondary muscle fibers per primary muscle fiber than were present in the 

Longissimus thoracis. However, the average cross-sectional areas of both primary and secondary 

muscle fibers in the Longissimus thoracis were larger than the average cross-sectional areas of 

primary and secondary muscle fibers in the Longissimus lumborum and this provides explanation 

for why the Longissimus whole muscle cross-sectional area was not different between the 

Longissimus thoracis and Longissimus lumborum locations.  
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Also, the inverse relationship between fiber number and cross-sectional area is reasonable 

considering the inconsonant processes of myoblast proliferation and differentiation: delayed 

terminal differentiation of fetal myoblasts will result in continued proliferation of cells and 

thereby a greater number of myogenic cells; in contrast, accelerated differentiation of myoblasts 

will curtail the proliferation of additional cells and differentiated myoblasts will more quickly 

undergo maturation and hypertrophic growth (Rehfeldt et al., 2011). Although the Longissimus 

thoracis experienced greater primary myogenesis, the current results suggest the Longissimus 

lumborum experienced a greater degree of fetal myoblast proliferation prior to terminal 

differentiation. Based on these findings along with the fact that no differences in Pax7 positive 

nuclei or nuclei per muscle fiber were observed, the Longissimus lumborum should have greater 

postnatal growth potential than the Longissimus thoracis among these pigs.  

Quiescent muscle stem cells, referred to as satellite cells, serve as a source of myonuclei 

for muscle hypertrophy in the postnatal period (Zammit, 2008). These satellite cells residing 

between the sarcollema and basal lamina are identifiable by the expression of Pax7 which 

inhibits the differentiating activity of MyoD as downregulation of Pax7 allows MyoD expression 

to initiate terminal differentiation of these cells (Seale et al., 2000; Hawke and Garry, 2001; 

Olguín, 2011). By incorporating into pre-existing muscle fibers, myogenic satellite cells decrease 

the myonuclear domain and increase the myofiber’s capacity for protein synthesis thereby 

supporting hypertrophy and repair of muscle fibers (Biressi et al., 2007). Pax7 positive nuclei 

which have not incorporated into myofibers by the end of secondary myogenesis remain as the 

muscle’s future satellite cell pool. Also, more nuclei which have incorporated into each myofiber 

by 90 indicates greater potential for increased and more efficient muscle growth postnatally.  
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Research by Tilley et al. (2007) showed that on d 45, 65, and 100 of gestation small 

fetuses had fewer numbers of secondary muscle fibers per primary muscle fiber in the 

Longissimus muscle compared to average sized littermates. Likewise, Bérard et al. (2010) 

reported that pigs which had experienced crowding conditions in utero had less hyperplasia and 

fewer secondary muscle fibers, total muscle fibers, and fewer secondary fibers per primary fiber 

across various muscles. The observations of the current study failed to support these findings as 

no differences in total number of muscle fibers, number of primary muscle or secondary muscle 

fibers, or muscle fiber average cross-sectional area were observed across the fetal sizes in the 

small number of fetuses in this study. Granted, the Longissimus whole muscle cross-sectional 

area did increase with increasing fetal size possibly due to more connective tissue or adipocyte 

formation within the whole muscle. Yet no differences in the number of Pax7 positive nuclei per 

muscle fiber or nuclei per muscle fiber were observed among fetal sizes thus supporting the 

expectation that male fetuses across the BW range represented by the fetuses of this study have 

similar Longissimus muscle growth potential postnatally.  

 CONCLUSION 

The declining maternal serum IGF-1 concentrations plateau in late gestation which may 

indicate estradiol has limited effects on circulating IGF-1 in gestating gilts. Surprisingly, SM 

fetuses had greater circulating IGF-1 concentration on d 95 than MD and LG fetuses. This 

finding warrants further investigation into potential differences in corresponding IGF-1 receptor 

and IGFBP levels in fetuses during late gestation. Differences in fetal growth appear to be 

consistently partitioned within the body except brain growth was prioritized among SM fetuses. 

This indicates that the nutrient supply of SM fetuses was limited; however, no evidence for 
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differences in placental efficiency or secondary myogenesis were observed among fetuses of 

different intralitter relative sizes in late gestation. 
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Figure 3.1. Serum IGF-1 level decrease in nulliparous sows to d 88  2 gestation. Means 

without a common superscript differ, P < 0.05 (SEM = 10.45). 
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Table 3.1. Effect of relative size within litter on fetal serum IGF-1, growth and 

development. 

95-d Fetal size:
1 

 

SM MD LG 
 

SEM 

  

n= 5 5 5  Size, P < 

         

Serum IGF-1, ng ml
-1  51.1

a 36.7
b 33.2

b  6.02  0.018 

         
Body weight, g  658.7

a
 892.0

b
 976.8

b
  62.14  0.002 

Crown-rump length, mm  222
a 245

b 250
b  6.9  0.016 

         
Total shoulder primals, g  62.3

a 93.9
b 93.6

b  7.35  0.009 
Total loin primals, g  67.4

a 88.2
b 97.7

b  7.50  0.012 
Total belly primals, g  36.7

a 52.0
b 57.6

b  4.72  0.005 
Total ham primals, g  74.7

a 95.7
ab 114.0

b  8.35  0.008 

         
Thoracic circumference, mm  170

a
 192

b
 197

b
  6.9  0.011 

Head circumference, mm  170
a
 183

b
 185

b
  4.4  0.013 

Head width, mm  40.2 42.2 43.0  1.12  0.074 
 

        

Brain weight, g
 

 20.0 22.4 20.8  0.94  0.163 

Liver weight, g  15.3
a
 23.0

b
 28.8

b
  2.16  0.004 

Brain weight:Liver weight  1.38
a
 0.98

b
 0.74

b
  0.102  0.004 

         

Attachment length, mm  237 243 304  39.0  0.131 

Body weight:Attachment length   2.95 4.10 3.21  0.593  0.093 

Placenta weight, g  189.5
a
 217.8

ab
 293.1

b
  42.08  0.040 

Body weight:Placenta weight  3.54 4.31 3.54  0.677  0.538 

         
1
Male fetus closest to lightest (SM), median (MD), or heaviest (LG) body weight fetuses within 

litter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

Table 3.2. Fetal myogenesis corresponding to 95-d fetal intralitter relative size. 

Muscle
1
: 

 

LT LL 

  

 Probablilty, P < 

d-95 Fetal Size
2
:  SM MD LG SM MD LG  SEM  Size Muscle 

n=  5 5 5 5 5 5  ---    

Item             
 

            

Whole muscle area, (mm
2
)
 3 

 115 143 163 128 164 170  15.2  0.017 0.176 

Average CSA, (µm
2
) 

4 
 87 97 102 72 86 85  7.6  0.105 0.012 

Average Primary CSA, (µm
2
) 

5
  159 155 161 127 140 138  11.7  0.840 0.024 

Average Secondary CSA, (µm
2
) 

6
   84 94 98 70 83 82  7.6  0.109 0.014 

 
            

 
            

Total fiber number (1 × 10
6
)
7 

 1.4 1.5 1.7 1.8 1.9 2.0  0.19  0.318 0.009 

Total primary fiber number   (1× 10
4
) 

8 
 8.1 6.3 8.1 9.1 9.1 7.7  1.47  0.817 0.332 

Total secondary fiber number (1 × 10
6
) 

9 
 1.3 1.4 1.6 1.7 1.8 2.0  0.18  0.273 0.008 

2 fiber:1 fiber 
10

  17 22 20 23 21 28  2.8  0.377 0.087 
 

            

Pax7+ nuclei per muscle fiber
11 

 0.13 0.19 0.21 0.18 0.16 0.20  0.035  0.474 0.953 

Nuclei per muscle fiber
12 

 1.4 1.1 0.92 1.2 0.84 0.68  0.304  0.298 0.267 
 

            
1
Muscle either Longissimus thoracis (LT) or  Longissimus lumborum (LL); No fetal Size  Muscle location interactions were observed (P  

0.206). 
2 
Male fetus nearest the small (SM), median (MD), large (LG) fetus of the litter. 

3 
Cross-sectional area (mm

2
) of the whole muscle. 

4
Average cross-sectional area (m

2
)

 
of all muscle fibers. 

5
Average cross-sectional area (m

2
)

 
of a representative sample of primary muscle fibers (n > 100) 

6
Average cross-sectional area (m

2
)

 
of a representative sample of secondary muscle fibers (n > 100) 

7
Total muscle fiber number is calculated as the whole muscle area divided by the average muscle fiber cross-sectional area of muscle fibers. 

8
Total primary muscle fiber number is calculated as the whole muscle area divided by the average muscle fiber cross-sectional area of muscle 

fibers.
 

9
Total secondary muscle fiber number is calculated based on total fiber number and the percentage of secondary muscle fibers.

 

10
The average number of secondary muscle fibers per primary muscle fiber. 

11
The average number of Pax7+ nuclei associated with each muscle fiber. 

12
The average number of nuclei associated with each muscle fiber. 



 

Chapter 4 - Effects of dietary chlortetracycline, Origanum essential 

oil, and pharmacological Zn and Cu on growth performance of 

nursery pigs.  

 ABSTRACT 

Two 47-d experiments were conducted with 21-d old weaned pigs (PIC 1050, initially 6.1 

kg) to determine the effects of  feeding low or high doses of chlortetracycline (CTC) and 

antibiotic alternatives (Zn, Cu, and essential oil), alone or in combination, on growth 

performance. On d 5 postweaning, pens of 5 pigs were allotted to diet treatments with 8 (Exp. 1) 

or 7 (Exp. 2) replicate pens per treatment. In Exp. 1, treatments were fed from d 5 to 26 

postweaning and arranged in a 2 × 3 factorial with main effects of added ZnO (0 vs. 2,500 ppm 

of Zn) and CTC (0, 55, or 441 ppm). In Exp. 2, treatments were fed from d 5 to 33 and structured 

in a 2 × 2 × 2 + 2 factorial with main effects of added CuSO4 (0 vs. 125 ppm Cu), added ZnO (0 

vs. 3,000 ppm Zn from d 5 to 12 and 2,000 ppm Zn from d 12 to 33), and Regano EX


 (0 vs. 

0.1% Regano EX


 containing 5% Origanum oil; Ralco Animal Nutrition, Marshall, MN). The 2 

additional treatments were subtherapeutic (55 ppm) and therapeutic (441 ppm) levels of CTC. 

Following the treatment period, a common diet without antimicrobial was fed until d 47. All 

diets contained 16.5 ppm Cu and either 110 ppm (Exp. 1) or 165 ppm (Exp. 2) Zn from the trace 

mineral premix. In Exp. 1, no ZnO × CTC interactions were observed. Feeding ZnO increased (P 

< 0.05) ADG, ADFI, and BW during the treatment period and increased (P < 0.05) ADG and 

ADFI overall (d 5 to 47). Pigs fed CTC had increased (linear, P < 0.05) ADG, ADFI, and BW 

during the treatment period and had marginally significant increases (linear, P < 0.10) in overall 

ADG and ADFI, but overall G:F tended (quadratic, P = 0.070) to increase then decrease as CTC 

increased. During the treatment period in Exp. 2, essential oil (EO) did not affect ADG or ADFI 
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whereas pharmacological levels of Cu, Zn, and CTC increased (P < 0.05) ADG with coinciding 

increases (P = 0.055, 0.006, and linear 0.079, respectively) in ADFI. Copper, Zn, and CTC did 

not affect G:F. Essential oil decreased (P = 0.009) G:F. Diet treatments had minimal carryover 

effects on subsequent nursery pig growth performance. Overall from d 5 to 47, Cu increased (P = 

0.018) ADG, Zn increased (P < 0.05) ADG and ADFI, and EO tended to decrease (P = 0.086) 

G:F. In conclusion, increased dietary Cu, Zn, or CTC improved weanling pig performance while 

EO elicited no growth benefits. The benefits of added Zn from ZnO and CTC were additive and 

could be included together in diets to maximize growth performance of weaned pigs. 

 INTRODUCTION 

Since feed-grade antibiotics became available in the 1950s, research has demonstrated 

that dietary inclusion of these antimicrobial agents improves growth rate and feed efficiency of 

nursery pigs. The broad-spectrum antibiotic chlortetracycline (CTC) has long been shown to 

improve the rate of gain and feed efficiency of pigs (NCR-89, 1984; Taylor and Rowell, 1957). 

Yet, alternative means of improving young pig growth performance via feed additives have been 

sought particularly with growing concern about antimicrobial resistance (Turner et al., 2001).  

Feeding pharmacological levels of Zn from ZnO or Cu from CuSO4 consistently 

improves feed intake and growth rate of nursery pigs (Pérez et al., 2011; Shelton et al., 2011). 

Essential oils have also been evaluated as alternatives to dietary antibiotics. The major 

constituents of oregano (Origanum vulgare) essential oil are the bioactive phenolic compounds 

carvacrol and thymol (Burt, 2004) which have antioxidant properties and antimicrobial action 

against both Gram positive and Gram negative bacteria (Windisch et al., 2008). Essential oils 

have been proposed to improve growth through establishment of a healthier gastrointestinal 
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microbiota with fewer pathogenic bacteria, less microbial fermentation, and thus an intestinal 

environment with enhanced digestive and absorptive capacity (Windisch et al., 2008). 

Limited research has assessed whether pharmacological Zn influences the pigs’ response 

to CTC and also whether dietary supplements commonly fed as antibiotic alternatives have 

interactive effects on weaned pig growth performance. Thus, 2 experiments were conducted to 1) 

evaluate whether a high level of dietary Zn fed in combination with low dosage or therapeutic 

levels of CTC have interactive effects on the performance of nursery pigs; and 2) compare the 

growth performance of pigs fed CTC with that of pigs fed pharmacological levels of Cu, 

pharmacological levels of Zn, and oregano essential oil, alone or in combination. 

 MATERIALS AND METHODS 

 General 

The protocols for these experiments were approved by the Kansas State University 

Institutional Animal Care and Use Committee. The experiments were conducted at the K-State 

Segregated Early Weaning Facility in Manhattan, KS. Each pen (3.2 m
2
) had metal tri-bar 

flooring, one 4-hole self-feeder, and a cup waterer to provide ad libitum access to feed and water. 

Pigs were weaned at approximately 21 d of age. To avoid any potentially confounded treatment 

responses due to postweaning lags in feed intake, all pigs were fed a common pelleted starter diet 

for the first 5 d after weaning. On d 5 postweaning, pens of 5 pigs each were randomly allotted to 

dietary treatments in a randomized complete block design with blocks based on location within 

barn.  

The initial common diet contained no antimicrobial, no essential oil, nor any added Zn or 

Cu above that contained in the trace mineral premix (Table 4.1). The test ingredients were 

substituted for an equivalent amount of corn in the respective diets to form the experimental 
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treatments (Table 4.1). Diet samples were collected periodically throughout the study. Pooled 

samples of each diet were analyzed for DM (method 935.29; AOAC, 2012); CP (method 990.03; 

AOAC, 2012); crude fat using method 920.39a (AOAC, 2012) for preparation and ANKOM 

solvent extraction procedure (ANKOM, 2004) with ANKOM XT20 Fat Analyzer (Ankom 

Technology; Fairport, NY); CF using method  978.10 (AOAC, 2012) for preparation and 

ANKOM CF determination procedure (ANKOM, 2005) with ANKOM 2000 Fiber Analyzer 

(Ankom Technology; Fairport, NY); ash (method 942.05; AOAC, 2012); minerals and metals (in 

duplicate) with sample preparation according to method 968.08b (AOAC, 2012) and analysis 

using an iCAP 6500 series ICP Emission Spectrometer (Thermo Electron Corp., Marietta, OH) 

(Ward Laboratories, Inc., Kearney, NE; Table 4.2). Dietary ME and NE values were derived 

from feed ingredient energy values based on those in the NRC (2012). 

 Experiment 1 

 Animals and Management 

A total of 240 nursery pigs (PIC 1050; initially 6.08 kg BW) were used in a 47-d study 

with 5 pigs per pen and 8 replications per treatment. Treatment diets were fed from d 5 to 26 

postweaning at which time all pigs received a common diet and growth performance was 

monitored for an additional 3 wk to d 47 postweaning to assess potential carryover effects of 

dietary treatment. Average daily gain, ADFI, and G:F were determined by weighing pigs and 

measuring feed disappearance on d 5, 26, and 47. 

 Diet Composition 

The 6 dietary treatments were arranged in a 2 × 3 factorial with main effects of added Zn 

from ZnO (0 vs. 2,500 ppm of added Zn) and CTC (0, 55, or 441 ppm). United States Food and 

Drug Administration regulations (Code of Federal Regulations) prohibit the continuous feeding 
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of therapeutic levels of CTC longer than 14 d.  Thus, on study d 15, the feeders from pens 

assigned to the 441 ppm CTC diets were emptied and pigs were fed the control diet with or 

without the 2,500 ppm of added Zn. The normal treatment diet containing CTC at 441 ppm was 

then re-added to the feeders on d 16 and fed for the remainder of the 21-d period. Treatment diets 

were corn-soybean meal-based and contained 10% dried whey, 1.25% fish meal, and 1.25% 

blood cells. From d 26 to 47, a common corn-soybean meal–based diet with no added ZnO and 

no CTC was fed to all pigs to evaluate any carryover effects from the treatment diets. All diets 

contained 110 ppm of Zn from the trace mineral premix. As determined by analysis, the common 

diet fed for the first 5 d postweaning contained 166 ppm Zn and 29 ppm Cu whereas the common 

diet fed after the treatment period contained 160 ppm Zn and 21 ppm Cu. 

 Experiment 2 

 Animals and Management 

A total of 350 nursery pigs (PIC 1050; initially 6.05 kg BW) were used in a 47-d study 

with 5 pigs per pen and 7 replications per treatment. Weaned pigs exhibited clinical signs of 

influenza infection upon entry into the barn. Pigs with clinical signs for which injectable 

treatment was deemed necessary were removed from the study which contributed to an elevated 

4% removal rate during the study. Removal rate was not influenced by dietary treatment. 

Treatment diets were fed from d 5 to 33 postweaning at which time all pigs received a common 

diet and growth performance was monitored for an additional 2 wk to d 47 postweaning in order 

to assess potential carryover effects of dietary treatment. Average daily gain, ADFI, and G:F 

were determined by weighing pigs and measuring feed disappearance on d 5, 33, and 47. 

 Diet Composition 
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The basal diet formulations used in Exp. 1 were used for Exp. 2. The 10 dietary 

treatments fed from d 5 to 33 were structured as a 2 × 2 × 2 + 2 factorial with main effects of 

added Cu from copper sulfate (CuSO4; 0 vs. 125 ppm Cu), added Zn from zinc oxide (ZnO; 0 

vs. 3,000 ppm Zn from d 5 to 12 and 2,000 ppm Zn from d 12 to 33), or Regano EX


 (0 vs. 0.1% 

Regano EX


 containing Origanum oil; Ralco Animal Nutrition, Marshall, MN). The 2 additional 

treatments were CTC at sub-therapeutic (55 ppm) or therapeutic (441 ppm) levels. All diets 

contained 16.5 ppm Cu and 165 ppm of Zn from the trace mineral premix. As determined by 

analysis, the Phase 1 common diet contained 114 ppm Zn and 24 ppm Cu, whereas the Phase 3 

common diet contained 144 ppm Zn and 24 ppm Cu.  

Similar to Exp. 1, in order to comply with United States Food and Drug Administration 

regulations, on d 19 of the study the feeders from pens assigned to the 441 ppm CTC diet were 

emptied and pigs were fed the control diet for 1 d. The normal treatment diet containing CTC at 

441 ppm was then re-added on d 20 and fed for the remainder of the 28-d period (d 5 to 33). 

From d 33 to 47, a common corn-soybean meal–based diet without any antimicrobial, essential 

oil, or pharmacological levels of Cu or Zn was fed to all pigs to evaluate any carryover effects 

from the treatment diets.  

 Statistical Analysis 

For each experiment, growth data were analyzed as a randomized complete block design 

with pen as the experimental unit. The PROC MIXED procedure of SAS (v9.3, SAS Institute 

Inc., Cary, NC) was used to model diet treatment as a fixed effect and barn location nested 

within barn as a random effect. The main effects of Zn, Cu, CTC, and essential oil, as well as any 

interactions, were tested using a priori orthogonal CONTRAST statements. Within the CTC 

treatments, linear and quadratic contrasts were used. Results were considered statistically 



89 

significant at P ≤ 0.05; results with P-values > 0.05 and ≤ 0.10 were considered marginally 

significant. 

In Exp. 2, analysis of studentized residual values revealed a geographic cluster of four 

pens, each on a different treatment (essential oil, Cu+Zn, Cu+essential oil, Cu+Zn+essential oil), 

which had ADG or feed efficiency observations greater than 3 standard deviations from the 

mean. Taking this as evidence for data outliers, these pens were removed from the dataset used 

for analysis. 

 RESULTS  

In Exp. 2, analyzed Zn concentrations were consistently less than calculated 

concentrations for all diets containing added ZnO (Table 4.2). Although analyzed Ca levels were 

consistent across treatment diets within each experiment, analyzed Ca levels were greater than 

formulated levels (0.8 %; Table 1) across all Phase 2 experimental diets and analyzed levels in 

Exp. 1 diets were greater than those of diets in Exp. 2 (Table 4.2). Further investigation and 

analysis failed to identify a single explanatory cause for the differences between calculated and 

reported analyzed Zn and Ca levels. However, high pharmacological levels of Zn were clearly 

achieved in the respective experimental diets. Analyzed levels of all other nutrients were similar 

to calculated levels and Cu concentrations of diets containing added CuSO4 in Exp. 2 were 

within the Association of American Feed Control Officials acceptable analytical variation range 

for Cu (AOAC, 2000).  

Within each experiment, the growth rates of pigs did not differ during the first 5 d when a 

common starter diet was fed. 
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 Experiment 1 

In Exp. 1, no ZnO × CTC interactions were observed for any response criteria in any 

period (Table 4.3). During the 21 d treatment period, added Zn increased (P < 0.001) ADG, 

ADFI, and BW on d 26 but did not affect G:F. Similarly, increasing CTC increased (P  0.017) 

ADG, ADFI, and BW. Increasing CTC also resulted in a marginally significant improvement 

(quadratic, P = 0.083) in caloric efficiency with pigs fed CTC at 55 ppm having the best G:F. 

Except for a small decrease (P = 0.025) in the G:F of pigs previously fed pharmacological Zn, no 

differences were observed in the post-treatment period (d 26 to 47) growth rates or feed intakes 

of pigs that had previously received ZnO or CTC in their diets. Nevertheless, the improvements 

in ADG and ADFI from feeding pharmacological Zn from ZnO during the treatment period were 

maintained over the post-treatment period as evidenced by greater (P < 0.05) overall ADG and 

ADFI from d 5 to 47. The respective improvements in ADG and ADFI due to feeding CTC 

during the treatment period remained marginally significant (linear, P = 0.062 and 0.058, 

respectively) overall from d 5 to 47. Also, the overall feed and caloric efficiency of pigs fed CTC 

had marginally significant quadratic improvements (quadratic, P < 0.10) as 55 ppm of CTC was 

added to the diet with no further improvement at the 441 ppm level. 

 Experiment 2 

During the d 5 to 33 treatment period, increasing CTC level linearly increased (P = 

0.028) ADG and induced marginally significant increases (linear, P = 0.079) in ADFI which 

resulted in marginally heavier (linear, P = 0.074) BW on d 33 (Tables 4.4 and 4.5). When the 

pigs ceased consuming CTC and were fed the common diet from d 33 to 47, pigs previously fed 

CTC had a marginally significant linear reduction (P = 0.095)  in ADG compared to pigs which 

had not previously been fed CTC. Consequently, increasing levels of CTC did not linearly affect 



91 

overall ADG or ADFI from d 5 to 47 and although CTC had failed to affect G:F during either the 

treatment period or the succeeding common period, CTC induced marginally significant 

improvements (quadratic, P = 0.093)  in overall G:F and caloric efficiency with pigs fed 55 ppm 

CTC having the best feed efficiency.  

During the treatment period, there was a marginally significant 3-way interaction 

between essential oil, Cu, and Zn (Cu × EO × Zn, P = 0.098). Adding essential oil to the control 

diet numerically reduced ADG whereas it had no impact on growth rate when added to diets 

containing pharmacological levels of Zn and Cu. Pharmacologic Cu and Zn each increased (P < 

0.01) ADG, resulting in greater (P < 0.05) BW on d 33 at the end of the treatment period. No 

interactions between treatment ingredients were observed for feed intake; pharmacologic Zn 

increased (P = 0.006) ADFI, pharmacologic Cu induced a marginally significant improvement (P 

= 0.055) in ADFI, and essential oil did not affect feed intake during the treatment period. Despite 

the concomitant increases in both ADG and ADFI, a marginally significant improvement in 

caloric efficiency (P = 0.089 for ME and 0.084 for NE) was observed due to pharmacologic Zn. 

The main effect of essential oil was worsened (P = 0.009) G:F during the treatment period and a 

Cu (regardless of Zn inclusion) × essential oil interaction (P = 0.024) was observed due to the 

numeric improvements in G:F induced by Cu being eliminated when essential oil was also fed in 

combination. These interactive (Cu × EO, P = 0.025) and main effects (P = 0.015) of essential 

oil were also observed when considering efficiency on a caloric basis for both ME and NE 

during the treatment period.  

During the 14 d common period from d 33 to 47, no differences were observed in growth 

performance due to previous diet treatment except for a marginally significant interaction 

between previous Cu and Zn treatments whereby numeric decreases in common period ADG of 
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pigs previously fed either Cu or Zn were non-additive so that pigs previously fed both Cu and Zn 

had better (Cu × Zn, P = 0.095) ADG than pigs previously fed the minerals individually, 

although the interactive ADG was still numerically lower than that of control pigs which had not 

previous received Cu or Zn. No interactions between treatment ingredients were observed on 

overall growth performance from d 5 to 47.  Feeding pharmacological Zn for 28 d increased (P < 

0.05) overall ADG and ADFI over the entire 42 d experiment which resulted in greater ending 

BW on d 47 compared to that of pigs not fed added Zn. Similarly, pigs that received 

pharmacologic Cu for 28 d had greater (P = 0.018) overall ADG and marginally significant 

improvements (P = 0.099) in ending d 47 BW compared to that of pigs not receiving added Cu. 

In contrast, dietary inclusion of essential oil for 28 d did not affect pig gain rate or feed intake 

but resulted in a marginally significant decrease (P = 0.086) in overall G:F from d 5 to 47 

compared to that of pigs not receiving the essential oil. 

 DISCUSSION 

In the present study, feeding pharmacological levels of 2,500 Zn from ZnO for 21 d or at 

3,000 ppm for 7 d then 2,000 ppm for another 21 d increased rates of gain with coinciding 

increases in feed intake but did not affect feed efficiency in either experiment. A meta-analysis 

by Sales (2013) provides a summation of evidence in the literature that feeding pharmacological 

concentrations of Zn from ZnO to weaned pigs improves rate of gain, feed intake, and efficiency 

of gain. While pharmacologic Zn from ZnO is capable of inducing efficiency improvements, this 

efficiency response is more variable than the consistently observed improvements in gain and 

feed intake. In contrast to the meta-analysis of Sales (2013), no evidence for improved efficiency 

of gain due to Zn supplied above the pigs’ physiological requirement was observed in the present 

study. Similar findings were reported by Woodworth et al. (2005) when 3,000 ppm Zn was fed 
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for the first 10 d postweaning then 2,000 ppm Zn was fed from d 10 to 20. They found efficiency 

was initially improved from d 0 to 10 but no improvement in efficiency due to pharmacological 

Zn could be detected from d 0 to 20.  

In the present study, increased feed intake resulted in a linear improvement in BW gain as 

dietary inclusion of CTC increased from 0 to 55 ppm to 441 ppm for 21 or 28 d. In modern 

multisite production systems, dietary antibiotics remain efficacious in improving weaned pig 

growth but appear to have limited application for improving efficiency of gain (Dritz et al., 

2002). Marginal evidence for CTC improving overall feed and caloric efficiencies in Exp. 1 

indicated the greatest improvements were obtained when 55 ppm of CTC was added to the diet, 

with no further improvement at 441 ppm. This observation is not unexpected when considering 

that CTC levels greater than 55 ppm are indicated for the control or prevention of clinical disease 

while the lower dosage is indicated for production benefit. Chlortetracycline appeared to elicit a 

greater improvement in growth rate and feed intake in Exp. 1 than in Exp. 2 in which there was 

no difference in overall growth performance of pigs due to feeding increasing levels of CTC. In 

Exp. 1, pigs fed 441 ppm CTC had an 8% improvement in ADG compared to that of control pigs 

while pigs in Exp. 2 had a 5% improvement. Summarizing a large number of studies, Dritz et al. 

(2002) reported a 5% improvement in ADG due to feeding anitibiotic amongst nursery pigs in 

commercial environments yet cautioned that antibiotic growth responses are smaller when 

baseline growth performance is high. Several factors could have contributed to the variation in 

CTC response in the present experiments, such as a greater number of replicate pens fed CTC in 

Exp. 1 than in Exp. 2, or initial BW of pigs (6.45 kg in Exp. 1 and 6.55 kg in Exp. 2). 

No interactions between pharmacologic Zn from ZnO and CTC were observed, indicating 

that the effects of each are additive in nature. Similar effects of pharamacological Zn and other 
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broad-spectrum antibiotics fed in combination have been reported. Hill et al. (2001) observed 

additive improvements in growth rate, feed intake, and efficiency of gain when a subtherapeutic 

level of carbadox was fed with up to 3,000 ppm Zn from ZnO in weaned pig diets. Furthermore, 

Woodworth et al. (2005) reported additive improvements in rate of gain due to feeding a 

combination of neomycin and tetracycline with a pharmacological level of Zn for 20 d. In 

addition, they reported improved feed intake due to Zn but no interactive effect of Zn and 

concomitant feeding of the antibiotics on feed intake. 

Early research established that supplementing basal diets with graded levels of 0 to 500 

ppm Cu from CuSO4 induced non-linear responses in weaned pig growth performance with 

maximum growth rates, feed intake, and efficiency of gain achieved when feeding approximately 

250 ppm Cu (Roof and Mahan, 1982; Cromwell et al., 1989). However, 75 to 80% of this 

maximum response was realized by supplementation with a more moderate level of 125 ppm Cu 

Cromwell et al., 1989) and Stahly et al. (1980) reported that rate of gain and feed intake was 

maximized at 125 ppm Cu when diets included antibiotics. In the present study, feeding Cu 

above the nursery pigs’ physiological requirement at level 125 ppm for 28 d improved rate of 

gain with a marginally significant increase in feed intake but no significant improvement in G:F. 

When Shelton et al. (2011) fed 125 ppm Cu, improvements in efficiency of gain were observed 

in addition to increased rate of gain and voluntary feed intake compared to those of pigs not fed 

additional Cu (Shelton et al, 2011). It is possible that a greater response to Cu may have occurred 

in the present study if a greater concentration of Cu had been fed.  

Including 0.1% Origanum essential oil supplement containing approximately 5% oil into 

weaned pig diets for 28 d failed to affect daily gain or feed intake but resulted in poorer feed and 

caloric efficiencies in the present study. The interactive effect of pharmacologic Cu and 
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Origanum essential oil on feed efficiency suggests that Origanum essential oil had an 

antagonistic effect on the numeric improvement in gain efficiency induced by Cu.  Previous 

research in weaned pigs has shown that oregano essential oil supplied at equivalent 

concentrations to that fed in the present study, or at 2x greater or lesser concentrations, for 28 d 

did not elicit any improvements in growth rate, feed efficiency, or feed intake (Neill et al., 2006). 

Moreover, no improvements in any growth performance parameters were observed due to the 

feeding of the combined oil extracts of oregano (5% carvacrol), cinnamon (3% cinnamaldehyde), 

and Mexican pepper (2% capsicum oleoresin) when included in the diet at up to 300 ppm 

(Manzanilla et al., 2004). Little research has demonstrated detrimental effects of oregano 

essential oil although Jugl-Chizzola et al. (2006) did report that weaned pigs had a lesser 

preference for feed containing oregano herbs (supplying 0.002 or 0.02% essential oil) than for 

unsupplemented feed and Zhang et al. (2012) reported decreased G:F during the initial 2 wk 

period of feeding oregano essential oil plant extract to weaned pigs.  

Yet in pigs afflicted with proliferative enteropathy, Origanum vulgaris successfully 

improved rate of gain over that of pigs receiving no essential oil nor antibiotic therapy, although 

no differences were observed in feed intake (Papatsiros et al., 2009). Also, oregano essential oil 

has been shown to be as effective as a feed-grade antibiotic in inducing improved rate of gain 

and feed conversion ratios in poultry (Mathlouthi et al., 2010). However, compared to 

pharmacologic Zn or Cu, there is a scarcity of literature supporting the supposition that oregano 

plant essential oil improves growth performance in non-disease challenged weaned pigs. Li et al. 

(2012) did report that feeding an essential oil blend containing thymol and cinnamaldehyde 

improved ADG and decreased E. coli in the cecum, colon, and rectum of weaned pigs. Yet, as 

summarized by Zeng et al. (2015), there are currently few studies which would support positive 
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effects of carvacrol and thymol fed in combination on nursery pig growth. Until additional 

research can determine more specific in vivo applications for the active compounds of oregano 

essential oil and appropriate dose and feeding strategies, the role of Origanum essential oil in 

stimulating weaned pig growth performance appears limited. 

In the present study, lack of interaction among pharmacological Zn, Cu, and Origanum 

essential oil for feed intake indicates any individual improvements due to Zn and Cu are additive. 

Few studies have evaluated any interactive effects of essential oil with other growth-promoting 

agents although no interactions were observed between oregano essential oil and feed-grade 

antibiotics when both were fed together (Neill et al., 2006).  

The effects of feed antibiotic levels and pharmacologic Zn or Cu in weaned pig diets are 

reported as additive in several studies. Additive effects of up to 3,000 ppm Zn from ZnO and 

sub-therapeutic doses of a feed-grade antibiotic on weaned pig growth performance have been 

reported (Hill et al., 2001; Woodworth et al., 2005).The effects of 250 ppm Cu from CuSO4 were  

non-additive when fed together with feed-grade antibiotics in the diet of grow-finish pigs 

(Ribeiro de Lima et al., 1981) but in weaned pigs, additive effects have been observed (Stahly et 

al., 1980; Edmonds et al., 1985) even with 125 ppm Cu (Roof and Mahan, 1982).  

Additivity of pharmacological levels of Cu and Zn has been demonstrated less 

consistently, possibly due to interactions between the minerals competing for absorption at the 

gut level. Some studies have demonstrated non-additive effects between pharmacological levels 

of 250 ppm Cu from CuSO4 and 3,000 ppm Zn from ZnO (Smith et al., 1997; Hill et al., 2000) 

while others have demonstrated additive growth responses when feeding 125 ppm Cu in 

combination with Zn (3,000 ppm for 14 d postweaning and 2,000 ppm from d 14 to 42 
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postweaning; Shelton et al., 2011) or when feeding Cu at either 250 ppm from CuSO4 or 100 

ppm from an organic Cu source in combination with 3,000 ppm Zn (Pérez et al., 2011). 

Few studies monitor for potential treatment carryover effects into the immediate post-

treatment period. Minimal carryover effects from any of the dietary treatments on subsequent 

nursery pig growth performance were observed in this study. The observed overall gain response 

of pigs previously fed both pharmacologic Cu and Zn for 28 d provides marginal evidence that 

previous feeding of Cu plus Zn may not be as detrimental to rate of gain after supplementation of 

the pharmacologic levels of Cu and Zn has ceased compared to gain of pigs which were 

previously fed each mineral without the other. Bunch et al. (1963) observed 250 ppm CuSO4 

improved ADG from weaning to 57 kg BW but when no CuSO4 was subsequently fed from 57 to 

91 kg BW the pigs which had previously received the added Cu had a better rate of gain 

compared to pigs which had not previously received CuSO4.  

In Exp. 1 only, a small depression in feed efficiency was observed in pigs following 

cessation of pharmacologic Zn supplementation in the previous 21 d but no carryover effect of 

the Zn on efficiency was observed in experiment 2. Woodworth et al. (2005) fed an antibiotic 

combination of neomycin and oxytetracycline for 21 d and reported that pigs previously 

receiving the antimicrobial exhibited decreased feed efficiency in the 7 d following cessation of 

the antimicrobial feeding. Numerically, but non-significantly, depressed feed efficiency was also 

observed in pigs previously fed pharmacologic Zn compared to pigs which had not received 

previous Zn treatment. Together, these observations suggest that modulated or depressed rates of 

gain or efficiency of gain following a period of stimulated growth are not unprecedented. 

Moreover, no further improvements in the growth performance of the pigs in these studies were 

observed after the antibiotics and added minerals were removed from the diets. Similar results 
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were reported by Bosi et al. (2011) when considering the later growth performance of weaned 

pigs which had experienced improved ADG, ADFI, and G:F due to antibiotic feeding compared 

to that of pigs which had not been fed antiobiotics in the preceding 21 d period; no differences 

were observed in the pigs’ growth performance during the 7 d common period following 

cessation of antibiotic feeding.  

 CONCLUSION 

This study illustrates the value of feeding pharmacological concentrations of Zn, Cu, and 

CTC to newly weaned pigs to promote growth but no improvement due to Origanum essential 

oil was observed. Although there were no improvements in feed efficiency due to Cu or Zn, the 

inclusion of an essential oil worsened feed and caloric efficiency. There were minimal carryover 

effects from the dietary treatments on subsequent nursery pig growth performance. Also, this 

study agrees with previous research findings with the data collectively suggesting that the 

benefits of feeding CTC and pharmacological levels of Zn are additive for nursery pigs. 

Furthermore, most effects of Zn, Cu, and essential oil on piglet growth performance appear to 

occur independently. In conclusion, pharmacological levels of Cu, Zn, or CTC improved 

weanling pig performance while Origanum essential oil elicited no growth performance benefits. 
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Table 4.1. Diet composition (as-fed basis)
1
 

 

Phase 1 common diet 

(d 0 to 5)
 

Phase 2 experimental diets 

(d 5 to 26 or 33)
 

Phase 3 common diet 

(d 26 or 33 to 47) 

Ingredient, %    

Corn 37.54 54.73 63.83 

Soybean meal (47.7% CP) 19.86 29.53 32.86 

Spray-dried blood cells 1.25 1.25 --- 

Spray-dried animal plasma 4.00 --- --- 

Corn DDGS
2
, 6 - 9% oil 5.00 --- --- 

Select menhaden fish meal 1.25 1.25 --- 

Spray-dried whey 25.00 10.00 --- 

Choice white grease 3.00 --- --- 

Monocalcium phosphate  0.90 0.80 1.00 

Limestone 1.00 1.10 1.03 

Salt 0.30 0.30 0.35 

L-Lys HCL 0.225 0.300 0.300 

DL-Met 0.150 0.175 0.115 

L-Thr 0.085 0.150 0.115 

Trace mineral premix
3 

0.150 0.150 0.150 

Vitamin premix
4 

0.250 0.250 0.250 

Choline chloride, 60% 0.035 --- --- 

Phytase
5 

--- 0.015
4 

0.015
4 

CuSO4, ZnO, Regano EX, CTC-50 additives6 --- 0 to 0.965 --- 

Total 100.00 100.00 100.000 

Calculated analysis 

Standardized ileal digestible (SID) amino acids, % 

Lys 1.40 1.35 1.22 

Ile:Lys 56 58 63 

Leu:Lys 128 125 129 

Met:Lys 32 35 33 

Met & Cys:Lys 57 58 57 

Thr:Lys 63 64 63 

Trp:Lys 19 18 19 

Val:Lys 71 69 69 

Total Lys, % 1.57 1.50 1.37 

CP, % 22.2 22.2 21.4 

ME, kcal/kg 3,470 3,291 3,272 

NE, kcal/kg
 

2,599 2,429 2,410 

SID Lys:ME, g/Mcal 4.0 4.1 3.7 

Ca, % 0.85 0.80 0.70 

P, % 0.73 0.63 0.61 

Available P, % 0.51 0.44
7 

0.39
7 

1 Common Phase 1 diet was fed from d 0 to 5 after weaning, experimental Phase 2 diets were fed from d 5 to 26 (Exp. 1) or 33 (Exp. 2), and 

the common Phase 3 diet was fed from d 26 (Exp. 1) or 33 (Exp. 2) to 47. 
2 Distillers dried grains with solubles. 
3 Provided per kg of diet: 40 mg Mn from manganese oxide, 165 mg Fe from iron sulfate, 165 mg Zn from zinc sulfate, 16.5 mg Cu from 

copper sulfate, 0.30 mg I from calcium iodate, and 0.30 mg Se from sodium selenite.  
4 Provided per kg of diet: 11,023 IU vitamin A, 1,653 IU vitamin D3, 44 IU vitamin E, 4.4 mg vitamin K, 8.3 mg riboflavin, 27.6 mg 

pantothenic acid, 50 mg niacin, and 0.04 mg vitamin B12.
 

5 Diets in Exp. 1 contained 0.0125%  Phytase 600 (Phyzyme; Danisco Animal Nutrition, St Louis, MO), providing 750.7 phytase units 

(FTU)/kg and an estimated release of 0.12% available P. Diets in Exp. 2 contained 0.015% HiPhos 2700 (DSM Nutritional Products, Inc., 

Parsippany, NJ), providing 406.3 phytase units (FTU)/kg and an estimated release of 0.10% available P.  

6 Exp.1 treatment diets contained added ZnO at 0 or 0.347% and CTC-50 at 0, 0.05, or 0.4%. Exp. 2 treatment diets contained zinc oxide 

added at 0 or 0.415% from d 5 to 12 and at 0 or 0.28% from d 12 to 33, copper sulfate added at either 0 or 0.05%, Regano EX (Ralco 

Animal Nutrition, Marshall, MN) containing approximately 5% essential oil added at either 0 or 0.1%, and  CTC-50 added at 0, 0.05, or 0.4%. 

Additions of treatment ingredients were made in place of an equivalent amount of corn in respective experimental diets. 
7 Available P (%) levels were calculated as 0.47 and 0.41% for Exp. 1 Phase 2 and 3 diets, respectively. 
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Table 4.2. Analyzed dietary composition and mineral concentrations of Phase 2 treatment diets (as-fed basis)
1 

 

 Phase 2 treatment diets
2
  Analyzed composition 

Diets DM, % CP, % CF, % Fat, %
 

Ash, % Ca, % P, %  Zn, ppm Cu, ppm 

           

Experiment 1           

0 CTC 90.78 23.0 2.0 2.2 7.18 1.52 0.62  148 53 

55 CTC 90.59 22.5 1.5 2.1 6.27 1.21 0.65  317 24 

441 CTC 90.40 23.7 1.7 2.4 5.59 0.93 0.60  186 22 

0 CTC + Zn 90.79 21.9 1.5 2.0 6.09 1.12 0.60  2,918 23 

55 CTC + Zn 90.77 22.4 1.7 2.3 6.45 1.12 0.64  2,946 20 

441 CTC + Zn 90.79 22.3 1.4 1.8 6.57 1.19 0.59  2,823 27 

           

Experiment 2           

Control 90.96 23.0 1.8 2.5 5.00 0.86 0.67  140 16 

Cu 90.27 23.2 1.9 2.6 5.01 0.89 0.64  115 109 

Zn
4 

          

d 5 to 12 90.32 22.9 1.8 2.7 5.31 0.88 0.63  2,110 20 

d 12 to 33 90.41 22.9 1.7 2.7 5.49 0.92 0.74  1,632 25 

Essential oil (EO) 90.18 22.8 1.9 2.7 5.00 0.96 0.69  177 25 

Cu + Zn
4 

          

d 5 to 12 90.34 22.7 1.7 2.7 5.65 0.96 0.70  2,254 166 

d 12 to 33 90.45 23.0 1.7 2.6 5.45 0.98 0.68  1,778 135 

Cu + EO 89.92 22.4 1.7 2.8 5.00 1.03 0.69  385 161 

Zn + EO
4 

          

d 5 to 12 89.66 23.2 1.9 2.8 5.36 0.96 0.66  2,166 19 

d 12 to 33 90.55 22.9 1.6 2.9 5.63 0.98 0.66  1,780 21 

Cu + Zn + EO
4 

          

d 5 to 12 90.44 22.6 1.8 2.7 5.56 0.96 0.66  2,181 120 

d 12 to 33 90.14 22.5 1.9 2.9 5.32 0.93 0.65  1,701 137 

55 CTC 90.75 23.2 2.0 2.8 5.02 0.90 0.64  219 22 

441 CTC 90.26 22.9 1.9 2.9 5.06 0.93 0.66  205 22 
1 
Analysis was performed by Ward Laboratories, Inc. (Kearney, NE) on pooled diet samples.  All diets were formulated to contain 16.5 ppm Cu and 110 

(Exp. 1) or 165 (Exp. 2) ppm of Zn from the trace mineral premix. 
2 
Phase 2 treatment diets were fed from d 5 to 26 (Exp. 1) or to d 33 (Exp. 2), whereas a Phase 1 common was fed to all pigs from d 0 to 5 and a Phase 3 

common diet was fed to all pigs from d 26 (Exp. 1) or 33 (Exp. 2) to d 47. 
3 
From Regano EX 


(Ralco Animal Nutrition, Marshall, MN). 

4 
In Exp. 2 only, pharmacologic Zn diet treatments had an addition of 3,000 ppm Zn from added ZnO from d 5 to 12 and an addition of 2,000 ppm Zn from 

added ZnO from d 12 to 33. 
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Table 4.3. Effects of ZnO and CTC on nursery pig growth performance (Exp. 1)
1,2

 

 

 

 

 

 

 

      Probability, P < 

ZnO, ppm:  0  2500 

SEM 

ZnO × CTC 

ZnO 

CTC 

CTC, ppm: 0 55 441 0 55 441 Linear Quadratic Linear Quadratic 

BW, kg               
d 5  6.46 6.46 6.43  6.45 6.46 6.44 0.077 0.923 0.974 0.981 0.751 0.912 

d 26  13.91 14.45 14.57  14.78 14.80 15.24 0.203 0.986 0.175 <0.001 0.011 0.251 
d 47  28.90 29.81 29.61  29.66 29.86 30.04 0.425 0.952 0.409 0.240 0.387 0.239 

               
d 5 to 26               

ADG, kg  0.35 0.38 0.39  0.40 0.40 0.42 0.008 0.894 0.121 <0.001 0.002 0.208 

ADFI, kg  0.50 0.51 0.53  0.55 0.54 0.57 0.012 0.826 0.399 <0.001 0.017 0.914 

G:F  0.71 0.74 0.73  0.73 0.73 0.73 0.013 0.646 0.362 0.567 0.436 0.119 

ME caloric efficiency
3  4,684 4,466 4,482  4,534 4,472 4,460 78.2 0.611 0.315 0.359 0.207 0.083 

NE caloric efficiency
3
  3,456 3,295 3,306  3,345 3,299 3,289 57.7 0.613 0.315 0.350 0.200 0.083 

               
d 26 to 47               

ADG, kg  0.71 0.73 0.72  0.71 0.72 0.74 0.015 0.262 0.648 0.978 0.449 0.405 

ADFI, kg  1.15 1.16 1.17  1.16 1.17 1.21 0.024 0.500 0.845 0.273 0.155 0.757 

G:F  0.62 0.63 0.61  0.61 0.61 0.61 0.007 0.424 0.635 0.025 0.155 0.289 

               

d 5 to 47               

ADG, kg  0.53 0.55 0.55  0.55 0.56 0.58 0.009 0.416 0.322 0.045 0.062 0.244 

ADFI, kg  0.83 0.84 0.85  0.86 0.86 0.89 0.016 0.555 0.665 0.022 0.058 0.830 

G:F  0.65 0.66 0.65  0.65 0.65 0.65 0.006 0.743 0.329 0.235 0.639 0.070 

ME caloric efficiency
3
  5,066 4,947 5,044  5,072 5,033 5,055 50.5 0.732 0.360 0.364 0.754 0.083 

NE caloric efficiency
3
  3,732 3,644 3,716  3,736 3,707 3,723 37.2 0.730 0.361 0.368 0.762 0.083 

1 
A total of 240 nursery pigs (PIC 1050, initially 21 d of age and 6.08 kg BW) were used in a 47 d study with 5 pigs per pen and 8 pens per treatment. 

2 
Experimental treatment diets were fed from d 5 to d 26, and a common diet was fed to all pigs from d 26 to 47. 

3 
Caloric efficiency is expressed as kcal per kg of live weight gain. 
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Table 4.4. Effects of added dietary Cu, Zn, essential oil, and chlortetracycline (CTC) on nursery pig growth performance (Exp. 2)
1,2

 

Added Cu
3
: - + - - + + - + - -  

Added Zn
4
: - - + - + - + + - -  

Essential oil
5
: - - - + - + + + - -  

CTC, ppm: 0 - - - - - - - 55 441 SEM 

Initial d 5 BW, kg 6.57 6.56 6.56 6.53 6.61 6.69 6.56 6.62 6.53 6.55 0.084 

d 5 to 33            

ADG, kg 0.44 0.46 0.47 0.42 0.49 0.47 0.47 0.48 0.43 0.46 0.012 

ADFI, kg 0.56 0.58 0.61 0.55 0.61 0.62 0.61 0.62 0.55 0.59 0.018 

G:F 0.77 0.79 0.77 0.76 0.81 0.76 0.78 0.76 0.79 0.78 0.012 

BW on d 33, kg 18.94 19.61 19.82 19.08 20.47 19.91 19.85 19.96 18.88 19.64 0.361 

d 33 to 47            

ADG, kg 0.72 0.69 0.70 0.70 0.72 0.68 0.69 0.71 0.72 0.69 0.016 

ADFI, kg 1.17 1.13 1.15 1.13 1.16 1.12 1.13 1.14 1.12 1.12 0.028 

G:F 0.62 0.62 0.61 0.62 0.62 0.61 0.61 0.62 0.64 0.61 0.113 

BW on d 47, kg 29.02 29.32 29.68 28.83 30.56 29.50 29.47 29.89 28.90 29.28 0.503 

d 5 to 47            

ADG, kg 0.53 0.54 0.55 0.51 0.57 0.54 0.55 0.55 0.53 0.54 0.011 

ADFI, kg 0.76 0.76 0.79 0.73 0.79 0.79 0.78 0.79 0.74 0.77 0.019 

G:F 0.70 0.71 0.69 0.69 0.72 0.69 0.70 0.70 0.72 0.70 0.009 

Caloric efficiency
6 

           

d 5 to 33            

ME 4,262 4,163 4,253 4,338 4,049 4,304 4,196 4,293 4,165 4,193 65.2 

NE 3,145 3,071 3,137 3,200 2,986 3,175 3,095 3,166 3,073 3,092 48.1 

d 5 to 47            

ME 4,726 4,652 4,721 4,754 4,553 4,752 4,704 4,702 4,590 4,666 61.5 

NE 3,483 3,429 3,479 3,504 3,355 3,502 3,467 3,465 3,383 3,439 45.3 
1 
A total of 350 nursery pigs (PIC 1050, initially 6.05 kg BW) were used in a 47-d study with 5 pigs per pen and 7 replicate pens per 

treatment except for 4 treatments (essential oil, Cu+Zn, Cu+essential oil, Cu+Zn+essential oil), which had 6 replicate pens each.
  

2 
Experimental treatment diets were fed from d 5 to d 33. All diets contained 16.5 ppm Cu and 165 ppm of Zn from the trace mineral 

premix. 
3 
Cu from CuSO4 was added to treatment diets at either 0 or 125 ppm. 

4 
Pharmacological Zn diet treatments had an addition of 3,000 ppm Zn from added ZnO from d 5 to 12 and an addition of 2,000 ppm Zn 

from added ZnO from d 12 to 33. 
5 
Regano EX


(Ralco Animal Nutrition, Marshall, MN) was added to treatment diets at either 0 or 0.1%.

 

6 
Caloric efficiency is expressed as kcal per kg of live weight gain. 
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Table 4.5. Probability (P <) for effects of added Cu, Zn, essential oil, and chlortetracycline (CTC) on nursery pig growth 

performance (Exp. 2)
1, 2

 

  Probability, P < 

         CTC 

 Cu Zn Essential oil (EO) Cu × Zn Cu × EO Zn × EO Cu × Zn × EO Linear Quadratic 

BW, kg           
d 5  0.250 0.976 0.685 0.830 0.442 0.710 0.519 1.000 0.723 

d 33  0.022 0.009 0.965 0.437 0.689 0.331 0.463 0.074 0.739 
d 47  0.099 0.034 0.514 0.796 0.945 0.516 0.544 0.590 0.808 

           
d 5 to 33

 
          

ADG, g  0.003 <0.001 0.605 0.120 0.822 0.707 0.098 0.028 0.755 

ADFI, g  0.055 0.006 0.444 0.173 0.182 0.798 0.444 0.079 0.392 

G:F  0.150 0.186 0.009 0.958 0.024 0.886 0.137 0.833 0.265 

ME caloric efficiency
3  0.138 0.089 0.015 0.870 0.025 0.858 0.144 0.645 0.226 

NE caloric efficiency
3
  0.137 0.084 0.015 0.870 0.025 0.858 0.144 0.631 0.226 

           
d 33 to 47           

ADG, g  0.928 0.608 0.136 0.095 0.692 0.965 0.782 0.101 0.987 

ADFI, g  0.675 0.696 0.355 0.347 0.668 0.978 0.675 0.377 0.222 

G:F  0.659 0.972 0.488 0.321 0.930 0.958 0.845 0.340 0.135 

           

d 5 to 47           

ADG, g  0.018 0.001 0.207 0.573 0.621 0.825 0.111 0.422 0.771 

ADFI, g  0.225 0.025 0.818 0.425 0.225 0.942 0.304 0.499 0.240 

G:F  0.141 0.293 0.086 0.549 0.145 0.972 0.549 0.973 0.093 

ME caloric efficiency
3
  0.131 0.207 0.111 0.560 0.147 0.976 0.561 0.937 0.084 

NE caloric efficiency
3
  0.131 0.202 0.111 0.560 0.147 0.977 0.560 0.930 0.084 

1
A total of 350 nursery pigs (PIC 1050; initially 6.05 kg BW) were used in a 47-d study with 5 pigs per pen and 7 replicate pens per treatment except for 4 

treatments (essential oil, Cu+Zn, Cu+essential oil, Cu+Zn+essential oil), which had 6 replicate pens each.
 

2
 Experimental treatment diets were fed from d 5 to d 33. All diets contained 16.5 ppm Cu and 165 ppm of Zn from the trace mineral premix. 

3 
Caloric efficiency is expressed as kcal per kg of live weight gain. 



 

Chapter 5 - Effects of dietary Cu, Zn, and ractopamine-HCl on 

finishing pig growth performance, carcass characteristics, and 

antimicrobial susceptibility of enteric bacteria. 

 ABSTRACT 

A total of 480 pigs (PIC 327 1050; initially 48.7 kg) were used to determine the 

interactive effects of supplemental Cu, Zn, and ractopamine HCl (RAC) on finishing pig growth 

performance, carcass characteristics, and antimicrobial susceptibility of enteric bacteria. 

Treatments were arranged in a 2×2×2 factorial with main effects of added Cu (CuSO4; 0 vs. 125 

ppm Cu), Zn (ZnO; 0 vs. 150 ppm Zn), and RAC (0 vs. 10 ppm during the last 28 d prior to 

marketing; Paylean®; Elanco Animal Health, Greenfield, IN). All diets contained 11 ppm Cu 

and 73 ppm Zn from the trace mineral premix. Pens of pigs were balanced and blocked on initial 

BW then randomly allotted to 1 of the 4 mineral treatment diets. At 28 d prior to marketing, pens 

within each block and mineral treatment were randomly assigned to receive either 0 or 10 ppm 

RAC in addition to the mineral treatment. Adding either Cu or Zn alone did not improve ADG or 

ADFI yet resulted in numerical improvements in overall G:F and caloric efficiencies but 

improvements were not additive (CuZn, P=0.057, 0.068 and 0.064 for G:F and caloric 

efficiency on a ME and NE basis, respectively). Ractopamine improved (P < 0.001) overall 

ADG, G:F, and caloric efficiency thereby increasing final BW by 3% with no change in ADFI. 

Ractopamine also increased (P < 0.001) HCW, percentage carcass yield, HCW G:F, loin depth, 

and percent fat-free lean and decreased (P = 0.014) backfat. Adding Zn or Cu alone to diets 

containing RAC numerically improved percent yield and HCW G:F, but this effect was absent 

when the Cu or Zn was added to the control diet or when Cu and Zn were fed in combination in  

RAC diets (Cu×Zn×RAC, P = 0.011 and 0.018 for yield and HCW G:F, respectively). Fecal 
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samples were collected on d 0 and at the conclusion of the finishing period (d 90) for bacterial 

isolation and antimicrobial susceptibility determinations according to CLSI MIC breakpoints. 

Enterococcus spp. and E. coli isolates displayed varying levels of resistance to certain antibiotics 

prior to initiation of treatments on d 0. Resistance to most antibiotics decreased (P < 0.05) over 

time or was stable for those that had a low baseline percentage of resistance. Neither Zn nor 

RAC adversely affected antimicrobial resistance but extended feeding of 125 ppm Cu throughout 

the finishing period appeared to antagonize any time-associated decrease in enterococcal 

resistance to tetracycline, tylosin, and quinupristin/dalfopristin. 

 INTRODUCTION 

Ractopamine HCl, a -adrenergic agonist, increases synthesis and accretion of skeletal 

muscle protein (Bergen et al., 1989) and has lypolytic ability (Mills et al., 2003). When included 

in late finishing pig diets, ractopamine dramatically improves rate and efficiency of gain, and 

carcass weight, leanness, and cut yields without negatively impacting pork quality (Watkins et 

al., 1990; Stoller et al., 2003; Kutzler et al., 2011). 

Considerable research has been conducted to determine the supporting nutrient 

requirements for the pig to realize its maximum lean growth potential due to ractopamine. Much 

emphasis has been placed on identifying amino acids requirements (Boyd et al., 2001; Apple et 

al., 2004; Webster et al., 2007; Frantz et al., 2009) and assessing the effects of dietary energy 

density (Apple et al., 2004; Hinson et al., 2011) on pig response to ractopamine. In addition, 

limited research has been directed toward the effects of mineral supplementation on the response 

to ractopamine with some research proposing additional improvements in the response to 

ractopamine with supplemental Zn in the diet (Patience et al., 2011); however, the response has 
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been mixed (Paulk et al., 2015). Copper also has been shown to improve growth and feed intake 

of finishing pigs (Coble et al., 2014).  

Bacterial antibiotic resistance remains a paramount public health concern yet limited 

research has been undertaken to determine the impact of lower doses of heavy metals and -

agonists on the ecology of antimicrobial resistant bacteria in finishing pigs. Microorganisms are 

sensitive to high levels of minerals such as Cu and Zn (Porcheron et al., 2013). In enterococci, 

the plasmid-borne transferable copper gene (tcrB) that encodes resistance to Cu is associated 

with the prevalence of certain antibiotic resistance genes in enteric bacteria (Amachawadi et al., 

2013) while a gene conferring zinc resistance (czrC) has been associated with decreased 

antibiotic susceptibility (Cavaco et al., 2010). Furthermore, evidence that feeding high levels of 

Cu increases copper resistance in young pigs (Amachawadi et al., 2011) suggests Cu and Zn 

feeding will co-select for mineral and antibiotic resistance in livestock. 

Endogenous catecholamines use the adrenergic receptors to induce physiological changes 

(Liang et al., 1985; Frishman, 2003). In addition, bacterial growth and plasmid transfer are 

upregulated by endogenous catecholamines such as adrenaline and epinephrine (Peterson et al., 

2011) thereby possibly expediting the propagation of antibiotic resistant bacteria. However, there 

is some indication that -blockers and -blockers mitigate these effects of catecholamines on 

bacteria (Peterson et al., 2011). Consequently, there is speculation that adrenergic agonists such 

as ractopamine HCl could actually acquiesce the progression of antibacterial resistance. 

The objective of this study was to determine the interactive effects of supplemental Cu, 

Zn, and ractopamine HCl on finishing pig growth performance, carcass characteristics, and 

antimicrobial susceptibility of enteric bacteria.  
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 MATERIALS AND METHODS 

 Growth Performance 

The protocol for this experiment was approved by the Kansas State University 

Institutional Animal Care and Use Committee. The study was conducted at the Kansas State 

University Swine Teaching and Research Center in Manhattan, KS. Pigs were housed in an 

environmentally controlled tunnel-ventilated barn and reared on completely slatted concrete 

flooring over deep pits for manure storage. Each pen was equipped with a 2-hole stainless steel 

dry self-feeder (Farmweld, Teutopolis, IL) and a cup waterer to provide pigs with ad libitum 

access to feed and water. Feed delivery to each individual pen was accomplished and recorded 

via a robotic feeding system (FeedPro; Feedlogic Corp., Wilmar, MN). 

A total of 480 pigs (PIC 327  1050; initially 48.7 kg) from 2 finishing groups were used 

for this study. Prior to placement on experimental finisher diets, the pigs did not receive any 

chlortetracycline in their feed or water to avoid potential confounding study impacts due to 

disturbances to the intestinal microbiome. However, the pigs did receive dietary neomycin and 

oxytetracycline antibiotics immediately post-weaning. Individual pig treatments were recorded. 

All finishing diets were a corn-soybean meal based diet fed in meal-form which 

contained a trace mineral (TM) premix providing 73 ppm zinc and 11 ppm Cu to the diet (Table 

5.1). The diets were formulated to be fed in 4 phases (36 to 57 kg, 57 to 79 kg, 79 to 100 kg, and 

100 to 132 kg) during the finishing period and were prepared at the K-State O.H Kruse Feed 

Technology Innovation Center.  

Dietary treatments were arranged in a 2 × 2 × 2 factorial with main effects of added 

copper sulfate (CuSO4; 0 vs. 125 ppm Cu), added zinc oxide (ZnO; 0 vs. 150 ppm Zn) and 

ractopamine HCl (0 vs. 10 ppm during the last 28 d prior to marketing; Paylean®; Elanco 
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Animal Health, Greenfield, IN). The dietary treatments were as follows: (1) Control, (2) Control 

+ 125 ppm Cu, (3) Control + 150 ppm Zn, (4) Control + 125 ppm Cu + 150 ppm Zn, (5) Control 

+ 10 ppm ractopamine HCl during final 28 d only, (6) Control + 125 ppm Cu + 10 ppm 

ractopamine HCl during final 28 d only, (7) Control + 150 ppm Zn + 10 ppm ractopamine HCl 

during final 28 d only, and (8) Control + 125 ppm Cu + 150 ppm Zn + 10 ppm ractopamine HCl 

during final 28 d only. 

The finishing period of the first pig group spanned from January to April while pigs in 

the second finishing group were housed in a different room from March to June. Upon entry into 

the finisher, pigs were randomly allotted to pens of either 7 (group 1) or 8 (group 2) pigs per pen. 

Pens contained 4 gilts and either 3 (group 1) or 4 (group 2) barrows each. Pen space was 

maintained at 0.929 m
2
/pig across both groups by adjusting pen size according to the number of 

animals per pen. 

The study design was structured as a randomized complete bock design with a split-plot 

and replicated over 2 finishing groups with 32 pens each. At the beginning of the study, 32 pens 

of pigs were arranged into 4 weight blocks per group based on similar pen initial average BW. 

Two pens per weight block were then randomly allotted to 1 of the 4 mineral treatment diets 

(negative control, +125 ppm Cu, +150 ppm Zn, or +125 ppm Cu with +150 ppm Zn) and 

balanced on initial pen average BW across blocks. At 28 d prior to marketing, pens within each 

block and mineral treatment diet were randomly assigned to receive either 0 or 10 ppm 

ractopamine HCl in addition to their mineral treatment and all diets were formulated to contain 

0.90% standardized ileal digestible (SID) lysine. Ractopamine HCl treatment assignments were 

balanced across blocks on current pen average BW at the time of allotment to ractopamine HCl 
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treatments. Hence for the final 28 d of the finishing period, each of the four weight blocks in 

each group contained 1 pen per each of the 8 diet treatments. 

Feed samples from each batch of feed were taken from feeders. Samples were pooled 

within each phase to form a composite diet sample that was subsequently analyzed for Ca, P, Cu, 

and Zn (method 985.01; AOAC, 2000) in duplicate with modifications of ashing 0.35 g sample 

for 1 h at 535C, digestion in open crucible for 20 min in 15% nitric acid on hotplate, sample 

dilution to 50 ml and analyzed on ICP (Perkin Elmer 3300 XL and 5300 DV ICP; Perkin Elmer, 

Shelton, CT); DM (method 930.15; AOAC., 2000); CP (method 990.03; AOAC, 2000); crude fat 

(method 2003.05; AOAC, 2006); CF (method 978.10; AOAC, 2000); ash (method 942.05; 

AOAC, 2000) with modifications of 1.5 g sample, 4 h ash time, and hot weight (Cumberland 

Valley Analytical Services, Hagerstown, MD; Table 5.2). Across both finishing groups, a 

composite sample of each of the 4 diets containing Paylean
®
 was assayed for ractopamine HCl 

concentration by a commercial laboratory (Covance Laboratories, Greenfield, IN) using an 

HPLC feed assay for ractopamine that was developed and validated by Elanco Animal Health 

(method B04372 FDA revision 5, December 2003 – Turberg, unpublished) as part of the New 

Animal Drug Application for Paylean
®
 in the United States (see Table 5.2).  

Pigs and feeders were weighed approximately every 3 wk to determine ADG, ADFI, F/G 

and both ME and NE caloric efficiency (kcal energy per kg diet  total diet intake per pen  total 

pen weight gain) on a pen basis. Dietary ME and NE values were derived from feed ingredient 

energy values based on those in the NRC (2012). 

At the conclusion of the 90-d (group 1) or 83-d (group 2) experimental period, all pigs 

were individually weighed and tattooed with a unique identifier. Pigs were transported to a 

commercial harvesting facility (Triumph Foods LLC, St. Joseph, MO) and held in lairage 
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overnight prior to processing and carcass data collection. Carcass characteristics measured at the 

plant included HCW immediately after evisceration, and backfat and loin depths via an optical 

probe.  

Percent carcass yield was calculated by dividing individual HCW obtained at the packing 

plant by the corresponding individual final live weight obtained at the farm. An average 

percentage carcass yield for each pen was then calculated by averaging the observed yields of 

pigs for each pen. Pen average HCW was calculated by multiplying the pen average percent 

yield by the pen average final live weight. Percentage lean was calculated by dividing the 

standardized fat-free lean (SFFL; NPPC, 2000) by individual HCW according to the following 

equation: 

SFFL, % = 100  [15.31 – (331.277  backfat depth, in.) + (3.813  loin muscle depth, 

in.) + (0.51  HCW, lb)]  HCW, lb 

Initial carcass weight on study d 0 was assumed to equal 75% of the initial pen average 

live BW, thus HCW gain on a pen basis was calculated using the formula: final pen average 

HCW, kg – (0.75  initial pen average BW on d 0). Subsequently, HCW ADG was calculated by 

dividing the average individual HCW gain of each pen by the number of study days. Similarly, 

HCW F/G was calculated for each pen by dividing the average daily feed intake per pig (overall 

ADFI) by average daily HCW gain. 

Fecal samples from 5 randomly selected pigs per pen were collected into individual 

Whirl-Pak (Nasco, Ft. Atkinson, WI) bags on d 0 and again on d 90 from the first group of pigs 

(32 pens). Samples were transported to the Molecular Epidemiology and Microbial Ecology 

laboratory at Kansas State University for bacterial isolation and antimicrobial susceptibility 

analysis. 
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 Microbiological Procedures 

 Bacterial Isolation and Species Identification 

Fecal samples were stored at 4C prior to processing.  Approximately 1 g of feces from 

each of the 5 samples per pen was suspended in 9 mL phosphate-buffered saline.  Fifty L (per 

agar) of the fecal suspension was then spread-plated onto both a M-Enterococcus agar and a 

MacConkey agar for the isolation of Enterococcus spp. and Escherichia coli, respectively, from 

each fecal sample.  Unless otherwise specified, all the culture media was obtained from Difco 

(Becton Dickinson, Sparks, MD).  M-Enterococcus plates were incubated at 42C and 

MacConkey plates at 37C, for 24 h. 

Two putative colonies (pin-point red, pink, or metallic red) were selected from each M-

Enterococcus agar and 2 distinct lactose fermenting colonies were picked from each MacConkey 

agar; each of these colonies was individually streaked onto a blood agar plate (Remel, Lenexa, 

KS) and incubated at 37C for 24 h.  Preliminary genus confirmation of each of the enterococcal 

isolates was done by esculin hydrolysis.  Indole test was done to confirm each of the E. coli 

isolates.  The 2 confirmed E. coli and 2 confirmed Enterococcus isolates per original fecal 

sample were preserved using cryo-protect beads (Cryocare


, Key Scientific Products, Round 

Rock, TX)
 
and stored at -80C for future use.   

Antimicrobial Susceptibility of Enterococcus and E. coli Isolates 

The microbroth dilution method as outlined by the Clinical and Laboratory Standards 

Institute (CLSI, 2013) was used on 1 E. coli and 1 Enterococcus spp. bacterial isolate per 

original fecal sample to determine the minimal inhibitory concentrations (MIC) of several 

antibiotics.  For both E. coli and Enterococcus spp., bacterial isolate preserved in a cryo-protect 

bead was streaked onto a blood agar plate and incubated at 37°C for 24 h.  Individual colonies 



115 

 

were selected and suspended in demineralized water (Trek Diagnostic Systems, Cleveland, OH) 

and turbidity was adjusted to 0.5 McFarland turbidity standards.  Then, 10 L of the bacterial 

inoculum was added to Mueller-Hinton broth and vortexed to mix.  A Sensititre


 automated 

inoculation delivery system (Trek Diagnostics Systems) was used to dispense 100 L of the 

broth into National Antimicrobial Resistance Monitoring System (NARMS) panel plates 

designed for Gram-positive (CMV3AGPF, Trek Diagnostic Systems; Table 5.3) and Gram-

negative (CMV3AGNF, Trek Diagnostic Systems; Table 5.4) bacteria. Enterococcus faecalis 

ATCC 29212 and Escherichia coli ATCC 25922 (American Type Culture Collection, Manassas, 

VA) strains were included as quality controls for Enterococcus and E. coli susceptibility testing, 

respectively.  

Plates were incubated at 37C for 18 h then bacterial growth was assessed using 

Sensititer ARIS
®
 and Vizion™ systems (Trek Diagnostic Systems).  Clinical and Laboratory 

Standards Institute (CLSI, 2013) guidelines were used to classify each bacterial isolate as 

resistant or non-resistant (intermediate and susceptible) according to the breakpoints established 

for each antimicrobial.  

 Statistical Analysis 

Growth and carcass data were analyzed as a randomized complete block design with a 2 

 2  2 treatment structure and replicated over 2 groups. Pen was the experimental unit. The 

MIXED procedure in SAS (v9.3, SAS Institute Inc., Cary, NC) was used to model diet treatment 

as a fixed effect with random effects of group and initial weight block nested within group. The 

main effects of Cu, Zn, and ractopamine HCl, as well as their interactions, were tested using a 

priori orthogonal CONTRAST statements. Hot carcass weight was used as a covariate in the 

analyses of backfat, loin depth, and percentage lean. The antibiotic susceptibility data was 
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analyzed as a binary distribution using the SAS GLIMMIX procedure and a logit link function to 

model the data as a repeated measure with pen as the experimental unit and 5 sample 

observations per pen per day. Sample nested within pen was modeled as a random effect to 

account for clustering within pen. Treatment main effects of Cu, Zn, and ractopamine HCl, day 

of sampling (baseline or d 90), and dietary main effect within day were evaluated for antibiotics 

having a non-zero resistance variance component for these fixed effects. For all data, the 

Kenward Roger method was used to compute denominator degrees of freedom for tests of fixed 

effects. Results were considered statistically significant at P ≤ 0.05; results with P-values > 0.05 

and ≤ 0.10 were considered marginally significant. 

 RESULTS  

Analyzed CP levels were consistently greater than calculated levels for all diets, possibly 

as a reflection of higher protein levels in feedstuffs compared to nutrient book values used in the 

diet formulation (see Tables 5.1 and 5.2). Analyzed Cu and Zn levels reflected the addition of 

125 ppm Cu and 150 ppm Zn to respective treatment diets. Analyzed concentrations were at the 

upper end of the Association of American Feed Control Officials acceptable analytical variation 

range for the minerals (AOAC, 2000). Analyzed levels of all other nutrients were similar to 

calculated levels. 

 Growth Performance 

No significant Cu × Zn × ractopamine HCl (Rac) interactions were observed in the 

growth performance responses measured in this study. There was no difference among pig BW 

on d 0 except the pigs which would eventually receive ractopamine HCl later in the finishing 

period were initially slightly heavier (P = 0.012) than those pigs which would not receive 

ractopamine HCl (Table 5.5). Prior to the final 28 d of the finishing period, no effects of Cu or 
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Zn on ADG or ADFI were observed. However, a significant interaction (Cu  Zn, P < 0.05) 

between Cu and Zn was observed for feed and caloric efficiency where pigs fed diets with either 

added Cu or Zn alone had numeric improvement in efficiency, but no improvement when both 

minerals were added together. On d 62 (d 55 for group 2), there was still no difference among the 

BW of pigs fed 125 ppm added Cu and/or 150 ppm added Zn nor was there any difference 

between the BW of pigs which would begin at that time to receive 10 ppm ractopamine HCl for 

the next 28 d compared to the BW of pigs which would not receive ractopamine HCl.  

On the final d of the study (d 90 and 83 for groups 1 and 2, respectively), pigs receiving 

ractopamine HCl for the previous 28 d had heavier (P < 0.001) BW than pigs which had not 

received ractopamine HCl (Table 5.5). The heavier final BW of pigs receiving ractopamine HCl 

was the result of greater (P < 0.001) ADG in the final 28 d before harvest which consequently 

improved (P < 0.001) their G:F and caloric efficiency on both a ME and NE basis compared to 

that of pigs not fed ractopamine HCl. In contrast, no effect of added Cu and/or Zn was observed 

on the ADG or G:F of pigs during the final 28 d of the finishing period. There were no effects of 

the minerals or ractopamine HCl on ADFI in the final 28 d of the finishing period aside from a 

marginally significant effect of pigs fed Zn and ractopamine HCl in combination having less (Zn 

 Rac, P = 0.084) ADFI than would have been expected considering added Zn numerically 

increased ADFI and ractopamine HCl numerically decreased ADFI when each was fed not in 

combination with the other. 

No effects of added Cu, Zn, and/or ractopamine HCl were observed on overall ADFI 

(Table 5.5). Overall ADG, G:F, and caloric efficiency on both a ME and NE basis were 

improved (P < 0.001) due to feeding ractopamine HCl in the last 28 d of the finishing period. 

Conversely, there were no main effects of added Cu or Zn on overall growth performance. 
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Feeding Cu or Zn alone numerically improved overall G:F and overall caloric efficiency, but had 

no influence on overall efficiencies when both were added to the diet (Cu  Zn, P = 0.057, 0.068, 

and 0.064 for G:F, ME, and NE, respectively). 

 Carcass Characteristics 

The added Cu and Zn had minimal effects on growth performance and congruently had 

minimal effects on carcass characteristics. No differences in pen average HCW or HCW ADG 

due to the added minerals were observed. However, the finishing growth performance 

improvements induced by feeding ractopamine HCl during the last 28 d prior to marketing 

resulted in increased (P < 0.001) HCW and HCW ADG (Table 5.7). 

Feeding ractopamine HCl also increased (P < 0.001) percentage carcass yield and the 

magnitude of the increase was numerically greater when either Cu or Zn was added to the diet 

containing ractopamine HCl; however, the minerals did not provide any carcass yield benefit 

when both were fed together with ractopamine HCl (Cu × Zn × Rac, P = 0.011; Table 5.7). No 

main effects of Cu or Zn on percentage carcass yield were observed. Efficiency of carcass gain 

followed a similar pattern to percent carcass yield with no main effect due to added Cu or Zn and 

with a Cu × Zn × Rac interaction (P = 0.018). Again, ractopamine HCl improved (P < 0.001) 

HCW G:F with further numeric improvement when either Cu or Zn was added with ractopamine 

HCl, but no improvement due to the minerals was observed when both Cu and Zn were included 

in diets together with ractopamine HCl. 

When compared on a common HCW basis, pigs fed ractopamine HCl had less (P = 

0.014) backfat and greater (P < 0.001) loin depth and percentage of fat-free lean compared to 

pigs not fed ractopamine HCl. In contrast, no differences in backfat, loin depth, or fat-free lean 

were observed due to added Cu or Zn. 
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 Antimicrobial Resistance 

Antibiotic susceptibility results are shown in Tables 5.9 through 5.12. For each antibiotic, 

the percentage resistant for each of the 8 dietary treatments are listed in Tables 5.9 and 5.11. As 

can be seen from these interactive means, some treatment combinations were associated with 0 

or 100% resistance to certain antibiotics within sampling day which prevented calculation of 

variance components and test statistics for statistical analysis of some of the antimicrobial 

responses. However, evaluation of the diet treatment main effects rather than interactive effects 

resulted in model convergence for some of these antibiotics and the results are displayed in 

Tables 5.10 and 5.12.  

 E. coli Resistance 

None of the fecal Escherichia coli (E. coli) isolates were categorized as resistant to 

ciprofloxacin, sulfisoxazole, and trimethoprim/sulfamethoxazole at either d 0 (baseline) or d 90 

(Table 5.9). None of the isolates grown in the presence of nalidixic acid were resistant except for 

1 isolate (5% resistant) on d 0 in 1 pen subsequently fed the Cu and ractopamine treatment diet; 

all other baseline as well as d 90 isolates were categorized as nonresistant. All baseline E. coli 

isolates were resistant to Ampicillin (AMP) but by d 90, the percentage decreased to 85% of 

isolates from pigs which had received the control diet, 90% for the Cu and Zn diet, and 95% for 

the Zn and ractopamine diet while 100% resistance was still observed for isolates from pigs fed 

all other treatments.  

For E. coli isolates, the percentage resistant to amoxicillin/clavulanic acid 2:1 ratio, 

cefoxitin , ceftiofur, ceftriaxone, gentamicin, streptomycin, and tetracycline decreased (P < 0.05) 

from d 0 to d 90 (Table 5.10). Ractopamine HCl did not affect the percentage of antibiotic 

resistant E. coli isolates. Zinc did not adversely affect antibiotic resistance. Pigs fed Zn had a 
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greater rate (Zn within Day, P < 0.05) of decreasing percent resistant to streptomycin compared 

to that in pigs fed the diets without added zinc.  This resulted in a significant decrease (P < 0.05) 

in percent of E. coli resistant to E. coli from baseline to d 90 for pigs fed Zn but only a numerical 

decrease for those fed diets without Zn. Because E. coli isolates from all pigs fed diet treatments 

containing Zn were 100% susceptible to gentamicin on d 90, the corresponding variance 

components were zero and no statistics computed (Table 5.9). However, feeding diets containing 

Zn resulted in a larger numerical decrease in resistance to gentamicin compared to diets without 

Zn.  

Copper treatment did not affect antimicrobial resistance over time aside from a 

marginally significant effect (P = 0.069) on resistance to ceftiofur and ceftriaxone. E. coli 

isolates had a similar pattern of resistance to both ceftiofur and ceftriaxone where isolates from 

pigs subsequently fed Cu had greater percent resistance on d 0 than from pigs not fed Cu; 

however, resistance decreased by d 90 among pigs not fed Cu but did not decrease among pigs 

fed Cu so that by d 90 the resistance was not different between pigs that had been fed Cu versus 

those which had not been fed Cu. 

 Enterococcus Resistance 

No resistant isolates were detected among fecal Enterococcus spp. isolates grown in the 

presence of nitrofurantoin and vancomycin (Table 5.11). On d 0 prior to initiation of diet 

treatments, enterococcal isolates displayed a low level of resistance ( 10%) to chloramphenicol, 

gentamicin, linezolid, penicillin, and tigecycline; by d 90, no resistant isolates to these antibiotics 

were observed across all diet treatments.  

Across all treatments, estimated percentage of enterococcal isolates that were resistance 

to erythromycin, lincomycin, and quinupristin/dalfopristin decreased (P < 0.05) from d 0 to d 90 
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while resistance to tetracycline increased (P < 0.05) throughout the finishing period (Table 5.12). 

Neither Zn nor ractopamine HCl treatments affected antibiotic susceptibility of the enterococcal 

isolates.  

Cu did not significantly affect the percentage of enterococcal isolates resistant to 

daptomycin, erythromycin, kanamycin, lincomycin, or streptomycin over time (Table 5.12). 

However, percentage of resistance to quinupristin/dalfopristin and tylosin tartrate was affected (P 

= 0.023) by Cu treatment over time. Resistance to quinupristin/dalfopristin and tylosin decreased 

(P < 0.05) from d 0 to d 90 among isolates from pigs not fed added Cu while percent of resistant 

isolates from pigs fed added Cu did not differ from d 0 to d 90. Consequently, the percentage of 

quinupristin/dalfopristin resistant isolates from pigs fed Cu was greater (P < 0.05) on d 90 than 

that of isolates from pigs which were not fed Cu. Cu treatment also affected (P = 0.003) the 

percentage of enterococcal isolates resistant to tetracycline over time as baseline isolates from 

pigs subsequently fed added Cu were initially more (P < 0.05) susceptible to tetracycline than 

isolates from pigs which would not be fed added Cu; however, resistance to tetracycline among 

isolates from pigs fed added Cu increased so that by d 90 there was no difference in 

Enterococcus spp. susceptibility to tetracycline among isolates from pigs fed added Cu compared 

to isolates of pigs which had not. 

There were no ciprofloxacin resistant enterococcal isolates detected on d 90 from pigs fed 

diets without added Cu so the corresponding variance components were zero and no statistics 

computed (Table 5.11). However, baseline resistance across all future treatments initially ranged 

from 0 to 15% and over time, isolates from pigs fed diets containing added Cu had a smaller 

numerical decrease in resistance to ciprofloxacin compared to isolates from pigs fed diets 

without added Cu. 
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 DISCUSSION 

The combined or lone supplementation of 125 ppm Cu and 150 ppm Zn above trace 

mineral premix levels failed to improve gain, feed intake, efficiency, or carcass characteristics. 

The growth benefits of feeding added Cu and Zn to weaned pigs in the nursery phase are well 

established and are seemingly driven largely by increased feed intake although efficiency of gain 

can also be improved (Sales, 2013; Ma et al., 2015). In contrast, the response to supplementation 

later in the growth period, such as the finishing period of our study, is less consistent.  

In a series of experiments conducted by the NCR-42 Committee on Swine Nutrition 

(1974), the response to copper was highly variable but overall failed to improve gain or 

efficiency over the growing-finishing period. In contrast, Davis et al. (2002) reported improved 

gain and efficiency with 175 ppm Cu. Several studies have demonstrated that a decrease in or 

complete elimination of any trace mineral supplementation including Cu and Zn to a typical 

corn-soybean meal based diet during all or part of the finishing period did not significantly 

worsen growth performance or carcass characteristics (Creech et al., 2004; Shelton et al., 2004; 

Ma et al., 2012; Gowanlock et al., 2013). It should be noted that some of these studies included 

antibiotics in the diets which may have bolstered performance in the absence of trace mineral 

supplementation.  

The pigs in the current study were enrolled in this finishing period study at a relatively 

heavy weight (49 kg) and had high levels of feed intake across all treatments. Moreover, this 

study was conducted in a research setting conducive to high growth performance. Together, 

these factors possibly precluded any potential for mineral supplementation to improve the growth 

responses of these pigs.  
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Prior to the final 28 d of the finishing period, a significant interaction between Cu and Zn 

was observed for feed and caloric efficiency where pigs fed diets with either added Cu or Zn 

alone had numeric improvement in efficiency, but no improvement when both minerals were 

added together. In the final 28 d of finishing period, no evidence for interactive effects between 

the minerals was observed possibly indicating the combined level of heavy metal minerals in the 

smaller BW pigs was detrimental to efficient gain. Accordingly, although supplementation of 

both copper and zinc at levels well above the pig’s physiological requirements improve weaned 

pig performance (Pérez et al., 2011; Shelton et al., 2011), extended supplementation of minerals 

may lead to poor performance. Yet Kline et al. (1972) reported no main or interactive effects of 

up to 500 ppm Cu and up to 300 ppm Zn on feed efficiency when fed from 17.3 to 90.8 kg. 

In the present study, ractopamine HCl fed at 10 ppm during the final 28 d of the finishing 

period improved late finishing growth rate, final BW, HCW, and percentage carcass yield 

without increasing feed intake thereby causing greater caloric and feed efficiency. Notably, the 

pigs of the study herein had a heavy average BW of 136 kg which corresponded to an average 

HCW of 101 kg. The effects of ractopamine HCl on late finishing pig growth performance have 

been extensively studied but few reports have documented the effects of ractopamine on finished 

pigs of this BW. Apple et al. (2007) conducted a meta-analysis across a wide range of genotypes 

and environments and reported that ractopamine minimally affects feed intake when fed at 5 to 

10 ppm but can decrease feed intake slightly when considered over a large number of studies. In 

addition, pigs fed 10 ppm exhibited respective improvements over controls in daily gain, feed 

efficiency, and HCW of 11.8%, 13.3%, 3.1%, and dressing percent ranged from 0.7 to 2.2%. 

Accordingly, pigs of the present study demonstrated no difference in feed intake and similar 

magnitudes of improvement in daily gain, feed efficiency, HCW, and dressing percent of 17.5%, 
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15.3%, 4.5%, and 1.5%, respectively. Moreover, Crome et al. (1996) compared the effects of 28 

d of ractopamine supplementation from 68 to 107 kg or from 85 to 125 kg BW and reported no 

interactions between ractopamine inclusion and weight range indicating that the effects of 

ractopamine are consistent across pigs at different growth stages. 

In the current study, a marginally significant interaction between Zn and ractopamine was 

observed due to pigs fed Zn and ractopamine HCl in combination having less feed intake than 

would have been expected considering added Zn numerically increased ADFI and ractopamine 

HCl numerically decreased ADFI when each was fed not in combination with the other. Patience 

et al. (2011) proposed that organic Zn supplementation throughout all or the later part of the 

finishing period may assuage decreased feed intake attributable to ractopamine, based on 

observations of decreased feed intake for inorganic Zn supplemented pigs fed ractopamine 

compared to pigs supplemented with organic Zn and fed ractopamine whose feed intake did not 

differ from that of pigs fed inorganic Zn but no ractopamine. Together, these observations 

seemingly suggest inorganic Zn supplementation throughout the finishing period does not 

mitigate negative effects of ractopamine on feed intake. 

When compared on a common HCW basis, pigs of the study herein that were fed 

ractopamine HCl had less backfat, greater loin depth and percentage of fat-free lean compared to 

pigs not fed ractopamine HCl. Despite consistent improvements in loin depth and predicted fat-

free lean percentage, decreased back fat depth is a less consistent response although a meta-

analysis demonstrated small but significant effects of 5 and 10 ppm ractopamine on decreasing 

back fat depth (Apple et al., 2007). Fernández-Dueñas et al. (2008) observed that feeding 5.0 or 

7.4 ppm ractopamine increased HCW’s and primal yield from carcass in heavy pigs (HCW of 90 

to 94 kg) but failed to decrease back fat depth, or improve loin depth or percent lean. However, 
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the carcass characteristics were not compared on a common HCW basis which could have 

masked potential effects of ractopamine at these heavy weights. 

In the current study, the magnitude of the increase in percent yield due to ractopamine 

was numerically greater for pigs fed either added Cu or Zn throughout the entire finishing 

period; however, the minerals did not provide any carcass yield benefit when both were fed 

together and ractopamine HCl was also fed. No other significant interactions between 

ractopamine and the minerals were observed in the growth and carcass responses. These 

observations indicate that 150 ppm Zn supplemented throughout the entire finishing period did 

not improve growth and carcass responses when fed with or without ractopamine.  

In contrast, several studies have suggested that additional improvements to the increased 

feed efficiency realized through ractopamine feeding can be achieved with concurrent Zn 

supplementation. This supposition is biologically based on the fact that Zn mediates insulin-like 

growth factor-1 (IGF-1) induced cell proliferation and growth (MacDonald, 2000; Salgueiro et 

al., 2002) and may be a key nutrient to support the lean gain of pigs fed ractopamine.  

Fry et al. (2013) reported a marginally significant improvement in feed efficiency when 

Zn was supplemented in a late finishing diet containing ractopamine and also observed that an 

organic source of Zn tended to improve carcass yield more than an inorganic Zn source when 

both sources were supplemented to diets containing ractopamine. Similarly, Rambo et al. (2012) 

reported an organic source of Zn tended to improve performance over that of Zn from an 

inorganic source when fed in a late finisher diet containing ractopamine and when Zn was 

supplemented throughout the entire finisher period and the final phase diets contained 

ractopamine, Patience et al. (2011) found rate of gain was greater when organic Zn versus 

inorganic Zn was supplemented. Most recently, Paulk et al. (2015) reported inconsistent effects 
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of Zn and ractopamine where in one experiment, late finishing diets containing ractopamine with 

increasing supplementation of Zn from ZnO linearly improved feed efficiency. In a follow up 

study comparing supplemented Zn from inorganic and organic sources, no response to Zn from 

either source was observed in the presence of ractopamine. However, none of these studies 

assessed the effects of Zn supplementation independently of ractopamine and it remains unclear 

whether the pigs responded positively to Zn because of a greater requirement induced by 

ractopamine or because of an underlying insufficiency.  

Conversely, when Gowanlock et al. (2013) fed diets without any trace mineral 

supplementation for the entire finishing period or supplemented just Zn from an organic source, 

no significant differences in growth performance (gain, feed intake, feed efficiency) or in carcass 

characteristics (HCW, back fat depth, loin muscle area) were observed due to a lack of Zn 

supplementation despite the inclusion of 10 ppm ractopamine for 21 d prior to marketing. Also, 

the current study demonstrates that supplemented Zn from ZnO throughout the entire finishing 

period did not improve pig performance or carcass characteristics nor augment the pigs’ response 

to ractopamine as evidenced by a lack of an interaction between the two compounds. In sum, the 

response to Zn supplementation is highly variable and not consistently associated with duration 

of supplementation in the finisher or whether the Zn is supplied from an organic or inorganic 

source. Some pigs demonstrate a need for supplemented Zn in the late finisher diet but there is a 

lack of strong evidence that this requirement is directly predicated upon ractopamine HCl 

inclusion in the diet.  

Several genomic or plasmid borne genes have been implicated for antibiotic resistance of 

bacteria while phenotypic resistance is conferred through multiple and often complex 

mechanisms. Although antibiotic resistant genes are ubiquitously present among both human and 
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livestock waste streams (Agga et al., 2015), it is important to understand what dietary factors, if 

any, may contribute to increased antibiotic resistance among fecal bacteria of finishing swine. 

Feeding 150 ppm Zn above basal premix trace mineral level throughout the entire 

finishing period did not adversely affect E. coli or Enterococcus susceptibility to antibiotics but 

Zn actually decreased E. coli resistance to streptomycin and possibly to gentamicin. Curiously, 

both streptomycin and gentamicin belong to the aminoglycoside drug class which primarily 

targets the 16S rRNA thereby interfering with ribosomal function (Davies, 1971). This 

aminoglycosidic action is predominantly thwarted through bacterial production of enzymes 

which chemically modify the antibiotic or protect 16S rRNA and these mechanisms are encoded 

by transferable plasmid borne genes (Yamane et al., 2005) which are not restricted to within 

species transfer (Shaw et al., 1993). The observations of the current study indicate Zn may 

downregulate aminoglycoside resistance among E. coli through some mechanistic role in these 

processes.  

Although methicillin resistant Staphylococcus aureus (MRSA) has a higher phenotypic 

resistance to ZnCl and a greater prevalence of the Zn resistant (czrC) gene compared to 

methicillin susceptible Staphylococcus aureus (MSSA) (Aarestrup et al., 2010; Cavaco et al., 

2011), it is unclear whether Zn and methicillin experience co-selection (Yazdankhah et al., 

2014). MRSA and MSSA isolates showed similar resistance to erythromycin, penicillin, and 

tetracycline despite the difference in Zn susceptibility (Aarestrup et al, 2010). In contrast to the 

results of the current study, Bednorz et al. (2013) reported pharmacological Zn from ZnO 

increased multi drug resistance among Gram negative bacteria possibly through co-selection or 

through increased rate of plasmid assimilation. Vahjen et al. (2015) reported that 

pharmacological levels of Zn from ZnO increased tetracycline (tetA) and sulfonamide (sul1) 
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resistance genotypes. However, Jacob et al. (2010) observed no effect of feeding cattle 300 ppm 

Zn on expression of erm(B) and tet(M) genes which are associated with macrolide and 

tetracycline resistance, respectively. Furthermore, feeding Zn at this level did not affect isolated 

E. coli resistance to erythromycin, penicillin, or tylosin nor affect enterococcal isolate resistance 

to chloramphenicol, ciprofloxacin, gentamicin, linezolid, penicillin, streptomycin, or vancomycin 

in cattle. Thus, extended feeding of a concentration of 150 ppm Zn in finishing pig diets may not 

elicit the antimicrobial resistance responses which higher concentrations appear to stimulate. 

Supplementation of 125 ppm Cu above basal premix trace mineral level throughout the 

finishing period increased Enterococcus resistance to tetracycline and antagonized the decrease 

in Enterococcus resistance to the streptogramin antibiotics quinupristin/dalfopristin and a 

macrolide drug, tylosin tartrate, over time. All 3 of these drug classes are protein synthesis 

inhibitors and interfere with the normal ribosomal function in bacteria. Transferable copper 

resistance gene (tcrB) carrying plasmids have been observed to also carry genes conveying 

resistance to macrolides and tetracyclines (Hasman and Aarestrup, 2002; Hasman et al., 2006; 

Amachawadi et al., 2011, 2013) indicating Cu co-selects for greater Cu tolerance and multiple 

drug resistance. Along with tetracycline, phenotypic erythromycin resistance has been associated 

with Cu resistant enterococci (Silveira et al., 2014). As such, Cu would have been expected to 

also increase resistance to erythromycin, another macrolide drug, in addition to tylosin tartrate 

but this effect was not observed in the present study. However, 100 ppm Cu in cattle did not 

affect genotypic resistance to macrolides and tetracycline (Jacob et al., 2010). Hence, the 

phenotypic expression of bacterial resistance to all macrolide drugs may not be observable at a 

dose of 125 ppm in finishing pigs. 
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Supplementation of 125 ppm Cu antagonized the decrease in E. coli resistance to the beta 

lactam subgroup 3
rd

 generation cephalosporins ceftiofur and ceftriaxone. Agga et al. (2014) 

reported association between ceftiofur and tetracycline resistance of E. coli in young pigs as well 

as between blaCMY-2 and tetA genes encoding for their resistance, respectively. In the current 

study, Cu significantly increased tetracycline resistance among Enterococcus, but not E. coli 

isolates, possibly because Gram negative bacteria are less sensitive to high concentrations of Cu 

than Gram positive bacteria (Aarestrup and Hasman, 2004). Thus, Cu may increase Gram 

negative bacterial resistance to cephalosporins apart from co-selection with tetracycline. 

Feeding pigs 10 ppm ractopamine HCl for 28 d prior to marketing did not affect the 

susceptibility of fecal E. coli or Enterococcus to antibiotics. This novel observation suggests 

ractopamine feeding to pigs according to typical production practice does not pose a significant 

risk to increasing bacterial resistance to a wide range of antibiotics. Limited research has 

investigated the roles of  and  adrenergic receptors in mediating the bacterial response to 

catecholamines. Although both the  and  receptors appear to be involved, the  adrenergic 

receptor may have a dominant role in facilitating bacterial growth, conjugative gene transfer, and 

increased bacterial virulence in response to catecholamines (Peterson et al., 2011). As such,  

adrenergic agonists such as ractopamine HCl may have limited ability to in influence 

antimicrobial resistance. 

In the present study, Enterococcus and especially E. coli resistance to a number of 

antibiotics decreased throughout the finishing period regardless of dietary treatment. Similar 

observations have led to the postulation that the gastrointestinal microbiota of older animals is 

less vulnerable to population with multiple antibiotic resistant bacteria compared to younger 

animals (Langlois et al., 1986; Dewulf et al., 2007; Berge et al., 2010). This phenomenon could 
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also be an artifact of greater antimicrobial use among younger livestock inducing microbial drug 

resistance early in life then decreasing selection pressure over time causing these resistant 

microbes to have poorer relative competitiveness and survival (Dewulf et al., 2007). 

In the bacterial population of the present study, resistance to tetracycline was high among 

both E. coli and Enterococcus isolates and E. coli isolates also showed a high level of resistance 

to AMP. This low bacterial susceptibility to tetracycline and ampicillin may be reflective of 

these drugs’ use in upstream production within the sow herd. Tetracycline resistance is conferred 

through tet and otr genes (Roberts, 2011) and subtherapeutic use of tetracycline has been shown 

to induce tetracycline resistant genotypes as well as phenotypes (Funk et al., 2006; Dewulf et al., 

2007; Agga et al., 2014). In addition, tetracycline resistance is associated with ampicillin drug 

resistance among Gram negative bacteria (Funk et al., 2006; Dewulf et al., 2007). Curiously, in 

the present study, the ampicillin resistance remained high over time but tetracycline resistance 

decreased throughout the finishing period among E. coli isolates while tetracycline resistance 

concomitantly increased among Enterococcus isolates. However, tetracycline resistance was 

initially greater in baseline E. coli isolates than in Enterococcus baseline isolates and both 

exhibited a similar, intermediate, level of resistance by d 90. Genetic exchange between Gram 

negative and Gram positive bacteria can occur so that plasmid mediated transfer of a common 

tetracycline resistance gene(s) from E. coli to Enterococcus would not be impossible (Courvalin, 

1994; Roberts, 2011). 

 CONCLUSION 

In closing, supplementation of 125 ppm Cu or 150 ppm Zn above basal premix TM levels 

in diets containing ractopamine HCl did not improve finishing pig growth performance of pigs 

with high feed intake levels as observed in this study. Inclusion of 10 ppm ractopamine HCl in 
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the diet for 28 d prior to marketing dramatically improved carcass leanness as well as the feed 

and caloric efficiencies of pigs. Ractopamine HCl did not adversely affect antimicrobial 

resistance among fecal bacterial isolates. Extended feeding of 125 ppm Cu throughout the 

finishing period resulted in less bacterial susceptibility to some antibiotics while there were no 

adverse effects of feeding 150 ppm of added Zn noted on antimicrobial resistance. In general 

with the exception of tetracycline, resistance to most antibiotics decreased over time or was 

stable for antibiotics that had a low percentage of resistance at baseline.  
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Table 5.1. Diet composition (as-fed basis)
1 

Item Phase 1
 

Phase 2 Phase 3 Phase 4
2 

Ingredient, %     

Corn
3 

72.54 78.02 80.66 76.55 

Soybean meal (47.7% CP) 25.00 19.70 17.20 21.20 

Limestone 0.90 0.90 0.90 0.90 

Monocalcium phosphate 0.60 0.50 0.40 0.40 

Sodium chloride 0.35 0.35 0.35 0.35 

L-Lys HCl 0.28 0.25 0.23 0.25 

DL-Met 0.05 0.02 0.00 0.04 

L-Thr 0.08 0.05 0.05 0.10 

Trace mineral premix
4 

0.10 0.10 0.10 0.10 

Vitamin premix
5 

0.10 0.10 0.10 0.10 

Phytase
6 

0.02 0.02 0.02 0.02 

CuSO4, ZnO, ractopamine HCl 

additives
7 0 – 0.07 0 – 0.07 0 – 0.07 0 – 0.27 

Total 100.00 100.00 100.00 100.00 

     

Calculated analysis 

Standardized ileal digestible (SID) amino acids, % 

Lys 1.01  0.86  0.78  0.90  

Ile:Lys 64 64 66 65 

Leuc:Lys 139 149 157 147 

Met:Lys 30 29 29 31 

Met & Cys:Lys 56 57 57 58 

Thr:Lys 62 62 64 67 

Trp:Lys 18.3 18.1 18.2 18.3 

Val:Lys 70 73 75 72 

Total Lys, % 1.14  0.97  0.89  1.02  

CP, % 18.3 16.1 15.1 16.8 

ME, kcal/kg 3,303 3,311 3,316 3,314 

NE, kcal/kg
 

2,474 2,507 2,524 2,500 

SID Lys:ME, g/Mcal 3.06 2.60 2.35 2.71 

SID Lys:NE, g/Mcal
 

4.08 3.43 3.09 3.59 

Ca, % 0.55 0.51 0.49 0.50 

P, % 0.50 0.45 0.42 0.44 

Available P, % 0.30 0.27 0.24 0.25 
1 
All diets were fed in meal form and formulated to be fed in 4 phases from 36 to 57, 57 to 79, 79 to 

100, and 100 to 132 kg BW.
 

2 
Phase 4 diets were fed for the final 28 d prior to slaughter.

 

3
 Corn levels represent control level prior to addition of treatment diet ingredients which replaced an 

equivalent amount of corn in respective experimental diets. 
4 
Provided per kg of diet: 27 mg Mn from manganese oxide, 110 mg Fe from iron sulfate, 110 mg Zn 

from zinc sulfate, 11 mg Cu from copper sulfate, 0.20 mg I from calcium iodate, and 0.20 mg Se 

from sodium selenite.
 

5 
Provided per kg of diet: 4,409 IU vitamin A, 661 IU vitamin D3, 18 IU vitamin E, 1.8 mg vitamin K, 

3.3 mg riboflavin, 11.0 mg pantothenic acid, 19.8 mg niacin, and 0.02 mg vitamin B12. 
6 
HiPhos 2700 (DSM Nutritional Products, Inc., Parsippany, NJ), providing 540 phytase units 

(FTU)/kg and an estimated release of 0.10% available P.
 

7 
The 8 dietary treatments contained CuSO4 at either 0 or 0.05%, ZnO at either 0 or 0.021%, and 

Paylean
 

(Elanco Animal Health, IN) in the final 28 d of the finishing period at either 0 or 0.2%. 
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Table 5.2. Analyzed dietary concentrations (as-fed basis)
1
 

 

 
Analyzed Dietary Composition

2 
 Analyzed Concentrations

3 

Diets DM, % CP, % CF, % Ether extract, % Ash, % Ca, %
 

P, %  Cu, ppm
4 

Zn, ppm
5 

Ractopamine HCl, ppm
6
 

Phase 1            

Control 87.70 20.6 2.9 2.85 5.26 0.74 0.58  25 117 --- 

Cu
 

87.70 20.4 2.6 2.97 5.20 0.74 0.57  196 116 --- 

Zn 87.65 20.3 2.6 2.77 5.15 0.76 0.60  26 298 --- 

Cu+Zn 87.70 20.2 2.8 3.00 5.44 0.77 0.57  187 299 --- 

Phase 2            

Control
 

87.75 18.0 2.5 3.22 5.10 0.80 0.53  24 140 --- 

Cu 87.65 18.3 2.6 3.26 5.43 0.85 0.55  179 126 --- 

Zn 87.45 18.2 2.7 3.28 5.38 0.71 0.52  44 279 --- 

Cu+Zn 87.70 17.7 2.5 3.63 5.07 0.71 0.52  182 307 --- 

Phase 3
 

           

Control 87.40 16.9 2.6 3.23 4.36 0.67 0.48  25 138 --- 

Cu 87.55 17.0 2.6 3.37 4.88 0.72 0.50  181 133 --- 

Zn
 

86.35 17.1 2.3 3.28 4.75 0.75 0.52  49 276 --- 

Cu+Zn 81.85 16.8 2.6 3.26 5.13 0.77 0.50  175 309 --- 

Phase 4            

Control 75.30 19.1 3.0 3.71 5.14 0.71 0.52  39 129 --- 

Cu 88.15 18.8 2.8 3.45 4.95 0.74 0.51  182 106 --- 

Zn 87.75 18.8 2.5 3.57 5.19 0.78 0.52  31 320 --- 

Cu+Zn 87.65 18.7 2.7 3.97 4.86 0.74 0.53  191 297 --- 

Control+Rac 87.55 18.7 2.5 3.57 5.05 0.75 0.51  29 127 9.3 

Cu+Rac 87.50 18.6 2.7 3.67 5.12 0.77 0.52  197 138 9.7 

Zn+Rac 88.55 19.1 2.8 3.48 5.29 0.76 0.54  33 250 8.0 

Cu+Zn+Rac 87.85 18.8 2.7 4.00 5.20 0.74 0.52  200 340 9.3 
1 
Phase 1, 2, 3, and 4 diets fed in meal form from approximately 48 to 68, 68 to 91, 91 to 109, and 109 to 136 kg BW, respectively. 

2
 Analysis performed by Cumberland Valley Analytical Services (Hagerstown, MD) on pooled diet samples within each dietary phase; results represent the 

average of both finishing groups. 
3
 Mineral analysis was performed by Cumberland Valley Analytical Services (Hagerstown, MD) using ICP spectrometry; means represent the average of 2 to 4 

duplicate feed samples within each dietary phase and each finishing group which were subsequently analyzed in duplicate. 
4 
Cu from CuSO4 was added at 125 ppm to diets containing 11 ppm Cu from the trace mineral premix.  

5
 Zn from ZnO was added at 150 ppm to diets containing 73 ppm Zn from the trace mineral premix. 

6 
Analysis was performed by Covance Laboratories (Greenfield, IN) on a composite sample of each of the 4 diets containing ractopamine HCl across both 

finishing groups. 
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Table 5.3. Resistance breakpoints and evaluated concentrations for antimicrobials of NARMS gram positive bacteria panel 

(CMV3AGPF). 

Antimicrobial WHO Classification
1 

Concentration (g/ml) Breakpoint (g/ml)
2 

Chloramphenicol Highly important 2 - 32  32 

Ciprofloxacin Critically important 0.12 - 4  4 

Daptomycin Critically important 0.25 – 16 N/A
3 

Erythromycin Critically important 0.25 – 8  8 

Gentamicin Critically important 128 – 1024 > 500 

Kanamycin Critically important 128 – 1024  1024 

Lincomycin Highly important 1 – 8  8 

Linezolid Critically important 0.5 – 8  8 

Nitrofurantoin Important 2 – 64  128 

Penicillin Critically important 0.25 – 16  16 

Quinupristin/Dalfopristin Highly important 0.5 – 32  4 

Streptomycin Critically important 512 – 2048 > 1000 

Tetracycline Highly important 1 – 32  16 

Tigecycline Critically important 0.015 – 0.5 N/A
4 

Tylosin tartrate Critically important 0.25 - 32  32 

Vancomycin Critically important 0.25 - 32  32 
1 
World Health Organization categorization of antimicrobials according to importance for human medicine. 

2 
Breakpoints established by Clinical and Laboratory Standards Institute (CLSI, 2013).

 

3 
A susceptibility breakpoint of  4 g/ml for daptomycin exists but no resistant breakpoint has been established. 

In this study, isolates with a MIC  8 g/ml were categorized as resistant. 
4 

A susceptibility breakpoint of  0.25 g/ml for tigecycline exists but no resistant breakpoint has been 

established. In this study, isolates with a MIC  0.5 g/ml were categorized as resistant. 
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Table 5.4. Resistance breakpoints and evaluated concentrations for antimicrobials of NARMS gram negative bacteria panel 

(CMV3AGNF). 

Antimicrobial WHO Classification
1 

Concentration (g/ml) Breakpoint (g/ml)
2 

Amoxicillin/Clavulanic acid 2:1 ratio Critically important 1/0.5 – 32/16  32/16 

Ampicillin Critically important 1 - 32  32 

Azithromycin Critically important 0.12 - 16 N/A
3 

Cefoxitin Highly important 0.5 - 32  32 

Ceftiofur Critically important 0.12 - 8  8 

Ceftriaxone Critically important 0.25 - 64  4 

Chloramphenicol Highly important 2 - 32  32 

Ciprofloxacin Critically important 0.015 – 4  1 

Gentamicin Critically important 0.25 – 16  16 

Nalidixic Acid Critically important 0.5 – 32  32 

Streptomycin  Critically important 32 - 64  64 

Sulfisoxazole Highly important 16 - 256  512 

Tetracycline Highly important 4 – 32  16 

Trimethoprim/Sulfamethoxazole Highly important 0.12/2.4 – 4/76  4/76
 

1 
World Health Organization categorization of antimicrobials according to importance for human medicine. 

2 
Breakpoints established by Clinical and Laboratory Standards Institute (CLSI, 2013). 

3 
NARMS has not established breakpoints for azithromycin interpretation thus there is no CLSI resistant breakpoint.
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Table 5.5. Effects of added Cu, Zn, and ractopamine HCl on carcass characteristics of finishing pigs
1
 

 

2
Added Cu, 125 ppm: - + - + - + - +  

SEM 

3
Added Zn, 150 ppm: - - + + - - + + 

4
Ractopamine HCl, 10 ppm: - - - - + + + + 

BW, kg           

   d 0 48.2 48.6 48.5 48.6 49.4 48.8 48.8 48.9  0.57 

   d 62
5 

108.5 108.8 109.2 108.9 108.7 108.7 109.0 109.0  2.59 

   d 90
6 

134.5 133.8 135.0 134.1 138.4 138.1 138.6 138.3  4.29 

d 0 to 62
5 

          

ADG, kg 1.03 1.03 1.03 1.03 1.02 1.03 1.03 1.03  0.024 

ADFI, kg 2.62 2.61 2.61 2.63 2.63 2.61 2.60 2.65  0.038 

G:F 0.39 0.39 0.40 0.39 0.39 0.39 0.40 0.39  0.013 

ME caloric efficiency
7
  8,428 8,395 8,376 8,432 8,590 8,442 8,370 8,537  269.2 

NE caloric efficiency
7
 6,375 6,346 6,334 6,376 6,498 6,381 6,329 6,456  200.9 

d 62 to 90
5,6 

          

ADG, kg 0.88 0.90 0.92 0.90 1.06 1.06 1.07 1.05  0.056 

ADFI, kg 2.78 2.78 2.88 2.80 2.86 2.79 2.80 2.76  0.101 

G:F 0.32 0.32 0.32 0.32 0.37 0.38 0.38 0.38  0.008 

ME caloric efficiency
7
 
 

10,483 10,325 10,403 10,309 8,939 8,739 8,689 8,733  229.4 

NE caloric efficiency
7 

7,909 7,795 7,849 7,776 6,746 6,594 6,557 6,589  173.1 

Overall (d 0 to 90)
6
           

ADG, kg 0.98 0.99 0.99 0.99 1.03 1.03 1.04 1.03  0.011 

ADFI, kg 2.67 2.67 2.70 2.68 2.70 2.67 2.67 2.68  0.053 

G:F 0.37 0.37 0.37 0.37 0.38 0.39 0.39 0.38  0.006 

ME caloric efficiency
7
  8,996 8,957 8,973 8,986 8,697 8,535 8,472 8,595  134.5 

NE caloric efficiency
7
 6,799 6,768 6,780 6,790 6,573 6,448 6,402 6,495  100.1 

1 
A total of 480 pigs (PIC 327  1050; initially 48.7 kg) were used in a 90-d (group 1) or 83-d (group 2) study with 7 (group 1) or 8 (group 2) pigs per pen and 8 

replications per treatment. 
 

2 
Cu from CuSO4 was added to treatment diets at either 0 or 125 ppm. All diets contained 11 ppm Cu from the trace mineral premix. 

3 
Zn from ZnO was added to treatment diets at either 0 or 150 ppm. All diets contained 73 ppm Zn from the trace mineral premix. 

4 
Ractopamine HCl (Paylean


; Elanco Animal Health, Greenfield, IN) was added to treatment diets at either 0 or 10 ppm during the final 28 d prior to marketing. 

5 
d 62 (group 1) corresponds to d 55 of group 2 and marks the beginning of the 28 d period of ractopamine HCl treatments in addition to the mineral combination 

treatments.  
6 
d 90 (group 1) corresponds to d 83 of group 2 and is the final day of the study. 

7 
Caloric efficiency is expressed as kcal per kg of live weight gain. 
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Table 5.6. Statistical analysis of added Cu, Zn, and ractopamine HCl on finishing pig growth performance
1
 

 

 

  Probability, P < 

  Cu Zn Ractopamine HCl Cu × Zn Cu × Rac Zn × Rac Cu × Zn × Rac 

BW, kg         

d 0  0.908 0.797 0.012 0.729 0.269 0.287 0.231 

d 62
2 

 0.982 0.516 0.994 0.801 0.963 0.917 0.781 

d 90
3 

 0.392 0.676 <0.001 0.920 0.737 0.883 0.959 

d 0 to 62
2 

        

ADG, kg  0.829 0.478 0.448 0.704 0.823 0.686 0.733 

ADFI, kg  0.685 0.810 0.711 0.283 0.838 0.958 0.636 

G:F  0.789 0.446 0.121 0.041 0.949 0.643 0.226 

ME caloric efficiency
4
   0.831 0.476 0.122 0.045 0.983 0.575 0.249 

NE caloric efficiency
4
  0.874 0.483 0.124 0.039 0.984 0.576 0.250 

d 62 to 90
2,3 

        

ADG, kg  0.565 0.540 <0.001 0.440 0.738 0.440 0.828 

ADFI, kg  0.125 0.834 0.773 0.635 0.735 0.084 0.396 

G:F  0.424 0.363 <0.001 0.444 0.983 0.489 0.525 

ME caloric efficiency
4
   0.338 0.408 <0.001 0.467 0.819 0.705 0.670 

NE caloric efficiency
4
  0.339 0.396 <0.001 0.480 0.835 0.721 0.654 

Overall (d 0 to 90
3
)         

ADG, kg  0.818 0.379 <0.001 0.456 0.993 0.872 0.833 

ADFI, kg  0.694 0.778 0.920 0.595 0.966 0.435 0.480 

G:F  0.806 0.344 <0.001 0.057 0.975 0.332 0.142 

ME caloric efficiency
4
   0.722 0.377 <0.001 0.068 0.942 0.349 0.205 

NE caloric efficiency
4
  0.693 0.374 <0.001 0.064 0.933 0.359 0.201 

1 
A total of 480 pigs (PIC 327  1050; initially 48.7 kg) were used in a 90-d (group 1) or 83-d (group 2) study with 7 (group 1) or 8 

(group 2) pigs per pen and 8 replications per treatment.
 

2
 d 62 (group 1) corresponds to d 55 of group 2 and marks the beginning of the 28 d period of ractopamine HCl treatments in addition 

to the mineral combination treatments. 
3 

d 90 (group 1) corresponds to d 83 of group 2 and is the final day of the study.
 

4 
Caloric efficiency is expressed as kcal per kg of live weight gain. 
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Table 5.7. Effects of added Cu, Zn, and ractopamine HCl on finishing pig growth performance
1
 

 

2
Added Cu, 125 ppm: - + - + - + - +  

SEM 

3
Added Zn, 150 ppm: - - + + - - + + 

4
Ractopamine HCl, 10 ppm: - - - - + + + + 

Carcass characteristics           

   HCW, kg 99.3 98.4 99.4 99.0 103.3 103.9 103.9 103.1  4.32 

   Carcass yield, % 73.8 73.5 73.6 73.8 74.6 75.2 74.9 74.5  0.86 

   Backfat, mm
5 

19.2 19.3 18.7 19.3 18.2 18.0 18.1 17.8  0.89 

   Loin depth, cm
5 

6.55 6.48 6.48 6.55 6.77 6.92 6.85 6.90  0.22 

   Fat-free lean, %
5,6 

51.5 51.7 51.6 51.5 52.6 52.8 52.6 53.1  0.30 

           

Carcass performance           

  HCW ADG, kg 0.73 0.72 0.73 0.72 0.77 0.78 0.78 0.77  0.020 

  HCW G:F 0.27 0.27 0.27 0.27 0.28 0.29 0.29 0.29  0.003 
1 

A total of 480 pigs (PIC 327  1050; initially 48.7 kg) were used in a 90-d (group 1) or 83-d (group 2) study with 7 (group 1) or 8 

(group 2) pigs per pen and 8 replications per treatment.
 

2
 Cu from CuSO4 was added to treatment diets at either 0 or 125 ppm. All diets contained 11 ppm Cu from the trace mineral 

premix. 
3 

Zn from ZnO was added to treatment diets at either 0 or 150 ppm. All diets contained 73 ppm Zn from the trace mineral premix. 
4 

Ractopamine HCl (Paylean


; Elanco Animal Health, Greenfield, IN) was added to treatment diets at either 0 or 10 ppm during the 

final 28 d prior to marketing. 
5
 Adjusted for individual HCW using HCW as a covariate. 

6
 SFFL (NPPC. 2000. Procedures for Estimating Pork Carcass Composition. Natl. Pork Prod. Council, Des Moines, IA.)  HCW. 



145 

 

 

 

 

Table 5.8. Statistical analysis of added Cu, Zn, and ractopamine HCl on carcass characteristics of finishing pigs
1
 

 

 

 

 

 

 

  Probability, P < 

         

 Cu Zn Ractopamine HCl Cu × Zn Cu × Rac Zn × Rac Cu × Zn × Rac 

Carcass characteristics         

   HCW, kg  0.494 0.829 <0.001 0.675 0.630 0.644 0.391 

Carcass yield, %  0.710 0.638 <0.001 0.360 0.655 0.380 0.011 

   Backfat, mm
2 

 0.809 0.505   0.014 0.721 0.376 0.790 0.734 

   Loin depth, cm
2 

 0.465 0.826 <0.001 0.874 0.455 0.848 0.387 

   Fat-free lean, %
2,3 

 0.334 0.829 <0.001 0.911 0.550 0.589 0.587 

         

Carcass performance         

  HCW ADG, kg  0.517 0.776 <0.001 0.582 0.419 0.855 0.197 

  HCW G:F  0.743 0.962 <0.001 0.197 0.320 0.479 0.018 
1 

A total of 480 pigs (PIC 327  1050; initially 48.7 kg) were used in a 90-d (group 1) or 83-d (group 2) study with 7 (group 1) or 

8 (group 2) pigs per pen and 8 replications per treatment.
 

2
 Adjusted for individual HCW using HCW as a covariate. 

3
 SFFL (NPPC. 2000. Procedures for Estimating Pork Carcass Composition. Natl. Pork Prod. Council, Des Moines, IA.)  HCW. 
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Table 5.9. Effects of added Cu, Zn, and ractopamine HCl on percentage fecal E. coli antimicrobial resistance 

according to NARMS established breakpoints
1
 

 

2
Added Cu, 125 ppm: - + - + - + - + 

3
Added Zn, 150 ppm: - - + + - - + + 

4
Ractopamine HCl, 10 ppm: - - - - + + + + 

Amoxicillin/clavulanic acid 2:1 ratio         

Baseline 35 10 30 15 15 20 35 10 

Day 90 5 15 5 10 5 0 15 5 

Ampicillin         

Baseline 100 100 100 100 100 100 100 100 

Day 90 85 100 100 90 100 100 95 100 

Cefoxitin          

Baseline 35 10 30 15 15 20 35 10 

Day 90 5 15 5 10 5 0 15 5 

Ceftiofur          

Baseline 35 10 30 15 15 20 35 10 

Day 90 5 25 10 10 5 5 15 10 

Ceftriaxone          

Baseline 35 10 30 15 15 20 35 10 

Day 90 5 25 10 10 5 5 15 10 

Chloramphenicol          

Baseline 25 0 20 10 15 10 5 15 

Day 90 5 5 10 10 15 10 0 10 

Ciprofloxacin          

Baseline 0 0 0 0 0 0 0 0 

Day 90 0 0 0 0 0 0 0 0 

Gentamicin          

Baseline 25 15 30 25 15 10 25 20 

Day 90 5 5 0 0 10 0 0 0 

Nalidixic Acid 
 

        

Baseline 0 0 0 0 0 5 0 0 

Day 90 0 0 0 0 0 0 0 0 

Streptomycin          

Baseline 35 20 35 25 15 20 30 30 

Day 90 10 20 5 0 15 5 5 0 

Sulfisoxazole 
 

        

Baseline 0 0 0 0 0 0 0 0 

Day 90 0 0 0 0 0 0 0 0 

Tetracycline          

Baseline 100 80 70 90 80 80 95 90 

Day 90 60 80 70 80 85 75 70 75 

Trimethoprim/sulfamethoxazole          

Baseline 0 0 0 0 0 0 0 0 

Day 90 0 0 0 0 0 0 0 0 
1 Values represent the percentage resistant of 20 E. coli isolates per sampling day (d 0 baseline or d 90); 5 random fecal 

samples were collected per pen per day and 1 E. coli isolate per fecal sample was assessed. There were a total of 224 

pigs (PIC 327  1050; initially 49 kg) housed with 7 (group 1) pigs per pen and 4 replicate pens per treatment. 
2
 Cu from CuSO4 was added to treatment diets at either 0 or 125 ppm. All diets contained 11 ppm Cu from the trace 

mineral premix. 
3 
Zn from ZnO was added to treatment diets at either 0 or 150 ppm. All diets contained 73 ppm Zn from the trace 

mineral premix. 
4 
Ractopamine HCl (Paylean


; Elanco Animal Health, Greenfield, IN) was added to treatment diets at either 0 or 10 

ppm during the final 28 d prior to the end of the study (d 62 to 90). 
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Table 5.10. Main effects of added Cu, Zn, and ractopamine HCl on percentage fecal E. coli antimicrobial resistance according 

to NARMS established breakpoints
1
 

 
2
Cu 

SEM 

Cu (day) 

P, < 

3
Zn 

SEM 

Zn (day)  

P, < 

4
Ractopamine HCl: 

SEM 

Rac (day) 

P, <  - + - + - + 

Amoxicillin/clavulanic acid 2:1 ratio 
d
             

Baseline
 

28.8 13.8 5.61 0.253 20.0 22.5 5.19 0.791 22.5 20.0 5.13 0.788 

Day 90
 

7.5 7.5   6.3 8.8   8.8 6.3   

Cefoxitin 
d 

            

Baseline
 

28.8 13.8 5.61 0.253 20.0 22.5 5.19 0.791 22.5 20.0 5.13 0.788 

Day 90
 

7.5 7.5   6.3 8.8   8.8 6.3   

Ceftiofur 
d
             

Baseline
 

28.8 13.8 5.48 0.069 20.0 22.5 5.08 0.980 22.5 20.0 5.08 0.726 

Day 90
 

8.8 12.5   10.0 11.3   12.5 8.8   

Ceftriaxone 
d
             

Baseline
 

28.8 13.8 5.48 0.069 20.0 22.5 5.08 0.980 22.5 20.0 5.08 0.726 

Day 90
 

8.8 12.5   10.0 11.3   12.5 8.8   

Chloramphenicol              

Baseline 16.3 8.8 3.77 0.216 12.5 12.5 3.41 0.810 13.8 11.3 3.52 0.566 

Day 90 7.5 8.8   8.8 7.5   7.5 8.8   

Gentamicin 
d
             

Baseline
 

23.8 17.5 5.09 0.576 16.3 25.0 --- --- 23.8 17.5 5.07 0.741 

Day 90
 

3.8 1.3   5.0 0   2.5 2.5   

Streptomycin 
d
             

Baseline
 

28.8 23.8 5.94 0.900 22.5
ab

 30.0
a
 5.58 0.030 28.8 23.8 5.81 0.898 

Day 90
 

8.8 6.3   12.5
b 

2.5
c 

  8.8 6.3   

Tetracycline 
d
             

Baseline
 

86.3 85.0 6.38 0.558 85.0 86.3 6.19 0.819 85.0 86.3 6.27 0.896 

Day 90
 

71.3 77.5   75.0 73.8   72.5 76.3   
1 Values represent the percentage resistant among 80 E. coli isolates for determination of treatment main effects within day. Five random fecal samples were 

collected per pen per day (d 0 baseline or d 90) and 1 E. coli isolate per fecal sample was assessed. There were a total of 224 pigs (PIC 327  1050; initially 49 

kg) housed with 7 (group 1) pigs per pen and 4 replicate pens per treatment. 
2
 Cu from CuSO4 was added to treatment diets at either 0 or 125 ppm. All diets contained 11 ppm Cu from the trace mineral premix. 

3 
Zn from ZnO was added to treatment diets at either 0 or 150 ppm. All diets contained 73 ppm Zn from the trace mineral premix. 

4 
Ractopamine HCl (Paylean


; Elanco Animal Health, Greenfield, IN) was added to treatment diets at either 0 or 10 ppm during the final 28 d prior to the end of 

the study (d 62 to 90). 
a,b,c 

Means within main effect and antibiotic lacking common superscripts differ, P < 0.05.
 

d 
Percentage of resistant isolates decreased (Day, P < 0.05) between d 0 (baseline) and d 90.
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Table 5.11. Effects of added Cu, Zn, and ractopamine HCl on percentage fecal Enterococcus spp. antimicrobial resistance according to 

NARMS established breakpoints1 

2Added Cu, 125 ppm: - + - + - + - + 
3Added Zn, 150 ppm: - - + + - - + + 

4Ractopamine HCl, 10 ppm: - - - - + + + + 

Chloramphenicol          

Baseline 0 10 0 5 0 0 10 0 

Day 90 0 0 0 0 0 0 0 0 
Ciprofloxacin          

Baseline 10 15 5 5 10 15 0 0 

Day 90 0 5 0 10 0 5 0 0 
Daptomycin 5         

Baseline 5 0 5 15 5 5 10 10 

Day 90 10 0 15 10 5 10 15 5 
Erythromycin          

Baseline 80 80 80 85 75 80 65 80 

Day 90 15 30 15 25 5 30 20 5 
Gentamicin          

Baseline 0 5 5 0 0 0 0 0 

Day 90 0 0 0 0 0 0 0 0 
Kanamycin          

Baseline 10 5 20 20 5 0 5 15 

Day 90 0 0 10 10 0 10 0 0 
Lincomycin          

Baseline 100 100 95 95 100 95 95 95 

Day 90 95 70 85 60 90 80 90 70 
Linezolid          

Baseline 0 0 0 5 0 0 5 0 

Day 90 0 0 0 0 0 0 0 0 
Nitrofurantoin          

Baseline 0 0 0 0 0 0 0 0 

Day 90 0 0 0 0 0 0 0 0 
Penicillin          

Baseline 0 5 0 5 10 5 5 0 

Day 90 0 0 0 0 0 0 0 0 
Quinupristin/dalfopristin          

Baseline 40 45 55 40 65 40 50 50 

Day 90 5 20 10 35 10 25 25 40 
Streptomycin          

Baseline 10 5 5 15 0 0 5 15 

Day 90 5 5 10 5 0 15 0 0 
Tetracycline          

Baseline 75 70 80 40 75 55 70 40 

Day 90 60 90 65 80 70 65 85 80 
Tigecycline 6         

Baseline 0 0 5 0 0 0 0 0 

Day 90 0 0 0 0 0 0 0 0 
Tylosin tartrate          

Baseline 30 20 45 20 15 5 25 25 

Day 90 15 30 10 30 5 30 20 5 
Vancomycin          

Baseline 0 0 0 0 0 0 0 0 

Day 90 0 0 0 0 0 0 0 0 
1 Values represent the percentage resistant of 20 Enterococcus spp. isolates per sampling day (d 0 baseline or d 90); 5 random fecal samples were 

collected per pen per day and 1 enterococcal isolate per fecal sample was assessed. There were a total of 224 pigs (PIC 327  1050; initially 49 kg) 

housed with 7 (group 1) pigs per pen and 4 replicate pens per treatment. 

2 Cu from CuSO4 was added to treatment diets at either 0 or 125 ppm. All diets contained 11 ppm Cu from the trace mineral premix. 
3 Zn from ZnO was added to treatment diets at either 0 or 150 ppm. All diets contained 73 ppm Zn from the trace mineral premix. 
4 Ractopamine HCl (Paylean; Elanco Animal Health, Greenfield, IN) was added to treatment diets at either 0 or 10 ppm during the final 28 d prior to 
the end of the study (d 62 to 90). 
5 A susceptibility breakpoint of  4 g/ml for daptomycin exists but no resistant breakpoint has been established. In this study, isolates with a MIC  

8 g/ml were categorized as resistant. 
6 A susceptibility breakpoint of  0.25 g/ml for tigecycline exists but no resistant breakpoint has been established. In this study, isolates with a MIC 

 0.5 g/ml were categorized as resistant. 
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Table 5.12. Main effects of added Cu, Zn, and ractopamine HCl on percentage fecal Enterococcus spp. antimicrobial resistance according to NARMS established breakpoints
1
 

 

 2Cu 

SEM Cu (day) P, < 

3Zn 

SEM Zn (day) P, < 

4Ractopamine HCl 

SEM Rac (day) P, <  - + - + - + 
Ciprofloxacin              

Baseline 6.3 8.8 --- --- 12.5 2.5 4.39 0.265 8.8 6.3 3.95 0.645 

Day 90 0 5.0   2.5 2.5   3.8 1.3   

Daptomycin 5             

Baseline 6.3 7.5 3.58 0.338 3.75 10.0 3.50 0.654 6.3 7.5 3.29 0.824 

Day 90 11.3 6.3   6.25 11.3   8.8 8.8   

Erythromycin d             

Baseline 75.0 81.3 5.44 0.719 78.8 77.5 5.47 0.785 81.3 75.0 5.50 0.930 

Day 90 13.8 22.5   20.0 16.3   21.3 15.0   

Kanamycin              

Baseline 10.0 10.0 3.95 0.555 5.0 15.0 4.26 0.668 13.8 6.3 4.25 0.895 

Day 90 2.5 5.0   2.5 5.0   5.0 2.5   

Lincomycin d             

Baseline 97.5 96.3 5.11 0.367 98.8 95.0 4.81 0.435 97.5 96.3 4.77 0.480 

Day 90 90.0 70.0   83.8 76.3   77.5 82.5   

Quinupristin/dalfopristin d             

Baseline 52.5a 43.8ab 6.61 0.023 47.5 48.8 6.64 0.243 45.0 51.3 6.73 0.741 

Day 90 12.5c 30.0b   15.0 27.5   17.5 25.0   

Streptomycin              

Baseline 5.0 8.8 3.55 0.955 3.8 10.0 3.74 0.169 8.8 5.0 3.63 0.956 

Day 90 3.8 6.3   6.3 3.8   6.3 3.8   

Tetracycline d             

Baseline 75.0a 51.3b 5.43 0.003 68.8 57.5 5.69 0.113 66.3 60.0 5.76 0.518 

Day 90 70.0a 78.8a   71.3 77.5   73.8 75.0   

Tylosin tartrate              

Baseline 28.8a 17.5ab 5.34 0.023 17.5 28.8 5.61 0.157 28.8 17.5 5.52 0.725 

Day 90 12.5bc 23.8ab   20.0 16.3   21.3 15.0   
1 
Values represent the percentage resistant among 80 Enterococcus spp. isolates for determination of treatment main effects within day. Five random fecal samples 

were collected per pen per day (d 0 baseline or d 90) and 1 enterococcal isolate per fecal sample was assessed. There were a total of 224 pigs (PIC 327  1050; initially 

49 kg) housed with 7 (group 1) pigs per pen and 4 replicate pens per treatment.
 

2
 Cu from CuSO4 was added to treatment diets at either 0 or 125 ppm. All diets contained 11 ppm Cu from the trace mineral premix. 

3 
Zn from ZnO was added to treatment diets at either 0 or 150 ppm. All diets contained 73 ppm Zn from the trace mineral premix. 

4 
Ractopamine HCl (Paylean


; Elanco Animal Health, Greenfield, IN) was added to treatment diets at either 0 or 10 ppm during the final 28 d prior to the end of the 

study (d 62 to 90). 
5
 A susceptibility breakpoint of  4 g/ml for daptomycin exists but no resistant breakpoint has been established. In this study, isolates with a MIC  8 g/ml were 

categorized as resistant. 
a,b,c 

 Means within main effect and antibiotic lacking common superscripts differ, P < 0.05. 
d
 Percentage of resistant isolates differed (Day, P < 0.05) between d 0 (baseline) and d 90. 


