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Abstract 

Great Plains rivers are unique systems that vary from large, continental scale, to small 

intermittent streams with grain sizes that range from cobbles to silt.  These rivers have been 

subject to widespread hydrologic alteration both within the channel and the watershed, which has 

resulted in an alteration in their hydrologic and geomorphic regimes.  Although there is an 

acknowledgement of this alteration, to date there has not been a synthesis of the hydrology of 

Great Plains rivers or of their longitudinal morphologies.  Chapters in this dissertation provide 

the first comprehensive analyses of the hydrology and morphology of Great Plains rivers over a 

range of spatial and temporal scales.  In the first study, I found that there was no uniform pattern 

of hydrologic alteration throughout the Great Plains, which is likely attributable to variable 

system-specific reservoir management objectives, land use changes, and climatic regimes over 

the large area the Great Plains encompass.  Results of this study are the first to quantify the 

widespread hydrologic alteration of Great Plains rivers following impoundment.  In the second 

study, I found an apparent decoupling between local moisture conditions and streamflow in 

intermittent prairie streams.  Results of this study used statistical models to identify relationships 

between flow intermittence, mean annual flow, and flood flow characteristics with moisture to 

characterize flow in an intermittent prairie stream.  In the final study, I found that the 

downstream trends in hydraulic geometry and substrate characteristics of the Ninnescah River 

were consistent with the expected trends proposed by hydraulic geometry and substrate theories.  

However, there were points that deviated from the expected trends, most notably where a 

substantially large tributary enters the Ninnescah River and as the Ninnescah River approaches 

the Arkansas River, and causal explanations for these deviations were explored.  Results of this 

study are the first of its kind to assess the longitudinal hydraulic geometry and substrate 

characteristics of a large sand-bed river over a large spatial scale.  To our knowledge, there have 

been no comparable studies that attempted to describe hydrologic and geomorphic characteristics 

of prairie streams.   
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Chapter 1 - Introduction 

The rivers of the Great Plains comprise perhaps the most scientifically overlooked 

streams in the continental United States [Matthews, 1988], yet they are dynamic and unique 

ecosystems that support migratory waterfowl, an endemic fish community and provide a variety 

of recreational and ecosystem services. The geographical setting of the region is in the arid rain 

shadow of the Rocky Mountains, which produces characteristically flashy hydrologic regimes, 

with large floods interspersed within periods of prolonged drought [Dodds et al., 2004].  The 

typical annual regime varies somewhat with latitude and longitude through the Great Plains 

region, with more northern systems experiencing an early snow-melt flood pulse and a later 

spring/early summer convective storm driven flood pulse while. More southerly systems are 

influences by monsoons, hurricanes, and dry line thunderstorms.  Channels are wide, have sand-

beds, and high turbidity.  Planforms typically range from semi-braided to meandering.  Records 

of streamflow for grassland streams are typically scarce, short, and rarely complete [Shook and 

Pomeroy, 2012] and sand-bed channels are often overlooked for geomorphic analyses. 

The extreme floods and droughts that characterize the Great Plains have led to the 

development of many flood-control and water storage reservoirs within the region.  In addition to 

construction of impoundments on major rivers of the region, other anthropogenic activities 

including unsustainable groundwater extraction practices and widespread land cover conversion 

of catchments from grassland to agriculture have also contributed to the alteration of Great Plains 

rivers.  Great Plains rivers are extremely responsive to altered discharge and sediment supply and 

hence susceptible to anthropogenic disturbances within the catchments [Montgomery and 

Buffington, 1997].  While low-order Great Plains rivers do not typically have large impoundment 

structures, they are commonly impacted by groundwater extraction, small impoundments (less 

than a meter in height), and land cover conversion within catchments.   

 Human constructed dams have been a feature in the fluvial landscape for at least the last 

two millennia, while more natural dams like ice, wood, and landslide have been a constant 

feature of the landscape. The construction of large modern dams, those with a storage equal to or 

greater than 106ac ft or more [Graf, 2006], have produced a dramatic change in the magnitude of 

hydrologic, geomorphologic, and ecological impacts on large rivers.  Dams provide numerous 
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societal benefits including: reliable water supplies, recreation, flood control, navigation, 

hydroelectric power, and irrigation [World Commission on Dams, 2000].  However, dams are 

also the most significant source of anthropogenic hydrologic disturbance on rivers in the United 

States [Graf, 1999] and worldwide [Dynesius and Nilsso, 1994; Vorosmarty et al., 1997]. 

Hydrologic alteration by large dams have been assessed for individual dams, series of dams on a 

river network [Galat and Lipkin, 2000], and within multi-network national studies [Magilligan 

and Nislow, 2005]; yet, to my knowledge, no studies have yet examined in detail the specific 

impoundment-driven changes to hydrologic regimes of Great Plains rivers. Without a 

comprehensive understanding of the nature of the hydrologic regime alterations, sound 

recommendations cannot be made to address dam management modifications for in-stream 

discharge needs, habitat maintenance, channel stability, or other ecosystem management 

objectives of this region. 

Smaller intermittent streams comprise approximately 60% of the total river length in the 

conterminous United States [Nadeau and Rains, 2007].  Intermittent streamflow is a feature of 

most grasslands, and the Great Plains of the USA are particularly characterized by periods of 

flooding and drying [Dodds et al., 2004].  Many headwater streams have been subjected to 

widespread watershed land cover that has the potential to have radically altered hillslope and 

channel hydrologic and geomorphic regimes. Konza Prairie Biological Station, in particular, has 

been subjected to woody encroachment.  Between 1939 and 2002 Konza has seen an increase in 

riparian vegetation of nearly 70% [Briggs et al., 2005].  Konza’s streams are characterized as 

harsh, with intermittent discharge regimes, and typically have high flood frequency and low 

predictability [Samson and Knopf, 1994].  Due to their harsh conditions, it is the abiotic factors 

that structure biotic assemblages of intermittent prairie streams [Dodds et al., 2004; Fritz and 

Dodds, 2005].  Although the importance of abiotic factors controlling the structure of biotic 

assemblages is well acknowledged, to my knowledge there has been no analysis of the hydrology 

of intermittent prairie streams. 

Changes in hydrologic regimes can trigger changes in geomorphic regimes of rivers.  

Geomorphic profiles of rivers are representative of watershed evolution, geologic structure, and 

sedimentary dynamics of the basin [Sinha and Parker, 1996].  Hydraulic geometry (e.g. width, 

depth, velocity, and friction) has been explored extensively but remains a core technique in 

understanding river systems [Knighton, 1998].  The hydraulic geometry of regimes anabranching 
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[e.g. Tabata and Hickin, 2003; Latrubesse, 2008; Kemp, 2010; Pietsch and Nanson, 2011], 

desert [e.g. Merritt and Wohl, 2003; Ralph and Hesse, 2010], and mountain rivers [e.g. Lee and 

Ferguson, 2002; Brummer and Montgomery, 2003; Comiti et al., 2007; David et al., 2010; Green 

et al., In Press] have been well documented.  Numerous studies have examined the downstream 

fining of sediments but most were based on data from small, gravel-bed streams over a length 

less than 200 km [Church and Kellerhals, 1978; Ferguson et al., 1996; Rice, 1998; Constantine 

et al., 2003].  An understanding of the hydraulic form and sedimentary characteristics of sand-

bed rivers is fundamental for addressing concerns of stream restoration, aquatic ecology, 

conservation biology, and construction within floodplains.  The geomorphic and sedimentary 

longitudinal patterns of large alluvial sand-bed rivers have yet to be analyzed.   

To address these research needs, this dissertation describes multiple research approaches 

including meta-analyses, field observations, and geographic information systems to characterize 

the hydrology and geomorphology of Great Plains rivers across multiple spatial and temporal 

scales.  In Chapter 2, I document hydrologic regime shifts on dammed rivers for type, duration, 

direction, and magnitude using the Indicators of Hydrologic Alteration [Richeter et al., 1996].  I 

analyze the hydrologic records of nine large rivers with a mainstem impoundment as well as a 

record from a river without a mainstem impoundment to provide an example of a comparable 

regional hydrologic regime without the presence of impoundments.  In Chapter 3, I used stream 

flow data from Konza Prairie Biologic Station to characterize flow intermittency, mean annual 

flows, and peak flood flows among intermittent prairie streams with varying physiography, 

vegetation, and management regimes.  This study examines the hydrology of intermittent prairie 

streams in the context of moisture variability within the area for a 25-year period of record to 

identify correlations and relationships between flow characteristics and moisture indices.  In 

Chapter 4, I use field measurements supplemented with geospatial data from 11 study sites to 

document the longitudinal changes in hydraulic geometry and substrate of large sand-bed river. I 

identify the longitudinal patterns of hydraulic geometry and sediment characteristics of a large 

sand-bed river and identify sites that deviate from what we might have expects and provide 

causal explanations for these deviations.  Finally, in Chapter 5 I summarize conclusions of this 

research. 
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Chapter 2 - Damming the Prairie: Human Alteration of Great 

Plains River Regimes  

 Abstract 

Many studies have investigated post-impoundment hydrologic regime alteration; 

however, the Great Plains of the United States are often excluded from these analyses.  The goal 

of this analysis was to evaluate the pre and post-impact hydrologic regimes of Great Plains 

rivers.  The hydrologic records of nine large rivers were analyzed to quantify the magnitude, 

duration, and direction of hydrologic alteration attributable to impoundment.  An additional tenth 

system, the Red River of the North, was included in the analysis to provide an example of a 

comparable regional hydrologic regime without the presence of impoundments on the main-stem 

of the network.  Hydrologic regimes were analyzed using the Indicators of Hydrologic 

Alteration, a model that estimates 33 hydrologic and ecologically relevant parameters.  For many 

of the parameters, the magnitude, duration, and direction were similar across the systems.  The 

results showed a significant increase in the 1 through 90 day minimum discharges and a 

significant decrease in the 1 through 90 day maximum discharge; though the magnitude of 

alteration decreased with increased temporal averaging.  The most dramatic alterations were 

large increases in the number of annual hydrograph reversals and faster rise and fall rates. 

 Results of this study are the first to quantify the widespread hydrologic alteration of Great Plains 

rivers following impoundment. 

 Introduction 

        Dams have been a feature in the fluvial landscape for at least the last two millennia. 

However, the construction of large modern dams produced a dramatic change in the magnitude 

of hydrologic, geomorphologic, and ecological impacts on large rivers.  Although the first large 

American dams were constructed during the early 1900s, the 1960s represent a very significant 

dam building era in the United States, when a quarter of all existing US dams were constructed 

(U.S. Army Corps of Engineers, 1996).  Dams provide numerous societal benefits, including 

reliable water supplies, recreation, flood control, navigation, hydroelectric power, and irrigation 



8 

 

(World Commission on Dams (WCD), 2000).  However, dams are also the most significant 

source of anthropogenic hydrologic disturbance on rivers in the United States (Graf, 1999) and 

worldwide (Dynesius and Nilsson, 1994; Vorosmarty et al., 1997).  River ecosystems have 

evolved within the context of the natural hydrologic regime (Lytle and Poff, 2004), adapting to 

patterns of variation in the delivery of water, nutrients, energy, sediments, and habitats, but now 

many of these regime patterns have been fundamentally altered by dams (Sparks et al., 1998; 

WCD, 2000; Nislow et al., 2002). 

        The first scientific studies of downstream dam impacts began to emerge in the 1980s as the 

degree of post-impoundment downstream ecosystem alteration became increasingly apparent 

(Baxter, 1977; Graf, 2005).  This magnified interest in how dams affect the hydrology, 

geomorphology, and ecology of rivers, and produced a concentrated effort to understand the 

impact of impoundments. Since that time, there have been numerous assessments of the impacts 

of dams on rivers (eg. Graf, 2006).  To address the need for consistency in assessments, Richter 

et al., (1996) developed an analytical model, the Indicators of Hydrologic Alteration (IHA), to 

statistically characterize the variability in hydrologic regimes with biologically relevant attributes 

and quantify the hydrologic alterations associated with a disturbance, often a dam.  The IHA 

model has been widely used to determine hydrologic alteration by individual dams, series of 

dams on a river network (Galat and Lipkin, 2000), and within multi-network national studies 

(Magilligan and Nislow, 2005).  Results of these studies have been mixed, with wide variation in 

the nature of hydrologic regime alteration.  Some commonalities in all cases are the presence of 

significant changes in the number of discharge reversals and in rise and fall rates of the 

hydrograph (Galat and Lipkin, 2000; Magilligan and Nislow, 2005; Perkin and Bonner, 2011).  

Analysis of the parameters estimated by IHA indicates that there is redundancy in the parameters 

(Olden and Poff, 2003); however, IHA still provide a useful estimation of hydrologic parameters.  

        While post-impoundment impacts on Great Plains river ecosystems have been identified, no 

study has yet examined in detail the specific impoundment-driven changes to the hydrologic 

regime that are, in part, driving the decline of these ecosystems.  Without a comprehensive 

understanding of the nature of the hydrologic regime alterations, sound recommendations cannot 

be made to address dam management modifications for in-stream discharge needs, habitat 

maintenance, channel stability, or other ecosystem management objectives. We address this gap 

in knowledge by assessing hydrologic regime shifts for their type, duration, direction, and 
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magnitude using IHA for ten river systems distributed across the Great Plains region.  Due to the 

varying climate throughout the Great Plains region, it is difficult to differentiate between climatic 

and anthropogenic sources of hydrologic alteration of rivers.  We tested the hypotheses that 

impoundment would result in: 1) muted discharge magnitudes at both the high and low extremes, 

2) reduction of low discharge durations, and 3) increased rise and fall rates. The results of this 

research illustrate the extent to which impoundments have affected the hydrology of Great Plains 

rivers and document opportunities for naturalization of Great Plains river discharge regimes.   

 

 Regional Context 

        Despite the presence of numerous large flood-control reservoirs in the Great Plains, no 

study has regionally assessed the post-impoundment alteration of the region’s hydrologic 

regimes.  The Great Plains of the United States encompasses the area from the Prairie Provinces 

of Canada to the Rio Grande, and from the Rocky Mountains to the Missouri River; including 

the majority of ten US States: Colorado, Kansas, Montana, North Dakota, Nebraska, New 

Mexico, Oklahoma, South Dakota, Texas, and Wyoming.  This region is semi-arid and 

historically dominated by grassland biomes.  Generally, most rivers flow eastward within the 

Arkansas, Missouri, and Red River of the south drainage basins and eventually drain into the 

Mississippi River; however, there are many exceptions including the Colorado River and Rio 

Grande draining to the Gulf of Mexico, and the Red River of the North draining northward into 

Lake Winnipeg, Canada.  Channels are wide, sand bedded, and with high turbidity.  Planforms 

typically range from semi-braided to meandering.   

The rivers of the Great Plains are perhaps the most scientifically overlooked streams in 

the continental United States (Matthews, 1988), yet they are dynamic and unique ecosystems 

contain species that need to be conserved, are important for migratory waterfowl, and support 

fisheries and recreational uses.  The geographical setting of the region is in the arid rain shadow 

of the Rocky Mountains, which produces characteristically flashy hydrologic regimes, with large 

floods interspersed within periods of prolonged drought (Dodds et al., 2004).  The typical annual 

regime varies somewhat with latitude and longitude through the Great Plains region, with more 

northern systems experiencing an early snow-melt flood pulse and a later spring/early summer 

convective storm driven flood pulse while. More southerly systems are influences by monsoons, 
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hurricanes, and dry line thunderstorms.  The natural range of hydrologic extremes has been 

altered by anthropogenic activities such as the construction of flood-control impoundments, 

unsustainable groundwater extraction practices, and widespread land cover conversion of 

watersheds from grassland to agriculture.  Global climate change is likely to affect these streams 

even more with general circulation models predicting more frequent intense precipitation events 

with longer intervening dry periods (Knapp et al., 2002; Milly et al., 2005).  The unique 

assemblage of aquatic fauna found in Great Plains rivers is adapted to frequent intermittence of 

smaller streams, historically high flood frequencies with low predictability, and to periodic 

episodes of extreme drought that produce long periods of no flow, especially in smaller streams 

and rivers as well as to high sediment loads and turbidity in larger rivers (Poff and Ward, 1989; 

Dodds et al., 2004).   

Riparian vegetation patterns are closely associated with the geomorphological dynamics 

of the channel and floodplain surfaces (e.g. Hupp and Osterkamp, 1985).  It is unsurprising then 

that post-impoundment riparian vegetation changes are also closely linked to both geomorphic 

and hydrologic adjustments following impoundment.  Previously braided rivers typically 

experience an initial pulse of recruitment by pioneer species (for example, the dramatic increase 

in Populis-Salix woodlands along the Platte River) as vegetation occupies the formerly active 

channel areas and areas that were frequently disturbed floodplain become available for 

colonization.  This phase is followed by declines in pioneer species and replacement by mature 

woodland species.  Along previously meandering rivers, recruitment of pioneer species 

dramatically declines following impoundment due to the reduction in channel migration, point 

bar formation and floodplain disturbance (e.g. Johnson, 1998).   Hydrologic regime components 

critical to vegetation establishment include timing and magnitude of peak flows, fall rate, and 

base flow magnitudes (Shafroth et al., 1998). 

Ecological and geomorphological studies have documented that impoundment 

construction has profoundly impacted river ecogeomorphology in the Great Plains.  The post-

impoundment morphologic responses vary somewhat depending on the initial pre-impoundment 

conditions as well as the local surficial geology, but Great Plains rivers are especially susceptible 

to downstream effects of dams because they are typically fine-grained alluvial rivers without 

confining canyon walls (Graf, 2005).  In the absence of flow augmentation, meandering rivers 

tend to decrease their migration rates and incise, while braided rivers dramatically narrow and 
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may deepen into a single-threaded meandering planform (Williams and Wolman, 1984; 

Friedman et al., 1998).  With flow augmentation, meandering channels exhibit increases in 

width-depth ratios, substrate size, and exposed depositional bar area (Kellerhals et al., 1979; 

Dominick and O’Neill, 1998) after which bed degradation may ensue if channel armoring is 

absent or broken (Church, 1995).  Regulated Great Plains river reaches have up to 91% less 

standard active area than unregulated rivers (Williams, 1978; Graf, 2006).   

 Methods 

 System Selection 

To analyze post impoundment hydrologic alteration within the Great Plains, selected 

systems: 1) were within the Great Plains physiographic region, 2) had U.S. Geological Survey 

streamflow gages immediately downstream of a main-stem dam with mean daily discharge data 

for at least 15 years pre-impoundment and 30 years post-impoundment, and 3) did not have 

discharge diversions prior to the dam construction.  While it would have been preferable to use 

systems with greater than 15 years of pre-impoundment discharge records, these data do not 

exist. During the system selection process it became apparent that most Great Plains USGS 

gages were constructed concurrently with dams, and many of these gages were decommissioned 

soon after dams were completed, greatly limiting the number of acceptable data sets.  Nine gaged 

systems met our selection criteria, located on the Arkansas, Canadian, Kansas, Lower Missouri, 

Upper Missouri, Pecos, Red (of the South), Republican, and Wakarusa Rivers (Figure 2.1).  We 

also sought unregulated “control” systems, but no gaged unregulated large rivers remain in the 

Great Plains.  As an alternative, we included a gage site on the unregulated main-stem of the Red 

River of the North; however, the upstream major tributaries of this system are impounded.  This 

tenth system represents the best available opportunity to assess how current discharge regimes 

compare to historical (defined as pre 1968 following Perkin and Gido, 2011) discharge regimes 

for the region.  The dams in this analysis are not run of the river dams and as such any flow 

reversals are due to management of the dam and are not a result of the a short dam height. 
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 Indicators of Hydrologic Alteration 

Gage records were analyzed using the IHA model developed by the Nature Conservancy 

(Richter et al., 1996) to determine hydrologic shifts of Great Plains Rivers in response to dam 

construction.  Parameters were developed by Richter et al., (1996) because of their close 

relationship to ecological functioning as well as for their ability to reflect human induced 

changes to discharge regimes for a wide range of disturbances (Mathews and Richter, 2007).   

Analyses were conducted on mean daily discharges for the water year (October-September) for 

the period of record prior to dam construction (reference) and then again after the dam 

construction was completed (disturbance).  In the case of the Red River of the North, historic 

(pre 1968) and current hydrologic conditions were evaluated.  IHA measures central tendency 

(mean, median) and dispersion (range, standard deviation, percentiles, coefficient of variation 

and coefficient of dispersion) to determine the inter-annual variation between the two periods 

(Richter et al., 1996) to compare reference and disturbance periods.  The IHA also provides 

information on discharge regimes without the presence of a disturbance.  From mean daily 

discharge, IHA computes 33 intra- and inter-annual flow parameters that fall into five major 

groups: 1) magnitude of monthly stream discharge conditions, 2) magnitude and duration of 

annual extreme discharge conditions, 3) timing of annual extreme discharge conditions, 4) 

frequency and duration of high and low pulses, and 5) rate and frequency of discharge condition 

change.   

Group 1 includes the magnitude and timing of the mean value of discharge for each 

month.  Group 2 includes the magnitude and duration of the 1, 3, 7, 30 and 90 day mean annual 

minimum and maximum discharge.  Group 3 reports the Julian date of each one day annual 

minimum and maximum discharge.  Group 4 is the magnitude, frequency, number, and duration 

of the number of low and high pulses within each year.  Pulses are a sequence of days in which 

discharge exceeds the 75th or falls below the 25th percentile of the pre-impoundment ranked daily 

discharges.  Group 5 includes the means of the positive and negative differences between 

consecutive daily means as well as the number of hydrograph falls, rises, and reversals.  A rise is 

a sequence of continuously rising mean daily discharges and a fall is a sequence of continuously 

decreasing mean daily discharges.  Reversals are a change in a sequence from a fall to a rise or 

vice versa. Because IHA uses mean daily discharges, reversals are not at the diel scale; rather, it 

measures the day to day variation in hydrographs.  Zero discharge days are excluded from this 
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analysis because many study systems are large perennial rivers that do not typically experience 

discharge flow days because of their size, but might experience zero discharge days where 

impoundments are coupled with groundwater withdrawal (eg Perkin and Gido, 2011).   

 Statistical Analysis 

Student’s paired t-tests were used to determine if means for each of the response 

variables were statistically different from one another where significance was defined as p ≤ 

0.05.  A principle component analysis (PCA) was used to capture variation in changes to the 

parameters estimated by IHA for the pre and post impoundment.  A correlation matrix was 

constructed that allowed for removal of IHA estimated parameters that were highly correlated 

(r> 0.8) from the PCA analysis.  The second axis of the PCA distinguishes rivers and the third 

axis distinguishes the natural and regulated river regimes.  Using the PCA we were able to 

determine a coarse relative magnitude of system alteration with which to compare the ten study 

systems.  

 

 Results 

Selection criteria provided ten gaging stations in the Great Plains that were distributed 

over this physiographic region (Figure 2.1), and the effects of these dams on hydrological indices 

were captured with IHA.  In some cases, these impoundments altered the total annual discharge 

dramatically (Table 2.1).  The Canadian River experienced an 88% decrease in mean annual 

discharge, while the mean annual discharges of the Kansas River and the Red River of the North 

have increased by 44%, and 123%, respectively.  However, in the Upper and Lower Missouri 

Rivers and the Red River of the South, the mean annual discharge has been altered by only 1% 

or less (p 0.32, 0.99, 0.83, respectively).   

 

 Magnitude of monthly stream discharge conditions 

Impoundment produced stark variations in the timing of monthly discharge releases from 

those observed in the reference regimes, although there was no uniform pattern of variation 

across the study region.  In some cases, such as the Missouri River, discharges increased in 

August through February (Table 2.2; Figure 2.2).  In contrast, the Red River of the North 
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experienced its greatest increases in discharge in February and March.  There was not a strong 

pattern of change in mean monthly discharges for the other study sites even though many of 

them were significantly altered.  The Arkansas, Canadian, and Republican rivers all experienced 

a decrease in every month’s mean discharge, whereas the Wakarusa River and the Red River of 

the North experienced an increase in every month’s mean discharge.  Six of the rivers in the 

study experience a significant alteration in their monthly discharges for each month.   

 

 Magnitude and duration of annual extreme discharge conditions 

The volume of water released through impoundments has altered the magnitude of the 1, 

3, 7, 30 and 90-day mean annual minimum and maximum discharges dramatically (Table 2.3, 

2.4). The magnitude of the 1-day minimum discharge increased, on average, by 124%.  The 

mean annual 1-day minimum discharge increased at seven of the ten systems included in this 

study, five of which are statistically significant. The Wakarusa River experienced the greatest 

alteration in the minimum discharges with an average increase of over 230% for all the discharge 

periods calculated by IHA with the 1, 3 and 7-day discharges have all increased by over 300%, 

the 30-day by 120%, and the 90-day by 96%.  The Pecos River was the least altered, with an 

average decrease of 10% in the minimum discharge, none of which are different from the pre-

dam period. The influence of the impoundments with the minimum discharges decreased as the 

period the discharge was determined over increases. 

        Maximum discharges also shifted, though not to the degree of minimum discharges (Table 

2.4).  The Canadian River was most altered, with an over 80% decrease in all of the maximum 

discharges calculated by IHA.  The Red River of the North was the only system to experience 

significant increases in each of the maximum discharge categories. The Pecos River was again 

the least altered, with an average alteration of 16%, none of which were significantly different. 

 None of the nine main-stem dammed rivers included in this study experienced an increase in the 

1-day maximum discharge.  Similar to the minimum discharges, as the time frame of interest for 

mean annual maximum discharge increased, the impact of the impoundments on maximum 

discharges diminished.  However, the Red River of the North again stood apart with significant 

increases among all maximum discharge categories. 
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 Timing of annual extreme discharge conditions 

No clustering of timing for 1-day minimum or 1-day maximum discharge days was 

observed for the study region, neither for reference nor disturbance regimes (Table 2.5). 

 However, the mean date of the 1-day minimum discharge of all the rivers in this analysis shifted 

by 82 days, with the Canadian, Kansas, and Pecos Rivers all shifting more than 120 days.  The 

Kansas and Pecos river 1-day minimum discharge shifted from late May and early June to late 

October and early November, respectively.  Following impoundment, Canadian River 1-day 

minimum discharge shifted from 12-November to 12-July.  The date average of the 1-day 

maximum discharge shifted by 32 days, which was not as dramatically as the shift of the 1-day 

minimum discharge.  The Lower Missouri River experienced the greatest temporal shift: from 4-

May to 9-September, 129 days later. 

 

 Frequency and duration of high and low pulses 

Among post-impoundment disturbance regimes, the overall average number of days with 

decreased low and high pulses was 78% and 83% of historical values, respectively (Table 2.6). 

The overall average decrease in the duration of low pulses and high pulses were 87% and 76%, 

respectively.  Seven systems experienced a significant decrease in the number of high pulses, 

with the other two systems exhibiting a significant decrease in the number of high pulses, and the 

Red River of the North having a significant increase in the number of high pulse counts (Table 

2.6).  Six systems experienced a significant decrease in the duration of the high pulses, with the 

remaining three sites exhibiting a negative percent change in the duration, and the Red River of 

the North having a significant increase in the duration of high pulses.  Seven systems exhibit a 

significant decrease in the number of low discharge pulse counts and four showed a significant 

decrease in the duration of low discharge pulses.  All systems except for the Upper Missouri 

River show a decrease in the number and duration of low discharge pulses, the Upper Missouri 

River indicated a zero net alteration following impoundment.  In contrast, the Red River of the 

North experienced a significant increase in high pulse number and count. 

 Rate and frequency of discharge condition change 

In six of ten study systems, the number of hydrograph reversals changed significantly 

(Table 2.7).  Among these six, five indicated an average increase of 45% in the number of 
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reversals.  The Republican River experienced a decrease in the percent discharge reversals.  The 

percent change in rise rate significantly decreased in all the rivers except the Pecos River and the 

Red River of the North, with an overall average percent decrease in raise rates of 65%.  Seven 

systems experienced a significant decrease in the percent change in fall rates, the Red River of 

the North exhibited a significant increase in the fall rate, and the two remaining systems did not 

have significant differences.  The average decrease in the fall rate among study systems was 

54%.   

 

 Overall hydrologic impact assessment 

A comparative assessment of hydrologic regime alteration across sites is difficult 

because, as presented above, the impacts are numerous and variable across sites.  Both sites on 

the Missouri River have the most altered hydrologic regime variables, with significantly different 

1, 3, 7, 30 and 90-day minimum and maximum discharges and an average of 81 and 69 day shifts 

to the 1-day minimum and maximum mean annual discharges.  In contrast, the Pecos River is not 

significantly altered in any of the minimum or maximum discharge averaging periods, reversals, 

or rise and fall rates.  Principal components analysis was conducted to objectively evaluate the 

overall degree of impact across our study sites.  Results indicate that the Missouri River sites are 

in fact the most altered, while the Kansas and Wakarusa Rivers are the least altered systems used 

in this analysis (Figure 2.3). 

 Discussion 

Our results indicate dramatic post-impoundment alteration of Great Plains river 

hydrologic regimes.  Analyses supported the hypotheses that impoundment results in muted 

discharge magnitudes at both the high and low extremes, low discharge durations were reduced, 

and rise and fall rates increased.  Our findings are consistent with other geographically extensive 

studies in that uniform, consistent trends in the hydrologic response of the rivers were not 

detected across the study region (Magilligan and Nislow, 2005), likely due to variable system-

specific reservoir management objectives, land use changes, and climatic regimes.  This was 

evident in the analysis of characteristic discharge, where distinctly different impacts were 

detected across systems.  Mean annual discharge on the Canadian River decreased by 88%, 

which represents an additional decrease of 16% from that observed in a 1996 analysis of the 
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system (Bonner and Wilde, 2000).  Discharge decreases were also present at the Arkansas and 

Republican rivers.   In contrast, mean annual discharge remained fairly stable post-impoundment 

at both systems on the Missouri as well as the Red River of the South, while the Kansas, Pecos, 

Wakarusa, and Red River of the North have all experienced increases in mean annual discharge. 

The Arkansas, Canadian, and Pecos Rivers are all subject to legal water compacts that dictate a 

minimum amount of acre-feet to be held or released, which aids in explaining some of the 

specific alterations of these systems.  It is possible that reduced mean annual discharges may 

partially be the results of increased evaporation and/or infiltration and loss to groundwater.  

However, it is more likely that water withdrawals (both direct and through alluvial aquifer wells) 

and diversions for irrigation are responsible for these reductions in mean annual discharges as 

seen in this analysis. 

Our results also demonstrated no uniform pattern of variation in monthly discharges 

across the study region.  In some cases, such as the Missouri River, reservoirs are used to 

maintain downstream discharges for barge navigation, resulting in the impoundments storing 

water from March through July and then augmenting the discharge of the river August through 

February.  The Red River of the North experiences its greatest increases in mean monthly 

discharges in February and March, attributable to seasonal shifts of warmer temperatures earlier 

in the year, to snowmelt and rain on frozen ground (Villarini et al., 2011), and to channelization 

and dam construction on tributary streams (Aadland et al., 2005).  The Arkansas and Canadian 

Rivers both have a decrease in every month’s mean discharges.   

We did detect near-uniform patterns of change in the analyses of magnitudes of the mean 

maximum and minimum discharges, and low and high pulses, and reversals.  All but three 

systems (Pecos, Red of the South, and Republican) experienced increases in 1, 3, 7 and 30 day 

minimum discharges, although only five of these were statistically significant.  All but one 

system (the Red River of the North) experiences reductions in 1, 3 and 7 day maximum flow 

following impoundment; seven of these were statistically significant (Table 2.4).  The impact on 

minimum and maximum discharges decreases as the temporal scale of analysis lengthens, 

particularly to the 30 and 90 day minimum and maximum discharge statistics, a finding which is 

consistent with results from similar studies of impounded hydrologic regimes (Magilligan and 

Nislow, 2005).  Post-impoundment changes to the Julian calendar timing for 1-day minimum 

discharge varied considerably across systems, averaging more than a three-month shift in timing 
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across all systems and ranging from dramatic adjustments of over 120 days on the Kansas, Pecos 

and Canadian Rivers (Table 2.5).  Alteration of the timing of 1-day maximum discharge was 

more muted, averaging about a one month shift with the exception of the 129 day shift at Lower 

Missouri River system.  As with the 1-day maximum discharges, we detected an almost uniform 

overall decrease in low (with the exception of the Upper Missouri) and high (with the exception 

of the Red River of the North) pulses count and duration following impoundment (Table 2.6). 

 The number of reversals increased at all study systems, other than the Republican River, where 

agricultural diversions may be the driver of this exception (Table 2.7) (Wu et al., 2009). 

 Rise/fall rates declined at all systems other than the Pecos and the Red of the North.  These 

relatively uniform alterations to the magnitudes of the mean maximum and minimum discharges, 

low and high pulses, and reversals are seen across the Great Plains region despite the varying 

hydrologic regimes and impoundment controls and are coincidental with changes observed at 

other gages evaluated in this region and throughout the continental United States (Magilligan and 

Nislow, 2005), suggesting that these particular metrics are relatively uniformly impacted by 

dams across geographical regions and reservoir management schemes.   

Overall, it appears that both sites on the Missouri River have the most altered hydrologic 

regimes, with significantly different 1, 3, 7, 30 and 90-day minimum and maximum discharges 

and an average of 81 and 69 day shifts to the 1-day minimum and maximum mean annual 

discharges, respectively (Figure 2.3).  These rivers being the most altered is unsurprising since it 

is well known that the hydrologic regime of the Missouri River is highly controlled to support 

barge navigation and for flood prevention (e.g. Sparks et al., 1998), which is especially evident 

given the increased monthly discharges to support barge navigation through the winter and 

decreased monthly discharges in the spring during upstream snowmelt events.   The Kansas and 

Wakarusa Rivers are the least altered systems used in this analysis (Figure 2.3).  

The consistent outlier in the study group was the Red River of the North, the one study 

system with no main-stem impoundment.  This system has experienced significant changes to its 

hydrologic regime, but almost uniformly in opposing directions to the other study systems. 

 Major differences include dramatically increased mean annual, mean monthly maximum daily 

discharges, increased high pulse counts, and increased rise and fall rates. While tributary dams 

could be responsible for some of the observed regime modifications, dams do not tend to 

increase total discharge (McClelland et al., 2004).  Rather, the Red River of the North’s uniquely 



19 

 

altered hydrologic regime is likely the result of four factors: 1) the absence of a main-stem dam 

to control main-channel discharge patterns, 2) the widespread installation of agricultural drainage 

tile systems in the watershed, 3) increased precipitation over the study period, and 4) a decrease 

in surface storage in prairie potholes.  Increases in both discharges and peak discharges are the 

product of expanded drainage tile systems, widespread channelization, and expansion of the 

stream network through ditching (e.g. Bluemle, 1997), which act to decrease surface and soil 

moisture storage, intercept groundwater recharge pathways, increase total runoff volume, greatly 

reduce lag time to peak discharge, increase peak discharge magnitudes, and generally produce 

more severe and frequent flooding than under natural watershed conditions (e.g. Poff et al., 1997; 

Melesse, 2004).  During the late 19th and early 20th centuries, the prairie potholes in the Red 

River of the North’s valley were completely drained (Dahl and Allord, 1996), with North Dakota 

losing 49% of its wetlands (Dahl, 1990).  These anthropogenic watershed alterations may be 

compounded by the increasingly wet climate in the Great Plains region (Garbrecht et al., 2004; 

USGCRP, 2009). The lack of a main-stem dam limits the ability to moderate the 

anthropogenically enhanced river discharge and peak discharge magnitudes at the gaging site, 

producing the altered hydrologic regime parameters analyzed in this study.   

 

 Conclusions 

This is the first study to systematically investigate impoundment-driven hydrologic 

alteration of rivers across the Great Plains physiographic region.  The extent and magnitude of 

hydrologic alternations detailed by this study have tremendous implications for 

ecogeomorphology of Great Plains river systems.  Exacerbating the well-known negative effects 

of physical fragmentation by dams, the dramatically altered hydrologic event frequencies, timing 

and magnitudes are likely contributing to the decline of native species.  For example, the 

reduction of high pulse frequencies, durations and the shifting of peak discharge timings by more 

than a month in several cases is likely disrupting the reproductive timing for fish species in these 

systems.  Similarly, reductions in low discharge pulse frequencies, durations and magnitudes and 

shifts in low discharge timing is likely disrupting the recruitment of riparian pioneer vegetation 

species.  Hydrologic regime modifications detailed in this study are probably, in addition to 

sediment starvation, some of the primary drivers of the downstream geomorphic adjustments 
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other studies have documented following impoundment construction.   In particular, the 

elimination of the largest flood peaks and overall reduction in high pulse frequencies could be 

limiting rates of meander migration.   

In light of the degree and permanency of the modifications brought by impoundment, it is 

difficult to arrive at management recommendations to mitigate these hydrologic regime 

alterations.  Best management practices that use reservoir releases to approximate pre-impact 

hydrologic regimes are of course desirable (Poff et al., 1997; Pegg et al., 2003; Propst and Gido, 

2004; Magilligan and Nislow, 2005), but adoption of these measures is often politically difficult 

and in many instances may not be possible given the need to protect developed floodplains, 

support navigation, and manage down-network discharges.  Even modified reservoir 

management would not address the physical fragmentation caused the by physical barrier of a 

dam, and it is important to recognize that even the most ecologically minded reservoir 

management is unlikely to produce a fully functional naturalized hydrologic regime and certainly 

not a naturalized sediment regime (Schmidt et al., 1998).  While some have suggested dams 

could be redesigned to release sediment consistent with natural sediment transport events 

(Lignon et al., 1995), even this would not address the detrimental effects on the unique life 

history requirements of pelagic-spawning  fishes or otherwise migratory stream organisms 

(Agostinho et al., 2007).  Furthermore, formerly active floodplains have been encroached upon 

by urban development that will prohibit restoration of historically representative large flood 

discharges.   

Despite the limited options for hydrologic regime restoration, the timing and duration of 

high and low discharges can be managed as part of a long-term discharge prescription designed 

to improve ecosystem functioning (sensu Poff et al., 1997; Toth et al. 1998; Prospts and Gido 

2004).  In particular, the ecological needs of specific native assemblages of fish or plants can be 

targeted by adaptive ecosystem management efforts (Perkin and Bonner, 2011), and to our 

knowledge no attempts at this management technique exist within the Great Plains.  As a 

beginning, rivers of the Great Plains would benefit from naturalizing discharge regimes by 

reducing discharges from the fall through winter, readjusting the timing of high pulses to that of 

the pre-impoundment, and reducing the number of hydrograph reversals, and moderating rise and 

fall rates (sensu Galat and Lipkin, 2000; Pegg et al., 2003).  Conservation of Great Plains rivers 

should include protecting existing connectivity and natural discharge regimes while seeking 
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opportunities to naturalize altered discharge regimes (Dynesius and Nilsson, 1994; Schaefer et 

al., 2003; Franssen et al., 2006).   
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Figure 2.1 Location of systems used for analysis, where grey circles indicate gage sites used 

for analysis. The boundary of the Great Plains, USA is delineated in light grey. 
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Figure 2.2  Mean daily discharge for the pre-impact and post-impact time periods. 
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Figure 2.3  Principal component analysis of the uncorrelated (r > 0.8) parameters 

calculated by IHA for pre (in grey) and post (in black) alteration of the systems used in this 

analysis. 
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Table 2.1 Characteristics of systems used in the analysis, where Q is discharge in cubic meters per second. 

River State Dam(s) 
Dam 

Height (m) 
Reservoir 

Storage (km3)
Mean annual 
Q pre-impact 

Mean annual 
Q post-impact 

% 
change

Arkansas CO John Martin 36.0 0.75 8.27 3.40 -59** 
Canadian  NM Ute 40.2 0.50 9.66 1.19 -88** 

Kansas 
KS Tuttle and Milford 47.9 and 

44.8 2.78 and 1.41 104.87 147.42 
41** 

Lower Missouri  NE Gavins Point 14.3 0.67 727.18 735.11 1 
Upper Missouri  MT Garrison 64.0 30.21 624.10 624.39 0 
Pecos NM Brantley 43.9 1.19 3.31 4.39 33** 
Red of the North ND None -- -- 15.15 33.73 123** 
Red of the South TX Denison 50.3 6.40 137.25 138.13 1 
Republican NE Harlan County Lake Dam 32.6 1.02 25.06 8.81 -65** 
Wakarusa  KS Clinton Lake 35.4 0.45 5.32 7.62 44** 
        
        
Ϯ If a significant difference between the two periods at the 1% level exists, it is designated with **. 
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Table 2.2 Percent change in mean monthly flows following impact, where Q is discharge. 

  
October  

Q 
November 

Q 
December 

Q 
January 

Q 
February 

Q 
March 

Q April Q 
May 

Q June Q July Q August Q 
September 

Q 

Arkansas -69** -73** -70** -72** -65** -28* -55* -60** -68** -25** -69** -38** 

Canadian  -92** -68** -75** -82** -37** -52** -93** -93** -93** -77** -84** -88** 

Kansas 38** 90** 121** 62** 52** 110** 87** 53** -19** 76** 36** -3 
Lower 
Missouri  68** 61** 82** 57** 37** -28** -43** -6** -44** -25** 46** 64** 
Upper 
Missouri 14** 22** 51** 71** 74** -15** -10* -15** -50** -27** 46** 49** 

Pecos 75** 239** 99** -5 34** 43** 0 1 51** 45** 13** 11 
Red of the 
North 138** 140** 124** 140** 179** 192** 139** 102** 84** 98** 97** 126** 
Red of the 
South 

-12 80** 3 22** 18* 22** -5 -36** 31** 33** 33** -51** 

Republican -50 -45** -52** -55** -58** -55** -56** -62** -82** -62** -63** -68** 
Wakarusa  78** 60** 92** 44** 51** 53** 21* 79** 22* 6 42* 104** 

Mean 
decrease 

56 62 66 54 53 38 44 45 59 43 72 50 

Mean 
increase 

69 99 82 66 64 84 82 59 47 51 43 71 

 
Ϯ If a significant difference between the two periods at the 5% level exists, it is designated with *. If a significant difference between 

the two periods at the 1% level exists, it is designated with 
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Table 2.3 Percent change in the means of pre and post-impact minimum discharges, where Q is discharge. 

River 1-day min Q 3-day min Q 7-day min Q 30-day min Q 90-day min Q 

Arkansas 249** 202** 165** 49 -9 
Canadian  6 9 6 12 52* 
Kansas 29 29 29 22 39* 
Lower Missouri  96** 96** 95** 75** 53** 
Upper Missouri  119** 128** 128** 108** 73** 
Pecos -18 -13 -11 -8 -2 
Red of the North 131** 138** 143** 162** 137** 
Red of the South -76** -51** -7 34 9 
Republican -26* -30* -32* -41** -57** 
Wakarusa  324** 318** 312** 120** 96* 
Mean decrease 40 31 17 25 30 
Mean increase 124 120 114 66 66 
 

Ϯ If a significant difference between the two periods at the 5% level exists, it is designated with *. If a significant difference between 
the two periods at the 1% level exists, it is designated with **. 
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Table 2.4 Percent change in the means of pre and post- impact maximum discharges, where Q is discharge. 

River 1-day max Q 3-day max Q 7-day max Q 30-day max Q 90-day max Q 

Arkansas -83** -83** -78** -68* -63* 
Canadian  -91** -88** -88** -82** -85** 
Kansas -19 -14 -1 30 41* 
Lower Missouri  -66** -64** -61** -43** -24** 
Upper Missouri -56** -54** -50** -41** -27** 
Pecos -6 9 23 17 23 
Red of the North 120** 123** 137** 137** 120** 
Red of the South -56** -49** -37* -8 4 
Republican -75** -73** -73** -66** -65** 
Wakarusa  -56** -51** -28 3 22 
Mean decrease 56 60 52 51  53  
Mean increase 120 66 80 52 42 
 
Ϯ If a significant difference between the two periods at the 5% level exists, it is designated with *. If a significant difference between 

the two periods at the 1% level exists, it is designated with **. 
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Table 2.5 Timing of 1-day minimum and 1-day maximum discharge, where Q is discharge. 

River 
Pre impact 

1-day min Q 
Post impact 1-

day min Q 
# Days 

different 
Pre impact 1-
day max Q 

Post impact 1-
day max Q 

# Days 
different  

Arkansas 175 99 76 198 181 18  
Canadian  316 193 123 208 236 28  
Kansas 180 304 124 189 180 9  
Lower Missouri  353 51 63 124 252 129  
Upper Missouri 361 264 98 136 145 9  
Pecos 184 311 127 182 241 59  
Red of the North 213 269 56 124 129 5  
Red of the South 232 291 59 183 171 12  
Republican 291 241 50 158 189 31  
Wakarusa  260 299 39 167 174 7  
Mean   82   31  
 
Ϯ If a significant difference between the two periods at the 5% level exists, it is designated with *. If a significant difference between 
the two periods at the 1% level exists, it is designated with **. 
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Table 2.6 Percent change in the means of pre and post-impact impact conditions for low and high pulse numbers and 

durations, where Q is discharge. 

  

% change low  

pulse count 

% change low 

pulse length 

% change high 

pulse count 

% change high 

duration 

Arkansas -89** -89 -64** -79 
Canadian  -87** -95** -80** -39 
Kansas -84 -94 -87 -88** 
Lower Missouri  -99 -100 -85** -93** 
Upper Missouri 0 0 -87* -91 
Pecos -71** -98 -95** -93** 
Red of the North -53** -30 96** 68* 
Red of the South -93** -97** -90** -89** 
Republican -52* -89** -74** -34** 
Wakarusa  -77** -95* -88 -82** 
Mean decrease  78  87 83 76 
Mean increase -- -- 96 68 
     
     
     
Ϯ If a significant difference between the two periods at the 5% level exists, it is designated with *. If a significant difference between 
the two periods at the 1% level exists, it is designated with **. 
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Table 2.7  Percent change in the means of pre and post-impact impact conditions for hydrograph reversals and rise and fall 

rates, where Q is discharge. 

 

River % Change reversals % Change, rise rate % Change, fall rate

Arkansas 6 -85** -84** 
Canadian  49** -95** -94** 
Kansas 6 -35** -31** 
Lower Missouri  58** -75** -64** 
Upper Missouri 143** -63** -44** 
Pecos 17 1 23 
Red of the North 5 69** 58** 
Red of the South 87** -48** -2 
Republican -10** -74** -74** 
Wakarusa  36** -46** -40** 
Mean decrease 10 65 54 
Mean increase 45 35 41 
 
 
Ϯ If a significant difference between the two periods at the 5% level exists, it is designated with *. If a significant difference between 
the two periods at the 1% level exists, it is designated with **. 
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Chapter 3 - Hydrology of intermittent tallgrass prairie headwater 

streams 

 Abstract 

This paper examines the hydrology of intermittent prairie streams of the Konza Prairie 

Biologic Station (Konza) located in Northeastern Kansas.  Flow records from four gaging 

stations were used to quantify flow intermittence, annual flows, and peak discharge events.  

Gage sites used in this analysis are classified as harshly intermittent with all sites having over 90 

days of zero-flow annually.  The largest basin had the least amount of zero-flow days and the 

fewest durations of zero-flow while the smallest basin had the most zero-flow days and the 

highest frequency of zero-flow durations.  There were strong correlations between total annual 

precipitation and the total number of zero-flow days and the number of zero-flow periods.  

Correlations were less strong between the Palmer Drought Severity Index and the number of 

zero-flow days and the number of zero-flow periods.  Basin averaged total annual precipitation 

poorly predicted mean annual and peak annual discharges.  Double mass plots of stream flow to 

precipitation and stream flow in the headwaters to stream flow at the larger site demonstrate 

many instances where flows at Konza are desynchronized between watersheds that likely 

attributed to unaccounted for variation in climatic heterogeneity and to the timing of runoff 

processes. Results of this study suggest that local watershed-scale processes, such as water-table 

fluctuations and soil moisture conditions, control the hydrologic response of intermittent prairie 

streams, decoupling them from sub-annual weather patterns.   

 

 Introduction 

Headwaters are the areas in a channel network where channelized flow originates and are 

the interface between terrestrial and riverine ecosystems, representing a dynamic mix of colluvial 

and alluvial processes [MacDonald and Coe, 2007].  Representing a network’s outermost links, 

headwater streams are tightly hydrologically, geomorphically, and biologically linked to 

hillslope processes [Horton, 1945; Hack and Goodlett, 1960; Hewlett and Hibbert, 1967; Likens 
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et al., 1977; Dietrich and Dunne, 1993; Gomi et al., 2002].  Headwaters are also important for 

longitudinal (downstream) linkages with larger streams and are major contributors of energy and 

matter to those larger streams [Gomi et al., 2002; MacDonald and Coe, 2007].  Due to their 

comparatively small size and connectivity to hillslopes, headwater streams are particularly 

responsive to perturbations within the watershed [e.g. Benda et al. 2005].  Headwater streams 

have a stream order of less than three [Vannote et al., 1980] and comprise between 66% 

[Leopold et al., 1964] and 80% [Naiman et al., 2005] of the total stream length of watersheds 

worldwide, which may be intermittently or perennially flowing.  Intermittent streams account for 

more than 60% of the total river length in the contiguous United States [Nadeau and Rains, 

2007].  Grasslands and wooded grasslands with intermittent streamflow are responsible for about 

28% of global runoff [Dodds, 1997]. 

Native tallgrass prairie once covered 160 million hectares within the United States but is 

now one of the most endangered biomes with 95% of tallgrass prairie lost [Samson and Knopf, 

1994]. Within remaining fragments of prairie, many streams are not large enough to support a 

fully functional watershed [Dodds et al., 2004].  Intermittent streamflow is a feature of most 

grasslands; and the Great Plains of the USA are characterized by distinct periods of flooding and 

drying [Dodds et al., 2004].  Small headwater streams of the Great Plains are considered to be 

harsh, with intermittent or perennial discharge regimes, and typically have high flood frequency 

and low predictability [Samson and Knopf, 1994].  Although intermittent prairie streams may 

have substantial portions of a year with zero-flow, these systems can still strongly influence 

downstream water quality [Dodds and Oakes, 2006], even though there are long periods of zero-

flow [Dodds and Oakes, 2008].   

The hydrologic regimes of Great Plains streams are extremely variable, with floods and 

periods of prolonged no-flow commonly occurring in a single year [Dodds et al., 2004]. 

Temporary cessation of flow causes a temporary ecotone to develop that maintains diversity of 

aquatic and terrestrial systems and regulates the transfer and transformation of energy and 

materials of a system [Steward et al., 2011].  Intermittent streams and their riparian zones can be 

hot spots for biogeochemical processes in arid to semi-arid regions [McIntyre et al., 2009].  

Unsaturated riparian soils are a possible source of nitrogen after periods of zero-flow [Bernal et 

al., 2007] that is rapidly mobilized due to increased groundwater levels [Butturini et al., 2003].  

The extreme variation in hydrology and associated abiotic habitat elements structures the biotic 
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assemblages of intermittent prairie streams [Lake, 2000; Dodds et al., 2004; Fritz and Dodds, 

2005].  Despite the frequent and often severe hydrologic variations, intermittent headwater 

stream biological communities are highly resilient with microbes, invertebrates, and vertebrates 

recolonizing within days of a resumption of flow or scouring flood event [Murdock et al., 2010, 

2011].   

Despite the acknowledged importance of abiotic factors controlling the structure of biotic 

assemblages, to our knowledge there has been no analysis of the hydrology of intermittent prairie 

streams in the Central Great Plains.  Some attention has been devoted to large river floods which 

are common but independent of decadal precipitation trends [Schumm and Lichty, 1963; Julian 

et al., 2011], but to our knowledge there has been no systematic analysis of hydrologic regimes 

on smaller intermittent headwater streams in the region.  Headwater streams of the Great Plains 

are an integral component of the riverscape of the Great Plains and the intermittent and 

ephemeral channels  are equally important to the perennially flowing channels [Wohl et al., 

2009].  The Central Great Plains is located at the juxtaposition of many different large-scale 

atmospheric pressure and circulation systems; and various teleconnections with global 

atmospheric phenomena (e.g. ENSO) are weakly correlated with the precipitation regime 

[Goodin et al., 2003].  Within the last several decades, drought severity and duration have 

increased [Andreadis and Lettenmaier, 2006] with up to 20% decreases in mean annual 

precipitation [Gamble et al., 2008].  General circulation models predict more frequent, intense 

precipitation events with longer intervening dry periods in the coming decades [Knapp et al., 

2002; Milly et al., 2005].    

These climate projections imply that global climate change is likely to change 

precipitation regimes dramatically, which may increase the prevalence of intermittent stream 

flow regimes [Larned et al., 2010b].  Yet, there is a general lack of knowledge of the 

characteristics of intermittent stream flow because hydrologic records from small prairie streams 

are typically scarce, short, and rarely complete [Shook and Pomeroy, 2012].  Confounding the 

data limitation is a general lack of knowledge of the applicability of standard hydrologic indices 

developed for perennial streams [Olden and Poff, 2003].  While these hydrologic models and 

indices (e.g. the Indicators of Hydrologic Alteration; Richter et al., 1996) have been frequently 

used to quantify the flow regime of perennially flowing rivers, intermittent streams have received 

comparably little attention.   
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The overall objective of this study was to characterize the flow regime of intermittent 

prairie headwater streams in the Central Great Plains, USA.  Our working hypothesis was that, as 

already demonstrated with larger river regimes in the region, intermittent stream hydrologic 

regimes would demonstrate little correlation with large scale atmospheric patterns and instead be 

correlated with local precipitation events.  We examine 25-year hydrologic records from four 

small sub-basin gaging stations located in a headwater intermittent stream network to explore 

relationships between stream flow and precipitation as well as hydrologic relationships spatially 

within the network.  To our knowledge, no comparable studies exist that attempt to describe flow 

characteristics of intermittent prairie streams in the Central Great Plains of North America.   

 Material and Methods 

 Study site 

This study was conducted within the Konza Prairie Biological Station, which is owned by 

The Nature Conservancy and Kansas State University and operated as a field research station by 

the Kansas State University Division of Biology and as an NSF-funded Long Term Ecological 

Research (LTER) facility (hereafter referred to as Konza).  Konza comprises 3,487 ha of native 

tallgrass prairie in the Flint Hills region of Northeastern Kansas (Figure 1).  For the purposes of 

this study, we used flow records from three intermittent headwater streams and one main trunk 

stream (Kings Creek) that drains most of Konza.  All watersheds are completely within the 

boundary of Konza and are composed entirely of tallgrass prairie. Kings Creek has been 

monitored by a U.S. Geologic Survey (USGS) stream gage (06879650) since 1979.  Though 

Konza was established in 1981, monitoring of headwater streamflow did not being until 1987 

when permanent trapezoidal concrete weirs were installed.  The four weirs monitor 

approximately half the total drainage area of the Kings Creek gage, with half the watershed being 

completely unmonitored.  All of the headwater sub-basins used in this study (N01B, N02B, and 

N04D) are grazed by Bos bison (American bison) with burn rotations from 1 to 4 years (Table 

3.1).  The streams used in this analysis are intermittent; with complete channel drying in all but 

spring-fed reaches a common seasonal feature of these streams.   

  Konza is located within a temperate climate, and the mean annual precipitation for the 

study period (1987-2011) was 780 mm·yr-1 with 75% falling in the April through September 

growing season (Figure 3.2a).  Approximately 52 mm·yr-1 of the total precipitation falls as snow 
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[Haydem, 1998].  Intense but localized convective storms produce most of the headwater flood 

events, typically in the summer months (Figure 3.2b; 3.2c).  The high intensity precipitation 

events usually only produce flooding if the watershed is close to or completely saturated [Gray et 

al., 1998].  Dodds et al., [1996] found that approximately one third of the annual hydrologic 

export of Konza is through the stream channel while transmission losses to groundwater account 

for the remaining export.  Storm precipitation events recharge the aquifers within a few hours 

through preferential flow and stream-groundwater interactions [Tsypin and Macpherson, 2012]. 

The Flint Hills physiographic province is underlain by flat to slightly dipping (0-0.19°; 

Oviatt, 1998), Permian-aged sedimentary rocks [MacPherson and Sophocleous, 2004].  Local 

stratigraphy consists of alternating layers of 1–2 m thick thinly-bedded chert-bearing limestones 

and 2–4 m thick less resistant mudstones [Macpherson, 1996; Oviatt, 1998].  Stream networks 

dissect the landscape, exposing these alternating layers.  Limestone layers form benches on 

hillslopes and knickpoints in stream channels, while mudstones erode more gradual slopes, 

producing a terraced topography.  Within the Kings Creek drainage system, the Florence 

Limestone formation is the highest and youngest layer, and the Neva Limestone Member is the 

base later [Oviatt, 1998].   Many seasonal freshwater springs emerge from limestone formation 

exposures, particularly from the Neva formation and can maintain isolated pools of water in 

otherwise dry channels.  Konza soils are developed from loess, limestone, and shale, and are 

typically less than a meter thick on hillslopes.  Soils are thickest at the base of slopes and in the 

stream valleys [Ransom et al., 1998].  

The vegetation at the site is mesic native tallgrass prairie, which is dominated by 

perennial warm-season grasses.  The Flint Hills region contains the largest continuous tract of 

unplowed native tallgrass prairie remaining in North America [Samson and Knopf, 1994].  

Between 1939 and 2002 woody riparian vegetation at Konza has expanded by nearly 70%, 

extending from the Kings Creek mainstem riparian corridor upstream along the stream network 

and along the headwater tributaries [Briggs et al., 2005].  Woody plants dominate the valley 

bottoms while grasses dominate the hillslopes. 

 Based on a modeling study, mean annual precipitation at Konza can be partitioned into 

14% direct runoff, 2% as lateral flow through the soils, 9% as groundwater recharge, and 

evaporation accounts for the remaining 75% [Steward et al., 2011]. A conceptual model of the 

hydrologic system at Konza and important surficial and groundwater fluxes are identified in 
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Figure 3.3. Soil moisture conditions are an important control on the hydrologic system at Konza.  

Soil moisture is highest after precipitation events in the spring and summer and lowest in the late 

summer and fall [Tsypin and Macpherson, 2013].  There are numerous fractures in the limestone 

and surface fissures at Konza [Tyspin and Macpherson, 2013] that likely influence surface-

groundwater interactions.  Rain gage measurements from locations in each study sub basin 

demonstrate that event specific precipitation is heterogeneously distributed across the site.   

 Data 

The gages on N01B, N02B, and N04D are maintained by the Kansas State University 

Department of Biology, and data are available for a 25 year period (1987-2011) 

(http://www.konza.ksu.edu/knz/pages/data/knzdata.aspx).   These gages record discharge at five 

minute intervals during stormflow or three hour intervals during baseflow conditions.  Discharge 

for Kings Creek has been monitored since 1979 by the USGS (http://www.usgs.gov/) and is 

recorded in 15-minute intervals.  Total daily precipitation data is recorded at the Konza weir sites 

and individual gage streamflow and precipitation were used to assess the relationship between 

precipitation and streamflow.  The Kings Creek gage does not have a precipitation gage so 

precipitation data recorded at Konza Headquarters (between N02B and Kings Creek) was used.  

Peak discharge events were extracted from the record and matched with events at the other 

basins following Perkins and Jones [2008].  The analysis used peak discharges and precipitation 

measurements for the period of overlapping records for all basins.  Since less than 6% of the 

precipitation that falls at Konza is in the form of snow, there was no need to classify events 

based on snow water storage.    

 The Palmer Drought Severity Index (PDSI) is one of the original drought indices 

developed for the US [Palmer, 1965].  The PDSI is a cumulative drought index that measures 

deviations in moisture conditions that is calculated based off of precipitation, temperature, and 

local available water content that are reported at regional scales.  Annual PDSI data for the 

Northeast region of Kansas (1987-2011) were obtained from the National Climatic Data Center 

(http://www.ncdc.noaa.gov).   
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 Data analysis 

Hydrologic characterizations employ a wide range of indices, but only two are commonly 

used to describe flow intermittence: the frequency and duration of zero-flow events [Poff, 1996; 

Knighton and Nanson, 2001].  Analysis focused on the relations between discharge, 

precipitation, and PDSI within the Konza dataset.  Following Daniels [2004], simple linear 

regressions were completed for correlations between maximum annual and mean annual 

discharge to total annual precipitation.  Peak discharges and their associated event precipitation 

were log-transformed prior to model fitting and linear regressions and correlations were used 

[Jones and Perkins, 2008].     

While regression analyses provide useful information about relationships of data, double 

mass curves are a simple visual method that is widely used to study the consistency and long-

term trends in hydro-meteorological data sets.  Double mass plots [Searcy and Hardison, 1960] 

are the plots of the cumulative amounts of a quantity of interests at a station under consideration 

against the cumulative amounts of a neighboring station.  If the variables plot as a straight line on 

a double mass plot then they are consistently proportional over time, and the slope of this line is 

the ratio between the two variables.  Changes in the gradient of a double mass curve are 

indicative of changes in the original relationship between variables including a change in the 

gaging station and or rating curve, errors in the data, changes in the catchment conditions, and/or 

changes to climate that affect the relationships between the variables of interest.  

Temporal changes in annual streamflow statistics for the period of record were evaluated 

with standardized departure analyses.  Standardized departure analyses of annual stream flow 

statistics (i.e. annual mean, median, and maximum daily streamflow) were determined by 

 

where  is the long-term mean discharge,  is the discharge for the ith time period, and  is the 

standard deviation of the long-term record of streamflow data of each gage. Departure analyses 

are useful for determining how the magnitude daily flows change over time [McCabe and 

Wolock, 2002].  Departure analyses were conducted for minimum, median, and maximum flows.  

Since all of the streams have periods of zero-flow, departure analyses were conducted using 

mean annual flows rather than minimum flows.  
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 Results 

 Flow intermittency 

Discharge regimes at Konza are characterized as intermittent with all gages experiencing 

periods of prolonged zero-flow days annually.  No gauging station had zero-flow recorded 

exclusively in the winter, indicating that freezing was not a cause of intermittence at any station. 

The year in which the highest zero-flow frequencies or longest zero-flow duration occurred at 

each station was variable (Table 3.2).   

Kings Creek experienced the least amount of zero-flow days with an average duration of 

192 days (±76; standard deviation) per year of zero-flow recorded at the gage site (Table 3.2).  

N02B had the most zero-flow days with an average duration of 265 days (±50) per year of zero-

flow (Table 3.2).  Kings Creek also had the lowest amount of zero-flow days recorded in 1998 

with only 28 days that year experiencing zero-flow (Table 3.2).  N02B has the highest amount of 

zero-flow days recorded in 2006 with 356 days that year experiencing zero-flow (Table 3.2).  

Trends in the number of zero-flow days follow the size of watershed with the largest watershed 

having the least number of zero-flow days and the smallest watersheds having the most zero-

flow days.  Unsurprisingly, there were significant negative correlations between the number of 

zero-flow days and mean annual precipitation.  The relationship was the strongest for N02B (-

0.75, p<0.001) but Kings Creek (-0.66, p<0.001), N01B (-0.55, p=0.006), and N04D (-0.45, 

p=0.03) were also strong. 

The frequency of zero-flow periods varied between watersheds.  Kings Creek had an 

average frequency of zero-flow periods of 3.25 per year while N02B had the average frequency 

of zero-flow periods of 6.6 per year (Table 3.2).  Kings Creek also had the least amount of zero-

flow day frequencies with 1998 and 2010 only having one period of drying.  N02B had the 

highest frequency of zero-flow days with 19 zero-flow periods in 2009 (Table 3.2).  As with the 

number of zero-flow days, the frequency of zero-flow days also shows trends with respect to 

watershed size where the largest watershed has the most infrequent periods of zero-flow and the 

smallest watershed having the most frequent periods of zero-flow.  The frequency for zero-flow 

periods were highly correlated with mean annual precipitation for the headwater gages (N01B 

0.52, p=0.009; N02B 0.45, p=0.03; N04D 0.57 p=0.004) 
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The frequency and duration of zero-flow days were uncorrelated for all the watersheds 

except N02B, which is significantly negatively correlated (-0.48; p=0.018).  Regressions of 

number of zero-flow days with PDSI and total annual precipitation revealed negative correlations 

between the number of zero-flow days with PDSI and total annual precipitation (Table 3.3).  

Correlations are significant for all watersheds but are more strongly negatively correlated for 

precipitation than they are for PDSI (Table 3.3).  Correlations for the frequency of zero-flow 

periods are not as significant or strong for precipitation or PDSI as correlations for total number 

of zero-flow days are (Table 3.4).  The correlation of frequency of zero-flow days were 

significant for N04D and N02B (p=0.04 and p=0.05) against PDSI while N01B and Kings Creek 

were insignificant (p=0.37 and p=0.20, respectively; Table 3.4).  With the exception of Kings 

Creek, correlations between the frequencies of zero-flow days for each of the watersheds were 

significant and positive against total annual precipitation (Table 3.4).   

  

 Annual flows 

Mean annual discharge of the four watersheds used in this analysis were dominated by 

discharge events that occur between April and July (Figure 3.2B).  Correlations of mean annual 

discharge and total annual precipitation reveal that the relationship for the smaller watersheds of 

this study is stronger and more significant (N01B 0.53, p = 0.006; N02B 0.57, p=0.003) than that 

of the larger watersheds (N04D 0.06, p=0.78; Kings Creek 0.03, p= 0.88). Linear regressions of 

mean annual discharge and total annual precipitation overall did not have strong relationships 

(Figure 3.4A; Table 3.5).  The linear regressions for the smallest watershed (N02B: F2, 28= 11.00, 

r2=0.32, p = 0.0003; N01B: F2, 28= 9.04, r2=0.28, p = 0.006) were much stronger than those for 

the larger watersheds (N04D: F2, 28= 0.08, r2=<0.01, p = 0.78; Kings Creek: F2, 28= 0.02, 

r2=<0.01, p = 0.88).  Peak annual discharge events occur in the same time period as mean annual 

discharge events occur, in April through July (Figure 3.2C).  Overall, the linear regressions for 

peak annual discharge were more significant than those for mean annual discharge (Figure 3.4B; 

Table 3.6).  N01B has the strongest relationship (F2, 28= 15.04, r2=0.4, p <0.001). 
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 Flood flows 

The majority of peak discharges matched a large precipitation event within 12-hours, but 

some were up to 36-hours apart (Table 3.7).  The most extreme floods that occur at Konza were 

the product of strong conductive thunderstorm events that occurred in the summer time, with the 

exception of N01B that had a peak discharge event in November (Figure 3.5). Extreme peak 

discharges of record were 232.8 and 168.5 m3s-1 (17 July 1993 and 22 July 1992), both of which 

were seen at the Kings Creek gage.  Of the top 30 discharge events seen at Kings Creek gage, 26 

of the events occur between April and July with August, September, October, and November 

each having one peak event, which are all low ranking events (23, 30, 27, 25, respectively).  The 

events that did occur outside of the summer were not associated with rain-on-snow events.  

N01B is the only watershed that had an event that occurred outside of Spring or Summer as its 

peak discharge of record, which occurred on 3 November 1998.  The peak discharge of N01B is 

the 25th largest seen at that Kings Creek gage (Table 3.7).  The two peak discharge events seen at 

Kings Creek are within the top six for N01B and N02B.  N04D did not experience Kings Creek’s 

peak and the second highest discharge seen at Kings Creek is the tenth largest seen at N04D 

(Table 3.7).  The timings and magnitude of peak flood events were not consistent between gages 

used in this analysis and are, for the most part, associated with unique precipitation events (Table 

3.7).      

Correlations of event rankings reveal that N01B (0.62, p=0.004) and N02B (0.66, p < 

0.001) are more correlated than N04D (-0.02, p= 0.91) is to Kings Creek.  Correlations between 

headwaters, excluding Kings Creek, demonstrate that correlations between the smallest gages are 

stronger (N01B to N02B: 0.510, p= 0.006) than those for the small gages and the larger 

headwater stream (N01B to N04D: 0.09, p=0.66; N02B to N04D 0.04, p= 0.847).  Peak event 

discharge and event precipitation were highly uncorrelated and insignificant (N01B: 0.23, p= 

0.24; N02B: 0.59, p= 0.12; N04D: 0.29, p=0.13; Kings Creek: 0.20, p= 0.29). Linear regressions 

on the peak event discharge and event precipitation demonstrate that the relationships for all the 

watersheds used in this analysis were all insignificant (Figure 3.4C; Table 3.8).   
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 Trends and change points for hydro-climatic series 

The dynamic relationship between annual rainfall and streamflow of all the gages as well 

as the relationship between streamflow at Kings Creek and the headwaters are shown in double 

mass curves (Figure 3.6a, b).  A double mass curve of the cumulative annual discharge for the 

four gages against the cumulative annual precipitation at Konza indicate that streamflow 

increased compared with precipitation (Figure 3.6a). The change points on the double mass 

curve were consistent across all of gages.  A double-mass curve analysis of the three Konza 

weirs annual flows against the Kings Creek gage annual flows demonstrated that there were 

numerous and systematic breaks in the relationship between streamflow in the headwaters and at 

Kings Creek (Figure 3.6b). The timing of breaks was consistent across all gages, but there was 

not a seasonality or large precipitation event that was driving the increases in tributary flow 

relative to Kings Creek or precipitation.  For both the of the double-mass curves the breaks are 

subtle with the exception of N04D.  After 2006, the N04D gage demonstrates that there is a large 

increase in streamflow in the watershed relative to precipitation or streamflow at Kings Creek.  

The slopes of the regression lines were inconsistent with some slopes higher or lower after the 

breakpoints than before for both double mass plots of precipitation and for the headwaters 

against Kings Creek.   

For all the streamflow standardize departure analyses of annual mean, median, and 

maximum daily streamflow indicate that there is not a visible step-shift or gradual increase or 

decrease in stream flow at Konza.  Departure analyses indicate that there are extreme variations 

in positive and negative departures for all of the sites (Figure 3.7). The departures are 

inconsistent between watersheds with no watersheds experiencing synchronization of high or 

low departures.  Positive departures are consistently of a much larger magnitude than negative 

departures throughout all of the study sites.   

 

 Discussion 

This study used statistical models to identify relationships between characteristics of flow 

intermittence (number of zero-flow days and number of zero-flow periods; Snelder et al., 2013), 

mean annual, and flood flow characteristics with moisture characteristics (total annual 

precipitation, event precipitation, and PDSI) to characterize flow in intermittent prairie streams.  
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Following Poff [1996], all streams used in this analysis meet the standards for harsh intermittent 

classification (Table 3.2).  The proximate cause of intermittency is likely water table fluctuations 

relative to the channels [Konrad, 2006; Larned et al., 2010a; von Schiller et al., 2011].  The more 

sustained flow at the Kings Creek gage when compared to the smaller headwater streams is 

consistent with Steward et al., [2011] who found slight enhancement of recharge beneath upland 

intermittent streams and enhanced baseflow at Kings Creek.   

Results of this study reveal an apparent decoupling between discharge and precipitation 

inputs.  This result suggests that the discharge response to precipitation input is controlled by 

both climatic and non-climatic processes within the watershed.  Non-climatic processes that are 

controlling the streamflow include soil moisture storage, groundwater table fluctuations and 

spring seepage, as has been observed in other intermittent stream systems [e.g. Fleckenstein et 

al., 2006; Larned et al., 2010a, 2010b].  The high rates of evapotranspiration measured at Konza, 

and throughout the Flint Hills physiographic region, are responsible for up to 75% of 

precipitation loss [Steward et al., 2011] and is a key control on streamflow.  While 

evapotranspiration accounts for a large proportion of precipitation loss at Konza, precipitation 

loss through evapotranspiration can reach over 83% in more southerly portions of the Great 

Plains [Wine and Zou, 2012].  

There were significant associations between characteristics of intermittency and mean 

annual rainfall and PDSI.  Consistent with Larned et al. [2010a], the characteristics of 

intermittency, the number of zero-flow days and frequency of zero-flow periods, are highly 

correlated.  Snelder et al., [2013] determined that intermittent streams with larger catchments 

have sustained base flow for most of the year when compared to streams draining smaller 

catchments, which was consistent with the findings of Kings Creek having the lowest frequency 

of zero-flow periods and number of zero-flow days when compared to the headwater streams.  

While many of the streams at Konza have persistent pools and headwater springs, the gage sites 

at Konza were not close to these features.  Similar to Larned et al. [2010a], sites that were 

characterized by large numbers of zero-flow days had little flow permanence and lower mean 

annual discharge.  Daniels [2007] found that streamflow in the perennial headwaters of the Platte 

River were more correlated with regional than local conditions, which was not the case seen in 

the intermittent prairie streams of this analysis.  Overall, the associations between intermittency 

and rainfall were stronger than those for PDSI; the PDSI is more of a regional metric than a local 



51 

 

metric, and that may be the reason why it does not perform as well as characterizing flow 

intermittency.  Konza is located at the juxtaposition of many different teleconnections and 

broadly calculated values [Goodin et al., 2003], like PDSI, are not representative of the patterns 

we see at Konza.  Rapid and cyclic water table fluctuations associated with localized 

precipitation events [Butturini et al., 2002] as well as the fracture in limestone and surficial soil 

cracks as seen at Konza [Tsypin and Macpherson, 2013] are likely responsible for mean annual 

precipitation being more strongly correlated with the intermittency characteristics than the more 

broadly calculated PDSI. PDSI values are calculated over areas hundreds of km2, and as such are 

regionally averaged values that cannot capture more local variations in lithology and topography 

that modulate streamflow regimes. This research demonstrated that local precipitation events are 

very heterogeneous throughout the comparatively very small area Konza encompasses, further 

complicating relationships between PDSI and local streamflow at the study site scale.  Therefore, 

it is unsurprising that the broadly calculated moisture variable is not as strong of a predictor as 

the local precipitation measurements are for discharge.   

Regression relationships between Konza’s total annual precipitation and both mean 

annual and peak annual discharge were poor.  Regressions of mean annual discharge and total 

annual precipitation do not explain much of the variance.  For the largest streams in this analysis 

there is exceptionally little variance explained in mean annual discharge (less than 1%), but 

explanatory power improved for the smaller streams (N01B 28%, N02B 32%).  Due to N01B 

and N02B flows being more similar to those of Kings Creek and N04D demonstrate that the 

intermittent streams at Konza do not all behave in the same manner.  There are clear trends with 

respect to contributing area, where the larger streams have more sustained baseflow than the 

smaller headwater streams. However, the poor regression results indicate that there are variables 

not used in this analysis that play a more significant role in determining mean annual and peak 

annual discharges.  In particular, it is likely that evapotranspiration is having a very large 

influence on the precipitation-discharge relationship because evapotranspiration equates to 75% 

of precipitation volume.  Antecedent soil moisture is also likely having a substantial influence on 

the precipitation-discharge relationship. For example, there may be periods when there are very 

large precipitation events in the late summer that do not manifest as large discharge events 

because of high infiltration into dry soils and high evapotranspiration diversion of water from the 

soil and shallow groundwater matrices before shallow subsurface flow reaches the stream 
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channel.  In contrast, in early spring when evapotranspiration demand is low but soil moisture 

and groundwater tables are higher, a comparatively small precipitation event may manifest as a 

large discharge event. Both soil moisture and evapotranspiration are very temporally dynamic at 

Konza, and the absence of continuous measurements of these variables makes a conclusive 

explanation for the lack of relationship between mean annual and peak annual discharges 

difficult.   

 Rain peak discharge events involve a range of event sizes, where rain may fall over all or 

part of the basin, and soils may be saturated to unsaturated, but there is no snowpack or 

snowmelt contributing to streamflow.  Extreme floods are regional events that are typically the 

product of large convective thunderstorms in the summer months.  Departure analyses appear to 

demonstrate that high flood flows are controlling the hydrology of Konza due to the much higher 

magnitude of positive departures compared to negative departures.  Simultaneous peak 

discharges throughout the upper portions of the network amplify flows at Kings Creek.  

However, there are many instances where flows at Konza are desynchronized between 

watersheds and longitudinally.  The intermittent headwater stream peak discharge events are 

poorly correlated with those seen at Kings Creek, but N01B and N02B were more strongly 

correlated to each other than any of the other streams.  The apparent desynchronization of 

measured peak streamflow may be attributed to variation in precipitation heterogeneity and to 

the timing and pathways of runoff processes [Zégre, 2009].  Routing of water though the 

channels is important but typically occurs under circumstances where saturation excess runoff is 

the dominate mechanism for runoff [Samuel and Sivapalan, 2008].  Event precipitations may be 

low, only a portion of the basin may receive rain, and varying amounts of soil moisture 

conditions are likely contributing to the desynchronization of flow between watersheds and 

longitudinally along the stream network.  The lack of complete instrumentation of the upper 

tributaries to Kings Creek makes a conclusive explanation difficult.   For example, locally 

intense precipitation may have fallen within ungaged sub-basins, producing disparities between 

streamflow recorded in gaged sub basins and the main Kings Creek gage.   

 To further assess intermittent streamflow, double mass curves were plotted between 

cumulative annual streamflow at the four gages and cumulative annual precipitation.  To 

quantify the relationship between flow in the headwaters and Kings Creek, double mass curves 

were plotted for cumulative annual streamflow in the headwaters against cumulative annual 
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streamflow at Kings Creek.  The observed breaks in slope are not coincident in timing with any 

major landscape disturbance, including burning, that would provide a reasonable anthropogenic 

driver of altered tributary hydrologic response, leaving only internal watershed or climate 

processes as possible explanations.  

The alternating higher and lower slope breaks in the double-mass plot are indicative of 

changes in the relationship of flow in the tributaries than we would expect for a given 

precipitation or relative to Kings Creek.  It seems most likely that the periods when there is an 

increase in the slope of the double-mass curves (more headwater contribution to cumulative 

stream flow at the Kings Creek gage) are the result of temporary but fundamental alterations to 

hillslope-channel hydrologic connections.  Precipitation takes many pathways at Konza where 

precipitation can slowly percolate through soils,  bypass the soil matrix and rapidly flow through 

large macropores, or become part of surface water runoff.  Each of these pathways produces 

differential streamflow and groundwater recharge response rates [Tsypin and Macpherson, 2012] 

and fundamentally regulates the stream discharge regime in this system.  During dry periods, the 

substantial surface macropores in the soils, combined with fractures in the limestone layers, may 

allow direct recharge to groundwater, bypassing shallow subsurface matrix flow paths to the 

stream channels.  This rapidly recharged groundwater likely emerges at springs in the geological 

sections below the headwater gages but upstream of the Kings Creak gage, producing a 

disconnection between headwater streamflow and precipitation as well as the observed 

disconnection between headwater gages and the Kings Creek gage.  During wetter periods, soil 

moisture increases would result in the macropore cracks closing, eliminating or greatly reducing 

the quick recharge pathway and forcing infiltrated precipitation to transit via the soil matrix as 

throughflow, producing stormflow runoff in the headwater channels. There are periods when 

there is not as much flow in the headwaters as we might expect, which is further support that 

there is more groundwater recharge within the watershed that is manifesting as a more sustained 

baseflow at Kings Creek [Steward et al., 2011] and not as much surface water flow in the 

headwaters. 

The breaks in the slope of these double-mass plots, the absence of any clear relationship 

between precipitation and streamflow, and the departure analyses results provide a substantial 

body of evidence to support the notion that streamflow and precipitation at Konza are 

desynchronized.  Since the geology and soils at Konza are representative of the entire Flint Hills 
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physiographic province [Mandel, 2008], it is quite likely that streamflow and precipitation are 

similarly desynchronized throughout the uplands of the region.  Although Macpherson and 

Sophocleous [2004] suggested flow through macropores was not substantial within Konza 

floodplains, the hillslopes may be the main location for this direct recharge.  Our results 

contradict somewhat the Steward et al., [2011] modeling study that indicated enhanced recharge 

through tributary streambeds is strong in the upland region of Konza.  Since our results indicate 

increase baseflow at the Kings Creek gage in the absence of streamflow in the tributaries, we 

suggest that hillslope macropore recharge to groundwater may be a major source of this 

enhanced headwater basin recharge phenomenon.  Results of this study demonstrate that there is 

a complex hydrology, both spatially and temporally, at Konza and further studies that combine 

surface hydrology and hydrogeology would be beneficial in understanding the mechanisms of 

the precipitation-discharge relationship.  

 

 Conclusions 

In this study, long term streamflow and climate records permitted the characterization of 

the hydrology intermittent prairie streams.  Results demonstrate a desynchronization of 

hydrologic regimes between neighboring headwater catchments as well as longitudinally through 

the network, suggesting watershed conditions strongly control intermittent headwater stream 

hydrologic response.  There were strong correlations between precipitation and the total number 

of zero-flow days and the number of zero-flow periods.  Correlations were less strong for PDSI 

with the total number of zero-flow days and the number of zero-flow periods.  Basin averaged 

total annual precipitation poorly predicted mean annual and peak annual discharges.  Double 

mass plots of precipitation to stream flow showed that there are numerous systematic breaks 

showing higher stream flow than precipitation and higher stream flow in the headwaters that was 

not seen at Kings Creek.   Standardized departure analyses indicated that there were no gradual 

or step changes in stream flow at Konza, but a longer period of recorded stream flow would be 

more useful to fully characterize trends in stream flow.  Therefore, it is important to consider 

local processes, like water-table fluctuations and soil moisture conditions, which are an 

important factor influencing the hydrology of intermittent prairie streams.   
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While the number of studies of intermittent streams has greatly increased in the last 

decade [Datry et al., 2011], there is still much work needed to understand the hydrology of these 

important parts of river networks.  Further work is needed on intermittent streamflow.  In 

particular, detailed coincident observations of soil moisture conditions, water table fluctuations, 

and stream flow are needed over a broad range of hydrologic and geomorphic regimes.  In 

addition, analyses on the longitudinal gradients, where the channel expands and contracts due to 

changing hydrology, have yet to be completed [Doering et al., 2007; Larned et al., 2010b].  In 

light of predicted global climate change, intermittent flow is expected to become more common 

[Larned et al., 2010b], improved understanding of the hydrology of intermittent streams should 

become a key priority for hydrologists and watershed managers.   
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Figure 3.1 Study site locations within the Konza Prairie Biologic Station, Kansas. 
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Figure 3.2Konza Prairie Biologic Station’s (A) mean monthly precipitation (1987-2011), (B) 

mean monthly discharge (1987-2011), and (C) maximum monthly discharge (1987-2011). 

 



64 

 

Figure 3.3 Conceptual diagram of the hydrologic system of Konza adapted from Steward et 

al., [2011].  The grey arrows depict precipitation and the black arrows are scaled to the 

relative magnitude of different water flux pathways. 
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Figure 3.4 Konza Prairie Biologic Station’s (A) mean annual discharge (1987-2011) and (B) 

peak annual discharge (1987-2011) as a function of total annual precipitation and (C) peak 

event discharge (1987-2011) as a function of the event’s discharge. 

 



66 

 

 

Figure 3.5 Timing of the 30 peak discharge events in each of the study gages during the 

period of record (1987-2011). 
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Figure 3.6 Double mass curves for total annual (A) streamflow and precipitation at Konza 

and (B) streamflow in the headwaters and Kings Creek. Each data point represents one 

year of record, beginning in 1987 at the origin and ending in 2011. 
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Figure 3.7 Standardized departure analyses of stream flow at Konza. 
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Table 3.1 Konza watershed descriptions 

  Area (ha) Burn frequency 
Kings 
Creek 259 -- 
N01B 118.8 Annual 
N02B 120.7 Biannually 
N04D 135.5 4- years 
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Table 3.2 Average (standard deviation), maximum, and minimum number of zero-flow 

days for the number of zero-flow days and zero-flow periods for the period of record (1987-

2011). 

  N01B N02B N04D Kings Creek 

Zero-flow days     
Average 231 (76) 248 (76) 217 (75) 179 (95) 
Maximum 351 356 326 318 
Minimum 56 50 57 28 
     
Zero-flow periods     
Average 6 (3) 7 (5) 5 (3) 3 (2) 
Maximum 12 19 14 7 
Minimum 2 2 1 1 
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Table 3.3 Correlation matrix of number of zero-flow days in each watershed with total 

annual precipitation and the Palmer Drought Severity Index (PDSI) for the period of 

record (1987-2011). The first line is the strength of the correlation and the second line is the 

p value of the correlation. 

  Precipitation Kings Creek N01B N02B N04D PDSI 

Precipitation 1 -0.66 -0.55 -0.75 -0.45 0.51 

  0.0005 0.01 0.00003 0.03 0.01 
Kings Creek  1 0.7 0.83 0.54 -0.65 

   0.0001 0.000001 0.006 0.001 
N01B   1 0.76 0.83 -0.52 

    0.00002 0 0.01 
N02B    1 0.62 -0.69 

     0.001 0.0002 
N04D     1 -0.43 

      0.03 
PDSI      1 
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Table 3.4 Correlation matrix of number of zero-flow periods in each watershed with total 

annual precipitation and the Palmer Drought Severity Index (PDSI) for the period of 

record (1987-2011). The first line is the strength of the correlation and the second line is the 

p value of the correlation.  

  Precipitation Kings Creek N01B N02B N04D PDSI 

Precipitation 1 -0.11 0.52 0.45 0.57 0.51 
  0.62 0.009 0.03 0.004 0.01 
Kings Creek   0.16 -0.02 0.10 -0.27 
   0.46 0.93 0.63 0.20 
N01B    0.24 0.60 0.19 
    0.27 0.002 0.37 
N02B     0.17 0.41 
     0.42 0.05 
N04D      0.43 
      0.04 
PDSI      1 

 



73 

 

 

Table 3.5 Parameter estimates for simple linear regression analysis between mean annual 

discharge and total annual precipitation. 

  a b SEb r2 F p 

N01B -0.03 5.69E-05 1.89E-05 0.28 9.04 0.006 
N02B -0.04 6.83E-05 2.06E-05 0.32 11.00 0.0003 
N04D 0.01 3.36E-05 1.00E-04 3.50E-04 0.08 0.78 
Kings 0.05 1.20E-05 7.88E-05 1.00E-03 0.02 0.88 

 

*Here a and b are parameters in the relation y = a + bx. SEb is the standard error of the coefficient b; 
r2 is the coefficient of determination; F is the value of the F distribution; p is the significance 
probability. 
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Table 3.6 Parameter estimates for simple linear regression analysis between peak annual 

discharge and total annual precipitation. 

    
  a b SEb r2 F p 

N01B -14.23 0.03 0.01 0.40 15.04 <0.001 
N02B -12.88 0.02 0.01 0.17 4.63 0.04 
N04D -52.65 0.08 0.03 0.20 5.69 0.03 
Kings -101.75 0.18 0.07 0.21 6.12 0.02 

 

  
 
 
*Here a and b are parameters in the relation y = a + bx. SEb is the standard error of the 
coefficient b; r2 is the coefficient of determination; F is the value of the F distribution; p is the 
significance probability. 
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Table 3.7 Rankings of the top 30 peak discharge events at study gages with respect to Kings Creek where PPT is the total event 

precipitation and Q is the peak discharge seen at the gage. 

N01B   N02B   N04D   Kings Creek  

Date 
PPT 
(mm) 

Q 
(m3s-1) Rank  Date 

PPT 
(mm) 

Q 
(m3s-1) Rank  Date 

PPT 
(mm) 

Q 
(m3s-1) Rank  Date 

PPT 
(mm) 

Q 
(m3s-1) Rank 

11/3/1998 66 18.2 25  6/19/2001 58 39.8 15  8/4/2008 91 111.7 --  7/17/1993 95 232.8 1 

5/13/1995 55 15.6 10  7/17/1993 95 15.0 1  6/20/2009 47 102.6 8  7/22/1992 91 168.5 2 

7/22/1992 91 15.6 2  7/22/1992 91 10.2 2  2/15/2007 16 85.3 78  7/2/2004 52 165.9 3 

5/26/1996 83 15.4 17  6/20/2009 47 10.1 8  4/26/2009 78 60.6 6  6/4/2005 96 106.8 4 

7/2/2004 52 15.3 3  6/4/2005 96 8.4 4  8/9/2008 124 47.3 23  7/25/1993 51 89.2 5 

7/17/1993 95 14.1 1  7/24/1993 51 5.9 5  7/8/2008 43 38.3   4/26/2009 78 80.7 6 

7/8/2008 43 11.1 --  4/26/2009 78 5.4 6  6/2/2011 54 30.9 18  5/6/2007 92 55.8 7 

6/28/1999 39 10.1 11  5/13/1995 55 5.3 10  6/13/2010 58 14.3 52  6/21/2009 47 48.1 8 

4/26/2009 78 9.3 6  6/2/2011 54 4.7 18  9/12/2008 78 11.3 36  3/30/2007 43 43.3 9 

6/4/2005 96 9.1 4  7/2/2004 52 4.6 3  7/22/1992 91 9.5 2  5/12/1995 53 41.6 10 

6/20/2009 47 8.5 8  6/10/2005 52 4.4 12  7/24/1993 51 9.2 5  6/28/1999 39 37.7 11 

5/23/1995 72 8.4 14  5/5/2002 43 3.8 31  7/20/2010 26 9.1 68  6/10/2005 52 30.3 12 

6/2/2011 54 7.5 18  5/17/1995 42 3.4 21  6/4/2005 96 7.6 4  6/2/2008 48 29.2 13 

8/9/2008 124 6.8 23  5/27/1995 36 2.5 20  6/19/2001 58 7.6 15  5/23/1995 72 25.3 14 

6/10/2005 52 5.8 12  5/26/1996 83 2.3 17  4/22/2010 80 7.5 26  6/20/2001 58 25.2 15 

6/2/2008 57 5.1 13  8/9/2008 124 2.2 23  7/2/2004 50 7.1 3  4/13/1999 48 24.9 16 

4/13/1999 48 4.9 16  4/21/2001 19 2.1 46  5/23/1995 72 6.7 14  5/26/1996 83 24.6 17 

10/5/1998 33 4.1 79  3/30/2007 43 2.1 9  5/17/1995 42 6.5 21  6/2/2011 54 21.7 18 

4/5/1999 38 3.3 42  4/13/1999 48 2.0 16  7/18/2008 57 5.9 47  6/25/1995 48 21.2 19 

3/30/2007 43 3.3 9  10/18/1998 62 1.9 27  6/28/1999 39 5.6 11  5/27/1995 36 19.4 20 

6/16/2009 44 2.9 34  6/16/2009 44 1.7 34  5/13/1995 55 4.5 10  5/17/1995 42 17.2 21 

6/25/1995 48 2.8 19  5/23/1995 72 1.6 14  7/20/2009 49 4.0 --  5/10/1993 50 16.9 22 

7/4/1992 79 2.8 54  6/2/2008 57 1.6 13  3/23/2009 8 3.4 --  8/9/2008 124 15.9 23 

8/14/2006 79 2.5 85  7/31/1998 59 1.6 29  3/30/2007 43 3.4 9  7/4/1993 95 14.6 24 

5/27/1995 36 2.3 20  7/8/2008 43 1.4 --  6/11/2005 52 3.3 12  11/1/1998 33 11.8 25 
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8/25/2006 42 2.2 64  6/13/2010 58 1.3 52  5/27/1995 36 3.3 20  4/22/2010 80 11.8 26 

5/10/1993 50 2.1 22  7/4/1993 95 1.3 24  4/13/1999 48 2.7 16  10/17/1998 62 11.4 27 

6/13/2010 58 2.1 52  4/22/2010 80 1.3 26  10/5/1998 33 2.4 79  06/29/03 55 10.7 28 

7/18/2008 57 1.9 47  5/10/1993 50 1.1 22  6/29/2003 55 2.3 28  7/30/1998 59.4 10.5 29 

9/12/2008 78 1.8 36  10/5/1998 33 1.1 79  5/10/1993 50 1.9 22  9/8/1989 32.5 9.9 30 
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Table 3.8 Parameter estimates for simple linear regression analysis between peak event 

discharges and their associated event precipitation. 

  a b SEb r2 F p 

N01B -0.52 0.72 0.04 0.10 3.10 0.89 
N02B -0.35 0.48 0.42 0.05 1.32 0.26 
N04D 0.23 0.43 0.41 0.04 1.14 0.30 
Kings 0.09 0.79 0.46 0.10 3.01 0.09 

 

 

*Here a and b are parameters in the relation y = a + bx. SEb is the standard error of the coefficient b; 
r2 is the coefficient of determination; F is the value of the F distribution; p is the significance 
probability. 
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Chapter 4 - Longitudinal variability in hydraulic geometry and 

substrate characteristics of a Great Plains sand-bed river 

 Abstract 

Downstream trends in hydraulic geometry and substrate characteristics were investigated 

along a 200 km reach of the Ninnescah River in south central Kansas, USA.  The Ninnescah 

River is a large sand-bed, perennial, braided river that is located in the Central Plains 

physiography and is a tributary of the Arkansas River.  Hydraulic geometry characteristics were 

measured at 11 sites that include, slope, sinuosity, bankfull channel width, and bankfull channel 

depth.  The Ninnescah River follows the predicted trends of a river’s central tendency for slope 

decreasing downstream and depth and width increasing downstream.  There are localized 

divergences in the central tendency, most notability downstream of one substantial confluence.  

Surface grain samples were taken from the top 10cm of the bed at five equally spaced points 

across a wetted cross-section within each of the 11 reaches.  Sediment analyses demonstrate a 

significant trend in downstream fining of surface grain sizes (D90 and D50). As the Ninnescah 

River approaches the Arkansas River there is a systematic change where the river deviates from 

the central tendencies as the Ninnescah River adjusts itself to meet the Arkansas River.  Overall, 

results demonstrate that the Ninnescah River follows the expected trends longitudinally.  Results 

of this study are the first of its kind we could find to assess the longitudinal hydraulic geometry 

and substrate characteristics of a large sand-bed river.   

 Introduction 

The hydrology and geomorphology of alluvial river channels are dependent on the 

climatic and sedimentological regimes of contributing basins.  Longitudinal profiles of rivers are 

representative of watershed evolution, geologic structure, and sedimentary dynamics of the basin 

[Sinha and Parker, 1996].  Leopold and Maddock [1953] were the first to use the term ‘hydraulic 

geometry’, which is based on the assumption that the geometric and hydraulic properties of a 

river adjust in response to increasing discharge.  As was originally proposed with the theory of 

hydraulic geometry, with increasing discharge there is expected to be a regular downstream trend 

that develops in channel characteristics, including width, depth, velocity, and friction, of river 
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channels that formed in alluvium and are readily adjustable to changes in discharge.  At a single 

cross-section, changes in the hydraulic geometry are a result of many processes that occur at 

different time scales and different flows [Schumm and Lichty, 1963; Wolman and Gerson, 1978; 

Moody et al., 1999].  The geomorphic parameters driving the longitudinal patterns of hydraulic 

geometry include alternating degrees of channel confinement, tributary inputs, colluvial inputs 

(e.g. landslides), differential substrate erodibility, strong local controls on sediment supply, and 

spatial gradients and discontinutities imposed by Quaternary tectonics and landscape evolution 

[Marston et al.,1997; Brardinoni and Hassan, 2007].  Longitudinal changes in hydrologic 

regime can also drive discontinuity as, for example, a river may flow from a mesic to an arid 

climate zone and become an influent river. Empirically, it has been demonstrated that hydraulic 

geometry partially depends on bank strength, which is influenced by the cohensiveness of 

sediment and vegetation [Leopold and Maddock, 1953; Parker, 1979; Hey and Thorne, 1986; 

Soar and Thorne, 2001; Xu, 2002; Church, 2006; Eaton and Church, 2007; Parker et al., 2007].   

The longitudinal geomorphic regimes anabranching [e.g. Tabata and Hickin, 2003; 

Latrubesse, 2008; Kemp, 2010; Pietsch and Nanson, 2011], desert [e.g. Merritt and Wohl, 2003; 

Ralph and Hesse, 2010], and mountain rivers [e.g. Lee and Ferguson, 2002; Brummer and 

Montgomery, 2003; Comiti et al., 2007; David et al., 2010; Green et al., In Press] have been well 

documented.  In anabranching systems there is a trend of diminishing channel dimensions that is 

attributed to storage of waters in lakes, floodwaters, lagoons, and through transmission losses 

during overbank flow events [Kemp, 2010].   Desert systems, where channels breakdown in to 

smaller distributaries, show a decrease in channel dimensions especially channel width and area 

[Ralph and Hesse, 2010].  Bankfull channel widths increase as contributing areas increase for 

mountain systems [Brummer and Montgomery, 2003; Green et al., In Press]. The varying trends 

in downstream hydraulic geometry of different river types are a result of differences in exterior 

and interior controls on drainage, differing rates of transmission loss, the presence or absence of 

riparian vegetation, and the differences in precipitation regimes [Tooth, 2000].  Hydraulic 

geometry has been explored extensively but remains a core technique in understanding river 

systems [Knighton, 1998] and is often employed as an environmental and engineering design 

tool (e.g. environmental flows analysis) [Reid et al., 2010].  While the downstream trends in 

hydraulic geometry of rivers are generally well understood, relatively few studies have 

investigated the downstream patterns in hydraulic geometry of large sand-bed rivers.   
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Planform patterns are known to change, or metamorphose [Schuum, 1985], longitudinally 

and these transitions are important features within the riverscape.  Changes in flow strength and 

sediment feed rate are the two classical, yet still debated, explanations for planform 

metamorphosis [Kleinhans, 2010].  Sand-bed rivers transition from meandering to braided 

planforms longitudinally as a function of stream power, which gradually increases in the 

downstream direction [Kleinhans, 2010].  No known ‘hard’ thresholds exist for the transition of 

meandering to braided planforms and it is widely accepted that this transition is gradual.  Sand-

bed channels are perhaps the least understood of the channel types, and there are many scales of 

bedforms that may coexist including ripples, bedload sheets, dunes, and lobes [Montgomery and 

Buffington, 1997].  Sand-bed rivers have live beds [Henderson, 1963] that are continuously 

transporting sediment at most stages, and as such they are effectively transport limited.  Much of 

the floodplain sediments of sand-bed rivers are formed from noncohesive easily eroded banks, 

and fluctuations in channel width are large when compared to fluctuations in bed elevation 

[Schumm and Lichty, 1963; Friedman et al. 1996]. In sand-bed channels the large volumes of 

sand transport promote the formation of wider channels [Osterkamp, 1980].    

Rivers are widely acknowledged to demonstrate downstream fining of bedload. 

Numerous studies have examined the downstream fining of sediments but most were based on 

data from small, gravel-bed streams over a length less than 200 km [Church and Kellerhals, 

1978; Ferguson et al., 1996; Rice, 1998; Constantine et al., 2003; Frings, 2008].  Graphic mean 

grain sizes in anabranching streams show significant trends on decreasing particle sizes 

longitudinally [Kemp, 2010].  Mountain streams show an initial coarsening of mean grain size 

until a threshold of drainage area is reached [Brummer and Montgomery, 2003], followed by 

fining of sediment, which has been extensively documented [e.g. Brummer and Montgomery, 

2003; Green et al., In Press].  Sand-bed rivers often experience significant fining of sediment 

longitudinally, where tributary inputs do not significantly punctuate this fining trend [Benda et 

al., 2004; Frings, 2008].  Lateral sediment sources, if sufficiently large or dissimilar enough, 

introduce material that has characteristics that were established independently of processes 

operating longitudinally in the main channel [Rice and Church, 1998].  Understanding these 

dynamics is critical because as sand-bed rivers where grain sizes transition from very coarse to 

fine sand and silt changes the dominate mode of sediment transport, bedform dimensions, and 

the size of over bank deposits [Frings, 2008].    
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Due to extreme climatic variability, the rivers of the Great Plains are some of the most 

dynamic in the world [Matthews et al., 2005; Dort, 2009].  Rivers of the Great Plains are of three 

basic types; large rivers that originate in the Rocky Mountains, streams that originate on the 

prairie, and intermittent and ephemeral channels that originate on the prairie [Wohl, 2009], all of 

which may be straight or sinuous [Schumm, 1963].  During the historical period, large rivers of 

the Great Plains were characterized by very wide (1-2 km), shallow channels that were largely 

devoid of woody vegetation [Williams, 1978].  Historical studies in the region have demonstrated 

changes in channel geometry attributed to variable flow conditions, with sometimesdrastic 

changes associated with large floods [Smith, 1940; Schumm and Lichty, 1963; Friedman et al., 

1996].  While the 1930s were characterized by a prolonged drought in the Great Plains and an 

overall decrease in mean annual discharge, the decade was also punctuated by several extreme 

flood events [Schumm, 2005].  As a result of changing precipitation regimes coupled with 

irrigation have affected river of the Great Plains as exemplified by the Platte River where there 

was substantial channel narrowing and a reversal in hydraulic geometry whereby channel width 

decreased in the downstream direction [Schumm, 2005].  Channel sinuosity and migration 

patterns have also been altered by anthropogenic alterations within Great Plains watersheds 

[Friedman et al., 1998]. 

Anthropogenic disturbances within Great Plains catchments are especially disruptive 

because Great Plains rivers are extremely responsive to altered discharge and sediment supply 

[Montgomery and Buffington, 1997].  Many rivers of the Great Plains have been transformed 

from sparsely wooded with wide channels to more modern configurations with extensive riparian 

woodlands and much narrower channels [Frith, 1974; Williams, 1978; Currier, 1982; Currier et 

al,. 1985; Martin and Johnson, 1987; Sidle et al., 1989; VanLooy and Martin, 2005].  While 

many rivers of the Great Plains have been substantially hydrologically and geomorphically 

altered  by the expansion of woodlands there have also been concurrent changing land use 

patterns including pumping of groundwater, irrigated agriculture, intense grazing, extirpation of 

bison, and intensive road development [Currier, 1982; Fausch and Bestgen, 1997; Falke and 

Gido, 2006].  Great Plains rivers have also experienced widespread and dramatic changes to their 

hydrologic regimes resulting from construction of reservoirs that fragment riverscapes, retain 

sediments, and disconnect longitudinal hydrologic connectivity [Pringle, 2003; Costigan and 

Daniels, 2012].   
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Although previous studies of longitudinal channel and sedimentary characteristics have 

documented a variety of channel forms and environments.  Large sand-bed rivers drain 

approximately half the global continental land [Ashworth and Lewin, 2012] but are poorly 

represented in the literature, which may be attributable to difficulties in access of large, sandy, 

lowland rivers [Kemp, 2012].  General circulation models of the Great Plains predict that in the 

future there will be more frequent, intense precipitation events with longer intervening dry 

periods [Knapp et al., 2002; Milly et al., 2005].  As has been demonstrated on the Platte River 

[Schumm, 2005] with a change in the hydrology of a system there is likely to be widespread 

changes to the longitudinal channel and sediment characteristics.  An analysis of the naturally 

occurring longitudinal geomorphic channel characteristics will provide valuable insight in to 

how these systems may be conserved in the future.   

Previous studies have documented channel changes to Great Plains rivers through time, 

and more specifically with respect to channel response of riparian woodland expansion [e.g. 

Frith, 1974; Williams, 1978; Currier, 1982; Currier et al., 1985; Martin and Johnson, 1987; 

Sidle et al., 1989; VanLooy and Martin, 2005] and changing precipitation regimes [Smith, 1940; 

Schumm and Lichty, 1963; Schumm, 2005].  Bankfull channel width and depth of mountain and 

lowland river systems are known to increase longitudinally associated with increases in 

contributing watershed area as well as additions of tributaries [Leopold et al., 1964].  To our 

knowledge this is the first systematic longitudinal spatial analysis of the channel and substrate 

characteristics of a large Great Plains river.   

This study examines the modern day longitudinal changes in hydraulic geometry and 

sedimentary characteristics along a 200 km reach of the Ninnescah River, a large, perennial, 

sand-bed river located in south central Kansas.  We present field measurements supplemented 

with geospatial data from 11 study sites to document the longitudinal changes in hydraulic 

geometry and substrate.  The objectives of this research are to investigate: (a) the longitudinal 

patterns in hydraulic geometry of a large sand-bed river; (b) where any abrupt changes in the 

pattern of hydraulic geometry can be detected; (c) any downstream grain size fining; (d) whether 

any abrupt changes in grain size (e.g. gravel-sand transitions and tributary inputs) can be 

observed.  We expected the geomorphology of the Ninnescah River to follow the typical 

longitudinal progression where bankfull width and depth, bankfull width to depth ratio, and the 

bankfull area increase in the downstream direction.  In addition, we expected mean grain sizes 
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would systematically decrease in the downstream direction.  We expected sites that are located 

close to significant sources of lateral sediment and water (e.g. geomorphically significant 

tributaries) would have punctuated sediment coarsening and channel widening and deepening.   

 Study System 

The Ninnescah River originates on the prairie and is located in south-central Kansas, 

where the North and South Forks join to form the Ninnescah River proper (Figure 4.1).  The 

river flows in an east-southeast direction through tall grass prairie in the High Plains, Red Hills, 

and Wellington Lowland physiographies of the Central Plains [Mandel, 2008].  The High Plains 

physiography is characterized by loess deposits of 3-5 m thick that overlie thick deposits of 

Pleistocene and/or Pliocene alluvium [Mandel, 2008].  The Red Hills region is characterized by 

red Permian-aged shale, sandstone, and siltstone [Swineford, 1955] and the Wellington Lowlands 

is characterized by Permian-aged sandstone and siltstone as well as salt deposits and gypsum.  

The Ninnescah River is a tributary of the Arkansas River, and the lower reach of the Ninnescah 

River intersects a broad, flat, alluvial plain that is underlain by thick deposits of Pleistocene 

sands and gravel [Frye and Leonard, 1952].  The Ninnescah drains primarily sandy areas and as 

a result channels are typically wide, shallow, and straight (Schumm, 2005; Figure 4.2).  The 

upper reaches of the Ninnescah River (above site 4) are within the High Plains Aquifer (Figure 

4.1), which in that region has experienced no significant change (-10%) in groundwater levels in 

recorded history [Sophocleous, 2000].  

 The Great Plains is the physiographic region of the US that has received the least amount 

of scientific attention [Matthews, 1988].  Rivers of the Great Plains are characterized by large 

floods interspersed within periods of prolonged droughts [Dodds et al., 2004].  The annual 

hydrograph of the Ninnescah River is dominated by higher flows in the winter and low flows in 

the summer, although streamflow is partly regulated by Cheney Dam on the North Fork.  There 

are three US Geological Survey (USGS) gages along the study reach, which measure increases in 

mean annual discharge from the headwaters to the mouth (0.48, 5.91, and 15.0 m3s-1; Table 4.1; 

see Figure 4.1 for location of USGS gages).  

 Morphometric parameters were measured within 11 study reaches located along 200 river 

kilometers of the Ninnescah River (Figure 4.1).  The South Fork is the dominate fork and there 

are seven study reaches on this fork (1-7) and four on the Ninnescah River proper (8-11).  Direct 
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anthropogenic alterations to the Ninnescah River basin include: Cheney Reservoir (constructed 

in 1964) that is located on the North Fork of the Ninnescah River; Site 1 is impacted by a fishing 

lake and weir dam upstream, where water is diverted out of the river and into the lake and 

returned via an epilimnetic release; Site 4 is impacted by small diversion dam and associated 

reservoir; and Site 5 is impacted by a seasonal dam that is constructed annually.  

 Methods 

 Data Collection 

Data collection was completed using field surveys supplemented with geographic 

information systems (GIS) based topographic and aerial image analysis of the study system.  

Channel characteristics measured in the field included local bed slope (S; m/m), bankfull width 

(B; m), and bankfull depth (Y; m).  Bankfull depth and width were surveyed in the field at ten 

evenly spaced cross-sections within each study reach, and each reach was a length equal to ten 

channel widths, a scale over which reach stream morphology and processes are related 

[Montgomery and Buffington, 1997].  Sinuosity was extracted from aerial photographs flown in 

2010 both within field sampling reaches and throughout the study system. The longitudinal 

profile of the study reach of the Ninnescah River was determined from digital 1:24,000 

topographic maps.  Using topographic maps for longitudinal profiles introduces only minor error 

when applied in plains environments [Kemp, 2010].  When possible, large meander bends were 

avoided and relatively undisturbed reaches (i.e. away from in-channel anthropogenic alterations) 

were selected for morphologic and sedimentary analyses.   

To study the longitudinal variations in sediment sizes care must be taken to sample 

consistently.  In gravel-bed rivers there is substantial local sorting [Bluck, 1982] and standard 

methods of grain sizes have been developed [Wolman, 1954] and thoroughly analyzed.  Sand-

bed channels have live beds [Henderson, 1963] that are continuously transporting sediment at 

most stages and have many scales of bedforms that may coexist including ripples, bedload 

sheets, dunes, and lobes [Montgomery and Buffington, 1997].  As with gravel-bed channels there 

are local depositional variations in sand-beds that may confound the apparent longitudinal 

patterns of grain sizes.   

In an attempt to reduce any sampling error associated with the multiple bedforms present 

in sand-bed channels five samples were taken to determine an integrated, cross-sectional, mean 
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grain size distribution.  Examples of previous field sampling of sand-bed sediments include two 

grab samples of sand-bed material that were from near the channel margins [Kemp, 2010] and 

three grab samples where two were taken from the channel margins and one from the thalweg 

[Lou et al., 2012].  For this analysis, five samples along the wetted channel were taken to reduce 

any error associated with bedforms.  The sample points included the two channel margins, 

thalweg, and two additional samples at the midpoint between the channel margins and thalweg.  

The materials from the top 10cm of the bed were collected at each sample point.  Particle size 

analyses were performed using standard dry-sieve analysis methods because the majority of the 

samples had greater than 84% of their weight in the sand fraction.  Prior to sieving, each sample 

was oven dried for 24 hours, cooled, and gently disaggregated.  Large organic items were 

manually removed from the sample and discarded.   Mean grain size, sorting, skewness, and 

kurtosis were calculated using the Folk and Ward [1957] formulae following Blott and Pye 

[2001].   

 Data Analysis 

Analyses focus on general relations between longitudinal position and morphological and 

sedimentary characteristics of a large sand bedded river.  Correlations between response 

variables (sinuosity, width, depth, width to depth ratio, sediment sizes) to location downstream 

from site 1 were determined with regression analyses.  Following Brummer and Montgomery 

[2003] and Kemp [2010], regression analyses are fitted exponential relations where response 

variables were log transformed to meet the assumption of equal variance in the residuals.  

Principal component analyses (PCA), based on a correlation matrix of response variables, is used 

to summarize correlations between network location and stream attributes.  

 

 Results 

 Channel morphology 

 Channel structural parameters 

The longitudinal profile of the Ninnescah River is concave (Figure 4.3a).  Concavity of 

the longitudinal profile is maintained by decreasing bed slope through the system (Figure 4.3b).  

Bed slope and channel sinuosity (Fig 3c) of the upper three reaches (1-3) are much higher than 
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the lower reaches of the Ninnescah basin.  Overall, the sinuosity of the Ninnescah River system 

was 1.15.  Reaches 1-3 have a predominately meandering planform configuration (sinuosity > 

1.35) and the rest of the system, with the exception of site 11, is much less steep and less 

sinuous, resulting in a predominately straight braided planform configuration.   Regression 

analysis of channel sinuosity is marginally significant (F2,9= 4.9, p = 0.054, r2=0.35) with 

sinuosity decreasing downstream (Table 4.2).   

 Bankfull channel parameters 

The Ninnescah River conforms to the expected longitudinal morphologic progression, 

where bankfull channel width and depth increase.  Bankfull channel width of the Ninnescah 

basin increases five-fold from 15.7 m at the upper most site (1) to 78 m at the lower most site 

(11) (Figure 4.3d), yet the widest bankfull widths in the system are the intermediate reaches 

(sites 7-10) where bankfull width is ~100m.  Site 1 had a mean bankfull depth of 1.57 m and the 

site 11 had a mean bankfull depth of 1.74 (Figure 4.3e).  Site 3 had many exposed, incised banks 

and there was a disproportionally large increase in bankfull depth at this site (Figure 4.4).  Sites 9 

and 10 had the highest bankfull depth of approximately 2m.  The slope of the overall regression 

equation for bankfull depth was insignificant (F2,9 =0.26, p = 0.62, r2= 0.03; Table 4.2).  

Regression analyses demonstrated a significant (F2,9 =108.9, p < 0.001, r2=0.92) downstream 

trend in increasing channel width.  

Bankfull width to depth ratios and area (Figure 4.3f, 4.3g) follow a similar pattern of 

bankfull depth and width of increasing longitudinally, with the intermediate reaches having 

highest values.  As the drainage density of the river increases longitudinally, width to depth 

ratios increase significantly (F2,9=64.3, p<0.0001, r2= 0.88).  A marked increase in width to depth 

ratios was measured coincident with the change in planform configuration from meandering to 

braided.   

 Sediment Characteristics 

Grain size distributions for 50 of the 55 samples were unimodal.  The 5 bimodal samples 

were obtained from site 1 where the second mode is a minor secondary peak of small gravel 

particles in an otherwise predominately sand sample.  Since only one site had a small bimodal 

grain size distribution, aggregate analysis of grain size distribution employed standard 

parameters such as mean, median, sorting, skewness, and kurtosis.  Overall, the sediments are 
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predominately moderately sorted, coarsely skewed or symmetrical, and mesokurtic or leptokurtic 

in nature (Table 4.3; Figure 4.5).   

 The sorting coefficients ranged from 1.6 to 3.6, indicating a narrow range of moderately 

well to poorly sorted (Figure 4.5; Table 4.3).  The upper two reaches of the study system are 

poorly sorted.  Site 1 has the highest sorting coefficient but also has the lowest skewness and 

kurtosis coefficients.  Site 5, located downstream of an ephemeral run-of-river dam is also poorly 

sorted.  Between site 5 and 6 a systematic decrease in mean grain size, median grain size, 

sorting, skewedness, and kurtosis occurred.  Between sites 7 and 8, where the North Fork joins 

the South Fork, a slight increase in the sorting coefficient, skewness (from symmetrical to 

coarsely skewed), and in kurtosis occurred.   

  The texture of sediment samples were described using the size scale of Blott and Pye 

[2001] (Figure 4.6).  Site 1 was the only site with gravel as the dominate particle size fraction.  

Texture analysis demonstrated that the upper portions of the watershed had the highest 

proportions of sediment in the gravel size fractions and the further downstream the more sand 

fraction was present.  Between sites 7 and 8 the North Fork joins the South Fork, forming the 

Ninnescah River proper and contributed to an increase in larger particles at site 8.  The 

longitudinal trend is a decrease in the gravel fraction and increase in sand fractions, and site 11 

had a very small percentage of gravel within the samples.   

Trends in the percentiles of the substrate sediment indicate that the bed material of the 

Ninnescah River fines systematically downstream (Figure 4.7).  Regression analysis indicated 

the surface D90 and D50 were modeled well (Table 4.2), but the relationship for D10 was not 

strong (F2,9= 2.6, p=0.14, r2=0.23).  There are significant trends in downstream fining of D90 

(F2,3=11.7, p=0.008, r2=0.57) and D50 (F2,3=7.0, p=0.027, r2=0.44). The slope of the regression 

for D90 are an order of magnitude steeper than D50 and D10, with D50 slope steeper than D10.  

Downstream fining of surface D50 is especially evident in the upper reaches of the system where 

D50 between site 1 and 3 decreased four- fold (2100 μm to 500 μm).  Between sites 3 and 10 

there was a slight fining trend in D50.  As the Ninnescah River approaches the Arkansas River 

(below site 11) D50 abruptly increases by 300μm between sites 10 and 11.  Overall, 

measurements of surface D50 in the Ninnescah River range from 427 to 2133μm.   
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  Overall assessment  

The first two axes of the principal component analysis explained 85.6% of the variation 

in the response variables across the 11 sites (PCA axis 1= 68.9, axis 2=16.7%; Table 4.4).  

Longitudinal patterns along PC1 are strong for sites 1-7 and PC2 for sites 8-11 (Figure 4.8).  

Component one is characterized by similar loading magnitudes of all parameters, both positive 

and negative, with the exception of bankfull depth, which loads weakest along this principal 

component.  Component two is characterized by highly positive (0.507) loading of D10 and 

highly negative loading of bankfull depth (-0.612).  Principal component axis 3 explained 9% of 

the variation in the dataset and is characterized by highly negative loadings of bankfull depth     

(-0.716).   

 Discussion  

This study characterizes the longitudinal patterns of channel hydraulic geometry and 

substrate of a large alluvial sand-bed river located in South-central Kansas.  Our results 

complement similar previous studies of hydraulic geometry from other channel types that 

demonstrated channel width [e.g. Montgomery and Gran, 2001; Brummer and Montgomery, 

2003] and depth [e.g. Mueller and Pitlick, 2005; Splinter et al., 2010; Green et al., In Press] 

increasing longitudinally. There are many examples where channel widths and depths decrease 

downstream including channel break down [Ralph and Hesse, 2010] and rivers transitioning 

from humid to semi-arid environments [Kemp, 2010].   

While results of this study demonstrate that bankfull channel width increases in the 

downstream direction, there are no significant changes in bankfull channel depth in the 

downstream direction.  Wolman and Gerson [1978] note that in dry land rivers, channel width 

approached a fairly universal asymptotical value of 100-200 m once the catchment area exceeds 

50km2, which we also observed in our study of the Ninnescah River.  The finding that width 

increases significantly more than depth is consistent with previous studies that have attributed 

this to mean depth and mean velocity remaining constant throughout the system [Ashmore and 

Sauks, 2006; Bertoldi et al., 2008] where the increases in discharge are accommodated by an 

increase in channel width.  Multi-thread channels are characterized by very shallow cross-

sections, and width increases faster than depth by activation of new threads.  In addition, much 

of the floodplain sediments of the Ninnescah River form noncohesive, easily eroded banks and 
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previous studies have demonstrated fluctuations in channel width are large when compared to 

fluctuations in bed elevation for channels with noncohesive banks [Schumm and Lichty, 1963; 

Friedman et al. 1996].  The low width to depth ratios in the upper portions of the watershed are a 

relic of low discharge in this region, resulting in narrow, shallow channels [Splinter et al., 2010].   

Where the North Fork joins the South Fork a slight change in bankfull channel width and 

a large increase in channel depth as the stream is adjusting to the new sediment and water loads 

from the tributary were documented.  The North Fork of the Ninnescah River has an 

impoundment on it, which is likely the cause of the changes in channel width and depth 

documented at site 8.  Hackney and Carling [2011] in their analysis found that overall there was 

a net narrowing of the channel downstream of confluences by 1%; however, there were sites with 

large amounts of narrowing and widening that is also confounded by large variations in the 

geology of the study area.  Channels downstream of confluences have been shown to narrow 

15% following impoundment with in the tributary network [Curtis et al., 2010]. On the 

Ninnescah River we only see a slight change in channel width so the additional discharge from 

the North Fork could be accommodated by a local increase in channel depth rather than by 

widening, which has been seen elsewhere [e.g. Lane, 1955].   Results of this study demonstrate 

that on the Ninnescah River increased channel width plays a more significant role in maintaining 

channel conveyance than channel depth when there are lateral inputs of water from tributaries, 

which has been well documented [e.g. Knighton, 1987; Best, 1988; Hackney and Carling, 2011].     

 Due to the systematic decreasing of slope to the east, we expected to have finer-grained 

sediment in the lower reaches of the study.  Results of sediment sampling reveal a grain size 

fining that is especially prevalent in the upper portions of the study system, between site 1 and 3.  

One of the most expressive forms of downstream fining is the gravel-sand transition [e.g., 

Sambrook and Ferguson, 1995], which occurs between 1 and 2 on the Ninnescah River.  

Punctuated trends in downstream fining, as seen on the Ninnescah, are often associated with 

discontinuities in slope [Ferguson et al., 2006].  At the gravel-sand transition rivers reduce their 

slope resulting in decreases in bed shear stresses, which contribute to the abruptness of the 

gravel-sand transitions [Frings, 2011], although the gravel-sand transition is not always 

associated with a change in slope [Shaw and Kellerhals, 1982].  Between sites 1 and 3 a dramatic 

downstream decrease in slope developed that resulted in a decrease in shear stresses, which can 

result in coarser grains not becoming entrained and a decreased transport capacity of the system 



90 

 

[Frings, 2008].  Abrupt changes in longitudinal trends of slope represent critical transition points 

where there are departures from the central tendencies of a river [Reinfields et al., 2004].  The 

slope discontinuity seen in the Ninnescah River is concurrent with the observed gravel-sand 

transition and not coincident with any external control such as variable geology or external 

sediment inputs that can cause changes in slope [e.g. Ferguson, 2003].   

 In addition to the gravel-sand transition observed in the upper portion of the watershed, 

there are significant trends in downstream fining of sediment throughout the Ninnescah River 

system.  The two mechanisms for downstream fining are abrasion and selective transport of 

sediment.   Abrasion of sediment leads to stable fining patterns and selective transport 

preferentially entrains finer grains earlier than coarser grains.  In rivers with a concave 

longitudinal profile, like the Ninnescah, selective transport results in stable downstream fining, 

which causes it to be difficult  to ascertain the relative importance of abrasion and selective 

transport [Frings, 2008]. 

Tributary junctions are locations in the network where channel and valley morphology 

change and where there is deviation from the central tendency expected under the Network 

Dynamics Hypothesis [Benda et al., 2004].  The North Fork of the Ninnescah is the dominate 

tributary of the system and has a large impoundment on the river, which is likely the cause of the 

increase in mean grain size immediately downstream of the junction [Kondolf, 1997].  The 

downstream impact of dams on sediment grain size is often very significant (e.g., Heath and 

Plater, 2010).  Geomorphically significant tributaries [Benda et al., 2004] are the most common 

source of grain-size discontinuities in gravel bedded rivers, typically resulting in an increase in 

the man grain size [Frings, 2008].  In sand bedded rivers that have large floodplains, tributary 

channels typically have the same gradient as the main channels, results in these rivers not having 

a stark discontinuity in the mean grain size [Frings, 2008]. It is generally believed that tributary 

inputs do not affect mean grain size distributions on sand-bed rivers because of network 

geometry, where the upper reaches have more tributary inputs than lower reaches [Benda et al., 

2004; Frings, 2008].  Consistent with previous research, our results demonstrate that the 

tributary sediments dominate the sediment distribution downstream of the confluence that is 

likely attributed to the impoundment on the North Fork of the Ninnescah [Graf, 1980; Curtis et 

al., 2010] 
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Playfair [1802] noted that tributary streams join the principal stream at the level of the 

principal valley and that the tributary and main stream must be lowering at the same average rate 

in the vicinity of their junction. The Ninnescah River, in order to be accordant to Playfair’s law, 

must adjust itself to meet the Arkansas River.  The coupling of the Arkansas River and 

Ninnescah River is a control on the geomorphic function of the Ninnescah River.  Results 

demonstrate at the furthest downstream site on the Ninnescah there is a marked increase, 

between site 10 and 11, in mean channel slope of 24%, increase in channel sinuosity by an order 

of magnitude, and decreases in channel width and depth by 20% and 14%, respectively.  The 

Arkansas River is believed to have once followed the current course of the Ninnescah River 

[Schoewe, 1949].  Deflection northward of the Arkansas River was caused by gradual uplift of a 

large structure whose axis extended in a North-South direction and as uplift progressed the 

Arkansas River was forced to migrate northward around the anticlinal structure forming the 

Great Bend of the Arkansas River.  Between sites 10 and 11 the Ninnescah River approaches the 

Arkansas, entering the Arkansas River Lowlands that is coincident with the termination of the 

anticlinal structure that forced the Arkansas River northward.   

 

 

 Conclusions  

The present study presents results from field, lab, and geospatial analyses for the 

longitudinal linkages between reach-scale morphology and sedimentary characteristics of a large 

sand-bed river.  Results demonstrate that channel structural components follow the typical 

expected hydraulic patterns longitudinally, with significant trends in increases in bankfull 

channel width and width to depth ratio, and a significant trend on decreasing channel sinuosity.  

Bankfull channel width does not have a significant longitudinal trend.  The Ninnescah River has 

a significant trend in downstream fining of surface sediment (D50, D90) that is probably reflective 

of a combination of hydraulic sorting and sediment supply from the catchment.   The North Fork 

of the Ninnescah River joining the South Fork has a disproportionally large influence on channel 

and sedimentary characteristics than what is typically believed.  Once the Ninnescah River 

approaches the Arkansas River floodplain, there are deviations in the central tendency as the 



92 

 

Ninnescah River adjusts itself to meet the Arkansas. Our results build upon previous studies, 

with a new, underrepresented physiographic region.   
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Figure 4.1 The Ninnescah River basin and its location in Kansas showing the location of field sites and U.S. Geologic Survey 

gages.  Text in grey are the boundaries of the major physiographic regions within the Ninnescah River basin.   
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Figure 4.2 Photographs of field sites in downstream order. 1-6 are the South Fork of the Ninnescah River and 7-11 are the 

Ninnescah River proper. 
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Figure 4.3 Downstream trends in (a) the longitudinal profile, (b) bed slope, (c) channel sinuosity, (d) bankfull channel width, 

(e) bankfull channel depth, (f) bankfull channel width to depth ratios, and (g) bankfull channel area. The black dashed line 

denotes the location of the seasonal dam and the grey dashed line denotes the location where the North Fork meets the South 

Fork of the Ninnescah, forming the Ninnescah River proper. 
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Figure 4.4 Photograph of a cut bank seen at site 3. 
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Figure 4.5 Downstream trends in sorting coefficient, skewness, and kurtosis. 
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Figure 4.6 Analysis of sediment grain texture with gravel and sand size classifications from 

Blott and Pye [2001] 
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Figure 4.7 Downstream trends in grain surface sizes (D90, D50, and D10). 
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Figure 4.8 Results of principal component analysis for the first two principal components 

for channel sinuosity (Si), altitude (E), bankfull width (B), bankfull depth (Y), width to 

depth ratio (B:Y), slope (S), and grain size (D10, D50, and D90). 
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Table 4.1 Hydrologic characteristics of the Ninnescah River along study reach (standard error of mean).   

Station Number Station Mean annual discharge (m3s-1) Contributing area (km2) 

07144910 SF Ninnescah in Pratt, KS 0.5 (0.04) 303.0 
07145200 SF Ninnescah in Murdock, KS 5.9 (0.3) 1683.5 
07145500 Ninnescah in Peck, KS 15.0 (0.9) 5514.1 

 



110 

 

 

Table 4.2 Parameter estimates for regression relationship between ln transformed values for channel sinuosity (Si), width (B), 

depth (Y), width to depth (B:Y), grain size (D10, D50, and D90), and distance.* 

 a b SEb r2 F p 

ln Si 1.42 -0.0022 0.0015 0.35 4.9 0.054 
ln B 15.13 0.4932 0.0442 0.92 108.9 <0.0001
ln Y 1.59 0.0008 0.0015 0.03 0.26 0.620 
ln B:Y 9.56 0.2892 0.0335 0.88 64.3 <0.0001
ln D10 0.40 -0.0005 0.0003 0.23 2.6 0.14 
ln D50 0.99 -0.0032 0.0013 0.44 7.0 0.027 
ln D90 4.04 -0.0209 0.0020 0.57 11.7 0.008 

 

    
*Here a and b are parameters in the relation ln y = ln a + bx where x is measured in km downstream from site 1.   SEb is the standard 

error of the coefficient b; r2 is the coefficient of determination; F is the value of the F distribution; p is the significance probability.  
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Table 4.3 Average particle size (standard error) characteristics with sorting, skewness, and kurtosis classifications from Blott 

and Pye [2001]. 

 Site Mean (μm) Median (μm) Sorting (σG)   Skewness (SkG)   Kurtosis (KG)   

1 2064.3 (311.4) 2132.8 (383.2) 3.6 (0.2) Poorly  -0.01 (0.06) Symmetrical 0.72 (0.04) Platykurtic 

2 922.0 (95.9) 813.0 (80.4) 2.4 (0.1) Poorly  0.3 (0.04) 
Coarse 
skewed 

1.02 (0.07) Mesokurtic 

3 535.9 (98.2) 494.6 (72.0) 1.9 (0.2) Moderately 0.2 (0.02) 
Coarse 
Skewed 

1.18 (.12) Leptokurtic

4 914.9 (82.7) 824.7 (57.2) 1.9 (0.1) Moderately 0.3 (0.02) 
Coarse 
Skewed 

1.06 (0.05) Mesokurtic 

5 757.7 (67.2) 678.0 (46.6) 2.1 (0.2) Poorly  0.3 (0.02) 
Coarse 
Skewed 

1.20 (0.06) Leptokurtic

6 433.0 (14.0) 426.9 (15.5) 1.6 (0.02) 
Moderately 

Well  
0.09 (0.02) Symmetrical 1.09 (0.03) Mesokurtic 

7 533.1 (12.9) 526.3 (16.3) 1.7 (0.02) Moderately  0.09 (0.03) Symmetrical 1.11 (0.03) Mesokurtic 

8 647.7 (44.0) 600.0 (39.3) 1.9 (0.2) Moderately 0.2 (0.04) 
Coarse 
Skewed 

1.12 (0.03) Leptokurtic

9 724.0 (40.1) 655.9 (22.0) 1.7 (0.1) Moderately  0.06 (0.03) Symmetrical 1.10 (0.04) Mesokurtic 

10 468.9 (20.3) 455.0 (21.9) 1.6 (0.05) 
Moderately 

Well  
0.2 (0.03) 

Coarse 
Skewed 

1.11 (0.03) Mesokurtic 

11 440.1 (13.1) 713.0 (45.7) 1.6 (0.03) 
Moderately 

Well  
0.07 (0.02) Symmetrical 1.07 (0.03) Mesokurtic 
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Table 4.4 Principal component loadings and explained variance for the first three 

components for channel sinuosity (Si), altitude (E), bankfull width (B), bankfull depth (Y), 

width to depth ratio (B:Y), slope (S), and grain size (D10, D50, and D90). 

 PC1 PC2 PC3 

Si -0.338 -0.392 0.027 
E -0.372 -0.015 0.144 
B 0.386 0.076 -0.239 
Y 0.048 -0.612 -0.716 
B:Y 0.378 0.243 -0.044 
S -0.375 -0.165 0.125 
D10 -0.219 0.507 -0.566 
D50 -0.352 0.256 -0.237 
D90 -0.375 0.238 -0.120 
Explained variance  2.489 1.226 0.898 
Explained variance (%) 68.9 16.7 9.0 
Cumulative % of variance 68.9 85.6 94.5 
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Chapter 5 - Conclusions 

This dissertation begins to address the paucity of hydro-geomorphic knowledge specific 

to rivers of the Great Plains, perhaps the most scientifically overlooked streams in the continental 

United States [Matthews, 1988)].  Though no single dissertation could adequately address such a 

vast region, the three empirical studies presented herein represent important contributions to our 

understanding of Great Plains rivers with respect to other more intensively investigated systems. 

Scales of analysis range from the regional analysis of multiple large river systems to a small 

headwater tributary network.  Rather than focus on contrast within the Great Plains, this 

dissertation focused on contrasting specific system type (e.g. headwater tributaries) behavior 

and/or form to well understood systems located outside of the Great Plains.   

 Chapter 2, Damming the Prairie: Human Alteration of Great Plains River Regimes, is the 

first study to quantify the widespread hydrologic alteration of Great Plains rivers following a 

wave of flood control dam construction in the 1960’s.  I found no uniform pattern of hydrologic 

alteration throughout the Great Plains, a finding likely attributable to variable system-specific 

reservoir management objectives, land use changes, and climatic regimes over the large area the 

Great Plains encompasses. The most dramatic hydrologic alterations observed were large 

increases in the number of annual hydrograph reversals and faster rise and fall rates.  

Chapter 3, Hydrology of intermittent tallgrass prairie headwater streams, is among the 

first to systematically analyze the hydrologic regime of headwater tributary network in the Great 

Plains, and is the first to do so within the Central Great Plains.  Results of this study used 

statistical models to identify relationships between flow intermittence, mean annual flow, and 

flood flow characteristics with moisture characteristics (total annual precipitation, peak 

precipitation, and Palmer Drought Severity Index) to characterize flow in intermittent prairie 

streams.  I found an apparent decoupling between local moisture and streamflow in intermittent 

prairie streams.  Results also demonstrated that, at times, the hydrologic regimes of immediately 

adjacent headwater streams can be decoupled.  Furthermore, headwater tributaries can be 

decoupled longitudinally with gages short distances downstream.   

In Chapter 4,  Longitudinal variability in hydraulic geometry and substrate characteristics 

of a Great Plains sand-bed river, I found the downstream trends in hydraulic geometry and 

substrate characteristics of the Ninnescah River were consistent with the expected treads 
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proposed by hydraulic geometry and substrate theories developed elsewhere.  However, there 

were points that deviated from the expected trends, most notably where a substantially large 

tributary enters the Ninnescah River and as the Ninnescah River approaches the Arkansas River, 

and causal explanations for these deviations were explored.  Taken together, the results of this 

study are the first of its kind to assess the longitudinal hydraulic geometry and substrate 

characteristics of a large sand-bed river over a substantial longitudinal reach.   

 The body of work presented herein significantly contributes to our understanding of the 

hydrology and geomorphology of Great Plains rivers.  First, hydrologic alteration by dams on 

large rivers throughout the Great Plains varies depending on conditions within the watershed, but 

there were consistent trends with increases in the number of annual hydrograph reversals and 

faster rise and fall rates.  Second, small intermittent streams are decoupled from short-term 

precipitation trends, and flow can be desynchronized between neighboring watersheds as well as 

longitudinally, suggesting that flow is partially controlled by processes acting at finer scales than 

climate.  Third, the longitudinal hydraulic geometry and substrate characteristics of a large sand-

bed river follow the expected trends that were developed for coarser-grained mountain streams, 

with few notable deviations.   

 


